
JPL NO. 9950-548 

NOVEL DUPLEX 

METHOD FOR SILICON 
SOLAR CELLS 

VAPOR=ELECTROCHEMlCAL 

31 March 1980 

Final Report 
Covering the Period June 1976 to February 1980 

By: Leonard Nanis, Angel Sanjurjo, Kenneth M. Sancier, 
Vijay K. Kapur, Robert W. Bartlett, and Sylvia Westphal 

Prepared for: 

JET PROPULSION LABORATORY 
California institute of Technology 
4800 Oak Grove Drive 
Pasadena, California 91 103 

Attn: Dr. Ralph Lutwack 
Spacecraft Power Station 

Contrast No 954471 under NAS 7-100 

SRI Prbject PYU 4980 

SRI International 
333 Ravenswood Avenue 
Menlo Park, California 94025 

Cable: SRI INTL MPK 
(41 5 )  326-6200 

TWX: 91 0-373-1 246 

(N&SA-C3-164446) HOVEL DUELEX Y81-25499 
VhPOE-ELECTBOCHEHICAL 8B180D FOE SILICObl 
S O L A E  CELLS Final Report, Jan. 1976 - Feb. 
1980 (SB1 intetnatioaal  C o r p . ,  l en lo  €ark, O R C l a S  
C a l i f . )  80 p €IC A04/UF A 0 1  CSCL 1 0 8  G3/44 26611 *-* ~ 



NOVEL DUPLEX 

METHOD FOR SILICON 
SOLAR CELLS 

VAPOR-ELECTROCHEMICAL 

DoE/JPL 954471 

31 March 1 980 

Final Report 
Covering the Period June 1976 to February 1980 

By: Leonard Nanis, Angel Sanjurjo, Kenneth M. Sancier, 
Vijay K. Kapur, Robert W. Bartlett, and Sylvia Westphal 

Prepared for: 

JET PROPULSION LABORATORY 
California Institute of Technology 
4800 Oak Grove Drive 
Pasadena, California 91 103 

Attn: Dr. Ralph Lutwack 
Spacecraft Power Station 

Contract No. 954471 under NAS 7-100 

SRI Project PYU 4980 

The JPL Low Cost Silicon Solar Array Project is 
sponsored by the U.S. Department of Energy and forms 
part of the Solar Photovoltaic Conversion Program to 
initiate a major effort toward the development of low 
cost solar arrays. This work was performed for the 
Jet Propulsion Labiatofy,  California Institute of 
Technology, by agreement between NASA and DOE. 

Approved: 

P. J. Jorgensen, Vice President 
Physical and Life Sciences 





ACKNOWLEDGMENT 

The authors thank the followlng persons from SRT International; Drs. 
D. Hildenbrand, K. Lau, and R. Kleinschmidt for mass spectroscopy work; 

E. Farley f3r x-ray work; D. Petro and J. Terry for microscopy work; 

R. Weaver, S .  Leach, S .  Westphal, and G. Craig for their cooperation. 
We also acknowledge the contributions by Dr. V. K. Kapur (Arco Solar) 

one of the scientists that originated this work, and Drs. R. Lutwack 
and R. Rhein (Jet Propulsion Laboratory) for their comments and suggestions. 

Finally we are indebted to N. Waters who typed the manuscript. 

This work was performed for the Jet Propulsion Laboratory, California 

Institute of Technology and was sponsored by the U. S. Department of 

Energy under Contract DOE/JPL-954471 by agreement with NASA. 

i ii 



SUMMARY 

A process  has  been developed f o r  t h e  economic product ion of h igh  

p u r i t y  S i  from inexpensive reactants, based on t h e  Na reduc t ion  of 

SiF4 gas. 

aqueous leaching  o r  by d i r e c t  mel t ing of t h e  NaF-Si product  mixture .  

I m p u r i t i e s  known t o  degrade s o l a r  c e l l  performance are  a l l  p re sen t  a t  

s u f f i c i e n t l y  low concen t r a t ions  so t h a t  m e l t  s o l i d i f i c a t i o n  (e.g. ,  

Czochralski)  w i l l  provide a s i l i can  m a t e r i a l  s u i t a b l e  f o r  s o l a r  c e l l s .  

The products  of r e a c t i o n  (NaF, Si) are sepa ra t ed  by e i t h e r  

iv 
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i. INTRODUCTION 

The need f o r  a l t e r n a t i v e  sources  of energy has  promoted i n t e r e s t  i n  

t he  genera t ion  of e l e c t r i c i t y  by pho tovo l t a i c  devices .  S i l i c o n  is 

t h e  ch ie f  candida te  among t h e  materials used f o r  s o l a r  c e l l s .  In  t h e  

product ion of s i l i c o n  solar c e l l s ,  approximately 20% of t h e  c o s t  can 

be a t t r i b u t e d  t o  t h e  s i l i c o n  material used. 

Low-Cost So la r  Array P r o j e c t ,  t h e  o b j e c t i v e  of t h e  SRI program was t o  

develop a new method t o  produce s i l i c o n  of s o l a r  grade q u a l i t y  a t  a 

cos t  less than $14!kg (19130 d o l l a r s ) .  

A s  p a r t  of t h e  DoEIJPL 

SRI has  developed a method f o r  gene ra t ing  s i l i c o n  a t  a p ro jec t ed  

c o s t  of $9.8Oikg (1980 d o l l a r s )  f o r  a p l a n t  w i th  a capac i ty  of  1030 

metric tons per  year  ( see  Appendix). Equally important ,  t h e  produced 

s i l i c o n  i s  pure enough t o  be  used wi th  Czochralski  crystal-growing 

technology i n  producing s i l i c o n  f o r  s o l a r  c e l l  f a b r i c a t i o n .  

In  t h e  SRI process ,  s i l i c o n  i s  produced by reducing SiF4 gas  w i t h  

The SiF4 gas  i s  obtained from the  thermal decomposition m e t a l l i c  Na. 

of sodium f l u o s i l i c a t e  (Na2SiF ) ,  which i n  t u r n  i s  obtained by p r e c i p i -  

t s t i o n  from f l u o s i l i c i c  a c i d  (H2SiF61, a by-product of t h e  phosphate 

f e r t i l i z e r  indus t ry .  A block diagram of t h e  pi-ocess s teps  is shown 

i n  Figure 1. A f t e r  t h e  reduct ion  r e a c t i o n ,  t h e  mixture  of s i l i c o n  and 

sodium f l u o r i d e  can be  separa ted  1 y e i t h e r  of t h e  fo l lowing  methods: 

(1) by hea t ing  t h e  mixture  above t h e  melt ing poin t  of S i  (1412OC), 

r e s u l t i n g  i n  a c l ean  phase sepa ra t ion  by g r a v i t y  between NaF and S i  

o r  (2) by aqueous leaching  of t h e  mixture ,  y i e l d i n g  the  s i l i c o r ,  i n  

powder form. 

6 

This  r epor t  desc r ibes  major accomplishments of t h e  work on genera- 

t i o n  of SiF4, tne Na redxct ion  r e a c t i o n ,  and the  sepa ra t ion  techniques.  

1 
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2. PREPARATION OF SiF4(g) FROM H2SiF6 

2.1 P r e c i p i t a t i o n  of  Sodium F l u o s i l i c a t e  

F l u o s i l i c i c  a c i d  (FSA) is produced i n  very  l a r g e  amounts as a 

waste by-product of t h e  phosphate f e r t i l i z e r  i ndus t ry .  Commercial 

aqueous FSA ( 2 5  w t %  H2SCF6), a v a i l a b l e  i n  55-gallon drums, se rved  

as t h e  s t a r t i n g  material. The FSA has  a s p e c i f i c  g r a v i t y  of 1.224 

and was l i g h t  green.  

and B i ,  a l l  p resent  a t  less  than  0.02 w t % .  

Impur i t i e s  were HC1, HF, H2S04, Cu, Pb, Hg, 

By d i r e c t l y  adding s o l i d  NaF t o  t h e  FSA, we prepared s e v e r a l  1-kg 

ba tches  of Na2SiF6. 

room temperature  i n  p l a s t i c  con ta ine r s .  The superna tan t  l i q u i d ,  con- 

t a i n i n g  most ly  HF and some H2SiF6, w a s  decanted and t h e  ??a S i F  

p r e c i p i t a t e  f i l t e r e d  on a p l a s t i c  Buchner funnel .  The sodium f luo-  

s i l i c a t e  s a l t  w a s  washed w i t h  co ld  d i s t i l l e d  water  t o  remove HF and 

H2SiF6, and then  d r i e d  a t  2OO0C t o  remove moisture .  

of 92% was obtained.  

t roscopy a n a l y s i s  and, f o r  comparison, t h e  a n a l y s i s  of commercially 

a v a i l a b l e  Na2SiF6, l a b e l l e d  as 99% pure.  

SRI has  a much smaller impur i ty  conten t  except  f o r  Cu. The elements  

Ti ,  V, Z r ,  C r ,  Mn, N i ,  Ba, and P were not  de t ec t ed  i n  e i t h e r  t h e  

SRI-produced o r  commercially obta ined  (99%) Na S iF  

The mixture  was s t i r r e d  for seireral  hours  a t  

2 6  

A minimum y i e l d  

Table  1 shows t h e  r e s u l t s  of an  emission spec- 

The Na2SiF6 prepared a t  

2 6' 

Table 1 

EMISSION SPECTROGRAPHY ANALYSIS OF Na2SiF6 

Element 

A 1  

Fe 

C a  

Ba 

m 
cu 

Na2SiF6, prepared a t  S R I  
from H2SiF6 

(PPm wt)- 

35 

< 7  

3c 

<:0 

17.5 

15 

Na S iF  ,commercial r u r e  
99x 

(PPm wt)  - 
1300 

10G 

900 

4 50 

25 

< a  

3 



2.2 Decomposition of Sodium F l u o s i l i c a t e  

Thermal decomposition of Na2SiF6 w a s  s tud ied  t o  determine t h e  

temperature  range i n  which SiF4 gas  can be  q u a n t i t a t i v e l y  obta ined .  

In  a t y p i c a l  experiment,  7.3238 of c r y s t a l l i n e  Na2SiF 

were heated a t  2OO0C i n  a qua r t z  tube  (25-ml capac i ty )  for approxi- 

mately 14  hours w i t h  cont inuous pumping t o  remove mois ture .  

q u a r t z  tube  w a s  then  connected t o  an evacuated, s i x - l i t e r  capac i ty ,  

g l a s s  bulb and its temperature  r a i s e d  a t  a ra te  of 75OC pe r  hour.  

The p res su re  of t h e  SiF4 gas  c o l l e c t e d  i i?  t h e  g l a s s  bulb was cont inu-  

ous ly  measured by a p res su re  t ransducer .  

the qua r t z  t ube  reached 7OO0C, t h e  s to i ch iomet r i c  amount of SiF4 was 

f u l l y  reccvered.  From t h e  percentage of a v a i l a b l e  SiF4 recovered a t  

va r ious  temperatures  shown i n  Table  2,  i t  may be  seen  t h a t  SiF4 gas  

can be  q u a n t i t a t i v e l y  recovered from Na2SiF 

than  65OoC. 

w a s  s i n g l e  phase, NaF, a s  determined by X-ray d i f f r a c t i o n .  

powder 6 

The 

When t h e  temperature  of 

a t  temperatures  g r e a t e r  6 
The s o l i d  remaining a f t e r  t h e  decomposition of Na2SiF6 

Table  2 

RECOVERY OF SiF4 FROM Na,SiF6 
1 

remprra t u r  e 
( C C L . - -  

400 

500 

550 

600 

650 

680 

< 1.” 

4.0 

16.0 

55.0 

43.0 

99.0 

Quan t i t i e s  of SIF4 gas were prepared by t h e  thermal decomposition 

Severa l  of Na2SiF i n  t he  appara tus  shown schemat ica l ly  i n  Figure 2.  6 

4 
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batches of SfF4 gas were c o l l e c t e d  i n  pre-evacuated s t a i n l e s s  steel 

cy l inders ,  wi th  recovery of a t  least 99%. 

2.3 P u r i t y  of SiF4 

Mass spectrometry w a s  a convenient method for r a p i d l y  surveying 

t h e  .apur i ty  content  of SiF4(g).  Various mass peaks were assigned t o  

n e u t r a l  precursors ,  and from t h e  peak i n t e n s i t i e s ,  t h e  r e l a t i v e  abun- 

dance of t h e  v a r i o u s  v o l a t i l e  compounds w a s  c a l c u l a t e d .  

