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I.	 INTRODUCTION

The Multispectral Resource Sampler "Proof-of-Concept" Study

is intended to be a comprehensive analysis of the corrections that

must be applied to MRS data to allow for atmospheric correction

factors and the variability of bidirectional reflectance from the

scene.

In order to assess the present state-of-the-art in these areas

a literature review and analysis was initiated at the outset of the

study. The reviews and analyses which are included have been

comp iled by:

DR. James A. Smith ................ BIDIRECTIONAL REFLECTANCE

MR. Kenneth J. Ranson ............. BIDIRECTIONAL REFLECTANCE

DR. Philip N. Slater .............. ATMOSPHERIC CORRECTIONS

DR. Robert A. Schowengerdt ........ ATMOSPHERIC CORRECTIONS

I

Their efforts include short descriptions of the more pertinent

papers and bibliographies of the materials which have been reviewed.

The two Literature Surveys, Bidirectional Reflectance and

Atmospheric Corrections, have been published under separate covers

for ease of reference.

k
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II	 BIDIRECTIONAL REFLECTANCE STUDIES

LITERATURE REVIEW

October, 1979

PREPARED BY:	 Dr. J. A. Smith and
Mr. K. J. Ranson,
Consultants
ORI, Inc.
Silver Spring, :MD 20910
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2 .0	 INTRODUCTION

The present bibliography was compiled in order to present a fairly

comprehensive review of previous work in scene bidirectional reflectance,

particularly those studies relevant to the Multispectral Resource

Sampler (MRS)(Schnetzler and Thompson, 1979).	 The literature review

has been prepared in two parts.	 Part I, reported here, is a bibliography

of the pertinent references. 	 It was found convenient to organize the

selected references into four broad categories: 	 2.1 Theory and Models,

2.2	 Measurements — further broken down into laboratory, field and

platform,	 2.3	 applications and Techniques, and 	 2.4 Definitions.

First, an overview of the references contained in each section is given.

Then an alphabetical list of the references by section and, finally,

the individual citations with abstracts are included.

Part II, is a synthesis of the literature results in narrative

form.

The Multispectral Resource Sampler (MRS) is a proposed sensor system,

operating in the 0.36 to 1.0 micrometer region, to be flown by the

National Aeronautics and Space Administration in the mid 1980's. 	 The

MRS is to be a pointable sensor with across track pointing up to + 40°

and along track pointing up to 55% 	 The proposed data acquisition :seeds

and satellite trajectories will also result in the imaging of scenes

under a range of sun angles. 	 It is thus important to determine the

angular reflectance characteristics of natural targets as summarized in

the bidirectional reflectance distribution function, BRDF.	 If the BRDF

texhibits significant anisotropy, then correction procedures must be

investigated in order to utilize multitemporal data sets imaged under

different view or illumination angles. Similarly, it is of interest to

a
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determine if new channels of information are provided by a knowledge of

the angular distribution of reflected energy.

In order to fully document the relevant surface anisotropy effectsP.

on a sensor such as the MRS, one must also consider the intervening

atmospheric effects.	 However, a separate literature review study

focusing on these effects is being prepared by other investigators.

Consequently, articles dealing primarily with the atmospheric processes

have been omitted from this report. 	 Further, the bibliography includes

only those references dealing with directional scattering properties

of natural targets.

The references reported here were obtained from a computerized

' retrieval search through YTIS and other sources, as well as from the

authors' own literature collection.	 We believe the list is fairly

but not necessarily exhaustive.	 Remote sensing is acomprehensive,

rapidly evolving field. 	 As in all literature reviews, a cutoff date

had to be imposed. 	 Thus, very recent symposia, for example the Thirteenth

International Symposium on Remote Sensing of Environment and the 1979

Symposium of Machine Processing of Remotely Sensed Data are not

beyond May 1979included.	 In general, articles	 were not reviewed.

There appear to be an abundance of measurements of directional

reflectance properties of natural materials, Section III. 	 However,

there is considerable confusion and variability in the interpretation

of the measurements and experimental procedures. 	 The references in

Section IV help explain the preponderance of terms and conceptions in

the literature.	 The experimental situation is also often obscured by

the lack of backup documentation of the materials studied. 	 Several

theories of canopy refleczar_ce have been developed, Section I. 	 The

2.1



foundation for infinite	 terraintheoretical	 plane-models appears strong.

Further extension of these techniques to heterogeneous canopies is

required.	 The possible utilization of the directional scattering prop-

erties of natural materials for increased information extraction has

only recently been addressed, Section III.	 Primarily, this appears to

be a result of the experimental difficulties in registering aircraft

multispectral data and accounting for atmospheric variability during

flight acquisition times.	 The reflectance models predict increased

biomass discrimination given off-angle measurements. 	 The advent of

sensor systems such as the MRS which provide a stable platform and

rapid acquisition times warrants further research in this area.

1
Schnetzler, C.C. and L.T. Thompson. 1979. Multispectral Resource

Sampler: An Experimental Sensor for the Mid-1980's. Proc.
SPIE Tech. Symp., Huntsville, AL May 22-24, Vol. 183. 8 p.

l^
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We have identified 45 references which are concerned with radiative

transfer calculations in the optical regime and oriented towards a

t

remote sensing perspective. We have not included any of the numerous

references dealing with light interception as applied to photosynthesis^ 	 r studies. The references may be grouped naturally into three general

E
areas: (1) Canopy Reflectance Modeling, (2) General Radiative Transfer

Theory, and (3) Application of Radiative Transfer Theory to measurement

interpretation.

Approximately 30 of the references deal with canopy modeling.

However, upon closer examination we find that only a few investigators

have actually concerned themselves with this problem. There is the

classic work of Allen and Richardson (1968), Allen, Gayle, and Richardson

(1970), and Duntley (1942, 1969). Allen and Richardson were among the

first investigators to apply physically based radiative transfer theory

to vegetation canopies. Allen, Gayle and Richardson demonstrated that

the Duntley equations could be interpreted to include effects of sun

angle on plant canopy. Thus, they are able to explain diurnal reflec-

ttance versus sun angle. Recently, other investigators also with the

U.S. Department of Agriculture, primarily Idso and deWit (1970) and

Jackson et al. (1979) have initiated new model development. The

reference by Jackson et al. is given in the section on Applications

and Techniques, Section III.

Canopy model studies are currently dominated by two strong schools

of thought. The first of these is ex^mplified by the Suits (1972) model.

Nine of the references explain the development of this model and the

application of the model by various scientists. Also included are

2.4



analyses of the model by Chance and LeMaster (1977) at Pan American

University. The Suits model represented an advancement over the earlier

work of Allen and Richardson, in that it allowed the stratification of

a canopy into layers. It is a deterministic model which utilizes the

radiative transfer equations directly. The second major thrust in canopy

modeling was initiated by Smith and co-workers (1972) at Colorado State

University. Five of the references are spinoffs from this work. The

SRVC (Solar Radiation Vegetation Canopy) model is a Monte Carlo model

which simulates light interaction with the various layers of a vegetation

canopy. Both the Suits and SRVC models are infinite plane terrain models

. which predict bidirectional reflectance properties of the canopy as a

function of intrinsic canopy characteristics.

A major effort in canopy modeling studies also appears to have been

undertaken by the Dutch, principally Bunnik (1978) at NIWARS. Other

investigators include Goudriaan (1977) and- Verhoef and Bunnik (1975,1976).

The paper by Bunnik is pa...?.i,:ularly significant.

Finally, in the model studies area there are a number of other

investigators which contribute four of the references. Norman (1979),

'	 currently at the University of Nebraska, has undertaken recent work on the

application of radiatve transfer theory to non-homogeneous canopies. The

ireference by Ross (1976) is an entree to the Russian literature which is

F

it
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quite extensive. In this category it should also be mentioned that an

important effort was undertaken by Egbert (1977) and Ulaby at the University

of Kansas. The reference by Egbert is given in the section on Applications

and Techniques. However, no further model development or application appears

to have been continued by the Kansas group.  



The second category of references in this section deal with general

radiative transfer theory, although not necessarily applied to natural

scenes. The classic texts of Chandrasekhar (1960) and Preisendorfer (1965)

are fundamental to the field. The review article by Ishimaru (1977) is

comphrehensive. The article by Leader (1971) is significant.

Finally, five of the references deal with the application of radiative

theory as required to understand or interpret measurements. Two of the

investigators deserve to be highlighted. Kriebel, et al. (1976) demonstrate

that the determination of the bidirectional reflectance distribution function

requires a knowledge of the sky radiation and path radiance terms. He

outlines an iterative procedure for solving the combined atmospheric/scene

radiative transfer system. Other references by Kriebel are given in the

section on Measurements, Section 2.2. The work by Egan dealing with

polarization properties of surfaces should be noted. Again, other references

by Egan are given in Section 2.2.

In summary, a solid, but recent, body of knowledge exists for the

calculation of the bidirectional reflectance distribution function for

some plant :nopies, Principally, these include crops, rangeland, and

grasses which have a uniform cover and large areal extent. The Suits and

Smith models have also been applied to forest canopies. The models are

not as well developed to handle heterogeneous situations such as crops

with significant row structure. However, these areas are now being

investigated. Considerable ground control information concerning canopy

structure is required to drive the models.

2.6



2.2 MEASUREMENTS

We have broken down the references in the measurements section

according to whether they were primarily made in the laboratory, in the

field, or from a platform such as aircraft or satellite. The separation

of the references into these three categories is not always unique. Many

investigators will gather both field and aircraft measurements, for example.

Further, many experimenters will incorporate a significant amount of

theory to interpret their measurements. Nevertheless, the breakdown

1	 appears to be a workable modus operandi.
.	 A. LABORATORY

Most of the Laboratory references we have selected are from the 1970's

with the exception of the early work by Coulson ( 1965, 1966) and Gates,

et al. ( 1965). One would thinw that there would be hundr- . 3s of references

dealing with laboratory measurements of scattering properties from natural

target materials.	 As a matter of fact, this does not aovear to be the case.

Perhaps, the remote sensing field is so indoctrinated with the concept

t}iat things appear differently in the field under natural illumination

' than in the laboratory under artificial conditions, that many investigators

question the value of laboratory measurements. 	 As pointed out by Some

of the references in the section on field measurements, there is still

8
a need to gather further laboratory measurements under controlled and

known illumination.

Under labo • .:..:ory measurements,	 the classic work of Coulson must clearly

be highlighted.	 Coulson performed several measurements of directionalr
hemispherical	 surfaces.reflectance or	 conical reflectance of natural

These surfaces included soils, clays, qua-tx, snd some vegetation. 	 Visible

and near-IR measurements, as well as polar . at,on analyses, were performed.

` 2.7
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Coulson also made measurements in the field as indicated in the next

section.	 Other early references Include gates, rt al.	 (1965) and Napke

and Van Horn (1963).

k The paper by Breece and Hulmes (1971) is very significant in that

It is the only paper the nathors could uncover that performed detailed

bidirectional scattering measurements of component foliage elements.	 The

work was carefully executed and gives the directional distributions for

both transmission and reflectance. 	 As the canopy reflectance models,

referred to in Section I, become more sophisticated, these types of

tmeasurements will become essential.	 Further work needs to be done in

this area; however, no one seems to have continued along this avenue.

The references by Egan (1.968, 1970) include bidirectional photometry

and polarization studies of crops and soils.	 As with other investigators,

Egan points out tae highly dependent nature of reflectance with view angle.

Finally, the conkinuirS research of Grahe-a Hunt and coworkers (1976)

at the U. S. Geologi:al Survey dealing with laboratory measurements of

geologic materials should be noted.

B.	 FIELD

Probably, the most significant source for field measurements is the

work emanating from the Large Area Crop Inver ory Experiment (1978).

This material is archived at LARS (Bauer, et_ al.,	 1977, 1978).	 There is

heavy emphasis on wheat, although other crops are also included. 	 Most

of the measurements were taken under a nadir looking view angle. 	 However,

E variable sun angle and phenology are included. 	 Further, there is good

. supporting ancillary data.

Again, the work by Coulson and Reynolds (1971) contains reflectance



1
t information versus solar elevation for soils, asphalt, alfalfa, rice,

sugar beets, bluegrass, and sorghum. Other sources of albedo values

include the Target Signatures Library of the Willow Run Laboratories, ,v-

ERIM, (Earing and Smith, 1964). The Russian work by Kondratiev, et al.

(1964; Steiner and Cuterman, 1966) contain good albedo references for a

wide variety of materials.

Other agricultural reflectance data are available in Verhoef and

Bunnik (1976), de Boer, It al. (1974), Kanemasu (1974), and the recent

paper by Rao, Brach, and Mack (1979). This latter paper contains

information on the angular effects versus leaf area index and percent

ground cover. The data were corrected for view angle, solar zenith

and azimuth angles, and atmospheric effects. Information is given for

barley, oats, and corn.

The references by Duggin (1977), Egbert and Ulaby (1972), and Smith,

Berry, and Heimes (1975) contain further information on directional

I variability in crop signatures. The references by Tucker (1979) contain

information on various ratio variables versus agricultural parameters.

Field measurements for the directional reflectance of various types

of snow using artificial light were obtained by Middleton and Knowles (1952).

Snow appears to exhibit large increases in reflectance for large angles

of incidence and reflection. The reference by Dirmhirn and Eaton (1975)

is a more recent reference summarizng diurnal variations of albedo for

snow and ice. Freshly fallen snow is found to be highly isotropic, with

specular components increasing with age.

The reference b Fuller and Rouse 1979 is interestingY	 (	 )	 g for the lack
f

of understanding exhibited in terms of the meaning of a reflectance

parameter. They noted changes in reflectance for overcast versus clear

skies with the directional component of reflected flux being small under

overcast skies. They indicate that an overcast sky decreased the albedo

2.9
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`	 at large zenith angles for forest canopies. The authors clearly do not

understand the coupling between the irradiance field and the bidirectional

reflectance factor as explained in the references in Section 2. 4. Definitions.

The reference by Kimes, Smith, and Ranson (1979) is a good overall summary

of this coupling and the interpretation of vegetation reflectance

=1=	 measurements as a y .nction of solar zenith angle.

C. PLATFORM (AIRCRAFT AND SATELLITE)

While aircraft and satellite multispectral scanners have been flown

for several years, really few studies have been devoted to the use of

these systems for estimating surface reflectance properties. Rather,

pattern recognition and other classification approaches are performed

directly on the radiance measurements themselves to extract the information

desired. Under this category, however, we again find the ever present

Coulson (1966). This reference contains measurements of reflecting and

polarizing properties of various soils, sands, and vegetation in the

visible and near-IR spectral regions. Coulson found that dark surfaces

polarize reflecting radiation most strongly while highly reflecting

surfaces have relatively .peak polarizing properties.

Probably, some of the most significant aircraft measurements that

have been obtained and analyzed are those by Kriebel (1974, 1976, 1978).

Kriebel made a complete analysis involving both atmospheric and sensor

considerations to derive a true bidirectional reflectance distribution

function for four broad vegetation categories. These include bog, pasture,

forest, and crops. The information available is very relevant. to
I

bidirectional reflectance studies and the MRS. lowever, it is apparent

that some numerical inversion errors accumulated in the analysis. The

tabular data do not always satisfy the reciprocity relationship. The data
F'
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are averaged over solid angles of 30 degrees azimuth and 10 degrees

zenith angle.	 For all surfaces, anisotropy increases with increasing

' zenith angle of incidence, apparently due to the shadowing effects in

the vertical canopy structure.

The data given by Salomonson (1966) and Salomonson and Marlatt (1968,

1971) indicate anisotropy over various surface materials.	 For example,

backscattering predominates over grassland surfaces at large solar

_ zenith angle.	 The ratio of average observed reflectance to the minimum

observed reflectance varied from 1.09 to 1.40.	 Measurements over

vegetation, soils, snow, and white gypsum sand are given.

'	 The references by Duggin (1974), Hoffer (1974), and Smith, Lin, and

_ Ranson (1979) contain useful information for the documentation of the

anisotropy to be expected for satellite measurements.

i
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2.3 APPLICATIONS AND TECHNIQUES

Under this section we include references dealing with correction

procedures for removing variations induced by bidirectional reflectance

effects, principally scan angle and sun angle, and papers which examine

possible applications of the BRDF differences in scene elements.

In reviewing the literature for correction techniques related to

BRDF effects, it is apparent that the most commonly employed method

is to avoid the problem. That is, most analyses of multispectral

aircraft data usually include only restricted flight times, near solar

noon, and restricted scan angles. The Environmental Research Institute

of Michigan, which has had considerable experience in the acquisition

and analysis of aircraft MSS data, is a good source for correction

procedures. The retort by Falepka and Erickson (1974) presents a summary

of a five-year research program dealing with the application of MSS

systems to earth resource surveys. Egbert (1977) presents a novel

approach to correct- 	 bidirectional reflectance values. The analysis

of BRDF effects on satellite imagery, principally Landsat, is given by

Ranson, et al. (1978), Lambeck (1977), Holben and Justice (1979),

and Struve, et al. (1977). Horn and Bachman (1978) applied surface

response models to Landsat imagery in order to develop registration

techniques.

Indirect BRDF effects are manifested in satellite data through

multitemporal analyses. Kauth and Thomas (1976) present a unique summary

of this problem by employed a "tasselled cap" transformation.

The influence of the BRDF surface effects on atmospheric corrections

is summarized by Coulson and Jacobowitz (1972) and Koepke and Kriebel

(1978).

t 2.12



In summary, correction of aircraft multispectral bidirectional

reflectance effects is confounded by atmospheric effects as well as

the surface anisotropy. Satellite bidirectional reflectance effects

are confounded by the variability resulting from the large geographic

extent imaged.

The number of investigators who have studied the potential application

of surface BRDF variations for information extraction is limited. The

report by Malila, Hieber, and Sarno (1974) describes an aircraft experiment

in which the multispectral scanner was flown over the same flight line

twice; first at 0 degree look angle, and then tilted at a 45 degree look

angle. The images were manually registered. Some improvement was noted;

however, the results were confounded by possible atmospheric variability

and registration problems. The paper by Smith and Oliver (1974) presents

a theoretical investigation of the HRDF effects on feature selection.

Improvement at some combinations of sun/sensor angles is predicted for

biomass mapping. This result is also indicated in Lhe work by Bunnik

(1978) given in Section 2.1. Finally, the paper by .4 ckson, et al. (1979)

discusses an analytical approach for using the canopy bidirectional

reflectance distribution function to estf.ma'ie crop structure parameters.

2.13
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2.4 BIDIRECTIONAL REFLECTANCE: DEFINITIONS

Even a casual review of the references given in the present bibliography

demonstrates an almost overwhelming diversity of measurements approaches

and interpretations for the "reflectance" of a scene. Three of the

references included in this section highlight the reasons behind the apparent

confusion in the literature. First is the classic reference by Judd (1967)

who, in fact, defines nine kinds of reflectance, six kinds of reflectance

factors, and three kinds of radiance factors. In particular, Judd uses

the terms hemispherical, conical, and directional to specify both angles

of incidence for the irradiance and angles of collection for the exitance.

Judd does an excellent job of emphasizing the angular considerations

and inter-relationships involved in reflectance nomenclature. However,

the papers by Nicodemus (1970, 1965) present a summary of the important

concept of the bidirectional reflectance distribution function, the BRDF.

Nicodemus restricts the term reflectance to the dimensionless ratio of

a reflected radiometric quantity, e.g. radiant power, to the corresponding

incident radiometric quantity. This ratio is always less than or equal

to one. The BRIJF, a differential quantity, has units of sr -1. The

term reflectance factor is aefined as the ratio of the radiant power,

exitance, reflected by the scene to that which would be reflected by a

perfect Lambertian surface. The incident and collection beam geometry

are taken to be the same. The third fundamental reference, the Self-Study

Manual on Optical Rgd.Qti.2 (1978), edited by Nicodemus, is an excellent

tutorial on radiance concepts and presents a measurement equation for

radiometry, Finally, the paper by Kasten and Raschke (1974) is similar

to the earlier rapers by Nicodemus but is helpful as a reference for Kriebel's

papers presente,: earlier.

2.14
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termine the nuntley parameters. T%%e n.ty-four mcawrcments of tran.mittaaee within the canopy Mcre
used, h7aever, in a icnst•squares calculation to obtain the Lest fit of the Duntley equations to irtadianee
within the cuna canopy. The Duntley equations fit the experimental results within a standard deviation of
3.27, for a 1.-.t d from noon to sundu%%n. If the lalxpwory nivaaurcrnents of optical constants fox a sir-gle
corn l"f are used as constraints, the Duntley eg :atiunt. fit the clata to within 3.7%. Tl.c Lest fit to near•ir
transmittance rncawremcets *cc-s-s when zero ab!orptance is a?sumcd for the canopy. The nuntiey eyus-
tivns reduce to a trace-paranneter rept"mathet fur the s;xeial cafe of no abtorptanee.

Berry, J.K. and J.A. Smith. 1977. An overview of Vegetation Canopy Modeling
for Signature Correction and Analyses. 4th Annual Symp. on Machine
Processing of Remotely Sensed Data. p. 194.

Summary form only given as follows: The authors discuss several
app Ucations of Canopy Modeling to the central problem of understanding and
correcting signature variations. Discussion emphasizes a monte carlo model
that was originally developed to investigate the bidirectional reflectance
character of natural grasslands.
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I
Boffi, V.C. and G. Spiga. 1977. Integral Theory of Radiative Heat Transfer

with Anisotrophic Scattering and General Boundary Conditions. J. Math.
Phys. 18(12):2448-2455.

I Using the Green's function method the Boltzmann integro-differential
equation is converted into a pair of integral equations. These can be formally

solved by using a series expansion in legendre polynomials. Conditions for
obtaining a usable solution are discussed. (13 Refs).

Buckius, R.O. and D.C. Hwang. 1978. Conservative Anisotropic Scattering
in a Planar Medium with Collimated Radiation. ASME Pap. No. 78-HT-17,

8 p.

Tile dire:tionai hemispherical and bidirectional reflectance
and transm i ttance are presented for a conservative Anisotropic
scatterin7 medium. Collimated inci+lent radiation and linear
anisotroolc scattering are consiuered so that the azimuthal
dependence must ue retained. 	 The effects	 of	 optical
thickness,	 anisotropic scattering,	 incident angle, polar
angle, and azimuthal angle are presented in a closed-form
approximate solution.	 Comparisons with exact solutions are
also presented. 12 refs.
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r
3unnik, `.J.J.	 1978.	 ha `!u1tis p ec_:si 7eflec:a nCa c_	 :-.or::s•:e

radiation by A3_icslt::ral C:cps	 in :elation •.a:t 1	 tLtir
3i--al a:.d Optical ?rcierties. 	 ::a3tr.ir.3sn.	 :'adeis:_n.en
ndbous:iogssc :.a^ col.	 'cede-;.^d	 7°-1.	 i^5 0.

