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Abstract 

An integrated thermal-structural finite 
element approach for efficient coupling of 
transient thermal and structural analysis is 
presented. New integrated thermal-structural rod 
and one dimensional axisymmetric elements 
considering conduction and convection are 
developed and used in transient thermal-structural 
applications. The improved accuracy of the 
integrated approach is illustrated by comparisons 
with exact transient heat conduction-elasticity 
solutions and conventional finite element 
thermal-finite element ~tructural analyses. 
Results indicate that the approach offers 
significant potential for further development with 
other elements. 
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Nomenclature 

inner radius of cylinder, see 
fig. 4 
cross-sectional area 
outer radius of cylinder, see 
fig. 4 
strain-displacement 
interpolation matrix 
temperature gradient 
interpolation matrix 
specific heat 
arbitrary constants, see equation 
(8) 
finite element capacitance matrix 
elasticity matrix 
forcing function, see equation (7) 
homogeneous solution, see equation 
(8) 
particular solution, see equation 
(8) 
modulus of elasticity 
force 
finite element nodal force vector 
convective heat transfer 
coefficient 
thermal conductivity 
thermal conductivity matrix 
finite element stiffness matrix 
finite element conductance matrix 
for conduction 
finite element conductance matrix 
for convection 
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Subscripts 

c 
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h 
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Superscript 

T 

length 
conduction-convection rod 
parameter, m ~hp/kAi 
order of differential equation, 
see equation (7) 
finite element interpolation 
function for nodeless variables, 
see equation (10) 
finite element interpolation 
functions 
finite element displacement 
interpolation functions 
finite element temperature 
interpolation functions 
perimeter 
surface heating rates 
radial coordinate, see fig. 4 
volumetric heat generation rate 
finite element heat load vector 
finite element surface area 
time 
temperature 
nodeless parameter 
nodeless variable 
reference temperature for zero 
stress 
environmental temperature for 
convective heat exchange 
displacement components 
In(bla), see table 4 
finite element volume 
cartesian coordinates 
nondimensional coordinate, X = x/L 
vector of thermal expansion 
coefficients 
density 
dependent variable in differential 
equation, see equation (7) 

conduction heat transfer 
element matrix or vector 
convective heat transfer 
structural 
thermal 

transpose of a matrix 
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A recent overviewl of research in structures 
and materials for future space transportation 
systems cited the challenge of providing 
lightweight structures for large space 
transportation vehicles that are repeatedly 
subjected to severe aerodynamic heating and yet 



must have structural efficiency, reliability and 
durability approaching that of commercial 
aircraft. One of the most challenging 
thermal-structural analyses faced by aerospace 
engineers today is the Space Shuttle Orbiter. 
Shuttle design experience has shown that the 
design of large structures for hostile reentry 
environment taxes the capability of existing 
thermal and structural analysis methods. The 
complex thermal behavior of the Shuttle has 
required a large number of highly deta~led lumped 
parameter analytical models. A review of needs 
revealed by the Shuttle thermal analysis cited the 
need for illllroved model ing procedures to reduce 
model size and more efficient methods of 
transferring data between thermal and structural 
models. Experience in the repetitious thermal and 
structural analyses required for the design of 
convec~ively-cooled structures and in the optimum 
design of structures subjected to heating and 
mechanical loads at elevated temperatures also 
points to the need for more efficient coupling of 
the thermal and structural analyses. 

Thermal analysis of complex structures is 
generally carried out by one of two alternative 
methods: (1) the finite difference lumped 
parameter method, or (2) the finite element 
method. The lumped parameter approach is most 
widely used, but the finite element method is an 
attractive alternative since it provides 
capabilities for both thermal and structural 
analysis of general structures. Frequently the 
thermal analysis is performed by the lumped 
parameter method and the structural analysis by 
the finite element method. Because of basic 
differences between the analytical models an 
efficient interface is difficult to achieve. 

The finite element method offers the greatest 
potential for efficient coupling of the thermal 
and structural analyses, but the historically 
better capabilities and efficiency of the lumped 
parameter method compared to early finite element 
methods has so far prevented the finite element 
method from receiving widespread accaptance for 
thermal analysis. Recent experience with the 
finite element method for combined conduction 
forced convection analysis has shown that: (1) 
the methods currently have about the same analysis 
capabilities, (2) the finite element method has 
superior accuracy, and (3) the lumped parameter 
method maintains an edge in efficiency, but that 
as additional finite element experience is gained, 
improvements in efficiency can be achieved. 

Research programs are currently underway at 
Langley Research Center to improve both the 
capabilities and efficiency of the finite element 
thermal analysis method and develop more efficient 
coupling between the finite element thermal and 
structural analysSs. The authors previously 
presented a paper which focused on finite element 
methodology for efficient coupling of steady-state 
thermal and structural analyses. The purpose of 
this paper is to extend the methodology, denoted 
as integrated thermal-structural analysis, for the 
transient-thermal static-structural analysis case. 

Characteristics of integrated 
thermal-structural analysis are first discussed. 
A nodeless variable approach for the development 
of transient integrated thermal-structural 
elements is then described. Next, the nodeless 
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variable approach is used to develop new 
integrated thermal-structural rod and 
one-dimensional axisymmetric elements. Finally, 
the accuracy and efficiency of the integrated 
approach is demonstrated by solving three 
thermal-structural examples by both the 
conventional and integrated finite element 
approaches. In two of the examples, the accuracy 
of the finite element solutions is evaluated by 
comparisons with exact transient heat 
conduction-elasticity solutions. Finite element 
matrices are presented in Appendices. 

Integrated Thermal-Structural Analysis 

Finite Element Analysis 

Finite element (F.E.) formulations for 
transient thermal problems ar~ derived by the 
method of weighted residuals. In general, 
element temperature T(x,y,z,t) and temperature 
gradients are expressed in the form 

{T}= [NT] iT (t)} e (la) 

l
aT la xl dT/ay (1 b) 
aT laz 

where [NT] denotes a matrix of the temperature 
interpolation functions, [BT] denotes a matrix 
of temperature gradient interpolation functions 
and {T(t)}e denotes a vector (one dimensional 
array) of nodal temperatures. For transient 
thermal analysis of conduction with convection 
boundary conditions the equations for a typical 
element are 

(2) 

where [C]e is the element capacitance matrix, 
[Kc]e and [Kh] are element conduction and 
convection conauctance matrices, respectively, and 
{Q}e is a vector of nodal heat loads. These 
matrices, in general, are expressed in the form of 
integrals over the volume, Ve, and surface, Se' of 
an element. The element equations are 

