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75, DETERMINATION OF IN VIVO MECHANICAL PROP |
. OF LONG BONES FROM THEIR
f? INPEDANCE RESPONSE CURVES

The aechanical properties of a bone are a good indicator of
th2 health and conlition of that bone, and possibly of the

skeletal systes as a vhole. Among the better correlated

Unclas
27872

rechanical properties to bome condition are stiffness |
properties. Hovever, no clinical sethol is currently available
"to measure such properties noninvasively.

The long bones of the forearm and leg are the wmost

accessible for eechanical testing. Hence, many investigators

CSCL 06P G3/5<

have concentrated their efforts on these bones. Yarious

Final

approaches bhave been taken involving either nultrasoaics or

Z€2 p

impedance testing.

CURVES

One such ispedance aethod wvas daveloped by Thompsont,

Hovever, more developement is npeeded before ¢this method is

DETERMINATICN OF IK VIVC
IES CF LONG BONES FEOM

suitable for routine use in a clinical setting. HMuch of that
peaded developement vork is presented.

A nmathematical wodel of the vibrating foreara and leg
systeas is developed. Briefly, the model consists of 2 unifornm,
linear, visco-elastic, PEuler-Bernoulli beam to represent the

ulna or tibia of the vibrating forearm or leg systeama. The skin

Report (Wayne State Univ.)

THELE IMEEDANCE RESEONSE
HC A12/MF AO1

(NASA-CE-164441)
MECHANICAL PROPEKI

and tissue compressed between the probe and bome is represented




by a spring in series wvith the beam. The remaining skin and
tissue surrounding the bone is represented by a visco-elastic
foundation vith mass.

An extensive parametric study is carried out to determine
the effect of each parameter of the mathematical model on its
imp2iance response. Tvo accoaplishments are obtained as a res.lt
of the study. Pirst, an increased understanding of the effects
of the paranmeters is gained. Second, many gqualitative
relationships between the paraneters and the characteristics of
the impedance curve are derived.

) | systeas identification algoritha is developed, and
programmed on a digital coaputer, to determine the parametric
values of the mathematical model wvhich best simpulate the data
obtained from an impedance test. The 1algoritha is based on
‘ninimizing the error function; a function similar in form to
that of a least-squares aethod.

Due to the complexity of the impedance eguations of the
sathematical model, the error function is very nonlinear with
respect to its parameters. Consequently, the systex of egquations
obtained fros a least-sguares approach, is virtoally impossible
to solve. Hence, an iterative procedure is developed which
involves the calcunlation of a change in each parameter which
brings that parameter closer to its correct value. To start the
iteration procedure, an initial guess for each parametric value
is obtained using the relationships derived in the parametric
study.

Data from several groups of impedance tests and experisents

have been made available through personal comxupication with

Ames Research Center. Among them are (1) in vwitro monkey




ST STEIREERS T e T RO S TR, e e — : ey e T —

experiments, (2) nonbiological tests, (3) Thompsonts origional

in yivo, human tests, and (4) more recent in vivo monkey tests.

The in vitro monkey experiments involve the measurement of

iwpedance of a monkey forearm in several stages as the ulna {s
being excised. The mathematical model 4is shown to be a good
representation of the physical system by using it in its
appropriate form to simulate the whole set of experiments wvith a
corsistent set of parametric values. The nonbiological tests
involve the measurement of impedance of two systems: a "rigid"
mass and an aluminur beaa. These "knovn" systems give an
indication of the accuracy of the imppedance erethod. The use of
the computer progras is uemonstrated by applying it to the in
vivo hucan and monkey data.

Several re¢conzendations .are given. Additional in vitro
experiments are suyyested to further understand the support
conditions of the forears and leg systess. Improvements to the
testing procedure are also suggested.

The impedance testing procedure, with the recoarendations
taken into account, promises to be a very useful clinical tool

for seasuring mechanical properties of bones.

t Thompson, G. A., 1973, "In Vivo Detersination of Bone
Properties from Mechanical Impedance Measurement,™ abstract in
Aerospace #edical Association Apnnual Science Neeting, las Vegas,
pp. 133-134. .
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CHAPTER I

INTRODUCTION

1. The Feed for Measurement of Bone Properties

Numerous recent studies have centered on the noninvasive
veasarenent of mechanical properties of bones in yivo. HNany

—

different approaches bhave been taken such as impedance methods

and nultrasonic wmethods. Soge o0of these approaches will be’

discussed im Sections I.D and I.P. Host of these studies have
been concerned with various kinds of stiffness Bmeasureaents;
usually either modulus of elasticity (E) of the material of a
bone or the bending stiffpess (BI) of a wvhole bone. These
stiffness wmeasurements bhave many clinical applications. Asong
then are the detection and the measureament of the degree of
Jeterioration resulting froa osteoporosis and other bone
digeases ;nd the measurement of the degree of fracture healing.
Hovever, relationships betveen stiffness measurexents and bone
iisorders must be knovz to make the stiffness measurements
applicable. These r=~l3:i2oships and their clinical applications
will be discussel ir Section X.C. Before this discussion,

hovever, a4 bricf review of anatoay is appropriate.

o
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1. The Skeleton

The skeleton is the set of bones which form the internal

framevork of the body. The functions of the bones are given by
Rove (1972) as followvs:

1. The outvard foram of the bhuman body depends on the
shape and size of the bones, vhich are the main
supporting structures for other body tissues,
particularly the muscles.

2. Some parts of the skeleton protect the vital
organs; for example the bopes of the cranium protect
the brain and the thoracic cage protects the heart,
lungs, liver and spleen.

3. By =means of the leverage obtained through the
articulation of the bomes with ore another at their
joints, the guscles are enabled to carry oat
movements, including locomotion.

4., The calcium contained in the bones not only
strenjthens them against stresses and strains but also
serves as a reserve fror which it may be withdrawn
into the blood streac should the need arise.

5. The red marrov contained in cancellous bone is the
tissue from which red and some of the white blood
cells are developed.

The skeletal syster wsust be wmaintained so that these
functions can operate. Many diseases are associated with the
deterioration of the bomes, inducing adverse effects on their

functions.

4

Bone, like other tissues, comnsists of living cells and non-
living intercellular substance. Hovever, the intercellular
substance {(or matrix) io bone tissue, unlike other tissues, {is
calcified. Calcium salts impregnate the cement substance of the
matrix thus giving bone its rigidity. Bany bone diseases result

in a loss of these calcium s2lts and hence a loss of bone

-~ i P o
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rigidity.

There are basically four types of bores, characterized By
their size and shape: long, shor., flat and irregular. Hany of
these bones have been studied from a variety of different points
of viewv, in terrs of monitoring bone integrity. The 1long bones
in the liabs of the body, however, are of greatest interest for
noninvasive mechanical testing. Their accessibility simplifies
tes@ing procedures ana their beanlike form facilitates

pathematical modeling.

2. long Bones

The follovingy four detinitions are conventional anong
anatorists. The term are refers to the portion of the upper limb

betveen the shoulder and elbow, while the term forearm refers to

‘ the portion between the elbov and wrist. The tera thigh refers

to the portion of the lower liab between the hip and knee, while
the term leq refers to the portion betveen the knee and ankle.

The bones of the arm and forearx, shovn in Figure 1.1a, are
the humerus, ulna and radius. Note the closeness of the ulna to
the outer surface of the forears. Little or no tissue lies
betvoen the skin and the ulna over most of its length., Thus the
construction of the forearm makes the ulna conducive to
noninvasive mechanical testing.

The bones of the thigh and leg, shovn in Figure 1.1b, are
the femur, patella (knee cap), tibia and fibula. The tibia, like
thz ulpa, is close to the outer surface and is also suitable for

noninvasive mechanical testing.
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C. CLINICAL APPLICATIONS OP STIFFNESS MEASURING TECHNIQUES

"Osteoporosis is the term nused to describe a group of
diseases of diverse etiology which are cbaracterized by a
reduction in the mass of pone per unit voluse to a level belov
that requireld for adequate mechanical support function."™ (Krane,
1977) . Osteoporosis results in a loss of bonme strength due ¢to
the loss of bone =material. Although osteoporosis is a very
common metabolic disorder, often associated vith other
disorders, the etiology in most cases is not knovn. Tvo of the
post comnon types of osteoporosis are disuse osteoporosis and
senile osteoporosis.

Disuse osteoporosis results from a lack of stress apélied
to a bone. The type and degree of stress applied to a bone
significantly affects the remodeling of bome. Remodeling of the
bope is the continuous lifelong process of the formation and
resorption of bone material. A lack of stress applied to the
bone can result in a decrease of bone smaterial (i.e., resorption
vill exceed formation). )

Disnée osteoporosis occurs 4ip paralytics and bedridden
patients with diseases pot related to the skeletal system. Many
studies have been done on the effects of immobility, some as olad
as thirty years, e.g., Deitrick, Whedon and Shorr (1948).

Bone mineral losses bhave also been found ¢to occur in

astropauts after an extended period of time in a veightless
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environment. The changes in calcium are clearest in the B84-day
Skylab =mission, see Wbedon et al. (1976). Orinary calciua
excretion was monitored and measuresents of bone mineral content
(BNC) were taken of several bones. Urinary calcium excretion
increased steadily during the first fev veeks in flight, and
leveled off at about double the value observed during the
preflight control period, vith pno suggestion of decline towvard
the end of the flight. A maximal loss of 7.9 per cent in BMC vas

observed in the os calcis while the radius and ulna did not

change measurably. Among the implications expressed by Whedon et
al. (1977) is the following:

Since mineral is lost differentially in greater total

ampounts fros trabecular areas of bone, one must

consider the possibility that in very 1long space
flights local area losses of =mineral of a degree
equivalent to osteoporosis, visible by ordinary X-ray
vould take place and that the strength of critical
bones would be erndangered.
Hence, during longer space flights suoch as a fligbt to Mars (1.5
to 3 years duration), significant changes are expected to occur
in the long bones such as the radius or ulma and particularly in
the veight bearing tibia.

Whedon et al. (1977) also points out that "urinary calciua
inflight increased steadily to a platean irp virtually the same
pattern and degree as previously seen in bedrest stodies.®
Hence, one would expect that results fros such studies are a
good ipdication of the effect of veightlessness. Ongoing
inpvestigations are being conducted to study this effect over

long periods of restraint (six months or more). See JYoung and

Tremor (1978).

Senile osteoporosis 4is an osteor rosis associated with

aging. Althongh the exact mechanisas which act to induce this




osteoporosis are gaot known, it is beliéved to be at least
partially caused by hormonal imbalances which occur with age,
particularly vith post-menopausal changes in voamen.

Other diseases such as rickets and osteosalacia also result
in a decrease in strength in bobne. These two disease. are

associated with a defective mineralization of bone material.

2. Bone Strength

Each of the bone diseases discussed above results in a
decrease in bone strength, tbe force reguired to fracture the
bone. Therefore, a measuring technique would be valuable.
Hovever, bone strength can not be measured directly except by
methods vhich entail destruction of the specimen. Therefore a
noninvasive acthod for inferring bone strength is needed. If
correlations can be found between stiffness and bone strength,
then the stiffness measureaents, sentioned in Section I.A, vill
be very useful. Once correlations Are established to the :oint
tkat bone strength can be accurately inferred then the stiffness
seasarements can be used to: (1) diagnose bone diseases, (2)
deternine the extent of the deterioration caused by the disease,
(3) prescribe treatment and (4) cantion patients to avoid

activities which will induce dangerous stress levels in their

bones.

4

3. Correlation Studies

Although bone diseases usually affect all of the bones in
the skeletal systea, long bones are more accessible for testing.
. ;bns most of the studies have been concerned with long bones.

Bather (1967a) (1967b) wvas among the first to correlate bone
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strength to other material and geonetric properties of the bone.
fe ran sicpple bending tests or fresh, excised, human long bones
and found strong correlations betveen bone strength and such
"measureable®™ gquantities as age, modulus of elasticity and bone
geoaetry.

Purther correlation studies have been perforsed to relate
bone strength to bending stiffness of 1long bones. Borders,
Petersen and Orme (1977) tested fifty-six excised, fresh, canine
long bones (ulnae, radii and tibiae) in three and four point
bending. Jurist and Foltz (1977) +tested forty-five excised,
enbalmed, huma) ulnae in three-point bending. In each case, the
force versus deflection was recorded vhile the bone wvas loaded
to fracture. Statistical correlations were found betwveen bone
strength and various mechanical properties of the bones.

These tvo independent investigations were parallel altuzugh
the specisens used in each wverec substantially difierent. Their
findings and conclusions support one another. 1In particular,
very strong correlations vere found b~%Zseen bone strength and
bending stiffness for the normal bobnes tested. BMC wvas also
measuored near the center of each bone tested. Both studies
indicate a sobstantial correlation betwveen BNC and both bone
strength and bending stiffness.

Thus, correlations have been well established betveen bone
strength and benling stiffpess <for bhealthy bDbones. Purther
correlation studies involving varicus kinds of diseased bones
are needed to establish the effect of these diseases. It is

reasonable to expect that good correlations can be found for

" diseased bones, since they exist for healthy bones. A reliable

sethod for measuring bending stiffoness would then be very useful

"
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as a non-invasive indicator of bone strength.

8. Practure Healing

Another potential use of stiffness peasurezents is the
determination of the extent of fracture healing. A fev recent
studies have already been dore ip this area. Among the first to
investigate the feasibility of such an application vere Caspbell
and Jurist (1971). They made impedance measurepents on an
excised, intact huzan feaur and further measuregents on the same
bone in various injurious conditions, concluding that methods of
this type are indeed feasible. Purther studies wcre carried out
by Barkey and Jurist (1974) and Hoeksema and Jurist (1977) in
vhich resonant frequency vas correlated to fracture healing.

Bourgis and Burany (1972) performed a theoretical study to show

* the effect of a partially healed section on the mechanical

response of a bone. Abendschein and Hyatt (1972) made ultrasonic
measurements to obtain the modulus of elasticity of bones in
guinea pigs at varicus stages in the healing process, thereby
demonstrating its variation vith bhealing.

In measuring bone properties for the purpose of sonitoring
the healing process of a fracture, it vould be advantageous to
knov what the hone properties vere before the fracture occurred.
This, of course, is not possible in a clinical setting. Hovever,
Borders, Petersen and Orne (1977) found, in the case of bhealthy
canine bones that paired bones (right and left bones of the rcaxe
type from one animal) bhave virtoally identical sechanical
properties. If this paired bone relationship holds true for the
busan skeleton as wvell, then measurements taken on a partially

healed bone can be compared to corresponling measuresents on its
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paired bone to detormine the extent of healing.

Still another potential wuse of jin vjvo stiffoecs
measurements is the skeletal status evaluation of cadavers.
Human cadavers are used gquite extensively for 4impact safety
studies. 1 noninvasive screening technigue would be very useful
ip determining the suitability of a cadaver to represent a
specific population in suach a test. Although this approach to
calaver evaluation is presently not " in wvidespread use, the

concept vas introduced and discussed in detail by Orne (1976).

D. OTH®RS HORK

—— o —— ———

It wvas shown in the last section that bone conditon is
related to the swmechanical properties of the bone. Bany
investigators have attezpted, vith varying degrees of success,
to wmeasure these properties 4in vivo. %40 major types of
approaches have been taken: ultrasonics and iepedance testiug.

Craven, Costinini, Greenfield and Stern (1973) investigated
the plausibility of wmeasuring the speed of sound in ulnae in
vivo nsin; a pulse-echo technigue. They shoved a significant
difference in their measirements for bones of tvo extreme groups

of subjects: young bealtby wsales and older (post-sencpausal)

fesales. Purther investigations using this method vere carried

out by Greenfield et al. (1975). They deduced the modulus of

elasticity froas the speed of sound, seasarements of geometry and

Ty
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bore mineral content.

Abendschein and Hyatt (1970) measured the longitudinal wvave
speed of standardized specimens of human femoral and tibial
diaphyseal cortices. In this preliminary in 1;£§9 study, they
found correlations betveen vave speed and a fév physical
properties including modulus of elasticity. Selle and Jurist
(1966) made similar measuremepts on vhole excised ulnae and on
ulnae in vivo. The in vivo tests were conducted on osteoporotic,
diabetic and normal subjects. Saha and Lakes (1977) investigated
the effect of the soft tissue on the measurement of wave speed
in long bones. They concluded that the presence of so0ft tissue
bas a significant effect on these measurements and therefofe
sust by considered.

In each of the ultrasonic methods discussed above,
geometrical measurements vere required to deduce the modulus of
elasticity of the bone being tested. These measurements can be
very difficult to obtain accurately inp vivo and may even be
irpossible in a clinical setting. A technique for wmeasuring
bending stiffness EI such as ispedance testing is a more
sensitive indicator of bone condition than measurements of
either the modulus of elasticity B, or geometric properties such
as I since both are usually affected by a bone disorder.
Furthermore, bending stiffness was shovn in the last section to

be vell correlated with bone strength.

2. lnpedance

A variety of experiasental procedures and apparatus have

‘been used to measure the mechanical impedance of excised long

bones and 4dntact lisbs. HBost of those who have attempted to
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model their system at all have used relatively simple nmodels
vhich do not account for all of the significant characteristics
of the impedance curves. Entrekin and Abrams (1976) measured the
mechanical impedance of the hunan foreara but did not attempt to
model it. Jurist (1970), Jurist and Kianian (1975) and Speigl
and Jurist (1975) measured the mechanical impedance of a similar
system but wused it only as a method of measuring the resonant
frequency which they.ghen related to the mechanical properties
of the nulna. Doherty, Bovill and Wilson (1974) made impedance-
like measurements on three excised tibia. They concluded that
"stiffness K, or dypamic mass N, are more sensitive to changes
io the physical state of the human long bone than is resonant
frequency P, due to the functional relationship of these
parameters", i.e., F is proportional to {K/E.

Garner and Blackketter (1975) used a finite element =model
to sieulate their impedance data from a buman forearm. This
procedure involves many X-rays of the forearm and very careful
measurement to detereine its geometry.

Thompson (1973) measured the driving-point mechanical
ippedance of a forearm near the middle of the ulna. He wmodeled
it with a fair amount of success as a simple simgle-degree-of-
freedom oscillator over a fregquency range froe 65 to 1000 Hz.
Thompson's procedure and apparatus vill be discussed further in
the next section. Orpe (1974) presented an improved model
consisting of & wviscoelastic beam in series wvwith a three-
parameter solid to represent the skin. Orne &>d Nandke (1975)
and Thoapson, Orne and Young (1976) improved tie model further
by including a fev different kinds of viscoelastic foundations

vith smass to represent the tissuve surrounding the ulna. This
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sodel has potential but zore examination and wmodification is
required before it can be used effectively for clinical

application.

- ———— - i ——— - D i ——— ———

1. Apparatos_and Procedare

A noninvasive method for measuring the . driving-point
sechanical impedance! of an in vivo human ulna wvas developed by
Thoapson (1973). The same procedure and apparatons has since been
modified and used on monkey ulnae and tibiae, (Peterson, 1977).

The forearm (or leg) is suspended across ¢two aluainum
supports as shown in Pigure 1.2. An aluminun block is placed
over the wrist (ankle) and secured by tvo screws. A downvard
force is applied through the humerus (femur) to hold the
proximal end of the ulna (tibia) in place.

Specially formed plaster pads were ®sade by Thompson for
each subject he tested. The plaster pads were formed to ilhe
subject's wrist anl elbov to maximize comfort while maintaining
rigidity of the supports. Pefersen substituted the plaster pads
vith a firm putty <(duct seal) to increase comfort of the
subject, but with questionable results.

A Wilcoxon Research Impedance Bead (model Z-11) mounted on

the vibrating shaft of a Ling Altec electro-sagnetic shaker is

t Dpriving-point mechanical impedance is precisely defined in
Section II.B. Briefly, it is the ratio of the amplitude of the
force to the amplitude of the velocity of the driving-point of a
systen.
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applied to the wulpa (tibia) through a cylindrical probe. The
shaker is mounted on one end of a lever with counter veights
applied to the opposite end. Various sized weights are used to
apply and control a constant preload force on the ulna (tibia).
Preloads ranging from 200 to 600 gram-force (196x103 to 589x103
dyne) are used.

N schepatic diagram of the impedance-measuring system is
shown in Pigure 1.3. A sinusoidal electrical input signal is
generated by an audio oscillator and fed through an audio
amplifier to the electro-magnetic shaker. The staker, which
vorks on the same principal as a loud speaker, converts the
electrical signal to a wmechanical vibration of the impedance
head and probe. The probe, vhen placed against a foreare (leg),
forces the ulna (tibia) to vibrate at the frequency at which the
aﬁdio oscillator is set.

The force ard acceleration signals froew the impedance head
are fed through operational amplifiers and high pass filters to
a Hewlett-Packard gain-phase meter (model 35651). The gain-pbase
meter displays the gain (in decibels) and the phase (in degrees)
of the force signal, in digital form, using the acceleration
signal as a reference. Traces of the force and acceleration
sigpals are also displayed on an oscilloscope.

The forcing frequency and the tvo readings from the gain-
phase meter are recorded by the operator at many different
frequencies over a épecified frequency range. Thompson made
measurements in the range from 65 to 1000 Hz. Later measurements

vere taken in the range froa 100 to 3000 Hz.
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2. Processing_the Rawv Data

The gain reading from the gain-phase meter is in units of
decibels. A gain measureaent in bels is defined as the coamon
logaritha of the ratio of the powver P, of the electrical signal

being measured, to the power P,, Of a reference signal.

Therefore in decibels, the ga;n is

G = 10 log P/P, (1.1)
Since for a given resistance, powver is proportional to the
square of the voltage

G = 10 log V2/Vg = 20 log V/V, (1.2)
vhere V 1is the voltage of the signal being measured and V, is
the voltage of the reference signal. The gain reading from the
gain-phase meter is the gain of the force signal relative to the

acceleration signal. Since the force and acceleration are each

proportional to their respective signals, the gain reading is
G = 20 log cP/coa = 20 1log F/a - 20 log c/cCo (1.3)
vhere ¢ and c, are the constants of proportionality and P and a
are the force and acceleration amplitudes, respectively. The
quantity, ~-20 log c/c,, is not knovn. Therefore the impedance-
measuring systea must be calibrated in order to convert tﬁe gain
reading to an impedance. |
A small calibration mass is attached to the iapedancé head
in place of the probe. A gain reading for the mass is taken at
100 Bz. ’This reading should be independent of frequency (at
least for relaéively lov frequencies) since P/a in this case is
the Bass m, & constant. Bguation (1.3) applied 'to the
_-—calibration mass is
G = 20 log & - 20 109 c/co (1.83)

vhere G, is the gain reading for the wmass. The result of




15
subtracting equation (1.4) from eguation (1.3) is
G - Gm = 20 log F/a - 20 log m (1.5)
Solve egquation {1.5) for P/a
Psa = o amtilog (G-G.)/20 (1.6)

Pgoation (1.6) is the ratio of the amplitude of force to the
amplitude of the acceleration. Iapedance, hovever, is the ratio
of the amplitude of the force to the amplitude of the velocity.
Since the input force (and hence the motion, if the syster |is
linear) is harmonic, the relationship between the velocity and
acceleration amplitudes is

a =vp (1.7)

vhere p is the forcing freguency. Therefore the impedance is

yA P/v = Bp antilog (G-G.) /20 (1.8)

A computer program was developed by Thompson to carry out
the above computations. The calibration mass and its gain
reading are entered into the computer folloved by each test
frequency and its corresponding gain-pbase readings. The gain
reading at each frequency is converted ¢to an impedance using
equation (1.8). The phase reading at each frequency is adjusted
by 900 to account for the difference betwveen the acceleration
and velocity, i.e., |

phase of impedance = phase of P/a ¢ 900

Pinally, the results are tabulated and plotted, e.g., see

rigures 1.4 and 1.5.
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P. THE PURPOSE _AND DIRECTION OF THIS NORK.

1. Interpretation of Impedance Measurements

The wmechanical impedance response of a given systea
contains information about the mechanical properties of that
systee. Hence, Thowpson's impedance measuring technique
described in the last section is potentially a very poverful
clinical tool for determining bone properties. Bowever, it alone
is not enough. Thompson's procedure produces an impedance plot
vbich must be interpreted to extract the mechanical properties
of the bone being tested. Tvo major concepts must be de;eloped:
) an appropriate mathematical msodel and (2) a systeams
identification technique.

A mathematical model which accounts for the predominant
characteristics of the systeam must be developed. Expressions for
the wechanical ispedance of the model =must be derived and
studied in detail to gain an understanding of its Dbebavior.
Several versions of the model must be considered to detersmine
the importance of each of its parameters.

A systeas identification tecbrique wmust be developed to
deterzine éhe values of the parameters in the mathematical model
for any given test. When the values are correct, the model will
generate an impedance plot which matches the ixpedance plot of
the system (i.e., the data from the test) over the frequency

range of the test. The technique must wuniguely detersine that

set of wvalues. Purthermore, it Bmust be systesatic enough to

e T
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program on a digital computer. A user oriented program will be
vritten to eliminate the need for a trained operator.

A set of jip yvitro impedance tests will be discussed and
analysed using the systess identification technigue. These tests
vill establish some verification of the modeling. .

The ultimate goal, of course, is to achieve a wvorking
scheme to determine bone properties. The scheme will bé applied

to sets of data from several impedance tests to shov bhowv it

vOorks.
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CHAPTER II

BATHEMATICAL NMODELS

—

A. THE NEED POR MATHEMATICAL MODELS

1. Construction and Application

Real physical systeas can be extremely complicated agd
difficult to study. It is therefore advantageous to make some
sieplifying assueptions about the system to be studied which are
approximately <correct, thereby constructing a wmodel which
represents the system. The model can then be studied to gain an
understanding of the systea. Useful relationships betveen parts
0f the system can be discovered as an outcore of the amodel
studies.

Jt is often of interest to make a specific measuresent on a
part of the systea being studied. Unfortunately, bovever, many
physical systeas, especially biological systems, cannot be

’

disassexbled to make that seasurement withont destroying the
syster. Therefore, if a reasonable smodel of the systes can pe
constructed with snfficient correlations established betveen it
and the system, then noninvasive measurements can be made on the

\ systew wvhich infer the measurement of interest through the

sodel.
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The accaracy of the assusptions made it constructing the
podel has significant effects on both the ontc;ne of the @wmodel
studies and the accuracy to wvhich a measurement can be inferred.
Therefore, these assumptions should be accurate to construct a
reasonable model.

The measurement of interest bere is the stiffness of a long
bone. The noninvasive nmeasurement being modeled is the
rechanical impedance vhich vill be defined rore precisely in the
next section. A mathematical model of the forearz and leg will
be derived, studied and applied to the =measuresent of boane

stiffness in the chapters that follow.

« INPEDANCE

1. Definition

In general, impedance is the ratio of input to output of a
linear systea. A linear systeam is one in which the output is in
the same proportion to the input, regardless of the amplitude éf
that input. Hence, ispedance is independent of amplitude. If the
input to a linear system is harmonic, then the output will also
be harmonic, possibly with some phase shift. Impedance then, is
the ratio of the amplitudes of the barmsonic input and barmonic
output an&, mathematically, amust be a complex guantity to
account for the phase shift. If the output is taken to be the
physical response of a specific point in the system then the

iepedance is s1id to be the impedance of that point.
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In a mechanical systea, tbe input is usually a force.2 The
corresponding output is the velocity of the point in the system
at vhich the impedance is being considered. If the point under
consideration is the point in the system at which the force is
being applied then the impedance is known as the driving-point
mechanical ispedance (DPMI).

Por a linear systeu, the DPNI {s 4independent of the

applitude of the input force.
2. Justification

The three types of idealized mechanical elements are: mass,
dagper and spring. The behavior of any lipmear mechanical systen
can be sinulated (over a saall enough frequency range) using one

or soae coanbination of these elements. Therefore, in order to

"clearly define the behavior of a system, the three basic

elements wpust be distinguishable on the response curve of that
system in wvhat ever fore it is presented. The response curve can
be presented in a nunber of ways. It can be presented as the
ratio of force to acceleration, velocity or displacement.
Furthermore, it can be plotted on either a linear or a 1log plot.

