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NOTATION

M CkgJ vehicle weight	 (mass)

p (N/M`j pressure

A p [N/m21 differential pressure

q Em 3 /sI flow rate

6q (M 
3 
/S ) flow loss f leakage

V Im/sI vehicle speed

A (m2) piston area

C loss coetficiente clutch

D I .1r, 3 /rev) displacement per revolution

D o [M	 il rt-adl displacement per radian

E [NMI energy

F IN) force	 (driving)

L (m) length	 (of driving cycle)

power

P (WI power loss

R transmission ratio

R transmission ratio of final gear

T (NMI torque

'-'-\ T (NMI torque loss

Vo [m31 package volume

We (kg] package weight	 (mass)

tX 1 0 1 yoke or swash plate angle

(-I fraction of maximum displacement

efficiency

size ratio

[Ns/m 2 ] absolute viscosity
fkg/m 3 1 density
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Subscripts (selected)

l

Vol

	

	 volumetric, see efficiency of speed

transmission

mech

	

	 mechanical, see efficiency of speed

transmission

tot

	

	 total., see efficiency of speed transmission

power

var	 variable, see displacement

Tract	 fractional, see displacement

max	 -	 see displacement and force

Conn	 -	 connect, see ratio of connecting drive

low	 =	 low gear, see ratio of planetary drive

theor	 theoretical, losses neglected

equ	 -	 equivalent, see pressure

back	 s	 see pressure
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I. DESIGN SPECTFICATIONS

Thescope of Contract NASII-3299 t within the NASA L&RC PROJECT#
concerns the principal development, evaluation, and optimi-
zation of a power transmission system of a road, vehicle,
where the prime mover (such as a free-piston Stirling engine)
produces hydraulic energy, available at constant pressure

and with no short-term limitations on flow rate. The power
transmission system is to be based upon the Volvo Flygmotor

V-20 type variable displacement motor/pump as the principal

unit.

According to the contraote the transmission system was to be

designed and sized to meet the performance criteria specified

below, at the same time min,imizing:

- size

- weight

- complexity

and exhibiting optimum efficiency when cruising at constant

speed within the range of 6.7 through 22.4 m/s (15 through 50
mph)..

During the course of the work the efficiency criteria were

re-formulated to the following, more precise, terms:
the transmission system should exhibit, when optimized f the

lowest possible energy consumption when completing an

EPA Urban Driving Cycle.

The steady-state speed road load was to be based on the

following prescribed expression:

P = 228.6*LY+1.06*Lr 2+0.5775 '  LY' 3	 (1)

0 where P = power on driving wheels in w

U' = vehicle speed in m/s

The weight m of the vehicle was prescribed to be:

m = 1542 kg (3400 pounds)	 (2)

The special performance criteria to be met were

- The minimum distance to be covered in 10 s from a standing

start is 134 m (440 feet)



The maximum time to reach a speed of 26.8 m/s (60 mph)
from a standing start is 15 s

No special qrad4^ility criteria were prescribed.

2
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2. REgUIRED DRIVING FORCE

The most important quantity in the design and analysis

of the propulsion system-q oC road vehicles is the total

driving (or braking) force A? acting on the periphery of

the driving wheels.

The instantaneous value of F dcfines:

- either the cruising speed L--(when F is in equilibrium
with the road load and witl.h the component of the vehicle
weighty when grading)

- or the acceleration/deceleration (when F exceeds/falls

below the road load)

The vehicle speed kr is thus controlled by the driving force

Fj and it is appropriate to discuss the design criteria as
well as the transmission performance in F vs. u- diagrams

(see Fig. 1). Note that such diagrams also contain infor-

mation	 the output power P (W), because

P = F*'_—	 (3)

The F vs. t-- diagram will be used from here on in this report
to discuss design criteria and transmission performance.

Cruising at steady-state speed requires the following
driving force (cf. 'Eq. 1):

F = 228.6 + 1.06* ,.r+ 0.5775*vr 2	 (4)

which may be interpreted as

- 1.5 % rollinc,- resistance

- a frontal area of 3.2 m 2 at a 0.30 aerodynamic drag

coefficient



1000

500

4

P N

0	 10	 20	 3a Lr M/S

Fig. 1. Road load P vs, cruising speed

The acceleration criteria may be met by various F vs. u—
configurations. Conventional automobiles with a manual
four-speed transmission produce high driving forces in
the low-speed regime (limited by wheel spin) and low
driving forces in the high-speed regime (limited by engine
power) as indicated in

F^N
%max. theor, powerI

	

7000-	 first gear

6000-

	

500G-	 second gear

	

4000-	
road load

	

3000-	 third gear

	

2000-	 fourth gear

1000-

0	 10	 20	 io	 m/s

4

	

	
Fig. 2. Road load and available driving force when a manual

four-speed transmission is used
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Fig. 3. EPA Urban Driving Cycle
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In the present design situation it is possible to choose

an alternative approach. The same constant maximum driving

force may be utilized over the whole speed regime, as

there are no short-term power-supply limitations. The
maximum driving force is thereby reduced, resulting in

reduced weight and size of the final drive.

If the rise time for the driving force and time lost

when shifting gears are neglected, a net acceleration ,force

may be calculated to meet the performance criteria:
- acceleration from standing start to 134 m in 10 s

requires race-4140 N, and the corresponding maximum

driving force must also include the road load, thus

Finax^"6©0 N (approx)

- acceleration From standing start to 26.8 m/s in 15 s
requires Facc-2760 N, and with the road load added,

F 
max =3250 N (approx)

Driving force requirements, established by the SPA Urban

Driving Cycle, are calculated as follows:

The driving cycle is defined over a period of 1372 s,

and the vehicle speed is specified for each second (cf. F 3)
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i	 Polynomials of the third power have consecutively been Ofitted

to four adjacent, defined points on the EPA Cycle. Time deri-

vatives of the polynomials yield vehicle accelerations.

Vehicle speed and acceleration have been calculated at time
increments of 0.1 s over the driving cycle. The cycle length

``	 has been integrated to:
rt

L - 11.99 km	 (5)

[	 For each time increment the total driving (or braking) force
I

	

	 has been calculated as the sum of the road load (from Eq.(4))
and the product of the vehicle mass and acceleration (de-
celeration). The resulting 13,720 values have been grouped

in a driving cycle matrix (F4), where the increments
are 0.5 m/s for speed and 50 N for force. About 5000 different

combinations of F and v appear, with peak F values at about

2600 N, and peak speeds at 25 m/s. Negative (i.e., braking)

forces have been omitted from the matrix.

0	 10	 20	 30 m/s
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Based upon the preceding discussions, the driving force

requirements are summarized in F5.

I`	
F kN

► .	 g

100 kW Power limit
as an examp e)

r'

6- \

	

(4.6)	 (26,8)	
i

4 	 acc. to 134 m

G
r	 (3.25)	

^. NO,-	
acc. to 26.8 m/s

2.6)

2 EPA Ufban DrivingCyclT777 14
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3. CHARACTERISTICS OF VARIABLE DISPLACEMENT MIOTORS/PUMPS

General_back2122og

Hydrostatic machinery is used either to convert mechanical

power into hydrostatic power (pumps) or vice versa (motors).

Hydrostatic power is defined by:

p = hydrostatic differential pressure in N/m2

q = flow rate in m3/s

P = 6 p*q= power in W

The theoretical power transmission relationships are easily

understood for the linear mode of operation, e.g.ofor

actuators:

equilibrium yields

F = A P*A	 (6)

continuity yields

q = L'r *A	 (7)

where A is the actuator area (m2)

Similar relationships hold for transmissions operating in

the rotational mode:

equilibrium yields

T	 ptD'	 (8)

continuity yields

q = LO *D 1	(9)

where T = torque in Nm

(0 = rotational speed in rad/s

and	 D'= hydraulic displacement in m 3 /rad

Instead of D', data sheets etc. from manufacturers often

give the displacement in another unit, namely:

D = hydraulic 6isplacement in vol/one rev.

The two displacements are interrelated by

D = 2* 071'*D l	(10)
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The basic relationshipsr Eqs. (C) through (9), indicate that

load transmission: F or T bra p

and

speed transmission; or or w M q
do not mutually influence each other. The transmission ratio

is for both cases D' in the rotational made and A in the

linear mode.

There are designs of hydrostatic machinery where a continuous

change of the displacement is possible. Such units may thus

be considered as Continuously Variable Transmissions, (CVT's).

In the case of variable displacement machines, for each

machine exists a maximum displacement D' max*

The displacement change could then be expressed by a non-

dimensional quantity 6 -displacement fraction -defined as follows:

D1 fract ^E*Dfmax	 (11)

In a formal analysis (where the machine design is adequate)

< 0	 (12)

could be used, whereby the transition from positive to

negative E corresponds to a transition from motor to pump

operation or vice versa, provided that the hydraulic

connection and the direction of d p are unchanged. If not

otherwise stated, E>0 means motor operation and E40 means

pump operation.

