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NOMENCLATURE kf reduced flutter frequency
M lift due to motion of sth blade per

aerodynamic matrix due to motion
LA

unit span, positive up

[

A,
Ar] aerodynamic matrix due to motion in L lift due to wakes of sth blade por

rth mode;	 r - U, 1, 2 ... N-1 s unit span, positive up
(AD) aerodynamic matrix due to wake thhr.thor nondimensional	 lift coefficients due

induced flow to bending and torsional motions,

{ADr) aerodynamic matrix due to wake respectively,	 in rth mode
induced flow in :he rth mode, tahr.taar nondimensional moment coefficients
r -	 0,	 1,	 2,	 ...	 1.-1 due to bending and torsional

a elastic axis	 locatioi. non- motions, respectively,	 in rth mode
dimensional twhr.twor nondimensional	 lift and moment co-

b semichord efficients, respectively, due to
chord wake i ii rth mode

[U].[Ds] matrices defined	 in Eq.	 (6); MM moment about the elastic axis due to
s - 0,	 1,	 2	 ...	 N-1

s
motion of sth blade per unit span,

[E] matrix defined	 in Eq.	 (3) positive nose up
C(s,r) defined	 in Eq.	 (3) Mw moment of sth blade per un it span

e base for natural	 logarithm
s

about the elastic axis due to
[G].[Gs] matrices defined	 in Eq. (6); wake. positive nose up

s	 - 0.	 1,	 2	 ...	 N-1 M Mach number

GKh s ,GKas quantities defined	 in Eq.	 (6) ms mass per wait span of sth blade

hs bending deflection of sth blade N number of blades in cascade

har bending deflection of blade in rth [P] matrix defined in Eq.	 (6)

mode of tuned cascade r integer specifying the mode of tuned

[1] unit matrix rotor;	 r - 0, 1,	 2 ... N-1
1, S mass moment o;	 inertia of sth blade ras radius of gyration of sth blade,

about elastic axis per unit span; nondimensionalized with respect

2 b2) to	 b

i ^
L.m;r

s s integer specifying blade. s - 0. 1.

Khs'Kas
bending and torsional	 stiffness 2	 .. N-1;	 also blade spacing

respectively. of sth blade (Fig.	 1)

k reduced frequency. wb/V SOS static mass moment of sth blade per
kar acoustic resonance reduced frequency unit span about elastic axis,

positive when center of gravity is
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aft of elastic axis
time
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V am velocity relative to the
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b
bladeblade

flutter speed
wr velocity induced by wakes
{X) column matrix, defined	 in Eq.	 (3)



X,1 rectangular coordinate axes
x
°s

dimensionless static unbalance of

(Y)
sth blade	 (-S	 /msb)

columnmatrix, 3ifined	 in Eq.	 (3)

as amplitude of torsional motion of sth
blade, positive clockwise

°s.id torsional amplitude of each blade ur
tuned cascade

oa r amplitude of torsional deflection of
a blase in rth mode of a tuned
cascade

O r interblade phase angle, 29r/N

Orl-Or2 interblade Huse angles at zcoustic
resonance

nondimensional	 eigenvalue.	 (W 1W)2

the
nondimensional uncoupled bending

frequency of sth blade

t°s
nondimensional uncoupled torsional

frequency of sth blaO-

ehs,a°s
logarithmic decrements of sth blade
in bending and tors13d, respec-
tively

Gh s tc, s damping ratios of sth blade	 in tend-

ing and torsion. respectively

n location of elastic axis measurtd
from	 leading edge,	 (a +	 1)12

us mass ratio of	 sth blade,	 us - ms/wob2

-u real	 part of eigenvalue. de f ined	 in

Eq.	 (8)

v imaginary part of eigenvalue,
defined	 in	 Eq.	 (8)

vF nondimensional	 flutter frequency

E stagger	 angle,	 Fig.	 1
P fluid density

W frequency
Wo reference frequency

Wh s
W

VT hms

°s
ff	 l

I M ) matri c es

C) differentiation with	 time

1 inverse of a matrix
indicate sunmation over r - 0,	 1.