The egquation of motion for a force £, applied to each of
the Dbasic elements is given in Tabel 2.1. If the input force is
harmonic, then the response will be barmonic, and the folloving
relationships hold betveen the amplitudes of the acceleration a,
velocity v, and displacesent §

a = p2é v = pé (2.1)

2 In other types of mechbanical systees the input might be, for

example, a torque or a bhbydraulic pressure. The corresponding
oatputs in these cases are an angular velocity and a fluid flow
rate, respectively.
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vhere p is the forcing frequency. The ratios of the asplitudes
of the force to the acceleration, velocity and displaceament are
easily derivable from eguations (2.1) and the equation of motion
for each element. These ratios are also listed in Table 2.1.

Note that each of the ratios is proportional to an integer
pover of the forcing frequency p. Therefore, a log-log plot of
one of the ratios versus the forcing.fregnency is a straight
line. The slope of the straight line is equal to the pover of p.
Por example, tpe ratio of the force to acceleration for a spring
is

Psa = kp-2 (2.2)
Taking the log of eguation (2.2) yields
log P/a = -2 log p ¢ log k. (2.3)

Equation (2.3) is a straight line vith a slope of -2 on a plot

of log P/a versus log p, 4i.e., ¢the 1line makes an angle of

arctan (-2) = -63.40 vith the horizontal. In a similar sanper,
the slope of the straight line produced by plotting each of the
sther ratios is calculated and listed in in Table 2.1.

To maximize the distinguishability betveen the response of
the smass, dasper and spring, the response curve must be
pgesented in such a vay to maximize the difference in the slopes
of the response of each of the three basic elements. The slopes
in each case 1listed in Table 2.1 reveal that this can be
accoaplished by presenting tbe response curve in the fora of P/v

(ispedance) rather than P/a or P/é.




€. JIHE RELATIONSHIP BETWEEN THE MNATHEMATICAL MODEL _AND THE
PIYSICAL SYSTEM

). Background

l1n modeling a wmechanical system, the model used must, in
some sense, resenble the actwal physical systea. This
reseablance must be evident to give physical meaning to the
parameters of the model. The physical parameters associated with
the material characteristics, as wvell as those associated with
the geonetrical characteristics, =must be accounted for in as
such detail as the investigator is willing to deal with. It |{is
often appropriate to start with a model which accounts for the
sost obvious physical paraseters to gain an onderstanding of the
system, and then to progress to other models which account for
some of the finer details of the physical systea.

Bodeling of the foreares systea associated with the
impedance-measuring procedure developed by Thompson (1973)

(dliscussed in Section I.E) vas first attezpted by Orne (1974).
Orne modeled the ulna as a aganifors, linear, visco-elastic,
sieply-supported, Puler-Bernoulli beam. The skin which is
conpressed'betveen the ulna and the probe wvas represented by a
tri-paraseter so0lid 4ipn series with the beam. The harmonically
varying load applied by the probe is represented by a
concentrated force applied to the bear through the tri-
paraseter solid as shovn ip Pigure 2.1. Orne and Handke (1975)

iaproved this soldel by including a one-degree-of-freedoas asass

i
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vith elastic and viscous resistance, uniformsly distributed along
the beai to represent the tissuve surrounding the wulna. Tiis
refinement produced the capability of the smodel to account for
the sub-resonances that are evident in the othervise samoott
ispedance curves. A further refipemeat vas lade'by Thompson,
Orne.and Young (1976) in which the one-degree-of-freedoa tissue
mode]l wvas replaced by a continuous tissue model. Additional
refinements involving the boupdary conditions of the beanm will
be presented here. These models vill also be applied, vith some

molification, to the leg systea as vell.

2. The Bone

Several assunptions have been made in modeling the bone as
a unifora, linear, visco-elastic, simple-supported, Euler-
Bernoulli beam. Pirst of all, a unifore Buler-Bernoulli beam |is
a Dbean vhich is based on the folloving tvo assumptions: (1) the
cross section of the beam does not change along its length, and
(2) the beam is slender enough that shear deformation is small
conpared to beniing deforsation. The first assumption |is
obviously mnot truoe of bones and vill be investigated in detail

in Cbapter IV. The second assuaption wa- shown to be true by

Piziali, Wright and Nagel (1976). The bear is also assumed to be
linear. This assupption was verified by Thompson vhen he shoved
that the DPMI is independent of amplitude of the driving force
provided that asplitude is ssall. Pipally the beas is assused to
be wisco-elastic. This is a reasonable assuaption since the
structure of bone material, on the asmicroscopic 1level, is a

gluid-filled patriz.
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3. The Supports

Orne (1974) reasons that the supports at the ends of the
ulna are such that t.: resisting acment is negligible and the
transverse rigidity 4is =such greater than that of the bone,
tnerefore the bome is siamply-supported. However, other aspects
of the conditions at the supports have not been considered. The
transverse tigidity.of the supports wvhen the plaster pads are
repl. 24 Sy putty is gquestionable. A possible misalignment
betvecd thé dovnvard force applied through the humerus vitﬁ the
support point of the elbov can conceivably cause an effective
resistance to rotation at the support.

Several different classical and non-clasical bean bohndary
conditions are proposed as possibilities for representing the
aotion of the bone at the Joints. These include various
combinations of translational and rotatiomal springs at the
supports. One special casc is considered in wvhich the beam is
extended past the support to a translational spring to represent

the possible misalignment of the humerus over the support.

4. The Skin _and Tissue

It is advantageoas at this point to propose tvwo
definitions. The skin and the thin layer of tissue which are
compressed between the bone and the probe vill be referred to as
the §5;g: All of the musculature, skin and other tissue
surrounding the bone wvill be refered to as the tissue. The lack
of consistency of these definitions im the literature can be a

-source of nisin}erpretation. Therefore, the proposed definitions

vill be' used here to insure clarity.

The tissue model is presented by Thompson, Orne and 7Young

il AR e i dedibecieadi oy s e o R e g o
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(1976) as "an infinite series of one-dimensional visco-elastic
rods attached to and vibrating with the ulna and rigidly
attached to and restrained against sotion at their opposite ends
by the radius.® This model is conceptually identical to the
classical problem «f a beam on anpn elastic foundation. The
difference is that the «classical founéation includes only a
stiffness elenent,»vheteas the tissue model includes stiffness,
damping and mass elerents. The tissue wmodel will often be
referred to as a visco-elastic foundation with mass, or simply
as the "foundation." The shear coupling between adjacent fibers
of the foundation is ﬁeglected. The fixed-end boundary coadition
is replaced by a free-end boundary condition wben modeling the
tibia.

The skin is represented in Orne's model by a tri-parameter
solid, as shown in FPigure 2.1. This may seem like a reasonable
representation since omne vwvould expect the skin to exhibit
damping as well as stiffness character?stics. Hovever, a typical
set of impedance data from a piece of skin shown in Figure 2.2
indicates springlike behavior over the entire frequency range.
(Recall from Section II1.B that the DPNI of a spring is a
straight 1line with a -45 degree slope.) Therefore the skin will

be represented here by a simple spring, as shown in FPigure 2.3.
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D. THE BEHAVIOR OF THE MATHEMATICAL MODEL-

1. Inpedance Eguations and Parametric Study

The mathematical model described in the last section is to
be studied to gain an understanding of the system. In order to
conduct this study, equations for the DPMI of the =noudel nmust
derived. These equations will contain, as one of their
parameters, the gquantity to be measured, i.e., the bending
stiffness ;f the bone. The equations will be nondimensionalized

to reduce the number of independent parameters and then plotted.

The nondimensionalized plots will facilitate the study of the

mathematical model.

These plots can be Qsed to study the model in a number of
vays. They vill be used to determine the effects that each of
the model parameters have on the plots. Further use of the plots
will be wmore prodoctive if the effects of each parameter are
known. o

Quantitatively, they will  Dbe used in generating
approximate, semi-empirical relationships between the parameters
of the nmathematical model and the characteristics of the DPAMI
plot of tﬁ?t nodel.»Relationships of this type vill be useful -in
obtaining approxisations for the valves of the paraleteré of the
systen directly from its DPNI plot. 4

Qualitatively, the plots will be used to aid in determining
vhich parameters to icclude in the model of the system. This is

accomplished by =comparing the DPHI plot of the system to the
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sodel plots to distipgquish between the parameters which are
essential ¢to obtain an appropriately shaped DPMI plot and those

wvhich are not.

The DPMI equationt and their plots will be the subjects of

the next two chapters.
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CHAPTER III

IMPEDANCE EQUATIONS

TEEF GENERAL METHOD FOR DERIVING IMPEDANCE EQUATIONS

fom

1; Background

Driving-point mechanical iampedance (DPMI) is the mechanical
impedance of the point in the system at which the driving force
is beirg applied. To derive the DPMI of a nmathematical wmodel,
one must solve the eguations of motion, evaluate the steady-
state solution for the velocity at the driving-point and take
the ratio of the force to the velocity. The method for deriving
the DPMI of the mathematical model described in Section II.C 1is
presented in this section.

orne (1974) and Orne and Mandke (1975) have derived the
DPEI of a sisply-supported beam on a one-degree-of-freedons
visco-elastic-foundation-vith-mass. The analysis presented here
is wmore general in that the boundary conditibns are not
restricted to simply-supported. Six different sets of boundary
conditions are considered; the simply-supported case and five
nonclassical cases. A diagraam of each case is shovn in Pigure

3.1. The visco-elastic-foundation-with-mass is continuous and

tvo types of boundary conditions on the foundation are allowed.
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2. The Derivation

A convenient way to definme a coordinate systes on the beanr
is shovn in Pigure 3.2. ¥, (x,t) and y,(z,t) are the deflection
functions defined for 0<x<a and 0<z<b, respectively, shown
positive ig the figure, where the concentrated force is applied
at x = a (z = b). The eguations of motion are

EI 3¢y, /Ox¢ + NI dsy, /0x43t + p O2y /dt2 = p, (x,t), 0<x<a
(3. 1)
BI 04y, /0z% ¢+ N1 2Sy, /0240t ¢+ p d2y,/0t2 = p, (2,t), 0<z<D
vhere
E is the modulus of elasticity of the beam material
I is the area moment of ipertia of the cross section
N is the danping coefficient of the bean material
p is the mass per unit length of the bean
PP, are the force per unit length of the bean due to the
reaction of the foundation. These equations are based on the
visco~-elastic uni~-axial stress-strain lav, i.e., o= Egc ¢ né. To
determine the DPMI, the steady state solutions to equations
(3.1) are reguired. These solutions are of the fors
y, (x,t) = Y, (x) exp ipt
(3.2)
¥: (z,t) = Y, (z) exp ipt
(i.e., every point in the systea is vibrating at the saze
frequency) wvhere p is the forcing freguency and Y, (x) and Y, (2z)
are compléx aanplitudes of the beam vibration. Upon' substitution
of eguations (3.2) into eguations (3.1), the folloving ordinary
differential eguations are obtained
2*I 44y, 74x¢ - pp?Y, = P, (x), 0<x<a
~ © peI aeY,/dz¢ - pprY, = P, (z), 0<z<b (3:3)

where

e Ll ek .
iy o e N . N




30
E« = E(1 ¢ Nip/B) = E(1 + 2iXp/w)
p, (x,t}) = P, (x) exp ipt
P.(z,t) = P, (z) exp ipt (3.8j
w = (r/L)2 {EI/p
5 = wl/2E

In the cases vhere the toundation is not included,

P, (x) = P,(z) = 0. In cases vhere the foundation is included

P, (x) = p?p?Y, (x)
P, (z) = p¥p2Y,(2)

vhere p¥* is the complex, fregquency-dependent guantity obtained

(3. 5)

by solving the foundation vave eguation

E; 02u/0%2 + Y d3u/dL2dt - P: 02u/dt2 = 0 (3.6)
vith the appropriate boundary conditions, as indicated in Pigure
3.3, vhere

B, is the modulus of elasticity of the foundation material

N; is the daaping coefficient of the foundation material
p; is the density of the foundation material
u(f,t) is the displacenment function of the foundation
and the shear stresses in the foundation are neglected. For the

fixed foundation g

p: = -p; cotY / ¥ (3.7) 3
for the free foundation |

p? = p; tan¥/2 / ¥/2 (3.8)
vhere . |

Y = priwr /41 ¢ 241, p/ws
p; is the mass per unit length of the foundation

w; is the fundaaental frequency of the foundation

¥¢ is the damping ratio of the foundation.

The result of substituting equation (3.5) into eguation (3.3) is




B*I deY,/dx% - psp2Y, = 0

(3.9)
E*I deY,/dz% - p*p2Y, = 0
vhere p* = p ¢+ p% . The solutions to these egquations are
Y,(x) = A, sinAx ¢+ B, cosix + C, sinh2x + D, coshax
(3.10)

Y, (z) = A, siniz ¢+ B, cosiz ¢ C, sinhaz + D, coshiz
vhere A¢ = p*p2/E*]
and A,, B,, C,, D, 4,, B,, C, and D, are eight unknovn
constants vhich depend on the bouaxdary and matching conditions.
The cAeflection, slope, bending moment and shear force functions
are found by using equations (3.2), (3.10) and the following
0y, /0z

B, (x,t) = E*I d2y,/dx2 H,(z,t) = E*I 02y,/0z2 (3.11)

6,(x,t) = 0y, /0x 0.(z,t)

V, (x,t) = E$I d3y,/0x3 V¥, (z,t) = E*I 33y, /023
These functions are evaluated at the point of load application
(x =a and 2z = b) and substituted into the folloving matching
conditions

Y. (a,t) ¢ y,(b,t) =0 M, (a,t) ¢ ¥,(b,t) =0 (3.12)

0, (a,t) - 6, (b,t) =0 vV,(a,t) - V,(b,t) = F exp ipt
These are four of the eight eguations required to solve for the
eight unknown constants in eguations (3.10). The reamaining four
egquations are obtained by evaluating the appropriate functions
at x=0 or 2z =0 ard substituting thes into the boundary
conditions listed for each case in Table 3.1.

Por the case vhere the beam is extended a distance e, past
the left support, a third deflection function with an additional
four constants is required on the interval -e<x<0. To determine
the tvelve constants for this case, an additional four equations

are required. They are obtained fror the folloving matching

condiyions at x = 0
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Y. (0,t) =0 6,(0,t) - €,(0,t) =0
(3.13)
y3 (0O,t) = 0 ¥, (0,t) - B4(0,¢t) =0
The deflection anmplitude §, at the point wvhere the load is
applied is determined by evaluating Y,(x) at x = a or Y, (z) at
zZ = )b in equation (3.10). The DPMI of the beam is obtained from
z% = B/ips (3. 14)
Por the case vhere a transverse translational spring is in
series with the beam, the DPNI of the system is given by
2¢ = (Z3-1 ¢+ ip/k)=1 (3. 15)
Por the case vhere the spring is not included in the =model,
z% = 7%,
The DPM¥I associated with each set of boundary conditions in

Table 3.1 is listed in Appendix A. In each case, the diagrams of

Pigure 3.1, the boundary conditions of Table 3.1 and the

"equations of Appendix A are each numbered correspondingly. One

sarple DPMI derivation (case 2) is presented in the following
section to show hov the DPMI eguations of Appendix A have been

derived from the general method presented in this section.

B. A

1]

PECIFIC EXAMPLE

————

1. Rotational Spring _on One End

Case 2 vwas chosen as an example to demonstrate the method
used in deriving the DPM¥I. The suppo;t at x =0 is perfectly
rigid wvith respect to translation vhile the resisting aoment is
proportional to the rotation at that support. The support at
z =0 is a sisple support, i.e., per.ectly rigid wvith respect to

translation and no resistance to rotation. These conditions are
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listed in mathematical fora in Table 3.1.

The general solutions to the .bean eguations (3.1) vere
found in the 1last section to be given by eguations (3.2) and
(3.10), i.e.,

Y, (x,t) = [, sin2x ¢ B, cosix ¢+ C, sinhix ¢ D, coshax) exp ipt
‘(3. 16)
Y, (z,t) = (3, sinaz ¢ B, cosAz ¢ C, sinhiz ¢ D, coshiz] exp ipt
The slope, bending smoment and shear force functions are obtained
fror the deflection functions (3.16) using equations (3.11).
These functions are substituted into matching conditions (3.12)
to obtain the folloving four eguations
A, sinZa ¢ B, cos?a ¢ C, sinhda ¢ D, cosh2a (3. 17)
¢+ 1, sin%b ¢ B, cosAb ¢+ C, sinhib ¢ D, coshib = 0
A, cosia - B, sinl1a ¢ C, coshia ¢+ D, sinhla (3. 18)

- A, cos)ib v B, sinib - C, cosh2b -~ D; siphdd = 0

-A, sip)a ~ B, cos’a + C, sinh%a ¢ D, cosh2aa (3.19)
- A, sinib - B, coslb ¢ C, sinhab ¢ D, coshib = 0
~A, cosla ¢+ B, sinia ¢ C, coshlia ¢ D, sinhia (3.20)

¢ A, cosib - B, sinid - C, coshib - D, sinhi1db
= P / Es1IA3

These equations each contain all eight of the unknown constants.
With several algebraic steps, four nev eguations can be
generated from these four eguations. Pach pev eguation contains
only three of the unknown constants. Add and subtract eqguations
(3.17) and (3.19). Add and subtract equations (3.18) and (3.20).
Divide each of the four results by tvo to obtain respectively

C, sinhla ¢+ D, coshia ¢ C, sinbkidb ¢ D, coshab = 0 (3. 21)

- A, sinia ¢ B, cosia ¢ A, sinlb ¢+ B, cosidb = 0 (3. 22)
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C, coshla + D, sinhlda = C, coshib - D, sinhad
= P / 2B*IA3 (3.23)
A, cosla - B, sin%a - A; cosib ¢ B, sinad
= -F / 2EB*IA3 (3. 28)

Boltiply egquation (3.21) by sinhlb, multiply equation (3.23) by
coshib and add the tvo results

C, {sinhia sinh2b ¢ coshia coshib)

+ D, (coshia sinhib ¢ sinhia EOShﬁb) (3.25)
¢ C, (sinh22b - cosh2ab) = P coshid / 2E*IA?¥

Recall the folloving hyperbolic identities

coshZB - sinh2B = 1

cosh A cosh B ¢+ sinbh A sinh B = cosh(A+B)

cosh A sinh B ¢ sinh A cosh B = sinh(A+B)
¥oting that a ¢+ b = L, equation (3.25) reduces to

C, coshALl + D, sinh3l - C, = P coshib / 2E*IA3 (3. 26)
In a similar smanner, wsultiply eguation (3.21) by sinhia,
multiply equation (3.23) by coshia and subtract the second
result from the first. Then again using the byperbolic
identitieé given above, the result reduces to

=C, ¢ C; coshal ¢ D, sinhlL = ~F coshia / 2E*IA3 (3.27)
Bultiply eguation (3.22) by sinib, multiply equation (3.24) by
cosib and subtract the second result froa the first

A, (sinia sinib - cosia cosibd)

+ DB, (cosia sipib + sinia cosibd) ' (3.28)
¢ A, (sin21b ¢ cos?ib) = P cosidb / 2p*1a3

Becall the folloving trigonometric identities

cos®B ¢+ sin?p = 1

cos A cos B - sin A sin B = cos (A+B)

cos A sin B ¢ sin A cos B = sin (A¢B)

T N gy e W R e R P L. SR e T e



ha i

35

Again noting that a ¢+ b = L, equation (3.28) reduces to
-A, cosilL 4+ B, sinil ¢ A, = F cosib / 2E*I )3 (3.29)
In a similar manner, ®multiply eguation (3.22) by sinia, multiply
eguation (3.24) by cosia and add the tvo results. Then again
using the trigonometric identities given above, the result

reduces to

A, - A; cosiAl ¢ B; sinil = =P cosla / 2P*1213 (3. 30)
Bquations (3.26), (3.27), (3.29) and (3.30), vhich contain only
three of the wunknown ~constants each, apply°to any beam since
they have been generated without use of the boundary conditions.
Substitute the deflection, slope and bending moment
functions 4into the boundary conditions listed in Table 3.1 for

case 2 to produce the folloving four eguationms

B, +D, =0 (3.31)
-B, ¢+ D, =k, (A ¢ C,) / B*I) (3.32)
B, + D, =0 (3.33)
-B, ¢+ D, =0 (3. 338)

The eguations above are easily solved for B,, D,, B, and D, in

teras of A, and C,. The results are

B, = =X, (A, ¢ C,) / 2E*IA (3. 35)
D, = k, (A, ¢ C,) / 2E+I2a (3. 36)
B, =0 (3.37)
D, =0 (3. 38)

Substitute eguations (3.35), (3.36), (3.37) and (3.38) into
equations (3.26), (3.27), (3.29) and (3.30) and combine the
teras vhich bhave the same unkpovn constant
C, (coshil ¢ k, sinhAl / 2E%I}) (3.39)
¢-2, k, sinhil / 22%I1 - C, = P coshib / 2E*I )3

C, = C, coshil ¢ ¥ coshia / 2E*Ii3 (3.80)
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=k, (cosAL + k, sinil / 2B#*IA) (3.41)
~C, X, Sinil / 2B*I2 + A, = P cosAb / 2E$I13

A, = A, cosil - P cosia / 2B*IA? (3.82)

Substitute equations (3.40) and (3.842) into equations (3.39) and
(3.41) and again combine terms which bhave the same unknovn
constant and transfer all known teras to the right hand side of
the eguations

A, k, /2B#I2 cosAL sinhial

¢+ C, (cosh2il ¢ k,/2E*I1 sinhil coshil - 1)
= P/2E*IA3 [coshib - coshia coshAl (3.83)
- k,/2BE*I} sinhdl (coshia = cosia) ]
=k, (cos2AL ¢ Kk, /2E*12 sinAlL cosil - 1)
- C, k,/2B*%I1 coshil sinil
= FP/2P*123 (cosAb - cosia cosil (3.44)
- k,/2E¢]12 sin1l (cosAa =coshia) )

The 1last tvo sets of substitutions have been carried out in
such a wvay to reduce the set of eight equations and eight
unknovns to a set of tvo ejonations and tvo unknowns.

Again, recall hyperbolic and trigonometric identities, but
this time in a slightly different fors, i.e.,

cosh2 (A+B) -1 = gsinh2 (A+B)

cos2(A¢B) -1 = =-5in2 (A¢+B)

cosh B ~cosh(A+B) cosh A = -siph(A+¢B) sinh A

cos B.-cos(A¢B) cos A = sin (A+B) sin A
Apply these identities to egquations (3.483) and (3.84) with

a ¢+ b= 1 to obtain
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A, k, /2B*I2 cosil sinbilL
¢ C,(sivh22L ¢ k,/2E*I2 sinhal coshil)
= P/2E*123 [-sinhla sinhial (3.485)
- k;, /72B*11 sinhAl (coshia - cosia) )
A, (sin22L - k,/2E*Ia siniL cosil)
- C; k,/2B*12 coshAl sinil
= P/2B*I2? [sinja sinil (3.46)
- k,/2B%I) sinil (cosia =-coshia) ]
Put equations (3.45) and (3.46) into matrix fors
(A) (C) = (B) | (3.47)
vhere
r 1
k, /2E*IA sinh2aL
cosil sinhil +k, /2R*]2
sinh4aLl coshil
[A) =
sin2alL -k, /2E*1A
-k, /2E%1IA coshil sinil
LsinAL cosAlL
A;
{(cy = and
C.
[ . . 1
-sinhia sinhil
"X,/ZE‘IQ
J(cosbAa - cosAa)
(B} = P/2EsI)3 d
sinia sinil
-kl /22‘1;\
(cosia - coshaa)J

Eatrix eguation (3.87) can ©Dpov be solved for A, and C, using
Crasers rule. The determinant of matrix [A]) is
D = -X, /27*1A cosil sinhAl
X, /2E¢1A coshal sinAl (3.48)
- (sinh?lL ¢ k, /72B*X) sinbil coshal)

(sin2il - k, /2P*I1 EiniAl cosAl)
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Bultiply out equation (3.48) and coabine 1like terms. The
determinant ther reduces to |
D = sinhAl sinal (k, /2B*IA (3-49)
(sinhlL cosAl = sinil coshil) = sinhil sinil)
The solution to matrix equatioa (3.47), with the determinant D

of matrix [A] defined by eguation (3.49), is

A, = FP/2E*I43D
{~k, /2B%I2 coshAL sirnil (3.50)
[{-sinb4%a sinhil - k, /2B*I2 sinhil (coshia - cosia) ]
- (sinh2AL + k,/2E*1A sinhiLl coshAl)
| [sinla sinAl - k,/2E*I1 sipAl (cosia = coshia) ]}
| C, = P/2E*IA3D
{k,/2E*I2 cosal sinkAL (3.51)

[sinia sinAl - k,/2E*I1 sipnil (cosia = coshia) ]
- (sin2AL - k,/2E*I) sinlil cosil)

[-sinhia sinhiAl - k, /2E*I1 sichAl (coshia - cosia) ]}
The constants 4,, B,, C, and D, are nowv known from eguations
) (3.50}, (3.37}), (3.51) and (3.38), respectively. The deflection
amplitude §, car be calculated froa either -Y, (x=a) or Y, (z=b).
Therefore if Y, is used then the constatts A,, B,, C, and D, are
not needed to calculate §. (The calculation of § using Y, has

been made as a means of checking the following calculations but

it is not presented bhere.)
Substitute w2guations (3.50), (3.37), (3.51) and ({3.38) into

the second of egquations (3.10) and evaluate the result at z = b
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§= P/2E*IA3D
{-k, /72B*12 sin2b coshAl sinAl
[-sinb1a sinhAL - k, /2B*I2 sinhAl (coshia - cosia) ]
-sin2Ab (sinh2AL ¢ Kk, /2BE*I2 sinhil cosh?l)
[sinia sinL - k, /2B*I2 sinil (cosia - coshia) ]
+ k, /2E*IX sinhib cosAL sinhAlL (3.52)
[sinaa sinil - k,/ZE#Iﬁ sinAl (cosia - coshia) ]
~sinhAb (sin24L - k, /72E*I7% sinAl cosAl)
(-sinhia sinhiAL - k, /2E*I2 sinhiLl (coshia - cosila) ]}
After several steps of algebra, equation (3.52) reduces to
& = F/2E*IN3D sinhAL_sinAL
{({ sinhia + k,/2E*IA (coshia - cosAa)j
{sinhAb sinAL - k, /2E*I4
(sinh)b cosAL - sinib cosb?L)] {3.53)
- [sin?a ¢ k, /72E*I1 (coshla - cosia) ]
[ sinib siphAL = k, /2E#*I2
{sinhi1b cosAl - sinib coshil) ]}
Define the folloving three constants
a = k, /2E*I) (coshla - cosia)
B = k,/2B%IA (sipAb coshAl - sinhdb cosil) (3.54)
Y = k, /2B*IA (sinAL cosbhil = sinbAL cosil)

Substitute the expression for the determinant D, fron eguation
(3.89) into eguation (3.53) and replace the appropriate teres
vith «, g and Y according to eguatioms (3.54) )
6§ = P/2E*IN3
[~ (sichia ¢ a) (sinbib sinAl ¢+ g) (3.55)
¢+ (sinbkla ¢ «) (sin2b sinhil + f) ]
/(sinhAL sinil ¢ Y)

Pinally, substitute eguation (3.55) into egquation {3.14) to

R
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obtain the expression for the DPAI
2% = 2E*IA3/ip
{{~(sinb2a ¢ a) (sinhlb sinAL ¢+ §) (3. 56)

+ (sinla + &) (sin2b sinhAl ¢ g) )
/(sinh2Ll sinil ¢ Y)}-1
Equations (3.54) and (3.56) are the expressions given in

Appendix A for case 2.

C. BON-DINZNSIONALIZATI.!{ _OF IMPEDANCE BQUATIONS

o
0

1. Non-dimensionalization

The =nost effective way of studying the role of each
parareter in a mathepatical model is to first npondi=ensionalize
the eguations .associated vith-tbat sodel, and then perfora the
parametric study. The set of variables and paraseters are
grouped together in a natural wvay to fora a set of
nondiwensional variables and parameters, thereby reducing the
nurber of parameters to be studied.