The SiF samples were analyzed by a Xuclidc 12-60-HT (12-inch 4 
rad ius ,  60' s e c t o r ,  high tsmperature  source)  nass spectrometer .  

a 4500-volt ion-accelerat ing p o t e n t i a l ,  i o n s  w i t h  a mass-to-charge 

r a t i o  of up t o  1QOO can be de tec ted .  

bombarcsent i n  a Nier-Inghram ion source.  

by an e t e c t r o n  m u 3 t i f l i e r  and de tec ted  w i t h  eitli;er a v i b r a t i n g  r e e d  

e lec t rometer  or by count ing ion  pulses  with an  Ortec 9315 counter .  

With t h i s  d e t e c t i o n  system, ion i n t e n s i t i e s  as low as 

aajor peak a r e  normally measured. 

With 

Ions were produced by e l e c t r o n  

The i o n  s i g n a l  was ampl i f ied  

0.01% of t h e  

Gaseous i m p u r i t i e s  p o s i t i v e l y  i d e n t i f i e d  i n  t h e  SiY samples 4 
were SO2, SiOF2, S02F2, CC14, Si202F4, and Si20F6. 

The pressure  ratios of a l l  molecules r e l a t i v e  t o  S i F  were calcu-  4 
l a t e d  from t h e  peak h e i g h t s  of t h e  ion i n  t h e  mass spectrum. The 

i n t e n s i t y  was cor rec ted  for t h e  i s o t o p i c  d i s t r i b u t i o n  and fo r  fragmen- 

t a t i o n  t o  g ive  the t o t a l  i o n  y i e l d  of a given molecule a t  20 eV. 

r u r t h e r  c o r r e c t i o n s  were made to t h e  ion i n t e n s i c y  t o  account for t h e  

d i f f e r e n c e  i n  i o n i z a t i o n  cross s e c t i o n s  between SiF4 and t h e  i z y u r e  

gases.  

by adding atomic c r o s s  s e c t i o n s .  The cor rec ted  i n t e n s i t i e s  were 

Gdded and t h e  r e l a t i v e  pressures  of t h e  v a r i o u s  gases  c a l c u l a t e d  

( see  Table 3) .  

This c o r r e c t j o n  ranged between 0 . 7  t o  1 .9  and was c a l c u l ? t e d  

6 



Table 3 

MASS SPECTKOMETRIC ANALYSIS OF SiF4 

Ion 

+ 
SiF3 

S i 2 0 F i  

- 

+ 
2 5i3F 

+ CC13 

S02Fl 

Si202Ft  

so; 

SiF4 Prepared a t  SRI 
From H SIF6 SiF4, Union Carbide 

(wt x f  ( w t  X )  

96.9 93.6 

3.04 4.24 

1.79 

0.16 

3.10 

0.08 

0.04 

0.076 

The p r i n c i p a l  result of  t h e  SiF4 a n a l y s i s  is that t h e  s i l i c o n  

oxyf luor ides  are major i m p u r i t i e s  i n  commercial SiF4. 

was found of phosphorcus, titanium, zirconium, vanadiun.- i r o n ,  o r  

chromium i m p u r i t i e s  i n  concent ra t ions  g r e a t e r  than  0.01%. 

t e n s i v e  fragmentat ion and i s o t o p i c  s p e c i r a  of t h e  major i m p u r i t i e s ,  

of course,  overlapped a s u b s t a n t i a l  p o r t i o n  of t h e  mass spectrum, so 

t h a t  minor i m p u r i t i e s  a t  theF-e mass numbers could n o t  b e  de tec ted .  
The comparison does show t h a t  t h e  SRI-produced SiF4 is purer  than t h e  

c o m e r c i a l l y  obtained SiF4. “eaks corresponding t o  B compounds, such 

as BF3, were s p e c i a l l y  checked, but  no evidence of t h e i r  presence w a s  

found . 

No evidence 

The ex- 

A f t e r  t h e  process  technology =-*r t h e  s t e p s  involved i n  producing 

SiF4 from FS4 w a s  determined t o  be s t r a i g h t f o r w a r d ,  for convenience 

w e  used commercial SiF4 t o  s tudy t h e  SiF However, we 

wanted to determine i f  metal’.ic i m p u r i t i e s  were present  a t  or  below 

t h e  ppm level i n  t h e  c o m e r c j a l  SiF4; t h e r e f o r e  t h e  gas  was hydrolyzed 

by bubbling it  through high p u r i t y  H20 .  Then t h e  r e s u l t i n g  s i l i c a  g e l  

s l u r r y  was heated and d isso lved  wi th  an  excess  of  HF t o  d r i v e  o f f  SiF4(g) .  

The r e s u l t i n g  c l e a r  s o l u t i o n  was then analyzed by plasma emission 

spectroscopy (PES); a l l  t r a n s i t i o n  metals and dopants  were present  in 

levels below 0.1 ppm, except f o r  Al a t  1.2 ppm (wt). 

Na r e a c t i o n .  4- 

7 



3. THE SiF4-Na REDUCTION REACTION 

3.1 Basic Chemical Fea tures  

High p u r i t y  S i  can be obtained by reducing SiF4 w i t h  Na according 

t o  t h e  fol lowing r e a c t i o n  

SiF4(g) + 4Na(ll/g) -. Si(s / l l )  + 4NaF(s/B) (1) 

Although t h i s  r e a c t i o n  is thermodynamically favored a t  room temperature  

= -146 kcal jmol  S i ,  t h e  N a  must be heated wi th  a free energy of  AG298K 
t o  150°C fox any apprec iab le  r e a c t i o n  t o  occur .  The i g n i t i o n  tempera- 

t u r e  of 150'C does not  depend apprec iab ly  on t h e  p r e s s u r e  of S i F 4  but  

is s e n s i t i v e  ts t h e  s u r f a c e  oxida t ion  of N a .  Sodium c u t  and s t o r e d  i n  

a i r  f o r  s e v e r a l  hours requi red  temperatures  of about 200 C b e f o r e  t h e  

r e a c t i o n  s t a r t e d .  

0 

0 

= -164 kcal/mol S i ) ,  S ince  r e a c t i o n  (1) is very exothermic (AH298K 0 

once t h e  r e a c t i o n  starts, t h e  heat  r e l e a s e d  raises t h e  temperature  of 

t h e  r e a c t i n g  Na which i n  t u r n  i n c r e a s e s  t h e  r e a c t i o n  rate. The conse- 

quence is  t h a t  bo th  t h e  r e a c t i o n  r a t e  and t h e  temperature i n c r e a s e  r a p i d l y  

t o  a naximum and then both s lowly decrease.  

The maximum a d i r b a t i c  r e a c t i o n  temperature expected when SIF4 Is 

reac ted  v j t h  Na t o  produce Si (and NaF) was c a l c u i a t e d  us ing  h e a t  

capac i ty  and h e a t  of formation da ta  fnr 5f ( c / F ) ,  NaF (c/L) Na (11/g. ) ,  

and SiF4 ( 8 )  from t h e  JANAF t a b l e s .  

a d i a b a t i c  temperature for tbe a b s o l u t e  and relative excess  amount of 

r e a c t a n t s  for s e v e r a l  i n f t i a l  d x t u r e s  conta in ing  e i t h e r  Na or S i F 4  

i n  excess  of t h e  s t o i c h i o m e t r i c a l l y  requi red  amount f o r  r e a c t i o n  (1) .  

Table 4 shews t h e  c a l c u l a t e d  

Experience w t t h  t h e  PiF4-Na r e a c t i o n  has show t h a t  for non- 

a d i s h a t i c  r e a c t o r s ,  t h e  mximum temperature a t t a i n e d  i n  t h i s  exothermic 

reac t fon  depends on t h e  p r e s s u r e  of t h e  S i E 4  gas in t h e  system. 

SiF4-Na r e e c t i o n  performed wi th  PSiF4 = I atm r roceeds  v igornus ly ,  

with l o c a l  r e a c t i o n  temperatures  r i s i n g  above 1400 C. However, t h e  

The 

5) 
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1500 

1300 
1200 
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800 

800 

Table 4 

ADIABATIC REACTION TEMPERATURE 

SiF4 + 4Na -. Si + 4NaF 

Amount of Reactants (mol) 

Na 51f4 
4 1 *  

4 2 

5 1 

4 3 

6 1 

4 5 
8 1 

4 9 

29 1 

4 14 

42 1 

*stoichiometric 

Note: Melting poict of Si = 141OoC 

Melting point of NaF = 993OC 
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SiF -Na reactions performed with PSiFl < 0.5 atm proceeded relatively 4 
slowly. The rate at which the reaction system is heated by the 
liberated reaction heat depends on the kinetics of the reaction and the 
rate of heat loss. For a conetant veight of sodium and for a fixed 

reactor geometry, a range of reaction temperatures can be obtained by 

varying the pressure of the SiF4 gas in the system. 

A series of 16 experiments were performed in one campaign series 

under different pressures of SiF gas. In each of these experiments, 

approximately 5 g of clean sodium was Flaced in a nickel dish inside 

the reaction kettle. By external heating of the evacuated reaction 
kettle, the temperature of the sodium metal was raised to 250°C, 

the vacuum line cut off, and SCF4 g ~ s  introduced to initiate reaction. 

In this series of experiments, the pressure of  SiF4 in the reaction 

was maintained approximately constanr in the range of 0.1 to 10 atm 

for each experiment. TPus, fixing the amourrt of sodium fixed the total 

4 amount of the reaction heat, vbereaP Pdjusting the pressure of SiF 

in the ravge of 0.1 to IO atrn gave various reaction rates resulting 
in different reaction temperatures. 

these experiments could not be accurately measured above 1000GC be- 

cause the thermocouple tip in the reaction zone reacted to form sili- 

cides. However, by using both molybdenum and graphitt-sheathed 

thermxouples, good estimates of maximum reaction temperature (T ) 

were obtained. 

4 

The reaction tenperature in 

mas 

ranged between 1 an+ 2 atm, the esti- 
when the PSiF4 

In general, 
mated reaction temperature was greater than lh00'C. 

with P S ~ F  
800' and ~IOOOC, and f o r  PsiF4 < 0.5 atn, the temperature in the reaction 
system was in the range hCIno to 700OC. TnL-rwsine the P SiF4 above 2 ntm 

led to a decrease in Tmax, prob3,bly due tn heat losses by convection. 

For reactions 

2 0.5 atm, the estimated reaction temperature varied between 
4 

of 10 atm, the maximum temperature recorded was about 
Thus, for PSiF4 looooc. 

10 



0 10 atm, t h e  maximum temperature  recorded w a s  about 1000 C. 

The products  from r e a c t i o n  wi th  PSiF = 1 a t m  are i n  the form of 

a hard c r u s t  (F igure  3) .  T$e energy-dispers ive x-ray a n a l y s i s  (SEM- 

EDAX) of t h e  va r ious  segments of t h i s  c r u s t  i nd ica t ed  some s i l i c o n  

segrega t ion  from t h e  bu lk  of sodium f l u o r i d e s .  

r eac t ion  products  obtained wi th  PSiF4 .- 0 . 3  a t m  were an  e a s i l y  

crumled mass (Figure 4) .  

4 

I n  c o u t r a s t ,  the 

Although hea t  d i s s i p a t i o n  w a s  no t  a problem in our  l abora to ry  

experiments i t  must be  considered j n  engineer ing  l a r g e  r e a c t o r s  

s ca l ed  up t o  commercial product ion c a p a c i t i e s .  

3.2 Product P a r t i c l e  S i z e  

S i l i c o n  powders obta ined  a f t e r  water leaching  of t h e  sodium f l u o r -  

i d e s  from t h e  r e a c t i o n  products  were also examined by SEM-EDAX. The 

s i l i c o n  powder obta ined  from t h e  r e a c t i o n  performed wi th  PSiF4 = 1 a t m  

hed a p a r t i c l e  s i z e  i n  t h e  range of 1 pm t o  0.5 mm and vas c r y s t a l l i n e  

(Figure 5 ) ,  vhereas  r e a c t i o n  wi th  PSiF4 5 0 . 3  atm yie lded  f i n e  powder 

( F i p r e  6 ) .  These ohserva t ions  suggested t h a t  t h e  s i l i c o n  p a r t i c l e  

s i z e  tends t o  inc rease  wi th  inc reas ing  PSiF4 and temperature  i n  t h e  

r eac t ion  system. 