[C] =f pc[NT]T[NTJdV 
e V 

e 

[Kc]e = f [BT]T [k ][BT ]dV 
Ve 

[Kh] = f h[NT]T[NT]dS 
e S 

e 

{Q}e =J Q[NT]TdV + f q[NT]TdS 
Ve Se 

+ J h T,JNT]TdS 
Se 

(3a) 

(3b) 

(3c) 

(3d) 

where p is the density, c is the specific heat, 
[k] denotes the conductivity matrix, h is a 
convection coefficient, Q is an internal heat 
generation rate per unit volume, q is a surface 
heating rate per unit area and T~ denotes the 
environmental temperature for the convective heat 
exchange. The superscript T denotes the transpose 
of a matrix. The convection coefficient, the 
internal heat generation rate, the surface heating 
rate and the environmental temperature are, in 



general, time-dependent. All thermal parameters, 
herein, are assumed constant although they may be 
temperature dependent in general. Finite element 
formulations for other heat transfer modes such as 
forced convection and radiation are given in 
references 4 and 7, respectively. The simultaneous 
differential equations (2) are typically solved by 
time-marching schemes so that the temperatures {T} 
are computed at discrete time values. 

In general formulations of transient 
thermal-stress problems, the heat transfer and 
elasticity solutions are coupled through a 
mechanical coupling term in the heat conduction 
equation and inertia terms in the elasticity 
equations. In most engineering applications the 
coupling effects are not significant, and the 
coupling terms are neglected. In the uncoupled 
formulation, transient temperatures are computed in 
the thermal analysis and are used as input to a 
quasi-static structural analysis. Finite element 
formulations for the structural analysis are 
usually derived from a variational formulation. 6 
Since the structural temperatures vary with time, 
the structural analysis consists of a sequence of 
static analyses at selected time values in the 
transient thermal analysis. In a typical 
structural analysis, element displacements (u,v,w) 
are expressed in the form 

(4) 

where [NS(x,y,z)] denotes the displacement 
interpolation functions, and {u}e denotes a vector 
of element nodal displacements. For the structural 
analysis the equations for a typical element are 

(5) 

where [K]e is the element stiffness matrix, and {F} 
is a vector of nodal forces which can consist of 
mechanical forces and/or equivalent thermal forces. 
Only the equations for the equivalent thermal force 
will be shown herein. The element equations are 

[K]e = f [BS]T [D][BS]dV (6a) 
Ve 

{F}e = f [Bs]T [D]{a}T dV (6b) 
Ve 

where [BS] is the strain-displacement 
interpolation matrix, [D] denotes the elasticity 
matrix, and {a} is a vector of thermal expansion 
coefficients. T(x,y,z,t) is the temperature within 
the element computed in the transient thermal 
analysis. 

The temperatures enter the structural analysis in 
two ways: (1) the structural elasticity matrix [D] 
and thermal expansion coefficient vector {a} are, 
in general, temperature dependent, and (2) the 
equivalent thermal forces, equation (6b), involves 
an integration of the temperature T(x,y,z,t) over 
the element volume. For a temperature dependent 
elasticity matrix, the element stiffness matrix, 
equation (6a), varies during the transient 
response. In this paper the elastic properties and 
the thermal expansion coefficient are assumed 
constant, hence the element stiffness matrix is 
constant and is computed only once. The nodal 
forcevector is.computed for each temperature vector 
at the selectea time values, and consequently the 
structural analysis is a static analysis with 
multiple load cases. 
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Integrated Analysis 

A step toward integrated thermal-structural 
analysis capability is the use of a common 
methodology in a single program such as NASTRAN8 
which contains both thermal and structural analysis 
capability. One disadvantage of this approach, 
herein called the conventional approach, is that 
the transfer of data between analyses is often 
inefficient because of inherent differences between 
the thermal and structural models. Another 
disadvantage of the conventional approach is that 
basic differences between the thermal and 
structural analysis requirements are not recognized 
and exploited. For example, the very common beam, 
plate and shell structural finite elements have no 
thermal counterparts in typical finite element 
thermal analysis programs because conventional 
finite elements have no provision for computing 
thickness-temperature gradients. This deficiency 
means not only that the thermal and structural 
finite element models of the same structure differ, 
but that thermal load data (e.g. temperature 
gradients) are not directly supplied by the thermal 
analysis. 

To exploit more fully the capabilities of the 
F.E. method the concept of integrated 
thermal-structural analysis was proposed in 
reference 5. An integrated thermal structural 
analysis is characterized by: (1) thermal and 
structural finite elements formulated with a common· 
geometric discretization with each element 
formulated to suit the needs of their respective 
analYSiS, (2) thermal and structural finite 
elements which are fully compatible, and (3) 
equivalent thermal forces which are based upon the 
consistent finite element force vector computed by 
equation (6b). 

The concepts of conventional and integrated 
thermal-structural analysis approaches are compared 
schematically in Fig. 1. The sequence followed in 
a conventional analysis is shown in Fig. l(a). 
First, a thermal analysis is performed based upon a 
thermal model selected to best represent the heat 
transfer problem. The thermal model may be based 
on the lumped parameter or F.E. method. The 
thermal analysis is followed by transfer of the 
nodal temperature data to the structural analysis. 
In most cases this data transfer involves data 
proceSSing to bring the input temperatures in 
conformity with the needs of the structural model. 
Often the structural and thermal models use 
different nodes and elements, and approximate 
thermal forces are computed from average element 
temperatures. An integrated analysis is shown in 
Fig. l(b). The thermal and structural analyses are 
characterized by a common model based upon thermal 
and structural elements formulated to best suit the 
respective analysis. The transfer of data is 
compatible with no data processing required. 
Consistent thermal forces are computed from thermal 
elemental and nodal input data supplied directly 
from the thermal analysis. 

Integrated Elements 

The concept of integrated transient 
thermal-structural analysis is illustrated with a 
new rod element and a new one-dimensional 
axisymmetric element based on nodeless variable 
formulations. The one-dimensional integrated 
elements consider combined conduction and 



convection with constant tgermal parameters. The 
nodeless variable approach was utilized in 
reference 5 to develop an integrated rod element 
for steady state analysis. The nodeless variable 
approach as used herein consists of utilizing 
improved temperature interpolation functions which 
employ an element or "nodeless" variable. The 
nodeless variable approach has been used 
previously in structural analysis by adding extra 
interpolation functions (sometimes called "bubble" 
modes) to the conventional interpolation 
functions. A unique feature of the nodeless 
variable approach for steady state analysis is the 
use of an exact temperature variation to compute 
the element conductance matrices, heat load 
vectors and equivalent thermal f0rces. The exact 
temperature vari at i on is al so used to compute an 
exact displacement variation in the structural 
element. 