One very natural and convenient véy to vondisensionalize
the DPAI of a beans is to fora the ratio ZuyK, where 2 is' the
magnituade of the DPMI, w is the fundamental frequency of a
unifora simply-supported beam of the same length and K- is the
static stiffness |

K = §8EI/L3 {3.57)
of that same simply-supported beam vhern centrally loaded. The
nondimensionalized DPEI vill be plotted versus the
nondimensional frequency ratio p/w vhere p 4is the forcing

frequency. The nondirensional paraseters are listed in Table 3.2
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vith their definitionms.

The general form of the DPMI eguation is given in Appendix
A as

2% = 2BIA3 (1 + 2iYp/) / ipf(AL) (3.58)
vhere E* bhas been replaced by E(1 ¢+ 2ifp/w) according to
eguation (3.4), and £(AL) is a function of AL involving
trigonometric and hyperbolic functions and nondimensional spring
constants. Prom eguations (3.7), (3.8) and (3.10), AL can be

wvritten as

AL = [(p + pp9(¥))p2 / BI(1 ¢ 2iTp/w) J¥4 L (3.59)
vhere
-1/¢y cot¥Y for a fixed foundation
gly) = 2/% tan Y/2 for a free foundation
0 for no foundation

and

Vo= wprwy 7 {14 2i%; p/wy
A fev steps of algebra will produce the followving equivalent
expressions in teres of the nondigensional parameters

AL = w {p/w (1 ¢ 2igp/w) - (1 ¢ Hg(Y))Ie

Y =7 p/w B (1 ¢ 2i%;Bp/w)-V2

(3.60)

Multiply egunation (3.58) by «w and divide by eguation (3.57).
After sone simplification, the result reduces to
Zw/K = =n3i/24 {p/w (1 ¢ 2iLp/w) Ve
’ (1 + Bg(y))¥® £-1(aL) ‘ (3.61)
If the spring in series with the beam dis included, then

eultiplyiny the iapedance egquation by /K will simply change the

additional tere frox ip/k to i(p/w)/(k/K).

If the boundary conditions of the bean are nonclassical,

then teras involving spring constants will appear in the

;
;
3.



42

function f(Al). The teras that appear are

2k/E*113 and k/2E*1I)
for translational and rotational springs, respectively (see
Appendix A) - In terms of the nondimensional parameters, these
teras reduce to

2k/E*1A3 = T / (AL)3(1 ¢ 2i¥p/w)

(3.62)

K/2E*I% = R / (AL) (1 + 2iYp/wv)

Por case 6 (see Appendix A) the lengthlof the extended part
of the beam e, also appears in the function f(Al). However,
everyvhere e appears in the function, 1L also appears. Therefore
the ratio e/L is taken as the nondimensional parameter €&.

It is also possible to include damping in the nonclassical
supports. This is done by adding an imaginary, freguency-
dependent ters to the appropriate spring constant. Thus k would
be replaced by k ¢ ipc. In teras of pondimersional parameters, T
or R vould be replaced by

T(1 ¢+ iCyp/w) or R(1 ¢ iCyap/w)
respectively, vhere the nev nondimensional parameter is
Cr = Ccrw/k or Ca = Cqw/k

In the next chapter, the nondisensionalized DPNI eguations

are plotted for several values of the nondimensional parameters.

The plots will be studied and many relationships betveen the

parameters vill be deterained.

et il i sttt el i A L N
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CHAPTER IV

PARAMETRIC STODY

A. THP? BASIC SIMPLY-SUPPORTED BEAN

1. Tke Bean

The bone of a vibrating foreara or 1leg systen is
represented by a visco-elastic beam. Ideally, this bear is
assumed to be simply-supported. This is an incorrect assuzmption
for wmany driving-point mechanical impedance (DPNI) tests and
experiments. However, the simply-supported bean vill be
investigated here first and the effect of changing the boundary
conditions will be deferred to the next section.

Pigure 4.1 is the DPEI plot of such a beam with the driving
force applied at its center. The curves vere generated, alloving
the beam damping to take on five different values. The
parametric values used to generate this and all other
nondimensional plots presented in this chapter, are 1listed in
Table 8.1.

COnbéring rigure &.1 to a typical DPEI data plnt shown in
Pigure 1.5, it can be seen that the beam alone does not produce
all of the characteristics pneccessary to model a vibrating

forears or leg system. Other elements must be added to the beas
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to prodnée these characteristics. HBovever, it is beneficial to
study and understand the beam itself before adding on these
other elements.

At low frequencies, the curves in Pigure 8.1 are
predoainately springlike (i.e., the slope of the curve is
virtually negative one) vwith a stiffness equal to the static %
stiffness of the beam. Thus the magnitude of the DPMI in this
region can be approximated by

Ziow = K/Piow (a.1)
vhere (Powrl.w) 1S any point on the curve in the lov frequency
range and K, in this case, is

K = 48PI/L3 (4.2)

The minimum points of the curves appear to occur right at
the fundamental frequency of the beasr for all values of the bcaa

" damping. The magnitude of the DPMI at that freguency, however,
does depend on the bear daaping. To aid in determing the nature
of that dependence, the concept of an equivalent single-degree-

of-freedor oscillator is introduced.

2. The Bquivalent Single-Degree-of-Freedor Oscillator

A single-degree-of-freedom oscillator (SDOPO) is a w=model
vhich consists of a mass connected to the "ground" by a linear
spring and a lipear viscous danper as shown in Pigure 4.2. 1Its
DPNI ploi, shovn 4in Pigure 4.3, vas generated, alloving the
da;ping to take on five different salu=s.

Note that Pigures 4.1 and %.3 are identical for fregquencies
almost an crder of magnitude above their fundamental frequency.
Define an "eguivalent®™ SDOPO of a beam as the SDOPO whose static

stiffness K, fundamental freguency w, and damping ratio %, are

I N T By W 1Y ST ULar "DY VSyruryanry o _
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equal to those of the beam. Then it can be said that a
centrally-loaded simply-supported beanm behaves in <the same
manner (i.e., has the same magnitude and phase angle of its
DPAI) as its equivalent SDOFO up to freguencies almost an order
of magnitude above their fundamental fregquency.

The concept of an eqguivalent SDOFO is the key to deriving
some of the relationships betwcen the parameters of the bean and
the characteristics of its DPHI’plot. The relative simplicity of
the DPMI eguation of a SDOFO facilitates the derivations. A
relationship derived between the parameters of the SDOFO and the
characteristics of its DPAI plot wvill be a good approximaticn
for any beam that behaves in a similar manner to its eguivalent
SDOFO in the appropriate frequency range. The relationship wmust
(:) be expressed in tersms of K, w and ¥ and these parasmeters must be

interpreted properly. One suchk relationship is the dependance of
the wminimum point of the DPMI plot on the beam damping. Its
derivation follovs.
The DPBI of a SDOFO is
Z¢« = ¢ + i(ap - K/p) (4. 3)
In teras of K, w and ¥ the DPPAI is
Z* = K/w [ 27 ¢ i(p/w = w/p) ] (4.4)

The magpitude of the DPAI is

Z = K/w {U3Z ¢ (p/w - w/p)Z o (8.9
To find the frequency at which the DPMI is wminimum, take the
defivative vith respect to the forcing frequeucy p. and set it
equal to zero
O . a2/dp = K/w? (p/w = w/p) (1 ¢ w2/p2) /
{832 ¢+ (p/w - w/p)Z =0 (4.6)

The only real positive solution equation (4.6) is

et i ol st e L P e
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C\ leH * w (“‘7)
g i.e., the minimun point of the curve does in fact occur at the

fundamental freguency regardless of the amount of dapping
present. The magnitude of the DPMI at that frequency, according
to equation (4.5), is
Zuy = 25K/w (4.8)
Bquations (4.7) apd (4.8) hold truve for a centrally-loaded
siezply-supported beam with K interpreted according to equation
(4.2).
More traditional freguency response curves are given in
terms of a ratio of deflection §, to static deflection FP/K,

rather than force to velocity, i.e.,

§K/F = 1 / 4(1 - p2/w?)2 ¢+ (2%p/w)?
(:> FPor exanple, sSee Thoopson (1972). 1In this case, the maximunm

point occurs at

p= {1-232
Hence, the frequency at which the maximum occurs is dependent on
the damping. It vas shown above that the minimum point of a DPMI
curve of a SDOFO occurs right at the fundamental freguency,
regardless of the dasping. This is an additional advantage of

presenting the response of a systes as an impedance.

3. The Location of the Driving Force

Pigure 4.8 is the DPMI plot of a simply-supported beam with
the driving forcec applied at four different locations along the
length of the bean.

(:3 Pach of the curves have the same shape up to frequencies of
at least tvo times the fundamental freguency. The upward shift

ijn the curves is due to the increase in the static stiffpness K
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of the beam, as the driving force is moved avay fror the center.
One might expect that eguations (4.1), (4.7) and (4.8) are still
valid in this case provided K is interpreted properly, i.e.,

K = 3EIL/a2bh2 (4.9)
A fev calculations to coapare these equations to the appropriate
points on the DPMI plot indicate that they are, indeed, good
approximations.

In the bhigh frequency range of PFPigure 4.8, a second
resonance appears at about four times the fundamental freguency.
The centrally-loaded beam does mnot exhibit such a resonance
since the anti-syraetric modes of vibration are not excited

under a syametric loading.

B. TEP EFPFECT OFP THE BOUNDARY CONDITIONS

-d
L]

1. Qualitative EBffects

Ideally, the bone of a vibrating forearm or leg systee is
assumed to vibrate as a simply-supported beam. 1A discussion
presented by Orbe (1974) indicates that this is in fact true of
the syster involved in the test procedure developed by Thoapson
(1973) (discussed in Section I.E). Bovever, subseguent
|odificatipns to this test procedure may bhave altered the
simply-supported <condition of .the bone. Therefore, it 1is
isportant to investigate the effect of varioﬁs boundary

conditicns on the DPNI of a bean.

T rigures 4.5 through 8.9 are the DPNI plots of a bear with

five different, nonclassical boundary conditions: a rotational

spring on one end, a rotational spring on each end, a

3
H
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translational spring on one end, a translational spring on each
end and a translational spring on an extended Dbeaa,
respectively. In ;ach case, the nondimensional spring constant
vas allowed to take on five different values while holding the
damping in the beam and supports at a constant value.

A simple support on the end of a beam has infinite
resistance to translation and no resistance to rotation. The
DPMY of a simply-supported beam vas presented in the last
section, Pigure &.1.

Adding a rotational spring to a support iptroduces some
resistance to the rotation which can occur at that support. The
effect on the syster is to stiffen it as indicated by the shift
upvard and to the right of the DPMI curves of Pigures 4.5 and
4.6.

Adding a translational spring to a support relaxes sose of
the resistance to the tramslation which cam occur at that
support. The effect on the system is to reduce its over all
stiffness as indicated by the shift dovnvard and to the left of
the DPMI curves of Pigures 4.7 and 4.8.

Extecling the beam past its left sopport and adding a
translational spring to its end introduces a npon-zero bending
sosent at the 1left support. This bending soment offers some
resistance to the rotation vhich can occaur there just as does a
rotational spring. Bence, an expression for an equivalent
rotational spring (ERS) constaat was derived by eguating the
becding moment at the left support of the extended beam to the
morent caused by the sase rotation applied to the ©PERS. The
expression is

B = 37T / (12 ¢ 2£37) (4. 10)

:g,,“M—*— il &“. Gl . o it a2 e
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vhere ¢the nondimensionalized parameters are as follows (see
Table 3.2)

R the ERS constant

T the translational spring constant of the

spring at the end of the extended beanr
€ length of the bean extension
The result of solving equation (4.10) for T is

T = 12R / (3e2 - 2¢3R) (4.11)
The set of four values of R used to generate Tigure 4.5 vere
used in eguation (4.11) to produce an equivalent set of values
for T. These values vere used to generate FPigure 8.9. The DPHI
curves of Pigures 4.5 and 4.9 are virtually identical.
Therefore, any systea which can be modeled as an extended bean
vith a translational spring on its end can be modeled egually
vell as a beam with a rotational spring on one end provided the
parapseters of twvc wmodels are related according to equation

(4.10).

2. Re-nondimensionalization

——

It is apparent that the curves of Pigures 4.5 through 4.8
are simpilar in «chape regardless of the boundary conditions of
the beam. The location of each curve on its plot, hovever, |is
affected by the boundary conditions. To investigate this
further, Figures 4.10 and 4.11 are generated. Pigure &4.10 is
generated by choosing one curve from each of Figures 4.1 and 4.5
through 4.8 and re-nondimepnsionalizing it with respect to its
ovn static stiffness and fundanmental freguency. (Recall that all

curves thus far have been nondimensionalized with respect to the

static stiffness and fundamental frequency of a centrally-
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loaded, simply-supported beam.) Pigure 4.11 dis generated by

<:> changing the damping value used for Pigure 4.10 to a lover
value.

Bxpressions for the static stiffness of a beanm with various

boundary conditions have been derived and are listed in Table

4.2. The fundamental frequency in each case is obtained Dby

solving the appropriate characteristic egquation. The natural

frequencies of a systes
case of no damping. Por
f (AL) goes to infinity.
solved for each set

cetting the denominator

occur vhen the DPMI goes to zero for the
a bean, this occurs wvher the function
Bence, the cha.acteristic eguation to be
of boundary conditions is obtained by

of f(AL) equal to =zero3 (See Appendix

A). The lovest value found for AL is then used in the folloving

equation to obtain the fupdamental fregquency

)

W,

(AL)2/12 {EI/p

= (AL/m)2w (4.12)

vhere w, is the fundamental frequency of the bear in gquestion

and w is the fundanental freguency of a simply supported bean.

The five curves

in each of Figures 4.10 ana 4.11 are

virtoally identical up to frequencies of at least two times the

fundamental frequency. Hemce, twvo conclusions can be dravn.

Pirst, recall that eguations (8.1), (4.7) and (48.8) boléd

for a simple-cupported beaa. Then these equations also bold for

(or are at lcast very good approximations for) beams with other

boundary copditons provided K is interpreted according to Table

8.1 and o and ¥ are interpreted as fundamertal frequencies and

damping ratics of the beass.

Cﬁ) Seconily, the shape of the DPNI cuarve (in the frequency

3 characteristic equations obtained in this wvay are in agrcesent

with Gorman (1975).
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range of interest, i.e., up to freguencies of at least tvo times
the fundamental frequency of the beaz) is determined by the
damping ratio and the location of the DPMI curve on the plot s
determined by the static stiffmess and fundamental freguency of
thr beam. The stiffness of the boundaries of the bean affect
each of these three gquantities in the same vay as does the
bending stiffness of the beam. Therefore the bending stiffness
and the boundery stiffness have the same effect on the DPHI plot
of a bearm up tc frequencies of at least twvo times the
fundamental frequency of the beam. At very high frequencies, the
curves begin to deviate from one another. However, the deviation
is only significant if the darping is relatively lov. Therefore,
the effects of the bending stiffness and the stiffness of the
supports of a becamlike structure (i.e., an ulna or a tibjia) are
not easily distinguishable on its DPMI data plot.

1

c. T

]

EFPECT_OF TAPER

1. gQualitative Bffects

It can be seen froe Pigure 1.1 that 1liug bones are not
unifors. Some 1long bomes, suck as the ulna, have very severe
tapers. It is, therefore, wvortbvhile to investigate the effect
of‘taper én the DPNI plot of a bean.

A method of computing the DPEI of a tapered bean is given
in Appendixr B. This metbod vas nsed to generate DPEI plots for
beaas wvith ¢tvo different types of tapers: a linear taper which
roughly approximates an ulna and a quadratic taper which roughly

approximates a tibia (see rigure &.12).
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The nondimensionalized DP¥I plot in each case turmed out to

be identical to that of a uniform beam. Apparently, DPMI data
only provides inforwation about ¢the overall stiffness of a
beamlike structure and not about its distribaution. Therefore, no
information concerning the nature of the taper of a bone can be
extracted from its DPMI plot alone. However, using a model in
vhich the bone is assumed to be uniform, the average bending
stiffpness is determined. This is the same average bending
stiffness which vas measured and correlated to breaking strength
in the investigations by Borders, Petersen and Orme (1977) and
Jurist and PFoltz (1977). These correlations provide a means of
inferring breaking strength frox a wmeasurement of bending

stiffness. Thus, knowlege of the exact geometry is not needed.

" D. TE® PFPECT OF THE FOUNDATION

1. Qualitative Bffects

The tissue surrounding the bone of a vibrating fbrearm or
leg system is represented by a visco-elastic foapdation with
mass. The boundary of the foundation is either fixed or free as
discussed in Section II.C. Pigures §.13 and 4.184 are DPMI plots
of a sinply-supported beam on a fired foundation vhile Pigures
§.15 and 5:16 are DPMI plots of a sisply-supported beam on a
free foundation. PFigures 4.13 and 84.15 vere generated with the
damping in the foundation bheld constant wvhile alloving the mass
per unit léngth of the foundation to take on fi;e different

values. Pignres 4.14 and 4.16, on the other hand, were generated

vith the mass per unit length of the foundation held constant
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vhile allowving the damping in the foundation to take on four
(:> different values. In each case, the stiffness of the foundation
is chosen to produce a fundanental subresonant frequency for the

foundation of one-half the fundamental frequency of the beawm.

e g R,

The arbitrary factor of one-balf sufficiently seperates the
subresonant frequency of the foundation from the resonant
frequency of the beam to distinguish their effects.

The foundation exh’bits two major effects on the DPNI
curves. Pirst, the dazping 1in the foundation smooths out the
DPMI in much the same way as the dasping in the beam. The
pinimum point of the curve moves upvard as damping increases
regardless of the source of the daaping (beam o+ foundation).
Secondly, the DPMI curve changes drastically in the region
around the subresonant frequency. This disturbance in the

othervise spooth curve is evident in many of the data sets froam |

DPNI tests. It is therefore essential to inclode a foundation in

the mathematical model.

2. Quantification of the kffect or the Mirirum Point

Note from Figures £.13 through 4.16 that the wmagnitade of
the DPMI at the miniasum point of the curves is very dependent on
both the mass per unit length p,, and the damping ratio ¥;, of
the foundation. This dependence, expressed in mathematical form,
can be used to dctereine approxisate values for these paraameters
for a forearm of leg systea directly from its DPMI data plot.

The fandawental freguency wy, ©of the foundation also

;ﬁj affects the aminisum point. Bowever, it will be useful later to

bave reclationships expressing the dependence of p, and 7, on the

minimum DPMI while bolding w; constant. The disturbance which
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appears in many data sets occurs at approximately one half the
(:> fundarental frequency of the beam. Therefore, the relationship

to be derived will be based on a freguency ratio w/w;y, of two.

Due to the complexity of the DPMI equations, the exact
expression for the dependence of p; and f, on the ainirum ODPAIX
can not be determined. Therefore, approximate relationships are
derived. The details of the derivation are given in Appendix C.
} The relationships expressing the dependence of p; and ¥; on the

rinigue DPNI are

2. w/K 27 ¢+ 0.25 ﬁ”g p:/B (4.13)

L]

Zyyw/K = 2% ¢+ 0.75 L,¥2 p./p (8.14)
for the fixed and free foundation, respectively. Since these
relationships are approximate, it - beneficial to desonstrate
their accuracy. This is done in Pigu ¢ +.17. The minimux DPNI's
tabulated in Table 4.2 are shown as squares on the plot while
equations (4.13) and (4.14) are showvn as so0lid 1lines. The

approximation is quite accurate for the range of values under

consideration.

E. THE EPPECT OF THE SPRING-IN-SERIES

1. Qualitative Pffects

’

The skin of the vibrating forearm or leg system is

represented by a transverse spring in series wvith the beas. DPAI
plots of a simply-supported beam with the spring in place are
ﬁ:) given in Pigures 4.18 and 4.19. Pigure 4.18 vas generated with

the dasping of the beam bheld constant while allowing the spring

stiffness to take on five different values. Figure &4.19, on the

B vr . W e SO
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other hanid, was gererated with ¢the spring stiffness held
constant while allowing the danmping of the bear to take on five
different values.

At very low frequency, the curves are predominantely
springlike (i.e., the slope of the curve is virtgoally mnpegative
one). The apparent stiffness is simply the combined static
stiffnesses of the bear and spring in series. At very high
frequency, the curves are again springlike. However, the
apparent stiffness is higker than the apparent stiffness in the
lov frequency range. In the high frequency ramnge, the beanm DPMI
is predoninantely masslike (see Figure 4.1) wvhile %Zhe spring, of
course, is still springlike. Thus, the beaw DPXI is msuch higher
than that of the spring. Recall that DPMI's in series add
according to

2% = (1/2% ¢ 1/7%) -2 (4. 15)
The lower of the two DPM 's, the DPEI of the ' spring in this
case, doninates +the overall DPXI. Therefore, at wvery high
freguency the overall DPMI is sipply the DPEI of the spring. 1In
other wvords, the beam, due to its mass and darping, does not
vibrate at high fregquency.

The apparent stiffness at lov and bhigh frequencies have
often been used to approximate the bone and skin stiffnesses of
forearm or leg systems directly from the DPMI plots. A data
point is chosen from each of the (low and high) fregueﬂcy ranges
and used in the following formulas

XK = Zigw Prcn (4. 16)
K= (1 /ZowPow = 1/K) 8 : {(4.17)
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Where k skin stiffness

>~
L]

bone stiffness (eg., 3EBIL/a2b2 1
for a sisply-supported bean)

(PuaneZuad = a data point from the high frequency range

(Piow ¢ Z ow) a data point fror the lowv freguency range

(cee Tigure 4.20)

el

Howvever, large errors are easily introduced with improper
choices of the dsta points. Recall that the data points must be
taken from sections of the data plot where the freguency is low
enough or high enough to indeed produce a slope which is i
virtoally negative 45 degrees. This stipulation does not present
a problem in the 1low frequency range. However, the data fronm
most DPMI tests have not been taken in a freguency range high
enough to attain the reguired negative 45 degree slope. However,
a nev relationship has been discovered which allows the skin
stiffness to be approxinated using the maximum point (see Figure
8.20) which occurs just before the high frequency negative slope
on the data plot. This eliminates the need for the high

frequency data.

2. Quantification of the Effect on the Maximum Point

It can be seen fros Pigures 4.18 and 8.19 that the maxizmum
point is severely affected by the spring. Although the maximuas
value of the DPMI has a significant dependence on the éauping of
the Dbeam, the frequency at wvhich it occurs does not. Therefore,
an approximate relationship betveen the stiffness of the spring
and the freguency at which the maximsuom DPXI occurs can be

ﬁerived vhich is ipdependent of the damping in the bean.

To fird this relationship, tvo sinmplifications are
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introduced to facilitate the analysis. First, replace the bean
by its equivalent single-~degree-of-freedom oscillator (SDOFO).
Recall from Sections 1IV.A and IV.B that a beam, regardless of
its boundary conditions, behaves in the same manner as its
equivalent SDOFO up to frequencies of at least two times their
fundamental frequency. In many cases the similarity in behavior
extends to as bigh as an order of wmagnitude above the
fundamental frequency. Recall further that at high frequency,
the DPMI of a spring-in-series dominates the total DPANI.
Therefore, a spring in series with a beam bebaves in the sanme
manner as a spring in series with a SDOFO at any fregquency
provided the spring is soft enough.

Secondly, since the frequency of interest is assused to be
injependent of the daaping, set the damping equal to zero. Then
the frequency vhich makes the DPNI maximum ¥%ill actually be the
frequency vhich makes the DPMI approach infinity. Thus, the
rodel to be analysed is that vhich is shown in FPigure 4.21 with
T = 0.

The DPMI's of the SDOPO and the spring are, respectively

2* = sip + K/ip (4.18)

z$ = k/ip (4.19)
vhere p is the forcing freguency. The overall DPEI, according to
equation (4.15) is

2% = [1/(nip ¢ K/ip) ¢ 1/(k/ip) }? (4.20)
After replacing m by K/w2 and perforaming several steps of
algebra, equation (4.20) becomes

2¢ = -iK/w (k/K)/(p/w) (V = p2/u?) / (1 + k/K = P2/wZ) (4.21)
The DPNI approaches infinity vhen the denominator of egquation

(4.21) approaaches zero
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1+ k/K = p2 /w2 =0 ' (4.22)
Therefore the frequency at which the DPMI is maxipum is given by
p2,/w? = 1 & k/K (4.23)
Solve eguations (4.17) and (4.23) simultaneously for k and K
K = ZowPow P2/ /w? (4.24)
K = Z,uPow P2/w2 / (PE/w? = 1) (4. 25)
Eguations (4.24) and (4.25) can nov be used to approximate the
bone and skin stiffpesses without the use of equation (4.16),
i.e., wvithout the use of a data point from the very high
fregquency range.

Pigures 4.18 and 4.19 shov that the location of the minimunm
point is only slightly affected by the presence of the spring.
This 1indicates that the relationships discussed in Section IV.A
and IV.B (equations 4.7 and 4.8) which relate the mpinimun point
" to the dacping ratio and the fundarental fregquency are still
approximately valid in the presence of the spring. This is also
verified by <cobnsidering the frequency which =makes eguation

(4.21) go to zerwu, i.e., set the numerator equal to zero

1 - p2, /w? = 0 (4.26)
or

Mo

Since eguations (4.23) and (4.27) vwvere obtained by
considering the case vhere ¥ = 0, they are approximations which
arc independent of the beam daaping. To investigate the accuracy
of these approximations, the mininmue and marxipum points of the
DP¥I of the sodel of Pigure 4.21 can be found without setting
the beanm damping egual to zero. Although this analysis is nearly

‘{rwpossible in closed form, the first fev terms of & Taylor

series solution can be found. This very lengthy analysis is
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outlined in Appendix D. The fiist three terms of the solutions

are
2. = S + 1+ 2/5 (2¢5)/(1+5) %2 (4.28)
- 2/53 (2+5)/(1+¢53) (8+165+13524453) Te + ...
B2 = 1 = U4/5 %2 + B/S3 (2435) 44 - ... (4.29)

vhere S = k/K and g = p/w. Both series converge for 0<Z<1 and
S$>1 vhich is the range of values of interest.

Several typical valuoes of ¥ and S have been tried in
equations (4.28) and (84.29) and corpared to the results fronm
egquations (8.23) and (4.27), respectively. For exanple, vith T =
0.2 and s = 5, equation (4.28) yields B, = 2.453 vhile equation
(4.23) yields f, = 2.449. This and many other sets of values
indicate that equations (8.23) and (4.27) are indeed very good

approximations.
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CHAPTER V

THE SYSTEMS IDENTIFICATION ALGORITHN

A. THTY NEED POR A SYSTEMATIC METHOD

1. The Need

Fach of the parameters of the mathematical podel
corresponds to one (or some coabination) of the geometrical or
paterial properties of the vibrating forearam or leg system. The
driving-point &Emechanical impedance (DPXI) of the system is
measured in a vibration test (Section I.E). The DPMI of the
model 1is calculated and depends on the values chosen for its
parameters (Section III.A). Therefore, the set of parapetric
values for the model vhich generates a1 DPAI curve that closely
coincides with the DPMI data points of the system infers the
geometrical and material properties of that syatem. A method for

finding this set of parasetric values is needed. .

’

2. Reguirements

To obtain a consistent interpretation of the DPNI data, the
aethod wused to find the parametric values (bence forth referred
to as "the method™) wmust be repeatable and syctematic. The

method must be repeatable 4in the sense that each time it is
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applied to a given set of DPMI data it sust produce the sane
results. The wmethod must be systematic enough to program on a
digital cormputer for on-line analysis.

Although computers are capable of performing tremendous
amounts of cooputation, they are incapable of making subjective
decisions. The method must be completely objective in nature and
expressible in mathematical forse.

Pirnally, the cormputer progranm which ecploys the method must
be set up in a user-oriented fashion. The wuser in a cliaiical
situation should pnot need extensive computer experience in order

to easily obtain results.

B. TEP ERROR FPUNCTION

J. Definition

The first step in developing the method is to define an
error function wbhich quantifies the difference between the
measured DPMI data and the calculated DPXI of the mathematical
model. The parametric values of the model vill then be chosen in
a systematic wvay to =rinimize the error function. This |is
accomplished using a systeas ‘identification algorithm (SIDA)
vhich is apalogous to the classical least-squares approach to
curve fitting.