Lr c'	 N-1

1.	 INTRODUCTION

The prediction of aeroelastic stability and re-

sponse of bladed-disk assemblies used in aircraft
turbofan engines has been receiving considerable

attention in the literature. While in most of the
research in th i s area all the blade	 re assumed

identical, a limited amount of work	 considering
either pure bending or torsional motion of the blades

has also included small differences between individ-
ual blades, known as mistuning. The results in these

references have shown a beneficial effect on blade
flutter and an adverse effect on forced response. In
spite of these findings, the lack of complete under-
standing of the phenomena has prevented its in-
corporation in current design analysis systems.
Furthermore, the importance of the effects of inher-
ent random mistuning due to manufacturing tolerances
and of controlled mistuning upon the aeroelastic
characteristics of bladed-disk assemblies have been

demenstrated by actual engine experince.5,8,9.
A research program in turbofan engine aero-

elasticity is being conducted in the NASA-Lewis
Research Center. As a part of this general program,
an effort is in progress to improve the basic under-
standing of turbofan engine aeroelastic characteris-
tics including mistuning effects. The effects of
blade mistuning on coupled bending-torsion flutter
and aeroelastic response due to wakes in incompressi-

ble fioo have been studied in Ref. 10. The purpose
of thi; paper is to continue and to extend the work

of Ref. 10 into the subsonic and supersonic flow
regime.;. To the best of the authors' knnwledge, the

6eroelastic characteristics of m i stuned cascades in
subsonic and supersonic flows using a multi-dag!ee of
freedom nv)del for the blades have not Jeen studied in

the published literature.
Except for the unsteady aerodynamic models;

the mathematical model considered is the same as
that used in Ref. 10. In the present paper, the
unsteady aerodynamic loads are calculated by using

Smith's 11 thory in subsonic flow and Adamczyk and

Goldstein's ll theory in supersonic flow with a

subsonic leading edge. A brief discussion is pre-
sented on three regimn_s of fl utter, which are based

on the decaying or propagating nature of an acoustic
pressure disturbance in both subson;c a,d supersonic

flows.

11. THEORY

P. Structural Model
As in Re	 , the disk is assumed to be rigid

o,d the rotor is modeled as an infinite, two-
dimensional cascade of airfoils capable of plunging
and pitching motions. The geometry of a tuned cas-
cade is shown in Fig. 1. As illustrated in Fig. 2,
each airfoil is suspended by bending and torsional

springs, K h	and K°	respectively. The

blade is as iiumed to bi rigid in the chordwise direc-
tion. and. consequently, this motion is neglected.

The coupling between bending and torsior due to
effects such is pretwist, shrouds, and rotation of
the rotor is modeled thrvugh the offset distance (b

x ° ) between the center of gravity and elastic
axis positions. The centrifugal stiffening effects
due to rotation are included in the bending and tor-

sional spring constants. The properties of the
blades are represented by their respective values at
75 percent span.

In the case of a cascade with identical blades
(tuned), it is usually assumed that the motion of the
blades is simple harmonic and that they vibrate in
each mode of the cascade with a constant amplitude
and with a constant phase angle between adjacent
blades. The phase angle is restricted to N
discrete values. Or - 2wr/1`1, where r - 0, 1,

2	 . N-1, and th-is the total number of allowed
interblade phase angle modes of the cas ade iL also
N. This restriction is known as Lane's^ 3 a:,sump-
tion. In the case of a mistuned cascadt , considered
herein, the general motion of a blade can be ex-
pressed as a sum of its motions in all possible
interblade phase angle modes. Then. the motion of

the sth blade is

h s/b	 hs/b 
"" O r s)

 
e1Wt -
	 e 
	

(1)

°s	 r.	 °ar

For a cascade with N mistuned blades Eq. (1) can be
generalized as

(X) e iWt . [E]{Y) e iWt	 (2)

where



ho,b	 hao/b

ao	 aao

(k)	 (Y)

h N-1/
b
	ha(N-1)/b

aN-1	 aa(N-1)	 (3)

[E] -

E(0,0)	 0	 E(0,1)	 0	 ...

