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TRANSPORT OF INFRARED RADIATION IN

CUBOIDAL CLOUDS

Harshvardhan

	

I	 James A. Weinman
i

Roger Davies

ABSTRACT

The transport of infrared radiation in a single cuboidal cloud has been modeled using a verti-

cal two-stream approximation. Computations have been made at IOKm for a Deirmendjian (1969)

C-1 water cloud of single scattering albedo, w = 0.638 and asymmetry parameter, g = 0.865. Results

indicate that the emittance of the top face of the model cloud is always less than that for a plane par-

allel cloud of the same optical depth. The hemispheric flux escaping from the. cloud top has a gra-

	

t	 dient from the center to the edges which brighten when the cloud is over warmer ground. Cool-

ing rate calculations in the 8-13.6µm region show that there is cooling out of the sides of the
yt

	

Y	

cloud at all levels even when there is heating of the core from the ground below.

The radiances exiting from model cuboidal clouds were computed by path integration over

	

i	 the source function obtained with the two-stream approxims:ion. Results suggest that the

brightness temperature measured from finite clouds will overestimate the cloud top temperature.
f

Some key results of the model have been compared with Monte Carlo simulations. Overall

errors in flux and radiance average a few degrees for most cases.
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TRANSPORT OF INFRARED RADIATION IN

CUBOIDAL CLOUDS

•	 1. INTRODUCTION

The role of clouds in determining the radiation field in general circulation and climate

models has been widely considered. It has also been realized that the finite horizontal dimen-

sions of individual clouds in convective cloud fields cannot be treated in the same manner as

plane parallel clouds. The scattering of visible radiation by finite clouds has been studied by

McKee and Cox (1974) and others, primerid i using Monte Carlo methods, and by Davies and

Weinman (1977), Rarkstrom and Arduiru (1977) and Davies (1978) who developed analytical

solutions to this problem. Microwave radiances from finite rain clouds were computed by Wein-

man and Davies (1978) using an analytical method that was compared with Monte Carlo results.

The question of infrared radiances from finite clouds has been addressed only recently by Liou

and Ou (1979) and Ellingson and Kolczynski (1980); however, a number of considerations still

require attention.

The purpose of this paper is to establish a simple analytical method that can be used to

compute infrared radiation quantities in isolated finite clouds of cuboidal shape. This will be

accomplished by comparing some key results with Monte Carlo computatic:ts. The analytical

technique is such that allowances for vertical temperature variations can be made and in the

future, the isolated model cloud may be embedded in a participating atmosphere. We have also

not considered the effect of neighboring clouds.



2. VERTICAL TWO-STREAM APPROXIMATION

The equation of transfer in three dimensions cannot be solved analytically for arbitrary scat-

tering. Various approximations to the equation and boundary conditions have therefore been

suggested and utilized to obtain results for particular problems. Two recent applications in at-

mospheric radiative transfer are those of Davies ( 1978) who used the Delta-Eddington approxi-

mation in the visible and Liou and Ou (1979) who used the Eddington approximation in the

infrared. Weinman and Davies ( 1978) have also computed microwave radiances emerging from rain

clouds using the Eddington approximation. A problem with the Eddington approximation is that it

can yield unrealistic results such as negative reflectance and values of emittance exceeding unity for

certain ranges of the single scattering albedb , w, and asymmetry parameter, S. Lyzenga (19731

has shown that for a semi-infinite plane parallel layer, negative values of the diffuse reflectance

are obtained in the Eddington approximation when

g > 3L (4Z - 1)
	

(1)

Unfortunately the range of parameters typical of clouds satisfies the above inequality because g -

0.7 to 0.8 and Z - 0.3 to 0.6 in the infrared; hence, the Eddington approximation is inappropriate.

The two-stream approximation avoids the pitfall that Liou and Ou ( 1979) encountered, yet

it yields similar governing equations. Recognizing that stratification within a horizontally finite

cloud element would still be in the vertical direction, it is possible to introduce a vertical two-

stream approximation to the three dimensional i ►diative transfer problem. The equation of trans-

fer in three dimensions for a homogeneous cloud may be written in terms of the radiance, 1. as

	

Y cos 0 sI + v sin 0 aI
	 al+ k
	

a - I + 0 - (Z) 8 + J S	('_)
ax	 ay	 az

The horizontal and vertical axes are designated x, y and z, where z increases in the upward

direction (see Fig. 1). The independent variables are in dimensionless optical thickness. r,

with the extinction coefficient, k, absorbed into the L.H.S. of the equation. The azimuth and
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zenith angles, 0 and 8, where µ = cos 8 and v s sin 8, are measured with respect to the x and z
W.