Exact Steady-State Formulation 

Finite elements which yield exact values of 
the nodal variables will herein be called exact 
finite elements. Structural rod and beam elements 
under simple loadings are known to produce exact 
values of the nodal displacements. Linear 
conduction elements under simple heating al~o 
produce exact values of nodal temperatures. b 

Further. in one-dimensional combined 
conduction-forced convectioB heat transfer an 
exact F.E. has been derived using the Galerkin 
meth?d with upwind ~eighting functions. In this 
sectlon an approach o for deriving exact finite 
elements in one-dimensional problems will be 
described • .The approach is based upon using the 
exact solutlon.to the ~orresponding linear. 
steady-state dlfferentlal equation to derive the 
element interpolation functions. If the elements 
are used alone (i.e. without connections to other 
element families) an exact solution will be 
obtained. Approximate solutions will be obtained 
if the elements are used in transient or nonlinear 
applications. or if the elements are connected to 
elements of other non-exact interpolation function 
famil i es. 

Consider a linear. nonhomogeneous 
differential equation -

an dn¢/dxn + an-1 dn-1¢/dxn-1 

+ ••• + ao¢ = f(x) 

where ¢(x) is the dependent variable. 
solution has the form 

n 
¢(x) = l: cif i (x) + g(x) 

1 =1 

(7) 

The exact 

(8) 

whe~e Ci are arbitrary constants. fi(x) are 
typlcal functions in the homogeneous solution and 
g(x) is the particular solution. A F.E. with' n 
degrees of freedom is formulated based upon the 
continuity reguirements for nodal variables. 10 
For example. lf the dependent variable only is 
required to be continuous at element nodes then an 
element with n nodes will permit an exact 
solution. Since the differential equation has n 
const~nts of integra~ion the element interpolation 
functlons are determlned by imposing the 
conditions 

i = 1.2 ..... n (9) 
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where Xi are the nodal coordinates. and ¢i are the 
nodal values of the dependent variables. To 
accommodate the particular solution. g(x). the 
element interpolation function is written in the 
form 

n 
¢(x) = No(x)¢o + E Ni(x)¢i 

i =1 
(10) 

where ¢o is a nodeless variable. 6 In applications 
¢o is selected as a convenient parameter and 
consequently is a known quantity a priori. Note 
that since Ni (xi) = 1 to satisfy eq. (9). then 
No(xi) = O. With the exact interpolation 
functions known. the element matrices can be 
derived using typical finite element integrals 
such as eqs. (3) for thermal analysis or eqs. (6) 
for structural analysis. Element matrices are 
generally of size n + 1 due to the presence of the 
nodeless variable. In many cases (see Appendices 
A and B) the extra equation is uncoupled so that 
in the computer analysis only matrices of size n 
are emp 1 oyed. 

Transient Formulation 

In Ref. 5. the nodeless approach was used to 
develop an exact integrated thermal-structural rod 
element for steady-state conduction and convection 
analysis. One dimensional elements such as the 
rod element are characterized by two nodal 
unknowns and one nodeless variable for the 
steady-state thermal or structural element 
formulations where the nodeless variable is 
identified as a convenient physical parameter and 
is known for each element. 

For general transient analysis it is not 
possible to formulate closed-form interpolation 
functions which are exact solutions since general 
transient solutions to the heat 
conduction-elasticity equations are infinite 
series. However. the nodeless variable 
interpolation function concept introduced in eq. 
(10) can be extended for the transient case to 
give accuracy superior to the conventional finite 
element approach. To extend the nodeless variable 
approach to the transient case. two approaches are 
investigated: (1) the nodeless variable approach 
previously described for steady-state analysis, 
which hereafter is referred to as the nodeless 
parameter formulation, and (2) a nodeless variable 
approach where the nodeless variable is an unknown 
function of time. 

Nodeless parameter approach. In the nodeless 
parameter approach the temperature interpolation 
eq. (10), for an element with two nodes has the' 
form 

T(x,t) = No(x)To + N1(X) T1(t) 

+ N2(x) T2(t) 
(11 ) 

where To is a known nodeless parameter, and T1(t), 
T2(t) are unknown time-dependent nodal 
temperatures. The element equations, eq. (2), for 
a typical element based on this approach may be 
written as 



where the element su bscri pt e has been omi tted. 
The salient characteristic of this element 
forrnulation is that the first equation involving 
the nodeless parameter is uncoupled from the nodal 
unknowns in the second and third equations. Thus 
the element matrices have two unknowns as for a 
conventional element. 

Nodeless variable approach. 
variable approach the temperature 
eq. (10), for an element with two 
form 

In the nodeless 
interpolation, 
nodes has the 

T(x,t) = No(x) To(t) + Nl(x) Tl(t) 
(13) 

+ N2{x) T2{t) 

where To{t) is an unknown time-dependent nodeless 
variable, and T1{t), T2{t) are unknown 
time-dependent nodal temperatures. Note that for 
steady-state solutions the nodeless variable has a 
value equal to To. The element equations, eq. 
(2), for a typical element now have the form 

[~:: ::~ :::] ~~ '[~0:11 :12] ~: ~: (H) 
C20 C21 C22 T2 a K21 K22 T2 Q2 

Since the nodeless variable is unknown, the 
equations are coupled through the capacitance 
matrix due to the presence of fo. Thus the 
element matrices have three unknowns, one more 
degree of freedom than a conventional element. 

A unique feature of the nodeless parameter 
and nodeless variable interpolation equations is 
that in the steady-state each reduce to the exact 
solution. This means the transient response can 
start from an exact initial temperature 
distribution and also as time becomes large, the 
transient response will approach an exact 
steady-state solution. A unique feature of the 
temperature interpolation presented in equation 
(13) is that the temperature interpolation within 
an element is time dependent. Typical behavior of 
conventional, nodeless parameter and nodeless 
variable interpolation functions during a ' 
transient response are compared in Fig. 2. The 
figure shows that the conventional and nodeless 
parameter temperature interpolations retain the 
same shape during the response, but the amplitude 
of the nodeless variable temperature interpolation 
varies throughout the response. 

