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A MODIFIED DODGE ALGORITHM FOR THE PARABOLIZED NAVIER-STOKES

EQUATIONS AND COMPRESSIBLE DUCT FLOWS

By

C. H. Cooke*

SUMMARY

A revised version of Dodge's split-velocity method for numerical

calculation of compressible duct flow has been developed. The revision

incorporates balancing of mass flow rates on each marching step in order

to maintain front-to-back continuity during the calculation. The (checker-

board) zebra algorithm is applied to solution of the three-dimensional

continuity equation in conservative form. A second-order A-stable linear

multistep method is employed in effecting a marching solution of the para-

bolized momentum equations. A checkerboard SOR iteration is used to solve

the resulting implicit nonlinear systems of finite-difference equations,

which govern stepwise transition.

INTRODUCTION

It has been said that the full Navier-Stokes equations represent the .

ultimate mathematical model upon which to base numerical algorithms for

predicting flows of practical significance. However, even with the advent

of the so-called vector computers with vast virtual memory and quadrupled

processing speeds, extant numerical and computational difficulties are

sufficient to merit a search for simpler mathematical models and less

complicated numerical methods which can still provide useful solutions to

problems of interest. Thus, considerable analysis and numerical experiment

has been devoted to the exploitation of parabolized marching methods for

flow prediction. References 1 to 7 represent a perhaps typical but by

no means exhaustive sampling of the available literature on this subject.

*Professor, Department of Mathematical Sciences, Old Dominion University,
Norfolk, Virginia 23508.
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The parabolized marching methods are some_rr----

tion than the classical boundary-layer approach, since transverse pressure

gradients are not disregarded and, in some cases, upstream influences

can be transmitted through the pressure field. However, the basic

assumption that streamwise viscous diffusion can be neglected restricts

application to flows with a primary flow direction, limited upstream

influence, and which may exhibit at worst crossplane recirculation.

Unfortunately, in subsonic and transonic wind-tunnel flows, the elliptic

upstream influence can be a significant factor in the flow dynamics;

hence, interest arises in simpler mathematical models which permit this

interaction. A case in point has been the development of Dodge's velocity

splitting method, which allows global propagation of influence through the

pressure field, and which has met with successes in both unconfined com-

pressible and confined incompressible flows (ref. 7-10). However, as yet

the method is by no means fully proven.

In this paper we shall be concerned with the application of a com-

pressible formulation of Dodge's split velocity technique (ref. 9) to the

calculation of developing (nonentry region) flow in a square duct. The

original method has been revised to effect constant mass flow rate on each

transverse plane while marching down the channel. Parabolized momentum

equations are employed. However, a fully elliptic pressure field is allowed

by the iterative manner in which the solution of the continuity equation

is coupled into the calculation procedure. Application of the presently

developed computer algorithm is restricted to subsonic flow. It could

readily be altered to allow transonic calculations through modification

or replacement of the algorithm used to solve the conservative continuity

equation.

Computational simplicity as well as numerical stability is achieved

in marching the momentum equations with'an A-stable (ref. 11) implicit

linear multistep method, the equations of which are iteratively solved at

each step by employing checkerboard successive overrelaxation. While

this solution procedure may be considered expensive, the presence of

quadratic as well as higher order nonlinearities in the parabolized

momentum equations requires that some iteration be employed to improve

accuracy. As an extra benefit, the wide-ranging stability of the

2



resulting marching equations appears well worth the cost.

Finally, the peak efficiency of the methods developed is un

best realized on the computer system for which it has been designed,

namely, the Cyber 203. For such machines, a numerical algorithm must

effectively exploit the array processing capabilities; otherwise, methods

which are not highly vectorizable misuse the available computing potential

and can result in quite ordinary processing speeds. The explicit nature

of the checkerboard algorithm yields a highly vectorizable method ideally

suited for the array processor.

F

k

In certain parabolize.' u7?-ching schemes for confined flow (ref. 1)

it has been the practice t4. .,ecouple streamwise and transverse pressure

gradients. Some argue (ref. 12) that this is necessary in order to obtain

meaningful physical solutions with parabolized equations. While results

are still-inconclusive, computational experience gained in the current

research appears to support this belief. Weak, but not total, uncoupling

of the streamwise pressure gradient has appeared necessary, although this

may stem from the manner in which local continuity of mass flow is enforced.