R.

axes, respectively. The scattering source fuw ,n is

cQ 2a 	 t
is (x, Y. z, µ, 0) = 4a fo

p (µ, 0; µ', 0') i (µ', 0') dµ' d0' 	 (3)
f-1

Q is the albedo for single scattering, p (µ, 0; µ', 0') is the phase function for scattering from

direction µ', 0' into µ, 0. The Planck function B may be linearized about its value at the top of

the cloud, such that

B= go
, +^.	

(4)

where R is a constant. However, for the purpose of this study the cloud is assumed to be

isothermal, such that B = Bo. All quantities are monochromatic and cloud properties are con-

sidered to be uniform throughout. For illustra !ive purposes, a wavelength of 10µm is used in

most of this work.

The two-stream approximation assumes that two quantities, I+ and I- represent the radiance

and further that they are identified with the value of the radiance at µ = zwhich are the
V/731

first-order gaussian quadrature points. Thus the scattering source function ( 3) may be written

for the positive (upward) hemisphere as

Z	
27 t	 1

4st	
I (x, Y, z, µ', 0') p ^, 0; µ', 0' dµ' d0'

o	 -t

i2W
= 4r	 1+(x,Y,z,O')p	 ^^ ,0; — ,0'	 (5)

fo 	 v 3 v 3

+ I- (x, Y, z, 0') p, 0; -A31 0'	 d0'
3 

where I+ is identified with µ =	 and I- with µ = -	 If the phase function is ex-

panded in a series consisting of the zero and first order Lzgendre functions. then

p (µ, 0: µ', 0') = I + 38 Iµµ' + V+' cos t0 - 0') ] 	 (6)

in

3
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where g is the asymmetry parameter. Substituting for µ and µ', the R.H.S. of (S) reduces to

I+ ( I + g + 2g cos (0 - m')1 + I- (I - g + 2g cos (0 - 0')1 } dO
f2v

Similarly for the downward hemisphere, we have

czz
•2?r

Z-j	
{ I- (1 + g + 2g cos (0 - 0')1 + I+ (1 - g + 2g cos (m - 0')1 } dm ►

0

The equation of transfer in the vtrtical two-stream approximation follows from (2)

/i at+ + I cos m a + ^?" sin a= _ - I+ + (1 - ) Bo
J	 ^/	 ^/	 a3 az	 3	 ax	 3	 y

	

a	 2^

	+ 4A	
{I+ (1 + g + 2g cos (0 - m')1	 (7a)

o
i3

+I- (I - g+2g Cos (0-m')1)dot

and

^ar + /? cos m 
â  + /T sin ar = - r + (I - w) B9

N/ 3_ az	 3	 ax	 3	 ay

2+r

+ 4A J	
{ r ( I + g + 2g cos (0 - 0')1	 (7b)

0

+I+ (1 -g+2g Cos (0-m')1) dO'



3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Eqs. (7a) and (7b) may be reduced by an expansion which employs the zero and first

order Legendre functions:

I (x, Y, Z, µ. 0) = IC' (x, Y, Z) + IZ (x, Y, Z),u + Ix (x, Y, Z) v COS 0 + Iy (x, Y, z) v sin m + ... .

In the two-stream approximation we will have

1	 2	 2
I+ (;., Y, Z, m) = Tc +	 Ir + 3 

IX cos m +	 3 Iy sin 0

and

I" (x. Y. Z. 0) = IC -	 Iz +	 IX cos 0 +	 3 Iy sin

setting

Ii = Ia t	 Iz

I_ a	 3

y = V 3 IY

yields

I+ = IZ+ + Ix cos m , lY sin 0

and

+ IX cos m + Iy sin m

Further, letting

Io =2(ii +M

and

the scattering source function in (7a) and (7b) may be written as

S

i
4

(8a)

(8b)

f



CC3 10 + Q81 1 + c'ig ( Ix cos p + ly sin 0) positive hemisphere

t(JIO - ccalI, + Ds (Ix cos 0 + Iy sin 0) negative hemisphere

28
`	 Now, integration of Eqs. (7a) and (7b) by 

2a	
d© after substitution of (8a) and (8b)

I	 0
yields the following two equations

ate. +I A + 81I ' _ - IZ + (I - D) B0 + DI0 + D81 1 	(92)
i	

3 az	 6 a	 by

and

a3 + al. + !1 = - I- +0 	 Bp + Z310 - cz5gl t 	(9b)
3 az	 6 ax	 by

Adding (9a) and (9b) yields

1
LI

+%	 +a.AI" =-(1 -w)( 10 - B0)	 (10)
3 az	 6 ax	 ay

It can be shown that ( 10) satisfies the flux integral relation for this problem if first-order gaussian

quadrature is used to evaluate integrals over µ. This equation is found in Chandrasekhar. ( 1960).