Rod Element 

Characteristics of the thermal and structural 
models of a rod element are shown in Fig. 3. Four 
heat transfer cases (Table 1) are considered in 
the thermal model with axial conduction combined 
with internal heat generation (source or sink), 
surface heat flux or surface convection. For 
transient heat transfer, an energy balance on a 
small segment of the rod gives the governing 
differential equations for the temperature 
distribution, T{x,t): 
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h aT = a (Case 1) (1Sa) -kA + pcA-
ax2 at 
2 

-kA li + AaT = QA (Case 2) (1Sb) 2 pc at 
ax 
a2T aT (Case 3) (lSc) -kA - + pcA- = qp 
ax2 at 

a2T aT (Case 4) (1Sd) -kA -2 + pcA- + hpT = hpT 
ax at 

where A is the element cross-sectional area and p 
is the perimeter. The temperature interpolation 
functions are first derived by solving for 
steady-state solutions to the differential 
equations above. The nodeless parameters and 
exact temperature interpolation functions are then 
written in the form of equation (10); the results 
are shown in Table 2. For Case 1 the results are 
the same as the conventional F.E.; linear 
interpolation functions yield the exact solution. 
For Cases 2-3, the results are modified by the 
NQ(x) term which introduces a parabolic variation 
of temperature from the nonhomogeneous terms, the 
heat loads. For Case 4, a completely new form for 
the interpolation function is obtained which heat 
transfer analysts recognize as the solution for a 
fin with prescribed end temperatures. 

The exact temperature interpolation functions 
(Table 2) are used to derive the element 
capacitance and conductance matrices and heat load 
vectors by evaluating the integral definitions 
given in equation (3); the results are presented 
in Appendix A. 

Use of the exact rod element interpolation 
functions (Table 2) and the element matrices yield 
exact steady-state rod temperatures, but the full 
benefit of the results is not realized unless 
incorporated consistently in the structural 
ana lys·i s. 

For the structural response a force balance 
on a small segment of the rod (Fig. 2) gives the 
governing differential equation for the member 
axial displacement, u(x,t) 

EA a2u/ax2 = aEA aT/ax (16) 

where E is the modulus of elasticity and a is the 
coefficient of thermal expansion. In the 
conventional two node structural element the 
displacement varies linearly and yields an exact 
stiffness matrix. For mechanical loads 
applied at the nodes, exact nodal displacements 
are obtained. Yet, in conventional 
thermal-structural analysis a linear, variation of 
temperature is assumed in computing the thermal 
forces from equat i on (6b). Si nce ali nea r 
variation is an approximation to the true 
temperature distribution for Cases 2-4, only 
approximate thermal forces are obtained thereby 
reducing the accuracy of the structural analysis. 

In the integrated thermal-structural analysis 
the temperatures (Eq. 10 and Table 2) are employed 
to derive a consistent set of thermal forces. 
First, the temperature interpolation functions 
given in Table 2 are differentiated and 
substituted into the right-hand side of Eq. (16) 
and the differential equations are solved. The 



exact displacement interpolation functions are 
derived in the form of Eq. (10) and are shown in 
Table 3. The results for N1(x) and N2(x) are the 
same for all four cases and are the conventional 
1 i near interpol at i on fu nct ions. The convent i ona 1 
linear temperature distribution is modified by the 
No(x) term yielding in each case a nonlinear 
dlsplacement variation within the element. The 
nonlinear variation depends on the element nodal 
temperatures and hence the thermal loading. 

The exact temperature interpolation functions 
(Table 2) and the exact displacement interpolation 
functions (Table 3) are used to derive the element 
st iffness mat ri ces and equi va 1 ent nodal forces by 
evaluating the integral definitions given in 
equation (6); the results are presented in 
Appendix A. 

The element stiffness matrix is the same as 
for conventional elements, but the force vectors 
differ from the conventional forces. These nodal 
forces, when computed using the exact nodal 
temperatures from the thermal analysis, will give 
exact nodal displacements for all heat load cases 
considered in contrast to the conventional 
approach which gives exact nodal displacements 
only for Case 1. Values for displacements within 
an element may also be computed if desired using 
Eq. (10) and the interpolation functions given in 
Table 3. 

Axisymmetric Element 

Characteristics of the thermal and structural 
models of a one dimensional axisymmetric element 
are shown in Fig. 4. The thermal model considers 
radial conduction combined with internal heat 
generation. Specified surface heating or surface 
convection on the inner and outer cylinder 
surfaces are considered through the boundary 
conditions. The governing differential 
equations l1 for the temperature T(r,t) are 

lCl dI" dT -k r ar (r~) + pc at = a (Case 1) (17a) 

1 a aT aT 
-k r ar (rar) + pc at = Q (Case 2) (17b) 

The corresponding nodeless parameters and element 
interpolation functions are derived as described 
previously and are shown in Table 4. For both 
cases the logarithmic temperature interpolation 
functions differ significantly from conventional 
linear interpolation functions. For surface 
boundary conditions of specified heating or 
convection the same interpolation functions 
produce exact steady-state temperature 
distributions. Element conductance and 
capacitance matrices and heat load vectors for 
Cases 1 and 2 and surface boundary conditions are 
presented in Appendix B. 

For the structural response, a 
two-dimensional plane stress or plane strain 
elasticity model is assumed (Fig •. 4). For glane 
stress the governing differential equation12 for 
the radial displacement u(r,t) is 

~ [1 a(rU)] = (l+v) aT 
dr r d r a ar (18) 

where v is Poisson's ratio. The formulation of 
the plane strain problem is mathematically 
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analagous; therefore, only the equations for the 
plane stress formulatio~ are presented her~in. 
The corresponding equatl0ns for plane straln may 
be obtained by substituting equivalent elastic 
constants 12 for E, v and a. The temperature 
gradient interpolation functions (Table 4) are 
substituted into the right-hand side of Eq. 18, 
then the differential equations are solved and 
written in the form of Eq. (10). The element 

. displacement interpolation functions are shown in 
Table 5 written in terms of the nodeless parameter 
To' The element stiffness matrix and equivalent 
nodal forces are presented in Appendix B. 

For the steady-state case, the element 
stiffness matrix and the load vector computed 
using the exact temperature solution produce exact 
nodal displacements. Values of the displacements 
and stresses computed within the element are also 
exact. In contrast, conventional axisymmetric 
elements predict approximate element displacements 
and stresses. Moreover. such conventional 
elements typically predict stresses with lower 
accuracy than displacements. For the transient 
case, the integrated axisymmetric element predicts 
approximate displacements and stresses due to 
errors in the transient temperatures. 
Conventional elements also predict approximate 
transient displacements and stresses but with loss 
of accuracy due to temperature errors and the 
approximate formulation of the structural element. 

Thermal-Structural Analysis Programs 

The computer programs used to evaluate the 
integrated transient thermal-structural analysis 
approach are briefly described. 