LIST OF SYMBOLS

Cp,Cv

P

P

w

u

Re

Y

T

T0'Po,po,ao,uo

w

a

D

M

specific heats

static pressure

density

3-D velocity vector

viscosity
P a D

Reynolds number, Re - 
0 0
uo

Cp/Cv

temperature

reservoir values for temperature, pressure, density, speed
of sound, and viscosity

scalar potential

relaxation parameter	
ORIGINAL PAGE k

channel half-width
	

OF POOR QUALITY

Mach number	
3



PARABOLIZED GOVERNING EQUATIONS

The nondimensionalized Navier-Stokes equations for compressible

steady flow with which we shall be concerned are now written.

Continuity:

V- Pw =0
	

(1)

Momentum:

#	
PCw • 

9) w = -0P - 0x1 
Re 

Vxw 1 * a(3 Re D - w^

	

(2)

`	 Energy:

T=To-Zw2
	

(3)

Here, for flow in ducts with nonconducting walls, the usual energy

equation has been replaced by the algebraic constant total temperature,

relation (3). The constitutive relations are

P = YY1 PT
	

(4)

and the viscosity approximation

u	 (Y - 1)T.	 (S)

For subsonic flow the governing equations are elliptic. However,

a common approximation used to parabolize these equations (refs. 1,2)

is obtained by neglecting streamwise diffusion terms in equation (2).

With the exception of the entry region, the approximation is considered

valid for flow in channels whose lengths are large compared to half-

width (ref. 2). Perhaps it shou ' d be remarked that, when Dodge ' s method

is applied in obtaining numerical solutions of these equations, the

approximation is only a partial parabolization since the pressure field

is obtained from an elliptic boundary value problem. This, of course,

allows global propagation of disturbances, through the pressure field and

the iteration process.

DODGE'S METHOD

r	
Introduction

k

In Dodge's method, the total velocity vector w is arbitrarily
1

decomposed as a sum of rotational and irrotational parts:
y
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w = 40 + u	 (6)

where 0 is a scalar potential. Pressure is hypothesized to depend solely

upon the irrotational velocity acc._ding to the isentropic relationship

P = Po (1 - 0^2/2To ) Y/Y-1
	 (7)

However, density is decomposed as the sum of a viscous contribution

ov and an isentropic contribution p*:

o =ov+ P* 	(8)

where

P * = 00 (1 - 002/2T0)1/Y-1
	 (9)

Substituting equations (6), (7), and (9) in equations ( 1) and (2) leads

to the so-called split equations

9 - P70 = -0	 ou	 (10)

r
and

P (w 0) w - o * (oo • Q) 70 + Gx(Re Gxw
J
 - 

V 3 Re 
V w 1 = 0	 (11)

Equations ( 10) and ( 11) are to be iteratively solved: equation (10)

with a3-D relaxation method for elliptic equations, following which the

parabolized version of equation ( 11) is marched downstream by employing

a chec%erboard iteration to solve an implicit system of equations

at each step. A synopsis of the iteration procedure is now presented.

Overview of Iteration Procedure

(1) Determine a suitable initial pressure distribution P o by estimating

a global m distribution. In this investigation, pressure on the

first pass is assumed to be a function of only streamwise displacement,

and a mass-balancing operation establishes the initial pressure field.

(2) Employing the current pressure field, march a parabolized version of

equation ( 11) down the duct, simultaneously storing the right-hand

side of equation ( 10). [See also eq. (17)].

(3) Solve equation ( 10) (or eq. (17)) to obtain an updated pressure field.

(4) Repeat the computational pass consisting of steps (2) and ( 3) until

sufficient passes and a converged pressure field are obtained.

S
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Dodge ' s Method Revised

Dodge (ref. 9) reports problems arising from adjustment of front-to-

back continuity requirements with an iteration which is similar to that

previously outlined. It is expected that this slow convergence stems

from inccmplete satisfaction of the continuity equation which could,

for example, be solved after the momentum march terminates in some form

such as

V • pnV^n = -V • (Pu)n-1

This is in contrast to the usual parabolized marching methods for which

both mass and velocity variables are updated at each marching step.

Physically, in order to maintain continuity in a channel flow, the

mass flow rate

w = f f P(a + u^dydz = .^3 Pwnormaldydz

must remain constant at each transverse plane. However, in Dodge's

(unrevised) method this provision is only weakly incorporated through

equation (10), which is solved globally upon termination of a marching

pass. Thus, poor satisfaction of mass balancing during the momentum

marching process is only to be expected, as numerical experimentation

indicates.