O • Let a-4zr ( 1- w)(I0 - BO )	 01)

where .net is the net flux vector. Subtracting (9b) from (9a) yields

	

Al ^ _ -(1 -big) I 1	 (12)

2v
Integration of (7a) and (7b) by 1	 cos 0 dm yields

2r f.0

1	 alx + 1 /. a
=L  _ - 

Ix 
+ wg IX
	

(13a)
3 az	 2	 3 ax	 2

and

-
 ;

^alx + ; ^= ar = - 1, + wg I,	 i13b)
^/ 3 az	 _	 3 ax

6
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adding 413j) and ( 13b) we have

V 3 1rx 
=- t l -fig) Ix	 (14)

Similarly it may be shown that

, 
3 a = - (1 - Z38) IY
	 (IS)

Combining ( 10), (11), (1:), (14) and 0 S) yields

92 10 = ),'(to - Bo)
	

(16)

where

1, _ [3 (1 - E-J) 0 - (Zl)l U2

is the inverse diffusion length. The boundary conditions for (16) are obtained from the flux

conditions at the face of the cloud. Again, using the two-stream technique the fluxes may be

written as

2a	 t

Fz+ , Z+ =
1 0 

I+ µ dµ dO = u (Io + 1 1 ) _ 7r 10 - h, IO	
(17a)

0 

za	 °	 1 uI0

Fz-, z- _^	 r µ dµ dm = -ir(l0 - I t ) _ -ir I0 +	 —	 (17b)
p	 . t	 h 3z

s	 .e	 V )
Fx+ , Z+ = f

ff	
i+ v cos dµ do 10 - 1 1 +	 Ix	 (17c)

 

t	

_o	 4
T^ 

of '2 
Fx + , Z _ 	 r v Cos 0 dµ do _ ^ I„ + I t + — IX	(17d)

4 )_t

A
	 (to	

1 310
Fx+, x+ 	 Fx+, z+ + Fx+, Z_ _ a I0 + 4 Ix = I i 	

h ax	
(17e)

f

:'	 4
-	 e

r.

A	 -- --



(17

(17^,

Similarly

1 alp
Fx. . X. ' - A ip + h ax

1 a tp
Fy ♦ y, _	 1p - - —

'	 h 
by

Fy-, y- l 	 t alp
s —A `o + 1^

`	 hay
(17h)

Here, h' _ V	 (( 1 - . Q j) and h =
V/3—

 2	 (1 -tag). Fluxes are illustrated in Figure t

following Davies ( 1978). It is assumed that there is no flux incident at the top of the cloud and

the bottom receives radiation only from the groL ;A emitting at its black body temperature, T1.

The ground flux is rB, and the ground reflectivity is z:ro. The sides of the cuboidal cloud re

ceive only the component of the flux emitted by the ground that is normal co the face. The use

of flux boundary conditions leads to the loss of all directional information pertaining to the in-

coming radiation. This leads to slightly erroneous results for the radia►zce, a matter that is dealt

with in Section S when Monte Carlo comparisons are made. Following the sign convention that

flux is positive in the positive direction, the boundary conditions may now be written for a cloud

of optical thickness z • and equal sides, s. These are

1 alp
I + — —	 =0	 (18a)
°	 h' az gaze

t !-10 
)a

- — —	 = B 1	 (18b)
h az z=o

I ab	 B1	
(18c)

h ax
to + I —	 _ —

x=s! s

1 a[o	 = B1	
t 1 8d)Ip - -

h ax x=-sr:

8



1 alol 	 Bi

h 8y y=sl2

1 
NO	 B,

.

	

	 I° - hay ^_ 2 = --	
(1811

y s!

The above equations may be compared with similar equations in Weinm an and Davies (1978)

and Liou and Ou (1979). The difference lies in the parameters h xnd h' in the above equations.

In this form, the solution for horizontally finite clouds tends to the two-stream solution when

the sides of the cloud are increased to infinity. It should be noted that although the x- and

y-directions are interchangeable. that is not true of the vertical direction ( note the difference

between h and h'). This is a drawback as will be demonstrated later when numerical examples

are presented but the errors are small. in our opinion. this is a modest price to pay for avoiding

the unrealistic results obtained from the Eddington approximation.



y,

4. MONTE CARLO SIMULATION

In order to test the accuracy of the two-stream approach, the transfer problem was also

solved using a direct Monte Carlo simulation. The Monte Carlo model used is very similar to that

described by Davies (1978) and Weinman and Davies (1978), and only the extensions needed for

the current application are given here.

t

	

	
It is helpful to consider three separate sources of thermal photons: those emitted uniformly

from within the cloud, those emitted from the ground immediately below the cloud base, and

those emitted from the ground which strike the cloud sides. A summary of the simulation

characteristics of each source type is presented in Table 1, which shows the energy per simulated

photon as well as how the choice of initial coordinates and direction cosines for each photon is

made.