TAP-STAP 

Integrated finite element thermal and finite 
element structural analysis is performed by 
linking TAP3 and STAP. TAP3 is an exploratory 
thermal anal{~is program similar to an earlier 
program TAP2 for steady-state and transient 
thermal analysis of convectively cooled 
structures. TAP3 is currently being used to 
develop thermal element methodolo~4for integrated 
thermal-structural analysis. STAP is 
an educational finite element program which was 
modified for this study to include the integrated 
rod and axisymmetric structural elements. TAP3 
and STAP are linked through common mass storage 
files. For the rod element, element forces per Ea 
are transmitted from TAP3 to STAP. For the 
axisymmetric element. element nodeless variables 
and nodal temperatures are transmitted from TAP3 
to STAP. 

SPAR15.16 a general purpose finite element 
program developed for production-type structural 
analysis and recently extended for thermal 
analysis was used for the conventional 
thermal-structural analyses. The SPAR program 
consists of processors which communicate through a 
data base to perform basic analysis tasks as shown 
schematically in Fig. l(b). The incorporation of 
integrated thermal-structural elements into SPAR 
would yield a fully integrated thermal-structural 
analysis capability as depicted in Fig. l(b). 



Applications 

The integrated thermal-structural elements 
are applied to three transient examples of 
increasing complexity: (1) a rod with surface 
convection, (2) a cylinder with internal heating, 
and (3) a wind tunnel ceramic nozzle insert. The 
applications demonstrate relative performance of 
conventional and integrated finite elements. In 
addition, applications (I) and (3) compare finite 
element solutions with exact analytical 
solutions. All transient finite element 
temperature computations are made with implicit 
time-marching algorithms. 

Rod with Surface Convection 

A rod with surface convection and specified 
end temperatures is shown in Fig. 5a. Initially 
the rod is in thermal equilibrium being cooled by 
convection to a medium with T~ = 255 K, but at 
t = 0+ the convective exchange temperature is 
raised instantaneously to T~ = 589 K thereafter 
heating the rod. A thermal transient ensues with 
the rod temperature approaching a new equilibrium 
state for large time values. Rod temperatures are 
computed from: (I) the exact analytical solution 
to equation 15d, (2) a conventional finite element 
model, (3) the nodeless parameter approach based 
on equation (II), and (4) the nodeless variable 
approach based on equation (13). In each finite 
element analysis two equal-length elements were 
used yielding an unknown at the center of the 
rod. Temperature distributions for t = 0, 0.01 
and 0.3 s are shown in Fig. (5b-5d). 

At t = 0, Fig. 5b, the nodeless parameter and 
nodeless variable approach predict the exact 
steady-state temperature distributions indicated 
by the solid line. The conventional finite 
element predicts the center nodal temperature 
well, but the nonlinear rod temperature 
distribution is only approximated by the 
linear temperature distribution of the 
conventional element. At t = 0.01 s, Fig. 5c, 
typical differences in the transient temperature 
distributions predicted by the three finite 
element approaches are demonstrated clearly. The 
conventional element yields a fair approximation 
to the center temperature, but only crudely 
approximates the true temperature distribution. 
The nodeless parameter element also yields a fair 
approximation to the center temperature, but 
predicts an extremely poor temperature 
distribution elsewhere. The nodeless variable 
approach gives the best approximation for the 
center temperature and an excellent representation 
for the rod temperature distribution. As the rod 
temperatures approach a new steady-state 
distribution at t = 0.3 s (Fig. 5d) the 
conventional element yields a fair approximation 
to the center temperature and crudely approximates 
the temperature distribution. The nodeless 
parameter and nodeless variable solutions give 
excellent approximations for the center 
temperature and the entire temperature 
distribution at this time. 

The performance of the nodeless parameter 
solutions at t = 0.01 s (Fig. 5b) is typical of 
the behavior of this approach at other 
intermediate times (not shown). The nodeless 
parameter approach employs a steady-state 
temperature distribution to approximate the 
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transient behavior. Each element takes on a 
steady-state temperature distribution as indicated 
by the humps in the predicted temperatures in 
Fig. 5b. These results are clearly not 
acceptable, and therefore this approach should not 
be used for transient response predictions. 
Instead, the nodeless variable approach should be 
employed since it gives accuracy superior to the 
conventional element throughout the response and 
predicts exact steady-state distributions. 

The use of the nodeless variable predicted 
temperatures in the corresponding structures 
problem produces more accurate displacement and 
stress di~tributions than conventional finite 
elements. For brevity, structural 
calculations \'1ith the rod element are omitted 
herein. The benefits of the integrated thermal 
structural analysis are clearly demonstrated in 
the following two examples with the axisymmetric 
element. 

£yl i nder with Internal Heating 

The cross-section of an infinite cylinder 
with axisymmetric internal heating and equal 
specified surface temperatures is shown in Fig. 
6a. Initially the cyl inder is in thermal 
equilibrium being internally heated by uniform 
internal heat generation Qo over one-half the wall 
thickness. At t = 0+, the internal heating is 
reduced to zero, and a thermal transient ensues 
with the cyl inder temperatures decaying to a 
uniform distribution for large time values. The 
problem is a rough approximation to a cylinder 
~~:n~~0~n~e~~~~-~~~~!~~~~~i7material subject to 

Cylinder temperature distributions are 
computed from: (I) a conventional finite element 
thermal model employing twenty uniformly spaced 
solid elements,and (2) a nodeless variable finite 
element thermal model with tl'lO equal-length 
axisymmetric elements. Fig. 6b shows the computed 
temperatures at t = 0, 100 and 1000 s. At t = 0, 
the two nodeless variable elements predict the 
exact temperature distribution, and the comparison 
indicates the twenty element conventional model is 
sufficiently refined to represent the exact 
solution with negligible error. For the two 
subsequent times in the transient response, the 
temperatures are in excellent agreement indicating 
the capability of the nodeless variable approach 
to predict accurate temperatures with a smaller 
number of elements than the conventional approach. 

Transient displacements and stresses are 
computed from conventional and integrated 
structural models corresponding to the previous 
thermal models and a conventional finite element 
structural model with two equal-length solid 
elements. Figs. 6b-6c show the computed 
displacements and stresses, respectively, at times 
corresponding to the thermal analysis. At t = 0, 
exact displacements and stresses are predicted by 
the two integrated elements, and the validity of 
the twenty element conventional structural model, 
is verified by comparison with the exact 
solution. For the two subsequent times in the 
transient analysis, the two element nodeless 
variable approach yields excellent agreement with 
the displacements and stresses from the refined 
conventional element model demonstrating the 



effectiveness of the integrated thermal-structural 
analysis technique. 