The objectives of the investigation and the contents of this manuscript
may be summarized as follows.
1.	 To investigate relations between crop variables and spectral
reflectance of vegetative canopies by means of an appropriate mathematical
model and experimental data.	 Variables of uniform canopies, like total
leaf area index, leaf angle distribution, optical constants of the lewres
and spectral reflectance of the bounding soil have been studied in
relation with geometrical variables of incoming radiation and the
direction of detection of reflected radiation.
2.	 To determine spectral bands producing useful relations between reflec-
tance data and canopy variables. 	 Further, suitable combinations of
reflectance data from different spectral bands have been studied which
provide a simplified and better defined relationship with canopy structure,
leaf colour or moisture content variations of the upper surface layer of
the bounding soil.	 As a result of this study, a non-destructive method
became available for monitoring crop growth, crop senescence, detection
of changes probably related to stress or diseases and to produce data
useful to crop yield estimation techniques.
3.	 To determine the spectral bandwidth allowed of selected wavelength
bands in relation with a minimized loss of sensivity of the mensuration
of spectral reflectance variations due to variations in crop structure.
4.	 To determine directions of incoming and reflected radiation producing
a drastic simplification in the complicated relation between crop reflec-
tance and crop variables. 	 On account of the conditions found, monitoring
of dynamic behaviour of crop properties could be carried out with
increased accuracy.
S.	 To determine the position and a minimum number of spectral bands
with a minimum loss of spectral information for between-crop type
discrimination.
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Chance J.E. and E.W. LaMaster. 1977. Suits Reflectance `todels for Wheat
and Cotton: Theoretical and Experimental Tests. Appl. Optics 16(2):
407.

A tight absorption model fLAb11 for vegetative plant canopies has heen derived from the luita reflectance
model. From the LAM the shs<,rption of light in the photosynthetically active regwn of the spectrum
i4iXi - ',tltl nmt has heen cal.^:lated for a Penjamo wheat crop for several situattuns including oat the percent
shw,rption tit the incident radiation by a canopy of LAI :f. t having a four laver structure. ! bt the percent :th-
sorptwn of light by the individual layers within a four-layer canopy and by the underlvtng still. tci the per•
cent ahwrptton of littht by each vegetative canopy laver for variahle sun angle. and ld t the cumolan ye solar
energy shsurbed by the developing wheat canopy as it progresses from a single layer through its growth
stag" to a three-Inver canopy. This calculation is also presented as a function of the lest area index and is
shown to he in agreement with experimental data reported by Kanem"u on Plainsman V wheat.

t

;hance J.E. and E.W. LeMaster. 1973. Plant Canopy Light Abscrption
Model with application to Wheat. Appl. Optics 17(16):2629-2636.

Plant canopy reflectance mt,dels developed by Suits are tested for cotton and Penjamu winter wheat. 1'rop-

erti" of the models are discussed. and the concept of moclel depth is developed. The models' predicted ex-
change symmetry for specular irradiance with respect to sun pillar angle and observer pillar angle agreed
with field data for cotton and wheat Model calculations and experimental data for wheat reflectance vs sun
angle disagreed. Specular reflectance from 0.30 am to 1.10 am shows fair agreement between the model and
wheat measurements. An Appendix includes the ph ysical and optical parameters for %heat necessary to
apply Suits' models.

Chandrasekhar, S. 1960. Radiative Transfer. New York: Dover Publication,
Inc. 393 p.
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f.

Coldwell, J.E. 1974. Vegetation Canopy Reflectance. Remote Sensing of
Environment 3:175-183.

Possible c:u!teffect relationships in producing vegetation canopy reflectance are discussed. Hems•rhersal
reflectance and even bidirectional reflectance measuremenls are shown to be inadaquatt to predict or undetuand
vegetation canopy reflectance in many situations. Among .110 additional imporunt parameters neces:,eq for

piedic litien and understanding of vtgetanon Canopy ;efleciance ate Ieai hemisphetical tunsmitl3n,e. leaf Arta and

Orientation, characteristics of other components of the vegetation canopy (sulks, trunks. tarbs), soil reflectance.

solar zenith angle, look anflt, and azimuth angle. The effects of these parameters on vegetation canopy

bidirectional spectral reflectance are described.

The reflectloh fui:t i on for an isOtrOp ` Ca l ly scattering
maQiium hiss boon @xo-ossed in te rms Of Chanerasokmair's X and Y

functiOns, for 0 , finito medium and in te rms Of ChanCrasQknar's
H functi3n fo r a strl-Infimito medium. Expressions for tr.e
direCtiOny l-hem'isphe` , Ca l refloctanCe. hemispherica l -d i re:110-
mai' reflectance any hemispherical reflectance havo	 004.11

prts4ntod in terms of the X, Y. ani N functions and their
mCmRnts.	 Also, asi nototiC ex p ressions have been presented.

1

t
Crosbie, A.L. 1913. Reflection Function for an Isotropically Scattering

Finite Medium. AIAA J. 11(10):1448-1450.

The reflectioh fu-t_tion for an isotro p ically scattering
ffig6ium Pi g s been exprecSed in terms Of ChandraSeknar's X and Y
fun=t ions' for O'finite medium and in te rms of ChandrasaknarIS
N YunCti3n for A Se n t- infinite medium.	 Expressions for tr,e
d ir eCt i On91-heniS4he`iCaI rofIOCtanCe. horn i sph4riCa1-o i reCtio-
nai l reflaCtanCe anJ he 1"iSpheriCal rofl*ctanc4 havo	 boon
presented in terms of the, X, Y. acid N functions and their
mcm4nts.	 Also. ASj rp totic ex pressions have been presented.

:e ', = ti:1!	 :7e °_S J. J! ._ :ice' 
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Ountley, S.Q. 1969. Directional Reflectance of Atmospheric Paths of Sight.
Report No. 69 -11; USGRDR No. AD-688 265. La Jolla, Calif.

I
The Contrast reducing properties of any path of sight inclined downward

through the atmosphere can be specified by a single dimensionless number
analogous to a reflectance and called the directional reflectance of the
path of sight by ratio of the directional path reflectance to the inherent
directional reflectance of the background. Previously published optical
atmospheric data derived from in-flight measurements have been used to produce
tables of R.	 For two clear-weather conditions. A simple nomograph and
numerical examples are included.

Egan, W. G., 1. Grusauskas, and H. B. Hallock. 1968. OPTICAL DEPOLARIZATION

PROPERTIES OF SURFACES ILLUHINATED BY COHERENT LIGHT. Reprinted from

Applied Optics, Vol. 7, page 1529, August 1968.

An experimental investigation of the depolarization characteristics

of complex surfaces illuminated by 6328-A laser radiation was made on a large

scale polarimeter. Heasurements were made on specimens such as basalt,

limonite, volcanic ash, wet and dry sand, gravel, silt, and foliage in

various states of freshness. (For powders and aggregates, depolarization

appears more pronounced as the size of the individual particles decreases,

and as the roughness and porosity of the surface features increases, whereas

depolarization appears luss pronounced as water is adsorbed or absorbed.)

The depolarization signature of foliage served to characterize a particular

species, and dryness of the specimens tended to increase the depolarization.

I
As a practical outcome, it appears that additional surface characterization

or signature can be obtained through measurement of depolarization charac-

teristics.

71
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^, r
Fowler, W. B., E.I. Reed, and J.E. Blamont. 1971. Bidirectional Reflectance

of the Moonlit Earth. Appl. Opt. 10(12): 2657-2660.

From OGO-4 Airglow Photometer data and computed lunar spec.:ral irradiances
at the subsatellite point. The highest radiance over clouds and lowest
radiance over open ocean are examined near 3914A. 5577 A. 5893 A, 6225 A,
and 6300 A in terms of bidirectional reflectance. The results are compared
to and are consistent with mathematical models of the atmosphere developed
by Plass and Kattawar 7a. And with daytime measurements from OGO-3 by Neel,

Griffin, and Millard.
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Fraser. R.S. and W.H. Walker. 1968. Effect of Specular Reflection at the

Ground on Light Scattered from a Ra y leigh Atmosphere. J. Opt. Soc. Am.

58(5):636-644.

The method ofChandrasckhar is used to compute the parameters that characterise the scattered light
leaving the top of a Raleigh atmosphere. The atmosphere of this mrwlel lies al ove a smooth watet surface,
which reflects light according to Fresnel's law. 1'he cnml,ined atmosphere and water is called the Frtanel
model. The results (or the Fresnel model are compared with corresponding results for a seennd m..:cl, w inch
is called he Lambert motel, since its ground reflcets light according to 1. ,ml,crt's law. The reflectance at
the ground is less than 0.1, if either the solar zenith angle #.<0" or the total optical thickness .,>0.6 The
relative difference bet%%een the outward fluxes (tom the tops -%f the stmnspheres of the t %%o models is Iess t han
0.0; if 1.<;4'. The ri:fference between the rad;anees of the nadirs at the tups (,f the two mak e s is :ess than
0.1 if r, >0.5, but the difference becomes lams at small •,. The maximum degree of pnlariration and the
neutral•lwint lxsitiona at the top of the atmosphere of the Fresnel m<.irl are quite difTcrent from ;hose of
the Lambert model, when the total optical thickness is teas than 0 c The neutral point-, for the 1'rt: 1cl mrwlei
appear outside of the vertKal plant through the sun for restricted ranges of both the total ncrraal optical
thickness and the solar zenith angle.
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Goudriaan, J. 1977. Crop Micrometeorolo : A Simulation Study.
Wageningen, the Net er an s: Centre for AgriculturaT Publishing and
Documentation. 249 p.

Hering, R.G. and T.F. Smith. 1970. Surface Roughness Effects on Radiant
Energy Interchange. ASME Pap. 70-HT/SpT-2. 9 p.

RaQiant , interchange bet.veen ap acue interacting Surfaces is
for ,nulate.1 for unequil tem p eratu,• e ad i oint plates w i th a nne-
0imyrs,onsl surfac3 roughness profile. Rough Lurface
bid'irecti2nal ^eflectance and d' r ectional emittanca depar.d on
material I ern; ttanco.	 raignness element Slope. and roughness
element s3acularity. 4bsorztien factor results snow a stronq

denerdenca on surface roughness and indicate that rougnness
effects a r e more important in the evaluation of radiant
inte r change than radiant heat loss. Absorption factor values
differing by a factor of two to four are commonly observed for
identical emittance materials as a result of roughness.	 12

-
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Horn, B.K.P. Understanding Image Intensity. Artif. Intell. 8 (April 1977),
201-231.

Traditionally, image intensities have been processed to segment on image
into regions or to find olge-fragements. Image insensities carry a great deal
more information about three-dimensional shape, however. To exploit this
information, it is necessary to understand how images are formed and what
determines the observed intensity in the image. The gradient space, p ilarized
by Huffman and Mackworth in a slight different context, is a helpful too in
the development of new methods.

Idso S.B. and C.T. deWit. 1970. Light Relations in Plant Canopies.9	 P
Appl. Optics 9(1):117-184.

A theory of light relations in plant canopies is presented which has potential
applications in remote sensing and photosynthetic modeling of plant canopies.
Predictions of the model are compared with filed measurement of light reflection
and transmission in a corn crop. Both reflection at the top if the canopy
and transmission at the bottom are predicted within 1 percent of the measured
values. Profiles connecting these upper and lower limits are equally well
approximated. Varitions in the predictions with altitude angle of the sun are
confirmed by the observation of several investigators.

s
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Ishimaru, A. 1977. Theory and Application of Wave Propagation and
Scattering in Random Media. Proc. of the IEEE 65(1):1030-1061.

Abstract -- This paper presents a review of basic theories and recent
advances in the studies of wave propagation and scattering in random media.
Examples of the random media include the atmosphere, the ocean, and biological
media whose characteristics are randomly varying in time and space. The study
of electromagnetic, optical, and acoustic waves in such media has become
increasingly important in recent years primarily in the areas of communication,
detection, and remote sensing. Topics covered in this paper are divided into
"waves in randomly distributed scatters," "waves in random continua," and
"remote-sensing of random media." Transport theory with various approximate
solutions and multiple scattering theories are discussed and their relationship
are clarified. Included in the analyses are propagation characteristics of
intensities, wave fluctuations, pulse propagation and scattering, coherence
bandwidth, and coherence time of communication channels through random media.
Remote-sensing techniques include recent advances in the use of inversion to
deal with ill-posed problems.
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A thermal canopy signature model	 (TCSM) was developed to approx i mate the

thermal behavior of a vegetation canopy by a tathe-natical abstraction of

three horizontal layers of vegetation.	 Canopy geonmetry within each layer is

quantitatively described by the foliage and branch orientation distributions.

2 0-	 Cn:ICPY	 COOMOLry,	 solar	 irradirince,	 air	 Lcnper;it^irc,	 hoi. i,:ont.-il	 wind

Velocity,	 ri-lative	 humidity,	 ':'.J	 F,,.-Ound	 t(,amperaLure	 -,re	 us,-d	 to	 cilctil,-,te	 the

',udZuts^:, or&y	 of
	
a -.erale	 IOZI';eS	 within	 c!,-ich	 layer.	 The	 rostilt-Ing	 sy.-,-,c,7n of

equations	 is	 solved	 for the: i s44

information,	 to6c t- Incr	 .,ith	 the	 nn&ularl	 (!istributi,:ns	 of	 r-71"iliLing	 Qlcmi•nts,	 is

t .̀ :en	 used	 to	 calculate	 t!ie	 t`iL-=ial	 as	 a	 of	 %-i^.!w	 angle	 :1";Q ,.,e

t ! 'e	 Czlncoy-	 C2ti(:_, !	 diff fr,ction	 %,7ure	 to

c_a -ncpy gec-.eery.	 S,)Iar	 ra,lian tion	 a^^orpticn -.,;ith	 the	 :c station

terrain elc7nents	 is calculated using a modification of a 	 .oriel

(-S VC)	 jEveloped	 for t 1lie	 reflective energy regime.

The mod' als c,ere applied to a lod-opole pine 	 (Pinus ccnLorta)	 c_z nopy zind

the	 results	 for a diurnal cycle	 are validated	 .,, ith radiometric :7c.:surern(lnts.

Sirulated	 varsus	 -. ,zasurod	 radio • etric	 aver., ge	 tt2:-, er_-tures	 of	 T.-- y -tr	 2

tuo	 d`g rrees	 cont13rade.	 S`7--.-L;lat,2d

canopy sc.;:7,etry	 c&-i	 si6nificantly	 influence	 the ef f ec t ive	 rtt-'i-n' t	 t,2:- o r a Lu r e

recordt^d 1 -y a se n sor	 abc •.e	 the	 canopy	 as	 a	 function of	 vil c ,.,	 an--le.

R
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Kriebel, K.T., H. Quenzel and W. Scholze. 1976. On the Determination of
the Atmospheric Air Light as a Normally Underestimated Perturbation
Signal. Atmospheric Environment 10:645-653.

Abstract -- A simple method to compute the air light, based on single
scattering only, is compared with an exact iterative method including multiple
scattering and is found to give reasonable values of the air light expressed
as a percentage of the reflected radiance. Besides some general dependencies
of the air light for four different geometrical situations the air light is
shown as a percentage of the total radiation received by snesor at arbitrary
heights as a function of the atmospheric turbidity.

I
Leader, J.D. 1971. Bidirectional Scattering of Electromagnetic Waves from

Rough Surfaces. J. Appl. Phys. 22(12):4808.

I
A general bidirectional expression is derived from the Station-Chu-Silver

integral for the scattering of electromagnetic waves from rough surfaces.
This expression is then exapanded in a power series of surface slope terms for
the special case of scattering in the plane of incidence. The results of
this expansion are then compared with other models and closed-form solutions
are obtained for comparison with experiment.

I
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`	 This supplement presents in detail a series of simulated scanner system data
values generated in support of LaCIE (Large area Crop Inventory Experiment) research
and development efforts. Synthetic inband (Landsat) wheat radiances and radiance com-
ponents were computed and are presented for various wheat canopy and atmospheric con-
ditions and scanner view geometries. Values include:

q-
(1) inband (Landsat) bidirectional reflectances for seven stages of

wheat crop growth,

(2) inband (Landsat) atmospheric features, and

(3) inband (Landsat) radiances corresponding to the various combinations
of wheat canopy and atmospheric conditions.

Analyses of these data •5alues are presented in the main report.

_:^__52 ..C. :C":2^tom.	 -_.3^ `°^CrL.	 -=-..-_,_^^--r-_ _^, rJ..=•^C_

a..

s

1

Abstract:	 Ve'1t;me I of this report providLv tn ;? 5e1116!iC
Fesearc .' L3JC^3tcr as with d di CusSrOn Of tr? a Igo r' . t r,rs upon

	

##	 which	 thr+ bir' : r • eCtiCn.y i 	r^ 1 ^eCta , ,Ce mn,,eI	 iS On3?J,	 in
oar t ; Ci, 1	 the	 r•on- lcioGtrt' t I dr;	 v0l ume	 rind? l	 Ml ; Ch	 4433
Cot , struC,eI ur!J2 r, t h is cunrr3rt.	 The -e p o r t R rov;CCS
vaiir:^ttor. Of tho r , .deI ..ith rea p ec• 1, to t"e ma:erials s.O- lied
b" . eiL.	 It	 n G : u'j°s a listing of nnorcoridte moaei pari.r.e_+t;r•s
a; to }	 of how to use " ite 'rcCdl ,	 and a I Tting Of
the Co; "uute ,• progrim with its suL., rout r ocs.	 Toe moCel r-aae t, it
posstC i e to calcuiate OidirectiOnat reflectance data f rom 3
•;ery SPaII	 a'^punt Of measured Crta.	 Accuracy der.,rr._t ^atrd
nd'C3!2S tnat !*tie model is verj effective. a I ir^ ough
i.-7rovene^t Car still 00 obtaine! at In-g4 ^ec°_ i ,er` zenith
angles. (Author)
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Maxwell, J.R. and S. Weiner. 1914. Polarized Radiance. Volume III:
Wavelength Dependence of Polarized Bidirectional Reflectional
Reflectance. Final Report. ERIM-19500-1-T(3), Contract DAAD05-12-C-0246.
Ann Arbor, Mich.

Abstract: Volume III of this report provides the Ballistic Research
Laboratores with a method for extracting information from a limited set of

!	 direct'lunal and bidirectional reflectance measurements so as to provide a
wavelength-corrected input to the volume component of the bidirectional
reflectance model described in Volume I. It is shown that the surface
component of the bidirectional reflectance has little wavelength dependence
for the materials studies from 0.63 micrometers, and 3.39 micrometers and 10.6
micrometers under this contract are included and are used for the model vali-
dation which is also described. (Author).

I
Norman, J.M., S.G. Perry, A.B. Fraser and W. Mach. 1979. Remote Sensing

of Canopy Structure. Fourteenth Conf. on Agriculture & Forest
Meteorology and Fourth on	 on Biometeorology 1 -1

T
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Oliver, R.E. and J.A. Smith. 1973. Vegetation Canopy Reflectance Models.
Final Report, Contract No. DA-ARO-D-31-124-71-G165. 91 p.

Stochastic and deterministic approaches to simulating the spectroreflectance
of shortgrass prairie vegetation have been investigated. The stochastic approach
u tilizes randomly selected variates for incoming light flux, plant geometry, and
^ntrinsic optical properties whereas the deterministic model is patterned after
the familiar Kubelka-Munk theory for diffuse reflectance.
I

The stochastic model was deemed more desirable because of its flexibility and
inherent capability of providing the multivariate covariances. This model determines
the apparent directional reflectance which is dependent upon both sun and view angles
as well as canopy geometric and optical properties and soil background. The
6odel results are compared with field and laboratory measurements of Blue grama
(Bouteloua gracilis) and successfully predicts the non-Lambertian character of the
canopy.
I

The site of the field measurements was the Pati,nee National Grasslands, the
intensive study site of the International Biological Program. Direct solar and
diffuse sky irradiance and the optical properties of Blue grama were measured in
the 0.4 micrometer to LOS micrometers region of the spectrum using a field
adapted EG&G spectroradiometer with a computer based digital acquisition system.
Eanopy geometry was measured with a laboratory photographic technique with
ubsequent digitization of the profile images.

r
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Oliver, R.E. and J.A. Smith. 1974. A Stochastic Canopy Model of Diurnal

Reflectance. Final Report. U.S. Army Research Office Durham.
DAHC04 74 G0001. 82 p.

The spectral signature of most vegetation varies with both direction of
view and time of day. This variation is spectrally dependent and is due
primarily to differences in canopy geometry. As a means of investigating
the interaction of shortwave radiation with vegetation a stochastic
canopy model was developed. The model utilizes random variables based
on measured distributions for incoming radiation flux, intrinsic optical
properties, and canopy geometry. Two methods were used for determining

canopy geometry. The first method is to orthogo-
nally project and photograph individual plants and to directly
measure the leaf angles from the photographs. The second method is a
rapid in situ technique involving the solution of a Fredholm integral
equation based on data from ground level photography. A portable
battery powered spectrometer system was constructed for the measure-
ment of vegetation apparent directional reflectance. This instrument
provides data for model validation and horizontal surface irradiance
measures required as model input. A direct application of the model
is to simulate statistical spectral signatures for use with remote
sensing pattern recognition algorithms. A qualitative study was made
to investigate the effects of changing canopy directional reflectance
on feature selection. The results show that different combinations of
wavelength channels are appropriate for various sensor look angles,
that target signatures have greater statistical separation for some
scan angles than others, and that these effects are time varying.

I

I
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Preisendorfer, R. W. 1965. Radiative Transfer on Discrete Spaces.

Pergamon Press. 462 p.

Reichman, J. 1973. Determination of Absorption and Scattering Coefficients
for Nonhomogeneous Media. I. Theory. Appl. Opt. 12(8):1311-1315.

Equations are derived to determine the diffuse reflectance and
transmittance of i.+homogeneous materials. The equations are valid for
collimated incident radiation for any angle of incidence. The effects of
Boundary reflectance and anisoptrophic scattering are included. The equations
are derived from the equation of radiative transport, Using the Schuster-
Schwartzchile approximation. They are sufficieetly simple to be used for
spectroscopic determination of the absorption and scattering coefficients.
Numeral comparison with more exact solutions of the equation of radiative
transfer show very good agreement for all cases except for reflectance in
the highly anisotrophic case, where agreement is only fair . (11 rEfs)
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r
Ross, J. 1976. Radiative Transfer in Plant Communities. k:

and the Atmosphora. Vol. I. Principles. (Ed: J.L. Monteith-)-, Academic
Press, London. pp. 13-55.