As a result of the subsequent random walk of each photon, simulating the transfer of ther-

mal radiation, a number of photons from each source type may ultimately exit the cloud surface

through an area A in a solid angle bin at a mean angle 9 to the normal to A. That is

f02
cosa	 cos 9 sin B d8 do	 (19)

f6 2

1	 1

where 9 1 , 82 , 01, 02 mark the limits of the solid angle. If n l such photons have energy E 1 each,

n2 have E2 , and n3 have E3 , the total simulated radiance through A in the direction defined by

9 is then given by

I = (nl E 1 + n2 E 2 + n3 E 3 )/A cos 9
	

(_'0)

The stochastic nature of the Monte Carlo simulation causes its results to contain an element

of uncertainty, which may be objectively assessed (Davies. 1978). We also note that the Monte

Carlo solutions tend to the correct plane parallel solutions as s/2 -► *a.

10



As an additional check of the two-stream approximation, the source of photons incident on

the cloud sides was altered in the so-called "modified Monte Carlo" version. For this version,

the energy per unit area incident on the cloud sides was unchanged, but the initial direction

cosines were chosen to be equally distributed in the upward and downward directions. This

simulated the two-stream approximation more closely, but it no longer directly simulated the

actual problem. In the next section, two-stream results will be compared with Monte Carlo

simulations.



M^

0.

S. RESULTS

a. Fluxes

The solution of (16) subject to the boundary conditions ( 18) is obtained using finite Fourier

transforms and is described in detail in Weinman and Davies ( 1978). We start by defining
a	 s

2	 B
J(ri, rj , z) _	 [10 (x, y, z) — 2 cos (fix) cos (tjy) dx dy	 (21)

fs s	 2

-T -i

when ri and rj are eigenvalues to be defined later. All the quantities of interest may be derived

from I0 which is given by

10	 4 ti rj cos (fix) cos GO a(ri. rp z) + B 1	 (22)

i j	 ttis + sin (tis) 1 [rjs + sin (^ js)]	 2

Here, ri and ri satisfy

ti, j = h cot (ti, j s/2)
	

(23)

and

	

.0 - C+ eAz + C- a-Az - (X/A'-)
	

(24)

where

	

A2 = ),2 + ^i2 +	 (25) j

and

42 B 1	 ;isris
X =	 2 - B0 sin 2 sin -^-	 (26)

rirj 	 )

The constants C+ and C- are determined from the transformed boundary conditions (18a) and

0 8b) which are

.)
+ 1 —	 _ - B1 sin ^'g sin	 (27a)

h' az x=z•	 riti	 2	 2

and

	

I a	 2Bt r^is
	
(L2

_ —sin I\ sin	 (?7b)

	

az 	 ,

12
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c.
To obtain the flux exiting each face of the cloud Eqs. (17a)-.(17h) are evaluated at the ap-

propriate face. The monochromatic emittance, transmittance and reflectance of plane parallel

clouds have been used to identify their radiative behavior. analogous definitions for horizontally

finite clouds are not universally accepted and there is no general consensus available on these

parameters. Here we define the emittance in terms of the flux exiting a particular face of the

model cuboidal cloud. For an isolated, isothermal cloud at temperature T 4 , the emittance of the

top face is the ratio

(FZ+,z+)z=z*/rBO

and the emittance of the side face at x = 2 is
(Fx+, x+)x=s/2

 /aBO

and so on for all the faces. Note that there is no ground contribution and FZ+, Z+ is a function

of x and y while Fx+, x+ is a function of y and z, unlike the plane parallel problem. Now if we

consider the cloud at absolute zero over a black ground at temperature T l , the reflectance of

the bottom face of the cloud is defined as the ratio

(Fz-, Z-)z=0/1rBj

The transmittance of the top face of the cloud is defined as the ratio

1	 (FZ+,z+)z=z•/xBl

and we have also defined the flux exiting the four faces as transmittance, i.e.

(Fx+, x+)xs3/2(7rBI

and so on. Tie advantage of these definitions is that they coincide with the plane parallel

definitions when the sides of the cloud extend to infinity. Moreover, for a black ground

the solutions for the cloud at absolute zero and ground at absolute zero can be superim-

posed to yield the radiative field. The present definitions are only a function of cloud

13



characteristics, i.e., C. g, and optical dimensions z* and s. They are thus independent of temper-

ature and they differ from those presented by Liou and Ou (1979).

