A locking mechanism for orthopedic braces includes upper and lower brace members pivotably jointed together, notched or recessed plates being fixedly secured to the lower brace member while a U-shaped locking bar is pivotably secured to the upper brace member for lockingly cooperating with the notched or recessed plates, a spring-biased actuating lever being operatively associated with the U-shaped locking bar. The upper and lower brace members are also provided with drilled holes or bores which are angularly oriented with respect to the longitudinal axes of the upper and lower brace members, the bores being aligned with each other when the longitudinal axes of the brace members are likewise aligned.

A freely movable pin is slidably disposed within the bores, the outer ends of the bores being suitably capped so as to retain the pin therewithin, and when the brace is vertically disposed so as to simulate standing or walking conditions, both brace members also being longitudinally aligned, the U-shaped locking bar automatically lockingly engages the recessed or notched plates while the slidable pin is interposed between both brace members and within both bores thereof, thereby preventing the occurrence of relative pivoting between the brace members. When the brace is alternatively disposed in a suitably inclined position, corresponding to simulated sitting conditions, the pin moves solely into the bore of the upper brace member thereby permitting relative pivoting to occur between the brace members, when the U-shaped locking bar is disengaged from the notched plates by means of the actuating lever.
LOCKING MECHANISM FOR ORTHOPEDIC BRACES

ORIGIN OF THE INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 U.S.C. 2457). This is a continuation, of application serial no. 676,958, filed Apr. 14, 1976 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to orthopedic braces, and more particularly to an improved locking mechanism for such braces.

2. Description of the Prior Art

While an innumerable variety of braces pervade the orthopedic field to assist the ambulation of handicapped and other afflicted persons, and while such braces may also include manually or automatically operable locking mechanisms for a variety of purposes, conventional locking mechanisms are capable of being unlocked under undesirable conditions and at undesirable times whereby the locking function of the brace may readily be circumvented and the constructive and rehabilitative walking conditions, both brace members also being vertically disposed, so as to simulate standing or walking conditions, to be simply unlocked, even by inexperienced persons, and while such unlocked conditions may likewise be thwarted.

The application of orthopedic braces, for example, to the lower extremities of children affected with spastic disorders and other neurological problems has been an effective means of preventing deformity and contracture while at the same time permitting ambulation under optimum extremity disposition. Unfortunately, however, as conventional orthopedic brace locking mechanisms characteristically exhibit the aforesaid disadvantage of being capable of being unlocked at inopportune times, children are able to gain control over the opening and locking functions of the locking mechanisms of the braces and, despite admonitions from their parents, teachers, doctors, and the like, often unlock the same, whereupon walking, while such unlocked conditions prevail, causes for example, knee flexion and calcaneal deformities to recur.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a new and improved locking mechanism for orthopedic braces.

Another object of the present invention is to provide a new and improved orthopedic brace locking mechanism which, under standing or walking conditions, cannot be unlocked so as to effectively prevent bending of the knee portion of the brace, and consequently the knee portions of the person's braced lower extremities, yet nevertheless permitting the locking mechanism, under sitting conditions, to be simply unlocked, even by a child, so as to in fact permit bending of the patient's knees.

Still another object of the present invention is to provide a new and improved orthopedic brace locking mechanism which is rendered operable, and inoperable, in dependence upon the relative inclination of the brace with respect to the ground.

Yet another object of the present invention is to provide a new and improved orthopedic brace locking mechanism which is automatically locked under simulated standing or walking conditions and which may be simply manually unlocked under simulated sitting conditions.

A further object of the present invention is to provide a new and improved orthopedic brace locking mechanism which is light in weight and relatively small in size.