Consequently, we have chosen to revise the Dodge technique in a manner

which alleviates this difficulty. This was at first attempted by employing

f
0

xg (E) dE + i(x,y,z)

to write equation •(12) in the form

/	 a
VPU n-1	 aX (Pg)n-1(P'V;)n

The function g is determined by iterating the numerical counter-

;	 part of the parabolized equation (11) at each fixed marching step until

numerical balance of mass flow rate is achieved. This is accomplished

through gradual changes in streamwise velocity, pressure, and density

effected by the equation

t
f

(12)

(13)

(14)

(1S)
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[ffp'dydz]
gk+1 

gk
- a[m - f f(ownormal

)
kdydz] + 
	

(16)

with a a relaxation parameter. Aside from the benefit of an instanteous

balance in mass flow rate, another merit of this device is that fewer

global iterations are required in the relaxation solution of equation (1S),
i

as it is now more nearly satisfied at the outset.

However, this approach was found de;::ctive, in theory as well as in

fact. The solving of equation (1S) in the form indicated yields nonphysical

results, as it ^rovides a quasi-full potential transonic flow equation

whose elliptic-hyperbolic transition point can differ markedly from Mach 1.

This difficulty can be largely alleviated, although not totally circumvented,

by replacing cquation (1S) with the equation

V • (P 0O) n = -V - (Pu)n-1	
(17)

whose point of transition more closely approximates the physics of,the

flow.

Pressure gradients in Dodge's unrevised method would be computed on

pass n from the equation

ap
aXn : ip

-(Vo - 0)V ̂i	
(18)i

In the revised version, pressure gradients are allowed to develop

during the mass-balancing iteration according to the equations

ap n,k

ax	 -Pk,n ^gk gx + 0y mXy + ^X +pXZI	 (19)

n,k	 J
ay	 -Pk, n rgk Oxy + my 0yy + mX ^yẐ 	 (20)

n,k

a	

L	 J

z	
k 0
	 m	 0

	

-P k , n C

g
xz + °y yy + ^z zz	 (21)J

The quantity g is determined through equation ( 16), and gx by second-

order backward differencing. This precedure represents a weak decoupling

of the streamwise pressure gradient, since the g terms are the dominant

contributions, and since these contributions are determined from local

plane-to -plane continuity considerations, somewhat independently of the

output from the global continuity equation [eq. (17)] on the previous pass.

}	 7
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NUMERICAL ANALYSIS

The algorithm deemed most efficient for numerically solving equation

(17) on the array-processing computer is the Zebra algorithm of South

at al. (ref. 13). This 3-D relaxation technique is in some respects

similar to the hopscotch method of Gourlay (ref. 14). In equation (17)

central differences are applied to all derivative terms. Variables in

plane i are updated in checkerboard fashion, plane by plane in a
f

downstream sweep, using already updatea values at plane i - 1 and old

iteration values in plane i + 1. Iterative repetition of downstream

sweeps is used to converge the field, with a relaxation parameter

employed to speed convergence.
i

A second-order accurate, implicit linear multistep method is used

on equation (11) to march in the stepwise direction. The implicit

equations are iteratively solved using a checkerboard successive overrelaxa-

tion scheme, with mass balancing built in as previously described. Stream-

wise derivatives are backward differenced second-order accurate, while

derivatives in the (transverse) cross-plane are approximated second-order

using central differences. A prediction of form

f  
s 

2f i_1 - fi-2

is used to initially estimate a velocity variable in plane i. The

checkerboard method is then employed on the differenced counterpart of

equation (11) to update variables in plane i in two cycles, with values

updated on cycle 1 fed into the succeeding cycle. This two-cycle update

process is iterated, employing equations (16) and (19) to (21) to alter

the flow speed and pressure gradients until a balance in mass flow is

achieved.

DEVELOPING FLOW IN A STRAIGtT DUCT

The revised method of Dodge has been employed to develop a finite-

difference numerical model for three-dimensional viscous flows in confined

regions. For boundary-layer resolution, the capability to allow individual

coordinate stretching in each coordinate direction has been incorporated.

ORIGINAL PAGE &
OF POOR QUALM
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The method so developed has been programmed using the SL1 vector language

for the Cyber 203 array processor, and appears debugged. The 32-bit

half-word option of SL1 has been employed in programming the Zebra relaxation

algorithm for solving equation (17), while 64-bit full-word arithmetic is

used in programming the checkerboard marching algorithm. The program has

been tested by application to the problem of computing the steady developing

flow in a straight duct (see fig. l). Boundary conditions for the problem

are now given.