The point hemispheric flux exiting a cuboidal cloud of optical dimensions (s, s, z*) _ 0, 1, 1)

is shown schematically in Figure 2. Scattering parameters a = 0.638 and g = 0.865 are represent-

ative of a C-1 water cloud at 10µm (Deirmendjian, 1969). In the figures, H and L refer to rela-

tively high and low flux and the contours indicate the flux pattern. The notable feature here is

that emission is strongest from the interior regions of the cloud face whereas upward transmission

is greater around the edges. The source of transmitted radiation is below the cloud so that

relatively little radiation from below penetrates to the top and there is a gradient in the flux

exiting the sides. The flux patterns for a superposition of an isothermal cloud on a black

ground will be the Planck weighted addition of the emission and transmission results. Thus the

composite case may show edge darkening or brightening of the top face depending on the optical

dimensions, scattering properties and the temperatures of the cloud and ground.

The particular case of a cubic cloud of optical dimensions (s, s, z*) _ (10, 10, 10) at 250K

above a black ground at 300K is shown in Figures 3 and 4. Figure 3 hives the upward flux exit-

ing the top face, (FZ+, z+)zsz*, expressed in equivalent black body temperature for both the iso-

lated (no ground) and composite configurations. The flux in the central portion of the cloud

face at optical distances \ 1 (= 1.43 for this case) from the edge. is equal to the value obtained

for plane parallel clouds. Figure 4 shows the upward component of the flux exiting each side

of the cube, ( Fx+, Z+)xss/= , which is given by ( 17c). vote that the effect of the underlying

base can be seen in the composite case at the bottom edge. The figures show quite clearly that

finite clouds cannot be considered black emitters when the radiative flux is computed.

A comparison of fluxes obtained with the Monte Carlo method is shown in Figure 5: the

Monte Carlo results are shown in parenthesis. Values correspond to the average flux in the

`, t

.'i^1E
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boxed area expressed in * K with the lead digit 2 suppressed for clarity. The boxes left unfilled may

be completed using symmetry. The largest differences appear at the edges in the composite

case (— 10°K) and may be attributable to the fact that the diffusion approximation breaks

down. An error is also introduced in the comparison over large bins where the flux varies

rapidly. The RMS differences between the analytic results and Monte Carlo simulations are

summarized in Table 2 in which the (10, 10, 2) case has also been included. It may be

noted that use of the "modified Monte Carlo" reduces the RMS error for side fluxes con-

siderably. This indicates that then is an inherent defect in the use of flux boundary condi-

tions in Eqs. ( 18c)-(18f).

The flux patterns shown averaged over each face yield the mean hemispheric flux exiting

each face. This quantity may then be used to perform a bulk radiative balance for the cloud

as a whole. From Eqs. (17a)-(17h) the average fluxes may be written as

	

u1	 ?	 1 a Ie

(FZ+, 
tt = 2 (10 - ;	 )	 dx dy

.s J s fs	 h aZ zsz.

2 -2

for the top face,

c

x

	

	 s	 s	 1 aIp
s2 2 2 (10 +	 dx dy

/	 s	 s 	 h az

	

f ^ .	 sz=o	 z o
-2 .?

for the bottom face,

(rx, x+)
	 z	 ^	 l aIo

	

' st* r 	 dy dz

	

J	 h ax

(10
of XUS/2x sl2

-2

for one side face, and so on.

15
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s
V"

;.	 The results of the integration, using (22) are as follows

B	 1 ``.	 16 sin (r s/2) sin (r 3/2)	 X

	

(Fz+, z+)z:z. _ { + $2 !^	 1 s + sin i s)	 s + sin 1 s)

	

i	 j	 j	
i

(28a)

1 d^s (^i, 3'j, z*) — h, T 
(r" rj, z'")

(I - )	
rwr (Br + 1 

F	
16 sin (rls/2) sin (ris/2)	 X

z . z- z.0	
S2 i j	 [ris + sin (ris)) (tj s + sin (rjs)1

(28b)

•	 1 d4
.^ Up rj , 0) +h, 

az 
(ri , rj, 0) }

(rx + x+)	 a 11 + l 'E 1:
16 ti cos (hi s/2) sin (S; s/2)	 X

,	 x=s/2 .
	

2	 sz' i	 j	 [ ri s + sin (ri s)] ( rj s + sin (ri s)1
(28c)

C+ 
(eAz` - 1) + C (1 - e-Az*) _ X *])

A	 A	 A2/

and so on.