The foregoing and other objectives are achieved in accordance with the present invention through the provision of an orthopedic brace locking mechanism which includes upper and lower brace members pivotally joined together, notched, or recessed plates being fixedly secured to the lower brace member while a U-shaped locking bar is pivotally secured to the upper brace member for lockingly cooperating with the notched or recessed plates, a spring-biased actuating lever being operatively associated with the U-shaped locking bar. The upper and lower brace members are also provided with drilled holes or bores which are angularly oriented with respect to the longitudinal axes of the upper and lower brace members, the bores being aligned with each other when the longitudinal axes of the brace members are likewise aligned.

A freely movable pin is slidably disposed within the bores, the outer ends of the bores being suitably capped so as to retain the pin therewithin, and when the brace is vertically disposed, so as to simulate standing or walking conditions, both brace members also being longitudinally aligned, the U-shaped locking bar automatically lockingly engages the recessed or notched plates while the slidable pin is interposed between both plates utilized within the brace embodying the present invention; whereas, when the U-shaped locking bar is disengaged from the notched plates by means of the actuating lever, the pin moves solely into the bore of the upper brace member thereby permitting relative pivoting between the brace members. When the brace is alternatively disposed in a suitably inclined position, corresponding to simulated sitting conditions, the pin moves solely into the bore of the upper brace member thereby permitting relative pivoting to occur between the brace members when the U-shaped locking bar is disengaged from the notched plates by means of the actuating lever.

BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, features, and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the several views, and wherein:

FIGS. 1a and 1b are side and front elevation views, respectively, of the upper brace member utilized within an orthopedic brace embodying the present invention;
FIGS. 2a and 2b are views similar to those of FIGS. 1a and 1b, respectively, showing however, the lower brace member utilized within the brace embodying the present invention;
FIGS. 3a and 3b are views similar to those of FIGS. 1a and 1b, respectively, showing however the notched plates utilized within the brace embodying the present invention;
FIG. 4 is a perspective view of the assembled brace incorporating the locking mechanism of the present invention;
FIG. 5 is a side elevation view of the brace of FIG. 4 disclosing the operation of the locking mechanism of the present invention; and
FIG. 6 is a side elevation view of the brace of FIG. 4 disclosing the operation of the locking mechanism of the present invention under partially locked conditions.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring now to the drawings, the orthopedic brace, within which the locking mechanism of the present invention is incorporated, is generally indicated by the reference character 10, as seen within FIGS. 4, 5 and 6, and is seen to include an elongate, upper plate member 12, as best seen in FIGS. 1a and 1b, and an elongate, lower plate member 14, as best seen in FIGS. 2a and 2b, pivotably secured together by means of a pivot pin 16, as seen in FIGS. 4, 5 and 6. As best seen within FIGS. 1a and 1b, the upper portion 18 of upper plate member 12 is substantially rectangular in configuration, while the lower portion 20 of plate member 12 is substantially circular in configuration, upper and lower portions 18 and 20, respectively, being integrally formed and secured together by means of a neck portion 22 which defines two accurately configured shoulder portions 24 laterally disposed upon opposite sides of the longitudinal axis 26 of member 12.

As best seen within FIGS. 2a and 2b, the lower portion 28 of lower plate member 14 is likewise substantially rectangular in configuration, while the upper portion 30 of plate member 14 is substantially semi-circular in configuration. The interior surface 32 of portion 30 defines a semi-circular recess 34 having a radial or diametrical extent which is the same as, or slightly larger than, that of circular plate portion 20 of plate member 12 so as to pivotably mate therewith and thereby facilitate pivotable movement to occur between the plate members 12 and 14, and to limit the pivotable movement between plate members 12 and 14 corresponding to the aligned and bent dispositions of such members under simulated standing or sitting conditions, portion 30 of plate member 14 is additionally provided with diometrically opposed projections 36 and 38 which are adapted to mate with the shoulders 24 of plate member 12, it being particularly noted, as best seen, for example within FIG. 5, that the configuration of projection 36 coincides precisely with that of neck portion 22 and shoulder portion 24 of plate member 12 to positively arrest the pivotable movement of the plate members relative to one another when longitudinally aligned and to facilitate the locking of the same under simulated standing conditions.