In  determining t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  leached s i l i c o n  paw- 

ders (experiments 23. l throueh 23.5) were s ieved  through s tandard  ASTM 

sc reens  ( ? O ,  40,  60, 100, and 730 mesh). For every sample, 0.1 g of 

d r j e d  s j l i c o n  powder was steved throuEh t h i s  se t ,  ?n4 t h e  v a r i o u s  

f r a c t i o n s  coll~cted and weiyhed ti, t h e  nea res t  - k 0.001 8. 

wejght percentages f o r  f i v e  d i  f f e r e n t  experiments f o r  S i F 4  pres su re  

ranging from 180 t o  760 t o r r  are  ? l o t t e d  i n  Figure 7 .  

Cumulative 

The p l o t  a l rpady shows t h a t  as t h e  Psiy4 ves increased  t h e  average 

p a r t j c l e  size increased.  For example, t h e  weight percentage  of t h e  

s i l i c o n  powder with p a r t i c l e  s i z e  g r e a t e r  than 25@ pn was 20% fo r  PSiF 

i n  t h e  range of 180 t o  350 t o r r ,  31X f o r  P S i ~ 4  = 750 t o r r ,  and 45% f o r  

PS i F 4  

4 

= 760 t o r r .  

11 
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The increase i r r  p a r t i c l e  s i z e  may be c o r r e l a t e d  wi th  e i t h e r  t h e  aveil-  

a b i l i t y  of SiF4 wi th  inc reas ing  p r e s s u r e  or wi th  t h e  r e s u l t i n g  rnc reese  

i n  reaction temperature .  

t h e  Si-NaF mixture  (see Sect ion  4.1) i n d i c a t e s  t h p t  h igher  tempera tures  

c o n t r i b u t e  t o  t h e  coa lescence  of S i  p a r t i c l e s .  

Experimental evidence obta ined  by hea t ing  

3.3 SiF4-Na Reaction: Scale-up 

From t h e  pre l iminary  experiments  d i scussed  i n  Sec t ion  3.1, 

w e  concluded that t h e  most p r a c t i c a l  S i F 4  opera t ing  p r e s s u r e  was 

1 atn. 

The scale-up of t h e  process  was f i r s t  examined by loading  Na 

p i e c e s  (about 5 g) Zn t h e  n i c k e l  cup r e z c t o r  tised for S i F 4  p r e s s u r e  

s t u d i e s .  We found t h a t ,  as t h e  depth  of t h e  Na pool i nc reased ,  t h e  

amouni of Na unreacted a f t e r  exposure t o  SiF4 a l so  increased .  

mixture  of S I  and NaF produced a t  t h e  Ya s u r f a c e  r e s u l t e d  i n  a 

d i f f u s i o n  b a r r i e r  f o r  t h e  r e a c t a n t s .  As t h e  b a r r i e r  t h k k n e s s  in -  

c reased ,  t h e  r e a c t i o n  slowed and even tua l ly  s topped,  l eav ing  unreacted 

Na beneath t h e  c r u s t  of chemical r e a c t i o n  proaucts .  

The 

From t h e  r e s u l t s  of r e a c t i o n  X q e t i c s  s t u d i e s ,  i t  seemed rea- 

sonable  t h a t  t h i s  d i f f u s i o n  problem could be minimized i n  scal ing-up 

r eac t ion  (1) i f  f r e s h  r e a c t a n t s  were cont inuous ly  fed.  Ttro exper i -  

mental approaches t o  t h i s  mode of ope ra t ion  were followed. I n  both  

approaches, f r e s h  Na feed was cont inuous ly  supp l i ed  t o  a r e a c t o r  

maintained under an  a tnosphere  of SiF4. 

Na c h i p s  were fed. This  method has  been scaled-up t o  produce kilogram 

q u a n t i t i e s  of S i  per  batch.  I n  t h e  second approach, l i q u i d  Na is  f e d  

t o  t h e  r e a c t o r .  Although less developed then  the  s o l i d  f e e d  method, 

t h e  l i q u i d  feed method w a s  equa l ly  success fu l .  

In  t h e  f i rs t  approach, s o l i d  

--- 3.3.1 So l id  Na Teeding 

T h i s  s e c t i o n  d e s c r i b e s  a technique f n r  fecding  s o l i d  Na i n  c h i p  

17 



form t o  t h e  Na-SiF4 r e a c t o r .  

h e a t  generated by t h e  r e a c t i o n  is used t o  m e l t  subsequent s o l i d  N a  

a d d i t i o n s  and t o  b r i n g  t h e  Na t o  t h e  r e a c t i n g  temperature .  

t h i s  method, w e  performed experiments  w i th  t h e  fol lowing o b j e c t i v e s :  

O m e  t h e  r e a c t i o n  is i n i t i d t e d ,  t h e  

To test 

o Inc rease  t h e  S i  product ion rate and product ion capac i ty .  

o Inc rease  t h e  e f f i c i e n c y  of t h e  r e a c t i o n  so t h a t  Na is  com- 
p l e t e l y  u t i l i z e d  and by-product Na2SiF6 is minimized. 

o Maintain high p u r i t y  of product  S i .  

o Obtain da t a  from r e a c t o r  scale-up f o c  p i l o t - p l a n t  des ign .  

The r equ i r ed  information was obtained by determining t h e  e f f e c t s  

of var ious  ope ra t ing  cond i t ions ,  such as s i z e  and shape of t h e  Na 

metal ch ips  ( f eed ) ,  ra te  of N a  a d d i t i o n ,  and r e a c t o r  temperature .  

The diameter of a 1-m long r e a c t o r  w a s  scaled-up i n  +-he progress ion  

7 ,  13, and 18 cm. Both pyrex and Tnconel were used as  r e a c t o r  

materials. The variation i n  diameter  w a s  t h e  only  d i f f e r e n c e  between 

r e a c t o r s ;  t h e r e f o r e  only t h e  most r ecen t  and advanced des ign  i s  

descr ibed  i n  d e t a i l .  

The 18-cm-diameter r eac toa  is shown schemat ica l ly  i n  F igure  8. 

The upper s e c t i o n  i s  t h e  Na d i spense r  made of pyrex g l a s s  wi.th a coat-  

i ng  of epoxy r e s i n  on a l l  inner  s;rfaces t h a t  may be i n  phys ica l  

con tac t  wi th  Na. 

Sodium ch ips  (Figure 9) were prepared by feeding  0.5- lb  (225-g) 

blocks of sodium (6-cm-diameter rod ,  cu t  l o n g i t u d i n a l l y )  t o  a food 

prccessor  using a b lanket  of a r g w  t o  minimize con tzc t  wi th  atmospheric 

oxygen and moisture .  There was no d e t e c t a b l e  contamination o f  t h e  

Na by t h e  metal of t h e  food c u t t e r .  Spectrographic  a n a l y s i s  of t h e  Na 

is shown i n  Table 5 .  

While the  Na ch ips  were introduced i n t o  t he  top  of  t he  s t o r a g e  

chamber of t h e  d ispenser  (2-kg c a p a c i t y ) ,  dry argon flowed up through 

t h e  chamber. The Na ch ips  were t r a n s f e r r e d  from t he  c to rage  chamber 

t o  t h e  r e a c t o r  by means of a h o r i z o n t a l  "hoe". Downward flow o f  Ha 

18 
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19 





Table 5 

PLASMA FMISSION SPECTROGRAPHIC ANALYSIS 
OF IMPURITIES IN METALLIC S O D I W  

Element 

B 

P 

As 

A1 

V 

Mo 

Cr 

rill 

Fe 

co 

Ni 

cu 

Zn 

c;d 

Pb 

Mg 

Ca 

K 

-- 

a. J. T. Baker, reagent grade 
b. Emission spectrographic analysis 

21 

Impurity Concentration 
( P P L -  

1 

1 

<1 

Cl, 7 5 

c1 

<1 

1 

<1 

8 

<1 

0.5 

<1, 2b 

<1 

<l 

2 

<1 

350 
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c h i p s  i n  t h e  s t o r a g e  chambc 

rod. 

-*as a ided  by a g i t a t i o n  of t h e  ve r t ’ ca l  

The laver s e c t i o n  of t h e  r e a c t o r  is made of Inconel (20-cm diameter,  

rind 90-cm high).  It is f i t t e d  w i t h  a n i c k e l  l i n e r  (18-cm d iameter  by 

60-cm high) and an a d d i t i o n a l ,  i n n e r  l iner  of G r a f o i l  (18-cm diameter  

and 90-cm high). 

t h e  d e t e c t a b l e  i s p u r i t i e s  were Al (50 ppm), Fe (20 pprn), Cu (8  ppm), 

and Ca (200 ppm). 

f o u r  sets of heavy duty  electrical h e a t i n g  t a p e s  ( r a t e d  f o r  u se  t o  

8OO0C), which are covered w i t h  Kaowool i n s u l a t i o n  (1.3 c m  t h i c k ) .  

t o p  of t h e  Inconel  r e a c t o r  and t h e  f l a n g e s  t h a t  connect t o  t h e  pyrex 

Na dispens ing  s e c t i o n  are water cooled. 

G r a f o i l  was  analyzed by emission spec t roscopy and 

The o u t s i d e  of t h e  Inconel  reactor is wrapped w i t h  

The 

I n  o p e r a t i n g  t h e  r e a c t o r ,  the system is f i r s t  evacuated, t hen  

f i l l e d  wi th  SiF4 gas  t o  a p res su re  of about one atmosphere. 

is i n i t i a t e d  as soon as N a  c h i p s  are dropped t o  t h e  bottom of t h e  

r e a c t o r ,  preheated t o  40OoC. 

i n g  N a  c h i p s  a t  a rate s u f f i c i e n t  t o  s a t i s f y  a given S i F  (g) flow 

rate, as ind ica t ed  by an e l e c t r o n i c  flowmeter. The maximum SiF4(g) 

f low rate used was 380 l i ters SiF4/hr ,  corresponding t o  an a d d i t i o n  

rate of about 1.4 kg/hr and a product ion rate of 0.45 kg S i / h r .  

t h e  ope ra t ion  of t h e  Inconel r e a c t o r ,  t h e  tempera ture  of t h e  r e a c t o r  

w a l l s  i n  t h e  reg ion  of t h e  r e a c t i o n  products  r o s e  to  600° - 65O0C, 

a s  i nd ica t ed  by thermocouples loca t ed  i n  e x t e r n a l  con tac t .  The 

temperature  of t h e  n i c k e l  l i n e r  reached t h e  mel t ing  temperature  of 

NaF (998OC), i nd ica t ed  by molten NaF observed on t h e  o u t s i d e  of t h e  

n i c k e l  l i n e r  near  t h c  top  of t h e  r e a c t i o n  zone. These high r e a c t i o n  

temperatures  favor  t h e  decomposition of by-product Na S i F  formed by 

t h e  r e a c t i o n  of SiF4 wi th  f r e s h l y  formed NaF and ensure t h a t  t h e  re- 

a c t i o n  products c o n s i s t  only of S i  and NaF. 

React ion 

React ion is sus t a ined  by manually add- 

4 

During 

2 6  

3.3.2 Scale-up and Rate S t u d i e s  

Severa l  p rocess  v a r i a b l e s  t h a t  a f f e c t  t h e  r a t e  and ex ten t  of 

r e a c t i o n  were s tud ied  t o  scale-up t h e  SiF4-Na r e a c t o r  and opt imize 

t h e  parameters  (e.g., w a l l  temperature,  Na ch ip  s i z e )  t o  achieve 

high product ion rates and complete u t i l i z a t i o n  of the reacts-it. . 
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The e f f e c t s  of  scale-up on reactor performance characteristics 

are summarized i n  Table  6 and Figure  10 f o r  t h r e e  d i f f e r e n t  r e a c t o r  

diameters  (7, 13, and 18 cm). The r e l a t i o n s h i p  between t h e  ami c 

o f  unreacted Na and t h e  Na a d d i t i o n  rate, shown i n  F igure  10, c l e a r l y  

i n d i c a t e s  that as t h e  reactor s i z e  is increased,  t h e  N a  a d d i t i o n  rate 

can b e  increased s u b s t a n t i a l l y  before  any Na remains unreacted.  For 

t h e  18-cm-diameter Inconel  r e a c t o r ,  unreacted Na w a s  no t  observed i n  
t h e  r e a c t i o n  products  even a t  t h e  h ighes t  N a  a d d i t i o n  rate used 

(1.4 kg Na/hr). 