Thus the mean emittance of the top face of an isothermal, isolated (B I = 0) cuboidal cloud

is the ratio (Fz+,z+)z,z*IrBO. This is plotted in Figure 6 for two finite cloud geometries,

one cubic and one with horizontal dimensions ten times the vertical; the ordinate shows the

vertical optical thickness, z • . Also plotted are plane parallel results obtained using the two-

stream approximation and an accurate Neumann solution using the Henyey-Greenstein phase

function. ) The mean emittance of the top face of the cuboidal cloud fads short of that of

plane parallel clouds of the same optical prDperties and depth. This differs from the results

1 W. S. Olson (parsonal communication)
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of the Eddington approximation shown in Figure 6 of Liou and Ou (1979) in which the (10T,

l0r, r) case shows emittance in excess of the plane parallel cloud. Figure 6 of the present paper

shows that Eddington emittance is consistently larger than the exact results and that it exceeds

unity when z* Z S. Thus the finite Eddington approximation will overestimate the emittance,

•	 while the two-stream is seen to be an underestimate, but the plane parallel results are very close

to the exact for z* ~ 1.

Although the top face of the model cloud emits less than the corresponding plane parallel

cloud, the total emission from the cloud must include the contribution of the sides of the cloud.

This is shown in the figure as the upward component of the side face emittance. For the cubic

cloud, the contribution of the four side faces exceeds the emission from the top face and the

total emission from the cloud is actually greater than the corresponding plane parall:l cloud. The

(10r, 10r, r) case also shows total emittance greater than the plane parallel. If the cloud is not

isolated, a portion of the side emission will be intercepted by neighboring clouds, thereby de-

creasing the total emittance.

b. Cooling Rates

The net flux divergence within the cloud gives the infrared cooling or heating experienced

by each element of the cloud. For the three dimensional problem the cooling rate is given by

aT	 1
-_ s _ _` 0 ' Xnet

at PCP

where the net flux divergence is obtained from Eq. 01). Here p is the air density assumed to be

7.2 x 10-4 gcm-3 and CP the specific heat at constant pressure taken to be 1 J g- 1 * C'1 . For

illustration, we have computed spectral cooling rates in the 8-13.6 µm region. It was shown by

Stephens (1978) that the window cooling rate forms the bulk of the total cooling rate for plane

parallel clouds, so the results presented here may be considered representative of the total flux

`.	 divergence. The cloud is cubic of dimensions 1 km on each side at a temperature of -10* C; the

ground is at 1 S* C. It is further assumed that the cloud is type C-1 of droplet density 100

particleslcm 3 having optical properties tabulated in Deirmendjian ( 1969).

(29)
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Figure 7 compares the horizontally averaged cooling rate of the cubic cloud with a plane

parallel cloud of the same height. The additional cooling from the sides of the cloud increases

the mean cooling at each level in the cloud. The level at which cooling to space is overcome by

heating from the ground is lowered by 320m. What is even more striking is the distribution of

net flux divergence at each level. Figure 8 shows the heating and coolin g at four levels within

the cloud marked A, B, C, D on Figure 7. The stippled areas indicate that heating is confined

to the core at the 400 and 300 m levels, and cooling is around the edges. In regions close to the

cloud base, such as level D, which is 100m above the base, the horizontally averaged divergence

indicates heating as is evident from Figure 7 but Figure 8 shows that there is an outer skin that

exhibits cooling.

The model illustrated here has a low droplet density. Additional computations have been

performed for denser clouds and are presented in Table 3 which shows the horizontally averaged

net flux divergence at selected levels within the cloud. Optically thicker clouds have more ex-

treme divergence rates at the top and base, consistent with results obtained from the plane

pare node!.

c. Radiances

Although diffusion approximations furnish respectable results for fluxes,. the radiance field

derived from such methods is totally inadequate. For example, the two-stream approximation

assumes a uniform radiance in each hemisphere. however, the two-stream approximation can

be used to compute the scattering source function, Js, from which the radiance emerging from

the cloud boundary can be computed by path integration (Weinman and Davies, 1978).

The radiance exiting a finite cuboidal cloud as seen by a sensor that measures the area

average radiance at some viewing angle is shown schematically in Figure 9. It is assumed that

the radiance for azimuthal angle, 0 = 0, will suffice for comparison with a real cloud of slightly

1
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irregular shape. Because it is impossible to represent the detailed features of a real cloud, one

azimuth angle is as good as any other for the level of sophistication of the model. The radiance

exiting at a point xo, yo. zo, on the aace of the cloud may be written as

I (xa. Yo. zo, 8, 0) = B 1 WPM +
r

I - M) B0 + JS (X0' Y0 ' z0(x ' 8) ' 0 ' 01 }e-3(8) — (30)

	

1	 xt(e)	 v

	

l . 
E	 where J= is the scattering source function given by (3) and the slant optical path lengths S(8)

and S•(8), the limits of integration xu(8) and xt(8) and the functional dependence z(x, 8) which

defines the slant path are tabulated in Weinman and Davies ( 1978) and will not be repeated here.

Note that the sign convention in that paper is the reverse of that used in this study. Davies

(1980) has shown that this method of computing exiting radiances is superior to that which a

first order Eddington expansion provides.