The error e,, at frequency p,, is the difference betwveen
the leasufed DPAI i,, and the DPMI calculated wusing the aodel
Z.(P;), as shovn 4in Pigure 5.7a. The error function E, is the
finite sum over all the discrete test frequencies of the squares

of the percentage errors e,/in, divided by the bpumber of data
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points. The percentage error is used rather than the error
itself because of the wide range of absolute values which the
DPEI can take in a single DP¥I test. The division by the nuasber
of data points normalizes the error function so that a
comparison of its valuc froa tvo sets of data vith different i
nunbers of data points is meaningful. The error, and hence the i
error function, is a function of the parameters of the model
since it depends on the DPAI of the model. An erample of an
error function as a function of one of the model paranmeters,

represented by P;, is shown in Pigure 5.1b.

2. Analysis

Mathematically, the error function is expressed as
N A
B= /K ) [(Zn = 2a(Pi))/20)2 (5-1)
vhere N is the number of data points. To obtain the parametric
values using a classical least-sguares approach, one vould set
the derivatives of the error function with respect to each of
the parameters equal to zero. The resulting cguations would then

be solved directly for the parasetric values. Due to the

compleoxity of the function which represents the DPNI of the
solel, hovever, this approach is ispract’.cal if not impossible.

Since the DPMI of the model is a continuous function of the
model paraaeters, it can be expanded in a Taylor series.

N

E = 14N ;S_'vﬁg-' [(Zn = (2n ¢ idz”/dp-‘ ap) 32 C(5.2)
vhere M is tb; nurber of model ;araneters. Bigher order teras of
the series have been neglected and the function which represents

<:‘) the DPEI of the «odel and its derivatives are evaluated at soae

ipitial set of estimated paraze“ric values.

Using this form of the error function, changes in the
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parapetric values AP;, rather than the parametric values
<:) thenselves, can be cbosen to minimize the error function. To
accoaplish this, set the derivatives.of the error function vith
respect to the changes in the paranmetric values equal to zero

dE/30P; = -2/K i 1/22 [2, - (2, + idzn/dP-‘ AP ) ] 4Z,/4P;
=0 ; M} = 1,2...5' - (5. 3)
After a fev steps of algebra, eguation (5.3) becomes
dB/dAP; = -2/N [~Z (2, - Za) /22 az,/4P; (5. 4)

ey

-Z}_ 1/22 dz,,4p, dAz,/dp, &P, ) = 05 § = 1,2...M4

n
ts1 ne)

Therefore the eguations to be solved are
(M) &P} = (B) (5.5)
Where the conponents of the matrices are
A 1/z2 az,/ap, 4z,/dP; (5. 6)
0 i (Z, - 2,) /22 d42,/4dp; (5.7)
The derivatives of the DPNI of the rodel with respect to each of

the parameters is given in Appendix E.

3. Aprlication

Since changes in the parametric values are calculated
rather than the parametric values themselves, the procedure is
iterative. The components of the A and B matrices are calculated
using the parametric values obtained from previous iteration.
The changes in the parametric values are calcuolated froa

) = [A)-t (B) (5.8)
and added to the o0ld set of parapetric valoes to obtain a new
set. Pach succesive set of parametric valomes will reduce the

{:D valoe of the error fupction. The procedure is repeated as many

times as necessary to obtain an acceptable set of parametric

values.
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To begin the 1{terations, an initial set of pararetric

values must be chosen which will facilitate quick cunvergence.

C. COXVFRGENCE AND TEE INITIAL GUBSS

-h
L]

1. Definition

Convergence is said to have occurred in an iteration schene
vhen further iterations no longer improve the result. In terams
of the SIDA, convergence has ocurred vhen the relative change in
any given parameter becomes ssaller than a specified amount,
e.g9., 0.1 percent. The characteristics of the error function

have a considerable effect on the convergence of the SIDA.

- Thercfore, soae control =must be wmaintained over the error

function to insure convergence for the DPNI data from any

forears or leg vibration test.

2. Restrictions on_the Mathematical Model

When tvo paraceters of a given mathematical model have very
similar effects on its DPMI curve, the effect of changing one
parametric value @aay cancel an opposite effect in the other to
produce no net effect in either the DFMI curve or the value of
the errorlfnnction. In this case, the error function may contain
an infinite nomber of minimum points along some curve in the
error function space. There is no way to distinguisﬁ betveen
these wminimum points. Therefore tbhe DPNI data does not contain
enough information itself to uniquely define all of the
parameters of the model, and the SIDA vill diverge. This problen

bas ocurred wvith the boundary conditions of the beam and vith




65
the dampiny. To eliminate the problem, something more must be
knovn about one of the twvo parameters. A constant value can then
be assigned to it, alloving the rest of the parameters to be
detereined by the SIDA.

It vas shovn in Section IV.B, that thé static stiffness of
a beam, and hence its DPNMI, is affected in much the same vay by
the bending stiffness of the beam itself as by the stiffness of
the boundaries. Therefore, if the aodel includes a spring at one
or both ends of the beam. Then the DPNI data does not contain
enough information to determine all of the parametric values.
Therefore, the characteristics of the supports of the forears or
leg must be knowvn a priori. One way to avoid the pecessity of
detererining the support characteristics is to alvays plac2 the
forearm or leg in the firture in such a vay to insure that the
supports are virtually simply-supported.

The sharp peaks of tke uminimum and marxisum points of the
pDPXI curve of an undasped beasm are rounded-off when damping is
alded. The extent of the rounding-off depends on the amount of
darping present but pot on its location, i.e., in the beam or
foundation, as was shown in Section IV.D. Simce both the bone
and the tissue contribute to the overall damping of the systes,
the DpPMI data does not contain enough information to deterszine
all of the parametric values. A copstant value vill be assigned
to one cf the damping ratios, tbus alloving the otbe£ to be
Goterained by the SIDA. It will be seen in Section VI.A that the
tissue contributes =much more to the overall daxping than does
the bone. Conseguently, the DPEI is relatively insensitive to
the value chosen for the daaping ratio of the beas. Thercfore,

it will be held constant at five percent of critical daamping dinm
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the fundamental mode, a reasonable value.

With the boundary conditiors being specified and the
damping in the beam held constant, the model has six paraseters
to be determined by the SIDA. They are the bending stiffpess EI,
and the fundamental frequency w, of the beam; the mass per unit
length p,, the fundamental fregquency w;, and the damping ratio
T:¢ oOf the foundation and the stiffness k, of the spring. This

version of the model will be referredi to as the six-parameter

model (6PN).

3. The Initial Guess

Even if all of the parameters are such that cheir effects
on the DPUI curve are independent, it is possible that more than
one set (but not and infinite nuaber of sets) of parametric
values exist which vill minimize the error function for the DPHNI
data from any given vibration test. One of these referred to as

the correct solution, 4is the set of parametric values

corresponding to the true geometric and material properties of
the forearw or leg systea being tested.

Several successive iterations of the SIDA can produce a set
of parametric values associated with one of the local migisum o=
rixisar points of the error function. %o illustrate this
concept, awu error function is shown in Figure 5.1b. Only one cu
these minimum points represents the correct solution, and it
appears to be the only one in which all of the parametric values
are positive. The 3ipitial values cbosen'for the parameters to

start the iterations, referred to as the initial quess,

detervrine wvhether or mpot the SIDA will converge and to which

girimur or maximum point. Therefore, the initial gquess must be

B
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close ecnough to the correct solution to allow the SIDA to
converge to it.

The means for acquiring the initial guess is provided by
the relationships established in the parapetric study (Chapter
IV). The initial guess is calculated froam a few key data points
using these rclationships. In many cases, the intial guess is
closec enough to the correct solution. Hovever, if one or more of
the key data points happens to contain an excessive amount of
experizcntal error <then the initial gquess will not be close
enough. This problem is overcome by temporarily sioplifying the
model.

The nmodel is sireplificd by elirinating the foundation. The
dazping effect that the tissue has on the bone is accounted for
by a higher than norwmal danping in the beas. The simplified
Bodel has only four paraseters to be determired by the  SIDA,
They are the Dending stiffnes EI, the fundasental frequency w,
and the dasping ratio ¥, of the beae and the stiffness k, of the
spring. This version of the model will be referred to as the
four-parameter model (4PX).

A reduction 4in the npumber of pararmeters in the model is
acconpanied by a reduction in the nuaber of minigur and maxinum
points in the <e¢rror function. This increases the chance for
convergence to the correct solution when applying the SIDA. The
results fros applying the SIDA to the 4PY are used as pért of an
ieproved 4initial gquess for the 6PN, thus increasing the chance
for convergence vhen applying the SIDA to the 6PB. The process
described herein occurs iu three phases. The SIDA is applied in
a different vay \n each phase.

In phase one, the SIDM is applied to the 4P8. The 4initial
P

A
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guess is determined by solving eguations (4.7), (4.8), (4.28)

apd (4.29) for the four parameters

EI = a2b2/3L¢ ZipwPiow (Punrn/Pund? 7 [ (Puav/Pun)? = 1] (5-9)
W= Pun (5-10)
¥ = 1/2 ZuwPun/200Pan [ (Poas Z/Puid 2 = 11 / (Puas/Pund 2 (5. 11)

K = 20uP o (Paun/Pun) 2 (5.12)
vhere (p, . rZ2.d¢ (PuneZumu) a8Rd (Puae2Zmd are the key data points
as shown in Figure 4.20, and ¢ is a constant vhich depends on
the boundary conditions of the beam (see Table 8.2).

In phase tvo, the SIDA is applied to the 6PNM. Howvever, only
the foundation parareters are alloved to wvary. The bending
stif fness and the fundamental frequency of the beam and the
stiffress of the spring are held constant at the values
deternined fron phase one. The damping ratio of the beaa is
reduced to the reasonable value of 0.05 as mentioned earlier.
Pbase two allovs the values of the foundation parameters to be
improved wvithout disturbing the beam and spring parareters. The
initial guess is partially based on experience vith sisulating
DPMI data "by hand" and partially based on equation (4.16). The
fundamental frequency and dampirg ratio are guessed from
experience to be one-half of those >f the beax. The masc per
unit length is calculated by solving equativs (8.16). Thus the

initial guess is calculated froa

p; = M/L* BI/w2 2(3x - 0.05)/A(£/2)" (5. 13)

D wp = w2 (5. 14)

_ T = T/2 - (5. 15)
(T) In phase three, the SIDA is again applied to the 6PN. A1ll

six paramet ts are alloved to vary. The initial guess is sieply

the resalts of phases one and tvo. The SIDA ccnverges to the
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correct solution for the DPMI data from almost any reasonable
forearm or leg vibration test. Examples will be given in

Chapters VI and VII.

D. THE COMPUTER PROGRAMN

Y. The Proqranm

A Fortran coaputer projgram was written to carry out the
process described in the last section. Due to the coxplexity of
the DPAI functions being evaluated, the program is writter in
double precision. A 1listing of the program is given in
Appendix PF.

The computer program is divided into three phases of +the
total process. EBach phase is similar in strocture. A general
flov chart of the program is shown in Figure 5.2 and a more
detailed flow chart of one phase is shown in Pigure 5.3. Control
passes through the main lcop of each phase of the program until
the iterations are terpinated by the passing of one of the four
tests as indicated in the diamond shaped boxes ip the flow
chart.

The first test is to determine wvhether or not a negative
value was obtained for one of the paraceters in the previous
iteration. Unlike the otber three tests, the consequence of
passing this test depenis on the phase. In phase one, the
paraceters are returned to their old values. In phase two, the
tissue parametric values are returned to their initial guess. In

pbase <three, the 6PN is disregarded and the parametric values

obtaihed for the a4pPa are recalled.




-

The second test is to determine whether or not the value of
<:> the error function has increased in the last iteration. If it
has, ¢then this is an ipndication that the paranefric values are
either moving avay from the correct minimum point of the error
function toward a maximum point or that the SIDA has cver-
stepped the minimun point. In either case, the o0ld set of
paragetric values are closer to the correct solution than the
nev set. Therefore, the parameters are returned to their old
values.

The third test is to determine whether or not convergence
has occurred. Convergence is considered to have occurred vhen
all of the percentage changes in the parameters have become less
than one-tenth of a percent.

€:> | The

iterations have vccnurred. A limit of ten iteratioms is placed on

fourth test 1is to deterpine vwhether or not ten

each phase to insure that the iterations will not go on
indefinitely.

If all four tests fail in a given iteration, then control
is transferred back to the top of the loop and another iteration

is carried ont.

2. The Batrix EBquation

¥ithin each iteration of the SIDA, a matrix equation of the
form .
- [2]) (oP) = (B) (5.5)
is generated. The solution is to be obtained within the computer
(“) progam using the subroutine DGELG from <the IBM Scientific
Subroutine Package (®SSP). DGELG solves the matrix equation

using Gaussian eliamination.
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Accuracy of the calculations'is ar important factor since

it can influence convergence of the SIDA. Batrix A, however, is

an ili-formed matrix, i.e., its elements vary in absolute value

as =much as ten to twenty orders of wsagnitude. Ill-formed

matrices are very difficult to solve accurately. Therefore,

equation (5.5) will be amodified to eliminate the ill-formedness
of matrix A.
Consider matrix equation (5.5) in cozmponent fora
ji A OP = Bj 3 j=1,2...8 (5.16)
Bguazion (5.16) represents M linear algegraic equations, where H

is the number of parameters to be determined by the SIDA. Each

of the algebraic equations can be wmultiplied by a constant

vithout altering the solution.
M
D> (CiA)oP; = (C;B;) ;

vhere Cj, j = 1,2...4 is a set of M constants. FPurthereore,

j=1,2...4 (5.17)
the
coefficients of each unknown can be multiplied by a constant if
that unknown is divided by the same constant. Using the same set

of ¥ constants, the sysetry of matrix A is preserved.

> (C.C;A;) (&P, /C() = (C;Bj) ;

(R3]

thus the pnev matrix eqguation is
~ A A

(2] (ar} =[B) (5.19)
vhere

A

Aij = C;leij

&b, = op, /C, (5.20)

‘QJ =C;8,

Refering to tbe definitions of A;; and B; given in

equatiocs (5.6) and (5.7), the orders of magnituode of each of

the quantities in eguation (5.16) are as follovs:

Aq has order P:‘ Pj‘
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AP, has order P

B .

F has order P;i.

The difference in the orders of magnitude of &P, i = 1,2...H8
results in the 3ill-formedness of patrix A. However, matrix ﬁ
will be well-formed if the constants are chosen so that each

elenent of matrix A is of order one. This can be accomplished by

choosing

c,. = W/B, ; i=1,2...8 (5.21)
Then the new matrix equation becomes

A

(%) @&p) = (1) - (5. 22)
vhere

A A

A = A /(BB)) Ap, = B,OP, (5.23)

and all of the components of the column matrix I are unity.
Matrix eguation (5.22) can be solved withont 1loss of
\a:curacy because matrix A is well-formed. The solution, however,
is different from the solution to matrix egquation (5.5). The
relationship between the two solutions is known from equation
(5.23) . Hence the solution to equation (5.5) is calculated fronm
the solution to equation (5.22) by

av = AP sB. 3 i = 1,2...H (5. 24)

3. Input

To mike the cozputer prograr user orierted, the input
rejuired to run it has been simplified as puch as possible. Only
four lines of information are required in addition to the data
points themselves. The input is checked by the computer prograa
and error messages are printed out to inform the mser if it is
not in proper fore. An example of input is given in Pigure 5.H4.

The first line is a title. The user can insert anything le
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vishes with a limit of sixty characters. The title is printed on
both the output and the plot.

The second line contains the support length of the forears
and the 1length-to-probe 1location ratio. This ratio is the
distance betveen the left support and the driving point divided
by the support length. The ratio sust be a number between zero
and one. If it is not, then an error amessage is printed. The
length and ratio are read in free format.*¢

The first +tvo columns of the third 1lipe contain an
integer.% A npegative integer indicates that the specimen is an
ulna and a positive integer indicates that the specimen is a
tibia. Recall that the boundary condition on the foundation of
the model is either free or fixed depending on the type of
specimen being represented. This is the only indication given to
the program concerning the type of specimen. The data is
interpreted according to the value given on this line regardless
of what information is entered in the title. If a zero appears
on this line, then the foundation is pnot included in the model.

The fourth 1line contains the nuaber of tkhe data points.
This nueber must also appear as an integer in the first two
coluens. At least eight but no more than sixty data points are
alloved. An error message is printed if this is violated.

Starting vith line five, the remaining 1lines contain the

data points, one per line. The forcing fregquency, magnitude of

& Pree format: There is 1no restrictions on the form of the
punber, i.e., vith or wituout a decimzl point, vith or without
scientific notation. A coasa and/or at least one space must
appear betveen cach entry.

5 Integer: Decimal points and egcientific notation are not
alloved. Note, a one~digit nuaber with po sign must appear in
column tvo.

Y R R O R T TN R P T a e i o e n
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the DPMI and the phase angle of the DPXI must appear in order
and in free foramat.

The only other restriction on the input conceras units.
Prequencies and phase angles are entered in Hertz (cycles per
second) and degrees, respectively. All other quantities must
have consistent units. No conversion factors have been written
into the program. The CGS system is suggested, 4i.e., all
quantities are expressed in teras of centimeters, grass, seconds

and dynes.

4. OQutput

To make the program user oriented, the output aust be easy
to read and interpret. An exanple of output is given in Pigure
5.5. Tke corresponding cozputer plot is given in Pigure 5.6.

The title, given by the user on the £first line of the
input, 1is printed at the top of the outpuvt page followed by the
length and ratio. The parameters of the model are 1listed with
their wvalues. The data points and their corresponding DPNI's of
the aodel are tabulated. Fimally the valae of tue error fuunction
is given.

A computer plot is also generated as part of the output.
The squares represent the DPMI data points. The s0lid lige
represents the DPXI of the model, calculated wusing the final
parametric values, determined by the SIDA. Both the ;agnitude
and the phase angle of the DPMI are plotted to visualize the

quality of the simulation.
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CHAPTER VI

VERIPICATION OP THE MATHEXATICAL MODEL

A. IN VITRO MONKEY EXPERINENTS

1. Proposed Experiments

A series of experiments was proposed by Orne and Mandke
(1975) to verify the mathematical model. These experiments are
designed to isolate the effects of the various corponents of the
vibrating foreara systen. The experiments icvolve the
application of the test procedure, described in Section I.E., to
a mopnkey are under three different conditions.

T+~ ~~atomy of the arm and forearm of a w®onkey is gquite
similar that of a buman ara and forearm. There are, of
course, sose Rinor differences but the similarity is strong
énough so that the results of these experiments will provide and
indication. of the validity of <the application of the
mathesatical sodel to experiments done with either sp:cies.

A fev modifications, including the addition of a fourth
condition, were introduced before the experimecits vere conducted
‘by Peterson (1977). A description of the experieents (in
modified form) is given here.

The arm of a sacrificed mobkey is disarticulated =at the




shoulder and immediately frozen to maintain freshness until the
(;) experiments could be perforeed. The specimen was thaved acd
alloved to come to room temperature before testing. The
folloving experiments vere then performed as quickly as
possible.
The monkey arm is positioned in the test fixture. A veight
is placed at the top of the hurerus to represent the downvard

force applied through the humerus by the live subject, as shovn

in Pigure 6.1. This first condition should resesble an in ¥vivo

test as much as possible. The driving-point mechanical impedance

(DPXI) of this system is measured.
A spall piece of skin is removed frox the forearm to allow
the probe to be applied directly to thbe ulna. This is the second i
condition. The DPMI is &zgain measured.
GZ) : All of the tissue surrounding the bones between the

supports is removed. The joints and the tissue surrounding the

joints at the supports is left intact. Care is taken that the
support conditions are pot altered betveen the first three
conditions. A third set of DPAMI data is taken.
Pinally, the ulna is completely excised. Holes are drilled
in the ends of the ulma to accommodate small steel pins. Care is
taken in drilling the boles so that the oricntation of the ulna
is not changed betveen the third and fourth conditions. The pins
are supported in brackets as shown in Figore 6.1. The fourth set !

of DPXI data is taken. |

2: The Bathematical Model 4

O

' to verify the mathematical model described ip Section II.E. To

The DPMI plots produced by the experiments are to be used

J
LQ&WMM o
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do this, the DPNI plots are simulated using the mathematical
model in its appropriate form. The validity of the mathematical
model is verified by demonstrating its capability to accurately
sinulate each of the DPAI plots produced by the experiments.
Furthermore, each parametric value obtaipned by the simulations
must be within a range of reasonable values and, of course, aunst
be non-negative.

In the fourth condition (excised ulna), the ulna {s
supported by a pin and bracket at each end. The pins, vhich are
made of steel are stootb and relatively rigid. The smoothness of
the pins produces essentially no resistance to rotation vhile
their rigidty provides esserntially infinite resistance to
translation.® Therefore the excised ulna can be wmodeled as a
sinply-supported beaa. Por each successive condition, ia
reversed order, the element is added to the mathenatical s=sodel
vhich corresponds to the component of the system which vas
removed in obtaining the previous condition.

The third condition (musculature removed) differs froam the
excisod-ulna condition only in the manner in vhich the ulna is
supported. Ideally, the joints provide sizple supports for the
ends of the ulpma, yielding identical DPNI plots for the tvo
conditions. If the tvo DPMI plots are pot identical, hovever,
then the DPNI plot cf the are in the musculature-removed
condition will provide and indication or the trce .boundary
conditions of a live foreara.

The second condition (probe on ulna) has all of the tissue

¢ The relative rigidity of the pins vas verified by calculating

the static stiffness of a pin anmd coeparing it to a typical
value of static stiffness of a bone. A difference of two to

threec orders of magnitude was found.
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surrounding the ulna ard radius in place. The layer of skin
tetveen the probe and ulna 3in this case has been removed.
Therefore the mathematical model includes the foundation but not
the spring-in-series.

Pinally, the first condition (intact are) is modeled
according to the mathematical model description given in Section
II.C. Since all of the conponents of the vibrating foreara
systen are present, all of the eleaments of the nmathematical
model are present.

The fora of the matheaatical aodel for each successive
condition (in reversed order) contains all of the paraseters
present in the previous coadition together with one or more
additional paramenters. The parametric valres obtained for the

previous condition are preserved vhile values for the additional

-paraneters are obtained wusing the systems didentification

algorithm (SIDA) described im Chapter V. This consistent
building-block approach to modeling the intact are gives greater
confidence that the @wmodel actually represents 2 physical

systes and that arbitrary curve-fitting is reduced to a minimun.

3. Aprlication _of the Systens Identification Alqorithsm

.
-—

A set of computer prograss was vritten to carry out the
sisulations discussed above using the SIDA. These computer
prograss are eactk si:’‘lar to a “one-phase"™ version of the
computer program described in Sectior V.D. The most sigpnificant
modification is that the Aderivatives;, calculated vwithin each
iteration of the SIDA, are scplaced by finite differences,
i.e.,

a2,/7dP, = [2,(P #5P.) ~ Z,(P,) )/3P, (6.1)

. 0, T T TR I
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vhere the finite increment inc the parameter §P_, is taken to be
one percent of the current value of tbhe parareter,

Barly on in the development of the SIDA, some sets of data
vere simulated using the SIDA both with exact derivatives and
vith the derivatives approximated by finite differences. The
values of the derivatives and the finite differences vere
printed out by the computer prograes so that they could be
corpared. Their values vere found to be in agreement within at
least tvo, and often vithin three deciral places. Hence,
accuracy of the finite differences does not present a problea.

A trade-off exists betveen the effort spent in deriving
exact expressions for the derivatives of the DPMI function with
respect to each parameter of the mathematical sodel and coaputer
tivxe spent in calculating the finite difference approximations
to those derivatives. The set of computer programs used to
sirulate the ip yitro experiments must be very adaptable.
Several versions of the matheratical model are use in an atteept
to produce good siaulations, but each corresponding version of
the prograer is run only a fev times. When finite differences are
used rather than exact derivatives, surh less effort is reguired
to change the computer prograam and eepl<y a different version of
the mathematical model. Therefore, the extra computer tige spent
to calculate the finite differences is Justified by their
adaptability ausd convenience. On the other hand, the coaputer

progras which was developed to simulate in vivo tests is to Dbe

rup mapy times without changes. The same program is used vith
many different sets of data. The effort spent in deriving exact
expressions for ¢the derivatives required for this computer

program is justified by the saving of much coaputer tiee.




Another important difference is that the set of “one-phase™
computer prograkRs is not as user-oriented as the conputer
program described in Section V.D. Adaptability is required not
only in the pathematical =model but also in the method of
estahblishing the initial guess. Therefore, the initial guess is
calculated "by hand® and read in at the beginning of the
cozxputer program. This adaptability is more important than the

siemplicity of th2 input in this cace.

8. Results From Monkey 663

The series of experiments, described earlier in this
section, vere perforsmed on the forearms of three monkeys,
identified by their numbers, 659, 663 and 665. The DPNI data
produced by these experiments wvere simulated by the set of
computer programs discussed above, using the various versions of
the pathematical mojel. The resulting DPNI plots associated with
Monkey 663 are shovn in Pigures 6.2 through 6.5. The solid lines
represent the DPMI of the mathesmatical nmodel while the boxes
represent the data points generated in the experiments. The
corresponding parametric values are listed in Table 6.1. .

Pigure 6.2 is the DPMI plot of the wulma in its excised
state. As expected, the DPNI data is wvell sizulated as a simply-
supported beam. Therefore the value obtained for the bending
stiffness.is the best possible estimate of its true valze.

Pigure 6.3 is the DPEI plot of ¢the same ulna with the
musculature resoved but with 'the Joints 1left intact. It is
easily seen that the excised-ulna and musculature-removed plots

are quite different fros one anotter other. The excised ulna is

virtually simply-supported. Therefore, since no other paraaeters

C-2
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vere changed between the excised-ulna and musculature-reamoved
cases, the support conditions of the ulma vhen the joints are
intact must be something other than siiply-snpported.

The bone parametric values detereined from the excised-ulna
case vere used for the musculature-removed case; holding then
constant wvhile determining values for the boundary condition
parapeters that wvill best simulate the data. The boundary
conditions which produce the best results were found to be a
rotational spring on one end of the beam and simply-supported on
the other. Damping was also included at both ends of the bean.

Based on the parasetric studies of Section 1IV.B, a
significant amount of resistance to rotation can be created if
the dovnward force applied through the humerus is not directly
in 1line vith the support as shown in Pigure 6.6. Hence, this is
most likely the major cause cf the resistance to rotation at the
support in these experiments, but experimental verification is
necessary.

Pigure 6.4 is the DPMI plot of the ara in which the layer
of skin between the probe and ulma is removed but the rest of
the tissue is 1left intact. The major difference betveen the
musculature-removed and probe-om-ulnpa plots is the increase in
damping in the latter case, i.e., the region around the minimunm
point of the DPMI plot is moved upwvard. The tissue, in rfact,
contributes much more to overall damping than does the ﬁone.

Pigure 6.5 is the DPMI plot of the intact arm. The major
difference betveen the probe-on-ulna and intact-arm plots is an
overall decrease in DPMI. This is to be expected since the skin
ﬁetveen the probe and the bone is in series with the bone. The

DPEI of the whole systeam is less than the DPBI of either part

i
i
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alone.

A slightly better f£fit is obtained using Orne's three-
parazeter model for the skin (see Section II.C) rather than the
spring alone. Hovever, the skin, vhen tested alone, does behave
as a simple spring, see Figure 2.2. These experiments would have
to be rerun to include higher frequencies to better define this
behavior. |

Sipce the mathematical model has all of the capabilities
pecessary to simulate the entire set of ip vitro experiments, it
is a good representation of the physical system. In dealing with

an in vivo test, hovever, the support conditions of the physical

syster must be evaluated. The parametric values obtained from a
sinulation in this case, will be valid only if the boundary

conditions of the mathematical model are a good representation

of the support conditions of the physical systemn.

5. Results Pron Nonkey 665

The experiments run on Monkey 663, as discussed above, wvere
also Ttun on Monkey 665..The data was simunlated using the SIDA
and the same versions of the sathematical model. The resulting
DPMI plots are shown in Pigures 6.7 throngh 6.10. The
corresponding parametric values are listed in Table 6.2.