0	 E(0,0) 0	 E(0,1)	 ...

E(1,0)	 I

0	 E(1,0)	 ...

E(N-1,N-1) 0

0	 E(N-1,N-1)

C(s,r) = e2nisr/N

B. Aerodynamic Model
— AS mentioned^earlier, the unsteadyy aerodynamic
loads were calculated by using Smith'sll thgpry in

subsonic flow, and Adamczyk and Goldstein's 	 the-

ory in supersonic flow with a subsonic leading edge.
In these theories, the effect of airfoil thickness,
camber, and steady state angle of attack are neg-
lected, and the flow is assumed to be isentropic and
irrotational. In the calculation of subsonic aero-
dynamic loads some numerical convergence problems
have been encountered when Or - 0 or 2w. Since
the Or - 0 or 2w mode is of little interest its
practice and since a numerical study of this problem
is beyond the scope of the present paper, this
numerical problem has been resolved by setting
Or - 0.001 whenever its value should be 0 or 2w.
The effect of wakes shed from upstream periodic
obstructions are included. The wakes considered are
limited to sinusoidal distortions represented by
vorticity perturbations so that they are convected
downstream at the flow velocity V. It should b?
noted that Ref. 12 does not include the effect rf
wakes from upstream periodic obstructions, However.
the inclusion of this effect in the formulatior, and
the details of the computer program in j4he supersonic
flow have been obtained from Adamczyk,l`^

C. Equations of Motion
The equitlons^o'-motion for the cascade were

developed in Ref, 10. For completeness, those equa-
tions are summarized below without the derivation de-
tails. The equatior- of motion for the sth blade are

2
S	 d	 (hse iWt )	 (1 + 2i{h	 s

)m W2

°s	 dt	 S	 s
+

2

J	 I	
d	

(aSe iWt )	 0

°s	 °s	 dt

0	 h eiwt
S

(I + 2ice )la W
as—	

aSeiwt

S	 s

-LM -
Lw

s	 s

MM + Mw

` s	 s

3 
211hhr
 har	

i(Wt+Ors)
wpb w 

	 _F_+ t har°ar + 1whr e
r. 	 (4)

42	 har	
i(Wt+Frs)

wpb W

1

1chr
+

 _Ftearaar + 1warI e
r-

the aerodynamic coefficients 1 hhr• C har.
••
 twor

are functions of the cascade parameters, k, M, s/c,
c, a, and Or. By nondimensionalizing Eq. (4),
extending the resultant equation to all the blades,

and using Eq. (2), the equations for all the blades
of an arbitrarily mistuned cascade can be written as

[[P] - [I]y]tY) _ - [E]-1[G][E]{AD) 	 (5)

where

[P] _ 11 El-'[DI(E)+ [E1-1[G][E1[A31

D o ]	 GKh - usyh (I + 2ich

[D]	

)
	[D 1 ]	 s	 s	 s

-

'[DN_1]	
GKa - 

u sr2 ya (1 
+ 21ca )

s	 s s	 s
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D. Possible Pe q imes of Flutter
— —Tt i obvTni,s that in incompres s ible flow there
are no acoustic (pressure) waves s i nce the governing
equation for the perturbation pressure or velocity

potential is a Laplace e q uation. however, in com-
pressible flow acoustic ►laves are possible since the
equation for the perturbation pressure is a 'wave'
equation, The possibi'ity of a wave type solution
depends on the flow parameters. Different regimes of
flutter f or subsonic flow were categorized in Ref. 15
1'a5ed un whother an acoustic disturbance decays or
propagates. The marginal condition between these two
cases is called the 'acoustic resonance' or 'cut-
off' 16 condition. For more details see discussions
in Refs. 11 and 15. A discussion was presented in
Ref. 17 on different regimes of flutter for super-
sonic flow.	 To facilitate later discussion of re-
sults, a brief description of the possible regimes of
flutter in both subsonic and supersonic flow follows.