In real transmissions the power conversion is influenced by

unavoidable losses. The theoretical, no loss reationships,

Eqs. (8) and (9), are then modified to:

motor operations

T _ gmech *D'*Z p	 (13)

CJ 
2vol* 

q/D
	

(14)

p2m2 operations

P	 gmech
*T/

D'
	

(15)

q = nvol * D`* W	 (18)



Rmech and gvol 
denote mechanical and volumetric efficiencies,

respectively. By definition the efficiencies are limited to
the interval.:

0 
4 

(Rmech 
and Rvol) G 1	 (17)

Efficiency is normally defined for power transmission, whereby

* D .	 {18)Pout	 Rtot '^n.

Substitution for the hydraulic and mechanical power yields

the same expression for Rtot at both motor and pump operation:

Rtot	 Rvol * nmech	 ( 1 9)

Note that Imech and Rvol are not constants. In most cases,
however, they could be described with reasonable accuracy

as functions of load, speed, and fractional displacement, or

R =' f (A p ,  W , E )	 (20)

Volvo_ Flygmotor_motorsLPumps

Volvo Flygmotor has produced and is marketing hydrostatic

machines since 1970 . The products are all of the axial

piston type, a design concept that makes continuous change of

displacement possible.

The axial piston machines could be divided into two groups:

- the bent axis-type

- the in-line type (see F6):

10

Fig. 6. Types of axial piston machines_
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The product introduced first was the fixed displacement

F-11 series machine. The design concept is of the bent-

axis type, which is made possible by the unique, patented

spherical piston,	 reducing the piston losses to a minimum.

,., Before modifying the F-11 series to a variable displacement

version,	 the V-30 in-line type of variable displacement

machines was introduced. This design cannot take advantage

of the spherical piston.

The third step of development was the V-20 bent-axis type

variable displacement machine, which takes full advantage

of the spherical piston, contributing to the high efficiency

of such machines.

The displacement fraction au is related to the yoke or swash

plate angle c(as follows:

in_line_type__
1

= tan W- /tan X	 (21)
max

bent_axis_type_

F =' sin %/sin OC, max	 (22)

Some general characteristics of the efficiencies of Volvo

Flygmotor pumps and motors are:

At any reasonable fractional: displacement (5 and rotating

speed CO the mechanical efficiency rL 
mech 

decreases to

zero in the low-pressure regime, (cf. r 7). This is due

to unavoidable parasitic friction.

Of "^' Q max0	 20 40	 60 80 100
Fig 7. Qualitative relationship	 meth vs. 16 p

J
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0.

► f uJ max

IF

1.2	 i

^k

At any reasonable fractional displacement &and differential

pressure & p, the volumetric efficiency rL of decreases

to zero in the low-speed regime (cf.	 8)f due to
unavoidable clearance leakage.

,,.	 VO L

Fig. 8. Qualitative relationship 
1Z Vol vs. 

c.3

- At any reasonable operating speed W and differential

pressure d p, the total efficiency 2tot decreases to

zero in the low displacement regime (cf. F 9) The

reason is that some basic losses are fixed, while the trans-

mitted useful power is decreasing.

n tot
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From the diagramsn Figs. 7 through 9 can be concluded that

operation within any of the low-value regimes, 4108, of

the maximum speed, pressure,and displacement ? causes con-

siderable losses, r^ < 808 0 and should thus be avoided, if

possible.

A detailed discussion and quantification of the losses will

be given in Chapter 6.
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4. AVAILABLE DtSIGN CONCEPTS

The design problem consists of converting a constant hydro-

static pressure into a variable driving force, covering the

range of 0 through approximately 5000 N at any peripheral

velocity of the driving wheels up to about 30 m/s.

Tile main control problem is control of the driving force,

while vehicle speed is a dependent variable, controlled In-

directly via the driving force. This concept may seem

unusual in automotive applications. However, it is beneficial

in the design of conventional automobile propulsion systems,

as well, as advocated by A. .rank et al. *)

In terms of hardware, the problem could be solved in a
straightforward manner by a variable-displacement hydrostatic
unit connected to the pressurized fluid supply and delivering
its torque to the driving wheels via a conventional final

drive. Torque control is obtained by controlling the

variable displacement.

This solution could be quantified (cf. Eqs. (11) and (13)) to:

T = &* rL MeCk1 *D 1 MaX * A 	 (23)

where T is the input torque to the final drive, corresponding

to any desired driving force F, which is controlled by a proper

choice of 6 -

The size of the hydrostatic motor is then;

D' max = Tmax/( 2 mech* 4 p)	 (24)

where T max corresponds to a selected maximum driving force

F max 
(cf. F 5) .

However, some alternative concepts also exist. The total

displacement D' 
max 

could be obtained;

- either as a sum of the displacements of two or more units

(some of them having fixed displacements)

cf. e.g. paper presented at the A&ME Power Transmission & Gearing Conference,
San Fransisco, Aug. 1980, entitled "Principles and Definitions of Continuously
Variable Transmissions with Erphasis on Automotive Applications".



is

or by a "magnification" of a basic displacement obtained by

connecting a t two- or more speed,reduction gear between

the hydrostatic motor and the final gear

or by a combination of the two abovementioned concepts.

Before listing a number of design concepts that might have a

potential of high energy economy, low weight, etcpwe will

explain two subconcepts, namely, power recirculation and

hydraulic polarity shift.

Power-recirculation(PRC)

The interpretation of two hydrostatic motors working in

parallel is obvious:

Fig. 10. Scheme of two hydrostatic motors in parallel

T 1	 rt mech, 1	
DII	 p

T2	 2	 2
D I	 P	

assuming
mech,	 Zmech 1 :!	 mech, 2

T	 (D11 + D2)	
mech	 A p	 ( 25)

The question may arise as to whether or not (DI - Dj) has a
physical interpretation in the context of equations like Eq.(25).
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that one of the

the other, DIP2
is picking up

verts I t into

(friction and

The answer Is yes, and the interpretation is
units is operating as a motoc, , e.g., D 11 , and
as a p2mp. Physically this means that Unit 1

hydrostatic power from the reservoir and con,
mechanical power. Thereby some power is lost
leakage).

Part of the mechanical power passes to the output shaft without

special losses.

The remaining mechanical power is recirculated to the
hydrostatic reservoir via Unit 2, whereby some additional
power is lost (friction and leakage).

Analytically the situation is described as follows:

T 1 	rt mech f I * 
D 11 * A P

T
2	 2

D I *A 9/1 mech,2
	

(26)

T zt T 1
 -
 T

2

q 11	
D	

Vol, i

q
2 	2D	

'Z Vol, 2	
(27)

The net output power is

P out=T* 0 '4(2mech,2 *D,'-D,/rZ mech, 2 )	 P* U-)	 (28)

and the net input power is

P in^ (q, -q2)* Apzt (D 11 /rZ Vol, 1 - D21* 2vol,2)*Q* La p	 (29)

which could be combined to a total net efficiency: 	 (30)

rz tot = P out /P in '.(tLmech,l - '9/rtmech,2 )/( ' / I vol, j-e*^vol,2)

where 9 = D2/D j'4 1

An evaluation of Eq. (30) shows that the total efficiency at
PRC always is lower than the efficiency for one single unit
transmitting the output power.
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The PRO characteristics can be explained semi-quantitatively
by a comparison of different solutions to the following bas,-c
problem;
A variable output torque is to be produced within the range
04,T&T..., utilizing a given constant differential pressure
,4 p. For the sake of simplioity f the output speed W will
be considered constant.

a) A straightforward solution is to use a variable displacement
motor, the displacement 

of 
which is calculated according to

Eq. (24). The output torque is controlled by the fractional
displacement 6 .

b) A simple, but energy-wasting solution is to use a fixed

displacement motor and to reduce continuously the input

pressure 6p to zero by means of a variable throttle between

the fluid rese,rvoir and the motor.

c) One variable displacement unit and one fixed displacement

unit -are used; both with a displacement that is half of

the displacement used 
in 

a) and b) above. Both units are

active for all required torques, the fixed displacement

unit operating as a motor the whole time, and the variable

machine operating as a pump in the low-torque regime

- leading to PRC - and as a motor in the high-torque regime.

d) One fixed and one variable displacement motor of the "half"

size as 
in 

c) are used. In the low-torque regime the variable

motor is used alone. In the transition to the high-torque

regime, the fixed motor is connected to the fluid supply,

at the same time as the displacement fraction 6 for the
variable motor is changed E.stantaneously from I to 0.

