ABSTRACT

A pump/valve unit for controlling the inflation and deflation of a urethral collar in a prosthetic urinary sphincter device is disclosed including a compressible bulb pump defining a reservoir made integral with a valve unit for implant wherein the valve unit includes a movable valve member operable by depression of a flexible portion of the valve unit housing for controlling fluid flow between the reservoir and collar and a pressure sensing means which operates the valve member to relieve an excess pressure in the collar should too much pressure be applied by the patient.
PROSTHETIC URINARY SPHINCTER

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

The invention relates to a prosthetic urinary sphincter device for controlling the bladder function in the situation where a person has lost bladder control. Implantable devices have been used before for controlling the situation where a person has lost bladder control. Implantable devices, such as those disclosed in U.S. Pat. No. 3,863,622 which typically include an inflatable cuff surrounding the urethra, have been used before for controlling urinary incontinence in which the device for controlling inflation of the urethral cuff is not implanted, thus permitting a more conventional construction.

U.S. Pat. Nos. 3,903,894 and 3,854,469 disclose other implantable devices utilizing bulb reservoirs and flap and slit valves, respectively, which are simple requiring minimum surgery but which do not afford highly accurate pressure control and relief.

U.S. Pat. Nos. 2,455,859 and 2,533,924 typify a second type of artificial sphincter device for controlling urinary incontinence in which the device for controlling inflation of the urethral cuff is not implanted, thus permitting a more conventional construction.

Accordingly, an important object of the present invention is to provide a prosthetic sphincter device for controlling urinary incontinence which is reliable and does not require replacement following implantation. Still another important object of the present invention is to provide a prosthetic sphincter device which has an improved pump/valve unit for controlling pressurization of the urethral collar.

In summary, the invention provides a novel unitary press bulb pump/valve device which eliminates the use of two pumps. The device includes a press bulb which acts as a reservoir for containing the fluid and an integral valve unit for controlling the flow direction and manual relief for patient urination. The device further includes a relief feature for controlling the maximum pressure exerted by the urethral collar against the urethra.

BRIEF DESCRIPTION OF THE DRAWING

The construction designed to carry out the invention will be hereinafter described, together with other features thereof.

DESCRIPTION OF A PREFERRED EMBODIMENT

The drawing illustrates a device, designated generally as A, for pressurizing and relieving the collar B of a urinary prosthetic sphincter device. The device includes a compressible bulbous pump means C, having a press bulb 19 made from a soft synthetic material such as a silicon elastomer which provides a reservoir for a suitable fluid solution which is used as a pressurizing fluid, such as a saline solution and an integral valve unit D, having a housing 12 which encloses the components thereof. The housing 12 is illustrated as being cylindrical in shape consisting of a cap portion 13 and a base portion 14 received within a flange portion 15 which may be bonded or welded. The reservoir bulb material 10 is made integral with the housing 12 preferably by bonding at 10a and 10b by any suitable bonding agent which is biocompatible. The cap 13 includes a bulb fitting 16 and boss 18 providing a fluid port for interfacing with the pressurization tubing 19 connected to the urethral collar 6. The pressurization tubing 19 may be made of any suitable tubing material such as expanded Teflon.

Internally of the housing 12, the device D has as its components a main body portion 20 which may be of stainless steel and provides a member for retaining the shape of the device generally. The body 20 includes two upstanding leg portions 21 and 22 and a central upstanding stem portion 23 which serves as a valve stem. A fluid port 24 is provided in the upstanding leg portion 21 communicating with the fluid reservoir 10.

A reciprocating valve member 25 is included within the housing and includes a depressible button member 26 which serves as a valve actuator and a valve body 27 attached to the button 26 by means of pin 26a. The housing 12 is made from a suitable resilient material such as silicone elastomer such that the center of cap portion 13 is depressible to manually operate valve 27 which serves as a valve actuator and a valve body 27 which may be of stainless steel and provides a member for retaining the shape of the device generally. The body 20 includes two upstanding leg portions 21 and 22 and a central upstanding stem portion 23 which serves as a valve stem. A fluid port 24 is provided in the upstanding leg portion 21 communicating with the fluid reservoir 10.

The valve body 27 includes a fluid port 27a, a valve seat 27b defining a second fluid port, and a bore 27c connecting the two ports. A valve element is provided in the form of a ball poppet 28 maintained on the seat
In a prosthetic sphincter device for controlling urinary incontinence of the type having an inflatable urethral collar for surrounding the urethra and preventing flow in the urethral passage when inflated while permitting flow when deflated, a pump/valve unit for inflating and deflating said collar comprising:

a compressible bulbous pump means having an interior space defining a fluid reservoir;

a valve unit integral with said bulbous pump means which includes:

a valve housing having a resilient depressible portion;

said valve housing having a first port communicating with said fluid reservoir and a second port adapted for connection to said inflatable collar;

a fluid flow path in said valve housing between said first and second ports;

a valve member enclosed within said housing disposed in said fluid flow path having a valve actuator element operable by depression of said resilient portion of said valve housing;

said valve member including a valve element having a first position permitting fluid flow through said valve member urging said valve member away from the base and said valve element occupying said first position in response to the compression of said pump means allowing fluid to flow from said reservoir to said inflatable collar and in response to said operation of said actuator element allowing fluid to flow from said collar to said reservoir.

2. The structure of claim 1 wherein said valve unit includes pressure sensing and relief means for sensing the pressure of said fluid in said inflatable collar and causing said valve element to move to said first position in the event said fluid pressure in said collar exceeds a predetermined amount.

3. The structure of claim 1 wherein said valve unit includes:

base means having an upstanding stem,

said valve member being carried for movement toward said base means affording engagement between said stem and valve element, and

biasing means carried between said base means and said valve member urging said valve member away from said base means.

4. The structure of claim 1 wherein said valve member includes:

a valve body having a fluid port,

a valve seat formed in said base means defining said fluid port;

a bore formed in said valve body connecting said first and second ports,

said valve element carried in said bore seatable on said valve seat in said second position, and

said valve actuator element carried by an end of said valve body opposite said valve seat.

* * * * *