Subsonic flow. The decaying or propagating
nature oT an acoustic disturbance car, be described by
the equation

r/g r + ^rn\2 + 4M 2 	 f + ( 6 r + 2e n\	 >

If\ Sr`	 1	 M2 - 1 kLk	 s c	 /1 sin	 < 0	 (7)

which is derived from Eq. (11) of Ref. 11. If the
left hand side of Eq. (7) is greater than zero, the
disturbances decay exponentially with distance from

the cascade and wave type solution for the equation
for perturbation pressure is not possible.	 If flut-
ter occurs when this condition is met, it is called
'subscritical flutter.' if the left hand side of

Eq. (7) is less than zero, a wave type solution for
the equation for perturbation pressure is possible
and at least one pair of acoustic waves can propa-

gate. If flutter occurs when this condition is met,
it is called 'supercritical flutter.' 	 If the left
hand side of Eq. (7) is zero, a pair of acoustic
waves is just on the verge of being able to propa-

gate. This marginal condition is called 'acoustic
resonance' condition. if flutter occurs very close
to acoustic resonance condition, it is called
'acoustic resonance flutter.' The dr;tinction be-
tween these regimes of flutter is riot always clear
cut because they may merge, depending on the system
parameters. Also, it should be remarked that this
categorization of different regimes of flutter is
mainly for descriptive purposes. The value of the

integer n in Eq. (7) for the given values of M, k,
s/c. and f should be determined such that the roots

of the quadratic equat i on (obtained with equality

sign in Eq. (7)), O ri and art, satisfy the con-
dition, 0 < B rl 2 < 2+. Alternatively, sub-
critical and supercritiral regimes of flutter can
also be categorized based on tke values for arl
and art. Flutter is called supercritical if the
flutter interblade phase angle lies between erl
and ur2 and is called subcritical otherwise.

Supersonic flow. The propagating nature of an
acoustic	 slur ante in supersonic flow is also
governed by Eq. (7). The acoustic resonance condi-
tion obtained from Eq. (7) is the same as the
Eq. (48) of Ref. 18. Also, the same resonance condi-
tion can be derived from Eq. (1) of Ref. 17. In con-
trast to the subsonic case. in supersonic flow when
the lett hand side of Eq. (7) is greater than zero,
the acoustic disturbances propagate through the en-
tire flow but remain bounded in the far field.	 If
the flutter occurs wren this condition is met, it is
called subcritical Clutter. 	 If the right side of
Eq. (7) is less than zero, the disturbances attenuate
in the far field. The flutter, if occurring in this
region, is tailed supercritical.

111. SOLUTION

The aeroelastic stability of the cascade is
determined by the eigenvalues, r's, of the matrix [P]

in Eq. (6). The relation between the frequency W
and y	 is

iW/Wo = i / y Y m L ! i v 	 (8)

Flutter occurs when u > 0. For the given values of

the number of blades, and hence the allowable
Br's, the gap to chord ratio, the stagger angle,
the elastic axis position, and the structural para-
meters, the eigenvalues of the matrix [P] are cal-
culated for a range of values of k. Denoting the

values of k and v at which u = 0 as kF and
vF, respectively, the nondimensional flutter speed
can be written as

VF /bWo - v F /k F	(g)

The aeroelastic response of the blades induced by
wakes is calculated from Eq. (5) and is

tV) _ - [LP] - [ I ]r]
•.1 L E J

-1 LG ]L2]tAD}	 (10)

IV. RESULTS AND DISCUSSION

A. C mput^er Program and Verification
—' ici calculate the flutter boi	 ries and the
blade aeroelastic response of an arbitrarily mistuned
cascade, a digital computer program was written based
on the present formulation.	 In this program, it is
possible to consider any type of mistuning such as

v
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blade to blade variations of the olade uncoupled
bending and torsional frequencies, damping ratios,
mass ratios, elastic axis and center of gravity posi-
tions, and so on. This program is operational on the
NASA-Lewis Research Center IBM 370/3033. Both the
tuned and mistuned uncoupled bending and uncoupl^d

torsion cases, in addition to the tuned coupled
bending-torsion case, can be treated as special cotes

of this program. This program was checked for the
following special cases:

1. The subsonic aerodynamic coefficients were
checked by comparison of the present results to the
published results in Refs. 6 and 11. The supersonic
aerodynamic coefficients were checked by comparison
of the present results to the published results in

Refs. 12 and 18.
2. To check the correctness of the program in

predicing uncoupled torsional flutt%iv of a tuned cas-
cade in subofic flow, a 12-bladed rotor described in
Ref. 1, was analyzed. A comparison was made of the
present results obtained as a special case of the
program to those presented in Ref. 15 for the

12-bladed rotor.
3. The correctness of the program in predicting

the coupled bending-torsion flutter speed of a tuned
cascade in supersonic flow was checked by comparing
the present results for a few selected cases to the
corresponding ones in Ref. 19.