I
3
f
1
1

Smith, J.A. and R . E. Oliver. 1972. Plant Canopy Models for Simulating
Composite Scene Spectroadiance in the 0.4 to 1.05 Micrometer Region.
Eight Symposium on Remote Sensing of the Environment, University of
Michigan, Ann Arbor, 2:1333-1353.

A Monte Carlo Mcdel has :ten developed for simulating the interaction c` direct
and diffuse shcrts,:ave radiation with the canopy of shortgrass prairie vegetation
(reuteloua ra^T ciir	 ). The model treats t=e canopy as consisting of layered s:atis-
t3ca ense^..-es of foliage ele:ner.ts against a soil background. :he model a:lows
for nulticcx.;onent mixtures ;c ssassing different spectral and foliar displa;: char-
acteris t cs. Light flux, whose var.aLles include : :avalangth and diffuse and direct
ec.T,pener.is, is traced through ncnunifcrm layers using stochastic canopy s.ru:`ure
and interac t ion probabilities that vary ^`::. illumination ang3e, foliage ar.rle dis-
tr:Lut:on, -and leaf-area index. Initially, a Laa.bart :an spat-̀&I res ;or.se cf -he re-
fI*Ctingltra -smitting ale-erts has been ass%;nsd.

A two-layer canopy containing only one constituent and a soil backgrc:n.G is
simulated. Geometric character:st:cs of the foliage, optical properties cf the
leaves and soil, and spectroradiance determinations -:ere obtained by the a:t^.ors
during the 1972 sunmer field season. The - yodel correctly accounted for .fie a;=&ran:
directional reflectance of the canopy as seen by a vertical view sensor fcr ail wav*-
len6t.'.s tstw•een 0.4 and 1.O5 m4 crcneters er.cert at tae chlorophyll atser-,ticn reiizn
between 0.65 and 0.70 m:croneters. The single constituent model was no: a=:e to
accoun: for the a;partnt directional ref:ectance for the canopy for a sensor in-
clined at sn degrees frcn the zenith. It is lyyothesized that the nodal uou:d need
to to run; with a second constituent, a:so ;resent Inthe canopy, to ecceur.: fcr this
disagraalleV .

The son-Lambertian character of the a;;arent directional reflectance 
of 

:he
canopy is demonstrated and an increased spectral return for the sensor view arg.e
containing the solar disk are :r*diczed.	 -	 .	 t	 Muec.;:risen of the ^ c-parameter?: te:ka-
Funk Xcdel with measured field data is a:so given.

r	
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Smith, T.F. and R.G. Hering. 1912. Bidirectional reflectance of a
Randomly Rough Surface. Prog. Astronaut. Aeronaut., Fundam. of
Spacecr. Therm. Des. 29:69-85.

A bini-eCt1On31 rtI`Iect:inct mode l	is coveloced for	 a

Ont-Uimensicna i:t y	 1 21.19 1% surf`eo	 consisting of V-s,aoed

roubnno1*1 ole—mts with randomly distri.-ut*0 slo pes. 4ultiple

reflections within and shadowin g Vy	 adjacent	 rou.3'1ntss

eit ir.ents i are accou nted F ,+r	 in the *octet.	 A distriawt+on

function 'in tt r-as Of rms st^pe is utIIiZOO to sce_ify t'1e
pro-shin ty t hut a ' maeres c-p ic surface reflccts s09cu1arte,
and tntrgy exolrienci lg irultiple reflect i ons is „nimport3nt.

Multi p le ' reflectiols b0c;;M40	 increasingiy signifiCant nor
lar;er rtrs 9fones. This 1 0moortanct, however, di m inis`ks as
tilt direction of incident energy aoOroncM*% yrt=ing inCidtnCe.

Thai mcue : 1it n ibits :ha r acttrist i cs VI" I&r  to those Observed

in htcent bidi r ectional reflectance Cato.	 11 refs.

sf

Smith, T.F. and R.G. Hering. 1973. Comparison of the Beckman Model
x	 with Bidirectional Reflectance "Measurements. AS'-:E paper no.

73-HT-11. 13 p.

e4*parisons 'rerealed that monochromatic soecu l a r and

bidiir;+cti3nal 1, ef l ecta nce measurtments are not aescuatt'y
de:tribed, by corre;tcnding results evaluated from the T-Oriel
using mecian:tally	 surface roughness parameters rms
hel!;r,t	 hnd	 rms ; i COO.	 Significan t 	 im=rovt .nwnt Z)Ot%:etn

mea.urene i ts and prelictions of the molol is cbserved «,-er
cpt lically, acquired surface ^ougriness paraTetef's or& used.
Spe:ular -efltctance ' nersurements for normal to interraziate
polt_r angles of il. ! rt nct are adequately represented by the
model provided vaiuts Of op tical roughness multiplied by
co VI no O'f Do l or 81Q1e of imcioence are less than 27 times
aver age 03t i ca l rms stop!. optical	 roughness is the ratio of
Optical	 I rms height	 to wavelength'	 of	 inciden t energy.
oict'irect13ma1 refl*Ct3MCO rntasurofnents	 are adequately
pra^j i ettd	 by tat	 moda l	rnen vaiuts o f optical roughness and
op tical	 rns siot)o a,*	 less than 0.	 OS acid 0.	 02, "espectivtly.

t
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G.H. Suits (1972a), The Calculation of the Directional Reflectance of a

Negative Canopy. Remote Sensing Environ. 2, 117-125.

1
l
r

Gwynn H. Suits (1972b), The cause of Azimuthal Variations in Directional
Reflectance of Vegetative Canopies. Remote Sensing Environ. 22, 175-182.

The variation of the directional reflectance of a vegetative canopy with
azimuthal view angle becomes prominent when the canopy is illuminated by the
sun at large angles from zenith. An extension of a previous directional
reflectance model of vegetative canopies is presented to quantify this effect.
The results indicate that the cause of the azimuthal variation can be traced
to solar flux illumination of the vertically oriented canopy components and
that the extreme variations of reflectance with aximuth of view are moderated
by the azimuthally isotrophic sources of flux from skylight and canopy.

r
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I
Suits, G.H. and G. Safir. 1972. Prediction of Directional Reflectance of a Corn

Field Under Stress. Fourth Ann. Earth Resources Program Review, V. 2,

11 P.

The remote sensing of sympto,s of pathological conditions in vegetative
canopies such as Southern Corn Leaf Blight depends upon a consistent
relationship between the pathological systoms and the remotely sensed effects.
The use of training sets show only that in particular cases, and at a
particular time, a certain pathological condition occurs concurrently with
some remotely sensed effect. There may be no necessary connection between
them. The use of a mathematical model to predict the remotely sensed effect
from the fundamental biological causes allows one to establish the expected
consistency between the conditions and the sensed effects as well as to
provide insight leading to the "best remote sensing techniques to use for a
particular application.

A new method of calculating the directional reflectance of a vegetative
canopy (1) has been used to calculate the directional spectral reflectance
of a corn canopy under stress. The comparison of predicted reflectance with
field measurements indicate that the model is sufficiently accurate when applied
to corn fields to warrant the use of the model for application to other
conditions. The prediction of the expected reflectance differences between
a healthy and a bilighted one-month old corn field illustrates the application
to other conditions.

Suits, G.H., and Safir, G.R. (1972). Verification of a Reflectance Model for
mature Corn with Applications to Corn Blight Detection, Remote Sens.
Environ. 2, 183.

A new model for calculating the directional spectral reflectance of %eIIetative canopies was %ertfied for the
cz.c of mature corn by field MAectance measurements on two different mature corn fields at each of two
%w..,n` angles and o%er the %tsible and near infrared spectral bands. The application of the model to
h1 potheucal conditions indicates that moderately severe Southern Corn Leaf Blight should be marginally
drectabk by serial photography under certain special circumstances and that for more were blight. the
bi,yht condition should be daungutshable from moisture stress. The application of the model to hypothetical
f,cWs of > oung corn indicates that the blight condition should be easily detected under a wide range of
circumstances.
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Suits, G.H., R.K. Vincent, H.M. Horwitz, and J.D. Erickson. 1973. Optical

Modeling of Agricultural Fields and Rough-textured Rock and Mineral

Surfaces. Informal Technical Report, ERIM 31650-78-T Environmental
Research Institute of Michigan, The University of Michigan. 31 p.

f^

To iTpro ,.,e the ability to util-ize laboratory spectra for predicting

or :nt^- rpretin& airbcrn- -canner data, a search -,. ,as made for t •ro t` e.rc-

tical models, one to calculate the reflectance of plant canopies and t`.-.e

ot`.er to assess the effect of textural variations on the spectral em`ttance

or reflectance of natural rock surfaces. Several models .'ere revies:ed, from

c.hich it was possible to select the types of models best suited for these

applications. The selected plant canopy model, an extension of the Allen-Gayle-

Richardson node!, can be used to predict _-.e bidirect:cnal reflectance of a field

cro p from kno.,n laboratory spectra of crop components and apprcx_47,te plant

geometry (planting density and average horizontal and ve
rtical co-. Wert cress-

sections). It is applicable even to vegetative targets c,-pesed of -u lt.ple

canopy lavers. Bidirectional reflectances of two corn fields calculated from

the canopy model were found to agree with laboratory data within an extrem.um

error of 15% in 
Op	

The selected geological model which is to be developed

later will permit calculation of spectral emittance spectra for different

textured rock surfaces, even though the rock ma y contain randem:ly oriented

birefringent crystals and may consist of several different minerals. The

resulting emittance spectra for various particle diameters will be used to

predict the effect of text ,.: sl variations on an infrared ratio method used previous

to :rage large compositional variations in silicate rocks with airborne or space-

borne multispectral scanner data. Arn adequate atmospheric radiative trans'_er

model exists to calculate the atmospheric effects between such targets and

remote spectral sensors.
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Verhoef, W. and N.J.J. Bunnik. 1975. A Model Study on the Relationships
Between Crop Characteristics and Canopy Spectral Reflectance. NIWARS,
Delft, publ. No. 33.

t
r

1

I

Verhoef, W. and N.J.J. Bunnik. 1976. The Spectral Directional Reflectance
of Row Crops. Part 1: 2onsequences of Non-Lambertian Behaviour for
Automatic Classification. Part 2: Measurements on Wheat and Simulations
by Means of a Reflectance Model for Row Crops. Report No. NIWARS-
PUBL-35. Netherlands Interdepartmental Working Group on the
Application of Remote Sensing, Delft. 144 p.

Abstract:' The one-layer Suits model for canopy meflectarce was
applied to simulate a multisaect!tal scanning flight ove: • an
agricultural area. Non- Lamoe:- tiara benavior and
misclassification we r e studied on the baSis of unprOCesSeC and

preprocesseo data from tre reflectance simulatio n s.	 A new

ex perimental model for tne , calculation of the directional
reflectan=e of row crcos, based on the one-layer Suits model,
is presented. This model was a poI i ed to simulate measurements
of the spectral direc t ional reflectance on mechanically sowed
.neat at several growth stages in the summer of 1974.	 In
general, input and out put data of both model and field data
agree well. S pecular reflection at leaves, not incor porated in
the pr?sent model, apoears to be a significant factor for crop
reflectance.
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Weinman, J.A. and P.J. Guetter. 1972. Penetration of Solar Irradiances
Through the Atmosphere and Plant Canopies. J. Appl. Meteorology 11:136-140.

t
The equation of radiative transfer is applied to the analysis of solar

irradiances penetrating into a plan + canopy covered by a turbid atmosphere.
The method of discrete coordinates is applied to vertically inhomogeneous
atmospheres and plant canopies. It is shown that four-point quadrature yields
results with an accuracy which is consistent with irradiance measurements.

I
Welles, J. M. and J. M. Norman. 1979. General Radiative Transfer Model

for Random and Non-random Canopies. Fourteenth Conf: on Agriculture
& Forest Meteorology and Fourth Conf. on Biometerorology. 205-206.

The most sophisticated radiative transfer models apply to canopies of a
large horizontal extent and are thus more or less one dimensional. Some
efforts have considered the non-random distribution of foliage over the
vertical and horizontal with formulations that remain fundamentally
one dimensional. For dense canopies of leaves of nonoverlapping crowns,
it has been customary to use projections of various opaque shapes such as
cones, trapezoids, cylinders, rectangles, etc.
The model used here is very general including multiple scattering for near-
infrared and solar wavelengths and emission for thermal wavelengths. It is
applied to an array of individual canopies which may or may not be overlapping.

I
I
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Blanchard, M. B., R. Greeley, and R. Goettelman. 1974. Use of Visible,

Near-infrared, and Thermal Infrared Remote Sensing to Study Soil

	

Moisture. Proc. of the 9th Int. S 	 . on Remote Sensing of Environ.
v. 1:693-700.

T4.o metiods are us*J to estimate soil moisture remote:y
uaing the 0. 4- to 14-. 2-riti , on wave;eingth region: measure^ent
Of soect rta! reflect3-1te, slid measurement Of soil temperature.
Th;, ref 1 e=Lance' meth ^d 

is ba^•ed On Cbservat i ons oh i Ch shc,4
thai	 tii^ettirnal	 'Cf1#ct3nC* decreases as soil moiStu^e
inc r eiv, s for a given niati r ial, the soil terperature m-_tnod
is ' based' on C*sonvlt :OtiS wn i cn show that differences betty=on
da; t ime a 1C+ nir;ntt i -le sai l t-i-peratures decrease as moisture
con'l ent 1 inc reases	 for	 a	 given	 material.	 1n =on-e
cinunist s l ices ,	 se.?'u rate	 reflectance	 Or	 te.Tperaturi
tneasuremelts yield ambiguous nata l in case these two
methods may tie combi ned to obtain a valid soil moisture
detirmination. Refs.'

Breece, H. T. (III) and R. A. Holmes. 1971. Bidirectional Scattering
Characteristics of Healthy Green Soybean and Corn Leaves in Vivo.
Appl. Opt. 10 (1): 119-127.

Bidirectional reflection and transmission distribution functions are measured for healthy green soybean
and corn leaves in riro, for niueteen narrow wavelength bands from 375 am to 1000 um. Off-normal
incidence reflection distribution functions show considerable specular contributions at wavelengths of
strong absorption, while transmission distribution functions show a gear-lambertian shape for all wave-
leugtbs employed. An empirical m-1a%er leaf model affords a reasonable qualitative understanding of
dlese scattering di.-tributiors.

Christie, F.A. and A. B. DeVriendt, 1972. 	 Bidirectional	 Reflectance from
Surfaces Formed by the Ruling of Orthogonal Parallel V-Grooves. 	 Report
on Thermal Control and Radiation. 	 Presented at the ALAA Aerospace
Sciences Meeting (10th).	 Paper No. 72-55.

Abstract:	 Experimentally	 ano	 pnotographiCaily	 determined
bidirectional	 reflectance	 data	 are	 p resented	 for a se; of
sixtekn r epuTe^ly'rcugm	 surfaces ccr'c^Sep of	 4quare	 D..1!1"i^s,
raich	 were	 iliuminated	 by	 a	 Hir!4c	 135vr	 bemn	 (0. G3:9
miCrc,mcle"1.	 Thencluded angle3 o	 the	 ^u T ?d	 1-grr,Jvos	 were
60,	 90,	 +20 ant	 150 degrees	 wnila	 the rj_nK.-1.e-v3 ,: 0" deotrs
were 2.5.	 S.	 10,	 and 20 micrometers.	 Agreowent	 cet.._er	 the
tMenretical	 and	 pxperimeo,taI	 Cat3	 was	 satisfacto -y 	and
ir.:p roved as	 t h at	 intruded ankle	 inG• -'ased.	 Fr,.-	 host	 rn71es	 of
incidence.	 three-dimensional 	 t revey was r equi red to Predict
the	 biuirectipnal	 refTectance	 U •2cluse	 of	 the	 e f fects	 of
shadowing.	 masking,	 and	 interrQ41e,:tion.	 (Author)
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Christie, F.A. and A.B. DeVriendt. 1973. Diffraction Effects Encountered
in the Measurement of Bidirectional Reflectance from Square Pyramid.
Proc. of the ALAA Aerospace Sciences Meeting (11th). Paper No. 73-150

Aostrnct: Theoretically erld protograzhically detcrtnined
b1!:iraCtiOrnaI r eflectance 00 t3 are pr esented for a set Of
S: <t .?e'r rfquIarly rnugn SU F% fa'CS CGnp.OSeC Of SQ'jAre oyrdmid5
W11 :h .,et • e	 i:IU.ni rtitBC by a F-?-N@ !Aser Deain.	 The inCIUq*]
? r'.j!vs -,f tnz r uie0 y-:ir•oo^-:s	 v.erc	 i,fl.	 so,	 120	 ana	 150
tla .... M1 s. ::•7r le the p=rt — to— .:'	 =-•_:ht ,::	 2.5.	 5.	 10 :'nd
20 nrr:r,)rtt.	 Tne ,7noto^!• 30 11 5 gr,;7iC0! l y	 i11U:=t ^ate 0	 sircotn
trA:lSitrOir fr.;m reflectance patterns Ure01cted tr, diffraction
thot;ry to Ot r'er3 Jescr i be0 'JV conventional 	 oidinectional
reflrctunc* t heory. Although artcis& measurement is Oiff cult
in some diffuse natte— s. agree^ent totween the th00retrCA1
ahtl photograuh'.0 data was gc r ierili ly One Cegree or less.

Coulson, K. L. 1966. Effects of Reflection Properties. of Natural Surfaces
In Aerial Reconnaissance. Appl. Opt. 5(6):905-917.

alcataremcnts of the reflecting and polarizing properties of various soiht, sandm, ant vegetation in the
visible- and near-ir spectral regions show that dart: surfacai polarize the reflected radiation strongly
while highly reflecting surfaces have relatively weak polarizing pn,perties. In general, the reflectance of
miucral surfaces incrensrt, and the degree of polarisation of the reflected radiation decren; i, with increas-
ing wavelength and inrrcasing angle of incidence. There is little or no indication of iperular reflection
from the surfaces for which measurements were made. L)troduction of the reflection darn into the equa-
tion of radiative transfer for clear and sliglitly turbid models of the earth's atmosphere shows that the
upward radiation that woidd be incident on a high-altitude aircraft or satellite %vonld he domin g +t•d by
surface-reflected radiation for the red and near-ir regions over highly reflecting surfaces such as deserts,
whereas atmospheric scattering is most important for short wavelengths and dark surfaces. Because of
polarisation effects, atmospheric trtn,miitsion of optical contrast; is better in one orthogonal inictiAty
component than the other, the difference being sufficient to n)crit polarizing optics in recounaiinance
instrumentation under certain conditions.

I	 Coulson, K. L., G. M. Bocuri ci us, and E. L. Gray. 1965. Optical Reflection
Properties of Natural Surfaces. J. Geophysical Res. 70(18):4601-4611.

Measurements of the optical reflection characteristics of various natural sands
and soils at wavelengths of 4920 A, 6430 A, and 1960 A are presented. It
is shown that there is a strong dependence of the intensity and degree of
polarization of the reflected radiation on angle of incidence of the radiation
azimuth and elevation angles at which the surface is viewed, wavelength of
the radiation and physical state of the surface itself. A comparison of
these measurements with those of other authors shows that the reflectance
values obtained here are generally similar to those obtained by Krinov under
similar conditions, but the degree of polarization of radiation reflected from

F	 the various sands is considerably less than the polarization values observed
by Dollfus for sand.

t
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Egan, W.G. 1970. Optical Strokes Parameters for Farm Crop Identification.
Remote Sensing of Environ. 1:165-180.

The use of bidirectional rolaritation and photometry implics the
cnic0	 use of all the optical inf ormation ataila t lc in the ^caucrcd
radmtiun. This information is rcprc •ented as St yles rarameters,.
%%hwh inc:ude %%i%clength, gcontctr), and bidirectional phot.imctrie
an.1 poluniation factors. fhe p3mmocn acre detcnnrttcd In
the labointory on field crop samples of fall% dc,00lwti alfalfa, Long
Island Ix,tatocs. s%tcct corn. ne, and %%heat, at %%n%clent:ths of 0. 350,
0.433, 0.533. 0.566, 0.633.0.8, and I.n v. The te<_ults indicmc that the
information a%-ailahlc from the Stokca paramours aids in the charae-
tcri,ration of ngricultural crops.

Egan, W.G., J. Grusauskas, and H. B. Hallock. 1968. Optical Depolariza-
tion Properties of Surfaces Illuminated by Coherent Light. Appl.
Optics 7(8): 1529-1534.

An espeHmental investigation of the depolarization characteristics of complex surfaces illuminated by
6325-A laser radiation was made on a large wale polarimeter. Measurements wt:re made on specimens
such as bastalt, limonite, volcanic ash, wet attd dry stand, gravel, silt, and foliage its vurious states of
freshness. ( For powders and aggregates, depolarization appears more pronounced as the size of the
individual particles decreases, and as the roughness and porosity of the surface features increases, whereas
depolarization appears less pronounced as water is adsorbed or absorbed.) The depolarization signa-
ture of foliage served to characterize a particular species, and drxness of the specimens tended to in.
crease the depolarization. As a practical outcome, it appears that additional surface characterization
or signature can be obtained through measurement of depolarization characteristics.

Gates, David M., Harry J. Keegan, John C. Schleter, and Victor R. Weidner.
"Spectral Properties of Plants." (Applied Optics, January, 1965,
Vol. 4, No. 1.)

ABSTRACT:

The spectral properties of plant leaves and stems have been obtained

for ultraviolet, visible, and infrared frequencies. The spectral reflec-

tance, transmittance, and absorptance for certain plants is given. The

mechanism by which radiant energy interacts with a leaf is discussed, in-

cluding the presence of plant pigments. Examples are given concerting

the amount of absorbed solar radiation for clear sky and overcast conditions.

The spectral properties of desert plants are compared with those cf more

mesic plants. The evolution of the spectral properties of plant leaves

during the early growing season is given as well as the colorimetric be-

havior during the autumn.
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Van Horn,	 Complex Surfaces,9 3. Photometric Studies of ComHapke, B. and H. Va	 o	 1 6	 p
with Applications to the Moon. J. Geophys. Res. 68(15):4545-4570.

Abstract The reflectiuu lama of a wide variet y of surfaces have been rnc,n ured. The fSct"rs
that govern the optical scattering chaenctcristirs of complex surfaces are discus.-d, and the
properties of surfaces th%t scatter light like the moon are speci fied. Surfaces of solid rocks,
volcanic slags, or coarsely ground rock powders do not have the intricate structure necessary
for backscattcring light strongly, but finely pul v erized dielectric particles can build extremely
complex surfaces that can reproduce the lunar scattering late. It is concluded that the surface
of the moon is covered with a layer of fine rocs: dust composed of particles of the order of
10-micron average diameter and that 90 per cent of the volume of the surface layer is voids.