The importance of integrating the thermal and 
structural analysis is demonstrated by the results 
from the two element structural model shown in 
Figs. 6b-6c. This model predicts displacements 
and stresses consistently too low and is 
inadequate to represent the structural response. 
The significant point demonstrated by the analysis 
is that even though the correct nodal temperatures 
were employed, the conventional two element model 
was inadequate to represent the structural 
response because the element thermal forces are 
computed from ali near temperature vari at i on which 
is a poor approximation for the actual 
temperatures, and the conventional two element 
structural model was inadequate to represent the 
cylinder stiffness. Thus for improved 
thermal-structural analysis it is not sufficient 
to use nodal temperatures from a more accurate 
temperature calculation; the structural model must 
be consistently formulated to effectively utilize 
the improved temperature distribution and 
correctly model the structural stiffness. 

Wind Tunnel Nozzle Insert 

In a recent paper18 ceramic nozzle inserts 
(Fig. 7a) for the Langley 8-Foot High-Temperature 
Structures Tunnel (8' HTST) were investigated in a 
study of concepts to improve nozzle throat life 
and tunnel performance. The Langley 8' HTST 
provides realistic temperature simulation of r~ach 
7 hypersonic flight at altitudes, of 24 to 40 km. 
The products of methane-air combustion are used as 
the test medium, and the combustion products are 
accelerated through the nozzle throat to produce 
hypersonic flow in the test section. During 
tunnel start-up and shut-down the nozzle throat is 
subjected to severe temperature changes. The 
severe thermal environment causes cracking in 
metall ic nozzle throats and led to the 
consideration of ceramic nozzle insert concepts. 

The nozzle throat insert problem serves as a 
convenient and demanding practical application for 
the evaluation of the integrated 
thermal-structural analysis approach. In Ref. 17, 
axisymmetric finite element thermal-structural 
models were employed, and the finite element model 
of the nozzle insert shown in Fig. 7a consisted of 
117 solid elements. The analysis showed that 
temperature gradients in the axial direction are 
relatively mild; but the temperature gradients in 
the radial direction are severe. Herein, 
three-dimensional conventional and one-dimensional 
integrated axisymmetric element models (Fig. 7b) 
are employed to represent the radial 
thermal-structural behavior of the nozzle insert. 
A radial variation in the element size is used to 
better represent the thermal-structural response 
near the inner surface. The mesh spacing is the 
same as used in Ref. 17 and is identical for both 
conventional and integrated models. Temperature 
dependent thermal properties were considered in 
Ref. 17, but herein thermal properties are assumed 
constant. Plane strain (axial displacements equal 
to zero) is assumed for the structural analysis. 

A detailed description of five nozzle 
presssure and thermal load cases is presented in 
Ref. 17. Herein, only one thermal load case is 
considered, and a simplified representation of the 
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heating and cooling from the flowing gas stream is 
employed. The nozzle heating is represented as a 
convective boundary condition vlith time dependent 
properties: 

T,.,(t) = T", 

= 0.2 T", 

h(t) = h", 

= 0.1 h", 

a < t < 125 s 

125 < t < 150 s 

a < t < 125 s 

125 < t < 150 s 

This representation assumes an instantaneous rise 
and fall of the heating during tunnel combustion 
start-up at t = a and combustion shut-down at 
t = 125s. Temperature histories computed by the 
nodeless variable approach for five radial 
locations on the nozzle insert are shown in Fig. 
8. These histories show that initially the 
temperature of the heated surface (point 1) 
rapidly approaches the convective exchange 
temperature, maintains nearly a constant value 
until 125 s and then declines rapidly as the 
nozzle is cooled by flow at the lower gas 
temperature. Temperatures in a thin layer near 
the surface tend to follow this trend also, but 
the outer surface (point 5) shows no change. 
Radial temperature variations at t = 1 sand t = 
126 s are shown in Fig. 9a. These variations show 
the very sharp radial temperature gradients at 
early and late times in the response, and that the 
variations are confined to the inner region of the 
insert. The corresponding variation of the 
circumferential (hoop) stress is shown in Fig. 
9b. The initial high temperature on the inner 
surface causes a sharply varying compressive 
stress in the inner region. As the temperature of 
the surface is reduced after 125 s, the inner 
surface stress drops significantly but the inner 
region maintains significant compressive stresses 
due to high internal temperatures. The portion of 
the nozzle outside of this region experiences a 
relatively small tensile stress throughout the 
response. 

Temperature distributions computed by 
integrated elements, conv1ntional elements and an 
exact analytical solution 9 are compared at t = 1 
s in Fig. lOa. For the conventional finite 
element model, temperatures are computed for 
consistent and lumped capacitance matrices. The 
temperatures computed by the nodeless variable 
integrated element show the best agreement with 
the exact solution. The conventional elements 
with lumped capacitance predict temperatures that 
are too high, and the straight line interpolation 
gives a poor approximation to the exact 
distribution. The conventional elements with a 
consistent capacitance matrix predict temperatures 
for rib = 0.575 that unrealistically oscillate 
below and above (not shown) the initial ~niform 
cylinder temperature. An interpretation a of this 
unrealistic behavior is that the oscillations are 
an indication of the need for mesh refinement. 
However, the' results show that although the mesh 
of conventional elements is inadequate to 
accurately represent the temperature distribution 
at this time, the nodeless variable integrated 
elements give good to excellent results with the 
same mesh. 

Displacement and stress variations from the 
integrated and conventional finite element models 



are compared ~/ith an exact solution12 in Figs. lOb 
and 10c, respectively. Displacements computed 
froln the integrated fi ni te el ement approach show 
excellent agreement with the exact solution, but 
the conventional approach predicts displacements 
that are consistently too large. Stresses 
computed from the integrated elements also show 
excellent agreement with the exact stress 
solution, but the conventional elements also 
predict the stresses well, particularly the 
maximum stress which occurs on the inner surface. 
The reason that all methods show such good 
agreement is that the maximum stress at early 
response times is controlled by the temperature of 
the inner surface not the interior temperature 
distribution. In fact, for early response times, 
the maximum stress can be calculated21 with good 
accuracy by 

cr 8 ( a , t) = 1 ~~ [T ( a , t ) - T r] (19 ) 

where T r is the initial uniform temperature. 