Again, the excised-ulpna data of Pigqure 6.7 1is vwell
sipulated as a simply-supported beaa. The remainder of the data
s2ts, hovever, are not sisulated as well. 1 distorbance,
occurring at about 200 kz, in the sascolatore reaoved plot
becomes progressively wmore pronounced inm the probe-on-ulpna and
intact-are plots. This disturbance is similar in appearance to

that vhich is expected from the tissue surrounding the bone.
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Bovever, the tissue is not the cause of the disturbance in this
case since it also appears in the susculature-removed plot. The
true origin of the distutbaﬂce in this data set is not known. It
is not likely, hovever, that it is a tfue Eharacteristic of the
vibrating forearm syster, since it does not appear in the data
fron the other tvo monkeys.

The disturbance found to occur in most of the data from
kuman subjects is still <thoaght to be a result of the tissue
surrounding the bone. This situation does mnot occur in the
sonkey ' data, since the Bmonkey bas less tissue on bhis bones.

Similar experiments on a human cadaver aram must be run to verify

this effect.

6. Resualts From Monkey 659

The DPEI plots of Monkey 659 are shown in Pigures 6.11
through 6.15. The corresponding parametric values are listed in
Table 6.3. Tvo major differences exist between the procedure of
these experiments and that of Monkeys 663 and 665. First, DPMI
data for the ulma in its excised state was not taken 1antil tvo
months after the other DPMI data. During that time, the ulna was
stored in a refrigerator. Second, DPMI measurements wvere taken
on the intact arm at both a 800 and 600 gram-force preload.

As in the other two cases, the excised-ulna data of Pigure
6.11 is . well simulated as a simply-supported bean. The
muscolature-renoved data of Pigure 6.12, hovever, could not be
sirulated directly using the sare boundary conditions in the
mathematical model as those used for Hornkeys 663 and 665. Recall
that the excised-ulna data was obtained twvo months after the

other data. Although the attempt was made to maintain freshness,

A

.




84
significant deterioration bhad occurred. In fact, the SIDA
L indicates a thirty-two percent decrease in the bending stiffness

of the ulna over that time. With this change in bending

. stiffness taken into account, a good simulation was obtained for
t the musculature-removed plot.
} The probe-on-ulna data of FPigure 6.13 is well sipulated by
the mathematical model.

Figures 6.14 and 6.15 are DPMI plots of the intact arm vith
400 and 600 gram-force preloads, respectively. As with the data

from Nonkeys 663 and 665, the presence of the skin betveen tie j

T WY e W Cwemw T

probe and bone has the effect of decreasing the DPNI. This
decrease is less for the 600 than for the 400 gras-force
{ preload, as expected. If the preload could be made bigh enough
vithout destroying the wulna, the decrease in DPNI would

-
‘“> ‘eventnally disappear altogether.

B. BENDING TESTS

!
7
|
k 1. Procedure

The DPBI technique and its apalysis described bherein,

T results in a value measured for the bending stiffpmess of & long

t bone. To verify that this measurement is wvalid, ¢tbe bending

| stiffness bf an.excised long bone, which has been measured using
thé DPBI technique, was measurtd uosing another independent
technique. Each technique should give the sané result. <Yhe

) alternate technigque involves a simple three-point bending test
from vhich a load-deflection curve is generated.

The ulna of MNonkey 659 was tested in each of four

R R
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conditions described in the last section. After the tests vere

(:) completed, it was vrapped in gauze, soaked in Ringer's solution
and frozen to maintain as much freshness as possible. The ulna
vas then pailed from Stanford University, <California to VWayne
State University, Michigan, where it wvas again frozen. Just
prior to testing, the ulna vas brought to room teamperature by
soaking it in a jar of Ringer's solution.

A Batevial Testing System (MTS) machine vas used to perforr
the bending tests. The ulna, already pinned from the "PNI test,
vas placed in the bending fixture as shown in Pigure 6.16. The
BTS machine wvas prograssed to apply a copstant deflection rate
to the center of the ulna. Several different deflection rates,
ranging from 0.5 x 10-3 to 0.5 in/s (1.27 x 10=3 to 1.27 ca/s)

vere used. These deflection rates are slov enough so that amass

- and danping effects are not present. The maximuas deflection,
approximately one-half centimeter, produced stresses vhich are
vithin the elastic range. The load-deflection curve, shown in
Figure 6.17, vas geaerated on am x-y recorder, using the force
and displacement signals from the MIS machine.

| The static stiffness of the ulna is determined from the
load-deflection curve using the relation
K = OAFP/AS (6.2)
vhere AF and AS are shown in Pigure 6.17. The bending stiffness
of the ulna, uvsing a uniform bean model, is then deteriined fros
the relation
Bl = KL3/48 : (6. 3)
(ﬁj The ulna vas alloved to dry for a period of tvo months. The

value of the bending stiffness vas then remeasured.
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2. Results and Evaluation

A summary of the measurenments described above is given in
Table 6.8. Note that the value obtained for the bending
stiffness from each successive test is significantly lover than
that obtained from the previous test.

Although the attemapt was made to keep the ulnma as fresh as
possible, it had deteriorated to some degree. Table 6.4 suggests
a trend towvards 1lover values of bending stiffpness as the ulna
deteriorates. Therefore, higher values would be expected if the
bending tests had been performed immediately after the DPANI
tests. The percent difference would then be reduced, if pot
elininated all together.

With the effect of deterioration taken into account, the
bending stiffness values ameasured by the two independent
techniques are fairly consistent. Hence, these results support

the validity of the DPHI tests.

C. NON-BIOLOGICAL TESTS

v o —

1. The Systeas

To verify that the equipment is actually measuring the DPAI
properly, ‘the DPXI of two non-biological systems is nmeasured.
Norn-biological systees can be constructed in such a vay that
their mechanical response is much more predictable than that of

a biological systea. Parthermore, the components of that systen

~ can be made of materials whose mechanical properties are well

knovn. In particular, the twvo systemrs at band are made of comzon
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metals.
The first system is simply the calibration ;ass discussed
in Section I.B. The second systen consists of a unifora bean,
pachined from a bar of aluminum, and supported by pins pear its

ends.
2. Calibration Mass

The calibration mass is cylindrical in shape, is made of
brass and has a mass of 98.4 grams. The magnitude of the DPHI of
a pure mass is (see Table 2.1)

Z = up (6. 4)
Therefore, a log-log plot of the DPNI data should form a
straight line on a ¢459 angle. However, this is true only for
relatively lowv frequencies. At very high frequencies the mass
deforms. Therefore, the DPMI curve should go through a series of
resonant and anti-resonant points.

DPMYI data, taken for the calibration mass up to a frequency
of 3000 Hz, is shown in PFigure 6.18. The calibration nmass
7ibrates as a pure mass up to a frequency of about 1000 Hz. It
then approaches its first anti-resonant point at approximately
2800 Hz.

The system is modeled as a simple ope-dimensional
continuous rod with a harzmonic force applied to 4its base. The
DPSI of such a model is .

"2% = imp tan¥ / ¥ (6.5)

vhere A

Y = np/w

R = mass

w = fundamental freguency
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p = forcing frequency
The mathematical model vas used with the SIDA, described in
Chapter V, to determine that the fundamental frequency of the
systea is 5519 Hz (i.e., the first anti-resonant point is w2 =
2760 Bz). The DPMI of the model is shovn as a solid 1line in
Figure 6.18.

The =modulus of elasticity and density of brass are known
guantities aud the height and diameter of the calibration amass
are easily measured. The fundamental frequency, estimated froa

w = w/L {E/¢ ' (6.6)
is found to be on the order of 60,000 Hz, with a corresponding
anti-resonant point at 30,000 Bz.

Since the anti-resonant fregquency determined from the DPMI

data is a vwhole order of magnitude lover than the expected

" value, it sust be a sub-anti-resonant? point. If the frequency

range of the DPMI data could be extended beyond 3000 Hz, sub-
resonant and more sub-anti-resonant points would be observed.
These points may be due to the deformation of the screw

connection betveen the impedance head and the calibration mass.

3. Alurinum Beasm

The aluminum beam and its support brackets are shovn with
their ﬁilensions in Pigure 6.19. The purpose of the aluminanm
beam is to provide a standard to insure that the impedance
egquipment is operating properly each time it is used. HNetal,

unlike biological materials, remains uanchanged over a 1long

T "Sub-anti-resonant" point refers to a local disturbance whose

source is outside the system of interest; analogous to "sub-
resonant® point, see Section IV.D.
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period of time. Therefore tbhe true DPMI of the aluminum bean
vill remain unchanged. The DPMI plot of the aluminum beam should
be generated prior to each use of impedance egquipment. If any
deviation appears in this data then the eguipment should be
checked for malfunctioning.

The alueinuo beam was designed to have a static stiffness
and fundanental frequency in the same range as a typical monkey
ulna. Unfortunately, it is not possible to produce a unifors
bean with these properties and with a cross section large epough
to accorodate rigid support pins. Therefore, it was necessary to
make the ends of the beas larger in cross section than the rid-
portion. Only a very small effect on the DPMI data plot due to
the enlarged ends is anticipated.

A typical set of DPNI data from the aluminue beam vas
simulated using uniform, simply-supported beam wmodel vwith the
SIDA. Its DPMI plot is shown in Figure 6.20.

The aodulus of elasticity E, and density pe of aluainua is
known® and the dimensions of the bean are given in Pigure 6.19.

The bending stiffpmess and fundamental freguency are calculated

vsing
EI = Bpde/6l (6.7)
w = (r2/L2) lBI/pA = (w2d/4L2) {E/p (6.8)

An area-mosent method of analysis and a Rayleigh method analysis
vere carried out to determine the effect of the enlarged ends on
the bending stiffness and fundamental freguency, respectively.
These values, together with those detersined from the DPXI data

are listed in Table 6.5.

———

® E = -7x10%% dyne/ca2, = 2.7 g/ca3, e.g., see FPaires (1965).
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It is seen froe Table 6.5 that significant differences are
apparent betveen the predicted values of the bendi:j stiffnes
and fundamental frequency and their values determined from the
DPMI data. Some, but not all, of that difference is accounted
for by including the effect of the enlarged ends of the bean.
The only other possible source of the discrepancy (assuming, of
course, the impedance eguipment is functioning properly) 4is inm
the Dboundary ‘conditions. It was shown in Section IV.B, that
resistance to rotation at an otherwvise sieple support of a beanm
tends to wove the DPMI curve upvard and to thke right. Therefore,
there wmight be and excessive asount of friction in the pins
vhich support the beam. A light o0il sbould be applied to the
pins to elimipate this friction.

It is seen from Pigure 6.20 that the DPMI data and the DPNI
"of the mathematical model are well correlated up to a freguency
of about 1000 Hz. The anti-resonant point of the wmathemutical
model, bhovever, is a fev hupdred Hz higher than the anti-
resonant poiu.. of the systea.

Recall that a sub-anti-resonant point wvas observed near
this frequency 4in the DPNI Gata of the calibration mass, most
likely due to defornmations in the screv conpection at the
impedance head. It is possible that a similar sub-anti-resonant
point is occurring du2 to the screv connection betveen the
impedance - head’ and the probe. This sub-anti-resonant point may
or may not be exactly the same frequency as the previous one.
Since the sub-anti-resonant point is relatively close to the

apti-resonant point of the beam, the observed anti-resonant

point is a cosbination of the two.
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CHAPTER VII

APPLICATION TO EXISTING DATA

1. Results

Thompson measured the driving-point mechanical iapedance
(DPEI) of the forearm of several human subjects using the
icpedance measuring eguipment wvhichk he developed (see Section
I.®). The tests vere performed over a frequency range froe 50 to
1000 Hr using three different preload forces. The systeas
identification algorithm® (SIDA) wvas then used to determine
parametric values for the mathematical model vhich best simulate
the data for eight of tbese subjects. The DPBAI plots from one of
these subjects, Subject TT, are shown in Pigures 7.1, 7.2 and
7.3. The s0lid 1lines represent the DPMI of the mathematical
molel vbile the boxes represent the data points generated by

Thoapson. Yhy ODPHI plots of the resaining seven subjects are

* The computer progras vhich incorporates the SIDA is similar to
the one presented 4in Section V.>. %T:e only difference is that
the computer prograe used here has the capability of simulating
three sets of data sisultaneousi_', ‘bus determining the three
values for the spring-in-series; oue corresponding to each
preload.
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presented in Appendix G. The corresponding parametric values for
all eight subjects are listed together with other available

information in Table 7.1.

2. Discussjon

The parametric values 1listed 4in Table 7.1 are good
approxisations of the geometrical and material properties of th=>
physical system provided the nmathematical =model is a good
representation of that pbysical system. Therefore, to
investigate the validity of these values, it 1is necessary to
evaluate the support conditions. All other aspects of the
sathepatical model vere shown in previous chapters to oJe very
good approximations of the vibrating forearm systea.

When positioning the subject's forearr in the fizxture,
Thonpson carefully lined up the humerus with the support by
eye". The misalignment (discussed in Section VI.l) ®ay pnot be
perfectly eliainated but it is certainly significantly reduced.
Thus  the supports are relatively free from rotational
resistance.

Thonpson made the supports as rigid as possible vwith
respect to translation by foraing plaster pads under both the
vcist and elbov. Be demonstrated the rigidity of the sapports by
shoving that the DPN¥I was independent of both the clarping force
at the wrist and the downvard force applied through the humerus
st the elbov.

Based on tbhe discussion above, the supports are virtoally

sisply-cupported. The parasetric values listed ia Table 7.1 wvere

obtained using the SIDA and the mathematical model vith simply-

supported boundary conditions. Therefore these values are very
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good approximations to the actual geometrical and =material
properties of the vibrating forearm system for eachk subject.
Furthermore, the simnlations appear to give accurate results.
The error functions associated with each plot are withinm tvwo
percent and about half of them are within one percent.

The mass per tait length of the bone p, is calculated by

solving equation (3.4)

"

p (r/L) ¢ Bl/wR (7.1)
wvhere L is the support length, EI is the bending stiffness and w
is the fundamental fregquency. This value represeants the total
pass per unit length of the bone. Measurements of bone aineral
content (BMC) were also taken for each subject using A Norland-
Cameron Bone Mineral Analyzer. This value represents the minmeral
mass per unit length of the bone. Values for p and BEC for each
‘subject are alsc listed in Table 7.1. It is reasonable to expect
these tvo gquantities to correlate guite vell since all bones
tested are bones of healthy, young adults. The correlation
coefficient r is in fact 0.81, a reasonably high value.

Strong correlations have been found to exist betveen
bending stiffness and BMC. (see Borders, Peterson and Orne, 1977
and Jurist and Foltz, 1977). Since the existence of this
:ofrelation is well established, it is reasonable to expect a
similar correlation between the values of bending stiffness and
BEC listed in Table 7.1 provided the values for. bending
stiffness are valid. The correlation coefficient r, of such a
correlation, wvas found to be 0.87, a value cosparable to
findings of Borders, Petersen and Orne (1977) and Jurist and
Foltz (1977).

Each of the points discussed above support the validity of
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parametric values listed in Table 7.1.

B. MONEKEY DATA

1. Results

Since the development of Thompson's impedance measuring

eguipment, DPMI data has been generated on a routine basis for
the forearns and legs of lbnkeys at Ames Research Center.
Finety-four sets of such data from twenty-six different monkeys
have been made available through personal cozrmunication. These
tests vere run over a frequency range from 100 to 2000 or 3000

Hz. The preload force in most cases vas 600 graz-force (589 x

103 dyne), although some tests were run with both a 600 and a

300 gram-force (294 x 103 dyne) prelocad.

The computer program presented ian Sectioﬁ V.D vas used to
deternine parametric values and generate a DPMI plot for each of
these sets of data. A representative set of six of these DPANI
plots are presented in Figures 7.4 through 7.9. They are {rox
the tests run on the leg and forearm of Monkeys 2, 1v and 17,
The correspornding parametric values are 1listed wvith other

available inforeation in Table 7.2.

2. Discussion

The DPEI plots of the legs appear to indicate that the

" sinsulations are guite accurate. The DPAI plots of the forearas,

hovever, indicate that the simulations are not accurate.
Purtheraore, the SIDA did not converge when applied to two of

these data sets (forearas of Monkeys 2 and 16) using the six-

[y
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parameter sodel?© (6PM). This trend is present throughoot most
of the data.

To investigate the validity of the parametric values listed
in Table 7.2, it is necessary to perform tvo evaluations. Pirst,
the cause of the difference between the leg data and the foreara
data must be determined. Second, the support conditions must be
evaluated.

Pornm the ratio k/K using the parametric values 1listed in

Table 7.2, where

K = 3EIL/a2b2 = the spring constant of the bone
= U4B8EI/L3 for the probe at the center (tibia)
= 625E1/1213 for the probe at .6L (ulna)

k = spring constant of the skin

The value of k/K is also listed in Table 7.2 for each limb.
Since k/K is the ratio of the spring constants of the skin and
bone, it is a major factor in determining the magnitudes of tke
DPMYI data. The stiffness of the skin k, is nmade as high as
possible by increasing the preload force on the electroragnetic
shaker to a tolerable limit. If it vere possible to increase k
to infinity, then the resulting DPEI plot would be that of the
system vithout the skin. If k is relatively low, such that k/K
is equal to 2 or 3, then most of the characteristics of the
underlying system will be ®masked” by the presence of the skia.

Therefore; k/K must be bhigh enough to ®expose" all of the

characteristics of the rest of the systes.

In viev of these coaments, examine the values of kx/K listed

10 The results obtained from applying the SIDA with the four-

parameter wmodel (4PH) are presented in these cases. For an
explanation of the 4PN and the 6P¥, see Section V.C.
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for each limb in Table 7.2. Note that in general, k/K is auch
{:} higher for the forearm than for the leg. In particular, note the
extremely bigh values for the forearm of Monkeys 16 and 17. Xk
is relatively constant since the preload is the same for all
bones. Hence, it is reasonable to expect this large variation in
k/K because the bone stiffness K, varies significantly with the
size of the bone. Table 7.2 shows that K is almost an order of
magnitude 1larger for the tibiae than for the nlnae. Therefore
the data vhich best exhibits the characteristics of the systen
{the bone, tissue and supports) are those of the foreares
because k/K is greater. Furtheramore, the most revealing forearas
data is from Monkeys 16 and 17.
Referring to Pigures 7.8 and 7.9, it can be seen that there
is an additional relative ainimum in the DPNI data at about 1200
<:) Bz which the sieply-supported bear model can not account for.
This is typical of the sets of data which have a higk k/K value.
Based on the above discussion regarding the masking effect of a
lov k/K value, it is reasonable to suspect that this additional
relative minipum is characteristic of most of the limbs but that
it is hidden by the low k/K value in many cases, particularly
vith the legs.

In Section 1IV.B, it vas shown that although the boundary
conditions do not affect the shape of the DPBEI curve at low
freguency, they can affect it at bigh freguency.'l DP¥I curve
vith a general shape similar to that of the DPMI data in Figures
7.8 and 7,9 can be generated if the boundary conditions of the
beam are those of case 5, i.e., a translatioral spring (and

- daaper) at each end. This is further demonstrated by the non-

dimensionalized DPMI plot shovn in Pigure 7.10. This figure vas
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generated using the folloving non-dimensional parametric values:

% = 0.1

e
'

= 2k,L3/BI = 10

-3
r
"

2k, L3/EI = 10

Cyy = cuw/k, = 2

Cr; = cow/k, = 2

k/K = 20
Furthermore, the masking effect of. a lov value of k/K is
accounted for in this model as demonstrated by Pigure 7.11,
where its value was reduced froa 20 to 2. Knowing the type of
boundary conditions which can possibly produce the kind of DPAI
data in Pigures 7.8 and 7.3, speculations can be made on the
cause of such data.

At some point in the development of the impedance measuring
procedure, the plaster pads at the supports (discussed in
Section VII.A) vere replaced by putty. Noct putty exhibits both
springlike and damperlike behavior. Therefore, it is very likely
that the putty is a major factor 3imn producing the second
relative minimum in the DPHI data. FPurthermore, it is difficult
to rigidly support the tibia @&t the ankle. The soft tissue
surrounding the tibia may also be contributing to the springlike
and damperlike behavior of the support.

The boundary conditions of the mathematical model used to
obtain the parazetric values 1listed in Table 7.2 aré simply~-
supported. Since the support conditions of the forearms and legs
for the DPHMI tests discussed above are not simply-supported, the

paraaetric values are not accurate.
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CHAPTER VIII

CONCLUSION
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Y. Overviev

A brief summary of the research project as a wvhole is
given, folloved by a susmary of the contributions of this work.
It is important to consider the relationship between this wvork
and the work of other investigators involved in the research
project and to give thea appropriate credit.

The impedance wmeasuring egquipment and procedure wvere
developed by Thompson (1973). He measured tbhe driving-point
sechanical impedance (DPHI) in vivo of the foreare of several
healthy, youny, adolt, human subjects. Thélpson also nsed 1
single-degree-of-freedom oscillator (SDOFO) 1im series wvith a
spring as a mathermatical model to interpret his data.

' Orne' (1974) proposed a visco-elastic beam model to better
simolate the DPNI data. Orne and Mandke (1975) fuarther ixproved
the mathenatical model to account for some of the finer details
of the DOKI Jata. They also proposed a series of erperiments to

be run »n a monkcy forearsm to verify the sathematical model.

fetersen (1977) performed the experiments which Orne

L

e




99
proposed.dt One of tbe ulnae from these experiments wvas also
tested statically in three-point bending on a Baterials Testing
System (MTS) machine. |

A series of experiments involving the smeasurement of
breaking strength of excised canine long bones was perforned;
see Borders, TJetersen and Orne (1977). Bending tests wvere
conducted on an MTS machine and correlations wvere established
betveen the various parameters measured in these tests.

Petersen (1977) made sone modifications to Thompson's test
procedure and applied it in vivo to both the forearm and leg of
ronkeys. DPMI data has since been collected for monkey forearas
and legs on a routine basis by Howvard (persopal communication)
at Ames Research Center.

Concurrently, the mathematical model was further developed.
An extensive parapetric study was made using the mathematical
rolel. A systems identification algorithm (SIDA) was develcped
and applied to the data obtained during the experiments and

tests mentioned above.

2. Parametric Study

A parasetric study bhas been carried out (Chapter 1IV) to
determine the effect of each parameter of the mathematical model
or its DPNI response. Tvo accomplishments vere attained as a
result of the study. Pirst, an increased understanding of the
effects of the parareters wvas gaipmed. Second, many gualitative

relationships betveen the parameters and the characteristics of

11 These experiments vere rerun with a vider frequency range on
both the forears and leg of a monkey. However, the iepedance
reasuring equipmsent was not functioning properly and the DPAI
data could not be interpreted.
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the DPMI curve wcre derived. A brief description of the
pathematical model folloved by a sumzary of some o0f the Bmajor
findings is given here.

The ulna of the vibrating forearm systen is represented by
a uniform, linear, visco-elastic, Euler-Bernoulli beam. The skin
and tissue compressed betwveen the probco 2nd bone is represented
by a spring in series with the bean. The remaining skin and
tissue surrounding the bone is represented by a visco-elastic
foundation with mass.

A linear bear model, regardless of its bounédary conditiosns,
generates a DPMI curve which is identical in shape to that of a
SDOFO up to a frequency of at least tvo times, and often as much
as ten times the fundamental frequency. This is demonstrated by

the figures presented in Chapter IV for several different types

0of npon-classical bourdary conditions. The only parapeter

affecting the shape of the curve is the dampirg ratio.
Purthermore, the position of the curve on the plot is entirely
determined by the static stiffness and furdamental frequency of
the bean.

None of the boundary conditicns discussed in Chapter IV
produce a rigid body waode of vibration, i.e., produce a zero
fundaeental frequency. In fact there exists only two cases of
boundary conditions which will produce a rigid boedy mode: free-
free and pinned-free. The DPMI curve in these tvwo éases is
identical, up to three or four times the fifst antiresonant
frequency, to a SDOFO with the driving force applied to its
base.

A fev approxipate relationships betveen the parameters of

the beam and the characteristics cof its DPHI curve have been
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derived. They are useful for obtaining a first approximation for
the parameters directly frosm a set of DPHI test data.

N transfer matrix method of analysis wvas developed to study
the effect of taper (Appendix B). This method allows any
parameter which is varying along the length of the beam to be
approximated by a series of step functions constant within each
element of the beam. The transfer matrix is generated from the
exact solution of the bear within each element. (Note: the
equations vaich make up the matrix could also be rearranged to
form a stiffpess xatrix, thus producing a finite element
represeatation of the beasn.)

The conclusion drawvn from applying the transfer matrix
rethod to a calculation of the DPHMI is that the taper does not
affect the DPNI in the freguency range of the DPNMI tests. A
uniform beam and a tapered becam with the same static stiffness
each produce a DPMI curve wvhich is identical up to frequencies
of at Jleast an order of amagnitude above the fundamental
frequency.

A visco-elastic foundation with mass has tvo effects on the
DPNI curve of a beanm. Pirst, it produces a subresonant
disturbance in the othervise smooth curve. This disturbance is
present in many DPMI data sets. Second, the foundation produces
a damping effect, similar to the dampping in the beam. Hence, the
minimum point of the DPHMI curve is affected by the para;etets of
the foundation. This effect could not be guantifiéd in close
fora doe to the complexity of the DPAI eguations. Hovever,
approximate relationpships vere derived vhich are valid for some
range of paranmetric values.

A spring in series vith a beam has its major effect in tbhe




- ks A i

102

high fregquency range. The total DPMI of tvo systems in series is
dominated by wvhichever system has a lowver DPNI. Thus, the spring
doainates the total DPAI in the high freguency range vhere its
DPMI is lov. The high frequency data from a DPMI test has been
used in the past to approximate the stiffness of the spring.
Hovever, data is pot available in a high enough frequency range
to completely elimipate the effect of the bean. Hence, this
approach led tc significant errors in estimating the spring
stiffness, which din turn led to errors in estimating the
stiffness of the beam. An alternate approach has been developed
vhich is much more accurate. The approach ic based on the
location of the marimua point of the DPMI curve which occurs due
to the spring. This eliminates the need for the bhigh freguency

data, othervise required to make the estimate.

A SIDA has been developed to d;terline the parasetric
values of the mathematical model which best simulate the data
obtained from a DPNI test (Chapter V). The SIDA is based on
gininizing the error function; a function similar in foram to
that used in a classical least-sguares method.

Due to the cosplexity of the DPNMI equations of the
pathenmatical model, the error function is very mnonlinear with
respect to its parareters. Consequently, a systeam of egquations
obtained by setting the derivative with respect to each
parameter egual to zero, 4is wvirtuvally dimpossible to solve.
Rather than solving for the parametric values directly, an
iterative procedure was develcpel vhich invelves the calculation

of a change in each parasetric value vhich will brirg that
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parameter closer to its correct value.

The expression for the DPMI of the mathematical model vas
replaced by the first tvo teras of its Taylor series expansion
about the point associated wvith the current value of each
paraneter. Then differentiating the error function with respect
to changes in the parametric values leads to a syster of
equations which are. linmear in these cbanges. To start the
iteration procedure, an initial guess for each parametric value
is obtained using the relationships derived in the parasmetric

study.

4. Pvaluation of Bristing Brrerieents and Tests

Data from several groups of DPHI tests and experiments have
been made available throngh personal cosaunication with Ames
Research Center. Among them are (1) in vitro monkey experiuents,
(2) nonbiological tests, (3) Thoepson's origimal in vivo tests
and (8) more recent in vivo monkey tests.

The in vitro monkey experiments, discussed in Section VI.},
involve the measureaent of DPAI of a monkey foreare in several
stages as the ulna is being excised. The mathematical model vas
shovn to be a good representation of the physical system by
using it in its appropriate form to simulate the vhole set of
experiments with a consistent set of parametric values. Bending
tests were performed on one of the ulnae which veré excised
during the experiments (Section VI.B). These tests verify the
value cbtained for the bending stiffmess of that ulra. The
experiueits, bowvever, revealed that a probles exists in the
consistency of the support conditions of the specimen. This

problem vill be snasmarized in the mext section.
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DPMI tests vere run oan twvo monbiological systees: a "rigia®
mass and an aluveinum bean. The data from these tests wvere
studied, makiug uvuse of some simple mathematical models (Section
V1.C). The rosults indicate that the imprdance measuring systea
is, in fact, measuring the DPMI properly over most of the
frequency range.