An exact  coatparison of reactor s i z e s  is not  p o s s i b l e  because of 

t h e  h igher  temperatures  (600' - 65OoC) used i n  t h e  18-cm-diameter 

Inconel  r e a c t o r .  However, i t  is expected t h a t  t h e  SiF4-Na r e a c t i o n  

would proceed t o  comp1e:ion i n  any f u r t h e r  reactor scale-up s t u d i e s  

aimed a t  p i l o t - p l a n t  use.  Severa l  des ign  f e a t u r e s  must b e  considered 

f o r  reactors of increased s i z e .  I n  p a r t i c u l a r ,  hea t  d i s s i p a t i o n  zust 

be taken i n t o  account as r e a c t o r  diameter  is increased  because a 

l a r g e  mass of r e a c t i o n  products  w i l i  be  less a b l e  to d i s s i p a t e  h e a t  i n  
a r a d i a l  d i r e c t i o n .  

3.3.3 Sodium S i z e A d  Addition Rate 

The e f f e c t  o l  t h e  amount of s u r f a c e  a r e a  of t h e  Na feed w a s  among 

t h e  r e a c t i o n  v a r i a b l e s  s tud ied  i n  t h e  smaller 7-cm-diameter r e a c t o r .  

The s u r f a c e - t o - v o h w  r a t i o  of t h e  N a  feed was v a r i e d  by c o n t r o l l i n g  

th? shape and th ickness  of Na s l i c e s .  The r e s u l t s  g e n e r a l l y  i n d i c a t e d  

tha t  t h e  SiF4-Na r e a c t i o n  is more complete ( l e s s  unreacted Na) when 

t h e  feed p a r t i c l e  s i z e  is small and t h e  a d d i t i o n  r a t e  is low. This  

t rend  is shown i n  Figure 11, which r e l a t e s  t h e  amoutit of unreacted 

Na t o  t h e  a d d i t i o n  rate. The four  s o l i d  l i n e s  show r e s u l t s  us ing  Na 

s l ices  (0.4 c m  t h i c k  and 6 CL i n  diameter)  a t  four r e a c t o r  tempera- 

t u r e s .  The r e s u l t s  shown by t h e  dashed l i n e  were obtained using Na 

c h i p s  ( t y p i c a l l y  0.05 by 0 . 5  by 2 cm). The i c d i c a t e d  r e a c t o r  tempera- 
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Table 6 

Reactor 
Characteristic 

Design parameter 

Diameter (cm) 

Height (cm) 

EFFECT OF SCALE-UP ON REACTOR 
PERFORMANCE CHARACTERISTICS 

Sodium dispecser capacity 

S1 ices (kg/ f ill ing) 

Chips (kg/f illing) 
Pellets (kg/filling) 

Maximum Performance 

b 7-cm 13-cm 18-cm 
Reactor a Reactora Reactor 

7 13 18 
60 60 60 

1.3 

0.35 
0.85 

Reaction product (kg/batch) 1.5 

Si licoir (kg/ bat ch) 0.15 

Reaction rates (kg Si/hr)' 0.1 

Unreacted sodium (wtX) 10 

- 
a 

b 

c 

d Assumes that Reaction (1) is complete. 

Reactor temperature 100°C, Na chip feed. 

Reactor temperature 60U0 to 65OOC. 

Maximum rate ior complete reaction of Na. 

5.0 

0.5 

0.27 

0 

-- 
1.6 
-- 

lo 
1.4d 

0.45  

0 
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Reactor 1 I I 
7 cm diam 

0 Na Sliced (0.- cm thick x 6 cm diam 
e0 Na Shredded 

Reactor 
18 cm diarr 

I I ,  
0 5 10 15 20 25 

Na ADDiTION RATE - g min" 
SA4980-104R 

FIGURE 10 EFFECT OF Na ADDITION RATE AND REACTOR DIAMETER OF' 
AMOUNT OF UNREACTED Na 

Reactor temperature 400-500"2 for 7-cm and 13-cm reactors. - j 

600-65OCC for 18-an reactor. 



0 I I B I  1 I 1 

Na ADDITION RATE - g rnin-l 
S A 4 9 8 0 - 8 7 R  

FIGURE 11 EFFECTS OF Na ADDITION RATE AND REACTOR TEMPERATURE ON AMOUNT 
OF UNREACTED Na 

(Na Dddcd as disks 6 cm Jiameter m d  0.4 cm thick.) 
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t u r e  is t h e  lowest temperature  of t h e  r e a c t o r  walls, bu t  t h e  w a l l  

temperature  was o f t e n  100°C higher  i n  t h e  v i c i n i t y  of t h e  r e a c t i o n  

zone. I n  each run, t h e  N a  was fed a t  d i f f e r e n t  rates. Typica l ly ,  

t h e  d i s k s  were added f i r s t  one a t  a t i m e ,  then  two a t  a t i m e ,  and f i n a l l y  

t h r e e  a t  a time. Nearly equal  t o t a l  amounts of Na were added f o r  each 

a d d i t i o n  rate. 

Figure 11 i n d i c a t e s  that t h e  amount of unreacted Na decreases  a t  

lower N a  a d d i t i o n  rates. 

Na r e s u l t e d  from a feed of c h i p s  than r e s u l t e d  from a feed of sl ices 

( r e a c t o r  temperature  of 400OC). 

r e a c t o r  temperature:  t h e  amount of unreacted Na f o r  a given a d d i t i o n  

r a t e  passes  through a maximum a t  about 45OoC and is minimal a t  309OC. 

A t  a given a d d i t i o n  rate, less unreacted 

Figure 11 a l s o  shows t h e  e f f e c t  of 

A s  a s p e c i a l  case i n  Figure 11, t h e  r e a c t i o n  product conta in ing  

zero  unreacted N a  (2 .7 g Na/min as s l i c e s )  was produced i n  a s e p a r a t c  

run a t  4OO0C i n  which t h e  r e a c t i o n  product continued t o  be exposed 

t o  SiF4(g) overn ight ,  dur ing  t h e  cool ing of t h e  r e a c t o r .  

o t h e r  cases, t h e  SiF4(g) was removed by evacuat ion a t  t h e  end of t h e  

run, whi le  t h e  r e a c t o r  was s t i l l  hot.  

I n  a l l  

To s u s t a i n  p r a c t i c a l  rates of r e a c t i o n  on an  i n d u s t r i a l  s c a l e ,  

t h e  N a  d e l i v e r y  system may have t o  b e  modified. A t  p r e s e n t ,  t h e  

surface-to-volume r a t i o  f o r  t h e  machine-shredded N a  (Figure 9) has  

proved t o  be e f f e c t i v e  i n  promoting complete r e a c t i o n  i n  t h e  18-cm 

r e a c t o r .  A smaller  surface-to-volume r a t i o  may work i n  l a r g e r  reac- 

t o r s ,  thus  permi t t ing  l a r g e r  segments of Na t o  be added w i t h  less 

mechanical shredding. For a p i l o t  p l a n t  s c a l e d  t o  product 25 met r ic  

tons  Si per  year  (250 days,  8 hours per  day o p e r a t i o n ) ,  d e l i v e r y  of 

40 kg Na/hr is r e q u i r e d .  

3.3.4 Effec t  of Na Surf a c e  Ox i d a t i o n  on Reaction 

Good conversion 

s p e c i a l  precaut ions 

(95-100%) was obtained using Na c u t  i n  a i r  wi th  nG 

if t\e Na was used immediately. The amount of 
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s u r f a c e  oxide  l a y e r  on N a  that could b e  t o l e r a t e d  w a s  of interest  
because t h e  s u r f a c e  oxide  could block t h e  r educ t ion  r e a c t i o n  and 

reduce t h e  e f f e c t i v e  s u r f a c e  a r e a  a v a i l a b l e  for t h e  SiF4-Na r e a c t i o n .  

For s tudy ing  t h e  e f f e c t  of N a  o x i d a t i o n  on t h e  extent of r e a c t i o n  

wi th  SiF4, Na s l ices  w i t h  different degrees  of ox ida t ion  were fed  t o  

t h e  7-cm-diamzter SiF4-Na r e a c t o r .  To o b t a i n  d i f f e r e n t  ox ide  th i ck -  

nes ses ,  w e  exposed two ba tches  of Na s l i c e s  t o  a i r  f o r  approximately 

1 0  and 30 mini-tes, r e s p e c t i v e l y .  A s  a c o n t r o l ,  Na w a s  a l s o  s l i c e d  

i n  an argon atmosphere and rdp id ly  t r a n s f e r r e d  t o  t h e  r e a c t o r  under 

argon flow. Table  7 shows t h e  amount of unreacted Na i n  t h e  r e a c t i o n  

products  ob ta ined  from each type  of ox id i zed  Na .  

Table  7 

EFFECT OF N a  SURFACE OXIDATION ON 
PERCENTAGE OF UNREACTED N a  

(Cy l ind r i ca l  S l i c e s ,  3.6 c m  Thick) 

Oxidat ion S t a t e  
W t  X Na i n  

- React ion Products  

Light  ox ida t ion  (Na c u t  i n  A r )  5-11 

Normal ox ida t ion  (Na exposed t o  
sir fo r  <10 min) 2.5-11, 9-20, 5-11 

Heavy ox ida t ion  (Na I .posed t o  
a i r  f o r  20-30 min) >2 0 

TG q u a l i t a t i v e l y  eva lua te  t h e  s u r f a c e  oxide formed dur ing  t h e  Na 

c u t t i n g  and loading ,  w e  exposed Na s l i c e s  of known s u r f a c e  area 

t o  room a i r  and recorded t h e i r  weight change wi th  t i m e  (Figure 1 2 ) .  

The weight measurements began one minute after t h e  Na had been i n i t i a l l y  

exposed t o  a i r  and cont inued f o r  35 minutes.  

t h e  weight i nc rease  wi th  time was l i n e a r .  

Within t h i s  t i m e  range. 

The l i n e a r  behavior  (Figure 12a) and observed p o r o s i t y  i n  t h e  oxide 

i n d i c a t e  t h a t  t h e  Na oxide l a y e r  formed is nonprotec t ive .  

28 



0 10 20 30 40 
TIME - min 

(a) MEASURED Na WEIGHT 
INCREASE WITH TIME 

51 cm* initial area. 

25 

20 
E a 
I 

% 
15 

Y u 
I 
I- 
O 

.- 

(Y 

10 
0 
W 

t 
t;; 
z - 
u1 

5 

I ' ; z  

25°C / 
0 

TIME - min 

(b) ESTIMATED Na20 THICKNESS 
INCREASE WITH TIME 

SA4980-78R 
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The o r d e r  of magnitude of t h e  t h i c k n e s s  of t h e  oxide  l a y e r  was 

es t imated  by assuming its p o r o s i t y  to be approximately 50%, corres -  

ponding t o  an apparent  d e n s i t y  of approximately 1 g ~ m - ~ .  
t h i s  value,  t h e  i n i t i a l  s u r f a c e  area of  t h e  Na slices (51 crn2), and 

t h e  d a t a  from Figure  12a, w e  estimate t h e  th ickness  of +'le oxide  l a y e r  

ae a f u n c t i o n  of t i m e  and p l o t t e d  t h e  r e s u l t s  as shown i n  F igure  12b. 

Using 

Since  t h e  oxide  l a y e r  formed on t h e  N a  s u r f a c e  was porous and 

nonprotec t ive ,  t h e  t i m e  of exposure t o  a i r  was  n o t  expected t o  g r e a t l y  

a f f e c t  t h e  rate o r  e x t e n t  of t h e  SiF,+-Na r e a c t i o n .  

d i d  have on t h e  e x t e n t  of  t h i s  r e a c t i o n  was  probably due to  t h e  

presence of H20 i n  t h e  N a  ox ide  l a y e r .  

t o r y  a i r ,  NaOH and Na2C03 are formed i n  a d d i t i o n  to  Na20. 

more, the NaOH w i l l  r e a d i l y  absorb H20. 

c o n t a c t s  t h e  "wet" NaOH, i t  produces S i 0 2  and NaF. The Si02 ,  formed 

as a g e l ,  may "plug" t h e  porous pa th  t o  t h e  f r e s h  Na s u r f a c e  and, as 

a consequence, t h e  i n i t i a l  r a t e  of r e a c t i o n  m y  be decreased and t h e  

r e s i d u a l  Na increased.  

The e f f e c t  i t  

When Na is exposed t o  labora-  

Further-  

I n  t h e  r e a c t o r ,  when SiF4 

3 . 3 . 5  SiFq-Na Reaction: Liquid Sa Feeding 

As an  a l t e r n a t i v e  t o  s o l i d  feeding of Na i n t o  t h e  SiF4-Na r e a c t o r ,  

t h e  i n j e c t i o n  of l i q u i d  N a  w a s  s t u d i e d .  

when i t  has been preheated t o  15OoC, l i q u i d  Na a t  13OoC can b e  s a f e l y  

fed t o  t h e  r e a c t o r .  

t h e  Na has  been heated t o  15OoC e i t h e r  by e x t e r z a l  heat  o r  by t h e  h e s t  

l i b e r a t e d  from previously formed products .  