4. The correctness of the program in calculating
coupled bending-torsion flutter and response of a
mistuned cascade for M - 0 was checked by comparing
the present results with the corres ponding ones in
Ref, 10.

in all of these cases good agreement was
obtained.

B. Aeroelastic St^ab iît
Bo Mile aeroeTastic stability and response

analyse r, presented in this paper are for NASA Test
Rotor 12 (shown in Fig. 3). This special test rotor
is similar to a forward stage of an advanced axial
flow compressor. The required parameters of this
rotor are listed in Table 1. 	 It should be mentioned
that this rotor was analyzed for incompressible flow
in Ref. 10. The blade beading-to-torsion frequency
ratio for the tuned rotor is 0.3357, and the elastic
axis and c.g. position are at 50 percent chord. As a
result. the coupling between bending and torsion is
very weak and the flutter mode is dominated by tor-
sional motion. Hence the results for the pre-
dominantly bending modes for some cases will not be
presented. However, to conduct parametric studies
the bending- to-torsion frequency ratio and elastic
axis position are varied. For this case the results
for the predominantly bending mode will also be pre-
sented. Furthermore, no attempt is made to match the
flutter Mach number with the assumed Mach number in
the parametric study results presented.

As discussed earlier, three different regimes of
flutter were found in both subsonic and supersonic
flows. It is useful to illustrate them separately.
Figures 4 to 6, show the variation of the real Fart
of the eigenvalue, u (which is a measure of stability
and is defined in Eq. (8)), with the reduced fre-
quency, k, at different Mach numbers for a tuned cas-
cade. The flutter mode in !hese figures is dominated
by torsional motion of the blades. In Fig. 4 for

M - 0.85, the regions of subcritical and acoustic
resonance flutter and the acoustic resonance reduced

frequency, k ar, are shown for O r - 83.57', which
is the critical interblade phase angle for sub-

critical flutter. Also indicated are the acoustic
resonance flutter regions for a few other er's.

No supercritical flutter was found when M < 0.85.
In Fig. 5 for M - 0.9, the regions of supercritical,
acoustic resonance and subcritical flutter, and
kar are shown for Or - 51.45 which is the
critical interblade phase angle for supercritical
flutter. (he intervals in which acoustic resonance
flutter occurs for a few other values of Or are
shown. For a fixed Or the subcritical flutter
reduced frequency kF is less Uian the acoustic
resonance flutter kF, which is less than the
supercritical flutter kF. The appropriate value
of n in determin + ng the regimes of flutter in

Figs. 4 and 5 is zero. By comparing Figs. 4 and 5 it
can be —en that as M increases toward unity, We
regions of acoustic resonance occur at decreasing
values of k. The frequency separation of these re-
gions alro decrease. A similar behavior was observed
in Ref. 15 in which only uncoupled torsional motion
is considered. In Fip. 6 for M - 1.1, the regions

of supercritical, acoustic resonance, and subcritical
flutter are shown. For each O r there is a range
(a band) in which the supercritical flutter occurs.
The width of the band depends on pr; and the bands
for some or's overlap. The appropriate value of
n is negative one. No supercritical flutter is
fnund when the Mach number is greater than 1.15.
Thus it is hypothesized that supercritical flutter
only occurs when the Mach number is near unity

(e.g., 0.85 < M < 1.15).
A comparison of the system eigenvalues of both

tuned and mistuned cascades is useful to understand
the effects of mistuning on flutter and response.
Figure 7 provides such a comparison for M - 0. As
mentioned earlier, for the parameters considered in
this figure the flutter mode is dominated by tor-
sion. As a result, the eigenvalues corresponding to
predominantly bending motion are of little interest
and are not shown. The type of mistuning considered

is the one in which the odd and even numbered blades
have different uncoupled torsional frequencies. This
is known as alternate blade mistuning. For example,
in the ct,se of 1 percent mistuning, the frequency
ratio, w, /Wo, is 1.005 for all the even blades
and is 0.495 for all the odd blades. The reference