I

Hunt, G. R. and J. W. Salisbury. 1976. Visible and Near Infrared Spectra
of Minerals and Rocks. XI. Sedimentary Rocks. Mod. Geol. 5(4):211-217.

FCR	 OT,X	 SEC	 I010.	 .'CL.S.	 117.2.	 P. 11 7 (14	 51.	 ?:DIRECT :C':AL
REFLEC T ANCE	 SPECTRA	 U r	 24 ;E 1 1T._l1 r '7 L:CAS	 t_ H'.	 ► <,
SA I :DSTON S	 AW,	 L	 '-1ES) ctE	 E 7	 C' 1	 4.'325	 ,'C	 c.5

"Hf_	 SPE"	 ..r,	 U r	 n..	 , IC:1 LArE iA.	 L = ..	 A'...	 T
IS	 FC..'.0 THAT	 !HE	 :,;4L	 :T"	 t,F ^tAlU^^:S C,.	 CE^	 °'	 M^C.R	 ^YL.i C
W!.TE o 	:A	 CAP';CNATE	 '^^7TCNIE 0	 ^,: 'IC'	 TC':Es.	 C "	ew
E'_ECtF..^.:IC	 " o A'ISITi^'.S	 1'i	 IRC'.. its	 ..:r C:,S°_5	 T;-I=S--	F_A"L,7_S
ARE	 ASSCCIA T E:r	 141TH	 CC%5T:T^j:'1TS Tr :T CCCUR	 .S CUAE-':TS OR

7 1 ES.	 A' :3 It: :CS- CASES T,'E SPECTRAL FEATURES ARE C::Lr
A::	 t.7t^ECT I":GICATION C-F RC;,( (..:GGSIT:C'	 ;2 nefL)

Hunt, G. R. and J. W. Salisburgy. 1976. Visible and Near Infrared Spectra
of Minerals and Rocks. XII. Metamorphic Rocks. Mod. Geol. 5(4):319-228.

For PT.XI See IBID. Vol. 5, No. 4, p. 211 (1976). Bidirectional reflectance
spectra of 35 metamorphic rocks (marbles, quartizites, gneisses, slates and
schists) are presented from 0.325 to 2.5 mm. It is found that spectral
features are caused by carbonate, hydroxyl, water and borate vibrational
overtone and combination tones, or by electronic transitions in iron,
manganese, or chromium. In most cases these spectral features are only an
indirect indication of rock composition (16 Refs.)

1^^ f^ii ^...N ^«.t '•li -1

w
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King, L. E. 1976. Measurement of Directional Reflectance of Pavement Surfaces

	

j	 and Development of Computer Techniques for Calculating Luminance. J_ - Illi(m.

En2.. Soc. 5(2):118-126.

This investigation developed and used a directional reflectance guniometer
to measure the directional reflectances of eleven nine-inch pavement core
samples. Five asphalt and six concrete. An electronic data processing program
for calculating roadway luminance based on the reflectance data obtained from
the samples, was developed and reported (14 Refs).

Loehrlein, J. E., E. R. F. Winter, and R. Viskanta. 1971. Measurement of
Bidirectional Reflectance Using a Photographic Technique. IN: American
Inst. Aeronautics and Astronautics. J.W. Lucas (Ed). M.I.T. Publ.,
Cambridge, Mass. 231-48pp.

	

A PIIOTC:,QAP-HIC TECh`.i01A	 FOR	 r:EASJRING	 Tr+E	 -%G:r LAR^
CIS TRIL!ITIC'. CF a;Ci,a^.:;TIC ADIAT:C". RCFLECTE7 -RC'•1
SURFACEi IS 'ESCRT^ED. P _IAT;4E :E:Su'tE':=l+TS ARE RZ PQr!ED CN
BOTH A Ol1:.Ll'.T:WE AND CUANiIT-TIWE S:SIS FOR i:'O SPE::'`:S uF
,;ELL-CH.*11 4 ZrFCIZE ^, 	 _	 V V Y	 S'. C: TM	 9L'.:::"1J!•1.

PCL1CR,5T-LI • .E r-G.i=SIU:. G:C:;;E AND : c'ujC	 w

	

Cr'0N S r: <th:	 K w' ^_t
Ir.	 THE V:SI9LE U: q T CF	 Ti-E 5 v '„TRu:: F C R A q Axtiti OF :C.AR
A"CLES OF :NCIDENCE	 (21 Pets)

Loveridge, R. C. and S.R. Scheele. 1973. UGT Post Test Light Scattering
Measurements. Final Report, Contract F04701-72-C-0299. 66 p.

Abstract: The purpose of this program was to measure large angle radiation
scattering from materials. Transmitting elements, baffles, and mirrors were
used. The measurements were made at 0.6238, 1.15, 3.38, and 10.6 microns and
at angles of from 1 to 45 degrees. (Author).

Smith, T.F. and R. G. Hering. 1972. Surface Roughness Effects on Bidirec-
tional Reflectance. Rept. No. UILU-ENG-72-4001; ME-TR-661-2. Contract

	

'	 NAS7-100, JPL-951661. 126 p.

Ab3tr:k 	 t	 Qc::	 An e;c^e^i' rentCl St.^: i y Of surfsc! rougn . ess effects	 ^)^ r^.11on O,dir,oCti;-i41	 ectarca	 of	 rr^C311ic	 surfaces	 S 
presem:c y .	 A foci . i ty C3psCie of irrec1-t,ng n SZaa10 frum	 L±,.'

	

_	 normal t0^02ing inCiCtnCe anC) ^eC.urd:ng p lan! of	 iricide-1Ce	 ~%
0id:rcct.on&I rgfIe_:ance miaasurtments was cove ioned. San,ptes
consisting of glass. aluminum alloy.	 and stainless steel	 r fY
rtraterials	 were	 selected for examination.	 SrTples were
roughvred using standard grinding tecnn i qu4s and Coated with a
radiativaly opaque la y er, Of pure alu.nir.u.n. riecnaniZSl surface
rOL'i;lhit3T• 3 pa rr arretors, rrnS neigm tS 3 rd rm3 SlOtteS. eval atld
From Cigiti -etf surface profile mea5u r ernent3 are legs t"an 1.0
n,rCrumO.er; and o.^9.	 r espectively. R GU,n su" f ace sr:sCular.

	

°	 tiCire!l,Or,d1,	 anu diriliCti01131 r eflectance m;3s':*vTents	 for
S*l Cnt0iJ vb:weS O f polar ang l e '.`f irC,CQncs ara wav# l e"gCn of
inC,ueni	 3ne r gy	 n.tnirt	 tr.e	 sle r::raI	 range of	 1	 10	 14
m i crometers	 are	 rvnOrted.	 Tit	 Bec:nann bidirectional
reflcct.ncC Model i S COmCired with r =fIectanCe measlr r't ,*-ntS to
tstabl,stt its .5'2 f u l naSa in CJSGribing the n.OQM 'U 0e a'd
Spatial CIS L'inutwn 0 ► enc ,Zy r e fl tCted from rougn Su-faces.
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Watson, R.D. 1972. Spectral Reflectance and Photometric Properties of
Selected Rocks. Rem. Sens. Environ. 2:95-100.

Studies or the spectral reflectance and photometric properties of selected rocks at the USGS Mill Cmk.
Oklahoma, remote sensing test site demonstrate that discrimination or rock types is possible through reflection
rocaturements, but that the discrimination is complicated by surface conditions. such as weathering and lichen
growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both
degree of weathering and amount or lichen cover change the reflectance quality of the granite, lichen cover also
considerably changes the photometric properties or the granite. Measurements of the spectral reflectance
normal to the surface of both limestone and dolomite show limestone to be more rcflective than dolomite in the
wavelength range from 380 to 1330 manometers. The reflectance difference decreases at view angles greater than
30' owing to the difference in the photometric properties of dolomite and limestone.
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II. MEASUREMENTS

B. FIELD

25 references
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Bauer, M.E., M.M. Hixson, L . L. Biehl, C . S.T.	 Daughtry, S.F. 	 Robinson,
and E.R. Stoner.	 November 1978.	 Vol.	 I Agricultural Scene
Understanding.	 Final Report:	 Principal	 Investigator D.A. Landgrebe.
LARS Contract Report 112676.	 Laboratory for Applications of Remote
Sensing, Purdue University, West Lafayette, Indiana. 	 106 p.

Itv -.%%I I T 11of 	 four investigations.	 all	 related to agricultural	 remote	 sensing are described.

The fn.r tasks are: 	 (A) Analysis of Agronomic and Spectral Data for Physical Under-
standing.	 ( 3) Field Measurements Data Management,	 (c) multicrop Supporting Field Research.
and	 (ri) Determining the Climatic and Cenetic Effects on :he Relationships Between Multi-
spectral Reflectance and Physical-Chemical Properties of Soils.

A.	 The Analvsls of Agronomic-spectra l 	Data report describes the results of analyses

of LACIE Field Research Data.	 Including the relationships of agronomic and reflectance

charactirrIstics of wheat canopies, effect of cultural and environmental factors on
reflectance properties of wheat. and discr

i
mination of wheat and other crops as a function

of wavelentth band selection and acquisition date.

1.	 The Field Measurements I)sts Management	 report describes field research data bone

developed at LARS including the development of g^?phlcal and statistical analysis software.

data processing software. and distribution of data.

C.	 The Multicrep Supporting Field Research report describes the measurements of spectral
characteristics of corn and soybeans and development of a multispectral data acquisition

system for	 field research.

D.	 The	 fourth report describes the ob'*c,Ies, experimen tal approa ch ,	 and	 Initial
results of a study of the relationships betwasn the reflectance and physical-chemical
properties of over 400 different soilr

Bauer, M.E., L.F. Silva, R.M. Hoffer and M.F. 	 Baumgardner.	 1977.
Agricultural Scene Understanding.	 Final	 Report.	 Principal
Investigator D.A. Landgrebe.	 LARS Contract Report 112677, The
Laboratory for Applications of Remote Sensing, Purdue University,
West Lafayette, Indiana. 	 173 p.

Results of four investigations, all 	 related to agricultural 	 -emote sensing are
described.	 The four tasks are:	 (A)	 LACIE Field Measurements, (B) Thermal
Band Canopy Modeling, 	 (C) Forestry Applications Project, and (D) Soil
Classification and Survey.

A.	 The LACIE Field Measurements project report describes the rationale
for the experiment, the data acquisition, processing, and storage/retrieval
by LARS.	 Results of the sensor correlation and data verification studies are
discussed, along with the rationale and procedures for calibration of reflec-
tance measurements. 	 Analytical results of initial analyses relating spectral

Z and agronomic measurements are described. 	 The report concludes with re com-
mendations for future field measurements investigations.

S.	 The Thermal Band Canopy Modeling results demonstrate the relationship
between geometric parameters of wheat canopies, environmental variables, and
radiance temperature.

f•
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C. The Forestry Application Project report descr bes investigations of

^

1) the acceptability of Landsat area estimates as inputs to forest inventory,
2) definition of an efficient and cost effective method of developing optimal
Landsat training statistics for mapping forest cover, and (3) a comparison of
five different classification techniques in terms of cost, accuracy, and output
products.

D. The Soil Classification and Survey report describes the results of
(1) field experiments relating spectral reflectance measurements to dark and
light soils at two surface moisture levels and two amounts of surface residue,
and (2) classification for soil survey of multiple dates of Landsat data
covering the same scene.

Colwell, J.E. 1974. Grass Canopy Bidirectional Spectral Reflectance.
Proc. of the 9th Int. Symp. on Remote Sensing of Environ. v. 2:1061-1085.

Til preen. reJ. OnJ neCr infrartd b i directional refleCtance
of i gr"ss+ connotes was studied	 both	 thecreticaliy	 and
emp lirical g y.	 in O'Cvr to Cete r rine the fe.'.sici 1 ity Of using
remote sensing technl!,Jos t3 assess the st„nc+np b+Oms4s of
grakslcnds. The nvest+ga;+on s•+oweJ test the opt+-+um
spectral hands for r!-rote Oct^rm+nat+On of sanding b+C"ass Of
grasslanes vary,	 )n such things as the type of
vegetat+o"'. the rvige Of values O f percent vegetation cover
pretent. the soil re f lectance. and the look angle and solar
Zenith en.11e. No S+nZ l c Spectral band Can 7e Considered to be
e f$ 4Ctive +n all sit4itions.

Coulson, K.L. and D.W. Reynolds. 1971. The Spectral Reflectance of
Natural Surfaces. J. Appi. Meterology 10:1285-1295.

The amount of solar enery reelected from var.ous soils an d tees of vegetation has tteen - : easured as a
funcunn of wn eievvion in six ;i!Tefent wavelength ranges n t:'.e vtst',ie asd Bear• -:•crr_
rertons of :ae speetr'_rn :t is shown :hat thce s a sirnibcant dejendence of redectaace'n Soto .wa+aer.,:z
anJ c:evatwn of the sun for ill surfaces .`or which -reisurements weft mace.
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de Boer, T.A., N * J.J. Bunnik, H.W.J. van Kasteren, G.P. de Loor, D. Uenk,
and W. Verhoef. 1974. Investigation into the Spectral Signature of
Agricultural Crops During their State of Growth. Proc. of the 9th
Int. Symp. on Remote Sensing of Environ. v. 2:1441-1455.

The soettral signature '-;:n 300 to 1300 nm of 11 crcps was
detbrmin27 at' diIIc rem t phases Of their growth. A
fie'ICsCe r.trometer constructed according to a new Orinci p le and

devaluced , in the Netnerlands, was used.	 To reduce the ni,mCCr,
of 'Paramiaters that affect the directional reflectance o f a
car,7Gy ih its' natural environment, 	 the reflectance was
measured only plroa rid i culariy to the field Surface while using
an srtifitial tight source. 	 The purpose of this investigation
was to determ fine, .cithin the avatlaole atmospher i c windows..
the soect*a l nands in which the cottmal differences between
the i signatures of different croos curing their state of growth
could be neasured.	 15 refs'.

Dirmhirn, I. and F.D. Eaton. 1975. Some Characteristics of the

Albedo of Snow. J. Appl. Meterology 14:375-379.

Sprint sno%%cnvers exhibit a substantial contribution of a specular component to their reflection of solar
radiation. This anisotropy can be measured tcith radiometers p ith small a,^criure, here tcith a TIROS
ruuiumeter. IndiLatrices thus determined are dependent on solar angle. 'Thee are of importance for inter-
preting albedo values and for reducing air- or spaceborne reilectance data taken under distinct nadir angles.
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I
Duggin, M.J. Likely effects of solar elevation on the quantification

of changes in vegetation with maturity using sequential LANOSAT
imagery. Appl. Optics 16 (March 1977), 521-523.

t
Recent work has shown that green biomass can be related to ratio functions
of the radiance detected by the Landsat scanner in bands 7 and 5. The
vernal advancement and retrogradation (green wave effect) may also be
be observed from studies of these radiance ratios. The effect of the sun's
angle on reflectance properties has so far not been allowed for in
studies of sequential imagers, although a correction of irradiance to a
reference sun angle has been made in some cases.
The reflectance factor values and their dependence on solar elevation for
each bandpass were found to differ with variety. In general, MSS 7
showed a stronger sun angle dependence than MSS 5. For a change in solar
zenith angle from 30 degrees to 60 degrees, the MSS7/MSS5 ratio varied
from 25 h to 50%.

I
Earing, D.G. and J.A. Smith. 1966. Data Compilation of Target and

Background Cbaracteristics, Target Signature Analysis Center:
Data Compilation. The University of Michigan, prepared for
Air Force Avionics Laboratory, Wright-Patterson Air Force Base,
Ohio, AD 489 968.
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Eaton, F.D. and I. Dirmhirn. 1979. Reflected Irradiance Indicatrices
of Natural Surfaces and their Effect on Albedo. Appl. Optics
18(7):994-1008.

The indicatrices of solar radiation reflected from characteristic natural surfaces were measured with a \itn-
bus %tedium Resolution Radiometer (MRIR) 3 in above the ground. Results indicated that areas such as
salt and alkali flats had only small deviations from isotropic reflections, while others such as sparsel y vege-
tated areas had substantial deviations. The indicatrices were strongly dependent on the sun angle: thus a
daily variation was found for most features. Typical indicatrices. normalized to nadir angle of zero degrees,
are presented along with their impacts on measured albedo, which varies with solar angle. Our results can
(1) improve surface albedo considerations using space generated data. and (2) serve as a more real istic lower
boundary condition for atmospheric transfer determinations based on space data.

Egbert Dwight D. and Fawwaz T. Ulaby. 1972. Effect of Angles on
Reflectivity. Photogrammetric Engineering. Volume %..C.1'VIII,

No. 6. Pp. 556-564.

In planning remote sensing missions with multiband photography in the visible
and near-infrared regions, few investigators have ready access to the spectral
information needed to choose the appropriate filter combinations. A technique
has been developed by which one may pre-test to determine the optimum filter
combinations and the feasibility of such a multiband mission. The test pro-
vides multispectral reflectivity curves not only for the targets or categories
to identified, but also for those backgrounds against which they are usually
encountered. The procedure incorporates a method for determining spectral
reflectance as a function of solar altitude, incidence look angle, and azimuth
look angle. This angular dependence of reflectivity can be significant and
might be used as an aid in detecting certain targets. It was found that for
one target-background pair (asphalt and grass) the contrast ratio can range
from 2:1 to 0.5:1 under different angle conditions.
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I
Fuller, S.P. and W.R. Rouse. 1979. Spectral Reflectance Changes

Accompanying a Post-Fire Recovery Sequence in a Subartic Spruce
Lichen Woodland. Remote Sensing of Envir. 8:11-23.

r
A sequence of burned surfaces aged 9. 1.:, 35 and 90 stars was investsgsted regarding chang_s in the spectral
distribution ofetlec:ed light Controis were introduced to solate diurnal mid seamnai effects. The results show
grAduatly incraaaag reflectance with loresting age of burn. With the estabhshment of vegetation a new set of
absorption and reflectance criteria are established substantiall y altering Life spectral characteristics. The apparent
e:fect of a mature forest mnopy is ambigLous. Ddfum and overt—ut conditions reduce the relectance for all striaces.
Further work is suggested to reinforce results for surfaces with low sampling repLcat_on.

Kalma, J.D. and R. Badham. 1972. The Radiation Balance of a Tropical
Pasture, I. The Reflection of Short-wave Radiation. Agric. Meteorol.
10:251-259.

I
Kanemasu,-E.T. 1974. Seasonal Canopy Reflectance Patterns of Wheat,

Sorghum, and Soybean. Remote Sensing of Environment_ 3:43-47.

Reflectance characteristics of actonomie crops are of rnaic+r importance in the enerS ,. exchan ges of a surface.
In addition. unique reflectance patterns may he an aid in crop !den!ification bs mcans of remote ensine Our
stud} sugSests that the ratio of the reflectances of the Sl y -nm to the 6`f-rim wasebands pros,dcs tnforrnaiion
about the %it -ed surface re;ardless of the crop. The reflectance ratio is less than unity earls and late in the
gro%ing .wom for all crops studied, the ratio closel y followed crop growth and Jcsei,,prr.erii and ,,; ;eared to
be more desirable !han the ncar-,infrared reflectance as an index of rru-th.

r

qW
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I
Kimes, D. S., J. A. Smith, and K. J. Ranson. 1979. Interpreting Vegetation

Reflectance Measurements as a Function of Solar Zenith Angle. NASA
Technical Memorandum 80320. NASA Goddard Space Flight Center. 29 p.
(Also submitted to Photog. Eng. b Rem. Sens.)

r
An understanding of the behavior of vegetation canopy reflectance as
a function of solar zenith angle is important to several remote sensing
applications. Spectral hemispherical-conical reflectances of a nadir
looking sensor were taken throughout the day of a lodgepole pine and
two grass canopies. Mathematical simulations of both spectral hemispherical-
conical and bi-hemispherical reflectances were performed for two theoretical
canopies of contrasting geometric structure. These results and comparisons
with literature studies showed a great amount of variability of vegetation
canopy reflectances as a function of solar zentih angle. Explanations
for this variability are discussed and recommendations for further measure-
ments are proposed.

Kondratiev, K. Y. Z., F. Mironova, and A. N. Otto. 1964. Spectral
Albedo of Natural Surfaces. Pure and Appl. Geophysics 59:207-216.

lnnnnn ► Y - The short description of the field distance installation for measuring spectral
:wdo as relation of semi -spherical fluxes of reflected and Incoming radlntlnn Is made Dam ua

measurements of spectral albedo in the wavelength range from 450 to 950 mu for different
n,t ll rll surfaces Are given.

s
i
r
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I
Large Area Crop Inventory Experiment (LACIE). Crop Spectra from LACIE

Field Measurements. NASA. Lyndon B. Johnson Space Center, Houston,
Texas 77058. March 1978. LACIE-00469, JSC-13734.

I
The LACIE Field Measurements project has acquired and assembled one

of the most comprehensive data sets for agricultural remote sensing research.

The purpose of this document is to briefly describe the data sets and to

introduce potential investigators to the spectral data through a series of

examples illustrating major sources of variation in the reflectance of wheat

and several of its confusion crops.

Requests for further information, or data should be addressed to:

Chief, Earth Observations Division

Mail Code SF

NASA —'Johnson Space Center

Houston, Texas 77058

1 . 1
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I

Middleton, W.E.K. and A.G. Mungall. 1952. The Luminous Directional
Reflectance of Snow. Journal of the Optical Society of America
42(8):572-579.

I

1
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Monteith, J. L. and G. Szeicz. 1961. The Radiation Balance of Bare
I	 Soil and Vegetation. Quart. J_._Roy. Meteor. Soc. 87: 159-170.
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Oliver, R. F -, J. K. Berry, and J. A. Smith. 1915. A Portable Instrument
for Measuring Apparent Directional Reflectance. Opt. ja. 14(3):244-1.

A portable battery-powered spectroradiometer has been constructed for the
measurement of the apparent directional reflectance of natural targets. A
silicon detector that is tripod mounted and positioned to monitor a
horizontally oriented reference panel determines the target irradiance. A
second detector for measurement of target radiance is mounted on the tripod
swivel head. Electronic switching provides alternate detector references
for the determination of apparent directional reflectance. Snap-on inter-
ference filters allow measurement in desired spectral bands. Equipment
calibration procedures are discussed and typical experimental radiation
data are given (12 Refs).

fRao, V.R., E.J. Brach, and A.R. Mack. 1979. Bidirectional Reflectance
of Crops and the Soil Contribution. Remote Sensing of Envir.
8:115-125.