120 g S i  was produced i n  3 hours is shown i n  Figure 13. The .;lain 

f e a t u r e s  of t h e  r e a c t o r  were s i m i l a r  t o  t h a t  used  wi th  t h e  s o l i d  Na f e e d  

s y s t e m ,  t h e  only d i f f e r e n c e  being t h e  l i q u i d  Na r e s e r v o i r  and i n j e c t i o n  

nozzle ,  descr ibed i n  d e t a i l  below. 

Since Na r e a c t s  w i t h  SiF4 only  

The SiF4-Na r e a c t i o n  w i l l  t a k e  p lace  only a f t e r  

A system i n  which up  t o  

The sodium l i q u e f i e r  shown i n  Figure 13  could hold 1 kg of l i q u i d  

sodium. The s t a i n l e s s  s teel  walls of t h e  l i q u e f i e r  were t h i n  (1116 
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HEATING TAPE 
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FtGURE 13 SCALE@-UP APPARATUS FOR SiF,-Na REACTFION: LlOUlD Ne FEED 
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inch) to allow for fast heating and cooling. 

vided by wrapped heating tape. 

monitored by a thermocouple (TC3, Figure 13) ana 2.1.8 maintained at 

about 150°C. 
reactor through 3/8-inch-OD stainless steel tubing. 

formed on liquid sodium was removed by two in-line filters. A stain- 

less steel bellows valve (V3) controlled the sodium flow. The liquid 

sodium was fed into the reaction zone through a nozzle. 

coupling was detachable so that different nozzle configurations could 

be tested, including nozzles with multiple orifices varying in diameter 

from 0.016 to G.030 inch. 

continuous supply of sodium, with drop size and drop freqiency 

depending primarily on orifice size, temperature, and argon pressure. 

The temperature in the liquid sodium near the nozzle was measured 
by a thermocouple (TC2, Figure 13) and was maintained at around 13OoC. 

Control of temperature at this point was critical because, as the 

SiF4/Na reaction progressed, the tip occasionaliy overheated due to 
the heat of reaction, thereby causing premature SiF4-Na reaction and 

plugging of the tip of the nozzle with reaction product. 

plugging, we further modified the delivery system shown ir. Figure 13 
to provide thermal isolation of the sodium inlet tube from the stain- 

less steel flange by a concentric glass jacket (see Figure 14). 
Additionally, the SiF4 gas admitted into the reactor flowed around 

the sodium inlet tube. Consequently, che in-flowing SiF4 gas stream, 

initially at room temperature, aided in keeping the nozzle from being 

overheated. This design wad successfully used to produce silicon 

without plugging of the tip of the sodium delivery nozzle. 

External heat was pro- 
The temperature of the sodium was 

Argon pressure forced the liquid sodl&im into the 

The scale that 

The nozzle 

The nozzles were modified to provide a 

To avoid 

3 . 3 . 6  SiF4-Na Reaction Products: Structure 

After completing a SiF4-Na run, we divided the cylindrical porous 

mass (Fipure 15) of the reaction product (RP) along its length into 
segments. These segments were pulverized with a plastic hammer, and 
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FIGURE 14 SODIUM DELIVERY NOZZLE 
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t h e  G r a f o i l  l i n e r  w a s  removed as completely as p o s s i b l e .  

products  were analyzed t o  determine t h e  amount of unreacted Ka by an  

a c i d  t i t r a t i c n .  The amount of S i ,  NaF, and Na2SiF were determined 

by x-ray d i f f r a c t i o n .  

scopy ( s e e  Sec t ion  5). 

The r e a c t i o n  

6 
I m p n i t i e s  were determined by emission spec t ro-  

The x-ray technique is c a r r i e d  out  by adding t o  t h e  product 

sample a known amount of KC1 as a r e f e r e n c e  substance.  Standard 

mixtures  are used t o  determine t h e  weight f r a c t i o n  of t h e  N a  S i F  

from t h e  r a t i o  of t h e  peak i n t e n s i t i e s  of Na  S i F  

method is  rap id  and a c c u r a t e  t o  about +S%. 
was observed on13 13 t h e  W obtained a t  low temperatures.  

2 6  
The and KC1. 2 6  

The presence of Na SiF  2 6  

A c r o s s  s e c t i o n  of t h e  RP obtained by feeding  l i q u i d  sodium i n t o  

a r e a c t o r  conta in ing  SiF  gas  a t  a cons tan t  p r e s s u r e  of 1 a t m  was 

pol ished and etched wi th  HC1. Opt ica l  microscopy showed a banded 

s t r u c t u r e  (Figure 16) ,  which w a s  f u r t h e r  confirmed by S M  (Figure 17).  

Close SEM examination of dark and l i g h t  bands revealed g r e a t e r  p o r o s i t y  

i n  t h e  l i g h t e r  bands. 

conta in  a l a r g e r  propor t ion  of S i  than t h e  l i g h t e r  bands. 

1 7 ,  t h e  Na salts were removed by a c i d  e tch ing ,  leav ing  behind t h e  

exposed S i .  

4 

EDAX a n a l y s i s  i n d i c a t e s  t h a t  t h e  darker  bands 

I n  F igure  

These observa t ions  have not  been c o r r e l a t e d  wi th  t h e  r e a c t i o n  

mechanisms. However, t h e r e  is some i n d i c a t i o n  of segrega t ion  be- 

tween s i l i c o n  and NaF during t h e  reduct ion  r e a c t i o n ,  s i l i c o n  be ing  

concentrated i n  c e n t r a l  nodules and dark bands, as shown i n  F igure  16. 

As detern,ined by a c i d  t i t r a t i o n ,  t h e  amount of Na l e f t  unreacted 

i n  t h e  RP is v i r t u a l l y  zero when t h e  r e a c t o r  w a l l s  a r e  kept a t  60OoC. 
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4. SEPARATION OF S i  AND NaF 

S i l i c o n  w a s  e x t r a c t e d  from t h e  Si-NaF mixture  produced by t h e  

reduct ion r e a c t i o n  us ing  two d i f f e r e n t  techniques: (1) melt separa-  

t i o n  and (2) a c i d  leaching.  

4.1 Melt Separat ion 

The m e l t  s e p a r a t i o n a p p r o a c h b a s i c a l l y  c o n s i s t s  of h e a t i n g  t h e  RP 
mixture without  f u r t h e r  treatment t o  temperatures  above t h e  mel t ing  

poin t  of S i  (1412OC). 

duct mass coalesce  i n t o  a pool a t  t h e  bottom of a c r u c i b l e ,  and t h e  

NaF is c l e a n l y  separa ted  i n t o  an upper l i q u i d  l a y e r .  This concept 

w a s  f i r s t  demonstrated w i t h  ba tches  of a few grams of RF' in g r a p h i t e  

c r u c i b l e s  and w a s  immediately s c a l e d  up to  m e l t  ki logram ba tches  of 

RP. For t h i s  purpose, a F a i r c h i l d  s i l i c o n - c r y s t a l  growing furnace  

(two-inch Czochralski  ingots )  w a s  modified t o  melt t h e  SiF4-Na 

rcduct ion  products  (Figure 18). The furnace  c o n s i s t s  of a water- 

cooled c y l i n d r i c a l  h e a t i n g  chamber (A), a water-cooled cover (B), and 

a gas-solid feeder  (C) connected t o  t h e  h e a t i n g  chamber through a 

por t  on t h e  upper s e c t i o n  of t h e  cover.  A 40-kW power supply (D) ,  

a gas supply system, and a vacuum sys t tm c o n s t i t u t e  t h e  remainder 

of t h e  apparatus .  

A t  t h i s  temperature,  S i  p a r t i c l e s  i n  t h e  pro- 

The c y l i n d r i c a l  hea t ing  chamber of t h e  furnace,  shun i n  F igure  19 

conta ins  a g r a p h i t e  r e s i s t a n c e  h e a t e r  (A) (8  inches I D ,  8 inches  

long),  f i v e  concent r ic  Mo heat  s h i e l d s  (B) enclosed i n  a gas- t igh t ,  

m e r - c o o l e d ,  s t a i n l e s s  s teel  chamber (C), and a g r a p h i t e  c r u c i b l e  (D) 

placed i n s i d e  t h e  h e a t e r  and jo ined  by a g r a p h i t e  l i d  t o  t h e  g r a p h i t e  

f e e d  p ipe  (E) .  The ensemble is enclosed by t h e  cover  (F) , which 

s l i d e s  down and makes t h e  chamber gas t i g h t  by means of an O-ring (G). 

Figure 20 shows t h e  cover of t h e  hea t ing  chamber and t h e  feeder .  

The upper p a r t  of t h e  cover has  two c i r c u l a r  p o r t s  (4 inches  i n  di-  
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ameter). One of t h e  ?arts (A) is connected t o  a v e r t i c a l  tube  down 

which t h e  r e a c t i o n  products  are fed ,  and t h e  o t h e r  has  a g l a s s  window 

t o  observe t h e  i n s i d e  of t h e  chamber (B). The v e r t i c a l  feed  tube  (C) 

c o n s i s t s  of a 4-inch water-cooled s t a i n l e s s  steel p ipe  a t t ached  on 

top  t o  a five-way, 4-inch c r o s s  (D). The t o p  of t h i s  c r o s s  has a 
g l a s s  window (E) that a l lows  d i r e c t  o p t i c a l  temperature  reading.  One 

ls teral  po r t  of t h e  c r o s s  is connected t o  t h e  h o r i z o n t a l  r e a c t i o n  pro- 

duc t  f eede r  (F), and another  is a t t a c h e d  t o  t h e  SiF4 gas i n l e t .  The 

f r o n t  p o r t  (G) has a window t o  observe t h e  r e a c t i o n  products  as they  

are fed  through t h e  l a t e r a l  p o r t s .  

e x t e r i o r  f a c e  of t h e  g r a p h i t e  p ipe  provide a gas  seal a g a i n s t  t h e  

inner  w a l l s  of t h e  v e r t i c a l  feed tube.  

from (F) through (C) i n t o  t h e  g r a p h i t e  c ruc ib l e .  The RP are kept  

under argon or  an SiF4 atmosphere to  consume unreacted Na t h a t  may 

be present .  

f o r  S i F  

t i nuous ly  through t h e  vacuum pump (H). 
c o n t r o l l e d  by a va lve  flow meter arrangement (I). The mel t ing  system 

has a capac i ty  t o  m e l t  up t o  about 5 icg of r e a c t i o n  product pe r  ba tch  

and t o  produce about 0.5 kg of s i l i c o n .  

' b o  O-rings placed on t h e  upper 

During ope ra t ion ,  RP are fed  

The h e a t e r  chamber is under an Ar flow. Gas p r e s s u r e s  

and A r  are kept  a t  nea r ly  1 a t m ,  an8 Ar is leaked con- 

G a s  f lows are measured and 
4 

In  a t y p i c a l  run, 2 kg 02 RP were i n i t i a l l y  loaded in t h e  g r a p h i t e  

c r u c i b l e ,  and 2 kg of RP were loaded i n  t h e  feeder .  The c r u c i b l e  

was heated t o  1475O + - 2G°C t o  m e l t  its contents .  

1475OC, t h e  RP i n  t h e  c r u c i b l e  melted,  and t h e  a d d i t i o n  of RP from 

t h e  feeder  began. 

added a t  3- t o  4-minute i n t e r v a l s .  When t h e  RP i n  t h e  feeder  w a s  

deple ted ,  t h e  feeder w a s  detached from t h e  furnace,  reloaded wi th  2 ks 
of RP, and rea t tached  t o  t h e  furnace.  During t h i s  ope ra t ion  (approxi- 

mately 4 minutes) ,  an argon flow w a s  maintained over  t h e  melt. 
The molten NaF l a y e r  on top  of t h e  s i l i c o n  is presumably a b a r r i e r  t o  

S i  ox ida t ion .  A f t e r  t h e  re loading ,  occas iona l  problems developed 

i n  c o n t r o l l i n g  t h e  anount of RP fed p e r  add i t ion .  