Higher torques are then obtained by increasing the amount

of

The relative power loss for a variable displacement machine,

A 
P/Pmax,outt is showr, in Fig. 11, where the absolute power

loss,L P, due to leakage and friction is related to the output

power at the maximum displacement.
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',^' P/ Pout max

0,1

`,.
"'?fix- losses in a

fmachidrte placement

0	 T max	 e or'T
F_1

Fig. 11. Relative power Loss for a variable displacement
machine, pertaining to case a)

As will be shown later, the relative losses are almost inde-

pendent of size. Thus, Loss diagrams could be composed for the

cases c) and d) (cf. F 12)

^.._..._. case c
APIPout,max	 --- - case d

0.1	 EpumR _ dmotor

`^ \^	 •	 I .rte A/ "" '
,r^yrrhrr^s+'%

0,05 var, pump losses`\ ;	 „var, motor osses , ; ^` o? f ix
^,\^^t'°\``\1\\\\\\ \\^^\4	 i^^.\	 !y3//^/lJ+riN,/rfyiiI/ 3̂ri/Jf^

A'' 'te''" s`

A4 d motor losses
af^ i

^

0.5 T max	 Tmax

Fig. 12. Relative losses in two-unit arrangements.
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r____

At throttling, case b) f the power input is constant at all

output torques. Most of the power is therefore lost as

internal friction in the fluid (cf. F '13).

'!:S P/POU t o max

1.1

0.1

I max

Fig. 13. Losses in a throttled system

The following conclusions can be made:

- losses are higher at PRC than in comparable systems with

a straight power flow (case c) vs. cases a) and d))

- losses are of the Same order of magnitude for one large

motor or several small motors in parallel (case a) vs. d))

- losses are very high at torque control by throttling of

fixed displacement motors (case b))

- at very low torque output the mutual power loss is related

for the cases a):c):d) as 2;4:1

- PRC is not justified by low-loss considerations; however,

it offers a smooth shift between different modes of operation.

Hvdraulic.L:)212Eity-stiit-IEP§I

The change of mode of operation from full displacement pump to

full displacement motor may be obtained in one of two ways for

the case with unchanged direction of rotation:
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k

- by a continuous change of 6 from one extreme (+1) via zero
to the other extreme (-1), whereby the direction of flown q,

is changed continuously during the mechanical motion

Q-4 0 ->-(X,, the change may be completed in about 1 s

- by shifting - by valve operation - the hydraulic connections

between the connecting ports and the high- and low-pressure

reservoirs, respectively, whereby the rigid parts of the

sjnit do not change their state of motion (thus no inertial

forces) , but the direction of flow is changed "instantaneously-

Pggig0_EqU2S2ts considered

The following groups Of design concepts have been considered.

1. One single motor

2. Two motors in parallel

3. One single motor with a two-speed transmission

4. Other compound systems of some merit

Groups 2 and 4 contain the following alternatives:

2a. Either one of two variable- motors in operation

2b. Either one or both of two variable motors in operation

2c. one fixed and/or one variable motor in operation

2d. one fixed motor and/or one variable motor with PRO and HPS

2e. One fixed motor with HPS and/or one variable motor with PRO

4a. one single variable motor and a three-speed transmission

4b. One fixed and/or ' one variable motor with a two-speed

transmission

4c. Two fixed motors and/or one variable motor

4d. Two fixed motors and/or one variable motor with PRO and HPS

All considered concepts have the potential of access to all

driving forces FGL F max , hydraulic reverse gear, and recovery

of braking energy.

In Appendix 1 are given the schemes of the main configurations

of the different concepts and relevant control strategies,

F vs. 6 . It should be noted that the control strategies serve
only as examples, using assumed (not optimized) displacements

and gear ratios. As a common frame of reference the following

is used
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Finax 5000 N

Furban c 2500 N (light grey)	 (31)

Fh-way	
500 N (dark grey)

-The F values in Eq.(31)are based upon Fig. 5 0 modified
and adjusted according to experience and engineering

intuition.

All the design concepts include other hardware in addition to

that given in Appendix 1. Such components, e.g. a final
transmission, flow control valves, hoses, micro-processor

and other control components, are approximately of the same

size, weight, and performance. Therefore, they have not been
included in the sizing and optimization process.
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5. RECOMMENDED DESIGN CONCEPTS

When evaluating the total. merits of the candidate systems
described in the preceding section, one should consider the

following parameters:

- size of the variable motor/pump

number of significant components

- number and character of gear shifts

- regime of & used in urban/highway driving

possible power recirculation (PRC) in urban/highway driving

The motor size is considered in terms of transmitted power,

which presumes that both the maximum pressure and the maximum

speed will be utilized in the optimized design. It is possible
to meet any motor output speed by a proper choice of transmission

ratios of the final and any intermediate mechanical transmission.

The character of the gear shifts -especially the time involved -
varies among the systems described. The clutch operation and

change of hydraulic polarity (YP5) are completed quickly;

the change of displacement from one extreme to the other re-

quires significantly longer time.

The fuel economy is influenced by the regime of F that is most

frequently used, as well as by possible power recirculation (PRC)

under frequently used driving conditions.

It is assumed (cf. Eq. (31)) that urban driving requires up to

about 40% and highway driving 10% of the maximum driving force.

If low displacement (6 4 0.20) or PRC occur in these operating
regimes F < 10% and 40% of F max , respectively),a significant

increase of losses will result.

Parameters of importance for the evaluation are listed in Table 1.
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TABLE 1. Comparison of various design concepts

System type 1

a b

2

c d e

3

a

4

b c	 d

Size of var.machine 1.0 0.8 0.67 0.5* 0.33 0.67 1.0 1.0* 0.5* 0.25	 0.14

• of var.machine 1 2 2 1 1 1 1 1 1 1	 1

No. of fixed machine 0 0 0 1 1 1 0 0 1 2	 2

No. of clutches 0 2 2 1 1 1 1 2 2 2	 2

. of gear meshes 0 1 1 1 1 1 2 2 2 2	 2

NO. of East shifts 6 1 2 0 1 0 0 0 0 3	 3

No. of slow shifts 0 0 0 1 0 2 1 2 3 0	 0

PRC/urban 0 0 0 0 0 yes 0 0 0 0	 yes

PRC/h-way 0 0 0 0 0 yes 0 0 0 0	 no

Low 6/urban yes 0 0 ? 0 0 0 0 0 0	 yes

Low 6/h-way yes 0 0 yes 0 0 0 0 0 0	 0

Magnitude of 0 0 0 1 1 1 0 0 1 2	 2
complexity

might be slightly reduced when a reduced driving force is accepted in

the high speed regime of the vehicle.

A fully formalized selection of the most promising design concepts

seems to be impossible. Some parameters are very difficult to

quantify, such as complexity, riding comfort (jerks when gears

are shifted), and reliability.

The first screening of candidate systems must to a great extent

be done by engineering experience and intuition, which are

difficult factors to incorporate into a computerized analysis

of the systems.
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A design concept with a high potential should meet the

following criteria:

- only one variable displacement machine (heavy and expensive)

- smallest possible displacement for the variable machine (heavy

and expensive)

- maximum two hydrostatic machines in all (i.e., the second one

should be a fixed displacement machine) (complexity)

- low yoke angles (low FE ) and PRC should be avoided as far as

possible under normal driving conditions (high losses)

- the number of shifting points (discontinuous changes) should

be minimized and the duration of the shifting procedure should

be as short as possible (in order to make the tide comfortable).

None of the reviewed systems meets all the criteria mentioned

above. Some systems are ruled out immediately, among them the

sing14 variable motor, which at normal driving conditions

essentially has to operate in the low yoke angle regime.

The following two systems have been selected for further detailed

analysis and optimization;

A: One variable displacement V-20 motor and a two-speed planetary

gear train in series in front of the final gear (equivalent

to Case 3 in Table 1) (cf. F 14) .

14
'rj
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O Sri

U:3
0 M
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D- variable motor of type V-20

Fig. 14. Fundamental design concept of system A.
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B: One variable displacement V-20 motor/pump in parallel with

a disconnectable fixed displacement motor, both in front of

the final gear (equivalent to Case 2d in Table 1) (cf. F 15).
At low required driving force, the variable machine operates

as a motor only. At an increased driving force (about 1/3 of

Fmax)t the fixed motor is connected to the system and the

variable machine is by HPS shifted to pump operation,

whereby PRC conditions occur. At still higher driving force

(2/3 of Fmax)f the V-20 machine changes to the motor opera-

tion mode.

D1=  variable motor/pump of type V-20
D 
2 

fixed motor of type F-11
G	 gearbox, constant ratio
C	 clutch

Fig. 15. Fundamental design concept of system B.

N.B. System B may deliberately change towards system 2c in

Table 1 if the optimization procedure is given full free-

dom. The displacements are then oversized, and the shift

points are chosen in such a way that PRC is partly or

fully avoided.