'-equency Wo is equal to the arithmetic mean of
the uncoupled torsional frequencies of all blades.
Because of the symmetry of this type of mistuning
the Or mode couples with the (or. : v) mode
only. It should be pointed out that the value of ^r•
reduced frequency in this figure is chosen such that
the cascade is neutrally stable for 2 percent alter-

nate mistuning. Two interesting observations follow
from Fig. 7. First, for M - 0 the 2 percent mis-
tuning significantly affected the system eigenvalues
and stabilized the unstable tuned cascade. As the
level of mistuning is increased, the spread of the
real part of the eigenvalue is decreased. This ob-
servation implies that the effective damping of some
modes is increased while that of other modes is de-
creased with an ncrease in the level of mistuning.
This behavior wirl be recalled in the discussion of
forced response which will be addressed later.
Second, as mistuning increases the modes separate
into high and low frequency groups. The degree of
separation increases with the level of mistuning.
These findings art in agreement with the similar ones
in Ref. 10.

To illustrate the effect of Mach number in the
presence of mistuning, the analyses presented in
Fig. 7 are repeated in Figs. 8 to 10 at Mach numbers
0.5, 1.15. and 1.4, respectively. Comparing the
ranges of the real parts of the eigenvalues in these
figures, several interesting conclusions follow.
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First, this type of mistuning always has a stabiliz-
ing effect for the Mach numbers considered. However,
the stabilizing effect is stronger in subsonic flow
than that in the supersonic flow. Second, in sub-
sonic flow the range of the real parts of the eigen-
values increases with increase in Mach number. But,
it the supersonic flow the opposite is true. When
M . 1.4, the effective aerodynamic damping in all the
modes is relatively small. Third, the Mach number
has a significant effect on the amount 4 mistuning

required to separate the modes into high and low fre-

quency groups. For example, 2 percent mistuning
separated the modes in supersonic flow but did not in

subsonic flow.
Figure 11 shows how the reduced frequency kF

depends upon Mach number, mistuning, and structural
camping. Since the unsteady cascade aerodynamic
theories used herein are not valid in the transonic
region, no attempt is made to extrapolate the curves
in this region. Also, the acoustic resonance Cutter
regimes are not shown. It is seen that as the Mach
number increases from zero, the kF of the tuned
cascade decreases u •rtil supercritical flutter

occurs. This decrease in kF corresponds to
either higher fluid velocities or lower blade stiff-

ness. The effect of increasi , ig M is, therefore,
highly favorable on coup l ed bending-torsion flutter.

In contrast, when M increases from 0.86 to 0.9, its
effect is unfavorable, and the flutter is of super-
critical type. When M increases from 1.1 to 1.15,

its effect is again favorable and the flutter is of
supercritical type. This increase in kF corre-

sponds to either lowe r fluid velocities or higher

blade stiffness. Thu g , the effect of increasing M
on ttit- kF of d tuned cascade depends on the range
of M.	 Also, it is evident from Fig. 11, that the

var-ration of kF with M in an alternately mrs-
tuned cascade depends on both the level of mistuning

and .!o range of M.	 The effect of structural damp-

inc ,* + tuned cascade also depends on the range of
M.	 I  I ILturdI damping is highly effective when M

Ic^.ti han 0.b and less effective when M is
' ledter than 0.6.	 P. subsonic flow all levels of
mistuning considered have much stronger effect on

the kj than does 0.2 percent structural damping.
Whereas, in supersonic flow when M is between 1.15
and 1.15, the O.i percent damping is more effective
than 1 percent mistuninq and is less effective than
5 percent mistuning. when M is between 1.25 and
1.5, the 0.? percent dumping is more effective than
5 percent mistuning and less effec'A ve than 20 per-
cent mistuning. When M > 1.3, t'ie 0.2 percent damp-
ing is more effective than 20 percent mistuning.