Spectra of cereals, ;-asset, and corn were measured repeatedl y from prerlowenng to early maturn . The br'urectonal
and angular aspects were mere pronounced fnr a standin, crop such as cereals .oats than for a #Ped sad. T%e
conuibutson of the sod to _ke total radwee and the amount of tar total radiance were reduced b y a ;.eater
percentage of ;round cover. The e.qw.. of Angular scattering on radiance decreased NiLh rr.4t rty.

f

I
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Smith, J.A., J.K. Berry, and F. Heimes. 1975. Signature Extension for
Sun Angle. EOD, NASA, JSC, NAS 9-14467, Final Report.

This is the second volume in a two-volume final report series for

-reject .IAS 9-14467 sponsored by the Ear ,:h Observations Division, ,ASA/JSC.

-tis report series summarizes the work covered between the period November

1974, and ?lovember 14, 1975. The objectives of the project were to

,:valuate the LACIE II table look-up approach to sun-angle correction. Canopy

r,Jlectance modeling was employed as a technique for evaluating sun-angle

si g nature extension.

Volume I presents the multiplicative and additive coefficient matrices

for a linear sun-angle correction approach. These coefficient tables are

calculated using either measured empirical canopy reflectance functions or

model derived data. These values are then incorporated into an atmospheric

radiation transfer model. The dependence of the coefficient matrices on

crop stage, crop type, and canopy directional reflectance variations is

reviewed. Finally, a method for inferring leaf area index, an intrinsic

scene characteristic, from canopy reflectance is discussed.

Volume II presents the basic data and computer programs used in the

study. A brief review of the radiometric and geometric data collection

procedures is also given. In particular, two recent methods developed by

the investigators for determining plant geometry are discussed. These include

the Fourier diffraction and multiple view angle approach. The data compila-

tion consists of canopy reflectance, constituent reflectance, Leaf-Area-

Indices, and leaf slope distributions for four wheat crop development

stages at Garden City, Kansas.

f
I
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I
Steiner, D. and T. Cuterman 1966. Russian Data on Spectral Reflectance of

Vegetation, Soil and Rock Types. University of Zurich, Switzerland.
Final Technical Report.

I
Tucker, C.J., J.H. Elgin, Jr., and J.E. McMurtrey, III. 1979. Relation-

ship of Red and Photographic Infrared Spectral Radiances to Alfalfa
Biomass, Forage Water Content, Percentage Canopy Cover, and
Severity of Drought Stress. NASA Technical Memorandum 80272,
NASA/Goddard Space Flight Center, Greenbelt, Maryland. 14 p.

(Also submitted to Remote Sensing of Envir.)

Red and photographic infrared spectral data were collected using a
hand-held radiometer for two cuttings of alfalfa. Significant linear
and non-linear correlation coefficients were found between the spectral
variables and plant height, biomass, forage water content, and estimated
canopy cover for the earlier alfalfa cutting. The alfalfa of later
cutting experienced a period of severe drought stress which limited
growth. The spectral variables were found to be highly correlated with
the estimated drought scores for this alfalfa cutting.
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Tucker, C.J., B.N. Holben, J.H. Elgin, Jr., and J.E. McMurtrey, III.
1979. The Relationship of Red and Photographic :nfrared Spectral
Data to Grain Yield Variation Within a Winter Wheat Field,
NASA Technical Memorandum 80318, NASA/Goddard Space Flight Center,
Greenbelt, Maryland. 22 p.
(Also submitted to Photog. Eng. b Rem. Sens.)

Two-band hand-held radiometer data from a winter wheat field,
collected on 21 dates during the spring growing season, were correlated
with within field final grain yield. Significant linear relationships
were found between various combinations of the red and photographic
infrared radiance data collected and the grain, yield. The spectral
data explained approximately 65% of the within field grain yield
variation. This variation in grain yield could not be explained using
meteorological data as these were similar for all areas of the wheat
field. Most importantly, data collected early in the spring were highly
correlated with grain yield; a five-week time window existed from stem
elongation through antheses in which the spectral data were most highly
correlated with grain yield; and manifestations of wheat canopy water
stress were readily apparent in the spectral data.

Verhoef, W., and N. J. J. Bunnik. 1976. The Spectral Directional
Reflectance of Row Crops. Part 1: Consequences of Non-Lambertian
Behavior for Automatic Classification. Part 2: Measurements on
Wheat and Simulations by Means of a Reflectance Model for Row Crops.
Tech. Rept. No. NIWARS-PUBL-35. Netherlands Interdepartmental
Working Group on the Application of Remote Sensing, Delft.

4b9t , 8c1: The Gn.-la 3^ r Suits cocel for Cancoy refleCtanC* w3S
applicc to gir,ulate a multispeCtral st;inhing fII<,nt' Over an

agr C '.: ; tur J I	 aria.	 Non-Larrt)Cr t i an	 L t hav I or	 a117
misciassifiCttion were Stu0le0 On th* Oaiia of unp-ocessod aria

p reprocess#-1 Bats from the reflectarCe Simulatio n s.	 A mew
excer , rre n taI	 -Cc!I	 for the C31CU'3t »n O f t"e Cl"eCtlonil
r e fl eC:a r'Ce Of row CrOOS. tasee On t^ ►, one-121"tr Suits mo--el.
r5 oresor tec.	 Trig mOCe1 was aDC I ifU t0 S'^ 3 t^ta RCJSU^!r'dnt3
Of the LDOCt^al cireCtrCnal r e Al eCtarCe On mecrdaiCSIIV So .ccl
.neat at Several g rowth Sta9CS in the su r''er of 1?74.	 :n
ge n e r a l . Incut arc Out put Cata o f COth mode l and f rets Oats
agree we ll . SOtCular reflection at 1 pavQS• not • nCO r DC r 3t*d in
the criSent mC;:01, ect:ears to re a S , pnificant factor, for Crop
ref1JCt3"G^.
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II. MEASUREMENTS

C. PLATFORM (AIRCRAFT AND SATELLITE)

16 references
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Brennan, B. 1969. Bidirectional Reflectance Measurements From an Air-
Craft Over Natural Earth Surfaces. Tech. Rept. No. NASA-IM-X-
63564; X-622-69-216. National Aeronautics and Space Admin.
Goddard Space Flight Center, Greenbelt, MD.
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is Reflectance CharactEr-1910. AnisotroBrennan, B. and W.R. Bandeen.	 p
istics of Natural Earth Surfaces. App. Optics 9(2):405-412.

The patient.• of reflection of -t,lar radiaiit,n from cloud. water. ;curl land • tu'fsit y- were mea+-ntrtl etth an

aircraft-borne medium ie-tdmiun radiometer. Nefleviance- in +hc 11.'21-4.4-11 and IL:/:.-il.-X.'-m loll 	 o of

the electromagnetic -lm-tmm were inveaigated. 1 ti-tilt- indicate that the reflec-ante ch:erartr,; - tic: of
mo-t t,f the • itrfave t ylx men-cord are am o nipic. The ani-orntpt iii dependentin the ty}tr of -m-face
and the angle. of mcidenre and reflectimi. In "iteral. the ant-„in,py inerea-r with tncrea-in7 •ular

zenith angle. Cloud- and fure+tu 4how -imilar refle, • iatov pattern. with fm-ward and hackw^ni -ratter-
in¢ peaks. Ocean -nrface- yield a patters ► -imilar to tho-e of the clued- ;►nd forest- but with an addi• i.iiial
peak which i. a4sociated with sun glitter. fleflecianceri mea-tired in the 0.21-4.0-11 hand are gencr:i.11y

lower than thi-e in tht i).:/ -Q. :rr. band ender clond9 • runditum•. Ani-utt-trpy and ,pectral Lundwidih
-hottld be act'owttetd for when rompntini; the aihtedn „f the earth fnim narrow field-•,f.virw mea-itrrment,

fn.,n -atellitev; utherwi -e, large errur- may lw expected to ,rcur.

Coui:ton, Kinsell L. 1966. Effects of Reflection Properties of Natural
Surfaces in Aerial Reconnaissance. Applied Optics 5(6):905.

C:	 • !d•	 : i:c i!•!r	 • i 4,,:.d	 I^-^•.	 .1:	 t,'	 ,1 ...	 !	 rw	 :f .r.	 .,. ..0 +.LC ,..!.	 !	 ,. il:.^, .! i.t	 .I ;^ r, :^l.	 .,-	 aftt ,_ !1.:CC 'tl	 .. rI4 nrik p,!.:.	 .I11;^	 r.!n f ! ;t'.	1 ,	 v'	 ,.o :, '',	 -C Qf
,..1

s,	 to ' ! lr ^i1s^.:•-r: ! ,r t! a-h .,21,..21. .i.,..,u•uti a crC :... ? -1 C.	 f .. r „!:..	 (•1.c .^'!	 ^ 	 ^ ^ ^	 :a.
n C.f rn+:.:ir.c';.,!:•t„r for c!,•tr.u!,I 	 ;,^I.t?}'	 'I;cn, +, rn„!cl, ,.f .i:C c ,;!t,	 ..	 '	 r	 -L,,•,.:I

1rd r:l.a a,un 'hat	 ald be i uut:cnt on a hi^f:- ,hit ...:C irs n,ft or • t,ci:ite	 'e ,! ....	 . i Lys
L: r e•ICAc,trd ra,iiatlon for the tee! :'lid ncar•ir re^inn over !.:;!I;y rc!! . 'cri i; • Irf.ues • . 'i ,,	 • {,

f	 •there :>_s atmiri-pheric !t ttterin` i; nlott :'fill9 rt.nt .'or ,hort u.tar'ra` h: :II!f ,:.irk - „rfacrs. r1. •: , , c ,>f
!^' ! ..Llhntt C^CCt+ if Mu • 7 t ll'IIC tt'1 .1 . 911 • -inn ui	 ' , 4cal C^” t'ra-	 ._ ''. • tr I	 ^r...	 ..1	 ',	 r III L":C	 •^^ lal	 •r ' 1 • tY

.i,, alCni '5.9:1 t ':C ''! ler, ,I t o ,_!,'...r,•. rC i ,t Ltd	 r: ,^..:. '0 't:c. :. t	 ! ::',. .1^	 !' t a y • .tl .',	 .;!-	 i•e
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I
Duggin, M.J. 1974. On th_ Natural Limitations of Target Differentiation

by Means of Spectral Discrimination Techniques. Proc. of the 9th

int. Svmp. on Remote Sensing of Eaviron. v. 1:499-515.

t
Tne p apBr aescrices ::ork directed at determin i ng t-10 min'ntum

differences in bete=ted ta r get radiances '-ecessary to 134Cna10
noi lae &t , t"e ' aete:17,r.	 Thi;,	 is c a.Use7 by	 atrIM;;Ierrtc
fid;tuatibns aCrross Lhe Scene and `/ variations in directi.)nal

Q	 refllectance across the target surfr.ce.	 Cniy wnen detecteo
radiance	 differences	 exceed	 this	 noise	 can	 ter-ain
clatsificstion oe unamoiguous. For the atmosoheric variations
whit: ,^ measured and fo" tAo, typical target radiance values
which lib rithin the range measured. the minimum target
radiance difference between single pixels in each of two
tar;cts 'rust exceed 20: 	 of the smaller reflected radiance
val lic for meaningful	 target differentiation of pairs of
pixels.

I
Gushchin, A.N., S.G. Slutskaya, and B.I. Shkurskii. 1977. Investigation

of the Spatial Structure of Terrestrial Luminance Fields. Sov. J.

Oat. Technol. 44(6):327-330.

1hr autnenrrclatton funcuonm n ud Isiougrams of the one-dimensional luminance dis:ributiun• of certacc
tninin and cloud tyl.c% sic	 and approximated it the 0.5-1.1 and 0;-11.5 µm spr't a1
mir".11% for nh.crvation% at altattidn of 2000-5000 m wir y, . ground resolution of	 -50 rtV
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t
I

Hauth, F.F. and J.A. Weinman, 1111, Investigation of Clouds Above Snow
Surfaces Utilizing Radiation :Measurements Obtained from Nimbus II
Satellite. Rem. Sens. Environ. 1(1):7-11.

r
r

B'i„irectional ref, ?stance of solar ra-iatioi as function of
Scat i tr i m^ ang l es 	 f r t •n S.-10..y and Cloud sur fac-:'s is found to
diffpr ma-kaht y ;	 v•a , iation of t7idirect;Cna1 .:fleCtance witn
$ca'ttarirt',, 	angle	 ::Cnencls On cloud tnicAness;	 infrcred
te- ,t:)erat1r • e c:ata o')t;; i ned	 from same r P. _)n are Uze 'l	 in
comjuncti7n w • th thr3:1 0VSQrvStion5 to provide irforration on
cha-actertst+cs of :stated Above snow uurfacas; Ni.,nus
II 4tzdiijo Resol,tion Uata ara used to i l lustrate row such data
provide 	 i'1f0rrration on cicu;:s a!:cve S mew Surfaces. 9 refs.

Hoffer, R.M. and Staff. 1974. An Interdisciplinary Analysis of Colorado

Rocky Mountain Environments Using ADP Techniques. Final Report.

LARS/Purdue University. Contract No. NAS5-211380.

%01% 111 1 1 the u,c of	 :rn.tl\^i5 %(!:11i4juCS •rj'l,lia_il to LK IS , MI ,S tl:rta cul-

!cctcd uccr 111.'ge l itlut y t%%tinuus trrrairt in	 Ind rcnn.tl Culcrado. Thee
:r.rtlts ,rtcol\e fi\e sl>retfic areas of lc,l.trCh, taclu^!in^: I) L<<,lu_rc:d Iu^cntor}, Klth
c• nij;l' uis oil Oic utilization of ER -rs (iata .utd t(:clutiques for

fr.rest co\er mapping and acreage estitnites; the re,ults also include a test anal y sis. :)
III;ho;o ,, ical Featilles Surev lavoltlilg the capabiiit}• for utilizing ERTS to monitor
lltc change in ,1101%' LO%er and interttory %voter bodies; 3) Ccu,norj)l:olugical Features
Surxes. kith a di^cu,^iun on dic utilization of ER' -S data in conlbin:ttion kith ancii-
Ln, ittfurlttatiort: i) Interpretation Techniques, (1 ; scu.,iug the concepts of modeling
(,)pv1,.;r,1)hic relief in order to be a!tle to deic!op t ,ctter :nt:tl<<is procuclutcs; and 5t Data
Cu!lertiun Platform, a tetiew of th_- operations of a DCP under .:dcct,e c,tnt:aic condi-

nuns.

	

A ^ccuon is devoted to a !.'I> e rt:r:riber of >pec:f;,c re ult, .111d coil(	 of ,igniR-
cance. and recotnntendations for future Garth ul>,er„r.ionai sc,tems.

^I^l:i^ tcl,ut[ dc'^iti l tCS tire.i^ni(ic^:tt rrults of a t^.^u ^c.tr irr,c;,!i^^il,lin.ttc ^t^t^ic

1	
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Kriebel, K.T. (1974), The spectral reflectance of a vegetated surface.
Part 1: Method and application, Contr. Atm. Phys. 47, 14

r

Summary: A method is presented to compute the spectral b i directional reflectance distribution function
from the reflected and incoming radiation field with consideration of the spectral sky radiation 1 his method
is applied to a ve getated homogeneous surface. With an eight channel radiometer the angular distribution of
the spectral radiation field of a savannah near Tsumeb. Southwestafrtca, is measured in the spectral ranee
from 0.4 µm to 2.2 µm by means of an airplane.

The spectral bidirectional reflectance distribution function and the spectral albedo of the savannah are
determined. The anisotropy of the bidirectional reflectance distribution function is mostly due to ch3d,n-
effects at the surface. Generally the sky radiation cannot be neglected in relation to the sun radiation. If the
sky radiation is distinctly smaller than the sun radiation, the assumption of isotropic ski radiation is justified
whereby the determination of the bidirectional reflectance distribution function becomes simple.

Kriebel, K.T. 1976. On the Variability of the Reflected Radiation
Field Due to Differing Distributions of the Irradiation. Remote
Sensing Environ. 4:257-264.

The directional reflectcd radiation of natural surfaces r av chance C%en if nothmi, save the

distrihution of the :eradiation over the hemisphere vanes This is due to the an¢uiir ,:nl,otrupc of

the retiecrion properties of natural surfaces. The ouantitatise d,;terniination of th;, ctfe:t :or tour
different vegetated surfaces is the aim of this invesneation In this paper, resuits ror the first or the
four surfaces. a savannah, are shown. The directional :eflected r di:ttion rta} : ange by - I I per

degree change of the solar zenith an gle .ind by : 1'" per o'° change of the spear: l atmospheric

turhid;ty factor at U.; =;:m.

1	 2.81
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Kriebel, K.T. 1978. Average Variability of the Radiation Reflected by
Vegetated Surfaces due to Differing Irradiations. Remote Sensing
of Environ. 7:31-83.

The ,we%ge vanubliry of the reflected radiation fir?d d;;e to differing i..,nt ..i . ^s of the irradia-
tion in case of s savannah was given in a previous ^aper In this paper, etq-..dent results are i:ven
:`or three more sur faces: bog, pasture land,-a nd een:.`eruus forest. °ec .i re the %c >;lts !re rather
s::nLt ar, mean values for v qetazed M;rfjces can be jenvvc . They .^C:caCd a	 of :he rufL•:ted
radiant by ± l'i per degree :h3nje of the solar tenit:ttinge and per lU' 	 of ;:tie ..; ticad

I L-pth of t.ie atmosphere.

Kriebel, K.T. 1978. Measured spectral bidirectional reflection
properties of four vegetated surfaces. Appl. Optics 17(2):253-259.

Spectral bidirectional reflectance values are presented at the 0.52•vm wav elength based un measured values
or the radiation field of four egetated surfaces: savannah, bog, pasture land, and coniferous forest, which
co%er a wide range of natural vegetated canopies. The results are given as exampies of the full set of bicirec-
tional reflectance values which co . , sists if data at seven wavelengths between 0 . 43 , rn and 2 . 211 j^m for each
of the four surfaces. (From July 19 ", the fuli set of data is available from the author on request.) Tlie data
may be applied for calculations of tl a radiative transfer in the atmosphere with realistic ground p ruperues
instead of isotropic albedo values.

t
t

,.._	 1.
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V.V. Salomonson (1966), Anisotropy of reflected solar radiation from
various surfaces as measured with an aircraft-mounted radiometer.
Proc. 4th Symp. Remote Sensing Environ., University of Michigan.

p . 393.

t
In the past few years, research has been done with satellite-mounted

radiometers to determine terrestrial albedos and planetary heat balance .
In these studies the reflection of the solar radiation was assumed to be inde-
pendent of wavelength and isotropic. Using these assumptions, the satellite-
determined values of planetary albedo have been found to be consistently
low. In an effort toward resolving this discrepancy, the \INIBliS medium
resolution radiometer has been mounted on a Piper Twin Comanche and used
to measure the anisotropy of reflected solar radiation from various sur -
faces. By :lying over a surface using a prescribed flight pattern and the
scanning characteristics of the radiometer, the variations in the reflected
radiation in different directions, radiometer zenith angles, andsolar zenith
angles have been measured. The results show strong forward scattering
over stratus clouds at a large solar zenith angle. Backscattering predomi-
nates over a grassland surface at a large solar zerith angle. The ratio of

-averaged observed reflectance to minimum observed reflectance varies
from 1.09 to 1. 40 depending on the bandpass and the rei:ect.r.g surface.

f
Salomonson, V.V. and W.E. Marlatt (1968), J. Agpl. Meteorol. 7, 475-483.

Anisotropic Solar Reflectance over White Sand, Snow and Stratus Clouds.

c . .	 tr. ,;	 ivQ	 .,.! ,
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Salomonson, V.V. and W.E. Marlatt. 1971. Airborne Measurements of
Reflected Solar Radiation. Remote Sensing Environ. 2, 1-8.

t
In a study contributing to better satellite determinations of the earth -atmosphere radiatne heat budget,

measurements of the direc-:onal vanation in relected solar radiation over sotis and vegetation have teen made
using an aircraftborne scanning radiometer with a field of view of 50 mrao. Bidirectional relevances were
observed in two portions of the solar spectrum i0.2--0 '. and 0.55-0 3_ .i at times when t he solar zenith angle
was between 55- ird 30' Flights were made over a dr y desert lake bed devoid of vegetation, a soli surface
:ovemd by short grasses, and a densel y vegetated surface. The results show anisotropy in the reflected soiar
radiation over each of the surfaces. The largest bidirectional :efectances were observed to t:, e backscat-.ertng
directions (at angles greater than 90' to the direction of the incident radiation). Over the dry desert lake bed,
higher bidirectional er'r_tanca were ooserved i n the 0 . 55-0.35 4 bandpass than to the 0.2–+ 0 u bandpass.
however, over the densely vervated surface the larger reflet _:ances were observed to the 0.2- 0 u bar. dcass.
The overall results support suggestions that ; oo .denodcation and radiation budget ^'etenntnarons are
possible over large agricultural areas through appropnate spec :roradiumetrtc measurements from sateilres.

I
Schutt, J.B. 1977. Understanding Bidirectional Reflectance and

Transmission for Space Applications. IN: Standardization in
Spectrophotometry and Luminescence Measurements. K. D. Mielenz,
R. A. Velapoldi, and R. Mavrodineanu (Eds). Nat. Bur. Standards
Publ, Washington, D. C. 2:87-93.

Applications for optical diffusers in space projects are presented which
include the functions of reflection, transmittance, and collection. These
modes encomaass such diverse uses as temperature regulation and ozone
concentration monitors. Discussed is the cooperative aspect of diffuse
reflectance and environmental stability. Magnesium oxide, sodium chloride
and barium sulphate are evaluated in some detail. The importance of scene
scattering behavior to modeling the earth's radiation budget and in deter-
mining thermal ;nertias of the earth's surface are discussed. Finally,
work in the area of canopy reflectance modeling is reviewed with verifica-
tion data included whenever available.

2.84	 '
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I
Smith, J. A., T.L. Lin and K.J. Ranson. 1979. The Lambertian Assumption

and Landsat Data. Submitted to Photog. Eng. Rem. Sens.

r

Analysis of terrain geometric effects on the optical scattering
properties of Pinus ponderosa as measured by the Landsat multispectral
scanner has been performed. A mountainous study site in Colorado was
utilized in which eff- e-cive view angles between the surface normal
vector and the zenith satellite sensor angle ranged between 0 and 45°.
Effective illumination angles bet!aeen the surface normal vector and
the sun at image acquisition ranged between 30 and 80%

Seventy—six sample points of similar cover density and type were
selected within the study site. Topographic slope, aspect, and calcu-
lated incidence and exitance angles were merged with the multispectral
Landsat response for MSS bands 4, 5, 6, and 7. Regression analysis
was applied to the data in order to fit a generalized photometric
function. The slope of the: regression line may be compared to the
expected value for Lambertian scattering and a test of significance
performed. At the 95% significance level, the Lambertian assumption
for ponderosa pine Landsat responses was rejected.

r
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III. APPLICATIONS AND TECHNIQUES
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I
Coulson, K. L. and H. Jacobowitz. 1972. Proposed Calibration Target

for the Visible Channel of a Satellite Radiometer. Tech. Rept.