, r.	 I
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6. MODELING OF HYDROSTATIC COMPONENTS

General approach

Volvo Flygmotor has extensive experience with fixed displacement

F-11 series pumps/motors. Performance data have been obtained

for a variety of sizes.

The first type of variable displacement machines marketed by Volvo

Flygmotor was the V-30 series of in-line machines. The design

concept and thus also the performance, are to some extent

different from those of the F-11 series of machines. Performance

data is available from three different sizes of machines.

Later a variable displacement version of the F-11 series, named

V-20, was developed. One basic size, D 	 137 cm3/rev, has been

marketed since 1974. An updated version of the basic machine

with the displacement D - 180 cm3/rev has been developed quite

recently and tested within this program.

All experience gained hitherto matches quite well the general

theoretical description of losses in hydrostatic machinery

which has been developed for the middle and full .Load operating

regimes. There is a shortage of performance data on the low-

load operating regime, and a special theory describing the

losses needs to be developed as well. However, the middle and

full-load theory covers the low-load regime with acceptable

accuracy.

The state of the art of modeling losses in hydrostatic pumps/

motors defines torque losses d T and leakage losses Q q as

follows *)

for motors:

Tout	 T theor - AT =D' * d Pin' - AT	
(32)

qin _ gtheor +A q 
=D	 Pin + '!!I q	 (33)

for_eumgs_

Tin	 T theor + d T =D' * 0 pout + A T 	 (34)	

I

gout- gtheor A q _D' * A pin - d q
	 (35)

*) Johansson, Ingvar & Larsson, Gunnar: Analysis of the efficiency of a
hydraulic axial piston machine, M.Sc. thesis (in Swedish), Chalmers Univ.
of Technology, Dept. of Mechanical Engineering (Machine Elements), 1967..

R `
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A T and A q are assumed to consist of a number of partial losses,

each of which is related to some identified physical phenomenon

and thus proportional to some externally measurable Parameter.

The various loss sources are:

Parasitic torque loss (PTL)

A T	 const. (for a given machine)	 (36)

Dry friction (DF)

Q T pequ	 (37)

- Viscous friction (VF)

4,-->
	

(38)

- Turbulent flow resistance (TFR)

AT- * W2	 (39)

- Viscous clearance leakage (VCL)
13 q mi pequ/1"
	 (4t0)

Compressibility (C)

A  _.^	 p * w	 (41)

As can be seen from Eqs. (36) through (41), the losses

are proportional to some of the parameters load

p or pegU,) , speed (W) , density (^P ) , and viscosity

(eta.) •

The load parameter appears as d p (=differential pressure)

and pequ• The equivalent pressure, p equ , is introduced to

take care of the back pressure, Pback' where adequate.

In most applications 
Pback 

is negligible; then Pequ N A p.

If, however, 
Pback is notnegligibly., it contributes to dry

friction and viscous clearance leakage losses. Furthermore,

0 p is active only over one half of a revolution, but

Aback is active over the full revolution. Therefore, the

"double" influence of Aback is taken into account as follows;
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P equ 
= tj p + 2*pback	 (42)

The experimental, experience of the F-11 type of machines

indicates that the relative losses are independent of the

size of machines over a broad range of displacements.

This fact could be used in a general, type of loss expressions:

AT = D ►
* (CPL,T

+C
DF*pequ

+CAF*,k *
w+CTFR* J * U)2)

	
(43)

Q R = D' * (CVCL *Pequ/1"4 +Cc*' P *0)	 (44)

The loss expressions could be converted into efficiency

expressions as follows:

for motors:

%vol ="gout "/q in _ g theor/ (gtheor+Qq) =1 / (1+A qA D'*cv))	 (45)

Zmech =Tout/tOT in
ot	

(Ttheor AT) /Ttheor=1- AT/ (D I *QP)	 (46)

for_pump__

vol^gout g in s+ 	(gtheor Qg) /gtheor`"1+Aq/ (D' * LO) 	 (47)

^mech - 
T

out^^ /T in Ttheor / (Ttheor+AT) 1 / ( 1 +O T/ (D' *O p)) (48)

If the above expressions are used at low load and speed
i

conditions, the best fit of the coefficients C	 , C	 ,PLT VLC
etc. to experimental data yields numerically different

values of the coefficients at motor and pump operation

respectively. Thus, the limit values of AT and Oq will

not be equal for the pump and motor case when LAP and c,J

approach zero.

This discrepancy is, however, of lesser practical impor-

tance. It could probably if necessary - be overcome by

developing the state-of-the-art of the loss theory through

splitting the load losses into LET and S (D p) and the speed
losses into aq and Ac„,- ►
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F-11-machines

The following loss models developed by Volvo Flygmotor prior
to the present project have been used;

M1121
Z^T - D'*(1.42*10

5+5.592*10-3 *Pequ )	 (49)

&q - Dl*(1.78*10- 8 
*Pequ 

+8.74*10- 1 O*W	 (50)

motor•

AT - D*(3.30*10 
5 
+8. 96* 10- 3* 

Pequ

Aq - D$*(3.92*10- B* Pequ + 3.50*10- 10 * 4)	 (52)

The above coefficients are obtained for a fluid with
S = 860 kg/m3 and it - 0.026 Ns/M2 . The coefficients may be

modified to apply to other viscosities, as indicated in
Eq. (44).

The estimation of weight, volume, and maximum speed is
based upon trend curves for F-11 machines. (cf. F 16).

I
(CM3/rev)

Fig. 16. F-11 series - trends for weight and speed
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Ir,

The data points in Fig. 16 represent a mixture of points

from basic and updated designs. An almost linear relation-

ship still exists between the weight We and the displace-

ment f expressed as

We - 0 * 0.47 t 10 6	(kg)	 (53)

The package volume is difficult to define uniquely. However,

the density of an enveloping cube is approximately 2750 kg/m3

thus, the volume Vo can be written,

Vo a D * 0.17 * 10 3 	(m3)	 (54)

The maximum speed is modeled as

40 max - 4.0 * 10 -3/u + 240	 ( 1 /S)	 (55)

V-20 machinesj_2x2gEiments

The modeling of losses in the variable-displacement V-20 series

of machines is based on a series of performance tests with

special emphasis on operation at low yoke angles (low

and low speeds (u)) as well as at elevated back pressure.

A back-to-back testing technique (PRC) has been used. A

circuit diagram of the performance test setup is shown in

Fig. 17. The quantities measured were (items 1 through 5 refer

to meter positions, cf. F 17.

1. Tbrque t	10 through 100 Nm	 4 2% through + 1%

100 through 1000 Nm	 + 1% through + 0.5%

2. Pressure,	 2.5 through	 10 MPa	 + 3% through + 1%

10 through	 40 MPa	 + 11 through + 0.25$

3. Flow,	 0.17 through 7.6 * 10-3 m 3 /s + 0.5%

4. Speed,	 (any) t 0.5%

5. Temperature, (any) ± 10C

the given measuring accuracy is assumed to change
linearly over the given measuring regime.
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Measurements have been carried out for the following matrix
of parameters:

eume_qperation

p; 0 1 Sp 15, 25, and 35 MPa
n	 : $00	 1500, 2000, 2500, and 3000 rpm
k(-46): 40, 25,	 is,	 10, 6, and 30

Lnot2r_22gEetion
0	 S,	 15, 25, and 35 MPa

100, 200 # 500,	 1500, 2000, 2500, and 3000 rpm

%(—)6); 40,	 25 #	15,	 10, 6 t 4, and 30

All tests above were run at Pback N 1 "al 3 =860 kg/m 3 and

/k = 0.026 Ns/m2
(Shell Tellus 46 oil at 5000)

Special tests wereperfoemed with elevated temperature and
increased back pressure, respectively for the following
reduced matrix of paramters:

4 P; 5, 15e 25 (and 35) MPa
n(-+O); $00 and 2500 rpm

C((46); 25 and 100

back pressure 10 MPa at t	 5000, and

temperature 700C at Pbaok	 1 MPa

Results of the tests, expressed as efficiencies, are given
in Appendix 2.

V-20- machines L _mathematical model

The mathematical model has been developed in the following way;
Experimental data has been transformed to the form:

g^l T and 6 q
as a function of
&c to f A p (and Pback)

For each 6 , data has been plotted in various ways in order

to refine and identify each of the losses given in Eels, (36)

through (41). The coefficients CPTL' CVCLj etc. were thus
obtained as functions of
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The influence of the variable displacement 6 was then taken

Into account purely numerically, by fitting a third order

pol.ynomical of Sto 
CPTL' CVCL' etc * Some of the polynomial

terms vanished.