Thompson, the developer of the ispedance aeasuring
equipment, measured the DPNI in vivo of the forearz of several
human subjects. The mathematical model wvas used with the SIDA to
determine the parametric values (Section VII.A). The results
ind:cate that both the impedance measuring equipment and the
analysis procedure are vorking vell. Values were obtained for
bending stiffpness of the ulna of each subject.

The impedance wmeasuring procedore has since bcen modified
and appliel to forearms and legs of monkeys jin vyvivo (Section
VII.B). These tests revealed a fuorther problem with the support
conditions of the specimen and is also summarized in the next

section.

B. RECOMMFNDATIONS

). Prohlexs Revealed by Experiments

In silulating the in yitro experiments of Section VI.A,
only a fev parametric values vere determined froa each set of
data. In particelar, th? bone parameters and the support
parameters were determined froa tvo different DPEI data plots.
Bovever, when simulating an in vivo test, values for the whole

set of'paraaeters must be dectermined simultaneously fros a
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vingle set oOf data. If this set of parazeters contains
stiffnesses of both the bone and supports, then the npumber of
parameters will be too great. It is dispractical to use a
mathematical model vbich has too many stiffness parameters since
it is impossible to identify each parameter individually. On the
other hand, the boundary conditions of the mathematical =model
pust be 2 good representation of the support conditions of the
physical systee. The only wvay to solve this dileema is to have
sozme control over the support conditiors in the jin vivo tests.

Ideally, tbe support conditions in the in vivo testg should
be made simply-supported. To do this, all sources of lateral
translation and resistance to rotation at the supports gust be
eliminated. A systematic procedure should be developed which
consistently produces support conditions which are wvirtually
‘sinply-supported.

In practice, it say not be rossible to consistently attain
the simply-supported support coundition. Hovever, even if this is
the case, a systematic procedure is pecded for positioning the
specimen in the test fixture. Tvo reguirements must be imposed
on this procedure. First, the procedure must produce support
corditions wbich are as nearly siaple-supported as possible (or
pra:"tical). The purpose im striving for such a support condition
is to maximize the strength of the dependence of the DPAI of the
vibrating foreara or leg systes on the bone stiffneés. thus
maxisizing the sensitivity of the DPMI to changes in the bone
stiffness. Secondly, the procedure must produce support
conditioas which are repeatable. If the support conditions are
not to be known, then they must at least be consistent from one

test to the pext. In this case, the value of bone stiffness
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inferred through the mathesatical model will be an index of the

true bone stiffness rather than an absolute measare.

2. PRurther Sugqgested Pxperiments

Based on the parasetric studies of Section 1IV.B, a
significant amount of resistance to rotation cam be created 1if
the dovnward force applied througl the humerus is not directly
in line wvith the support as shovn in Pigure 6.6. It is believed,
therefore, that ¢this is a =major cause of the rotational
resistance that wvas found to be present at one of the supports
in the in vitro monkey forears experiments. This speculation can
be tested by ronning additional 4in yitro monkey forearn
experiserts. In these experiments, the support is to be
positioped in several different locations in the vicinity of the
~ elbow, thus varying the degree of misaligrment. A value can be
obtained for the bending stiffness of the ulna using the sisply-
supported beam model and the SIDA in each case. Then excising
the nlna, the ¢true value of the bending stiffness can be
detersined. A cosparison of this value vith the forser values
vill reveal whether or mot the misalignment is the only cause of
the rotational resistance at the support, and vhirh positioning
vill minimize or elininate it. Several sets of such experisents
vill aid 4in establishing a standard, systematic asethod of
positioning for all foture in vivo monkey forears tests:

The in vitro experiments suggested in tlhis sectién,'as vell
as those discussed in Section VI.) should also be perforsed on
monkey tibiae, bhuman cadaver ulnae and any other type of
specimen to be routinely tested in vivo. Although the modeling

concepts applied to the forears of a sonkey are also applicable
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to monkey legs and hunau forearas, the geometry of the supports
€:> in each case is quite different. A standard, systematic nmethod

of positioning is also needed in these cases.

3. Suggested Modifications to_the Test Procedure

The igmpedance =measuring procedure currently being used at
Ames Research Center has one major flawv: the support conditions
of the speciren are not being controlled. Since the DPMI is just
as sensitive to the support conditions as it is to the bending
stiffness of the bone, the support conditions must be known in
order to determine the bending stiffness. If the boundary
conditions of the watheamatical model are not a good
representation of the support conditions of the physical systean,
then the value obtained for the bending stiffmess will be in

QE) error, possibly as much as an order of magnitude,

Tvo modifications to the impedance measuring procedure are
reconnmendei. Pirst, the positioning procedure to be established
by the experiments suggested above should be adopted as part of
the procedure for each DPMI test. This vill reduce, if not
completely eliminate the resisitance to rotation at the
supports. Second, Thompson's procedure, involving the use of
plaster pads under the wrist and elbov should be readopted. This
vill elirinate the translation alloved by the putty at the
suppocts - (Section ViI.B). The result of adopti;g these
modifications 4is that the support conditions vill De
sufficiently controlled to obtain repeatable accurate results.

One further recormendation which may prevent the production
F“;f meaningless DPNI data is suggested. A standard, such as the

aluminum beam (Section VI.B), should be used to insure that the
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impedance ameasuring equipment is operating properly over the
frequency range of the test. Each time DPMI tests are conducted,
the DPMI of the standard should be measured and the data briefly
examined. Por exaaple, using the aluminum beam shovn in Pigure
6.19, with the pins luobricated with a light oil, the general
shape of the DPMI data should be as shovn in Piqure 6.20. The
minimue point should occur at approximately 850 Ez and the
maximum point at approximately 2800 Hz. The static stiffness
should be 5.35 x 107 dyne/ca which corresponds to a DPNI of 8.5
x 104 dyne s/ca at 100 Hz. If these specifizations are not =met
to within a few percent, then the impedance measuring equipment

should be further checked for malfunctioning.

4. Concluding Remarks

The impedance measuring procedure developed by Thompson
(Section I.B), with recommended modifications discussed above,
can be used to generate an aécurate, repestadble set of DPNI data
for a forearn or leg. A systematic, user oriented analysis
procedure has been developed and programeed on a digital
conputer. The computer program, listed in Appendix P, eaploys
the mathematical model, developed in Chapters III and IV, and
the SIDA, developed in Chapter V. The wmathedatical model
consists of a uniforam, linear, visco-elastic, simply-supported
Euler-Bernoulli beaa to represent the bone; a visc;-elastic
foundation wvith mass t2 represent the tissve surrounding the
bone; and 8 spring betveen the beam and <driving force to

represent the skin betveen the bone and probe. The SIDA

_.&etetlines values for the mathematical model wvhich best simulate

the DPMI data using an iteration scheme to sinimize an error
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function. The error function is similar to that which is use& in
a classical least-squares curve fit. Due to the resemblance
betveen the mathematical model and the physical syster, the
parametric values vwhich produce a gool simulation of the DPAI
vill infer the &®material and geometrical properties of the
physical systen.

One of these properties, the bending stiffness of the bone,
vas shovn to correlate guite well vith its breaking strength, at
least for normal bones (Borders, Petersen and Orne, 1977; Jurist
and Poltz, 1977). Breaking strength is a good measure of bone
integrity and therefore may be a good indicator for w®many bone
disorders such as osteoporosis. Howvever, more correlation
studies are necded to determine the effects of various bone
disorders on the stiffness and strength of bones.

Bone nmineral content (BMC) 4is currently being used in
ongoing experiments to monitor chamnges in the bones of ®monkeys
dnring prolonged hypodynamic restraint (Young and Tremor, 1978).
Inpedance testing 4is the only feasible technique currently
available as a possible counterameasure to BEC. The impedance
zeasuring and analysis procedures presented here can be used in
conjunction with measurements of BEC to better define the
condition of the bone being examined.

Young and Treeor (1978) report an average of 3.5 percent
loss in ‘femoral BHC in ten restrained monkeys over the
relatively short time period of one month. Whedon et al. (1976)
reports changes in 3MC of 7.9 percent 4in the os calcis of
astronauts after 84 days in a veightless enviroment, in spite of

" a rigorous exercise program. These changes are significant

although they occurred during a relatively short period of time.
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#uch larger changes are expected to occur over longer periods of
veightlessness, e.g., during a 1.5 to 3 year trip to Mars, or in
a severe case of bone disease such as osteoporosis.

Although the percent changes in bending stiffness vhich
occur wvith various bone disorders have not been measured, they
are expected to be at least as great as those found in BNC.
Bending stiffness 4is proportional to the fourth order of the
cross sectional dimensions vhile BMC is proportional only to the
second order, i.e.,

EI = E c, d¢ ' BNC = BED A = BMD c,d2 (8.1)

vhere BMD is the bone mineral density,

A is the area of the cross section,

d is a cross sectional dimension,
and c,, C, are constants of proportionality.
Therefore, the bending stiffness is more sensitive than the BAC
is to changes in geopetry. If percent changes in modulus of
elasticity are of the saere order of magnitude as percent changes
in BY¥D, then bending stiffness will actually be a more sensitive
indicator than BMC. Bence, the expected percent changes in
bending stiffness are greater than those cited above for BMC and
greater yet for amore severe cases. With the recoammendations
discussed above taken into account, ¢the impedance wmeasuring
procedure is accurate and repeatable enough to detect and
measure these changes. .

A technician in the clinical setting, can carrf out the

impedance testing protedure and run the coapunter program to

deterzine the bending stiffmess of a bone and interpret the

result in teras of a particalar bone disorder, all vith a

minisum of training. The test takes only a fev minutes and is

R WY P ragge T e - I I
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entirely nponinvasive. Two developments are needed to ascertain i
the feasibility of this technique. They are: (1) to develop a
systeratic positioning .procedure, and (2) to develop the
correlations beﬁueen BNC, bending stiffness and various bone

disorders. Both of these are quite achievable.
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CHAPTER IX

APPENDIX

A. IBPEDANCE EQUATIONS

The driving-point mechanical impedance (DPMI) of a single-
degree-of-freedonm oscillator is
2% = c + i(sp - K/p)

The DPMI of a beam is of the forn

Z% = 2E*IA3/Tipf (AL) ]
vhere
A8 = Pth/EtI

and f(AL) 1is a funcition which depends on thte boundary
conditions. For each set of boundary conditions listed in Table
3.1, f(AL) is as follows:
1. Simply-supported

f(Al) = sinla sinib/sinAl - sinhia sinhAb/sinhAL
2. Rotational spring on one end

£(AL) = [ (sinkAa 4 «) (sinib sinhiL + §)

; (sinh2ia ¢ a) (sinh2b sinAL ¢ ) V/
(sin2L sinhadl ¢ v)

vhere « = k, (coshla = cosia)/2E*I2A
— ¢ = k, (sinAd coshil - sinhAb cosAl)/2E*IA

Y & Xk, (sic2L coshi3l = sinh2L cosALl) /2E#*I)




113
3. Rotational spring on each end
£(AL) = [ (sinia ¢ a) (Sinib ¢ §) (SinhAL + Y + g,)
=(sinbhAa ¢ a) (sinhAb ¢+ B) (sindl = Y = §)
=(sinib ¢ §) (sinhlia ¢ a) (v ¢ §))
- (sin?2a ¢ a) (sinhdb + g) (Y ¢ §5) V/
[(sipil - v = §) (sinb2L ¢ Y ¢ 5) ¢ (v ¢ ) (VY ¢ §)])
vhere & = k, (coshia - cos?}a)/2E*1I2

f = k; (coshlb = cos2b) /2E*I]

Y = k, X, (sinhAL ¢ sinAl)/(2B*1))2 ‘
§ = (k, + k,;) COSAL/2E*I} ‘
§, = (k, ¢ k;) coshAL/2E*IA
& = (k, cosAl ¢ k, coshil)/2E*I1
§ = (k, cosAL ¢ k, coshil)/2E*I]

8. Translational spring on one end

f (ML) = sinia sindb/sinAlL - sinbh2a siph2Ab/sinkAl - g2/ 6

vhere 8 sinAb/sipnil ¢ sinhAb/sinhAlL

5 coshAl/sinhAl - cosAl/sinAl - 2k, /E*IA3

5. Translational spring on each end
f(ALl) = sinaa sindAb/sinAl - sinhia sinhib/sinhAlL

- (B25, ¢+ x2§, ¢ 248V)/(6,5, - Y?)

vhere o = sinAa/sinAl ¢ sinh4a/sinhil
= sindib/sinil ¢ sinh2b/sinhil
Y = 1/sinhAl - 1/sinil

& = coshiL/sinhAl - cosil/sindl - 2k, /JE*I23

5, = coshAl/siphaLl ~ cosil/sinil = 2k,/E*IA3

e




6. Translational spring on an extended beam
f(Al) = sin2a sinAdb/sinAl - sinbiAa sinhab/sinbil
=B2/T (Y + ke)/ (e - k) - 5]
vhere f = siohab/sinbil - sinib/sinil
Y = 2(cosde coshle ¢+ 1)/sinie sinhile
Xk = 2k;/7B*IN3
€ = coshle/sinhle - cosie/sinie

6§ = coshil/sinhAlL = cosiAlL/sinAlL
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The transfer eguation across the driving force is

O (Y($) = (Y2} + (F)

vhere
(F} =

MO OO

and ¢the (¢) and (-) superscripts refer to the state variables
just to the right and left of the driving force applied at the

kth pnode. Let

[T] [(Tuqdee-[T,](T,]

o] =
(V) = [Th) [Tasdeeel Tu.a) [Tusi]
(s)=1([V][U])

then the folloving tvo wmatrix egquations are obtained by

successive substitutions from one transfer matrix equation to

Q the next |

(Y¢S) = [0] (Yo} |
(T} = (S) (Yo} ¢ (V] (F)
These +tvo matrix eguations represent eight algebraic eguations
of twelve state variables. Pour of the state variables must be
knovn froe the boundary conditions leaving eight unknown state
variables.

Any set of classical or non-classical boundary conditions
can be applied to these eight eguations. The si.ply-supported
boundary condition states that

Yo = Y =0 B, = 8, = 0"
lfter applying these, the first, fifth and seventh eguations are
Y. = 0,6, ¢ 0,V,
(:) . 0=S5,6,b ¢ S, v, ¢ V. P
- 0 = 5,0, ¢ S,V, ¢ Vg, F

The solution for y,, after eliminating O, and V¥V, from these
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tbree equations is
Yo = PLOL(V.Sy = VuS;) ¢ 0u(ViuSsa= V,,5.) V(5,554 = S5.S4)
Finally, the DPMI is (
2% = P/ipy,
or
2% = (=1/p) (5SS = SuSy) /[ Uia(VsSis = ViuSg) ¢ U, (ViiSse = V,,5,) ]

Ssince the exact solution for each elexent was used, the

accuracy of the total solution is as good as the accuracy of the

step function approximation of the taper.
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C. DEPENDENCE OF THE FOUNDATION PARANETERS ON THE MININON

POINT _OP_ AN INPEDANCE PLOT

The mipisum driving-point mecbanical impedance (DPRI) is to
be deterzined for various coabinations of the values of the mass
per unit length p;, and the damping ratio ¥;, of the foundation.
Several DPEI plots, similar to those of Figures 8.13 through
4.16 were generated.

DPMI plots are generated by evalnatin§ the DPHI eguations
at a finite number of points and joining those points with a
seguence of straight line segments. A large enough nuaber of

points are taken to give the DPNI plots the appearance of smooth

.curves. The values of the DPEI and the forcing freguency for

each point are listed in the computer printout associated with
each plot. The true minimun point may not occur precisely at one
of these points. Ibp such a case, the true pinimux point occurs
at soze frequency betveen the frequencies of ¢the lowest DPAI
listed and an adjacent point. The true mipimum DPNI is lover
than either of these points. See Pigure C. 1. good
approxipation to the ¢true minimum DPMI is obtained froa the
valunes of the DPNI and forcing frequency of the 1lowvest point
listed and its tvo adjacent points as follows: .

let }x,.yo) describe the coordinates of the true minimuna
point, i.e.,

X, = Pun/w Yo = Zuuw/K

Sisilarly, 1let (z,,Y;), (x,,¥,) and (x,,Y,) describe the

coordinates of the 1lovest listed point and its tvo adjacent

points, respectively. See ?Pigure C.1. Approximate the DPAI

e ttlh it it e B i

o
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equation by a gquadratic equation in the region around these
points

y = A ¢ Bx ¢ Cx2
A, B and C are constants wvhich can easily be found by solving

Y. = A ¢ Bx, ¢ Cx?

Y: = A ¢ Bx, ¢ Cxf

Ys = A ¢ Bx; ¢ Cx3
The minimum point frequency is found by seting the derivative of
the DPN] egquations equal to zero

y' =B ¢+ 20x = 0

x, = =-B/2C
The minimue DPMI is obtained by replacing x with the expression
for x,

Yo = A - B2/4C

The mipisum DPHI wvas determined in this way for several
DPXI plots, each generated with a different corbination of
values of p, and ¥;. The results are tabulated in Table C.1.
For the case vhere p: = 0 and L= 0 (i.e., Do foundation),

the zinimue DPAI is given by

2, /K = 2%
(see Sections 1IV.)d and 1IV.B). Therefore a reasonable fors to
assuee for the minimum DPAI is

Zaw/K = 27 ¢ £(p;, 1)
vhere f(p;s ¥;) is a fuonction of p, and I vhose value is zero at
p; = 0 and J; = 0. Values of this function are found froa values
of the minimum DPNI by subtracting 2¥. The results are tabulated
in Table C.2.
) Note that the values of f(p,,¥,;) seem to increase linearly

vith p,/p. Assume that the dependence of p; on f(p;,¥;) is in

Y B ey ey W RN STy N e g - o
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fact Y..car, i.e., assuse
2uow/K = 22 ¢ p,/p 9(7;)
vhere g(¥;) is a function of ¥, vhose value is zero at ¥,=0.
Values of this function are found froa values of f(p,,X;) by
dividing by their respective values of p,/p. The tresulis are
tabalated in Table C.3.

To determine the fora of the function g(¥;), its values
wvere plotted on a log-log grid. lil points were found to lie
very close to a straigkt line. Therefore g(y¥,) is of the form of
a pover of %, l.e.,

 Zunw/K = 2% ¢ p,/p A %]
vhere n is one-tkird for a fixed foundation and one-balf for a
free foundation. To find the values of A, & least-squares
technique vas eamployed. The best values for A vere found to be
one-fourth for a fixed foundation and three-fourths for a free
foundation.

The relationships which approximate the dependence of p,
and ¥, on the minimuas DPAI are

Zuyw/K = 27 ¢ /4 p,/p g‘t/l
and

Zuyw/K = 27 ¢ 3/4 p,/p 3 V2
for a fixed and free fourdation, respectively. These
relationships can be used to deteraine approximate values for
the tissue.parameters of a vibrating forears or 1e§ systen
directly from its DPNMI data plot. Such an approximation is
necessary to establish thke initial guess for the systess

identification algoritha discussed in Sectiom V.C.
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D, TEE MINIMUN AND MAXIMOM POINTS OF_AN IMPEDANCE PLOT

Expressions for the minimum and wmaximum points of the
driving-point mechanical impedance (DPMI) plot are to be found.
The lengthy analysis will be outlined briefly here.

The DPMI of a single-degree-of-freedom oscillator in series
vith a spring (see Piguré 4.21) with ¥ ¢ 0 is

2% = [1/(sip ¢ c ¢ K/ip} + 1/(k/ip) )}
After replacing =@ -by K/w2, ¢ by 2K¥/o and performing several
steps of algebra, this equation becomes

2%5(B2-1) -21S B (82=-1-5)
-if4r2sp+s (B2-1) (f2-1-5) )

(p2-1-5) 2¢u72g
vhere S = k/K and 8 = p/w. The sagnitude of the DPMI is

[[2%s(f2-1) 225 8(32-1-5) ]2
+[urzspes(g2-1) (B2-1-5) J2

5(@2-1-5)z¢q;2ﬁ

To find the ainieur and maximuam points, take the derivative

2% = K/w

2 = K/

of tbe magnitude of the DPMI and set it egual to zero.

(p(B2-1-5)2+ U128}

x{{4[SB8~275(f2-1~S) ~Ursp2)

x[ 275 (32-1)~27S £(2-1-5) ]

¢[ 47254258(262-2-5) ]

x[4£2s5p+5 (£2=1) (82-1-5) ]}

- {(g2-1-5)2+432 (52=-1~-5) + 472}

x([225(22-1)~275£(82-1-5) ]2
‘. +[n§25505(52-1)(ﬁ2-1-5)]2)

az/dp = K/ 2 =0
' (B(p2-1-5) 2+ 47R}
|l 225 (£2-1)=2358(2-1-5) ]2
X N+[ 822555 (B2-1) (B2=1-5) ]2

The denoninator is positive and therefore pon-zero for all

_ positive wvalues of f, T and S. Therefore the numerator must be

set egqual to zero. The expression in the numerator, vhen
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rultiplied out, is a sixth order polynomial in 2. As an
alternative to the difficult task of solving it, Taylor series
expansions of g2 with respect to ¥2 can be found which satisfy
the sixth ordér polynomial equation.

Assume that the solutions for 2 exist and are of the form

g2 =5 + 1 028,,;2"

g2 =1+ 3 bz
vhere B, = p;t>uJand Buw = Puw/w. These equations will produce
the correct solutions for I = 0 according to eguations (4.23)
and (4.27). Substitute the assumed form of the solutions into
tbhe numerator of the equation. The coerficients of the constant
terz and the 72 and'fi terns are each set equnal to zero. Ian each
case, the constant term was found to be 4identically equal to
zero, indicating that equations. (4.23) and (4.27) are actually
the correct first order approxisations to the solutions. The
equations obtained froe the %2 and ¥¢ terms are solved to obtain
the first tvo unknown coefficients of each of the Taylor series.
Hence, the first three tefls of each of the Taylor series are
found to be |

B = S ¢ 14 2/5 (265)/(145) 12

- 2/5% (24S)/(14S3) (U+165+¢135248S3) ¢ ¢ ..,

ﬁsﬂ = ‘ - u/S gz + 8/53 (2’35) f. - eee

b 1.




E. DERIVATIVES OF THE IMPEDANCE

The driving-point mechanical impedance (DPHI) equation to

be differentiated is

2% = {ipf(AL)/[2EI(1 ¢ 2i%p/w)A3] ¢ ip/k)-2
vhere

f (AL) = sinda sinib/sinAl - Sinhﬂa sinhAb/sinhAlL

A = [m8/Ls p2/w? + p2p./EI g(¥) }¥ (1 + 2iYp/w)=1e

Y = pi/wy s {1 ¢ 253,570 o
and the function g(y), depends on the type of foundation

included in the model. Three cases are considered. Case A: no
foundation. The function g(¥), is zero and A recuces to
O A= T/L (PA)VZ (1 ¢ 2iXp/w)=ih

Case B: fixed foundation

g(¥) = ~coty / V¢
Case C: free foundation

g(v) = tany2 / ¥/2

Define X and Y as the real and imaginary parts of the

inverse of the complex DPMI, respectively, i.e.,

2% = (X ¢ iY)—1
The magnitude of the DPNI is

2= (X2 ¢+ Y2)-W\2
Thg deriva;ive of the magnitude of the DPMI with respect to one

of the model parameters is

AZ/4P = = (I2 + Y2)-¥2 (X 4X/4P + Y AY/aP)

.

-or 4dZ/4dp = =23 (X d4Xx/dP ¢+ Y 4Y/4pP)

vhere P represents any one of the model parameters. The value of
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X, Y and their derivatives are calculated from:3

I

Real (1/2%) dXx/dP = Real(d(1/2%)/dP)
Inag(1/2%) dY/dp = Imag[d (1/2%*)/3P]

Y

Since the DPMI is a function of EI, w, ¥, k and 1; and 2 is
a function of BI, w, ¥, P;s, w; and Y¥,; the derivatives are of
the fora

d (1/2%} 7AEI = D (1/2%)/dA dAA/dEI + O(1/1%) /OEl

d(l/z*)/ﬂu;= d(1/2%) /O AA/dw + B (1/2%) /Jow

a(1/2%) /4E = 3(1/2+)/3A AX/AY + O(1/2%) /0%

d (1/2%) 7dp, = d(1/2%) /0% AA/dp,

A (1/2%) 7dw; = 0:1/2%) fOA dA/dwy

a(1/2%) /85, = d(1/2%) /32 AlX/4%;

d (1/2%) 7dk = 3 (1/2%) 73k
The partial derivatives are

D (1/2%) /OEI = ~ipf(Al) [2(BI)2(1 ¢ 2ivYp/w)A3]?

d(1/2%) fow
d(1/2%) /3%
0 (1/2%) /d3k

-p2f (AL) [w?EBI(1 ¢ 2irp/,)2A3 -t

p2f(aLl) [wBI(1 + 2i¥p/u)2A3}1

-ip/kz
3(1/2%) /32 = =3ipf(AL) [2EL(1 ¢ 2ifp/w)As ]!
+ ip A£/aA [2BI(1 + 2i¥p/w)A® T

vhere

13 Since X and Y are real continuous fanctions, and i = {-1 is a
constant, - the distributive property of the derivative holds,
i.e.,

a(x ¢« iY)/4P = ax/dp ¢ i d¥/4P
Hence Real[d(X ¢ iY)/dp] = dX/ap

and Imag[d(X ¢ 1Y) /dP] = dY/4P
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Df/32 = [a cosia siniAb ¢ b sinia cosibd
- L sin4a sinAb cosil/siniAl] / sinAl
- [a coshia sinhib ¢ b sinhia coshid
- L sinhia sinhab coshil/sinh4l}) / sinhAl
since A is a function of BI, w, ¥, p; and ¥; and Y is a

function of w; and ¥,; the derivatives of 1 are of the form

a2 /dw = 01/3w dA/dw; = B2/3Y A%/duy
a4/3% = 34/3% a3/d1, = 04/3¥ AT,

The partial derivatives of are
Case A
3A/3BI = 0
d3/0w = =n/2uwl (p/w)WV2 (1 ¢ 2iyp/w) =t
+ 7ifp/2LuR (P/w) V2 (1 ¢ 2i¥p/u) =S
031/0% = ~gip/2wl (p/w)V2 (1 ¢ 2i¥p/uw)=-82
Cases B and C
DA/OEI = -p2p,/4 (EI)2 g(¥) (V ¢ 2iZp/w)-1A
(me/Ls p2/w? ¢ p2R,/EI g(¥) ¥
02/0w = =1/2w m*/L% p2/w? (1 ¢ 2iTp/u) =W
{mré/L% p2/w? ¢ p2p./EI g(Y) ;¥
+ igp/2w? (1 ¢ 2i5p/w) =™
[ré/L% p2/w? ¢ P21, /EI g(¥) ]
94/0% = -ip/2w (1 ¢ 2igp/uw) =%
[re/Ls p2/uR .+ p2p;/EL g(¥) N
3i/dp; = p2/BEL g () (1 ¢+ 2igp/u)=Ve
(/L% p2/w? ¢ p2p, /Bl g{¥) ™™
da/0Y = p2p, /4BI dg/dy¥ (1 ¢ 2iYp/u) =W
[re/Le p2/w2 ¢ p2p,/EI g(¥) J-W

vbere

A ala .



A . T “V"“

[V csczv ¢ coty)/¥2

dg/dy
dg/4ay

ft

172 (Y/2 sec?y/2 - tan¥/2})/(Y/2)2
The derivatives of vy are
dv/dw; = =1/w; pr/wy (1 ¢ 2i%,p/wy ~V2
-if;p/wi2 pr/wy; (1 ¢ 2i%,p/w;) =32
av/a%; = -ip/wp pr/wy (1 + 2i%pp/uy)-W2
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(case B)

(case C)

s TR, ¢ -
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P. THE COMPUTER PROGRAN

A listing of the Fortran coxputer program vhich determines
the parametric values of the mathematical model used to simulate
a set of driving-point mechanical impedance data from a forearn
or leg vibration test is given. 211l of the function subroutines
required by the program are not available in double precisicn.
Therefore, five function subroutines have been vwritten ¢to
accecadodate the main program. They are also 1listed. The
subroatine DGELG from the IBM Scientific Subroutine Package
(*SSP) is used to solve the system of linear algebraic eguationmns

¥ithin each iteration of the systens identification algorithm. A

listing of DGELG cam be found in IBA (1968).
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GAN TERBINAL SYSTEN FORTERAN G (41336) BAIX 09-19-78 2.