Circular plate portion 20 of plate member 12 is further provided with a bore 40 disposed along a chord which is radially offset with respect to the center of portion 20, and semi-circular plate portion 30 of plate member 14 is likewise provided with a similarly disposed bore 42. Both bores are disposed at an approximate mate angle of 55° with respect to the longitudinal axes of members 12 and 14 and are adapted to be aligned with each other, as best seen, for example, within FIG. 5, when members 12 and 14 are longitudinally aligned. As illustrated within FIG. 5, an elongate pin 44, having rounded end portions, is freely slidable within bores 40 and 42, and to retain pin 44 therewith, threaded members 46 and 48, such as, for example, Allen screws, are threadedly secured within the outer portions of the bores 40 and 42, respectively. The length of member 48, for example, is such that, when bores 40 and 42 are aligned as a result of plate members 12 and 14 being aligned and in the vertical position simulating standing conditions, the movement of pin 44, which moves downwardly within the bores under the influence of gravity, will be arrested at such a location that pin 44 will be interposed between portions 20 and 30 of plate members 12 and 14, respectively, and in this manner, pivoting of the plate members 12 and 14 with respect to each other is positively prevented. To the contrary, the length of member 46 is such that, when the plate members 12 and 14 are longitudinally aligned and are also inclined with respect to a horizontal plane, or the ground, as shown, for example, within FIG. 5, simulating sitting conditions, the pin 44 again moves relatively downwardly under the influence of gravity and its movement is arrested such that the pin 44 is disposed solely within bore 40 of plate portion 20, the relative disposition of pin 44 with respect to plate members 12 and 14 thereby facilitating the relative pivotable movement between members 12 and 14.

As can best be seen within FIGS. 3a, 3b, and 4, the lower plate member 14 is also provided with a pair of plates 50 which are fixedly secured upon the opposite side surfaces thereof by suitable fastening means 52. The lower portion 54 of each plate 50 is substantially rectangular in configuration so as to correspond to portion 28 of member 14, while the upper portion 56 of each plate 50 is substantially circular so as to correspond to semi-circular portion 30 of member 14. V-shaped notches 58 being respectively defined within upper portions 56 of plates 50. A substantially U-shaped locking bar 60, as seen in FIG. 4, the legs 62 of which, as seen within FIGS. 4-6, are disposed upon opposite sides of plate member 12, is pivotably secured to member 12, by means of a pivot pin 64, at a position substantially adjacent lower portion 20 of member 12 such that the crossbar 66 of bar 60 is permitted to be seated within the notched portions 58 of plates 50.

Referring to FIGS. 4, 5 and 6, a cylindrical projection 68 is fixedly secured, and extends perpendicularly to one side surface of the upper portion 18 of plate member 12, and a stud 70 is similarly disposed upon a side surface of locking bar 60 so as to be parallel with projection 68. Projection 68 is provided with a bore, not shown, and an actuating lever 72, having one end thereof secured, by suitable means, to stud 70, is slidably movable through the bore of projection 68, the opposite end of lever 72 being adapted with a friction gripping ring portion 74. A coil spring 76 is disposed about the portion of lever 72 interposed between projection 68 and stud 70, and in this manner, stud 70 and locking bar 60 will be spring-biased in a clockwise manner about pivot pin 64.

The operation of the locking mechanism of the orthopedic brace is thus quite apparent from the foregoing description. When the patient to which the brace is secured is in a simulated standing condition, as seen, for example, within FIG. 5, the plate members 12 and 14 will be longitudinally aligned and consequently, bores 40 and 42 will be similarly aligned whereby pin 44 will be interposed between members 12 and 14 thereby preventing pivotable movement therebetween. The actuating lever 72 is also disclosed within FIG. 5 as being spring-biased downwardly and consequently, locking bar 60, as seen in FIG. 4, is lockingly engaged with the notched portions 58 of plates 50.