It remains to define the scattering source function in the two stream approximation. Here

we may use the complete phase function expansion from Chandrasekhar ( 1960) instead of (6).

p(µ, 0; µ', 0) s 2 C31Pt(µ) PI (µ') + '_ 2:P1'=(µ) P'"(µ') cos m (0 - ^') 	 (31)
1-0t 	 (	 + m

	

(l	 )!Mal

where D1 are the coefficients in the phase function expansion and P1(µ) and P m(IA) are the

Legendre functions. The scattering source function can then be written as

ci f 2^	 1	 0

4A	
'^^ 1+ (µ', 0') p(µ. 0; µ', 0') dµ' +	 I- (µ', m') p(µ• 0.;&', 0') dµ' dO'	 (32)0	 1_ }

Now substituting for It from (8) and p(µ, 0; µ', 0) from (31), Eq. (32) can be integrated analyti-

cally using relations available in Hobson (1955) ano Gradshteyn and Ryzhik (196S). The result is

is 	Q10 + ("ZI t { ' + f: Z521+1 P21 + 1(µ)	 ,	 .. .-	 t ot	 ( t + -) ( t) (- t - _)

(33)
c'^A	 (d	 ,^ + 3	 3 t

	+ $ v(Ix cos b + Iy sin m) { v, t +	 Z ,t+t d P21 « 1 (µ) 3 F:
l	 1,:	 µ	 =	 111

c

i
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where

r2r-- 3+ k C(-1 + k) C 3+ k
r(2) r(.)	 2

3F= = l + 21 + 3	 3 v	 r(2 + k) C(2 + k) k!r -- r(-n r 2	 .

If we choose the Henyey-Greenstein phase function to represent p, then Q 1 = 3g and CJ 21 +1 =

(41 + 3) g'1+1 (van de Hulst, 1980). For zenith angles less than 70° the series can be approxi-

mated quite well by

1

Js	 j I0 + gI t + 3 v (Ix cos 0 + Iy An 0)^	 (34)
`	 8

which has been used with a slight modification by Weinman et al. (1981).

After substituting (33) into (30), the radiances obtained can be analytically averaged over

the projected areas furnishing lengthy expressions for the desired quantity. An illustrative result

is shown in Figure 10 in which the emergent radiance of an isolated cuboidal cloud is plotted

against the zenith angle of the viewing sensor. The radiance values are normalized against the

black body emission of the cloud, B 0. The can z' = 5 is considered: individual curves are labeled

with the horizontal optical thickness, s. The anisotropic nature of the emergent radiation is evi-

dent. The radiance is sharply reduced for finite clouds and there is a significant angular depend-

ence. It may be noted that the curve for (5, 5. 5) is nearly symmetrical about 9 = 45°. This

shows that the slight asymmetry alluded to in Section 3 is of little consequence numerically.

Also marked on the figure an plane parallel solutions obtained by path integration of the Edding-

ton source function and a 16-stream discrete ordinate solution . 2 The two-stream solution is satis-

factory for all angles while the Eddington approximation yields poorer results except around 50°.

-N.-L. Wu (personal communuation).

W:
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The above case considered an isolated cloud. The combined radiance profile of a cloud at

250°K overlying a black surface at 300°K is shown in Figure 11 for optical dimensions (10, 10.

2) and (10, 10, 10) compared with the plane parallel solutions. The contribution of the side

faces to the radiance at large zenith angles is a prominent feature of the results. The local maxi-

mum is a function of the geometry of the cloud. It may be noted that even at 9 a 00 the finite

cubic cloud with z* • s = 10 appears 3.5°K warmer then the plane parallel model suggests.

This discrepancy can affect the determination of cloud top heights from the observed brightness

temperature of small cloud elements. The solution here assumes that the ground is at a uniform

temperature over a large distance compared to the cloud dimensions. It is also possible to solve

problems when the ground temperature Lumediately below the cloud differs from the surround-

ings, (see Weinman et al., 1981).

Another observation from Figure 1 l is that the two-stream approximation is good when

the optical depth is large but that it fails to reproduce the radiance profile with z • a 2 in the

plane parallel case. This is not a serious handicap because clouds in the infrared window usually

have optical thickness of -10 or more.

The detailed radiance pattern as viewed at 9 = 50°, 0 - W is shown in Figure 12 in units of

brightness temperature for a cubic cloud of optical dimensions (10, 10, 10). The pattern is

shown for both the isolated cloud at 250°K and for the cloud over a black ground at 300°K.