Af t e r  5 minutes a t  

Increments of approximately 200 g of RP were 

D i f f i c u l t i e s  of 
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rep lac ing  t h e  p l a s t i c  l iner  holding t h e  products  r e s u l t e d  i n  s i n g l e  

a d d i t i o n s  of up t o  0.5 kg. 

occurred near t h e  bottom of t h e  ver t ical  g r a p h i t e  feed pipe.  

plug could be broken loose by a l a r g e  g r a p h i t e  rod I n s e r t e d  from t h e  

top of t h e  feeder ,  bu t  some RP remained s t u c k  t o  t h e  g r a p h i t e  p ipe ,  

decreasing t h e  diameter. 

As a consequence, o z c a s i o n a l  plugging 

The 

To eliminate t h i s  choking problem, w e  designed and b u i l t  a new 

RP feeaer  t h a t  consists of an a l l - p l a s t i c  hopper and a screw-feeder 

system t h a t  cont inuously and homogeneously f e e d s  RP i n t o  t h e  c r u c i b l e .  

The p l a s t i c  hopper has a c a p a c i t y  of 10 kg of RP so t h a t  r e l o a d i n g  

during melt ing is unnecessary. 

and is  coated with sd epoxy r e s i n  t o  avoid metal contamination of RP. 
A v a r i a b l e  speed motor d r i v e s  t h e  screw f e e d e r  and can feed RP a t  a 

r a t e  of 200 g/minutes. 

The screw f e e d e r  is made of steel 

A f t e r  cool ing,  t h e  s o l i d  is e a s i l y  s l i p p e d  out  of t h e  g r a p h i t e  

c r u c i b l e ,  which i s  l ined  wi th  a n  i n n e r  G r a f o i l  sheath.  A c l e a n  phase 

separa t ion  was observed, wi th  a l l  t h e  Si agglomerated a t  t h e  bottom 

of t h e  c r u c i b l e  and t h e  NaF i n  an upper l a y e r  (Figure 21a). 

Scanning e l e c t r o n  microscopy w i t h  XES (Ffgure 21b) shows t h e  Si- 

NaP i n t e r p h a s e  w i t h  some S i  t h a t  h a s  n o t  y e t  coalesced i n t o  t h e  b i g  

pool. This s t r u c t u r e  i s  c o n s i s t e n t  wi th  a mechanism i n  which i n d i v i -  

dual. g r a i n s  s t a r t  t o  f u s e  wi th  each o t h e r  through br idge  formation. 

The smount of non-separated S i  was est imated t o  be less than 12 of t h e  

t o t a l  smount of S i ,  even €or  b r i e ;  mel t ing times (15 minutes).  

I n  conclusion, c o m p l e t ~  s e p a r a t i o n  of Sj from t h e  NaF can be ob- 

ta ined  by t h e  melt ing technique which has g r e a t  p o t e n t i a l  f o r  s c a l e  up 

ana cont  i nuoils opera t ion .  

4 .2  Leaching Studies  

As a second approach t o  s e p a r a t e  silicon from the r e a c t i o n  pro- 

duc ts  ( S i ,  NaF, and poss ib ly  some Na2SiF6), w e  leached out  sodium 

f l u o r i d e s  with d i l u t e  ac id  s o l u t i o n s .  The RP may also conta in  t r a c e  

amounts of unreacted sodium. To avoid t h e  formation of an  a l k a l l n e  

s o l u t i o n  during t h e  leaching process  and t h e  r e s u l t i n s  oxida t ion  of 

s i l i c o n ,  w e  u s e d  d i l u t e  a c i d i c  s o l u t i o n s  a s  leachants .  The e f f i c i e n c y  
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of t h e  leaching  process  could conceivably be a f f e c t e d  by such f a c t o r s  

as t h e  p a r t i c l e  s i z e ,  s t i r r i n g ,  temperature,  concent ra t ion ,  t h e  n a t u r e  

of t h e  a c i d  leachant ,  and t h e  degree of  ox ida t ion  of Si i n  t h e  l eachan t s .  

To s tudy  t h e  e f f e c t s  of t h e s e  f a c t o r s  on t h e  leaching  process ,  w e  

performed t h e  experiments descr ibed  below. 

The r e a c t i o n  products  were crushed and s ieved  t o  c o l l e c t  f r a c t i o n s  

of material wich d i f f e r e n t  p a r t i c l e  s i z e s  ranging from 1.18 mm down t o  

0 . 0 4 3  mm. I n  a typ ica l  experiment,  2 g of  t h e  r e a c t i o n  products  were 

mixed wi th  2 0 0  m l  of a leachant  i n  a p l a s t i c  beaker and s t i r r e d  wi th  

a Teflon-coated magnetic s t i r r i n g  bar.  Al iquots  ( 2  ml) of t h e  leachant  

were taken out  p e r i o d i c a l l y  artd analyzed f o r  F" and Na+ concen t r a t ions ,  

using ion - se l ec t ive  e l e c t r o d e s  (Orion No. 94-09  f o r  F- and No. 9 4 - 1 1  

f o r  Na') and a h igh  impedance e lec t rometer  (Kei thley 6 l O C ) .  

More r ap id  leaching  w a s  obtained f o r  smaller p a r t i - l e  s i z e s  

(Figure 2 2 ) ,  higher  temperature  (F igure  2 3 ) ,  increased s t i r r i n g  

(Figure 2 3 ) ,  and wi th  H 2 S 0 4  (Figure 2 4 ) .  

s u l t i n g  from var ious  t rea tments  were small and took p l ace  i n  t h e  f i r s t  

minutes of leaching.  It  w a s  a l s o  found t h a t  t h e  concen t r a t ion  of the 

a c i d  used d id  not  have any apprec iab le  e f f e c t  on t h e  ra te  of leach-  

ing  (r  u r e  25), al though i t  d id  have some e f f e c t  on t h e  amount of S i  

recovered, perhaps re l - - ted  t o  t h e  ox ida t ion  of S i  i n  reg ions  where 

expended s o l u t i o n  becomes t rapped.  It was pos tu la ted  t h a t  s i l i c o n  may 

be oxidized during leaching,  based on t h e  observa t ion  t h a t  gas bubbles  

continued t o  r ise  t o  the  su r face  of t h e  leachant  s e v e r a l  days a f t e r  

t he  sodium metal i n  t h e  r e a c t i o n  product had reac ted  wi th  t h e  water (1). 

I t  is  w e l l  known t h a t  S i  may r e a c t  with water according t o  

In  generdl ,  d i f f e r e n c e s  re- 

S i  + 2H20 i! S i 0 2  + 2H2 f (2) 

p a r t i c u l a r l y  i n  a l k a l i n e  s o l u t i o n s  when t h e  p r o t e c t i v e  Si02 is a t t acked  

t o  form so lub le  s i l i c a t e s .  
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The parameters  t h a t  c o n t r o l  t h e  o x i d s t i o n  shown in equat ion  (2) 

were determined by measuring t h e  gas  evo lu t ion  rates under va r ious  

c o n d i t i o n s  of  f l u o r i d e  and a c i d  concen: r a t i o n s .  Mass spec t rographic  

a n a l y s i s  i nd ica t ed  t h a t  t h e  gas  evolved w a s  hydrogen. I n  t h e  appara- 

t u s  shown i n  F igure  76, a 1-g sample of powdered s i l i c o n  (ma te r i a l  

recovered by leaching)  w a s  added t o  100 m l  of a given aqueous solu-  

t i o n  in a 125-ml polypropylene bottle. The hydrogen gas  was c o l l e c t e d  

by water displacement i n  t h e  inver ted  graduated cy l inde r .  

In  t h e  f i r s t  series of t h r e e  experiments,  t h o  sodium f l u o r i d e  

concen t r a t ion  w a s  held cons tan t  a t  0.60 M whi le  the a c i d i t y  w a s  

ad jus t ed  wi th  H 2 S 0 4  and NH OH t o  i n i t i a l  pH va lues  of  -0.08, 6, and 

9 . 7 .  The r e s u l t s  i n  Figure 27 show t h a t  t h e  rate of hydrogen evolu- 

t i o n  was e s s e n t i a l l y  independent of pH and t h a t  t h e  ra te  w a s  cons t an t  

up t o  about 300 minutes,  t h e r e a f t e r  decreas ing .  The weight percent  

of s i l i c o n  t h a t  w a s  ox id ized  was c a l c u l a t e d  f r o a  t h e  volume of hyaro- 

gen evolved and is  shown on t h e  right-hand o r d i n a t e  of Figure 2 7 .  

4 

Figure 28 shows t h a t ,  a t  lower f l u o r i d e  ion  concen t r a t ions  i n  

1.2N H 2 S 0 4 ,  t h e  hydrogen evolu t ion  race decreased f o r  0.060 ?I and 

0.0060 El NaF and f o r  a s a t u r a t e d  s o l u t i o n  ( 0 . 0 7  M )  of Na?SiF6. 

t hese  s o l u t i o n s ,  t h e  rate of gas  evolu t ion  a l s o  dccreased wi th  t i m e .  

The r e s u l t  of t h e  gas  evolu t ion  r2te i n  f o r  0.60 t l  NaF p l u s  1 . 2 N  

H SO is a l s o  shown i n  Figure 28  f o r  comparison. 

For - 

2 4  

From t h e s e  s t u d i e s ,  i t  was concluded t h a t  t h e  leaching  should 

be performed as r a p i d l y  as  poss ib l e  wi th  immediate f i l t r a t i o n  t o  

remove f l u o r i d e  ions  and thereby minjmize l o s s e s  of Si by oxida t ion .  

of S i  by ox ida t ion  using e i t h e r  d i l u t e  or s t rong  a c i d s .  

4 . 2 . 1  Lea-ching Process:  Scale-up -- 
The information descr ibed i n  Sect ion 4.2 was used to  design and 

bui ld  an aqueous leaching appara tus  f o r  recovering s i l i c o n  from 2 kg 

of r eac t ion  product (Figure 29) .  D i l u t e  H,S04 was added t o  a 10-gallon 
L 
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l eaching  procedure,  a recovery of 97% is c a l c u l a t e d ,  assuming 
that t h e  only  loss of s i l i c o n  is by ox ida t ion  i n  the f i r s t  
two hours of leaching  when t h e  f l u o r i d e  i o n  concen t r a t ion  i s  
high. 

o Loss of s i l i c o n  dur ing  leaching  is not  s i g n i f i c a n t  due t o  
p o s s i b l e  ox ida t ion  by loca l i zed  reg ions  of a l k a l i n e  s o l u t i o n  
produced by excess  unreacted sodium i n  t h e  r e a c t i o n  product.  
However, s i l i c o n  may be  oxid ized  when RI- w i t h  exczss  unreacted 
sodium is s t o r e d  and exposed f o r  long pe r iods  of t ime t o  
atmospheric moisture.  However, i n  t h e  l a r g e s t  r e a c t o r  v i r t u -  
a l l y  a l l  t h e  sodium reac ted .  

o 5 p e  of a c i d  (HC1 o r  92S04) is not  a primary f a c t o r  i n  d e t e r -  
mining t h e  recovery y i e l d  of s i l i c o n  by leaching .  
concen t r a t ion  of abour 1 .2  N is recommended i n  o r d e r  t o  in- 
c r ease  t h e  s o l u b i l i t y  and leaching  rate of Na2SiF6 and t o  r e a c t  
wi th  uareacted sodium i n  t h e  RP. However, much lower a c i d  
concen t r a t ions  (e .g . ,  0 . 1  N) a r e  adequate  t o  l each  t h e  RP 
produced a t  high temperatures  (> 6OOOC) where Na2SiF6 and 
unreacted sodium a r e  v i r t u a l l y  absen t .  

An a c i d  

o The s i l i c o n  recovered by leaching  should be an  e x c e l l e n t  
feed stock f o r  any process  us ing  u n i d i r e c t i o n a l  s o l i d i f i c a -  
t i o n  t o  produce s i l i c o n  s u i t a b l e  f o r  s o l a r  c e l l s .  
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5. PURITY STUDIES 

Several analytical methods were used to characterize the level 

of impurities in the products of the SiF4-Na reaction and in the 

silicon seF-rated from ths products. 
both necessary and desirable because at the low impurity levels en- 
countered 

of resolution for several elements. 
purity semiconductor grade silicon was analyzed concurrently with 
samples of SRI silicon. 

vided a check on spurious readings caused by sample preparation, 

accidental contamination, background, and instrumental limitations. 

The reference material was a commercial polycrystalline semiconductor 

grade silicon with resistivity greater than 1 x lo5 ohm-cm. 

addition, a sampie of commercial solar grade sillcon was analyzed for 

comparison with SRT silicon. 