THIS_PROGEAM FEMELOYS AN ITERATIYE PROCEDUBE YQ_CONVERSY ON THE

O

CORFRECT VALUZS OF IHE PAEANUTEBS IN A VILBLRATING LONG BONE
EXPLRIMENT, BY MINIMNIZING THE PERCENTAGE ERROR IN THE MAGNITUDE
OF THL IKPEDANCE. '

THE INPUT DATA NUST BE ABRRANGED AS POLLOES:

CARD 1 TITLE 1524
CARD 2 LENGTH AND LEAGTH-TO-PROBE-

LOCATION RATIO FREE
CAED 3 BOUNDAEY CONDITION OF TISSUE I2
CAED 4 NUMBER OF DATA CARDS TO FOLLOW I2

THE REST OF THE CARDS COMNTAIN THE FREQUENCY AND THE MAGNITUDE AND
PHASE ANGLE OF THE IMPEDANCE, ONE POINT PER CARD, IN FREE FORNMAT.

THE SIXI PARAMETERS IN THIS KODZL ARE:

BEI STIFPNESS OF THE BONE

BNN NATUBAL FREQUENCY OF THE BONE

THU HASS PZR UNIT LENGTH OF THE TISSOE
TuN NATURAL FREQUENCY OF THE TISSUB
TZETA CABEING BATIO OF THE TISSUE

K STIFPNESS OF THE SKIN

BZETE, T{I DAMPINKG RATIO OF THE BONE, IS HELD AT A TONSTANT

VALUE.

THE_FOUNDATION IN Tt MODEL, WHICH RE®PRESEETS THE TISSUE, CAN

HAVE EITHER A FIXED OE FREE BOUNDARY DEPLNDIWG ON ThE VALUE ON
CABRD 3. =1 COLKRESPONDS TO A FIXED BOUNDARY. 1 COEERESPONDS TO A
FEEE BOUNDAEKY.

THIS PROGRAM CONTAINS ROUTINES WHICH "LOOK®' AT THE DATA AND
CHOOSE IKITIAL SETS OF PARAMETER VALUES.

THE ITERATIONS AERE CARBIED OUT IN THREE PHASES:
1. A FOUR PARAMETER MODEL IS ENPLOYED TO OETAIN A GOOD

APPROXIMATIGE IC THE BONE AND SKIN PARAMZIEES.
2. THESZ ARE HELD FIXED WAILE A GOOD APPRCIXIMATION TO THE
TISSUE PARAKETERS IS OBTAINED FOBR B SIX PAEAMEITER MODEL.

3. ALL SIX PABARETERS ARE ALLOWED 70 VARY TO OBTAIN THE FIBAL
SET OF PARABETEERS FOR THE SIX PABRANETER RODEL.

(s HeloNeNel{sNeNeleNsNel{zrNeNelisNeRelisNoNeliscNsNelizNeNeliolsNelisReRel s NeRelisNeNelloNoNol o

DECLAEATION STATEBENIS.

COMPLEX*16 DCRPLX,CDSQRT,CDTAN,CDSINH,CDSIN,CDABS,CDCOSH,CDCOS

CONPLEX*16 DZI (6)
CONPLEX*16 AEG,LAMDM,2A,2B,Z2L,2BY,2TI,2C,BQ,TQ.Q,
1 ZBI’,ZBIZ,DZIDL,COI,CSCS,SECS

REAL¥5 DBLEZ,DREAL, LIMAG, DATAN,DABS
REAL*8 ¥ (60),P (60) ,22(60),PHIE(60) ,2(60) ,PHI(60),D2 (60,6),DP(6),
1 46(6,6),24(4,4),43(3,3),B(6),DP6(6),DP4 (4),DP3(3),DX(6),DY(6)

REAL*S PI,BL,BFAT1O0,RBA,bb, EEI, BsN,BPN,LZLTA,
! TMU,TWN,TPN,TZETA,K,KK,ZHIN,ZNAX, HBIH W5AX,X,Y,ERROR BBBOLD,
2 SBEI,SbWY¥,SBZETA,SK, STHU STEN STZETI l

U

RFAL'B PnI(1)/'0‘/
INTEGER TITLE(1S)

REAL WP(60),2P(60),PHIP(60),ZEP(60),PHIEP (60) :),’,‘If,‘LNAL PAGE |3

B - Py gy e X Reuny e gl rr— —
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3AN TERNINAL SYSTEN FORTRAN G (41336) BAYY 09-19-78

.-

C
T, c READ IN DATA.
N c

. PRINT74

PI=3.14159D0
READ(5,5) TITLE
5 FOEMAT (15A4)

BREAD (5,FNT) BL,BRATIO
BL=DABS (BL)
1F (BRATIO.LE.0.D0.OR.BRATIO.GE.1.D0)GO TO 6

GO TO 8
6 PRINT?
7 ___FORNMAT(' THE VALUE GIVEN TO THE LENGTH-TO-PROBE-LOCATION'/

- R TRV W e W T e NS

1 . BRATIO MUST BE BETWEEN ZERO AKD ONE. /)
STOP
8 CONTIKUE

BA=BL*#BRATIO
BB=BL-BA
READ (5,20) IBC

IF(IB».EQ.O)GO T0 16
IBC=ISIGN(1,IBC)
IF(1EC.EQ.=1) PRINT12

.~ - v e ST e

] 12 FORMAT(* THE BOJNDAKY OF THE FOUNDATION IS FIXED (ULNA).'))
! IP(IBC.EQ.1)PRINT13
' 13 FORMAT(* TEE BCUXKDARY OF THE FOUNDATION IS FEEE (TIBIA).'/)

GO TO 18

: (Z) 16 PRINT17
17 PORMAT (* THE FOUNDATION IS N¥OT INCLUDED IN THE HODEL®/)

18 CONTINUE
BEAD(5,20) ¥
20 FORMAT (I2)

1F (N.LT.8)GO TO 21
IF(N.GT.60) GO 20 23
GO 70 25

21  PRINT22
22 FORMAT(® A BININUM OF EIGHT DATA POINTS IS REQUIRED.'))
STOP

23 PRINT24
24 FORMAT (* A BAXINUM OF SIXTY DATA POIBTS IS REQUIRED.Yy)
STOP _

25 CONTINUE
DO 26 I=1,¥
READ (5,FPHT) W (I),ZE(1),PHIE(I)

B (I)=DABS (N (I))
ZE(I)=DABS(ZE(I)) .
26 P(I)=W(I)%2.DOSPI

PRINT7 4

PHASE 1

DETERNINE INITIAL SET OF PARANETERS.

(s NeNelleNy]

—
W K£=0-D0
: Do 27 1=1,8

27 KK=XK+ZE (1) *P(I)
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" [GAN TERMINAL SYSTEA FORTRAN G (41336) BAIN 09-19-78 2:
36 ™ KK=KK/4.D0
3TN HN=N/2
)8 WNAX=R (NN-1)
39 - ZMAX=ZE (KN-1)
50 DO 30 I=NN,N - z
31 IP(ZE(I)«GT.ZH8AX)GO TO0 29
»2 GO TO 30
)3 29 ZMAX=ZE (I)
4 EUNAX=VW (I)
)5 30 CONTINOE
6 NN=K/4
7 ERN=3%N/4
'8 WMIN=W (NN-1)
'9 ZNIN=ZE(KN-1) \
'0 DO 32 I=NN, BNR
| IF(2F(1).LT.ZHIN)GO TO 31
2 GO TO 32
'3 31 ZNIN=ZE({I)
'y WHIN=W (I)
5 32 CONTINUE §
6 K=KK* (NNAX/NHIN)®s2
7 KK=1.D0/({1.D0/KK) ~(1.D0/K))
8 BEI= (BA*B5) $#2/3. D0/ BL*KK
9 BYN=WAIN
0 BZETA=ZRIN*PI®BEN/KK L
1 PRIKT33
2) 33 FORNAT (/° TEE INITIAL SET OF PABRANETERS IS:'/)
3 PRINTTT
4 PRINT78,BL1 ,B¥N,BZEIA,K
C
. c THIS IS THE BEGINNING OF THZ OUTSIDE LOOP. EACH RUN THROUGH TRIS
c LOOP CONSTITUTES Obi ITERATIOK.
c
5 ERROB=1.D20
6 Kn=0
7 34 HA=EN+1
c .
c CHECK EACH PARAMETER FOR THE BON-NEGATIVITY CONDITION.
C
3 IP{BEI.L7.0.D0)GO TO 35
9 17 (BWd.LT.0.D0)GO TO 35
) 1¥ (BZETA.LT.0.D0)GO TO 35
1 IF(X.LT.0.D0)GO TO 35
2 60 TO 37
3 35 nmxE=nH-1 ‘
) PRINT36,MNN ‘
> 36 FOEMAT (/5X, YA BEGATLVE VALUEZ 8AS OBTAINED FOR ONE OR MOREV/5I,
1 'OF THE PARANETERS ON ITERATION HUBBER *,I2,°'.%/5X,
2 *THE CUKEENT PABAMETER VALUES ARE:'/)
» PRILT?7
? ’ PRINT78,BEl ,BRN,BZETA,K " .
N GO TO 48 CAICINAL PAGE IS

c - CALCULATE Z AT EACH FREQUENCY.
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GAR TERNINAL SYSTEH FORTRANK G (41336) BAIM 09-19-78

C

Q

BPN=BW h% 2. DO*PI
DO 45 1=1,¥ »
BO=DCHPLX (1.D0,2.D0*BZETA*P (T) /BPN)

LAXDA=DCHPLX(PI/BL,0.D0) #CDSQRT (DCAPLX (P (I) /BPN,0.D0) /CDSQRT(BQ))
ZA=LAMDA®DCNPLX (EA,0.DO)
ZB=LANDA®DCMPLX (BB,0.D0)

D OV & WIN e O

ZL=LAXDA®*DCMPLX (5L,0.D0)
ZBI1=DCMPLX (0. D0,-.5C0%P (I) /BEI) /LANDA®*3/BQ
2B12=CDSINR (ZA)sCDSINY (2B) /CDSINH(2L)

—CDSIN (ZA)*CL_IB (2B) /CDSIN (2L)
ZBI=2ZBI1¢ZBI2
ZTI=DCNPLX (0. DO, P(I) /K)

2C=2T1+4ZBI
X=DREAL (2C)
Y=DINAG(2C)

V&N O O

ZC=DCMELX (1. D0, 0. DO) /ZC
Z (I)=CDABS (ZC)

(s elle]

CALCUOLATE THE DERIVITIVES OF Z AT ELCH FREQUENCI.

DZIDL= (DCNPLX (EA,0.DO) #CDCOSH (ZA) *CDSINH (ZB)

8w

+DCMPLX (EL,0.D0) CUSIKE (2ZA) *CDCOSH (ZB)
-DCAPLY (5L,0.D0) *CDSINK (ZA) *CDSI Nt (ZB)
*CDCO5E (ZL) /CDSINH (ZL) ) /CDSINH (ZL)

DZIDL=DZIDL- (LCKPLX (EA, 0. DO) $CDCOS (ZA) *CDSIN (2B)
+DCNPLX(BB,0.D0) «CDSIK (ZA) *CDCOS (ZB)

EHWN

~=DCAPLX(5L,0.00) #CDST (ZA) $CDSIN (ZB)

$CDCOS (ZL) /CDSTIK (ZL)) /CDSIN (ZL)
DZIDL=DZIDL*ZBI14DCHPLX {-3.D0,0.D0)/LANDA*ZBI
Q=DZIDL*DCHPLY (-.25D0,0.DJ) *LA5NDA/BQ-2Bi/BQ

-— s et A

DZI1(1)=-281/DCAPLX (BE1,0.D0)
DZI{2)=Q¢DCEPLY (0. DO, 2. DO*BZETA®P (1) /BPH#%2)
+DZIDL*DCHPLX (~.5D0/EPY, 0. DO) *LANDA

DZI(3)=Q*DCAPLX (0.D0,2.D0*P (I)/BPN)
DZI(4)=-2TI/DCHPLX (K,0.D0)
DZI(2)=DZI(2)‘ECHPLX(Z.DO‘PI,O.DO)

DO 45 J=1,4
DX (J) =DREAL (DZI(J))
D1 (J) =DINAG (DZI (J))

) e W W e W N

45

DZ{1,J)==2(1)%%3% (LX (J) *X+DY (J) *Y)

CALCULATE AND PRINT THE ERBOR PONCTICHN.

0Onon

ERROLD=ERROBR
ERROR=0. DO - -

a6

Do 46 I=1,3
ERROR=EBRROB+ ((ZE(I)-Z(I)) /2B (X)) 02
EPROR=ERROB/H

47

PRINTY7,M4N, ERRORB
FORBAT(/* THE ERBOR PUNCTION BEFORE ITERATION MNUMBER®,
I2,* 1s*,P12.8,%.°%)

- 48

IF (EEBOE.LT.ERKOLD)GO TO &9
BEI=BEI-DP4 (1)
B¥N=BWN-DPU (2)
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BZETA=BZETA=DP4 (3)

9 .
o0

2

49

K=K-DP4 (4)
GO T0 75
CONTINUE

00

SET UP ABD SOLVE THE SYSTEM OF LINELR EQUATIONS.

DO 55 J=1,4
B(J)=0.D0
DO 50 I=1,N

50

B(J)=B(J)*(2E(1)-Z(I))*D2(X1,Jd)/2E(I) ¢*2
Do 55 JJ=1,4
A4 (J,39)=0. DO

55

DO S5 I=1,K
A4 (J,JJ)=A4 (J,33)+D2(I,J) *DZ(I,JJ) /ZE [I) **2
DO 58 J=1,4

58

DP4(J)=1.0D0
DO 58 JJ=1,8

AU (J,Jd) =A4 (J,Jdd) /B (J) /B (JJ)

59

CALL DGELG(DP4,A4,4,1,1.E-14,1ER)
DO 59 J=1,4
DPY (J)=DP4 {J) /B (J)

WIWIN NV E WNIa O WD & W

60

PRINT60,I1ER
FORMNAT (/" THE E3ROR CODE FPOR THE MATRIX INVERSION IS ¢,
12,'.'_)

aon

ADJUST THE VALUES OF THE PARABETERS.

BEI=BEI+DP4 (1)
BY¥N=BWN+DPU (2)
BZETA=BZETA ¢DP4 (3)

NS e

K=K+DPu4 (&)

CHECK WHETHER OR NOT ANOTHER ITERATION IS NECESSARY.

Qoo

DP (1) =DP4 (1) /BEI
DP(2) =DP4 (2) /BUN

DP (3) =DP4(3)/BZETA
DP(4)=DPU (4) /K
JJ=0

70

D0 70 J=1,4
IP (DABS(DP (J)) -GT. 1.D-3)JI=1
IF(JJ.EQ.1) GO T0 71

71

PRIKT73, 8N -
GO TO 75 .
1P(%%.LT.10)G0 Y0 38

72
1

PRINT72, (DP (J) ,d=1,4)
POBAAT (/¢ 10 ITEBRATIONS BAVE OCCURED WITHOUT CONVERGEECE.'/
. THE PERCEKT CHANGES IN THE PARAMETERS ARE:?!

2 //51,64D14.5))

73
74

75

FOESAT (/* CCNVERGENCE OCCUBED ON ITERATION KUNBER',I3,%.°)
FORNAT (*1°)

CONTIHUE
PRIET74




L . . e.am@m@srsetcnccmnm- .. . .eeoctetesn-.
-

'GAN TEBAINAL SYSTEN POBTRAN G (41336) BAIN 09-19-78 2: {

SBEI=BEI
SBWN=BWN

SODZETA=BZET "
SK=K

PHASE 2

DETERNINE INITIAL SET OF PARAMETERS.

a0 nn

BZETA=.05D0
TZETA=SSZETA/2.D0

129

TéN=BUN/2.D0
IP (IBC) 129,236,130

130

NE=3
GO TO 132
A=.75D0

A=.25D0 ‘

132

NE=2
TMU=BLI/2.D0% (PI/BWN/DL®%2) %428 (SBZETA-BZETA) /A/TZETA®*¢ (1.D0/NE)
PRIKT33

PRINT77 . ;
PRINT78,BEY ,BWYN,BZETA,K |
PRINT?9

R SNOINE WN e OO NN

PRINTB0, THU ,TWN,TZETA

SAVE INITIAL SET OF TISSUE PARAMETERS.

nan

STHU=THU
STWN=T WY

STZETE=TZETA

THIS IS THE BEGINNING OF THE OUTSIDE LOOP. EACH RUN THROOGH THIS

nNOnOon

LOOP CONSTITUTES ONE ITERATION.

ERROR=1. D20 .

LY 20K 2 ¥

134

L EN)
EN=NN+1

a a0

CUECK EACH PARABETEE POR THE MOS-NEGATIVITY CONDITION.

1P (TMU.LT.0.D0)GO_TO 135

IF(IsN.LT.0.D0)GO T0 135
IP(TZETA.LT.0.D0)GO TO 135
GO T0. 137

135

LEELEY.LES |
PRINT36,HHN
PRINTT7

[ N P "l VO N,

! G

PRINT7 3, BEL ,BWN,BZETA,K
PRINT79
PRINT80,¥80,TUN,TZETA

THU-5T AU
TWE=STHN
TZETA=STZETA
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[P 2N GO_TO _‘7.5
AL 137 COKTINUE
C
C CALCULATE Z AT EACH FEEQUERCI,
Cc

|

BPN=BWN*2.D0®PI
TPN=TW N*2,DO#*PI

DO 145 I=1,N
BQ=DCAPLX (1.D0,2.DO*BZETA®P (I) /BPN)
TQ=DCMPLY (1.D0,2.DO*TZETA*P (I) /TPN)

ARG= D”HPLX(P(I)'PI/TPH,O DO) /CDSQET (TQ)
IF (IBC.EQ.1)LRG=ARG/DCHDPLX (2.D0, 0.D0)
COT=DCMPLX(1.D0,0. DO)/CDTAL]ARQ)

LANDA=CDS QBT(CDSQBI((DCHPLX(((PI/BL)“Z’P(I)/BPN)“Z 0.D0) ¢
1 DCHMPLX (P (1) **2*INU/BEI1,O. DO) /ARG/COT*#*IBC*1BC)/BQ))
ZA=LADA$DCMPLY (8A,0.D0)

ZB=LAXDA*DCMPLX (BB,0.D0)
ZL=LAKDA*DCHEPLX(BL,0.D0)
2BI1=DCMPLY (0. L0, -.5T0*P (1) /BEI) /LARDA®*3/BQ

ZBI2= LDbIbF(LA)3LDJINh(ad)/LDSIhn(ZL)
1 -CDSIN (ZA)*CDSIN(ZB) /CDSI¥ (ZL)
ZBI=7RT1¢ZBT2

ZTI=DCNPLX (0. DO, P (1) /K)
2C=2TI¢ZBI
X=DREML(ZC)

Y=DIMAG(ZC)
ZC DCuer(1.D0,0. DO) /Zc

2 (1) =CDABS (2C)

c
c CALCULATE TBE TFRIVITIVES OF 2 AT EACH FREQUENCY.
C
IF (16C.EQ.1)GO TO 138
CSCS="CKPLY (1.D0,0.D0) /CDSIN (ARG) ®#2
L DZY (1) =DCHEPLX (~P(I)®*2/BEI/4.DJ,0.D0)#COT/ARG/.ARDASS®3
DZI(Z) =DCHPLX (-T5J*P (1)#*2/TPN/EL1/4.D0,0.D0) /LANDA®*3®
1 (DCMILY(1.D0,0.L0)~-DCEPLX (0.DD, TPN‘T”ETL/P(I)/PI“2)‘ABu"2)
2 & (CSCS+COT/ARG) L
DZI(3)=DCAPLX {0.DO,~-TAU*P (I)*TPH/PI1%%2/BEI/4.D0) *ARG/LABDA®®]
1 ®({COT+ARG*CSCS)
. GO TO 139
138 CONTIHUE
SECS=DC4PLY (1.L0,0.D0) /CDCOS (ARG)®¢2
. DZI(1)—DC3PL!!!(I)¢'2/B}I/u 0J),0.D0) /COT/ARG/LAMDA®®3
DZI(2)=DCRPLY (~I5U*P (1) *%2/IPN/Bui/8.D0,0.00) /LAdDA®3s
1 (DCEPLY(1.D0,0.5G) =DC¥PLL(0.D0,4.DO*TPU*TZLTA/P (1) /P1%%2) $ARG**2)
L 2 #(SECS-DCHPLY(1.D0 0_00)/ycr/anc)
DZI(3)=DCEPLX(U.DJ -1nutp(1)wrpL/pzt‘z/bzx)tAao/LannAios
1 ® (A2G#SECS~DCAPLX (1.D0,0.D0) /COT)
. 139 CONTINUE o ~ _
NZIDL= (DCHPLXY(2A,0.D0)*CDCOSH (ZA)*CDSISY (28) T 4.
¢DCHPLX (EE,0.D0) ®*CDSILE(ZA)*CDCOSH (23) e ""h OB Ig
e~ ~DCNPLX (EL,0.D0) *CDSIKH(ZA)*CDSINY (ZB) h’ﬁhgry
- $COCCSE(ZL) /CbsIha (2L) ) /C0S T ba (2L)

DZIDL=DZIDL-(DCrPLX(BA,C.DO)*CDC05 (ZR)*CDSIN(ZB)
ODCEFLX(EELR:DO)‘CDSIH(ZAL:CDCOS{?B)

N W
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3 ~DCMPLX(EL,0.DC) #CDSIN (ZA) *CDSIN (ZB)
4 $(LCOS (ZL) /CDSIN(ZL))/CDSIN(LL)
DZIDL=DZIDL4ZBI14DCHELX (~3.D0,0.D0)/LANDA*2ZBI
DO 140 J=1,3
140 DZI(J)=DzI (J) /BC*DZIDL
DZI(2) =D2I {2) *DCMPLY (2.D0O*PI,0.D0)
DO_145 J=1,3
DX (J)=DREAL (DZI (J))
DY (J) =DIKAG (DZI(J))
145  DZ (I,2)=-Z (1) **3% (DX (J) *X+DY (J) *Y)

"G

CALCULATE AND PEINT THE ERROR PUNCTION.

nnan

ERROLD=ERROR
ERROR=0. D0
DO 146 I=1,N
146 ERROR=ERROR*( (2E(I)-Z2(1))/ZE (1)) **2
ERROR=ERROR /N
PRINT47, M4, ERROR
IF (EKROR.LT-ERROLD)GO TO 149
148 TMU=THU-DP3 (1)
TWN=Tuy-DP3 (2)
TZETA=TZETA-DP3 (3)
GO TO 175
149 CONTINUE

WV 4 Wiy e QIO U O UV &

C
{:} C SET UP AND SOLVE THE SYSTEN OF LINEAR EQUATIONS,
C

DO 155 J=1,3
B(J)=0.D0
DO 150 I=1,X
150 B(J)=B{J)+ (ZE(I)=-2Z(I))*DZ2(I,d)/2E(X) **2
DO 155 JJ=1,3
A3(J,JJ)=0.D0
DO 155 1=1,8
155 a3(7,3J)=A3(J,JJ)+DZ(X1,J)*DZ(I,JJ) /ZE(I) *%2
D0 158 J=1,3
DP3(J)=1.0D0
DO 158 JJ=1,3
158 23(J,JJ) =23 (J,dd) /B(J) /B (IJ)
CALL DGELG(Dr3,A3,3,1,1.E~14,IER)
Do 159 J=1,3
159 TIP3 (J)=DP3(J)/B{J)
PRINTHO,IER

- e

— 3

el Nl U e W W, e WA e s A e

ADJUST THE VALUES OF THE PARAMETERS.

alaon

L . THU=THU+DP3 (1) :
1 TUN=TW N¢DP3 (2)
s TZETASSZETA+DPI(3)

CHECK SHETHER OR NOT ANOTHER ITERATION IS NECESSARY,

‘
O
nloa

) — DP (1)=DP3(1)/TNU
) DP (2} =DP3(2) /TSN
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17 . PP (3)=DP3(3)/TZETA *
-, JJ=0
9 pv 170 J=1,3
0 170  I¥(DABS(DP(J)) .GT.1.D-3)JJ=1
R IP(Ju.EQ.1)G0 10 171
¥2 PRINT 3,88
'3 GO TO 175
™ 171 IF(NM.L17.10)GO T0 134
5 PRINT122,(DP{J),J=1,3)
16 172 __FOEMAT (/' 10 ITERATIONS HAVE OCCURED ¥ITHOUT CONVERGENCE.'/
1 THE PERCENT CHANGES IN THE PARANETERS ARE:Y
2 //5%,3D14.5/51,3014.5)
7 175 CONTINUE
8 PRINT74

PHASE 3

DETERMIKE INITIAL SET OF PARAMETERS.

anaonn

PRINT33
PRINT?7

__PRINT78,BEI ,BWN,BZETA, K
PRINT79
PRINTB0,THU,T¥N,TZETA

WKN-w O

THIS IS THE BEGINNING OF THE CJTSIDE LOOP. EACH RUN THROUGH THIS
LOOP CONSTITUTES ONE ITERATION.

aanin

4 EREOR=1.D20
5 NH=0
6 234 EM=NNe+1

CHECR EACH PARAHETER FOR THE NWON-NEGATIVITY CONDITIOX.

sRgNe'

IP(BEI.LT.0.D0)GO TO 235
IP(BWN.LY.0.L0)GO TO 235
IP(TXU.LT.0.D0)GO TO 235
IF(Tw4.LT.0.D0) GO T0 235
IF (T2ETA.LT.0.D0)GO TO 235
IF(K.LT.0.DC)GO Y0 235
GO 10 237
235 HHR=NN-1
PRINT36,HAH
PRIHT77
PRINT?78,BEI,BUN,BZETA,K
PRI¥TI9
PRINT80,TaU,TWN,TCETA
236 BEI-SBEI
BiN=SBWN
BZETA=SBZETA _
TAU=0.D0
TYN=0.D0
TZETA=0.DD
= K=SK
GO TO0 275

.
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8

237 CONTINUE ‘

c
Cc CALCULATE 2 AT EACH FKEQUENCY.
Cc

BPN=BEN*2.DO®PI

TPN=TWN*2. DO®PI

DO 245 I=1,H

BQ=DCY¥PLX(1.D0,2.DO*BZETA*P (I) /BPH)

TQ=DCXPLY(1.D0,2.D0*TZETA*P (I} /TPN)

ARG—D»HPLX(E(l)*PI/:Eﬁ_O.DO)/CDSQAT(TQ)

IF (IBC.EQ. 1) ARG=ARG/DCHPLY (2. D0, 0. DO)

COT=DCHPLX (1.D0,0.D0) /CDTAK (ARG)

LANDA=CDSQRT (CDSQRT( (DCHPLX ( ((PXI/BL)*$2%P (I)/BPK)*%2,0.D0) ¢
1 DCNPLX (P(I) *#*2%THU/BEI,0.D0)/ARG/COT#*IBC*IBC) /BQ))

ZA=LANDA*DCHNPLX (BA,0.D0)

23=LANDA*DCEZPLY (BB,0.D0) '

ZL=LAEDA*DCAHPLX (BL,0.D0) '

SNOVIEWN=-OW

ZBI1=DCMPLY (0.D0,~.5C0*P(I) /BEI) /LANDA**3/BQ
ZBI2=CDSINH (ZA) *CDSINH (ZB) /CDSINH(ZL)

o s OO WD

1 -CDSIN (ZA)*CDSIN (2B) /CDSIN (2L)
ZBI=2BI1%ZBI2

2TI=DCHMPLX (0. D0, P(I) /K)

ZC=ZTI+ZBI

x-DREAL(ZC)

zc DCHPLX(1 v0,0.D00) /ZC -

2 (I)=CDABS (2C)

CALCULATE THE DERIVITIVES UF 2 AT EACH FREQUENCY.