If under these conditions, that is, simulated standing conditions, the patient were to desire to unlock the brace members so as to circumvent the locking function of the mechanism and to thwart the therapeutic pur-
poses of the brace, the patient would grasp the finger-
grip portion 74 of lever 72 and pull vertically upwardly 
so as to rotate locking bar 60 in the counterclockwise 
direction, against the biasing force of spring 76, and 
thereby disengage the same from notched portions 58, 5
whereby the upper member 12 could then be attempted 
to be pivoted relative to lower member 14. However, 
due to the gravitational disposition of pin 44, relative 
pivotal movement between members 12 and 14 is 
nevertheless prevented.

To the contrary, if the patient were desirous of un-
locking members 12 and 14 so as to attain relative pivotal 
movement therebetween in an effort to bend the knee portion of the brace and the afflicted extremity, the 
patient, under simulated sitting conditions as seen 
for example, within FIG. 6, could grasp the finger
grip portion 74 of lever 72 and upon pulling in the direction 
away from lower plate member 14, rotate locking bar 
60, as seen in FIG. 4, in the counterclockwise direction, 
against the biasing force of spring 76, and upon bar 60 
clearing the notched portions 58 of plates 50, the lower 
plate member 14 will in fact pivot downwardly, as the 
gravitational disposition of pin 44 has already been 
altered such that the pin now resides solely within bore 
40 of upper plate portion 20, the pivotal movement of 
plate member 14 being limited by means of projection 
38 of lower plate portion 30. Under these pivotal 
conditions, the locking bar 60 is now disposed in 
contact with the small arcuate portion 78 of plate por-
tion 56 of plates 50, and upon realigning plate members 
12 and 14, locking bar 60, under the biasing force of 
spring 76, is snapped into engagement with notched 
portions 58 of plate 50 whereby the locking mechanism 
is again partially locked as disclosed within FIG. 6.

Upon the patient rising from the sitting position to the 
standing position, pin 44 will again alter its disposition 
with respect to bores 40 and 42 and upon standing con-
ditions being obtained, the locking mechanism is fully 
locked as disclosed within FIG. 5.

While the locking mechanism of the present inven-
tion has been particularly disclosed as including pin 
bores inclined with respect to the longitudinal axes of 
the plates members through an angle of approximately 
55°, the mechanism will likewise operate efficiently if 
the angle is anywhere within the range of 50°-60°, al-
though the range may depend somewhat upon the size 
of the patient's leg. It is to be noted that the pin is com-
pletely enclosed within the bores so as to protect the 
same from the environment whereby failsafe operation 
of the same is facilitated.

With respect to the materials employed within the 
various components of the mechanism, the gravity-
actuated pin is preferably made of tungsten because of 
its high yield strength and stress resistance, and high 
55 mass, the pin only being subjected to stress if a patient 
tries to pivot the plate members while nevertheless 
standing. The pivot pin between the plate members is 
preferably made of steel, and based upon stress analysis, 
the brace can withstand the stresses imposed thereon by 
means of a 250 pound individual. The remaining compo-
nents of the brace are made of aluminum which is sub-
stantially light in weight and malleable, the latter fea-
ture facilitating custom-fitting of braces to various pa-
tients, the braces being manufactured of prefabricated 
stock parts. While the tungsten pin might cause the pin 
bores of the aluminum brace members to wear and 
become oversized, a steel sleeve might be incorporated 
within the bores so as to line the same whereby the wear 
problem would be obviated.