The remaining terms give the following loss expressions:

T wD O * ((C1+C2*6) +(c3  * %+c
4
 * & 2+C5 * e, 3 ) * t.)2+

+(C 6+C7 *6 ) *0+(C8+C9* 6+C 10
* e 2+C 11 * 6 3)k p equ)	 (56)

6 goDMax*CC12*pequ+(C13+C14* (+C15* 82+C16* ,^3) *

U) * A p l 	 ( 57)
Separate sets of C 1 through C16 for pump operation, Cp,

and motor operation, Cm , are listed in Table 2. The fractional.
displacement E is in both cases positive.

TABLE 2. Loss coefficients for pump an y motor operation.

Type of Joss
Subscript

( Index) Cp Cm

Parasitic torque 1 2.12 * 10 5 1.23	 * 105

-0.706 * 105 -0.706 *	 105

Turbulent flow 3 1.66 -6.20

resistance 4 6.00 23.63

5 3.84 -10.51

Viscous friction 6 1.10 * 10 3 1.24	 * 103

7 1.10 * 10 3 1.59	 * '103

Dry friction 8 9.53 * 10-3 8.21	 * 10-3
9 3.53 * 10 -3 -2.72	 * 10-3

[il l0

0 80.16 *	 1q-3

0 -49.28 *	 10-3

Viscous leakage 12 6.00 * 10 -
8

6.00	 *
10-8

Compressibility 13 4.62 * 10
-10 4.33	 * 10-10

14 0,95 * 10' 10 3.77	 * 10_10

15 13.41 * 1-0'
- l 0

-4.70	 * 10-10

15 -12.27 * 10 !10 0

Lai



The coefficients in Table 2 are calculated for a fluid

860 kg/m3 and ._ n.026 Ns/m2,

They may be modified to apply to other densities and v

cosines as indicated in Eqs. (43) and (44) .

The accuracy of the numerical loss model is in most cases

within the limits of experimental errors embedded in the data

used. At full load there may be errors of + 1% in both r^ Vol

and 7.mech' As the absolute errors are of the same order of

magnitude, the relative errors increase with decreasing load,

making the I predictions uncertain in the low-power regime

(C 10% of maximum power) .

The modeling of weight, size, and maximum speed is of necessity

based upon a limited and inhomogeneous number of data for

variable displacement machines. Only three units exist of the

V-30 series and 2 units of the V-20 series. In each series

one unit is of an updated design, the others of the basic,

design. Existing data are plotted in F 18.
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If the well-documented trends for the F-11 series machines

are used	 (cf.	 Fig.	 16 and Eqs. (53)	 and	 (55)), the models

k, for V-20 series machines could be based upon these trends

f' and the data for the V-20-180 updatc4 machine only, yielding

F We	 D*0.75*10 6 	(kg) (58)
4

Vo = D*0.45* 10 3	(m3) (59)

'+ax^ 4.0*10 -3/D+300	 (1/s) (60)
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7. MODELING OF GEARED COMPONENTS

The following significant geared components are parts of the

transmission systems A and E and contribute to the power loss:

- fixed-ratio gear transmission

- two-speed planetary gear train

- final gear of the conventional type
- (clutch)

other components, such as valves, hoses, fluid reservoirs,

filters, coolers, and control equipment, are assumed not
to influence the transmission characteristics appreciably.

Also their weight and volume might be expected to be the same

for various system configurations. Therefore, they are not
modeled and not incorporated in the numerical evaluation and
optimization procedure.

When modeling power losses for mechanically geared transmissions,

one must consider the following types of losses. *)

T2ESue_1osses

A T = const.: idling/parasitic loss

A T N T: load proportional/gear mesh loss

Speed^losses

ICO	 0	 no losses/positive action.

The significant geared components are modeled numerically as

follows:

Fixed-ratio- gear_ transmission
The transmission ratio, denoted Rconn-, gives the theoretical

speed and torque conversion relationships

w out	 "Oin/Rconn	 (61)

rout, theor	 Tin * Rconn	 (62)

*) Magi, M On the Efficiencies of Mechanical Co-Planer
Shaft Power Transmissions, Diss. Chalmers Univ. of

Technology, Gothenburg, Sweden, 1974.,
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Due to idling and gear-mesh losses, the real torque output

is modified to

Tout	 (T in - & T) * Rconn * r? mesh	 (63)

Numerical loss coefficient values are given in Table 3.

The weight and volume are assumed to be constant because

the maximum transmitted power is constant (cf. Table 3).

N.B. When the transmission is disconnected from the fixed

displacement machine, the load-dependent gear-mesh

Losses disappear, but the idling losses are still

affecting the output torque (cf. the position of the

clutch in Fig. 15).

Two-22eed_2l2n2t2ry_2e2r_train

At direct gear the transmission ratio is unity; the speed

reduction gear has the ratio Rlow, giving the theoretical

speed and torque conversion relationships for the low gear:

W out `in / Rlow	 (64)

T	 T	 R
*	 (65)

out,theor	 in	 low

Due to idling and gear mesh losses, the real torque output

is modified to

Tout = (Tin AT) * Rlow * 2 mech	 (66)

For the direct gear the real output torque is

Tout	 Tin	
&T
	 (67)

Numerical data on losses and weight/size coefficients are

given in Table 3

Final 222E_2f_the_conventional type

This transmission consists of a hypoid gear and a differential

gear in series, converting the rotational mode of motion into
a linear mode of motion at the periphery of the driving wheels.
The transmission ratio R' defines the theoretical speed and

torque relationships. R' is given as the amount of rotation of

the universal shaft (in radians) per traveled distance (in meters)
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v = win/R'	 (68)

Ftheor	 Tin * R'
	 (69)

Due to idling and gear mesh losses, the real torque output
is modified to

F = (Tin - d T) * R ` * gmech	 (70)

Numerical data on losses and weight/size coefficients are

given in Table 3.

TABLE 3. Loss and weight /size data on geared transmissions.

Component QT*) gmech *) We	 (kg) **) Vo(m3)**1

Fixed-ratio

geared transm. 0.03*Tmax 0.97 7 0.005

Two-speed

planetary gear 0:05*Tmax 0.96 7+-0.003*Tma 0.004

Final gear 0.05*Tmax 0.96 - -

Clutch - - 3 0.003

*1 Data extracted from; Reichenbacher, H: Gestaltung von

Fahrzeuggetriebe, Springer-Verlag, 1955.

**) Data based upon Volvo Car Co. rules of thumb; data

contain minimum casing.

I
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8. OPTIMI'ZAT'ION CRITERIA

The contract originally prescribed the highest possible

efficiency at steady-state driving in the speed range of

6.7 through 22.4 m/s and the lowest possible volume, weight,

and complexity as optimization criteria of the system.

Highest possible mean value of the total efficiency over

some steady-state speed regime seems to be an oversimplified

approach to the problem, since the total fuel economy is one

of the main problem areas for road vehicles. The total fuel

economy is, however, strongly linked to the type of driving,

i.e., to some driving cycle.

In the present analysis the fuel economy in a wide sense is

taken as a basis for the optimization of the systems A and B

recommended for further analysis (cf. p. 24 ).

The direct fuel economy is based upon the EPA Urban giving

Cycle. Indirectly, the package weight increases the rolling

resistance and the inertial load and thus the fuel economy.

Similarly, the package volume increases the front area of the

vehicle and thus the increased drag losses also increase the

fuel consumption.

The complexity of the system (and the cost related thereto),

the reliability, and the driving comfort and other non

quantitative values have been considered in the preceding

investigation of candidate systems.

The EPA Urban Driving Cycle has been analyzed in detail. The

results are summarized in the Driving Cycle Matrix (cf. F4).

Another similar matrix may be computed, containing information

on system performance as a function of F and Q. I,f the system

configuration, component size, and loss models as well as the

control situation are known, it is possible to calculate the

performance characteristics (efficiencies, flows, torques,

etc) for each output condition defined by F and v.

___	 _..:_—......yws, .......,^Yw ^,__t^:^̂ ► ,,^.^^.:...,^^?. ^.T,:r.^e,+.:..	 r^.m..:.x..,	 _	 ju
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Should two or more control. positions (gear in operation and

displacement utilized) permit the same outpet, the control

mode having the lowest power loss is Chosen. The results

are summarized as system characteristics matrices (F 19) .

):N

7.5

x = value of some
performance
characteristics
variable, e.g,

5.0	 ^vvol' gmech, q)

1SF' = force increment = 50 N	 1

2,5
LV = speed increment = 0.5 m/s

X x X

Fig. 19. System characteristics matrix

The total energy consumed during some specific driving cycle

is obtained simply by multiplying the driving cycle matrix

and the power input matrix, which is one of the system charac-

teristics matrices.

This kind of energy consumption analysis could be repeated for

any system with arbitrarily chosen sizes of components. In

addition, for each system analyzed one must check if the

system meets the acceleration requirements and if the con -

figuration is capable of continuously producing any combination

4	 of ,force and speed in the operating range of the vehicle.