NOAA TR NESS 62. U.S. National Oceanic and Atmospheric Admin.,

Nat. Environ. Satellite Serv., Wash., D. C. 27 pp.

r

r

r

•	 ABSTRACT. A method is proposed for calibrating the
visible channel of a satellite radiometer from orbit
by using a sunlit area on the earth's surface as a
calibration target. ?or a highly reflective surface
and solar elevations of 30 0 or greater, the dominant
component of the intensity of radiation directed out-
kard from the top of the atmosphere is attributable
to incident solar radiation which is transmitted
directly down-ward through the atmosphere, reflected
from the surface, and transmitted cU rectl.y back out
through the atmosphere. Aside from the solar cor;tant,
the only parameters that must be known to deta:-rune °,his
dominant irtensity ccmponent are the directional
reflectance of the surface and the optical thickness of
the atmosphere. Bcth can be measured directly with the
proposed instrumentation. The intensity cc:7porents
arising fr can diffuse II.rars-nission or backscatter can be
deternired by rieassring the global flux incident at the
surface and applying radiative transfer theory for
realistic models of the turbid atmosphere ever the
calibratio ns site. A single filter instry°ent for the
measurene:it of the global flux is suggested. A prelim-
inary survey indicates that the white g:, sum sand of
the :bite Sands ,'at-:oral Monument, N. Mex., may be the
most suitable calibration target w'_t hin she IIrited
States. If a suitable surface obse:-vation station could
be established, another very attractive possibility is
the Solar de Uyuni, a large salt flat at an altitude
of 12,000 feet in Bolivia.

r;
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I

Egbert, D.O. 1977. A Practical Method for , Correcting Bidirectional

Reflectance Variations. Symp. Proc. Machine Processing of Remotely
Sensed Data 178-189.

t

The purpose of the investigation described here was to analyze angular
bidirectional reflectance variations and test the hypothesis that first order
variations could be described from a consideration of shadows created by
surface perturbations. The results reported here demonstrate the validity
of this approach, and while it is not suitable for calculating absolute spectral
reflectance characteristics, the development of such a model was not the
objective of the investigation since other models already exist for these
calculations. Instead, a model was needed which can make relative angular
corrections to bidirectional reflectance measurements independent of the
details of surface geometry. The theoretical model derived in this investigation
from an analysis of shadow formation is such a model.

t
i
i
t
I
I
1j
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Holben, B. N. and C. 0. Justice. 1979. Evaluation and Modeling of the Topo-
graphic Effect on the Spectral Response from Nadir Pointing Sensors.
NASA Technical Memorandum 80305. NASA Goddard Space Flight Center,

Greenbelt, Maryland 20771. 19 p.

A field experiment using a hand-held radiometer was designed and conducted
to assess a simple theoretical incidence model for simulating the topo-
graphic effect of a uniform sand surface. Seven data sets were taken to compare
effects of solar elevation and azimuth encountered at different times of
year. Analysis of these data showe,' considerable variation in radiance
values for different slope angles and spects and that these values varied
considerably with changes in solar elevation and azimuth.
A model to simulate Landsat sensor response was applied to two subsets of
the field data to establish the magnitude of the topographic effect on
satellite data. A range of 35 pixel values was obtained for the high solar
elevation data subset, showing that a wide range of pixel values can be
associated with one cover type due solely to variations in slope angle
and aspect.

I
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Horn, B. K. P. and Brett L. Bachman. 1918. Using Synthetic Images to
t	 Register Real Images with Surface Models. Communications of the

ACM 2101?114.

A number of image anal y sis tasks can benefit from
registration of the image Aith a model of the surface
beinr. imaged. Automatic aa%igation using vicihie light
or radar images requires exact ,alignment of such
images -Aith digital terrain model-.. In addition.
automatic classification of terrain. using satellite
imager}• , requires such alignment to deal correcth • -Aith
the effects of %an . ing sun angle and surfac^ slope. E%en
Inspection tech;tiques for certain industrial parts may

t improved b% this means.
We achiese the required ali;nment b y matching the

real image with a synthetic image obtained from a
surface model : r.d knoon positions of the light zources.
The synthetic image intersitv is calculated using the
reflectanct; map. a conwnicnt tea% of do%crthinj! surface

retloction as a function of surface ; radient. We
illustrate the tec; p ique using L.1."6RAT ima-es and
digital terrain modei%.

Key %Vords and Phrascv imatze reagt.tration.
synthetic im.,:cs. surface nnudek. uutumati: hill
shading. digital terrain models. image transfurmutiun.
image snatching, shaded images

CR Cate-oriel: 3.63. 3.11.3.14. 8.2. 3.S3
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I
Jackson, R. D., R. J. Reginato, P. J. Pinter, Jr., and S. B. Idso. 1979.

Pl ant Canopy Information Extraction from Composite Scene Reflectance
of &,w Crops. Accepted for Publication in Applied Optics.

As an aid in the interpretation of remotely sensed data from row crops
with incomplete canopies, a model was developed that allowed the calculation
of the fractions of sunlit soil, shaded soil, sunlit vegetation, and shaded
vegetation for each resolution element in a scan of a remote sensor for a given
set of conditions (plant cover, plant height/width ratio, row spacing, row
orientation, time of day, day of year, latitude, and size of resolution
element). Using measured representative reflectances of the four surfaces,
composite reflectances were calculated as a function of view angle. Also,
representative temperatures for each surface were used to simulate composite
temperatures viewed by an infrared scanner. With composite reflectances and
temperatures known as a function of view angle, ways were explored to extract
plant cover and plant temperature data from the composite data.

t
Kauth, R.J. and G . S. Thomas. 1976. The Tasselled Cap--A Graphic

Description of Spectral Temporal Development of Agricultural
Crops as seen by Landsat. Proc. Symp. on June 29-July, 1976.
Purdue University, West Lafayette, Indiana. Machine Processing
of Remote Sensing Data.

I
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Koepke, P. and K.T. Kriebel. 1978. Influence of Measured Reflection
; 	 Properties of Vegetated Surfaces on Atmospheric Radiance and its

Polarization. Appl. Optics 17(2):260-264.

•• •t mrntured vah,rs • • f the -pt tral Indite, ti.-nil rt flccli. , n full'i	 t of fuor	 the in•
flat rt%e .•f t!lrir an;ular ..nlrulrr.py utt the upward awl dint n%%.ird emttsing r.idiant a and tt ;niLtl ii..tiun is

8. In cans .. f a realistic rnudeI of the itrnrnphere and w it li the assump t ion of eompl . te!) del.nior.

mr ; rcf! t.tiun p rt'perties of the surfaces, rev-tilts arc obtained i n dependence of %%a%eleng ; h and solar stn th
The nn;u:ar anuotropy influences con.rderably the upward emerging radiance, On the degree of

; t • '..r:r 6--n and •'n the draw sward emerging radiance the anisotropy has ncX t• ;:hle to *mall mnl .trace Due
I.r !ht in,ular Inr,•,tr "py of the wi t-own pr..pertics the •peLtral allied.. depcod, -ir..n itl	 o the . .:ar icnoh

is	 111M.1rd •nd Alm ll%%.nrd rat!iance as %tell as It. •'c;ree	 ''!:ercf••rc. f•.r

IIIC rltf 6l( t•rf',t'L t1 ••f r.n•!:.ntl•.n	 Ihn a -pet 1 :.4 al!k Jv %Jltice .Ilid. nl I IC In • . d • %Int:11 l • •1 rr'p. A

t.. the rr - I.t•t ti%e ••'.nr ie•n:th . atilt.	 I ' hu is C--( ri;ril e-;trt'. . 11) It lull ;er %ea % ^It •.,:h..%Lerc usc',ntctl ► u t•

L.tc • h..%t h.;h,lrcltal .:iLcdt».

I
Lambeck, Peter F. 1977. Signature Extension Preprocessing for Landsat MSS Data.

Final Report, NASA CR-ER LM 122700-32-F. Environmental Resear:h Institute
of Michigan. 74 p.

Current signature extension preprocessing tecnti.I l ues which have been
developed or investigated at ER LM are presented. The discussion covers the
underlying theory for the preprocessing, the development of haze correction
Algorithms (specifically XSTAR and XBAR), the df-relopment of an automatic
screening procedure to detect garbled data, clouds, snow, cloud shadows,
and water in Landsat MSS di-.a, results from tests of the preprocessing
performance, some analyser of soil color effects in Landsat data, and
conclusions and recommendations for future developments in preprocessing.
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Malila, W.A., R.H. Hieber, and J. E. Sarno. 1974. Analysis of Multi-
spectral Signatures and Investigation of Multi-aspect Remote
Sensing Techniques. ERIM 190100-27-T, Environmental Research

Institute of Michigan. 112 p.
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Two major aspects of renrnte sensing with n:ultispectral scanners (MSS) are in-
vesti-ated. The first, multispectral signature analysic, includes the effects on clas-
sification performance of systematic variations found in the average signals re-
ceived from various ground covers as well as the prediction of dhese variations with
theoretical models of physical processes. The foremost effects studied are those
associated with the time of day airborne AISS data are collected. Six data collection
runs made over the same flight line in a period of five hours are analyzed; it is found
that the time span significantly affects classification performance. Variations asso-
ciated with scan angle also are studied.

The second major topic of discussion is multi-aspect remote sensing, a new con-
cept in remote sensing with scanners. Here, data are collected on multiple passes by
a scanner that can be tilted to scan forward of the aircraft at different angles on
different passes. The use of such spatially registered data to achieve improved clas-
sification of agricultural scenes is investigated and found promising. also con-
sidered are the possibilities of extracting from multi-aspect data, information on the
condition of corn canopies and the stand characteristics of forests.

C - L
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Malila, W.A., R.H. Hieber, and R.G. Cicone. 1915. Studies of Recog-
nition with Multitemporal Remote Sensor Data. Final Report,
ERIM 109600-19-F. Environmental Research Institute of Michigan,
The University of Michigan, Ann Arbor, Michigan. 99 p.

r

t
t

Characteristics of multitemporal data and their use in recognition processing
was investigated. rrincipal emphasis was on satellite data collected by the L,:;;SAT
multispectral scanner (`!SS) and on temporal changes throughout a growing season. The
motivation for the studies was L.ICIE . Since multitemporal LACIE data were not
available for the study, CITARS data were used instead, with corn and soybeans as
the major crops and a small amount of winter wheat.

Three studies are reported. The . first is'of the effects of spatial misregis-
tration on recognition performance with multitemporal data. A new capability to
compute probabilities of detection and false alarm was developed and used with simu-
lated distributions for misregistered pixels . A two-time-period case was simulated
in this initial study. Wheat detection was found to be degraded and false alarms
increased by misregistration effects. Recommendations are made for continued analysis
of this problem in L.ACIE applications .

The second study was of multitemporal signature characteristics and multi-
temporal recognition processing and was made to gain insights into problems associated
with this approach and possible i=iprovenents. Empirical and simulation studies of
signatures showed substantial variability within some cover classes. Recognition
performance with one multitemporal data set did show marked improvements over results
from single-time data, especially for crop proportion estimates for full sections of
test data. Further_ investigations on L.ACIE data sets are recommer.ded. Also
recormiended are measurements of wheat reflectance characteristics.

Thirdly, time of day ef.`ects on multispectral recognition per-
formance were studied in aircraft MSS data. Degradations associated
with the passage of time were found to be substantial but largely
correctable by signature adjustments based on average signals over
the scene. Corrections based only on theoretical sun-angle corrections
were inferior. Incidental to the reported study, calculations showed
that the thermal channel was preferred for single-time recognition.
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Nalepka, R. F. and Jon D. Erickson. 1974. Investigation Related to

Multispectral Imaging Systems. Final Report, NASA CRERIM 190100-
46-F, Environmental Research Institute of Michigan. 188 p.

t

tnis report contains a summary of technical progress wade during a five-
year research program directed toward the development of operational information
systems based on multispectral sensing and the use of these systems in earth-
resource survey applications. Efforts Were undertaken during this program to;
(1) improve the basic understanding of the many facets of multispectral remote
sensing, (2) develop methods for improving the accuracy of information generated
by remote sensing systems, (3) improve the efficiency of data processing and in-
formation extraction techniques to enhance the cost-effectiveness of remote sensing
systems, (4) investigate additional problems having potential remote sensing solu-
tions, and (5) apply the existing and developing technology for specific users and
document and transfer that technology to the remote sensing community.
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Ranson, K.J., J. Kramer, J. Kirchner, and J.A. Smith. 1918. Evaluation

of Illumination and Terrain Geometry Effects on Spectral Response
in Mountain Terrain. Final Report. Volume II. Rocky Mountain
Forest and Range Experiment Station, U.S. Forest Service, Cooperative
Agreement 16-141-CA. 84 p.

An u%tcnsive nnnlysis of terrain Ceumetric effects cn LhC c,)tical

s`atturing properties of natural resource scene in mountainous terrain

has been performed.	 Spectral reflectance measurements were obtained

for lcdZQpole	 ::?::,s	 ^pine,	 :.•	 :tceta,	 ponderosa pine, ?.-. 	::'	 a,

Fussian olive,	 .:Zc :^;; :acs	 j'	 grass	 species,	 .",;^•,, ." ,N s.ry-	 i

and	 sp., and snow.	 Sensor platforms included ground-based

measurcacnts using aerial tram::ays,	 aircraft r:.iic-etric observations,

and satellite	 (Landsat) measurements.	 a wide range of effective view

and source illumination .angles were recorded for the various target/

sensor ccmbinations.

Regression analyses and photor..etric p'_.^ts	 ::a -.:da	 f rc-i the data

in order to test the Lambertian assumption for the various material

types. In addition a process-oriented radiative transfer -:olel was

applied to the data. This model was also used to evaluate initial

$	 effects of background topographic variations.

Results of this study indicate that, particularly in the

chlorophyll absorption band all materials exhibit non-Lambertian

behavior for effective renith sensor or source angles greater than

60 degrees, but that for effective angles less than 40 degrees, the

Lambertian assumption may be valid. For stable atmospheric conditions

and constant phase angle the M.innaert relationship way be applied to
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quantify scene radiance properties. The canopy reflectance' model was

I found to follow the general trends of the field measurements but over-

'estimates infrared response. In order to adequately model tcpographic

j	 influences or spectral response, canopy density variations must be

included.	
...

Smith, J.A. and R.E. Oliver. 1974. Effects of Changing Canopy Directional =-
Reflectance on Feature Selection. Appl. Optics 137):1599-1604.

A Monte Carlo model was uxed to predict .he mean apparent directional reflectance of s simulated plant
canopy and the covariance for seven wavelength channels in the visible portion of the spectrum. The
non-Lambertian spectral response from Bouteloua jracilis canopies possessing two plant cover densities
was simulated for two solar positions. The calculated spectral signatures as a function of look angle were
then analyzed using the divergence criteria to select the best two wavelength channels for discrimination.
These calculations indicate that different combinat .ons of wavelength channels- are appropriate for vari-
ous sensor look angles, that target signatures have greater statistical separation for some scan angles
than o, hers, and that these effects are time varying.
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Struve, H., W.E. Grabau, and N.W. West. 1977. Acquisition of Terrain
Information using LANDSAT Multispectral Data. Report 1. Correction
of LANDSAT Multispectral Data for Extrinsic Effects. Technical
Report M-17-2. Mobility and Environmental Systems Laboratory.,
U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. 50 p.

This report provides an analytical capability for correcting the
spectral data, as received by Landsat, to radiance values at ground level.
Variations in the radiance values as influenced by atmospheric effects,
terrain geometry, and shadovs are coupled together to form a single equation
that converts the radiance values of images obtained at iifferent times to
a common datum.

2.98



r
f

IV. BIDIRECTIONAL REFLECTANCE - DEFINITIONS

1	 7 references
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Judd D.B. 1967. Terms Definitions and Symbols in Reflectometry.

Journal of the Optical Society of 	
ym

 America 57(4):445-452
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Arc used to dctt t it t the nnbul:u cvndititms of eulleetion. *11 classifitttit n of angular eurditiu s It !. ?ti nine
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t!ia`ram, in , t it atin` the Ittueess (inlliration, summation, averaging, equality, reflectance of I4tfec1 tlilu-cr,
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Kasten, F., and Raschke, E. (1974), Reflection and transmission termi-
nology by analogy with scattering, Appl. Opt. 13, 460.
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I
Nicodemus, F.E. 1964. Directional Reflectance and Emissivity of an

Opaque Surface. Technical memo. Rept. No. EDL-G266. Sylvania
Electronic Systems-West Mountain View Calif. Electronic Defense
Labs. 29 p.

Abstract: Conceots, terminology, and symools are presented for
specifying amo relating dirtctiwl a l variations in reflectance
and	 e m issivity	 of	 an	 opaoue surface element.	 Their
relat+or.sn ig to more familiar conceots. including those of
per f ectly c+ffuse ano specular ref1ectance, is given, and they
are aao ied to illustrative examoles. It is shown that. when
the usual reciprocity relationshi p Molds, the reflectance for
a ray imciCent on an CO34ue sur f ace element is rslated by
Kirchhoff's Law to the emissivity of that element for a ray
emitted along the same line in the o pposite sense. (Author)

Nicodemus, F. E. 1970. Reflectance Nomenclature and Directional
Reflectance and Emissivity. Appl. Optics 9 (6):1474-1415.
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Nicodemus, F. E. 1976. Comment on 'Current definitions of Reflectance'.
J. Opt. Soc. Am. 66(3):283-5.

In their recent paper, Spencer and Gaston (See Ibid., Vol. 65, P. 1129 (1915))
based their conclusions regarding one of the definitions on limitations which
do not in fact exist. The delta-function form of the bidirectional reflectance-
distribution :'unction (BRDF) can represent a "glint" in any direction and is
not limited only to the case where theta/sub v/-theta/sub I/ and PSI /s11b v/=PSI/
sub/I +or-PI(RAD). The conceptual advantage of a completely general BRDF is
considered in relation to the whole continuum of directional distributions
which occur between the two extremes of only specular "spikes" and totally
diffuse reflection (6 Refs) .
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Nicodemus, F.E., J.C. Richmond, J.J. Hsi&, I.W. Ginsberg, and T. Limperis.
1977. Geometrical Coraiderations and Nomenclature for Reflectance.
Natl. Bur. Stand. Monogr. No. 160. pp. 1-52.

A unified aPoroacn to the specification Of	 reflectance, in

terns	 of	 bot m	inCi3ant-	 and	 rafleCtad-baan geometry, 13
preYented.	 Nwnemcliture	 to	 facilitate	 this	 aco^oacn is

pr000aad.'	 Uncoil	 l2ecifi4d	 condition s fEM OASi13	 inC1uaing
uniform	 i	 -ance,	 3 ;nif pr,.,	 130trOPiC.	 P l ant Lurfoca, ani.

al i lj;.anca'	 for ' ecvt O f *ct3 out to a60-surface Lcattering
DASH'.	 t ht goo-r etricl l	reflaCtinyprdpe'tias Of	 a	 refi*CtffIg

surface a-e readily : •.Aracttrizqa or specified	 in	 terms Of 'ne

bidirectional	 rafiaCtanCa- y istributiOn	 funct i on	 (640F). Tme

Br+OF	 is a'da r ivPktive,	 a distribution	 function.	 rtlat i ng tme

irrsdiancM	 incident`	 fro-vi	 one	 given	 cirection	 to its
COntF'i06tiOM tO'the rlfleCttd raoianCO 	 in	 another	 directlem.
NOrnVoclatUre	 (COnccots,	 terms,	 symbols,	 and units) for•

cattguriving	 and	 specifying	 reflectance	 ouantities -for a
var liety	 3f	 different	 bear configurations	 (ootn	 incident and

rtf'lected Ofa:nsj	 is	 Cesc^ioed,	 and	 all	 are	 defined and
intjrrelated	 in terms of	 tna BROP.	 38 refs.

I
I

Self-study Manual on Optical Radiation Measurements. Part 1 - Concepts,
Chapters 4 and 5. F.E. Nicodemus, Editor. NBS Technical Note
910-2, U.S. Dept. of Commerce/National Bureau of Standards. 105 p.

f	 1978.
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I . INTRODUCTION

This is the second part of a two part literature review of bi-

directional reflectance studies relevant to the Multispectral Resource

Sampler, the MRS. Part I contains an annotated bibliography of the

actual references reviewed and a brief discussion of the general there

of the references. The material was subdivided into a discussion of:

1) Theor. , and Models; 2) Measurements - further broken down into lab-

oratory, field, and platform; 3) Applications and Techniques, and;

4) Definitions. The purpose of this report, Part II, is to provide a

narrative commentary or synthesis of our current knowledge base as

evidenced from the literature review.

The theoretical base for predicting scene bidirectional reflectance

behavior for a variety of earth surface features resides in the radia-

tive transfer equations. During the past 70 years significant advances

have been made by both astrophysicists and atmospheric scientists in

ac-`;,,ing, modifying, and experimenting with solution techniques for these

equations. These studies have been concerned with steller or planetary

atmospheres, including the earth's atmosphere. There has been trei:endous

diversity and ingenuity evidenced by the various investigations in adapting

radiative transfer techniques to various specialized cases. In contrast,

when one searches for a similar breadth of activities which focuses on

the application of radiative transfer theory to the study of sach earth

features as forest canopies and crops, there is almost an embarrassing

lack of activity. Probably, this is a recognition of the difficulty

of specifying the appropriate phase function in both a sufficient and
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tractable manner and further, performing the necessary measurements to

determine the phase function. That is, in addition to the difficult

mathematical problem of solving systems of non-linear integro-differential

equations, there is a physics or biological problem of characterizing

phase functions for individual trees, groups of trees, and so forth which

themselves are of distributions of such scatterin g elements as

needles, twigs, understory and so forth. There is then the additional

problem of performing the actual measurements required to characterize

the geometric and optical properties of the scatterers. Traditional fiela

methods for doing this are totally inappropriate and time consuming.

Thus, there is a wealth of material developed by atmospheric scientists

and others which can be drawn upon to assist us in solving the mathematical

radiative transfer problem for earth surface features. However, the

problem of determining the appropriate phase functions seems to have

discouraged most investigators from pursuing the problem further.