The use of several methods was 

each of the analytical techniques was used at the limit 

A reference sample of ultra high 

The analysis of the reference material pto- 

In 

The analytical measurements were performed by various laboratories: 

plasma emission spectroscopy (PES) and neutron activation analysis 

(NAA) were performed by Jet Propulsion Laboratory/Lawrence Livermore 
Laboratory; spark source mass spectrometry (SST1.S) was performed by 

the Commercial Testing and Engineering Company, Boulder, Colorado; 

emission spectroscopy (ES) was performed by the American Spectrographic 

Laboratqry, San Francisco, California; and chemical analysis for 

phosphorous was performed by the Salazs Analytical Laboratory, Moun- 

tain View, California. 

The silicon obtained by the SRI process by melt-separation was 

examined in greater detail than that obtained by aqueous leaching. 

-- 5 . 1  .- Purity of Reaction Products 

As a rough quality control measure, the reaction product mixtures 
(Si and NaF) were analyzed routinely by emission spectroscopy. Repre- 

sentative samples were prepared by crushing 25 g of reaction product. 
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Table 8 shows t h e  impur i ty  concen t r a t ions  (ppm w t )  i n  t h e  mixed product 

from several t y p i c a l  experimental  runs. The blank  spaces  i n d i c a t e  t h a t  

a given element was below t h e  minimum d e t e c t a b i l i t y  l i s t e d  i n  t h e  second 

column. The major contaminants  ( A l ,  Cas Cu, and Fe) a lmost  c e r t a i n l y  

o r i g i n a t e  from metallic Na whicn contains t h e s e  i m p u r i t i e s  (Table 5 ) .  

Elemental i m p u r i t i e s  i n  t h e  N a  may concen t r a t e  i n  t h e  S i  due t o  t h e  

thermodynamics and s to i ch iomet ry  of Equation (l), o r  may form s t a b l e  

f l u o r i d e s  that w i l l  concen t r a t e  i n  t h e  NaF phase of t h e  r e a c t i o n  products .  

Impur i t i e s  i n  t h e  r e a c t i o n  product ,  o r  i n  t h e  s i l icon subsequent ly  separ-  

a t e d ,  are u n l i k e l y  t o  o r i g i n a t e  from t h e  SiF4 since its p u r i t y  is high ,  

as discussed  i n  Sec t ion  2.3. It is  expected t h a t  t h e  p u r i t y  of t h e  

mixed product should improve f u r t h e r  if N a  were p u r i f i e d  be fo re  use.  

5.2 P u r i t v  of SRI S i l i c o n  

5.2.1 Melt-Separated S i l i c o n  

S i l i c o n  w a s  recovered by m e l t  s e p a r a t i o n  (descr ibed  i n  Sec t ion  4.1) 

i n  two runs ,  30-4 and 30-7. A f t e r  mel t ing  and coo l ing  t h e  r e a c t i o n  

products ,  chunks of s i l i c o n  were r e a d i l y  sepa ra t ed  from t h e  s o l i d i f i e d  

NaF and f r e e d  of s o l u b l e  sa l t s  by washing in water. A l l  of t h e  approx- 

imate ly  1 cm high, 7 cm diameter f l a t  i n g o t s  were crushed wi th  p l a s t i c  

equipment t o  provide a powder sample which w a s  thoroughly mixed. 

rhus, no advantage w a s  taken of t h e  seg rega t ion  of i m p u r i t i e s  as  could 

be  done w i t h  a longer ingo t .  

Representa t ive  samples of t h e  s i l i c o n  obta ined  from t h e  two runs  

were analyzed f o r  i m p u r i t i e s  by fou r  techniques; t h e  r e s u l t s  a r e  

shown i n  Tables 9 and 10. The r e p r o d u c i b i l i t i e s  of t h e  PES and NAA 
techniques a r e  ind ica t ed  by ana lyses ,  performed on s e p a r a t e  occas ions ,  

of two samples from each of t h e  two mel t - separa t ion  runs .  I n  Tables 9 

and 10, t h e  i m p u r i t y  elements i n  t h e  f i r s t  column are arranged i n  t h r e e  

main groups: dopant elements,  elemenis t h a t  adve r se ly  a f f e c t  t h e  

e f f i c i e n c y  of s i l i c o n  s o l a r  c e l l s ,  and elements  t h a t  have t h e  l e a s t  

e f f e c t  on e l e c t r o n i c  p r o p e r t i e s  of i n t e r e s t  i n  s o l a r  c e l l  a p p l i c a t i o n s .  

Blank spaces i n d i c a t e  t h a t  a given element w a s  not determined. 
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Table 8 

E 1 emen t 

B 
P 

A 1  

Ti 
V 

Mo 

Cr 

Yn 

Fe 

At3 

Ni 

cu 

Mg 
Ca 

Ba 

IMPURITIES IN PRODUCTS OF REACTION (Si, NaF) 
EMISSION SPECTROGRAPHIC ANALYSIS 

Minimum 
Detectability 
(PW -1 

30 
4500 

2.5 

6 

5 

3.5 

3.5 
4 

7 

5 

12 

4 

6 
- 
6 

Run Number 
Impurities (ppm wt) 

14 15 16 17 i a  19 22 23 

25 5 15 8 2.5  10 

<20* <20* 20* <20* 10 

8 15 

150 35 150 150 10 150 350 175 

*Minimum detectability fo r  these samples was 20 ppm wt. Changes in 
detection limit were mostly attributed to differences in the intensity 
to which the rec2rding film was exposed during arc emission. 
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5.2.2 S i l i c o n  Recovered by Leaching 

The s i l i c o n  recovered d i r e c t l y  by aqueous leaching  (Sec t ion  4.2) 
was analyzed only  by emission spectroscopy for a g e n e r a l  i n d i c a t i o n  

of major i m p u r i t i e s .  I n  t h e  several samples analyzed, a l l  impuri ty  

concent ra t ions  were below t h e  l i m i t  of d e t e c t a b i l i t y  except Cu ( 7  ppm), 

Mg (7  ppm), and Ka (3000 ppm) . 
One batch  of powdered s i l i c o n  recovered by leaching  was consol ida ted  

by melt ing i n  a s i l i c a  boat  and analyzed by arc emission spectroscopy,  

spark  source  mass spectrometry,  and neutron a c t i v a t i o n .  The c o n c e n t r a t i o n  

l e v e l s  of t h e  i m p u r i t i e s  were g e n e r a l l y  comparable t o  t h e  me;:-separated 

products  except f o r  a s u b s t a n t i a l  lower va lue  i n  t h e  concei?trat ion of 

B (0.1 ppm) as determined by SSMS. E l e c t r i c a l  r e s i s t i v i t y  was measured 

wi th  r? f o u r  poin t  probe a t  i n d i v i d u a l  g r a i n s  ( t y p i c a l l y  1-cm long) of t h e  

consol ida ted  p o l y c r y s t a l l i n e  s i l i c o n .  The average v a l u e  was 0.2 0.1 c m  

which is c o n s i s t e n t  w i t h  t h e  observed B l e v e i .  By comparison w i t h  t h e  

content  of B i n  melt-separated s i l i c o n  (Tables 9 and lo), t h e  

leached and consol idated m a t e r i a l  may b e  considered as t h e  most pure 

m a t e r i a l  obtained by t h e  SRI method. 

mel t ing seems t o  be t h e  major reason for t h e  d i f f e r e n c z .  

t h a t  by us ing  a purer  g r a p h i t e  c r u c i b l e ,  t h e  p u r i t y  c ’  nel t - separa ted  

s i l i c o n  w i l l  be  c l o s e r  t o  t h a t  of leached s i l i c o n .  

Handling and contamiqat ion during 

It is  expected 

5 . 3  - Comparison of Impurity Concentrat ions i n  SRI S i l i c o n  w i t h  a Semi- 
conductor Grade and a Solar  Grade S i l i c o n  

To eva lua te  t h e  accuracy of t h e  a n a l y t i c a l  methods, a sample of 

a commercial, h igh p u r i t y ,  semiconductor grade s i l i c o n  (Monsanto, resis- 

t i v i t y  1 x lo5 ohm-cm) w a s  analyze 

SSMS. The r e s u l t s  f o r  SRI melt-separated s i l i c o n  are compared w i t h  

ana lyses  of t h e  semiconductor grade s i l i c o n  and s o l a r  grade (backer) 

s i l i c o n  i n  Tables 11 and 12. I n  t h e s e  comparison t a b l e s ,  t h e  impuri ty  

concent ra t ion  of a given element i n  t h e  SRI s i l i c o n  is taken as t h e  

average of a l l  an layses  obtained by a given method f o r  samples 30-4 

and 30-7 (Tables 9 and 10) .  I n  Table 11, t h e  composition of SRI  m e l t -  

separated s i l i c o n  i s  ccmpared wi th  t h a t  of a s o l a r  grade s i l i c o n  us ing  

PES results. The ana lyses  i n  column ML were performed by ?f inera1 Lab Inc. ,  

by t h r e e  techniques:  PES, NAA, and 
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Table 11 

COMPARISON OF IMF'IJRITY ANALYSES BY PLASMA EM1.XION 

AND A HIGH PURITY SEMICONDUCTOR GRADE SILICON 
SPECTROSCCIPY: SRI MELT-SEPARATED SILICON, SOLAR GRADE SILICON, 

( w m  w t )  

~~ 

Element 

B 
P 

As 
A1 

T i  

V 

Zr 

Mo 

Cr 

Hn 

Fe 

co 

Ni 

cu 

Zn 

Cd 

Se 

Pb 

Li 

Na 

K 

- 

Mg 
Ca 

Si- 

- SRI Melt-Sepa 

Run 30-4 

Sl* 
d . 6  

< . 5 4  

2.6 

. 49  

.10 

.75 

.96 

1 7  

.07  

1 .7  

1.1 

.99 

. 9 3  

<1.0 

7.4 

. 07  

328 

~ 2 . 4  

2.8 

5 . 3  

.10 

a 
a t e d  S i l i c o L  

0 .5  - 5.5* 
c1.9 

.63 

.79 

1 . 1  

c.06 

. 81 

.46 

7 

.07 

3 .2  

1 . 3  

.a1 

. 1 5  

1.2  

.9A 

.02 

2 30 

<2.9 

1 . 5  

1 . 2  

. :1 

Coqrerc i< 
Solar  Grade 
MLc Dd 

1 

2 1 

.a 
. 2  1 

2 

.7 

. 3  2 

5 2 

3 

6 2 

0 3 

2 

5 . 2  

0 

5 . 5  

0 

1.1 2 

. 2  

si 1 iconb 
Semiconductor 

Grade 

. I  + .1 - 
< . 6  

<.I5 
. 3  + .3 
.o + .2 

.01s 

- - 
- 

< ,062  

.04+ - .OS 
2 + 2  - 

.07+ - .04 

.o - + . 7  

.05+ I .05  

.G c .5  - 
<.01 

< .36  

.024+ I .005 

3.7 f 1 .3  

c.9 

. 9  + 1 
1 + 3  

i . 0 4  

.- 

_ _  

a = Average of PES results in Tables 9 and IO. 

b * Solar grade from Wacker and semiconductor grade from Nonsanto. 

c = ML, performed by Mineral Lab.,  IPC. 
d 5 Performed on dedicated instrument at  Arc0 Solar Comuanv. 
* - See note  on Tables ? and 10. 
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Table 12 

COHPARISON OF IMPURITY ANALYSES BY SPARK SOURCE MASS SPECTROMETRY: 
MELT-SEPARATED SRZ SILICON AND A HIGH FJRITY 

SEMICONDUCTOR GRADE SILICON 
(ppm wt) 

- 
Element 

a 
P 
As 

A i  

Ti 
V 

Zr 

Mo 

Cr 

m 
Fe 

co 
Ni 

cu 

Zn 

Cd 
Se 

Pb 

Li 
Na 

K 

Mg 
Ca 

SRI Sf. 
Run 30-4 

10 

- 8  

. 2  

1 

3 

-1 

.7 

< . 3  - 
21 

-1 

15 
4 

1.7 

2 

. 2  

<. 3 

< . 3  

< . 3  

. 3  

c740 
.i 
1.0 
1.0 

Sr .8 

a = SSHS results from Tables 9 

a icon 
Run 30-7 

9 
.8 

<.l 
<.l 

.6 

<.l 
c.3 

. 2  

8 

c .I 
1s 

.9 

4 

2 

.2 

<. 3 

K . 3  

c.3 

<740 

<.I 
.5 

<.l 

md 30. 
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Ref e renc e 
Semiconductor 
Grade Silicon 