The results obtained are combined to a value function, the

basis term of which is the calculated energy consumption,whereto

are added terms for weight and volume, converted to increase of

I	 energy consumption as described earlier.
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To the value function must also be added, for formal reasons,

"penalty terms" for the cases where the acceleration and

force continuity requirements are not fulfilled. These terms

must, however, become zero when the value function is mini-
mized, which means that at optimum conditions the acceleration

requirements and driving force continuity are fulfilled.
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9. METHODS OF EVALUATION

Numerical calculations have been carried out on an IBM computer,

using the FORTRAN IV programming language.

The total computer program consists of a number of independent

subroutines. The main subroutine blocks

- analyze the driving cycle and compile the matrix of the

length of the driving time at various combinations of F

and v (the driving cycle matrix)

- calculate the power consumed by each modeled component,

provided that the operating conditions are known

- calculate the volume and weight of each modeled component

- check the acceleration and driving force continuity re-

quirements

- find the operating conditions for a given set of components

(maximum displacements and gear ratios) ar ,.d boundary con-

ditions (differential and back pressure f output force, and

speed). This subroutine produces the data for the following

system characteristics matrices:power loss, input flow,

volumetric and total efficiencies, and control data (high/

low gear and yoke angle).

In order to eliminate time-consuming iteration, the com-

putation is based on a function-mapping technique, whereby

F and v are mapped as dependent variables, being functions

of input pressures and flow as well as of control data.

Interpolation then gives flow and control data as functions

of F and v

- find the optimized set of components characterized by the

minimum point of the value function as defined in the

preceding section. The direct search method, developed by

Nealder & Mead, using the simplex concept for non-linear

problems, has been used to avoid just trial and error

techniques for the optimization *)

- prepare output data (interpolate data for drawing of

performance maps, etc).

Elm6n, Claes: Optimization of Hydraulic Transmission of Vehicle,
M.Sc. thesis (in Swedish), Chalmers Univ. of Technology, Dept. of
Mechanical Engineering (Machine Elements), 1980.
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The computation is governed by a control program, calling
on the various subroutines. each computation requests the

specification to the control program of input pressures

(differential and back) and an assumed set of values of
paramehers to be optimized. The optimization algorithm

guarantees only the detection of local minima; therefore

various starting sets of parameter values must be tried to
find the global minimum of the value function.

Found global minima are all very flat. Therefore, the
optimization is not very distinct.

The results of each computation are obtained as definite

values of the total energy loss and characteristics of
optimized components; displacement/gear ratio, weight,
and volume. In addition, system characteristics matrices
are obtained as discrete data with increments in accordance

with Fig,4 1 and as computer-drawn constant-value graphs,
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10. NUMERICAL RESULTS

The computer program package developed in accordance with the

description in the preceding sections has been used to

analyze and optimize the hydrostatic drive systems A and B,

as defined in Figs. 14 and 15.

Both systems have been evaluated for 5 different differential

pressures: 6,895, 13,79, 20.60, 27.58, and 34.47 MPa (1000 0 2000s 3000,
4000, and 5000 psi) and a negligible back pressure.

In addition, System A has been evaluated for 3 different back

p-ressures: 3.447, 6.895, and 13.79 MPa (500, 1000, and 2000 psi) at a
differential pressure of 20.68 MPa (3000 psi),

Optimized parameters are

for_System_A_

Dvar	 _	 displacement of the 
variable motor

Rlow	 -	 transmission ratio of the lower gear of the two-

speed planetary gear train

R'	 _	 transmission ratio of the final gear (in radians
of revolution per traveled distance)

for System_§:

Dvar	 displacement of the variable machine

Dfix	 displacement of the fixed motor

Rconn	 transmission ratio of the connecting gear

i'	 transmission ratio of the final gear (in radians
of revolution per traveled distance)

Calculated quantitites for each set of optimized parameters are:

Eloss	 energy loss during completion of the EPA Urban

Driving Cycle

We	 =	 package weight
Vo	 package volume

The theoretical amount of energy required to complete the EPA
Urban Driving Cycle is the same for all cases :valuated:
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E theor	 6.70 * 14 6 Nm	 (7'1

The above-mentioned optimized and evaluated data is given
in Table 4.

In addition to the limited amount of summarized information
i

given in Table 4, a large amount of detailed data has been

calculated for each of the 13 cases evaluated.

For each case data of the following performance characteristics
matrices has been evaluated:

total. efficiency

- volumetric efficiency

y control data ( E and high/low gear)

- power loss

input flow rate

Each matrix contains about 5500 non-zero combinations of speed

and force with a speed increment of 0.5 m/s and a force incre-
ment of 50 N. This number of data has been used to prepare the
performance maps given in Appendix 3. The results obtained

are illustrated by the reduced size performance maps de-

picted in Figs. 20 through 24 , computed for System A at a 20.68 MPa
differential, pressure and negligible back pressure. i

The computed performance data points are also stored as data
files on computer recording tape. The stored amount of data

has been reduced by deleting every second row and column of

the original performance characteristics matrices.
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11. CONCLUDING REMARKS

Limitations in Theory Used

1. The theoretical model assumes perfect external control of

torque, and no time losses are considered when applying

the initial torque and when shifting the gears.

2. The influence of secondary units, e.g., valves, filters, and

hoses, is not considered when calculating losses and

evaluating package weight and volume. (The influence is
assumed to be the same for all cases studied).

Component Models_

3. The model of the VFA V20-180 machine predicts - in the
loaded regime - loss values that are very close to the

only set of available experimental results, but are some-

what lower (i.e. higher efficiency) than the values from

the accumulated experience from V20-135 machines. The state-

of-the-art of loss modeling does not permit an excellent

loss prediction in the low-load regime of hydraulic machinery.

4. The model of the F-11 machines seems to overestimate the

efficiency by maximum 2% in the high-load regime.

5. The loss models of the mechanical components are deliverately

designed to be somewhat conservative. The real efficiencies

of these components might be improved by a few percent.

6. The modeling of weight and volume of mechanical geared

components depends very much on the assumptions made. There

fore, given data are to be considered more as an educated

guess than definite values.

Obtained—Results-

7. All calculated optima are rather indistinct, i.e. neighbouring

parameter values give almost the same performance

characteristics.
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B. The total losses are almost independent of pressures
used; however, the weights and volumes of the systems
increase drastically at decreasing differential pressure.

9. Calculated energy losses may be converted to milage

figures for the EPA Driving Cycle. Assuming a 30% engine

efficiency and a 95% ef f iciency of an additional hydrostatic

pump connected to the engine, the best cases investigated
will have a fuel (gasoline) consumption of less than

10 liters per 100 kilometer (23.7 mpg).

10. Obtained control strategies deviate somewhat from initial
assumptions resulting in slightly "oversized" hydraulic

components. This is especially true for system B, were

power recirculation (PRC) tends to be suppressed.
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Appendix 1:	 Configurations of Candidate Systems
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DESCRIPTION OF CANDIDATE SYSTEMS

In the following description of candidate systems only

the main components have been listed, as e.g. the hydro-

static motors, and necessary clutches and gears.
Hydraulic valves and the (microprocessor-based) control

system, as well as the final transmission have been
excluded. As we do not manufacture hydraulic valves to
be used outside our units the background for predicting

the development on those parts is limited to some extent.

D1,2... indicate maximum (or constant) displacement of
the hydrostatic machines, Vindicates the fraction of

the max displacement used.

F indicates the driving force

P 1 /P2 indicate the hydrostatic supply and backs pressure

C 1r2 ... indicate clutches

G1,2 ... indicate single-step gear transmissions

a

I



1. Single_motor

hydraulic

porter input

mechanical

(14ftr 

output

F

'	 ^yi^''\$ tip`•: ^r ,,\ ^.^ +; ,^ 	 ,. •i;^1;ii::'p\j4{}{S'i;}}h•,\^i`:\^:^/,; i;\^j^^^ Ii P !i^.^\\:r^:$^\ ++i  4\ rr J O ^ ti ti ?. t:}!,::v:{ + \ 	 ^^ . 1
'+^^ f̂ ,` 

,rry 
^^	 {?1+r.. \^ 4, \ %r ^^^ + \\ +rr .,\\ ryi ,^̂ ^ rrr 1`^ + r  tii

:.aasw^....:.w^.cvras" 	 a^;i°Y i.^sz^i^ - _	 _. —	 ^,.. . 	 ti^.::t^s+.^m}a:.^e...̂.... _	 ar^..^u..:.:,,,. 	 • - _ .



io 1

C
1
 or C, in operation
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2. Two Motors, Clutched in Parallel to an Ordinary-	 I --------------------------	 ----

Shaft.