Boundary Conditions

Inflow: T a1To - ui

specified velocity profiles, W  - H(y,z),

P i - R(y,z), P i . constant

ox (O ,Y, z ) - g (0 ) - io

Duct walls: velocity no slip, O n - 0, T - Tw , p - pw

Outflow: pv extrapolated, 0 - 0m , gm extrapolated

Artificial barriers: The computational domain is taken to be one
quarter of the total duct cross section, and symmetry conditions
are applied at the two resulting (nonwall) artificial barriers.
Here the normal velocity component vanishes together with normal
derivatives of m and the other velocity variables. The variables
P and T, of course, depend on 0 and velocity at these boundaries.
However, for constant total temperature, vanishing normal derivative
in T, p is the natural bounuary condition.

On the first pass, the value mm is allowed to develop in the

calculation from mass flow rate balancing down the duct. Thereafter, it

is held fixed.

COMPUTATIONAL RESULTS

The method developed and programmed has been exercised by application

to the duct flow calculation with Reynolds number - 100 and Mach number

	

'	 ranging from 0.1 to 0.3 down the duct. An initial pressure distribution

x

	

+'	 - lg (x)dx	 (23)

is determined by mass balancing on the first pass. On successive
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marching passes, this distribution is corrected according to equation (17)

plus whatever g corrections are necessary in order to balance mass at each

,:rossplane of the calculation. The above process is iteratively repeated

until the maximum change in the pressure field becomes sufficiently small.

Figures 2 to 4 exhibit computational results after 32 passes. However,

it can be inferred from the numerical performance indicators shown by

figures 5 to'7* that the iteration has sufficiently converged to produce

essentially the same results in around 20 iterations. This figure corres-

ponds roughly to that given by Dodge (ref. 9) as the number necessary to

converge a similar problem. However, no real comparison of iteration

counts to convergence can be drawn, as tolerance levels for convergence of

various iterative processes could be expected to affect the number of

passes needed.

Since the flow was not started at the channel entrance, but with a

velocity profile supplied at some point farther downstream, not much can

be said in terms of quantitative assessment of the numerical results,

which for the most part appear qualitatively excellent. The direction of

the crossflow and other features in figure 2 appear reasonable and agree

with that of a computational experiment by Baker (ref. 1S) for laminar

corner flow. The approximately linear variation in centerline pressure

exhibited by the graph in figure 3 is certainly reasonable for nearly

incompressible flow, as also exhibited away from th y: channel entry

region in a computational experiment of Briley (ref. 1). Perhaps the

most questionable feature of the results is the tail-off in centerline

velocity of figure 4. This could be caused by a calculation not yet

completely converged near the outflow. However, it is perhaps more

likely to be the result of the outflow boundary condition treatment.

For example, the condition 4 - constant in the outflow plane forces 4y

and 4= to vanish, which may not be physically reasonable throughout

the outflow plane, particularly since this does not happen upstream.

*Ordinate values in figures 4 to 7 have been magnified by a factor of

10.
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SUMMARY AND CONCLUSIONS

A revised version of Dodge's split-velocity method for numerical

solution of compressible confined flow has been develo^ed. Prelininary

results for lc. -. t Mach number flow appear encouraging. However, the method

in general is by no means fully understood or confidently tested. A

curious feature of the present approach is exhibited by the need for weak

decoupling of streamwise pressure gradients in order to achieve a

convergent numerical process. however, Spalding (ref. 12) alleges that,

in order to achieve physical solutions, a full decoupling is necessary

with parabolized equations, and Briley (ref. 1) reports successful and

meaningful calculation obtained using an algorithm incorporating this

practice. Other questions which bear investigation concern the performance

of the revised algorithm for higher Reynold's and Mach number flows. To

gain further confidence in the method, detailed comparisons with independent

computational results need to be initiated.

The revision of Dodge's method reported herein is new to the method,

although classical in physical origins and certainly used previously

with other computational methods. This investigation has proven the

checkerboard iteration to be a convenient method for solving implicit

finite-difference models of the Navier-Stokes equations on the vector

computer. Further evidence of the computational utility of the zebra

algorithm for solving the full-poten:ial equation (with a forcing term

added) in three dimensions has also been gainer:.

In conclusion, it is expected that forthcoming investigation will be

directed:

(a) to providing details of computation times for the revised Dodge

method.

(b) to obtaining comparisons with independent numerical results, and

(c) to calculating higher Reynolds and Mach number flow.

1
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Figure 3. Centerline pressure variation down channel.
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	 Figure 4. Variation in centerline streamwise velocity component.
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