Temperature and stress distributions computed 
by integrated and conventional elements are 
compa red at t = 126 sin Fi gs. 11a and llb, 
respectively. The figures show that the mesh is 
not sufficiently refined fer the conventional 
elements to accurately represent the large 
variation of temperature and stress which occurs 
near the inner surface. The highly nonlinear 
variation of temperature and stress in this region 
cannot be realistically represented by the 
conventional element linear interpolation 
functions. The sharp discontinuities of the 
slopes of the temperature and stress curves at rib 
= 0.575 are an indication of the inadequacy of the 
conventional element mesh. The integrated 
elements, however, predict real ist ic vari at i on of 
the temperatures and stresses with good continuity 
of slopes of the temperature and stress curves. 
In comparison to the integrated analysis, the 
conventional approach with lumped capacitance 
underestimates the maximum temperature by 5 
percent and underestimates the maximum stress by 9 
percent and predicts the wrong locations for these 
maximums. 

. The examples demonstrate the potential of the 
lntegrated approach for the one dimensional 
examples considered. However, evaluation of the 
full potential of the approach requires additional 
investigation by: (1) applications to more 
complex structures with other finite elements, (2) 
consideration of nonlinear problems due to 
temperature dependent materi al properti es, and (3) 
consideration of other heat transfer modes 
including radiation. 

Concluding Remarks 

An integrated transient thermal-structural 
finite element analysis approach is presented. 
The integrated thermal-structural analysis is 
chara,cterized by: (1) thermal and structural 
finite elements formulated with a common geometric 
discretization with each element formulated to 
suit the needs of its respective analysis, (2) 
thermal and structural finite elements fully 
compatible durin~ the coupling of the two 
analyses, and (3) use of equivalent thermal forces 
based on a consistent finite element formulation. 
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Integrated thermal-structural rod and one 
dimensional axisymmetric elements are developed 
and used to demonstrate the integrated analysis 
approach for conduction with surface convection. 
A unique feature of the elements is the use of 
nodeless variable interpolation functions for 
element temperatures and displacements. For 
steady-state linear analysis, the elements produce 
exact values of temperatures, displacements and 
stresses. This feature means the transient 
response can start from an exact initial 
temperature distribution, or if the response 
approaches thermal equilibrium for large time, 
exact steady-state temperatures, displacements and 
stresses are predicted. 

The integrated thermal structural elements 
are evaluated by solving three transient examples 
of increasing complexity: (1) a rod with surface 
convection, (2) a cylinder with internal heating 
and (3) a wind tunnel ceramic nozzle insert. ' 
Temperatures, displacements and stresses predicted 
by the integrated approach are compared with' 
results from conventional finite elements and 
exact analytical solutions. In the examples, the 
integrated approach showed a clear superiority to 
the conventional finite element approach. For the 
same number of elements, the integrated approach 
has superior accuracy. For equivalent accuracy, 
fewer integrated elements are required; for 
instance, in the analysis of the cylinder with 
internal heating, two integrated elements gave 
results equivalent to predictions from twenty 
conventional elements. The nonlinear variation of 
temperatures, displacements and stresses within 
the integrated elements permits an accurate 
representation of these distributions with only a 
few elements. This feature was clearly 
demonstrated in the nozzle insert example which 
experienced sharp radial variations of the 
temperature and stresses due to instantaneous 
application and removal of convective heating. 
The examples demonstrate the approach offers 
significant potential and should be investigated 
further by applications of other element types to 
more complex thermal-structural problems. 
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Appendix A: Rod Element 

The rod element matrices are derived from the 
general element equations (3) and (6) using the 
element temperature and displacement 
interpolation functions given in Tables 2 and 3, 
respectively. 

Capacitance Matrices 

COO = pcAL/30 

COl = CO2 = pcAL/12 

C11 = C22 = pcAL/3 

C12 = C21 = pcAL/6 

(Cases 1-3) 

where 

COO = PCA[(C~~~h~L1)(Sin~ mL - ~) + LJ 

C - C - A[(1-COSh mL)(mL-sinh mL)] 01 - 02 - pc 2 
2m sinh mL 

pcA [ 
sinh mL cos~ mL-mL] Cll = C22 = 

2m sinh mL 

m = "hp/kA' 

pcA [mL cosh mL-sinh mL] 
2m sinh2 mL 

(Case 4) 

Conductance Matrices 

KOO = kA/3L 

K01 K02 = 0 

Kll K22 = kA/L 

K12 = K21 = -kA/L 

(Cases 1-3) 

KOO = ~ [mL 

K01 = K02 = 0 

2(cosh mL -l)J 
- sinh mL 

K = K = hI!. [COSh mLJ 11 22 m.s i nh mL (Case 4) 

K12 = K21 = ~[- Si~h mLJ 

For case 4, the conductance matrix includes the 
contributions from conduction and convection given 
in equations (3b-3c). 

Heat Load Vectors 

1Q}T = QAL [1/6 1/2 1/2] (Case 2) 



{Q}T = qpL [1/6 1/2 1/2] (Case 3) 

QO = hpT rL _ f. (COSh mL - 1 )11 
~L m sinh mL ~(Case 4) 

Ql = Q2 = hPT .. [k(co~~n~\lL I)J 

Stiffness Matrix 

Kll = K22 = AE/L 

K12 = K21 = -AE/L 
(Cases 1-4) 

Force Vector 

where 

and 

Cl = 1 _ 2 (cos~ mL -1) 
mL slnh mL 

cosh mL - 1 
C2 = mL sinh mL 

(Cases 1-3) 

(Case 4) 

Appendix B: Axisymmetric Element 

The axisymmetric element matrices are derived 
from the general element equation (3) and (6) 
using the element temperature and displacement 
interpolation functions given in Tables 4 and 5, 
respectively. Matrices are the same for all cases 
except where noted. 

Capacitance Matrix 

COO = pc b -a 4 [4w2{a4+a2b2+b4) + 9w{a4_b4) '1 2 2 
24 b 

+ 6{i_b2)2 J I 
Cal = -~ [4a4\it1'1{7a2+3b2){a2_b2) 

"16b2w ' 

+ 4{a2_b2)2] 

C02 = ~ [4b4
W
2._ w (7b2+3a2){b2_a2) 

16b2w 

+ 4{a2_b2)2 J 

Cl1 = ~[b2 - a
2 

(I + 2w + 2W
2

)J 

£L[2 2 2 2J 
2 a - b + w{a + b ) 

4w . 
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~ [b2 (I - 2w + 2w2) - a2 ] 
4w2 

where w = In{b/a). 