2a Two variable motors

F

D

9	 c1 or c2

D2
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C 1 and/or C Z in operation

r
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2b Two variable motors as in 2a

D1+p2

1 c t or c2
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2c one variable and one fixed motor
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2d One variable and one fixed motor as 2c

In addition to the above configuration we use the

"hydraulic polarity shift" for the D, unit in the higher

Force region where it partly operates as pump implying

power circulation.

;.,
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2e one variable and one fixed motor as 2c

Addition of "slow" hydraulic pol ar ity swift for

unit D2-

DI

G

u
au

^i	
b 2

o.a
D,	 2D 2 , gear ratio t

F

Dl+D2

G closed

D	 (Polarity
shift unit 2)

P	
f

open4.	

C closed

D1-Q2
(unit 2

f	 OpUMP^

r
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3. one 5ingl1_Motor_With_a Two ^. Sneed Transmission----_.-..__-__-.,..,,,,,,,,___
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two gear

power shit

low
gear

direct
gear

f
I
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t t
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4._ather Systems_oE_5o:ne_hierf.

4a One single_ motor with a three speed_ transmission

Possible gear ratios low	 1:4

medium 1 : 2

C	
three gear
power shift

low
gear

medium
gear

direct
9eaz
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k

Y

4b Two motors with a two s peed transmission

Many choices of gear ratios are possible.

D 2 ~2D I , G 1 0112. G 2 a all
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4c Three motors clutched in 2arallel without
power circulation

F

1
D,tp2+D3

D1}D3

h

-	 A1 +p 2
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Appendix 2:	 Test results V20-180 Machine



V20-180 MACHINE

OPERATING AS A PUMP
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EFFICIENCY V20A-180
AS PUXP. OIL SHELL TELLUS 46. TEMP 50°C	 FEED PRESSURE 10 BAR

DIFF. PR SSURE	 = 40 0 SPEED RPM	 D= 178,07 cm 3 / Rev.

Q p bar	 5Q0,	 1500	 2000	 2500	 3000

Vol. eff.	 0,998	 0.999
0	 blech	 eff.	 0 1 000	 0,000

Tot. eff.	 01000	 0,000

0,988	 0 1 995	 0 1 996	 0,995	 0,995X
50	 0,920	 0,854	 0,824	 0 1 785	 0,738

0,909	 0,850	 0,821	 0 1 781	 0,734

0,974	 0,986	 0,988	 0,986	 0,985!`
150	 0,969	 0,945	 0 1 932	 0,919	 0,894

0 1 94;	 0,932	 0,921	 0,906	 01880

0,956	 0,975	 0 1 978	 0 1 977	 01976'
250	 01982	 0,968	 0,956	 0,947	 0,936

0 1 939	 0 1 944	 0,935	 0,925	 0,914

0,933	 0,961	 0,966	 0,967	 0,971"
350	 0,977	 0,976	 0,972	 0,964	 0,949

0,911	 0,938	 0,940	 0,933	 01921

67

,

Ol. _ 25 , 	D =	 116,68 cm 3 ,^ Rev.

0,997	 0,993	 0,99-1	0,988
0	 0,000	 0,000	 0,000	 0,000

0,000	 0,000	 0,000	 0,000

0,981	 0,993	 0,990	 0,982	 0,989
50	 0,912	 0,836	 0,807	 0,774	 0,725

0,895	 0,831	 0,800	 0,760	 0,717

0,972	 0,974	 0,974	 0,972	 0,977
150	 0,947	 0,935	 0,929	 0,913	 0,893

0,921	 0 1 910	 0,904	 0,888	 0,872

0,942	 0,962	 0,966	 0,968	 01964
250	 0,960	 0,956	 0,951	 0,942	 01936

0,904	 0,920	 0,919	 0,911	 0,902

0,902	 0,943	 0,950	 0,953	 0,951
350	 0,956	 0,960	 0,959	 0,957	 0,953

0,863	 0,906	 0,911	 0,912	 0,907

x -'.Test data fell 	 beyond the calibrated range of the
flowmeter.	 The number shown was calculated using
extrapolation.

t

A
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^i

DLFIF, PRESSME c7C	 15, SPEED RPM D = 71, 35 cm 
3 

/-,Re  v .

d p bar 500 1500 2000 2500 3000

Vol. e.£f. . 0,994 0 1 999 0,996
0	 Mech.e£f. . 0,000 0, 000 01000

Tot.eff. 0,000 0,000 0,000

0.969 0,987 0 1 984 0,985 01983
50 01848 0,778 0,757 0,738 01693

0,822 0,768 0 1 746 0,726 0,681

0,938 0,566 0,968 0,968 01965
150 0,931 0,902 0 1 897 0,878 0,869

0,873 0,871 0,868 0,851 0,839

0,898 0,942 0,946 0,94.8 0,946
250 0,947 0,937 0,928 0,925 0,92

0,850 0,883 0,878 0,877 0,873

0,914 0,920 0,924 0,924
350 0,946 0,942 0,938 0,943

0,865 0,867 0,866 0,872

o(, = 10° D = 48,43 an, 	 Rev.

0,992 0,999 0,998 0,997 0,994
0 0,000 0,000 0,000 0,000 0,000

0,000 0,000 0,000 0,000 0,000

0,954 0,983 0,964 0,963 0,981
50 0,803 0,727 0,701 0,665 0,643

0,766 0,715 0,689 0,653 0,630

0 1 910 0,956 0,958 0,959 0,956
150 0,904 0 1 870 0,857 0,838 0,850

0,822 0,832 0,821 0,804 0,813

0,869 0 1 921 0,925 0,929 0,930
250 01922 0,909 0,905 0,897 0,888

0,801 0,837 0,837 0,833 0,826

0,8771 0,886 0,893 0,893
350 0,924 0,924 0,921 0,918

0,810 0,819 0,823 0,820
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IF

D_TF.F .PRF.SSURE d s 60 	 SPEED RPM D = 29,40 an3/Rev.

500 1500 2000 2500 3000Q p bar

Vol. eff. 01993 0 1 999 0,999 0 1 999 0,999
0	 Mech. eff. 0,000 0 1 000 0 1 000 0 1 000 01000

Tat. eff. 01000 0 0 000 0 1 000 0,000 0,000

0 1 931 0,972 0,975 0,978 0,977
50 0,709 0 1 632 0,585 0,557 0,532

0,660 0,614 0,570 0,545 0,519

0 1 864 0,928 0,931 0,937 0,939
150 0,856 0,816 0089 0071 0,755

0039 0,757 0,734 0,732 0,709

0,872 0,881 0 1 891 0,895
250 0,873 0,854 0,848 0,842

0,761 0,752 0,755 01753

0,811 0,828 0,840 0,847
350 0,895 0,886 0,879 0,869

0,726 0 1 734 0,738 0,736

p(_ 3° D = 14,55 an3/ Rev.

0 1 999 0 1 999 0 1 999 0,999
0 0,000 0,000 0,000 0,000

0,000 0,000 0,000 0,000

0 1 943 0,954 0,957 0,956
50 0,464 0,430 0,400 0,374

0,437 0,410 0,383 0,358

0,854 0,867 0,878 0,883
150 0,696 0,669 0,633 0,621

0,594 0,580 0,556 0,549

0,749 0,767 0,796 0,800

250 0,784 0 1 763 0,744 0,725
0,587 0,585 0,592 0,580

0 1 621 0,656 0,679 0,697

3`50 0,823 0 1 806 0,796 0,787
0,511 0,530 0,,540 0,,549

LOW '	 16



V20-180 MACHINE

OPERATING AS A MOTOR
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^I

EFFICIENCY V20A-180
AS MOTOR. OIL SHELL TELLUS 46. TEMP 50°C BACK PRESSURE 1 0 BAR.

cam, PRESSURE

A p bar

Vol. eff.
0 Mech. eff.

To.. eff.

50

150

250

350

(:^C = 40°	 SPEM RPM

500	 1500 2000 2500

D x 177,46 =3/ Re v.

3000	 100	 200

0,999 0 1 999 01998 0 1 998 0 1 999' 0,995 01996
0 1 000 0 1 000 0 1 000 0,000 0 1 000 01000 01000
0 1 000 0,000 0 1 000 0 1 000 0,000 01000 0,000

0,992 0 1 995 Q t 995 o t 996 0,996, 01952 01976
0,934 0 1 849 0 1 793 0 1 729 0 1 651 01948 0,970
0 1 926 0,845 0,789 0 1 726 0 1 649 0,903 0,946

0,981 0,990 0 1 990 0,991 0,992, 01955
0 1 977 0,953 0 1 925 0,906 0,882 01984
0,958 0,943 0,916 0 1 898 0,875 0,939

0 1 967 0,982 0,984 0,985 0,986'
0,961 0,964 0,950 0,936 0,923
0,948 0,947 0,935 0,922 0,910

0 1 947 0 1 974 0,978 0,980 0,982X
0,962 0,974 0,962 0,949 0,938
0,930 0,949 0 1 940 0,929 0,921

C>,' - 25O
	

D = 114,48 an 3/ Rev.