The models that have been developed fall into two categories. These

I will term subcomponent models or canopy or scene models. Subcomponent

models have been applied to individual leaves, or collections of mineral

surfaces. These models are generally either patterned after stacked

plates or Kubelka-Munk approaches. Ray-tracing techniques have also

been applied. Two major efforts have been made at developing canopy

or scene reflectance models. These are the Suits model (1972) and the

SRVC model of Smith and Oliver (1972). The bulk of Section II is con-

cerned with an overview of these two models particularly from the per-

spective of radiative tran=fer theory. Both models apply to homogeneous

plane-parallel media. The models, while useful in themselves, are really

only first steps in a development of a broader theoretical base for

I
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predicting scene reflectance. The models were developed in 1972; there

has been extensive application of the models to various situations,

particularly agriculture. Sunnik and co-workers (1974) being the most

aggressive. However, there remains the nagging question of why there

hasn't been an onslaught of other modeling approaches in the ensuing

eight years. Section II concludes a few comments on other modeling

efforts.

As noted in the Literature Review, Part I, there are numerous

measurements of the directional reflectance properties of natural ma-

terials. However, considerable confusion and variability arises in the

interpretation of the measurements and in the techniques used to obtain

them. Except in very general terms, we find it difficult to accurately

synthesize the various measurements as a whole. Consequently, we decided

to beg the question a bit. .,that we include in Section III is a description

of definitions appropriate to the various experiments. We then refer

to a fairly large Appendix which contains approximately 45 figures

which have been gleaned from the literature to illustrate the experimen-

tal trends. These supporting figures have been broken down into source

and view angle effects, phase angle effects on polarization, application

of ratio techniques, and angular considerations for enhancing classifi-

cation. For each group of figures we have been careful to include a

brief summary paragraph of the investigator's results and indicate the

type of reflectance measurement reported.

Finally Section IV concludes with a brief list of reccr.r•endations

for future research appropriate to developing bidirectional reflectanca

characterization of scenes.
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II. THEORY AND MODELS

As was indicated in the Literature Review, Part I, of this report

series there are currently two major optical reflectance models which
t_

appear to be relevant to the MRS.	 These are the Suits model 	 (1912) and

the SRVC model of Smith and Oliver (1972).	 The purpose of this section

is to give a perspective of the significance and limitations of these two

` approaches and identify key unsolved problems where further work is

A brief discussion	 isrequired.	 overview of radiative transfer theory

first given in order to set the context within which the Smith and

Suits models were developed. Next the specific formulation of the Suits

model	 is given, followed by a discussion of the important properties of

the SRVC approach.	 Finally, a discussion t,f related irodel	 efforts	 is

given.

^•InTIVE TRANSFER THEORY

Radiative transfer theory is concerned with the quantitative de-

scription of the transfer of radiant energy through ;redia which absorb,

scatter, or emit radiant energy. It is primarily a macroscopic analysis

of the interaction of radiant energy with matter in that it describes

the observed phenomena of light scattering, absorption, and polarization

effects but without regard to classical electromagnetic theory. Rati;er,

bulk properties of the media, such as a volume scatter coefficient te.g.,

the phase function) are defined. The media can either be thought of as

a continuum or as a collection of discrete scatterers. The theory

assumes that the individual scatterers behave incoherently; thus,

r	
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diffraction effects are not included. The formulation of the radiative

trans`er equations is deceptively simple. The basic starting point is

essentially the principle of energy conservation.

Consider an arbitrarily bounded medium and focus on the steady-state,

monochromatic radiance along any path ds. The change in radiance along

this path is the difference between that attenuated (absorbed or scat-

tered) out of the beam and the intensity scattered into the bear:,. Let

the incident beam of cross section dA be along the direction defined by

3, 4. If n is the number density of scatterers in the volume element

under consideration; a the scattering or absorption alonq ds, then:

d I ( S	
ri Tc SS O-A

where:

I(S;O,^) = the radiance at s in the direction

J(S;v,y+) = the radiance at s scattered into the beam from all
directions.

The probability that radiance at s in a direction 	 ;' will be

scattered into a solid angle about 0,w is given by the phase function,

P(S:	 , ^; 3', t'). Thus, J is given by integrating the total intensity

field along all directions (paths) by the phase function.
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where the symbol	 = cos	 has been introduced.

In order to include polarization effects, these expressions -gust

be modified to include a vector radiance function, I, with four components

corresponding to the Stokes parameters, and a phase matrix. Polarization

effects may be important for some classes of materials, e.g., vegetation

canopies with waxy leaves, e.g., pine needles, rhododendron, holly,

often produce a strong specular reflection or glare. If this glare is

polarized, then polarization filters, such as proposed on the IMRS could

act to reduce this source of noise. Conversely, as Egan, et al. (1908, A 701

suggest, discrimination potential may exist in the asymmetric depolari-

zation effects as a function of view angle. However, current existing

canopy models	 ignore polarization and it will not be

discussed further.

The general solution to the integro-differential equation (1) may

formally be given by:	 r
_ / ,S.)

	

zcs;rA = r Cso; p,^1	 CS

s _ 
( s 
	 ^	 (3)

+	 n 7 ^	 ^^, ^^	 d s
so

where:

T(s,s0)

	 S 
tlo'cs

So
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However, this solution for I along one path, s, depends on integra-

ting J which itself is an integral of the intensity, I, over all pos-

sible paths, s'. Thus, in reality, the gene;*al radiative transfer

problem reduces to the problem of solving an infinite set of coupled

integro-differential equations.

For an arbitrarily bounded medium with phase functions which

themselves can vary with position within the medium, e.g., as in a row

crop, this is not a trivial problem. In fact, there is no known solu-

tion.

Alternatively, simpler problems must be formulated by imposing

various abstractions on the medium. These abstractions may include the

shape or boundary of the medium and the form of the phase `unctions.

The phase functions, in turn, depend upon the o p tical scattering proper-

ties of the elements within the medium and on geometrical factors. Both

Smith and Suits initially approach the problem by assuming multi-layered

homogeneous plane-parallel media for vegetative canopies (the infinite

plane-terrain models referred to in the Literature Review, Part I).

For the special case of plane-parallel media, the radiative transfer

equations may be re-expressed as (Chandrasekhar, 1960):

P A]: (Z-^A.

^z	
(Z; (, 1)
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dz = uds
	

z = vertical direction

dT = -Qdz
	

T = optical depth

t	 and	 = J	 J = source function

Q

Similarly, equation ( 3) becomes:

±^ ) e

+ ±	 J(Z' t^,4) e_	
CI

Za

	 (3')

Basically, this equation states that the upwelling ( downwelling)

radiance at optical depth, T , is a result of the upwelling ( down welling)

attenuated radiance at T o plus that scattered into the beam along the
path between T and T0.

Again, it should be noted that the source function depends upon

the total radiance field along all paths.

QTf

	

^Cz, t ^,^^ - y rr _ ^` a
CI 	

c 2 )

I I
The plane-parallel case is much more tractable, particularly, for

selected choices of the phase function. One approach, utilized by Suits,

makes an initial guess for the total radiance field, I, by first factoring
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I into an upwelling (+Z) completely diffuse field, a completely down-

welling (-Z) diffuse field, and an attentuated downwelling specular

field. This three-stream approxir:ation to the radiance field is ob-

tained by solving the resulting simplified radiative transfer equations

(1'), which in fact are the Duntley equations (an expansion of the

Kubelka-Murk equations).	 Given an initial guess for I, the source

function ,47. may be calculated from (2'), and subsequently, an updated

estimate of I along a particular direction made be determined from

equation (3'). In principle, iteration should generate a solution to

any desired degree of accuracy. In practice, Suits stops 	 at the first

iteration. Smith makes a direct attack on the numerical solution of

equation (3'), using a random walk procedure.

A second general approach which has proved useful in solving the

radiative transfer problem for plane-parallel media is the method of

invariant embedding. Essentially, this approach uses several invariance

principles ennunciated by Chandrasekhar to derive expressions for the

total canopy bidirectional scattering (reflectance) and transmission

functions, the S and T, parameters introduced by Chandrasekhar.

The essence of the contributions of both Suits and Smith and Oliver,

lie in their application of these techniques to multi-layered canopies

and in relating the phase functions to biological parameters which can

be measured in the field. There are some key differences in the two

implementations which will become apparent in the following discussion.

It should also be noted that both methods need to be extended in order

to apply them to what Holmes (1974) has called structured earth scenes,

i.e., heterogeneous mixtures.
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M . THE SUITS YODEL

The following discussion is an analysis of a "one layer" Suits

model in the context of the general radiative transfer equations (1')

through (3'). This approach is not, in fact, the tray Suits cast his

original developme.A. However, it should be useful in linking his an-

alytical and physical reasoning of canopy radiation interactions to the

broader mainstream of radiative transfer theory. A similar discussion

of the SRVC model will be given in the next section. It should be noted

that Smith and Oliver also did not initiate their analysis with the

radiative transfer equations. Extension of these discussions to the

multilayered, multicomponent case involve further complications which are

best reviewed in the author's original papers.

Consider a canopy with total optical depth, - 0 , layer thickness Z 0
and irradiated by specular (solar) flux at uoil -

o. The plane-parallel

homogeneous canopy consists of Lambertian scatters A th component re-

flectance, r  , and component transmittance, -c . The background soil

reflectance is rs . We seek to determine I(0; + ;., ), where	 is

the view angle. This is the radiance, L, of the canopy for this view

angle. Ratioing this value to the solar irradiance, I(0; -:. o , •:^o ) would
be a measure of the canopy bidirectional reflectance value for this

pair of source and view angles.

Equation (3') becomes:

V0 3 t r,4) - U )AS ^) = V za;+O) e -Cc /^4

(4)

N	 zb
	 + jAl 4)
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(7)

x

The first term of this expression is simply the radiance from the soil

surface attenuated through the cano py. As mentioned earlier, the dif-

ficulty w'th the second term is the fact that the source tern under the

integral depends on the total radiance field at all levels within the

canopy. However, if we initially assume that the canopy is totally

and uniformly diffusing, that is, when incident radiation interacts with

a canopy element, it is converted totally to diffuse flux, we can re-

place the total radiance field by the sum of three com ponents. These

are downward specular flux, downward diffuse flux, and upward diffuse

flux.

C Z ^- li V ) = I (ad, ^) 4- Z ( -d, 1) + = (S, ^)	 (5)

Usina this as an initial guess in the source integral (2'), we can

improve our estimates by iteration. This a pproximation corresponds to

the Ountley approach to calculating the flux, E(+d,z), E(-d,z), and E(s,z),

Note that

E = TrL = rr T

The Duntley equations are given by:

f
C

d^

_	 c;^d ^) — Cat ts^^^

d^

r.^ C(s,^^

d^
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where the coefficients were related under suitable assumptions by Suits

to cano py geometric concepts. For example,
rt+t^,cc	 LI -

where n is the number of scatterers per unit volume, and c  ind y a ► •e

the average cross sections of horizontal and vertical projections re-

spectively. Equation (1) may be solved for E, equation (6), ar.d sub-

sequently for I, equation (5). 1.4hat remains to be determined in order

to solve for the source terms, equation (V) is the phase function.

Suits approximates this quantity by separately calculating phase Functions

for each of the three radi-:ice terms in equation (5). Cano py geometric

terms and the component optical properties are utilized, for example,

the first phase function is given by:

I I r

r Central to the development of the Ountley coefficients ar.d the

phase functions is the abstraction of the cano py vegetation elemants int;

horizontal and vertical scattering projections.

The final expression for the initial iteration of the surface

radiance is given by the rather formidable expression:

k -Z /
,-- rs x (+ ^. ► ^ eL C ^► , ^^ - 'Tr

4-	 ( Se a	 tit v.+ ? Ay r-

M I

ko)

2. 117



.L	 K	 n 4" Z + n^^ w	 Cr^^r ^"r, h eI
JA	 zao	

►, h

rt ir n  Qv A
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M Cs^

wkere	 V
k = n^^ +

These expressions may be integrated in closed form lead',r,g to easily

implementeo computer code. A strong advantage of the Suits -.del is

the relative ease in performing a large number  of si:rulaticns for various

combinations of viewing and illumination geo^etry, canopy structure

parameters, and optical properties of the cancpy. in general, good

agreement between the model and field experiments has been reported.

A potential drawback in the structure of the model is the assumpt'on

of horizontal and vortical canopy projections.

C. THE SMITH AND OLIVER SRVC MODEL

The SRVC model tre^.'^ the canopy as a stratified, thr e-layere:

vegetation ensemble of foliage elements superir,posed on a reflecting

background. Multiple scattering interactions witnin the vcl;l77,e eir:^ents

of the layers are controlled by the geor.etry and optical prc^erries cr

the individual scatterers. Foliage elements generate :,u1t 4-ple diffuse
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sources. Each layer can contain up to two types of vegetation ele,-ierts,

which are assumed to be Lambertian scatterers. A key difference from

the Suits model that is introduced by the SRVC approach is the utiliza-

tion of the angular distribution and density of the scatterers, the

foliage elements, to calculate the phase function t`.at is utilizes in

Equation (2'). A second difference is that a direct solution of

Equation (3') is instituted. That is, the flux within the canopy is

allowed to propagate in discretized G' F' directions rather than only

an upwelling and downwelling vertical direction.

The main feature of the model which allows for this generality is

the calculation of the layer phase functions from the angular distribu-

tion of the foliage elements and the reflectance and transmission proper-

ties of these elements with respect to the discretized .-' 	 source

directions. A foliage element inclined at an arbitrary orientation, O th

respect to a source di recti on parmi ts according to the La:-.tertian

response, the scattering by transmission and reflection of the incieen*_

flux to upper and lower hemispherical sectors. For each foliage in-

clination angle represented in the canopy a set of integratior, li;its

on the scattered radiation froir a scatterer is defined. For a given

layer the distribution of flux is Lien weighted by the frequency distri-

bution of foliage inclinations occurring within the layer.

The model initiates an iterative solution o f Equatior. ^'3') by

using the zeroth order flux above the canopy to gererate of i a tie Ynase

function of the first layer the estimated flux in layer one. 'he <<sti^atad

flux in layer one is then used together with the phase function for layer
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two to calculate the estimated flux in layer two and so forth. Sub-

sequently, ref 1ectionfrcr the soil boundary generates upward moving flux,

again in a set of discretized e', ^' directions. Processing is continued

until all flux levels within layers reach equilibrium values.

The current version of the SRVC model is a Monte Carlo implementa-

tion of the above processes. Statistical distributions may be defined

for the foliage geometry and optical scattering properties. 1 major

difficulty of the current implementation of the SRVC model is the pooling

of the outgoing radiance into theta directions only. That is, outgoing

azimuthal directions are averaged. It should be noted, however, that

incoming source azimuth directions are included. The SRVC model requires

considerable computing time for the Monte Carlo analysis of a canopy.

In princi p le, however, the SRVC approach is an accurate re p resenta-

tion of the radiative transfer processes occurring within a plane-

parallel medium. A deterministic version of the model that included

outgoing azir-iuthal dependence would greatly enhance the utility of the

SRVC approach.

D. OTHER MODELING EFFORTS

It is obvious from the discussions in Sections B and C that the

most serious difficulty in both of the models discussed is the question

of their applicability to targets which possess horizontal spatial

variations, e.g., row crops.

One major effort to develop a model applicable to this case is the

work reported by Verhoef and Bunnik (1976). Basically, the authors

attempted to extend the Suits model tc the row structure case by assuming:
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1. The canopy components are packed in rows with a rectangular

cross-section of fixed dimensions.

2. Between rows there is open space only.

3. Within rows a random arrangement of leaves exists.

A detailed geometric analysis of the canopy phase function relative

to direct solar flux and canopy row structure is undertaken. Shading is

allowed. However, the approximation is made that diffuse flux can be

treated as in the Suits model, i.e., plane parallel media. For both

direct and diffuse flux, an appropriate view probability function, is

developed that is consistent with the row structure. The soil contribution

is also carefully developed considering the row structure but leads to

discontinuous contributions of this component to canopy reflectance.

The row model still	 incorporates the assumption of vertical 	 and

horizontal	 canopy projections.	 In evaluating the model the authors

describe the treatment of the leaf angle distribution as a potential

of Lambertiandifficulty.	 The	 further describeauthors	 the assum ption

scatterers	 (i.e., non-specular) as a second difficulty. 	 The row model

predicts angular dependency relative to viewin g azi.miuth from	 laneP	 9	 P	 Y	 y	 P

parallel media models.

Another recent and intriguing effort at developing reflectance

Welles	 ',;crv.nmodels for non-random canopies is briefly described by	 and

(1979).	 Detailed descriptions and evaluation of this model	 are not

yet available.	 Briefly, the model considers a canopy to consist of

a finite number of regularly-spaced ellipsoids.	 Within	 each ellipsoid,

t
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the folic	 is randomly located but possesses a foliage an g le di	 t •; ^p	 9	 ^	 s	 ^ ,..	 -9e	 Y	 g	 u

tion.	 Eech foliage element is represented by a flat plate. 	 In =act,

th ellipsoids appear to be similar to the canopies of the SRVC approach.

Each point in the finite array of ellipsoids is transformed to an

equivalent plane parallel media canopy by choosing a depth in the plant

parallel canopy that has the same diffuse penetration probabili ty con-

sidering both upward and downwelling radiative flux.	 Processing is

contir,ued until all of the ellipsoid array points have been processed.

Norman's track record is good and the model, when published, should

provide valuable insights.

Jackson, et al.	 (1980) describe another example of a roar model

based on a geom.etric analysis of the row structure.

As mentioned in the Literature Review,Part I, Egbert (1977;

describes a novel analysis of canopy reflectance based on shadows.
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III. MEASUREMENTS AND THE BRDF FUNCTION'

A. DEFINITIONS

The bidirectional reflectance distribution function,,", is defined

by the following fundamental equation for the radiance at a point of

observation, er , ,)r , arising from irradiance distributed over a set of

incidence angles, 
6i' Vii:

	

Lr Oi l

 ^`\ ^^	 ^^ $^^^^ ^ 8 r^ ^1̂  ^(A;^^•^ t oS ®: Sin t3; d8; ^ ^;

	

j -	 SS

Thus, the BRDF,p , which has units of sr -1 , describes

of irradiance from source direction oi , i into the view direction

,. In reality, measurements are taken over finite solid angles,.. r.

If, for example, the source is also distributed over a `inite solid angle,

then:	
c c	 (	

_

L (.n.:,.Q.r^ = Tr 	 Gar

Measurement of L(21 , 1,) ratioed to the response from a Lambertian

Barium Sulfate panel would be termed the bidirectional reflectance

factor, a dimensionless quantity. (More specifically, it would be the

conical-conical or biconical reflectance factor referring to the conical

viewing and illumination geometry). While the reflectance factor must

always be less than or equal to 1, the BRDF may assume very large

values. For specular reflection, for example, it is represented by a

Dirac delta function. Probably, the most common field measurerent o`

reflectance is a measurement of the hemispherical-conical reflectance
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factor (or perhaps the hemispherical-directional) referring to the

restricted view geometry but the integration of irradiance over a

hemisphere. In fact, as is evident from the literature review, many

investigators believe they are measuring the bidirectional or biconical

reflectance factor in this case. However, this approximation is valid

only when the direct solar irradiance strongly dominates and diffuse

irradiance is negligible. For clear days, this is generally valid near

solar noon, perhaps, for solar zenith angles less than 40 degrees. If

target materials were Lambertian reflectors, the fact that the radiance

in one direction is dependent upon contributions of the irradiance from

all possible directions of the hemisphere would present no difficulty.

However, it is precisely the deviation from Lambertian scattering which

is often of major interest.

Kriebel (1977) has attempted inverting the integral radiance equation

to derive the BRDF. An alternative method of correctin g for the diffuse

irradiance field was tried by Bauer, et al. (1977). Measurements of both

the target and reference panel were obtained under total illumination and

in a shaded conditions. The investigators rejected the technique as

compared to the standard method of ratioinq the target radiance to the

total irradiance. However, all target reflectances were obtained for a

nadir view angle and restricted sun angles.

Other definitions of bidirectional reflectance are evident in the

literature. Salomonson and Marlatt (1971) define the term to be the ratio

of the radiance measured by the sensor to the effective solar irradiance

E* on a Lambertian surface of unit reflectivity at the top of the

atmosphere. Integration of this function over all angles of exitance
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is defined by these authors as the directional re flectance. Thus, the term

refers to the ratio of the total reflected flux t0 that incident at a

particular solar zenith angle. Just the opposite convention is used by

Coulson, et al. (1965) and Oliver, et al. (1975) who reserve the term

to what is really the hemispherical-conical reflectance factor. When the

radiance measurements are integrated over broad portions of the spectrum,

the term albedo is commonly employed.

B.	 REFERENCE TO APPENDIX

}
` It is evident from the literature review that earth surface features

exhibit anisotropy in their reflected radiation patterns, particularly

at large zenith view and illumination angles.	 Polarization effects may

be present.	 Some success with channel ratio techniques for normalizing

these effects has been observed. 	 Limited research has been performed

relative to the utilization of off-angle measurements for improving class-

ification performance.	 However, it isp redicted that measurements at

zero phase angle will be sensitive to leaf color, measurements at approx-

imately 50 degrees zenith - view angle will be independent of canopy

architecture, and measurements at approximately 55 degrees zenith view

angle may be most sensitive to Leaf-Area-Index changes.	 The Literature

Review, Part I, referenced many of the important papers supporting the

general observations above.	 What is included in the Appendix to this

report is a collection of approximately 45 figures and tables which

illustrate the magnitude of these observed effects. Each group of figures

is preceded by a short discussion of the author's main conclusions.

Particular care has been executed to include a reference to the type of

reflectance measurement made as discussed in the preceding section.
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The Appendix has been organized into four sections to give examples

of: A) Source and View Angle Effects on Reflectance; E) Phase Angie

Effects on Polarization; C) Applications of Ratio Techniques, and;

D) Angular Considerations for Enhancing Classification.

r
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IV. SUMMARY AND RECOMMENDATIONS

Any sensory system such as the MRS is a record of the radiance

emanating from the scene in passing through a turbid medium, the atmo-

sphere. The radiance may be recorded as a function of wave length;

polarization characteristics may also be measured. These measurements

may be obtained for a given view and illumination geometry or they may

be obtained temporally either on a short time frame or a longer phenol-

ogical time scale. The MRS offers several additional dimensions to

radiance measurement capability in that subportions of a large scene may

be sampled. This sampling may be done for a variety of measurement

geometries and the teMDO al sampling frequency is greatly increased over

previous systems.