It should be mentioned that predicted flutter
Mach numbers for NASA Test Rotor 12 can be obtained

by constructing an 'operating line' in Fig. 11. This
operating line was constructed by fixing the speed of
sound and the blade uncoupled torsional frequency.
The intersect,on of this line with the neutral sta-
bility boundary curve determines the flutter Mach
number. Although this line is not shown in Fig. 11,
the resulting flutter Mach number is 1.37b for the
tuned undamped case. Of course, this value changes
if one includes structural damping and blade mistun-
ing. The flutter Mach numbers are 1.396 for 2 per-
cent alternating mistuning, 1.415 for 5 percent mis-
tuning, 1.440 for 20 percent mistuning, and 1.459 for
0.2 percent damped tuned case. All of these flutter

Mach numbers are above the design value.
It is apparent from Fig. 11 that mistuning has a

greater influence in subsonic than in lrp^rsonic

flow.	 ro determine if this trend shown by Rotor 12

is also similar for a fan stage, a cascade represen-

tative of an advanced unshrouded fan stag! (aspect
ratio 3.34) was analyzed. it was found that mistun-

ing had a strong effect on stability at a tip rela-
tive Mach number of 1.32. This effect was similar to
that shown by Rotor 12 at low subsonic Mach numbers.
Additionally, it appears that the stabilizing effect

is sufficient to utilize mistuning as a passive .on-
trol for unshrouded fan designs in supersonic flow.
A detailed description of this analysis will be pre-
sented in a future publication.

The effect of the bending-to-torsion frequency

ratio, Wt) NO, and elastic axis position on
flutter seed, VF, is of general interest. To

explore these effects, the parameters of the rotor
are varied. For example, Fig. 12 shows the depend-
ence of 'F or' a tuned cascade ( WQ - Wo
for all s) upon Wh Iwo for the elastic axis
at 25 percent chord sWith M as a parameter. When 0
< Wh /Wq < 0.35, the Mach number has favorable
effef5.t in both subsonic and supersonic flows; when
0.3' < Wh, Iwo < 1.5, M ha3 unfavorable effect
in supersonic Tlow and favorable effect in subsonic
flow; and when wh Iwo > 1.5, M his unfavor-
able effect in botA subsonic and .upersonic flows.

A very limited study was conducted to determine
the effects of alternating structur al damping mistun-
ing on aeroelastic stability. The odd numbered
blades were left undamped and 0.4 percent structural
damping was added to the even numbered blades. For
this case with M - 0.5, the reduced flutter fre-

quency kF is 0.517. As can be seen front 	 11,
this value is very close to tit , kF - U.511 for the
case where 0.2 percent darnpin( pas added to all the
blades equally. Also from FiS. 11, the value of
kF for the undamped tuned cascade is 0.625.
Comparison of these three values of kF shows that
the alternating structural damping does not have any
additional benefit over adding damping to all blades
equally. Comparison of the eigeovalues, which are
not shown due to space limitations, further shows the
alternating damping mistuning does riot result in the
significant mode coupling as was noticed for alter-
nating frequency mistuning.

C. Aeroelastic Response

n the present formulation, it is possible to
consider an excitation cons i sting of all harmonics of
rotational speed of the rotor which range up to
N-1. The coefficients, Lwhr and 1wor, in
Lo. (4) represent the forcing finctions in the bend-
ing and torsional equations, respectively, in the rth
mode. To understand the nature of the response,
excitation in only one harmonic at a time will be
considered. This results in no loss of generality

since the principle of superposition holds. If the
r . R harmonic is considered, then the column
matrices (AD O }, {AD1}, ..., JADN - 1 1 are :ero
except ADR in Eq. (b). According to the travel-
ing wave representation in Eq. (1), this corresponds

to N-R symmetrically space obstructions located
upstream from the b')des and the circumferential wake
distribution is perfectly sinusoidal. For practical
applications, the forcing frequency is thus equal to
(N-R) times the rotational speed.

The aeroelastic response is presented for two
values of R, 11 (45 obstructions) and 39 (17 ob-
structions), at a fixed reduced frequency which is
chosen such that the cascade is aeroelastically
stable in all modes. These values for R were
picked because the aerodynamic damping of the tuned
system in the r - 11 mode is relatively low, whereas
thet in the r - 39 mode is relatively high. The
forcing frequency range investigated is limited to a