0

50

1.50

250

350

0 1 994 0,999 0,993 0,991 0,996
0,000 0,000 0 1 000 0,000 0,000
0 1 000 0 1 000 0 1 000 0,000 0,000

0,982 0,996 0 1 968 0,987 0,993
0,944 0 1 845 0,801 0,735 0,659
0,927 0,841 0,792 0,726 0,-654

0,968 0,986 0 1 981 0,980 0,986
0,970 0,940 0,933 0,911 0,882
0,939 01928 0,935 0,893 0,670

O t 952 0 1 972 0 1 970 0,971 01978
0,968 0,959 0,953 0,942 0,922
0,922 0,932 O t 925 0,91; 0,901

0,928 0,956 0,959 0,960 0,963
0,967 0,970 0,963 0 1 956 0,945

01999 01987
01000 01080
0 1 000 01000

0,940 0,956
0,911 0,944
0,856 0,902

0,924
0,970
0,896

i

0,898 0,927 0,923 0,918 0,910

x	 Test data fell beyond the calibrated range of the 	 i
flowmeter. The number shown was calculated using
extrapolation,
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/

°

A p bar 500 1500 2000 2500 3000 100 200

Vol-eff. 01991 0 1 999 0 1 995 0 0 991 0,987 00999 
X

01982
0	 Mech. eff. 0 1 000 0,000 0 1 000 0,000 0,000 01000 OtOOO

!1'= * eff. 01000 0 1 000 0 1 000 0 1 000 0 1 000 01000 01000

0 1 969 0491 0 0 988 0 1 984 0 0 980 0,897N 0,930
so 01890 0 1 784 0 1 730 0 1 677 O f 623 Of855 0,908

0 1 863 0,771 0,721 0,666 0 1 611 01767 01845

150 0,950, 0 1 920 0 1 902 0,890 0,873 01950
Oj8s5 0 1 89s O t S79 .0 1 865 0 1 845 01839

0,916 0,955 0,957 0 1 956 0,954
250 01955 O^937 0 1 93 3) 0 1 926 Ot915

0,875 0,895 O t 893 0 1 885 01873

0,875 0 1 928 0,935 0,938 O^936
350 01954 0,954 0,946 0, 94 5 01936

0 1 838 0,885 0,886 0,886 0,877

01991 01999 0198 01- 0 1 990 0 1 989 01999 
X 01999X

0 01000 0 1 000 MOO 0^000 MOO 01000 01000
0,000 0,000 0,000 0,00C 0,000 C1000 01000

so 0, 853 0 1 693 0,040 0,560 0,507 0,8:7 01880
0,816 0,682 0,625 0,547 0,495 016"15 0,807

0,917 0,961 0,955 0 1 958 0,957 0,843X
150 0,942 0,889 0,871 0,853 0,827 Of942

0,864 0 1 854 0,832 0,817 0,791 0,794

0,871 0,933 0,931 0,935 0,935
250 0,949 0,912 0,907 0,901 0,891

OjS27 01851 0,844 0,843 0,833

350 Ot944 0,939 .0,932 0,926 0,915
0,755 0 0 841 0,842 0,842 0,833

x - Tes t date fe I I beyond the ca I i b rated range of the

flowmeter, The number shown was calculated using

`
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DUP. FFESSURE 0( s 60 SPEED RPti D : 28, 97 =3j Rev.
r

$00 1500 2000 2500 3000 200Q P bar

%101. eff. 0488 0 1 999 0 996 01990 0 1 985 0,999
0	 14t--h. eff. 0,000 0,000 01 000 0 1 000 01000 01000

Tot. eff. 0 1000 0 1 000 01000 01000 0 1 000 0,000

0,932 0,976 01 974 0 1 971 0 1 968 0,859x
50 01738 0,521 0,434 0 1 347 0,260 0,781

0,688 0 1 508 0,423 0,337 0,252 0,671

0 1 862 0,938 0,939 0,937 0,936 0,754x
150 0,897 .0 1 810 0 1 795 0,752 0,71 38 01897

04773 0 1 759 0,747 0,705 0 1 590 14 ,676

0,706 0,894 0,900 0,902 0,898
250 0,920 0,868 0,859 0,850 0,842

0 1 649 0 1 776 0 1 773 0,767 0175-

0,843 0,851. 0,859 01858
350 0,907 0,901 01891 01890

0,765 0 1 767 0,76 7 0,763

9.4 
0

D x 19,73 c^r3 : 	Rev.

0,989X 0199" 01998 0,999 01906 01999
0 0,000 0,000 0,000 0100: 01000 0,00

0 1 0000 01000 01000 ; , 000 01 03 0,00 y

0,902x 0,956 0 1 965 01973 0,967 0,694'

50 0,637 0,318 0,191 0,064 0,000 0,764
0,575 0,305 0,184 0,062 0, 000 0,531

0,707' 0,903 0,914 0,924 0,919 0,534x
150 0,849 0,743 0,701 0,658 0,616 0,870

0.601 0,671 0,640 0,608 0,566 0,465

0,844 0 1 860 0,871 0,866
250 0,828 0,803 0,777 0,752

0 1 699 0, 690 0,677 0,651

0,779 0,803 0,613 0,805
350 0,864 0,846 "v, 326 0, 832

0,673 0,680 0,672 0,670

x - Test data fell beyond the calibrated range of the

flomneter. The number- shown was calculated using

extrapolation,



DnT. PPESS'URE 3^ SPA R814 D a 14 ,74 CZti3/ Rev.

$00 1500 2000 2500 3000C p bar

Vol. off. 01999 0 1 998 0 1 999 0 1 999 0,999
o mwh, off. 0.000 0 1 000 0,000 0,000 01000

Tot. off. o, 000 o,000 01 000 o,000 01000

0.879 0,947 0 1 958 0,961 01956
50 01511 0 1 085 0,000 0 1 000 01000

0 1 449 0,081 0 1 000 0,000 0,000

0,879 0,890 0,900 0,894
15O 0452 0,596 0,539 0,452

O,S74 O,S30 0 1 485 0,431

0,810 0,821 0,835 0,833
250 0,766 0 1 732 0,715 01664

0,620 0,601 0,597 0,553

0,733 0,748 0,768 0,770
350 0,827 0,802 0,778 0054

0 1 606 0 1 600 01597 01580
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DIVE'. PRESSURE OC = 250 = 100

500 2500 500 2500Q p bar

Vol. eff. 00985 0,994 0 1 979 0,989
50	 Mach. eff. 0,933 0,744 0 1 868 0,605

Tot. eff. 0,919 0,740 0,850 0,599

0,963 0,985 0 1 925 0,965
150 0,959 0 0 907 0,939 0,860

0,924 0 1 894 0,868 01829

0,935 0 0 973 0,836 0,934
250 0,962 0,938 0,937 0,900

0,900 0,413 0,784 0,841

0,902 0,960 0,902
350 0,958 0,951 0,921

0,864 0,913 0,831

^S.

Y

aa3	 •.

4

i
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MOTOR

TEMP. 70°C VISCOSITY 16 cSt BACK PRESSURE 10 BAR
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EFFECT OF HIGH BACK

PRESSURE ON V20-180 MACHINE

OPERATING AS A MOTOR

f
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MOTOR
TE?1P 50 oC VISCOSITY 30 cSt BACK PRESSURE 100 BAR

t

f

RIFF. PRESSURE a _ :5° 1,00

500 2500 500 2500d p bar

Vol.	 eff. 0 1 973: 0,993 0,949 01987
50	 Mech. eff 0,901 0,717 0,763 0,500

Tot.	 eff. 0,877 0,712 0,724 0,493

0,954 0,985 0,898 0,964
150 0,934 0,887 0,877 0,798

0,891 0,873 0,787 0,770

0 1 935 0,974 0,853 0,941
250 0,940 0 1 893 0,895 0,868

0 1 879 0,869 0,764 0,818
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Appendix 3:	 PERFORMANCE MAPS OF OPTIMIZED SYSTEMS

SYSTEMS A AND B
Pressures 34, 47, 27, 58, 20, 68, 13.79 and 6,895 MPa
(5000, 4000, 3000, 2000 and 1000 psi)

SYSTEM A
Differential pressure 20.68 Mpa (3000 psi)
Backpressures 3,447, 6,895, 13,79 MPa
(500, 1000, 2000 psi)

VARIABLES
Total efficiency
Volymetric efficiency
Displacement fraction
Power loss
Total flow
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