Obviously, many modifications and variations of the 
present invention are possible in light of the above 
teachings. For example, in lieu of the gravity-pin mech-
anism, a spring-loaded, weight-bearing mechanism 
might be employed whereby, under standing condi-
tions, the weight of the individual would compress 
the spring causing the latching mechanism to engage. Actu-
ation of the locking bar type latching mechanism would 
nevertheless fail to disengage the spring-loaded mecha-
nism and consequently, the brace would remain locked. 
Upon sitting, as the weight or load has been removed 
from the spring mechanism, unlatching of the same is 
permitted for bending the knee portion of the brace and 
extremity. It is to be understood therefore that within 
the scope of the appended claims, the present invention 
may be practiced otherwise than as specifically de-
scribed herein.

What is claimed as new and desired to be secured by 
Letters Patent of the United States is:

1. A locking mechanism for an orthopedic brace, 
comprising:
an elongate upper brace member having a longitudi-
unal axis and one end substantially cylindrical with 
an axis substantially perpendicular to said longitudi-
unal axis and having a convex outer periphery; 
an elongate lower brace member having a longitudi-
unal axis and one end substantially formed as a cres-
cent, said crescent's concave inner periphery hav-
ing substantially the same radius as the convex 
outer periphery of said one end of said upper brace 
member, said crescent and cylindrical portions of 
said one ends of said upper and lower brace mem-
bers being longitudinally and laterally opposed and 
radially aligned so that said crescent's concave 
inner periphery slidably engages said convex outer 
periphery of said one end of said upper brace mem-
ber; 
means for pivotably coupling said crescent and cylin-
drical portions of said one ends of said upper and 
lower brace members; 
means defining a first bore, within said one end of said 
upper brace member, having a longitudinal axis 
lying in the same plane as said longitudinal axis of 
said upper brace member and inclined with respect to 
to the longitudinal axis of said upper brace member 
by means of a predetermined angle; 
means defining a second bore, within said crescent 
portion of said one end of said lower brace mem-
ber, having a longitudinal axis lying in the same 
plane as said longitudinal axis of said lower brace 
member and inclined with respect to the longitudinal 
axis of said lower brace member by means of a 
predetermined angle which is the same as said 
angle of said first bore, and capable of being longi-
tudinally aligned with said first bore when said 
upper and lower brace members are disposed with 
respect to each other in a predetermined manner; and 
pin means longitudinally slidable within said bores 
and being capable of longitudinally sliding within 
both of said bores and interposed between said 
crescent and cylindrical portions when said upper 
and lower brace members are disposed within a 
first position relative to a vertical plane to thereby 
prevent relative pivotal movement between said 
upper and lower brace members, and interposed
solely within said bore of said cylindrical portion of said upper brace member when said upper and lower brace members are disposed within a second position relative to said vertical plane to permit relative pivotable movement between said upper and lower brace members.

2. A locking mechanism as set forth in claim 1, wherein:
said angle of inclination of said bores with respect to said longitudinal axes of said upper and lower brace members is within the range of 50°-60°.

3. A locking mechanism as set forth in claim 1, wherein:
said slidable pin means is a gravity-actuated pin.

4. A locking mechanism as set forth in claim 1, wherein:
said first and second bores extend through said upper and lower brace members, respectively; and closure means are disposed within the outer ends of said bores for retaining said slidable pin means within said bores and for determining the extent of said longitudinally slidable movement, and the disposition, of said slidable pin means within said bores when said upper and lower members are disposed within said first and second positions.

5. A locking mechanism as set forth in claim 1, further comprising: additional means for preventing or permitting relative pivotable movement between said convex outer periphery of said cylindrical portion of said one end of said upper brace member and said crescent's concave inner periphery of said one end of said lower brace member.

6. A locking mechanism as set forth in claim 5, wherein said additional means comprises:

7. A locking mechanism as set forth in claim 6, further comprising:
manually operable lever means fixedly secured to said upper brace member engageable and disengageable with said notched portions of said plate means.

8. A locking mechanism as set forth in claim 7, further comprising:
ring-shaped fingergrip means integrally formed upon said lever means for facilitating said manual operation thereof.

9. A locking mechanism as set forth in claim 6, wherein:
said locking means is a U-shaped locking bar.