The sharp gradient at the edges of the cloud are a feature of the results, although the bulk of the

cloud is seen to exhibit s nearly uniform radiance. Figure 13 shows a comparison of the analyti-

cal results with Monte Carlo simulations (in parenthesis) for the same case. Again, the lead digit

2 has been suppressed for clarity. Errors are seen to be confined primarily to the edges where

the Monte Carlo results indicate a sharper gradient than the analytical results. The overall com-

parison is summarized in Table 2.
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The same model cloud when viewed from directly overhead at 8 = 00 shows the radiance

pattern in Figure 14, it may be noted that the central portion of the cloud is brighter in emis-

sion (isolated) whereas the composite cloud on black ground shows brightening about the edges.

Comparisons with Monte Carlo simulations are presented in Table 2. For the radiance, as for

flux, the "modified Monte Carlo" generally gives closer agreement with the analytical results,

again high'vehting the problem introduced by the side flux boundary conditions of Eqs. (180}(180.
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6. SUMMARY

The results presented here illustrate the differences between radiation from finite and plane

parallel models of clouds. These are

(1) Finite clouds do not behave as black emitters if their horizontal extent is of the same order

as their vertical dimensions unless the optical thickness is much greater than the diffusion

leng=l^, ^-t.

(2) There is a significant infrared cooling out of the sides of finite clouds.

(3) The brightness temperature measured from a finite cloud by a low resolution sensor is

higher than the cloud top tempemture. .

(a) The radiance pattern across the face of a finite cloud shows sharp gradients near the edges.

The two-stream approximation used in the study was shown to be within a few degrees of

the Monte Carlo simulations for radiance measurements indicating that this computationally rapid

method may be advantageously used to model the radiative characteristics of finite clouds.
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Table 1
Monte Carlo Simulation Characteristics

Energy Per Photon	 Starting Position	 Starting Direction Cosines

(a) Internal Source

40 - cW) Bo s2z*/N 10	uniform within cloud volume	 isotropic

(b) Source at Cloud Base

1rB1 s2/N20

(c) Source at Cloud Sides

2rB 1 sz*/N30

(d) Modified (c)

2rB1 sz* /N30

uniform on cloud base

uniform on cloud sides

uniform on cloud sides

V a R1112

h l = (1 - v2 )1/2 cos 2r R2
h2 =(1 -v2)112 sin ''r R2

hl = R1112

h2 =0 - h2 )112 cos r RZ

V = (1 - hj) 112 sinrR2

h l = R1u2
h2 = 0 - h2)' /2 cos 2r R,
V = (1- hi) 112 sin 2r R_

Bo = Planck function at cloud temperature
B 1 = Planck function at ground temperature
R 1 , R2 are random numbers, uniform on (0, 1)
v is the vertical direction cosine, positive upwards: h l , h2 are the horizontal direction cosines
N 10, N2D , N30 are the total number of simulated photons for each source type

t
x

26

F "-

Ilk, >:^



Table 2
Comparison Between Two—Stream and Monte Carlo Simulations

TO = 2500 K Tl - 300° K

I"

RMS Difference in °K

(10, 10, 10)	 (10, 10, 2)

Upward isolated 0.7	 0.7

Hemispheric
Flux composite

5.8 (MC)	 4.8 (MC)
4.9 (MMC)	 3.8 (MMC)

Radiance isolated 2.3	 1.9

Top	 at 8 - 50°
m - W composite

po
4.5 (MC)	 2.0 (MC)
1.7 (MMC)	 2.3 (MMC)

Radiance
at8-0°

isolated

composite

3.6

1.3 (MC)
3.8 (MMC)

2.6

3.4 (MC)
2.7 (MMC)

Upward isolated 2.0 4.3

Hemispheric.
Flux composite 7.2 (MC) • 5.7 (MC)

3.6 (MMC) 4.7 (MMC)
Side

Radiance isolated 2.7 3.3

at 8 - 50°
0 = 00 composite 2.1 (MC) 2.1 NO

1.2 (MMC) 1.8 (MMC)

isolated — cloud alone
composite — cloud over black ground
(MC) — correct Monte Carlo version with side flux only from the bottom
(MMC) — modified Monte Carlo, with same boundary conditions as analytic model, i.e. distributed

side flux
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Table 3
Horizontally Averaged Heating (+) and Cooling (-)

Rates in °C/hr in the 8-13.6µm Region

Droplet Density No.Jcm3
Height

From Base (m) 100 200	 300 400

1000 -5.3 -10.8	 -16.2 -21.6

950 -3.0 -3.5	 -3.1 -2.5

900 -1.8 -1.4	 -0.9 -0.6

500 -0.4 -0.4	 -0.4 -0.4

100 +0.5 +0.2	 +0.1 +0.2

50 +1.2 +1.5	 +1.2 +0.9

0 +2.6 +5.6	 +8.6 +11.6

Cloud is type Cl with horizontal dimensions 0 km, 1 km, 1 km) To = -10°C; T 1 - 15°C
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