<.I 
. 3  

c. 3 

.4 

. 2  

c.3 

< . 3  

<.3 

C . 3  

< . 3  

< . 3  

-5 

4 

.2 

15 

c.3 

< . 3  

<.3 

9 

.1 

< . 3  

- 1  

c.2 





Table 13 

Element 

B 
P 

As 
Al 
Ti 

V 
Zr 
Mo 
Cr 
Mn 
Fe 

co 

Ni 

cu 
Zn 

ESTIMATED IHP'RITY CONCENTRATIONS IN MELT-SEPARATED 
SRI SILICON SUEJECTED TO PURIFICATION BY SOLIDIFICATION 

Initial Impurity 
Concentration in 
Welt-Separated 
silicon (ppm w t f  

1.5' 

* 5c 

-5 

1.4 

1.1 

.1 

.4 

.8 

8.8 

.6 

17 

-7 

~ 4 . 8  

~ 2 . 6  

.2 

Estimated Impurity 
Concentration After 
90% Solidification 
(g=O.90) (ppm wic) 

1.9 
-8 

.8 

3x10-' 

2x1~-7 

<axio-8 

1x1~-3 

4 ~ 1 0 - ~  

~XIO-' 

8 ~ 1 0 - ~  

~ x I O - ~  

~ x I O - ~  

<2x1~-3 

2x10-2 

2x1~-5 

I h X i n n  
Critical 
Concentration 
(PPm -Ib 

1 

5 
- 
1x10-2 

2x1~-5 

2x1~-5 

3 ~ 1 0 - ~  

4 ~ 1 6 ~  

2x1~-3 

2x1~-3 

2 x i ~ - 3  

2x10-1 

2x1~-5 

5 ~ 1 0 - ~  

-2.3 
d 

a = Average of all values reported i n  Tables 9 and 10. 

b = Reference 2. Critical concentration above which solar cell 
efficiency is decreased from its maximum value. 

c = See t e x t  for explanation. 

d = Refereace 3. 
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indicated for both runs 30-4 and 30-7 that phosphorus was below the 
detectabilitv limit (approximutely 1 ppm). In order to maintain a 
conservative evaluation of the data, the PES values were not used. The 

value chosen for the P concentration, 0.5  ppm, is an average of the SSlIs 

values and the value 0.1 ppm obtained as an upper limit using a chemical 
analysis procedure developed by Balazs Analytical Lab.. Mountain View 

California, and widely applied for the determination of P in Si in the 
semiconductor industry. 
phosphorus complex is formed in solution. 

plex is then determined by photocolorimetric analysis. 

Silicor? is digested in a ?IF-HNO mixture and a 
a 

The concentration of the com- 

In the fourth column of Table 13 are listed the maximum impurity 

concentrations of elements which produce no decrease in efficiency for 

a p-type solar cell based on the study of impurity effects in solar 
cells by Hopkins et a1.2 

and Mo were obtained by extrapolating their data and represent an effi- 
ciency of at least 95%. The maximum allowable zinc concentration vas 

taken from the calculations of Sah.3 

efficiency data for p-type were used since preliminary tests indicate 

that SRT silicon is p-type. As indicated in Tables 9 and 10 the Na 
content o f  melt-separaked SRI silicon is in the range 100 to 400 ppm. 

Reheating of this Si at 120OoC for 5 minutes in vacuum has been shown to 

be sufficient to reduce the Na content to 8 ppm. Thus, it is expected 
that subsequent melting and crystal growth will further reduce the Na 

content. In any case, Na is not considered t o  be a detrimental impurity 

for solar cell efficiency. 

The values for maximum impurity levels of Z r  

Impurity concentration versus 

5 . 5  Discussion and Conclusions 

The purity of SRI leach-separated silicon (Section 5 . 2 . 2 )  is clearly 

better than that of Wacksr solar grade silicon with the two key dopant 
elements B and P at or below the 0.1 ppm level, as determined by SSMS. 
The purity of melt-separated silicon is also comparable with Wacker solar 

grade silicon except for B. The range Qf the results obtained for B 
(0.1 ppm to 10 ppm) for the same sample with PES, NAA, and SSMS makes 
the B analyses unreliable and therefore the results are inconclusive 
at this point. In any case, the results in Table 13 show that SRI melt- 

separated silicon m€ght also have sufficiently low impurity concentrations 
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for use in solar photovoltaic cells following purification by 90% solidi- 

fication (i.e., Czochralski crystal growing) as part of the manufacturing 

process. 
fication-purification of SRI silicon shorn in Table 13 are, for most ele- 
ments (Ti, V, Zr, pb, Fe, Co, Ni, etc.), well below the concentrations 

which result in a decrease in solar cell efficiency. According t o  this 

criterion, there would be only tvo elements B and A1 which are close to 
or slightly greater than the critical concentration. However, the 

basis for computations leading to Table 13 is conservative. From the 

results described in Table 11 we conclude that SRI melt separated sili- 
con is as pure (with the possible exception of B) as Wacker solar grade 
silicon used presently for the commercial manufacture of solar cells. 

Furthermore, practical impurity requirements can be relaxed even more 

than those indicated in Table 13. For example, Dow Corning Corporatior 

has reported that it has produced a solar cell with 11% efficiency4 from 

single crystal silicon containing 4 ppm wt B, 12 ppm wt P ,  and 0.1 ppm 

wt Al, and a l so  1 1 . 2 %  cells with silicon containing 7 . 7  ppm wt of B, 
i.e., with impuri:v concentrations for B and P greater than in SRI silicon. 

The emtimated final impurity concentrations predicted for so l id i -  

5 

From the CcmF son of purities in Table 13, we conclude that solar 

cells fabricated from SRI silicon should have satisfactory efficiency. 

There is also a serious possibility that semiconductor grade Si could 

be produced by the SRI process. Lower impurity concentrations in the 

silicon resulting from improvements i n  &he SRI process may be antici- 

pated f o r  two reasons: First, the sodium appears to be the source of 
most of the impurities in the silicon produce and, to date, no effort 

has been made to purify Ns. We can anticipate that these impurities 

will be decreased by applying well tested methods such as purification 
by cold-trapping. Second, improved materials and better handling proce- 

dures should decrease contamination from materials of construct+on and 

from accidental contamination. For example, boron contamination may 

have occurred as a result of contact of Na chips with glass components 

of the dispenser used with the reactor (Fig. 8). Tne Na was stored 

in air and had a surface layer of oxidation produrt which, in combina- 
tion with absorbed moisture, could have produced a locaiized attack on 

the borosilicate glass dispenser. Marked reduction in R transfer was 
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accomplished by coating the inside walls of the dispenser with an epoxy 

resin. Other sources of contamination may be found in the non-purified 
Grafoil lining mterial and other orditary graphite components used in 

melt-separation. 
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6. CONCLUSIONS 

SRI has developed a novel and s imple process f o r  producing solar 

grade s i l i c o n .  The cost is estimated a t  $9.80/kg (1980 d o l l a r s )  f o r  a 

lo00 MT p e r  year  p l a n t  and 25% ROI (see Appendix). 

cedures  of each step of t h e  p recess  have been examined on a l a b o r a t o r y  

scale i n  enough d e t a i l  so that a p r a c t i c a l  i n d u s t r i a l  method can be 

p ro jec t ed  w i t h  confidence.  

The chemical pro- 

The p u r i t y  of  the product  S i  is s u f f i c i e n t  f o r  p re sen t  solar cell  

wafer a p p l i c a t i o n s ,  which provide f o r  remelting and d i r e c t i o n a l  

s o l i d i f i c a t i o n  to a i d  i n  the removal of Fe, C r ,  and N i ,  t h e  on ly  

metallic impur i ty  e lements  p re sen t  i n  amounts exceeding 1 ppm (wt ) .  

There i s  oppor tuni ty  to achieve even f u r t h e r  p u r i f i c a t i o n  0 -  t h e  SRI 
S i  product  by changes t h a t  can be  r e a d i l y  made i n  process  s t e p s ,  

such a s  p u r i f i c a t i o n  of  t h e  Na metal reactant. 

ments of t h i s  p r o j e c t  i nc lude  t h e  fol lowing:  

The major accomplish- 

o Demonstration of  c o n t r o l l a b i l i t y  of t ho  Na-SiF4 r e a c t i o n  by 
s e l e c t i o n  of SiF4 pressure ,  Na par t ic le  size, and rate of 
add i t ion  to t h e  r e a c t i o n  zone. The l a r g e s t  r e a c t o r  is capable  
of prodccing 1.4 kg S i  i n  about 3 hours.  

o Demonstration of leaching  by a c i d  t o  c l ean ly  separa ted  NaF, 
leav ing  a q ranu la r  S i  product.  

o Demonstration of m e l t  s epa ra t ion  by fcnnat ion  of two d i s t i n c t  
l i q u i d  l a y e r s  w i th  molten S i  "screened" t o r  con tac t  w i th  a 
g r a p h i t e  con ta ine r  by an  interposed l a y e r  of molten NaF. 

o Demonstration of r o u t i n e  ope ra t ion  of t h e  reactor-melt  separa-  
Cion process  sequence t o  produce S i  w i th  a l l  i m p u r i t i e s  below 
1 ppm except Fe, N i ,  and f r ,  which are present  i n  t h e  range 
2 to  5 ppm. Boron is gene ra l ly  i n  t h e  range 0.1 t o  0.7 ppm. 
Phosphorous is i 0.1 ppm. The capac i ty  per  ba tch  i s  0.5 kg of S i .  

The p u r i t y  r o u t i n e l y  achieved i n  melt s e p a r a t i o n  is s u f f i c i e n t  for 

S i  made by t h i s  method t o  be used i n  s o l a r  c e l l  manutacture us ing  

Czochralski  c r y s t a l  p u l l i n g  t o  he lp  remove t he  l a s t  t r a c e s  of m e t a l l i c  

impur i t ies .  The process  can he f u r t h e r  improved by work on p u r i f i c a -  

t i o n  of t h e  Na used i n  t h e  SiFq-Na r eac t ion .  

t o  produce kilogram q u a n t i t i e s  o f  S i  for  use  i n  s o l a r  c e l l  f a b r i c a t i o n  

and c h a r a c t e r i z a t i o n .  

Addit ional  work is needed 
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APPENDIX: ECONOMIC ANALYSES 

Table 14 shows a comparative study for leach-separated and melt- 

separated s i l i c o n .  In addition, column 3 shows an updated (1980) e s t i -  

mation taking account of 1979 c r y o l i t e  pr ices .  Further d e t a i l s  of the 

economic analyses can be found in Quarterly Report No. 9 ,  February- 

April 1978, DOE/JPL 95447; -78/2. 
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Table 14 

COST ESTIMATES OF SRI/JPL SILICON PROCESS 

Est imat ion  of Product Cost* 
(Lamar Unive r s i ty  Fac to r s )  

$/Kg Si 
# Leaching Melt-Sepn. Melt-Sepn. 

1975 1975 1980 

1. Di rec t  Manufacturing Cost 
(D i rec t  Cost ) 

a. Raw m a t e r i a l s  5.72 4.68 5.63 
b. D i rec t  o p e r a t i n g  l abor  -67 -67 -94 
c .  U t i l i t i e s  . 7 1  . 7 1  1 .oo 
d. Supervis ion and c l e r i c a l  * 10 .10 .14 
e. Maintenance and repairs .90 .61 .85 
f .  Operat ing s u p p l i e s  .18 .12 .17  
g. Laboratory charge  .10 .10 .14 

2. I n d i r e c t  Manufacturing Cost 
(Fixed Cost) 1.89 1.275 1.79 

3. P lan t  Overhead .735 .735 1 .03  

4. By-product Credi t  (4.91) f5.07) (3.17) 

4a. Tota l  Manufacturing Cost, 
1 + 2 + 3 + 4  5.39 3.94 8.52 

5. General Expenses (15%) .81 . 59 1.28 

6. Product Cost Without P r o f i t ,  
4a + 5 6.20 4.53 9.80 

7. 259, ROI ( P r o f i t )  2.25 1.52 2.13 

8. Cost + 25% ROI ( P r o f i t ) ,  6 + 7 8.45 6.05 11.93 

*Assumes t h a t  only 80% of melted s i l i c o n  is accep tab le  f o r  s o l a r  grade ,  
balance so ld  as m e t  grade s i l i c o n ,  f o r  a 1000 M T / Y r  P l a n t .  

+Raw m a t e r i a l s  and by-product c r e d i t  computed for October 1979, a l l  o t h e r  
manufacturing c o s t s  increased  by 402 over year  1975 c o s t s .  
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