Probably the most popular data analysis and information extraction

procedures that will be utilized with MRS data will be the mapping of

scene elements, based on their radiance measurements, into desired in-

formational classes using the classical techniques of pattern recognition.

In addition, particularly in the agricultural arena, the direct mapping

of such agronomic variables as Leaf-Area-Index will be attempted through

the establishment of correlations between the desired variables and

radiance transformation of the radiance such as ratios. T;,ese techniques

should prove useful, particularly if ancillary information is incorporated,

as the,; have in earlier satellite platforms. However, some difficulties

may ar'-use from the variability induced by differing view and illumination

geometries.
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A second analysis approach may also prove useful in the extraction

of information from MRS data. Indeed, the MRS may offer a useful platform

for evAluating such techniques. This approach may be termed the 4ndirect

sensing of scene parameters based on understanding (models) of the physical

radiative interactions with biological elements. This approach is akin

to some of the standard techniques employed by atmospheric scientists

in . the deduction of the aerosol or temperature profiles of the atmosphere

from the integrcted radiance from a medium.

To fully apply either of these broad information extraction approaches

one should have an understanding of the bidirectional surface reflectance

function. It is evident from the literature review that significant

strides have been made by numerous investigators in obtaining indicative

field measurements.	 Model development has also been initiated. 	 The

has been done	 is	 inwork which	 and which	 ongoing	 the research community

suggests several specific research questions which are relevant to the

MRS concept.	 It appears that a carefully planned and directed field

measurement program should be implemented for selected earth surface

features.	 A main objective of such an effort would be to insure that

adequate supporting field measurements are available to both validAte and

extend modeling efforts.	 For this combined approach of modeling and field

experiments it would probably be wise to do a few things well rather than

many things poorly.	 Thus, priorities should be established for the kinds

of targets to be investigated. 	 These priorities should consider both

scientific and national goals.	 Such an effort that is concerned primarily

with radiative transfer characteristics of the scene-atmosphere system
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as it is relevant to the MRS concept should also of course, be useful to

other research experiments suggested by application or discipline sci-

entists.

Within this context the following five example candidate research

tasks are suggested:

1. Establish a high quality field data base appropriate to

scene modeling efforts at both the canopy and subcomponent

level. In order to accomplish this task reliable procedures

must be developed for measuring the bidirectional reflectance

distribution function for target materials. Such techniques

may need to consider the total directional irradiance field,

not just the solar component. Consequently, the referencing of

target radiance to a barium sulfate panel may not always be

appropriate. Even high quality radiance data by itself is of

limited utility without supporting descriptors of the scene.

In this regard the various subcomponent and canopy models

should prove useful in indicating the required field parameters.

2. Initiate a comprehensive attack on the canopy-level target model-

ing problem. This effort should include review of standard and

recent radiative transfer theory from the mainstream of atmo-

spheric science and developments in neutron transport theory.

Such a review should prove valuable in providing potential

non-atmospheric science investigators with a background in

available numerical solution techniques for the "mathematical"

part of the radiative transfer problem. Once investigators

have formulated the "physics" of the problem, i.e., various ways of
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parameterizing phase functions for surface targets, this review

may also assist them in determining whether their abstraction

is similar to the "classical" cannonical examples.

Specific modeling tasks which should be initiated in the

near future include:

(i) Modify the Suit, model to include non-orthogonal

projections, at least for the phase function. The

ultimate utility of the Suits approach is likely to

be limited by the orthogonal assumption, even for

homogeneous plane-parallel canopies.

(ii) Modify the Smith and Oliver SRVC model to include

viewing azimuth dependencies. Convert the Monte Carlo

implementation to a deterministic mode. Make the

model "easy" to use by the uninitiated.

(iii) Ber.,i,mark the above models on appropriate data sets

which will probably require specific field or laboratory

experiments. Identify strengths and weaknesses, (break-

downs in assumptions) and recommend improvements. It

is likely that the result of this analysis will be

guidelines for the design of a new model appropriate

for homogeneous plane-parallel media.

Further modeling tasks which should also be initiated in a

reasonable time frame include:

(iv) An attack on what Holmes has called the structured

earth problem, e.g., models appropriate for row crops,

and other mixture "pixels". Bunnik has suggested a
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way 	 Y	 ppto modi fy the Suits approach to handle this case.

The SRVC model may lend itself to such cases, par-

ticularly at a discrete point level. 	 Jackson has

indicated some phenomenological approaches to the problem.

The modeling of the mixture pixels from a process-

oriented viewpoint, as opposed to a statistical approach,

is obviously a difficult problem. 	 It may be that it

is solvable only for selected cases; perhaps, by

have	 been formulated.	 Itapproaches which	 not yet

is particularly with regard to this problem that a

review of radiative transfer theory is suggested.

(v)	 Include polarization effects in the existing canopy

models.	 A theoretical analysis of selected hypothetical

lead	 becanopies should then	 to predictions which can

verified either in the laboratory or field.

3.	 Initiate a review of canopy submodels. 	 Carefully defined lab-

oratory experiments similar to the early work of Greece and

Holmes should be executed. 	 These results will prove useful

for the canopy level models. 	 In addition, the applications of

target models to discipline-oriented problems will be improved

by linking agronomic variables through the subcomponents to the

canopy level.

4.	 Examine the feasibility of defining new feature sets useful

for multispectral, multiaspect, or multi-polarization classifi-

cation.	 A systematic review of the impact of surface response

variability should prove useful 	 in defining potential preproces-

sing or normalization algorithms.
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5. Examine the impact of a true bidirectional reflectance c

bution function, versus a Lambertian assumption, on atma

modeling. The coupling of BRQF models to atmospheric mo

may require some subtle considerations.

r
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Breace, R.T.(111) and R.A. Sobs. 1911. Bidirectional Scattering
Characteristics of Realthy Green Soybean and Corn Leaves in Vivo.
pl. 0 tg ics 10(1):119-127.

Study of the bidirectional reflectance of corn and soybean leaves
in a laboratory.(Figures v, 5 and 6) are polar bidirectional scattering
distribution functions for live, healthly soybean leaves at incidence
angles 0°, 30° and 60°. For wavelengths greater than 750 nm both re-
flectance and transmittance are more lambertian compared to the highly
absorptive smaller wavelengths. Leaf reflectance is more specular
than transmittance at strongly absorbing wavelengths.
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In this study of using bidirectional reflectance measurements to
assess the standing biomass of grasslands source-sensor angle variations
were considered. Table lists the reflectance for solar zenith angles
of 20° and 75°. Reflectances are greater at the 20° sun angle for the
green, red and IR bands. This trend is reversed for green/red, IR/red
and IR/green ratios. The reason given for the lack of normalization in
the ratios is the difference in transmission for the t:.ree bands and
hence differential shadowing (V a vertical LAI, H - Horizontal LAI).

Spectral reflectance changes are complicated by the addition of view
angle. In the case of Figure 4 at large look angles canopy reflectance,
for two zenith angles, increases'I.acreased zenith angle and at small
look angles canopy reflectance decreases with increasing zenith angle.

s
IR/red reflectance ratios vs. total leaf area index are plotted in

Figure 3. Ratioed reflectauces differences for Timothy and Oats as a
function of biomass are shown in Figure 8.
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Coulson, K.L. 1966. Effects of Reflection Properties of Natural
Surfaces in aerial Reconnaissance. Apol. Optics 5(6):905-917.

Hemispherical-directional reflectance and polarization measurements
were obtained for various sands, soil and vegetation. In general reflec-
tance increases and polarization decreases with increasing wavelength and
increasing incidence angle for mineral surfaces. For darker soil sur-
faces (Figure 4) and green vegetation (Figure 7) the maximum reflectance
in the antisourca direction is less pronounced than for light-colored
sand (Figure 2).
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Coulson, K.L., G.M. Bouricius, and E.L. Gray . 1965. Optical Reflection

Properties of Natural Surfaces. J. Geoohvsical Res. 70(18):

4601-4611.

Measurements of hemispherical-conical reflectance and linear
polarization for natural sands and soils are presented for wavelength
of 492 nm, 643 am and 796 ran. Isopleths of directional reflectance
(actually hemispherical-conical) of red clay in the 643 nm band indicate
maximum values at large view angles. A broad band of minimum values
occurs through the 0° - 90° azimuth angle half of the hemisphere. Anti-
source reflectances are higher (Figure 4). Degree of polarization
isopleths of red clay indicate that the phase angle is the dominant
parameter due the pattern around the antisource direction (Figure 5).

Directional reflectance of white quartz as a function of view angle
and various incident angles show a general increase of reflectance with
increasing solar altitude. The maximums occur at the backward direction
and the reflectance increases with sun angle at 0 0 azimuth. Quartz ap-
pears to be more lambertian at smaller sun angles. Curves at left with
auxillary ordinate show that reflectance at 80° view angle and 0 4 azimuth
is more than three times as great for a sun angle of 78° as that re-
flected from the standard magnesium oxide surface (Figure 10). Higher
polarization values are noted for quartz, however no polarization maximum
occurs (Figure 11).

Vote: =lay is red-opaque, quartz is white-semitransparent.
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Coulson, K.L. and D.W. Reynolds. 1971. The Spectral Reflectance of

Natural Surfaces. J. Appl. Meteorology 10:1285-1295.

Measurements of bihemispherical reflectances of several natural
surfaces. The reflectance of most surfaces reaches a maximum at sun
elevations of 10-20°. Surfaces of a complex structure generally show
a decrease of reflectance with increasing sun angle. Figure 14 depicts
the bihemispherical reflectance of green bluegrass turf at five different

all	 wavelengths. It appears that at lower wavelengths the reflectances are
nearly lambertian for sun elevations greater than 20°. This pattern
holds for most of the surfaces studied.
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Via. 14. Hernispheric reflectance of ¢Teen bluegrass turf at five dilTcrent wavelengths,
as a function of sun elevation.
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de Boer, Th. A., N. J. J. Bunnik, H. W. J. van Kasteren, D. Uenk, W. Verhoef,
and G. P. de Loor. Investigation into the Spectral Signature of Agricul-
tural Crops During their State of Growth. 1974. Ninth Int. Symp. Rem. Sens.
Env. University of Michigan. p. 1441-1454.

Field biconical reflectances of mature wheat and cut grass were
measured using a spectroradiometer and constant irradiance source.
Figures 7 and 8 depict the spectral signatures of what and cut grass,
respectively, as a function of wavelength and view angle. In both
cases reflectance increased as view angle increased.
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Duggin, M.J. 1977. Likely Effects of Solar Elevation on the Quantifi-
cation of Changes in Vegetation with Maturity using Sequential
LVnSAT Imagery. Apyl. 02tics 16:521-523.

Ground based reflectance measurements with the Landsat band passes,
wheat reflactances show a general decrease with increasing solar ele-
vation angle (Figure 1). Asymmetry about solar noon is apparently due
to differential shadowing caused by row-spacing and orientation. The
ratio of MSS band 7 to MSS band 5 resulted in a similar sun angle de-
pendence for all seven varieties of wheat studied.	 1
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_.;bent. D.D. and F.T. L'1aby. 1972. Effect of angles on Reflecavicy.
°hococramaetric Ensinearine. 38(6):556-564.

Study of reflectance as a function of solar elevation angle, sensor
view angle and sensor-sun azimuth angle and wavelength for grass and
asphalt. Filtered light meter readings were converted to foot-lamberts
and referenced to an Eastman Kodak 18 percent reflectance gray card.
Crass reflectance is higher for large view angles. For sun angle of
15' and azimuths of 0' and 180' -rasa reflectance is five times higher
chau for 90' azimuth. as sun angle increases beyond 35' reflectance
variability decreases and surface approximates a lambsrtian reflector.
Spectrally the curves are similar but those bands that have lower re-
flectance are less sensitive to extreme angle conditions (Figure 7).
Asphalt shows highly specular reflectance at solar angle of 15', azimuth
of 180' and view angle of 80' (Figure 8).
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Kimes, D. S., J. A. Smith, and K. J. Ranson. 1979. Interpreting Vegetation
Reflectance Measurements as a Function of Solar Zenith Angle. NASA
Technical Memorandum 80320. Goddard Space Flight Center. Greenbelt,
Maryland 20771. 29 p. (Also submitted to Photo. Eng. 6 Rem. Sens.

Hemispherical conical reflectance of Lodgepole Pine and meadow canopies
are plotted for two wavelengths as a function of the solar zenith angle.
Arrows indicate the sequence of the data from morning to afternoon.
For both canopies, reflectance increased with decreasing zenith angle
with the exception of meadow at 0.80 micrometers.
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Rondratiev, K.Y.Z., F. Hironova, and A.I. Otto. 1964. Spectral
dlbedo of Natural Surfaces. Pure and cool. Geophysics 59:207-216.

Figure 6 depicts the change in spectral albedo (A) (bihemispherical
reflectance) due to sun angle effects for two days. Reflectances can
change 30 to 40 percent due to the position of the sun from 26° to 660
for June. For July reflectances change up to 60 percent with a change
in the sun angle from 24 to 62°.
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Kriabel, K.T. 1978. average Variability of the Radiation Reflected by

Vegetated Surfaces due to Differing Irradiations. Remote Sens.
Environ. 7:81-83.

Ranges of biconical reflectances for four natural surfaces given
changes in solar zenith angle and optical depth are given as Table 1.

TABLE l
Percent Change of the Reflected Radiance due to a Change of the Distribution of the
Irradiation either by one Degree of the Solar Zenith Angle or by 10% Change of the
Optical Depth of the Atmosphere. Averaged over all Directions of Reflection and

over all Distributions of the Irradiation.

Surface type	 Average change of the reflected radiance
Per degree change of the 	 Per 10175 change of

solar zenith angle	 the optical depth

Savannah t 1.0% -t 1.6%

Bog t 0.9% t 0.7%

Pasture land t 1.7x0 t 1.090

Conferous forest t 2.3% * 1.5170

Average over the
four surfaces t 1.5% t 1.2%
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I
Kriebel, K.T. 1978. Measured Spectral Bidirectionalicsl 

cti n:S3-259.Properties of Four Vegetated Surfaces. A 1.	 c

t
Biconical reflectances for four natural surfaces in the 521 um

band. Measured radiance referenced to calculated irradiance. Figures
1-4 show increased reflectance for increased view angles. Reflectances
at a solar zenith angle of 20° have less azimuthal variation.
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I
Rao, V.R., E.J. Brach, and A.R. :Mack. 1979. Bidirectional Reflectance

of Crops and the Soil Contribution. Remote Sens. Environ. 8:115-125.

Compares reflectances of several crops at low oblique-viewing
angles and varying solar zenith and azimuth angles. Normalized bi-
conical reflectances are calculated from P - r(1(A)/E) with E computed
as a function solar geometry and atmospheric parameters.

The effects of varying sun and sensor view angle and sun-sensor
azimuths produce larger reflectance differences at higher sun angles
between 750 and 1800 am. All sensor-sun combinations show strong
absorption in 1350 nm water absorption band.

Notation: T - sun-sensor azimuth angle, 0 view or scattering angle

(Figure 2).
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V C and W.E.arlat:. 197^alataonsan,	 1. Airborne Measurements of
Reflected Solar Radiation. Remote Sens. Environ. 2:1-8.

Table 11 describes the variations in directional reflectance ob-
served over desert lake bed, grassland and vegetation-swamp. Columns
S and 7 list directional reflectances for narrow and broad band passes,
respectively. Columns 6 and 8 give the ratios of directional reflec-
tance for narrow and broad band passes, respectively, and the average
value of bidirectional reflectance. The results in Column 14 (Column
5 - Column 7) demonstrate, primarily, the effect that spectral reflec-
tance of the surface has on the relative magnitude of the directional
reflectances observed for the two band passes. Adjusted directional
reflectances in Column 9 show that the desert lake has the highest broad
band reflectance and densely vegetated surface has the lowest. Directional
reflectance increases with increasing solar zenith angle for all three
surfaces.

TABLE 11
Directional ReAectanas and Relative Anisotropy Observed by the Nimbus Medium Resolution Radiometer over DdTerent

Surfaces at DiRerent Solar Zenith Angina

	

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)
Incoming

	

Solar	 energy

	

Flight	 with	 (S')

	

No.	 Surface	 angle(')	 (Lyimin)	 (re)x (rs)M,fe (re)s (re)s1 fs S (rs)s ( ►e)r(re)s

1 Desert lake bed 38-39 0.72 0.28 1.13 0.23 1.14 0.33 0.03
2 Desert lake bed 70-73 0.33 0.24 1.23 0.19 1.18 0.34 0.05
3 Grassland 59-63 - 0.19 1.29 C.19 1.30 - 0.00
4 Grassland 57-59 - 0.21 1.31 0.19 1.2E - 0.62
3 Grassland 35-57 - 0.18 1.26 0.19 1.18 - -0.01
6 Grauland 66-69 0.37 0.23 1.27 0.24 1.30 0.32 -0.01
7 Grassland 3942 0.72 0.22 1.22 0.22 1.18 0.30 -0.00
8 Grassland 7842 - 0.13 2.18 0.16 1.80 - -0.03
9 Vegetation-swamp 36-61 0.74 0.07 1.68 0.11 1.37 0.16 -0.04

10 Vagetatiomswamp 70-73 0.40 0.08 2.43 0.11 1.61 0.18 -0.03
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B. Phase Angle E:facts on Polarization

(See also Coulson et al,1965)
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Egan, IJ.G., J. Grusauskaa, and H.B. Hallock. 1968, Opcical Depolariza -

tion Properties of Surfaces Illuminated by Coherent Light. A991-
Optics 7(8):1529-1534.

Depolarization measurements with 632.8 nm laser radiation were
made of mineral and vegetation samples. At higher phase angles
(angle between source and sensor) wet soil samples of sand, gravel
and silt depolarize 632.8 am light less than dry samples. Fresh
samples of rhododendron and holly leaves and pine needles are clearly
differentiated by depolarization at 0' viewing angle but less so at
60' viewing angle. Drying of the leaves generally increases polariza-
tion, as was the case with soil samples (Figure 6). Depolarization
differences change with viewing angle due to shadowing and leaf geometry.
Soil particle size and porosity also affect the depolarization
characteristics (Figures 3 and 4).
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Egan, W.G. 1970. Optical Stokes Parameters for Farm Crop Identification.
Remote Sens. Environ. 1:165-180.

Measurements of first and second Stokes parameters were made or
several farm crops. Figures 5 a-b and 6 a-b show the relative bright-
ness obtained in the first and second Stokes parameters, respectively,
for alfalfa and potato leaves. The second Stokes parameter may be
better than the first for identifying species and soil moisture
differences.
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Seasonal Canopy Reflectance Patterns of wheat^anelaasu, E.Z. 197S.	 op, Refl c	 ,

I
Sorghum, and Soybean. Remote Sens. Environ. 3 :43-47.

Ratioing the bihamispherical reflectance of agricultural crops in
the 545 am and 643 = wavelength bands indicate very little change due
to solar elevation angle variation. Near IR reflectance decreased with
increased solar elevation angle for wheat and sorghum.

Soybean near IR reflectances varied due apparently to changes in
leaf angle with sun elevation (Figure 3).
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Tucker, C.J., B.N. Holben, J.H. Elgin, Jr., and J.E. McMertrey, III.
1979.	 The Relationship of Red and Photographic Infrared Spectral
Data to Grain Yield Variation Within a Winter Wheat Field.
NASA Technical Memorandum 80318, NASA/Goddard Space Flight Center,
Greenbelt, Marylan3.	 22 p.
(Also submitted to Photos. Eng. & Rem. Sens.)

Infrared to red narrow band radiance ratios of winter wheat were
acquired throughout a growing season.	 IR/red radiances plotted against
Julian date show the effects of canopy development and reaction to water
stress and recovery for three sample plots. 	 The normalized difference
(ND)	 (IR-red)/(IR+red) shows similar results.
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t
3unnik, N.J.J. 1978. The Mulcispeetral Reflectance of Shortwave

Radiation by Agricultural Crops in Relation with their `lorpholc-
iical and Optical Properties. Uaganingen. `!ededelingen
Landbouwhogeschool. Nederland 78-1. 175 p.

Bunnick describes the affects of source and sensor geometry on
canopy reflectance. The following observations were made:

1) At a 75' zenith view angle background soil reflectance in the
'	 visible wavelengths may be neglected for most crops.

2) r Measurements where the source and sensor angles -ire equivalent
i.	 (canopy hot spot) the relationships between spectral reflectance and

canopy variables such as leaf color and status could be detected.
An active conical scanning system is recommended.

3) Detection normal to the earth's surface or under a zenith angle
of 51.8' eliminates the influence of canopy leaf angle distribution
on reflectance as a ', action of the apparent soil cover percentage.

S) Various combinations of reflectance values in the green, red and
near IR produce a well defined relation with soil cover, LAI and
differences ir. soil moisture content. The ratio of reflectance in
the red and green bands for view angles coincident with source angle
and 51.8' is independent of canopy structure.

5) Active conical scanning under an angle of 51.8' using an aircraft
platform allows for the collection of reflectance data under cloudy
skies with less effect from atmospheric variability.
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Malila, W. A., R. 4. Hieber, and J. E. Sarno. 1974. Analysis of

Multispectral Signatures and Investigation of Multi-Aspect Remote

Sensing Techniques.

A theoretical calculation of the equivalent Lambertian reflectance

to be expected from a leafless forest superimposed on a snow-covered

background. Reflectance versus bark reflectance is calculated

for several cases of stand density and branching volume. Results

for 0 degrees and 45 degrees off-nadir are shown.
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Oliver, R.E. and I.A. Smith, 1974. A Stochastic Canopy Model of
Diurnal Reflectance. Final Report. C.S. Army Research Office
Durham. DAHC04 74 60001. 82 p.

Vegetation canopy structure in terms of the mean projection of
leaf elements is least sensitive to leaf angle distribution when
viewed at an inclination angle of 57.5' (Figure 5). Apparent directional
reflectance (hemispherical—directional) as a function of zenith view
angle for five canopy geometries is also insensitive at the 57.5°
view angle (Figure 11). The effects of leaf area index on canopy
reflectance are shown in Figure 12. These results indicate that
discrimination of LAI should be maximized at larger view angles.
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Smith, J. A. and R. E. Oliver. 1974. Effects of Changing Canopy Directional
Reflectance o" Feature Sele ction. Apt. Ott. 13 (7): 1599-1604.

A Monte Carlo Canopy reflectance model was utilized to predict
the bidirectional reflectance distribution function for two
Bouteloua gracilis canopies differing only in leaf-area-index.
The apparent directional reflectance was calculated for two
solar zenith angles (22 and 44 degrees) as a function of wavelength.
Separability, as measured by the divergence criteria, was calculated
as a function of look angle. Maximum discrimination is predicted
for large zenith look angles near 55 degrees.
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