Email range around the uncoupled torsional fre-
quency. If the blades are tuned, the response will
be entirely in the r - R mode, and all the blades
have equal amplitudes. The amplitude of response is
A function of w/wo. If the blades are now arbi-
trarily mistuned, there will be response in all the
modes (enumerated by r) and the response of the sth

blade can be obtained from Eq. (1). Figure 13(a)
for R - 11 and Fig. 13(b) for R . 39 show the
variation of os/as `d for both tuned and the

two percent alternating blade mistuned cascades in
subsonic flow. The quantity a s, id is the ampli-

tude of the torsional motion of each blade at reso-
nance in the tuned rotor and it depends upon R.
Figures 14(a) for R - 11 and 14(b) for R a 39 are
repetitions of Figs. 13(a) and (b), res)ectively, in
supersonic flow. The bending amplitudes are not
shown because they are very small in the range of the
excitation frequency shown herein. For alternating

mistuning, only the Or and (Or • w) modes are
coupled. Therefore. in all three cases the single
resonance peak of the tuned cascade is replaced by
twin resonance peaks. It is seen from the figures
that the effect of mistuning on forced response de-
pends upon the engine order of the forcing function
and upon the Mach number. For example, in subsonic
flow the mistuning has a beneficial effect on tor-
sional response (Fig. 13(a)) for R 	 11, but has an
adverse effect (Fig. 13(b)) for R 	 39. This be-
havior is similar to that noticed in the incompressi-
ble flow in Ref. 10. But, this behavior is in con-
trast to the comnnn belief th„t mistuning always has

an adverse effect on forced response. Therefore,
this observation provides an added incentive for

pursuing the use of mistuning as a passive control.
The decrease in the maximw, amplitude of any blade
with mistunin for R- 11 i, approximately 51 per-
cent (fig. 13?a)) and the increase in the maximum

amplituc:e for any blade with m i stuning for R - 39 is
approximately 60 percent (fig. _'s(b)).	 Ir. supersonic
flow for M - 1.1, the alternating mistuning has an
unfavorable effect for both the values of R - 11 and
39. One of the reasons for this behavior is that the
tuned modes R - 11 and R = 39 do not have relative-
ly low and high aerodynamic dampings as in the sub-
sonic flow.

V. CONCLUSIONS

The analyses of the effects of mistuning on the
coupled bending-torsion flutter and response for in-

compressible flow which were developed in Ref. 10
have been extended into the subsonic and supersonic
flows. The following conclusions are reached based
on the limited parametric studies presented in this

paper.
1. All three regimes of flutter (scphcritical,

acoustic resonance, and supercritical) were found to

exist in both subsonic and supersonic flow for cer-
tain parametric combinations. However, supercritical
flutter was found only when the Mach number is near

unity for the rotor considered herein.
2. It was found that mistuning can have a sig-

nificant effect on flutter speed depending on the
cascade parameters. For Rotor 12 the potential was

found to be greater in subsonic than in supersonic
flow. For a supersonic fan the effect appea r . to be
sufficient to utilize mistuning as a pass i ve flutter
control.

3. The use of alternating structural damping was
not found to have any additional benef t over adding
damping to all blades equally.

4. The addition of asmal l amount of structural
damping was found to have a much strongtr effect for
low subsonic Mach numbers than ,or high subsonic or
for all supersonic Mach numbers.

5. As reported by the authors for incompressible
flaw, the use of uncoupled torsional flutter analysis

to deduce the effect of elastic axis position was
fo,rnd to be unreliable. Coupling between bending and
%orston. structural damping, and ir.istuning can change

the results significantly in both subsonic and super-
sonic flows.

6. In general An increase in Mach number was found
to have a favorable effect on subcritical flutter in

subsonic flow and have an unfavorable effect on
supercritical flutter in supersonic flow. Its effect
also depends on the bending-to-torsion frequency ratio
when the elastic axis is off mid-chord.

7. Mistuning may have either a beneficial or an

adverse effect on forced response, depending upon the
engine order of the excitation and upon the Mach
number.
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TABLE 1. - PARAMETERS OF NASA TEST ROTOR 12

N	 56

s/c	 0.534

us	 258.5

a	 0 (varied in some cases)

xas	
0 (varied ii some cases)

r

	
^0.7638

0.5114 (a - 0)

s 	 (a - -0.5 and 0.5)

E	 54.4

whs/",as (tuned)	 0.357 (varied in some cases)
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figure 3. - NASA Test Rotor 12.
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