Conductance Matrix 

KOO = kW[W(I-{a/b)4) - (l-{a/b)2)2] 

KOl = K02 = a 

Kll = K22 = k/w 

Kl2 = K21 = -k/w 

For surface convection on the cylinder inner and 
outer surfaces additional conductances are added 
to the system conductance matrix: 

r = a, Kh = ha 

r = b, Kh = hb 

Heat Load Vectors 

nb2 [ 2 a4 a 2 2] QO = ~ w (I - t;r) - W (1 - il) 

Ql = ~ [- ~2 W + t (b 2 - a2)] 
(Case 2) 

n [b2 1 2 2 ] Q2 = ; 2'"" w - 4' (b - a ) 

For the surface convection and surface heating on 
the cylinder inner and outer surfaces additional 
nodal heat loads are added to the system heat load 
vector: 

r = a, Q = haT .. + qa 

r = b, Q = hbT .. + qb 

Stiffness Matrix (Plane stress) 

_ E 1 [2 2 2 2J Kll - --2- 2 2 (b + a ) - v (b - a ) 
(l-v ) (b -a ) 

K12 = (1~l) (b2~a2) [-2ab ] 

K - E I [(b2 + i) +v{b2 _ a2)] 
22 - (I-i) (b2_a2) 

Force Vector (Plane stress) 

F = ~ I L ~ [(-2a2W+b2-i){T ~ wT ) 
1 (I-v) w{b2_a2) 1 2 1 b~ 0 

+ (2b2w-b2+a2){T2+wTo) - b
4
ia

4 
w2 T 

b 0 

- 2{b2_a2)w TrJi 

F2 = ....fu.. 1 ~ Q. [(-2a2w+b2-i){Tr~ wTo) 
(I-V) w{b2_a2)1 2 b2 

+ (2b2w-b2+a2){T 2+wT ) - .Q.4_a24 w2 T 
o b 0 

- 2{b2-a2)w Tr J ~ 



Case 

1 

2 

3 

4 

WHERE m =~ 

CASE 

1 

2 

3 

Table 1 Rod Element Heat Transfer Cases 

CASE HEAT TRANSFER MODE 

1 CONDUCTION WITH NO HEATING 

2 CONDUCTION WITH INTERNAL HEAT GENERATION 

3 CONDUCTION WITH SURFACE HEAT FLUX 

4 CONDUCTION WITH SURFACE CONVECTION 

== 

Table 2 Rod Element Interpolation Functions 

Nodeless 
Parameter, To No(x) N1 (x) 

0 [- (1- [-) x 1- [" 

.Q!l 
2k [- (1- [-) x 

1- [" 

~ r (1- r) x 
2kA 1- [" 

T 1- sinh m(L-x} sinh mx sinh m(L-x} .. sinh mL sinh mL sinh mL 

Table 3 Rod Element" Displacement Interpolation Functions, NS(X)* 

x 
[" 

x 
[" 

x 
[" 

sinh mx 
sinh rrt. 

======== 
No (X) 

a(T2-Ti)"L aToL 
-"::""';2":-- (X2 - X) + -6 - (- X + 3x2 - 2X3) 

a(T2-T1) L 2 aT L 3 
-"::""';2":-- (X - X) + -+ (- X + 3X2 - 2X ) 

~ T2-T1 cosh mL + To (cosh mL -1) [ 
4 a 1 m sinh mL (cosh mLX-1) J 

T1-T I 
- X(cosh mL -1) + ~ (sinh mLX - X sinh mL)! 

*For all cases, N1(X) = 1 - X N2(X) = X 
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Table 4 Axisymmetric Element Temperature 
Interpolation Functions 

Case Nodeless Parameter, To 

2 

No(r) In(r/a) + a2ln(b/r)/b2 - rZw/b2 

Nl(r) In(b/r)/w 

N2(r) = In(r/a)/w 

where w = In(b/a) 

Table 5 Axisymmetric Element Displacement 
Interpolation Functions 

Nl (r) 
a(b2_r2} 
r(b2_a 2) 

N2(r) = b(r2-i} 
r(b2_a 2) 

DATA ITI ONLY --- COULD BE 

I 
J(x) 

• THERMAL AND STRUCTURAL 
ELEMENTS S 1M ILAR 

• NODAL TEMPERATURES ITt 
TRANSFERRED 

• THERMAL FORCES BASED 
ONLY ON NODAL III 

DATA OJ ax 
STdx 

• IMPROVED THERMAL ELEMENTS 
- FORMULATION FUNCTION OF HEATING 

• COMPATIBLE THERMAL DATA TRANSFER 
AS REQUIRED BY STRUCTURAL ELEMENT 

• THERMAL FORCES BASED ON ACTUAL 
TEMPERATURE DISTRIBUTIONS 

(a) Conventional analysis. (b) Integrated analysis. 

Fig. 1 Conventional versus integrated thermal and 
structural analysis. 
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Fig. 2 One dimensional element interpolation 
functions. 
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Fig. 3 Thermal and stress models of rod element. 
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Fig. 4 Thermal and stress models of axisymmetric 
element. 
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(a) Rod heated by surface convection. 

Fig. 5 Conventional and integrated finite element 
solutions for a rod with surface 
convection. 
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Fig. 5 Continued. 
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(c) Comparative temperature distributions at t = .01s. 

Fig. 5 Continued. 
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(d) Comparative temperature distributions at t = .30s. 

Fig. 5 Concluded. 

T=300K 

(a) Cylinder with internal heat generation. 

Fig. 6 Conventional and integrated finite element 
solutions for cylinder with internal 
heating. 
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Fig. 6 Continued. 
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(c) Comparative displacement distributions. 

Fig. 6 Continued. 
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(d) Comparative circumferential stress distributions. 

Fig. 6 Concluded. 

(a) Nozzle cross section. 
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(b) Finite element models at section A-A. 

Fig. 7 Tunnel nozzle insert and 
thermal-structural models. 
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Fig. 8 Nozzle insert temperature response 
computed by nodeless variable finite 
elements. 

1.0 

T 
Too .5 

(Ja' 

MPa 

0~~--~----~----~----~---7 
.5 .8.9 

rib 

(a) Nozzle temperature distributions. 

Fig. 9 Nozzle insert temperature and stress 
distribution computed by integrated 
thermal-structural finite elements. 
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(b) Nozzle circumferential stress distributions. 

Fig. 9 Concluded. 
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(a) Comparative temperature distributions. 

Fig. 10 Comparison of nozzle temperatures, 
stresses and displacements at t = Is. 
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(b) Comparative displacement distributions. 

Fig. 10 Continued. 
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(c) Comparative circumferential stress distributions. 
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(a) Comparative temperature distributions. 

Fig. 11 Comparison of nozzle temperatures and 
stresses at t = 126s. 
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(b) Comparative circumferential stress distributions. 

Fig. 11 Concluded. 
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