M e WY W ee W)

O 0On

IF (IBC.EQ.1)G0 TO 238
CSCS=DCHPLX (1.D0,0.D0) /CDSIH (ABG) **2
DZI (1) =DCHPLY(IBU/4.D0% (P (1) /BEI)**2,0.D0)*COT/ARG/LANDA**3

DZI(2) =DCNPLY (-P(I)/EPN*¢2/2.D),0.D0) /LANDA®*3s

1 (DCHPLX(P(I)/BEN® (PL/bL) *%4,0.D0)~DCHPLX (0.D0,BZETA) *LANDA®#4)
b DZI{3) =DCHPLX(~P(I)**2/BEIl/4.D0,0.D0) *COT /ABu/LAnDA**B
' D2ZI(4) = DcupLz(—Irutp(xxtcz/TpN/szr/u L0,0.D0) /LARDA*S 38

- A e

2 *(CSCS’COT/ARG)
) DZI(5) =DCMPLX (0.D0,~TMU%P(I) *TPK/PI#**2/BEI/A. DO)*AR;/LABDA#*B
1 #(COT+ARG*CSCS)
60 TO 239
238 COKTINUE
SECS5=DCAPLX (1.D0,0. DO)/CDCOS(ARG)“2
021(1)—DrnPLx(-1nU/u DO® (P(I)/BEI)**2,0.D0)/COT/ARG/LARDA®*3
D2I(2) =DCMPLY (-P(I)/EPk**2/2.D0,0.D0)/LAMDA®*3%
1 (DCHPLX{P(1)/Br4i*(PI/EL)**4,0.1 DG) )~DCHPLX(0.D0,BZETA) *LAKDA*#3)
DZI(3) =DCHMPLX (P (I) %*2/B¥I/4.D0,0. DO}/COL/ARG/LAHD&“3
DZI(Q)=DCBPLX(-IHU'P(I)*#Z/TPS/SEI/Q.D0,0.DO)/LAHDA“3'
T (pCroLX(1.D0,0.C0)=DCKPLY (0.D0, 4. DO+ TPE*TZEIA/P () /PY¥¥y ARG ¥¥2)
. 2 % (SECS-DCKPLX (1.D0,0.D0) /COT/ARG)
' DZI(5) =DCHPLX {0.D0,~T5U*P (X) $TPN/PI**2/BEI) *ARG/LANDA®*3
'"T:} 1 % (ARGYSECS- DCHPLY(1-D0,041 DO)/COI)
—239 COXNTIXUE
DZIDL= (DCHPLX (BA,0.D0) *CDCOSH(ZA) *CDSINH (ZB)
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— 2 +DCXPLX(BB,0.D0) *CDSIHH(ZA) #CDCOSH (ZB)
U 3 =DCHPLX(BL,0.D0) #CDSIKE (CA)*CDSINH {2B)
[ *CDCOSH (LL) /CDS1NH (ZL) ) /CDSINU (ZL)
7 DZIDL=DZIDL- (DCMPLX (BA,0.D0) #CDCOS (ZA) *CDSIN (ZB)
2 ¢DCFEPLX(BB,0.D0) *CDSIN (ZA) ¥CDCOS (2 B) '
3 =DCHMPLX (BL,0.D0) CDSIN (Z1) *CDSIN (ZB)
[ *CDCOS (2L) /CDSIN(2ZL)) /CDSIN (ZL)
8 DZIDL=DZIDL*ZBI1¢DC4ELX (~3.D0, 0. DO,/LA!DA‘ZBI
9 DO 240 J=1,5 A
J 280 DZI(J)= DZIjJL/BQfQX}DL
1 DZI(1)=D2I(1)~ZEIl/DCHPLX (BEI, 0. D0)
2 DZI(2)=DZI (2) +ZB1/BQ*DCKPLX (0.D0,2.D0*BZETA®P (I) /BPN#*#+2)
3 DZI(6)=-ZTI/DCHMELX (K,0.D0)
4 DZI(2)=DZI {2)*DCHPLX (2.D0*PI,0.D0)
5 DZI(4)=DZI(4) *CCEPLX (2.D0*PI1,0.D0)
5 DO 245 J=1,6
7 DX (J)=DREAL(DZI (J))
3 DY (J) =DINAG (DZI{J))
3 245 DZ(T1,J)=-Z (I)*#3% (DX (J) *X+DY (J) *Y)
C
(o CALCULATE AND PRINT THE EBEOR FUNCTIOS.
(o |
b) ERBOLD=ERKOBK :
1 EEROER=0. DO H
2 DO 246 I=1,N
3 246 EERUOR=EKRQOBR# ((ZE(I)-2(I))/ZE(X))ee2 i
4 (r} ERROR=EREOR/N |
P PRINT4T7, 1N, ERROK :
B IY¥(ERROR.LT.ERBOLD)GO TO 249 @
; 248 BZI=BEI1-DP6 (1) ,
3 BWN=BW N-DP6 (2) ‘
; THU=THU~DP6 {3)
) TUN=TEN-DP6E (4)
i TZETA=TZETA~DP6 {5)
: X=K-DPb (6)
3 GO TO 275
: 249 CONTINUE |
C |
c SET UP AND SOLVE THE SYSTEN OP LINEAR EQUATIONS.
C
) DO 255 J=1,6
) B (J)=0.D0
' Do 250 I=1,W
, 250 B(J)=B(J)*¢(ZE(I)-Z (1)) *DZ(I,9) /ZE(TI) %2
= DO 255 J3J=1,6
' A@(J,QJ)=0.DO
DO 255 I=1,¥
255 25{J3,JJ)=A6(J,JJ)#D2Z(1,J)*DZ(I,J)) /ZE(I) **2
DO 258 J=1,6
D26 (J)=1.0D0
DO 258 JJ=1,6
i ) . 258 A6(J,JJ)=A61{J,3J)/B(J)/B(IJ)
< CALL DGELG (DP6,46,6,3, 1.E-14,TER]
. - - DO 259 J=1,6
259 DP5 (J)=DP6 (J) /B (J)

T T T TP
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0~ PRINT60,IER

Cc
C ADJUST THE VALUES OF THE PARAMETERS.
C )

BEI=BEL+DF6 (1)

B N=BW N+ DP6 (2)
THU=T4U+DP6 (3)
TEN=TWN+DP6 (4)
TZETA=TZETA+DP6 (5)
K=K+DP6 (6)

TN E[W N e

annon

CBECK WHETHER OR NOT ANOTHER ITERBRATION IS NECESSARY.

DP (1) =DP6 (1) /BEL
DP (2) =DP6(2) /BEN
DP (3) =DP6(3) /TNU

DP(4)=DP6(4) /THE
DP(5)=DP6(5)/TZETA :
DP (6) =DP6(6) /X

JJ=0
DO 270 J=1,6
279 IF(DABS{DP{J))-GT.1.D-3)3J=1

IF(JJ.EQ.1)GO 10 271
PRIBT73,H84
GO TO 275

- 271 1F (%4.LT.10)GO TO 234
£ PRINT172,(DP(J),.J=1,6)
- <275 COKWTIKUE

Wlet © i NN E WN - OO0 )

PRINT74

PRINT THE FIXAL PARAMETER VALUES.

(2]lgKse]

PRINT76,TITLE, EL,BRATIO
76 FOF%AT(DX 15&4//3X YBOKE LENGTH®,5X,*PROBE LOCATION'/F9.1,F15.1/)

PRINTI7
PRINT78,BEI ,B¥N,BZETA,K
PRINT79 .

PRINTAD, TR0, TWd , TZETA
77 POR4UAT {5X,*EONE STIFFNESS',5X,'BOSE EAT PREQ',5IX,
1 *BONE DANPING?,S5X,'SKIN STIFPNESS')

\UWNU\U‘EOW

L ]

78  PORMAT (D16.5,F13.1,F19.4,D022.5/)
79 FOBEAT{5X,'TISSUE BASS/LESGTH',SI,*TISSUE EAT FREQ',5X,
1 *TISSLE DAHPIHG')

b

N

PRIHT 81
31 POBKAT(31!,'BXP£RIBPHTAL',1UX 'THEOBETIC!L'/Q!X,'PHASE'.21X.

-3 W

Y 'PEASEV /15X, YFReQ' ,BX, YIKPEDAKCEY ;B X, VANGLEY 7Y, YIAPEDASGCEY,
2 5X,*ANGLE'/)

BECXLCULATE YHE INPEDANCE. Sl Al L

an6n

£ 7N BPN=BUN$2.D0*PI SR

5

I : TPR=Tuu*2.00%P1
! — DO B85 I=1,§

3 BQ=DCHPLX (1. D0, 2. DO*BZETA#P (X) /BPN)
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GAN TEEMINAL SYSTEM FORTRAN G (41336) NAIN 09-19-78 2:

~ JP(THU.20.0.D0)GO T0_82
" TQ=DCMPLX (1.D0,2.D0O*TZETA*P (1) /TPN)
ARG=DCNPLX (P(I)*PI/TPkK,O. DO)/LDJQBT(TQ)
IF(IBC.EQ.1) ARG=ARG/DCHPLX (2.D0,0.D0)
COT=DCMPLX (1. DO, 0. DO)/CDTAh(ARG)
LAMDA=CDSQRT(CDSQR1T ( (DCHPLX( ((PI/BL) ®%2¢P (I} /BPN)*%2,0.D0) ¢
1 DCHMPLX (P{I) #*2¢TNU/BEI,0.D0) /ARG/COT+*IBC*IBC)/BQ))
GO TO 83
82 LAMDA=DCMPLX(PI/BL,0.D0)*CDSQRT (DCMPLX (P (I)/BPN,0.D0)/CDSQRT (BQ))
83 ZA=LAMDA*DCHPLX(BA,0.D0)
ZB=LANDA#DCNPLX (58,0.D0)
ZL=LAYDA#DCHPLX (BL, 0.D0)
Z3I=DCMPLY (0. DO,~. 5D0¢P (I) /BEI) /JLAMDA*#3/E0%
T (CDSINH(ZA) *CDSTHH (23] /CDSI5H (ZL) - CDSIN (ZA) *CDSIN (2B) /CDSIB (2L))
ZTI=DCHPLX (0.D0,P(I) /K)
ZC=DCMFLX (1.D0, 0. DO) 7 (ZTI+ZBI)
Z (I)=CLADS (2C)
PBI{I)=DATAK(DINAG (ZC)/DREAL (2C))* 180.D0/PY

E WIN e OO
13

OWmi~d O WL

£ W N -

PRINT THE IMPEDANCE.

ann

3 85 PRINT86,I,¥(L),ZF(I),PHIE(T) ,2(I),PUI(I)
86 FORNAT (I7,F13.2,D16.4,F10.2,D16.4,F10.2;

on

CALCULATE AND PRINT THE EBEROR PUNCYION.

é:} ERROR=0. DO

po_87 I=1,R
87 EGHEOR=ERROR® ((ZE(I)=Z(I))/2E (X)) **2
E8KOR= ERROR/N
PRINTS88,ERBOR o
83 FORAAT (/" THE ERROR FUNCTIOXN FOR THIS SET OF PARAMETEKRS ISV,
V F12.8,%. 1))
3 PRINT 74

nann

O -

PLOT THE IMPEDANCE.

ann

DO 90 I1=1,¥

¥P (I)=SNGL{N (X))

ZEDP (I) =SXGL (ZE(I))
PHIEP(I)=SXGL (EHIE (I))
ZP(I)=SNGL{Z(I))

90 PHIP(I)=SXGL(PHI(I))

CALL PLTOFS (le,3e/2e430,1e/20,1.5,4.5)

CALL PLGAXS (1.5,8.5,*FETQUENCY?,=9,6.,0.,%a,1./2.) -

, PLGAXS (1.5,4.5, "IHPEDAKCE', 9,6.,90.,3.,1./2.)

CALL PGEID(1.5,8¢5,2¢¢2443,3)

CALL PLTLOG (3) |

CALL PLINE(WP(1),2P(1),H,1,0,0,7)

CALL PLINE(N: (1),Z2EP (1) N, 1,-1,0,7)

CALL PLTREC S _ 1

CALL pLTOFS(1.,1./2.'-900'900'1.5,1.5)

CALL PLGAXS (1.5, 1.5, Y YREQUENCYY ,=9,6<,0.,V.,T1./2.)

- CALL PAX1S (1.5,1.5,'PHLSE ABGLE',11,2.,90.,~ 90..90.,.25)

CALL PGEID(1.5,1.5,2.,1.,3,2)

0

P SR VU LV V1 I Sy PUIT VS S WK S I VR I SR ¥ 1R 5
]
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;AN TERNINAL SYSTEM FORTRAN G (41336) AATN 09-19-78 2:
' - CALL_PLTLOG (2)
L CALL PLINZ(WD(1),PEIP(1),H,1,0,0,1)

CALL PLINE(WP(1),PHIEP(1),8,1,~1,0,1)
. . CALL PLTREC

CALL PGAGID(0.,0.,68.5,11.,1,1)
CALL PSYMB(1.5,.5,.125,TITLE(1),0.,60,0)
CALL PLTEND

END N

'TIOKS IN EFPECT® 1ID,EBCDIC,SOURCE,NOLIST,¥ODECK,LOAD,NOMAP
<SIONS IN EPFECT® HAME = MAIN ¢ LINECHT = 57
ATISTICS®* SOUPCE STATENENTS = 509, PROGEAN SIZE = 35900
ATISTICS* KO DIAGNOSTICS GENERATED
2S IN MAIN

O
- .

B Ty S gy W N Sl RPN O PR SR = S W YL

e s ML i+ it 5 1 et
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GAN TERMINAL SYSTEM PORTBAN G (81336) DREAL 09-19-78 2
1~ REAL_FUNCTION DREAL®8(X) -
2 CoMPLEX*1b6 X,DCHPLX
3 RLAL*3 Y,CDADS,LBLE
[ _DREAL= CDnBS(jXODCONJG(XL)/DCEPLX(Z D0, 0.D0)) '
5 Y=DBLE (REAL (X)) -
6 DREAL=DSIGX (DREAL,Y)
7 RETURN
8 END
PTICES IN EFFECT®¢ 1ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,KONAP
PTIONS _IN FPPECT®* HAME = DREAL  , LIKECNT = 57
TAZISTICSS SOURCE STATENEKTS = 8,PROGRAN SIZE = 524 )

TATISTICS* BO DIAGHNOSTICS GENERATED
OrS IN DREAL
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127-p

.GAN TERNINAL SYSTEM FORTRBAN G(41336) DINAG 09-19~-78
i1 e~ REAL _FUNCTION DIMAG®8(X)
2t COrPLEX*10 ¥,DCHEPLAL
'3 REAL*5 Y,CDABS,LEBLE
‘4 DIMAG=CDABS ((X-DCONJG (X)) /DCNPLX (2.D0, 0.D0))
5 Y=DBLE (AIKAG (X))
6 DINAG=DSIGN (DIMAG,Y)
7 BRETORN
'8 EXND
PTIOKS IN EPFECT*® 1ID,EBCDIC,SOUBRCE,NOLIST,NODECK,LOAD,NONAP
PTIONS IN EPFECT® NAME = DINAG , LINECNT = 57
TATISTICS® SOUBCE STATEMENTS = 8, PROGEAN SIZE = 530
TATISTICS* BO DIAGNOSTICS GEHEEATED .
0£S IN DIMAG
+mmp S
v/
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‘AR TEEMINAL SYSTENM FORTRAN G(41336) CDSINH 09-19-78 2.

L{f\ COSPLEX FUNCTIUON CDSINH®16 (X)
s COrPLEX*16 X,CDEXP,DCHPLX

; CDSINH= (CDEXP(X)-CLCEXP (-X))/DCHPLX (2.D0,0.D0)

_RETURN
s END .
'TIONS IN EPFECT® ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NONAP
)TIONS_IN EFPECT® NAME = CDSINH , LINECNT = 57
"ATISTICS® SOUBCE STATENENTS = '5,PEOGEAN SIZE = 526
‘ATISTICS®* KO DIAGNOSTICS GENERATED .

)ES I¥ CDSINB
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} ;AN TERMINAL SYSTEE PORTRAN G (41336) cbcosH 09-19-78 2;
. — COEPLEX FUNCIIQN _CDCOSH®*16(X)
5 ) COMPLEX*16 X,CDEXP,DCHPLX
; CDCOSH= (CDEXP (X) *CDEXP (-X) ) /DCEPLX (2.D0,0.D0)
; ) . RETUBN
: ; END
: )TIONS IN EPFECT*® ID,EBCDIC,SOURCE,NOLIST,KODECK,LOAD,NONAP
‘ 'TIONS_IN EPPECT® NAXE = CLCOSH , LINECNT = 57
~ "ATISTICS* SOURCE STATEMENTS = 5,PROGRAN SIZE = 522

'ATISTICS* NO DIAGNOSTICS GENERATED
JBS IY¥ CTDCOSH




Ml retecrtm m aconta s ncaamesatatatne . v emenatmevtopeundonacon - . —r. i s . e ae

GAE TERMINAL SYSTEM FORTRAK G (41336) CDTAN 09-19-78 2.

1 COBPLEX FUNCTION _CDPTAN*16(X)
AN TOMPLEX#16 X,CDSIN,CDCOS,DCHPLX

IF(DIMAG(X) +LE.34.D1)GO TO 1
- CDTAN=DCMPLX (0. DO, 1. DO)

GO T0 3
1 IP(DINAG(X).GT.-34.D1)GO TO 2

CDTAN=DCHPLX (0. DO, =1.D0)

GO TO 3
2 CDTAN=CDSIN (X) /CDCOS (X)
3 BRETUEN

END
PTIONS IN EFFECT® 1ID,RBBCDIC,SOURCE, NOLIST,¥ODECK,LOAD,NONAP
PTIONS IN BPFECT® NANE = CDTAN , LINECNT = 57
TATISTICS® SJURCE STATERENTS = 11,PROGEAN SIZE = 628
TATISTICS®* KO DIAGNOSTICS GENEBATED
JRS_IN CDTAN

--iD O Wi~ O N E W




G. RESULTS OF JF YIVQO ZIESTS ON THE FOREARMS OF SPVEN HOMAN
SUBJECTS

The results of the jip yivo tests performed on Sanbject T?T

are presented and discussed in Section VII.A. Similar results
froa seven other subjects have been obtained and are presented
bere. Driving-point mechanical impedance plots associated with
00, 500 and 600 gram-force preloads are given for each subject.

The corresponding parametric values in each case are 1listed in

Table 7.1.
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TABLE 2.1
éi) Three Basic Types of Mechanical Elements
mass dapp:r

Equatinn of Motion f = n¥ f = cx
F/a ] c/p
Slope on log-log plot 0° -450
FP/v (impedance) mp c

€:> Slope on log-log plot 450 0o
P/6 ap? cp
Slope on log-log plot 63.40 450

spring

f = kx

k/p?

-63.q°

k/p

-450

0o

130
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TABLE 3.1
Boundary Conditions

at x =0 at z = 0
Simply-supported Yy =0 Y» =0

B.‘O !230
Rotational spring Yy =0 Y. =0
one end k,6, - 8, =20 B, =0
Botational spring Yy =0 Y2 =0
each end k,, -~ 8, =0 k,0, - 8, =0
Translational spring k,y, + Vv, =0 Y, =0
one end N =0 H, =0
Translational spring k,y, + Vv, =90 k,y, ¢ vV, =0
each end B, =0 B, =0

at x = -e at z = 0 ]

i

Translational spring Kiyg ¢ V3 =0 Y. =0 j
an extended beanm B; =0 i, =0 |
i




TABLE 3.2

Non-dimensional Parameter Definitions

Non-dimensional Definition in teras
Parameter of Model Parameters
3 Y = wi/2E
(- a/l
[ b/L
.| ps/p = L4/m¢ prw?/EL
B w/tug
%, e T N /2B
S k/K = KL3/48EI 114
T 2kL3/E1 138
R kL/2EI 16
€ e/L
C, cyw/k
Cg Cew/K,

t1ax is the spring constant of the spring in series with the
bean. ’

'

18k is the spring constant of the translational spring at a
support.

tex ~ is the spring constant of the rotational spring at a
support. ’ '
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TABLE 4.2

Static Stiffnesses for Beaas With Various Boundary Conditions

The stiffrness of a beanm is

K = ¢ 3EIL/22h2

vhere expressions for ¢ are listed belov for several different

boundary conditions.
Boundary Conditions
1. Sisply-supported

2. Rotational spring
on one end

. Rotational spring
on each end

§. Translational spring
on one end

5. Translational spring
on each end

6. Translational spring
on an extended beanm

60“31

6+ a{3atUg)R,

6"“8. §QR2028, Rl

6+ a(3x+UB)R, + 8(38+Ua) B, +2aBR, R,

T,x2

6+7T,x2

T,Tz“’ﬁz

6(T|a2’Tz 62) ’T| Tz“zﬁz

20+44E3IT3 4062 T,

20+UE3T 4 a(3at ) 2T,
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TABLE 6.1
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Parametric Values for the Forearm of Monkey 663

Paraseter
Nane
Ulnar c"nport length
Length-to-probe-location ratio
Ulnar bending stiffness
Ulnar fundamental frequency
Ulnar damping ratio
Support rotational stiffness
Support rotational damping
Tissue mass per unit length
Tissue fundamental frequency
Tissue damrping ratio

Skin stiffness

Condition
Bxcised ulna
Musculatuore resoved

Probe on ulna

Intact aras

Sysbol

EI

0.0086
0.0112
0.0115
0.0132

Parametric
Value
17.1 o
0.6
2.9795x10° dyne ca?
332.0 Hz
0.0825
0.86535x10° dyne ca
1.7136x10% dyne ca s
1.85 g/ca
178.0 HZz
0.4050
2.2098x10® dyne/ca

Yalue of Error Punction
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TABLE 6.2
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Parametric Values for the Forearm of Monkey 665

Paraneter
Name ’ Syabol
Ulnar suppori length L
length~-to-probe~location ratio &
Ulnar bending stiffness BI
Ulnar fundamental frequency w
Ulnar daaping ratio
Support rotational stiffness k,
Support rotational damping c
Tissue mass per unit length Be
Tissue fundamental frequency w;
Tissue danping ratio %,
Skin stiffaess k
Condition Value of Error Prunc
Excised ulna | 0.0228
Busculature removed . 0.0127
Probe on ulna 0.0208

Intact ara 0.0653

Parametric

Yalue

17.2 cn
0.6
5.0311x10°
350.4 Bz
0.0364
§.4382x10°
2.2225x10s
6.56 g/ca
101.0 Hz
0.0792
1.1155x108

tion

D 3 P L s .

dyne ca?

dyne ca

dyne ca s

dyne/ca

.
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TABLE 6.3
Parcretric Values for the Foreara of Monkey 659
Parameter Parametric
Name Sysbol Value
Ulnar support length L 17.2 ca
length-to-probe-location ratio x 0.6
Ulnar bending stiffness (EU) I 5.2898x10° dyne ca?
Ulnar bending stiffness (MR) BI 7.7120x10° dyne cm?
Ulnar fundamental frequency w 377.4 Hz
Ulnar damping ratio Y 0.0267
Suppoft rotational stiffpess X, 3.4682x10° dyne ca
Support rotational damping c, §.2095x10% dyne ca s
Tissue mass per unit length P: 4.02 g/cn
Tissne fundamental freguency T owy 145.1 Hz
Tissue dasping ratio 5 0.5827
Skin stiffness-400 gm preload 3 1.3543x10® dyne/ca
Skin stiffness-600 gam preload k 1.3924x10® dyne/ca
Condition Value of Error Punction
Bxcised ulna 0.0098
Nusculature resoved 0.0179
Probe on ulna 0.0111
Intact aras 400 gm preload 0.0122

Intact arm 600 gs preload | 0.0169




TABLE 6.8

Bending Stiffness Beasurewents on the Ulna of Monkey 659

Test

DPMI test (musculature removed)

DPXI test (excised ulna)

Percent difference

Three-point bending test (KIS machine)

_Percent difference

Repeat bending test on dry bone

Percent difference

Bending Stiffness
EI (10° dyne cm?)

7.712

5.246

32.0%

§.827

37.4%

4.530

61.3%

138
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TABLE 6.5

Mechanical Properties of the Aluminum Beanm

Bending Fundamental
Stiffness Frequency
BI w
(10° dyne ca?) (Bz)

Predicted values 5.587 829.2
Corrected for enlarged ends 5.670 448.2
Percent difference 1.5% 6.4%
Beasured values 6. 090 489.3

Percent difference 9.0% 14.0%




09°0 68EL°E 9EBE°E GOEE°T 0LES°0 L°BZL 65°LY Z°795 T8hneE"l S°0C T£°0 9% T 4 952
89 °1 89CE°h 9808°€t 8HiZ°E CLISE*O L°ISE 9L°L} 0°06E LEOL"E et HS°0 69 L7 R Il
A

6%°0 S6L1°S LH6L°E 08GL°E OLah°0 O°64L TT°tl 6°06S TLLO°Z B°EZ o100 0S ST 4 SS

0zt 6S6E°E BTTIT SHLT°T ELLIE"O0 T°89L LO°El 0°9LE Sh80°S Z°ST SL°0 19 HCT RN oOm

St 6LEO0°E 192L°C sSuweL”l ESHU°0 #°0hl 8Z°EL 0°S0% SOIS°E 0°9C (t9°0 (9 8F W €R

te°t T6TL°8 LS66°S 6L9L°E  HICE°G €°SulL T6°EL L *06€ 6St8°C 6°€Z SS°0 SS 0 ®”R oa

st°t can9°s e€88h°h  L193°¢ 60LE°0 6°C91F 6Z°€L L°6Zh In0Z°¢E Z°nt 0S°0 95 61 R 96O

st L166°t ZILL°E S99€°T L6E°0 8°LEL Tu°CL L°€6E LELZ" N LT €S5°0 SL LT 8§ 18
> o)
L o= (3] -~
-4 - -4 a ﬁ. a £ a
) e (-7 [« % - Q@ o - ) (]
%) = a o ne (o) <«
a - [ ] 7] o o o ne a a .
L4 O = - PN L= P [ 1] Qo ~d Qo .3 § ] Q [ :
o [ o - 4 4 4 [~} Lo ] (3] :
a oL oV oL 0o L7 - 4 w-wa - !
() o\ O\ O N\ - O ol - a + 4
nn O Q (TO N ) 2> Q R —4 a -4 LA - o -
a a a o0 o B o~ -] ) (o] L) [/
0 N b 0N b 0N by [T =] + - ] - /7] [=5 ) /] (7] .
0 -~ 0o 0o nwo Q a [SIRS) a [-) [+ 9 a [} o \
. [ ¢ [~ X ] [~ ] He (=] "N [o ¥ | [P ao N o~ [_ PN [ ] L) 1)
N wo - o wo ol o o ; [+, o N e, ] [ ] hd o
Qo - - - - - - ™~ o~ 0~ o Lol 3 N 3 P -
=~ wil i wl{ ™~ [ <] = ] Q- [=] g~ e\ U™ Q ] f8
o -~ - ) - IS =1 W " . = @ - -l O O o Q 9
o A Y 0 WV X ax [ na ~ 3 m M D R~ M~ a@ v w0
pojeindIed SJ9}98EIEd UF)S SJoj9oueaed o9ussilL saiajomried 9uog m&.«uﬂunﬂoo po3nsuag

s3o3fqns § ucsdmoyl JOo Smaealod ayyjl 103 sanies ODfijawvied ,

"L alavl

om > Q




S0EL LT 0ZLE"O S198°L 9NEC"0 1°091 Z9°% 0050°0 _N.mms 006t °0 9°0° 0°61F ®wuUIn (L}
BLLT ST #E9Z°0 L9s9°9 LSSCT°L S°l9¢t nE9v -0 9°0 0°1¢ voya 91
L966°LL 6S8E°0 1629°% EEES0 E°IEM LZEN°O 9°0 0°8i suln ¢
£SSE°9  SIS9°1L 0964°0L LLED°0 Z°Lul (S°¢E 0050°0 9°LE9 9S8S° L $°0 S°9L P®IQTI (L)

ZS8E "t 88T °T 80t9°L €E06E°0 B°ELL LS°S 0050°0C 9°%L9 S8BL6°} S*0 0°SF T®IQTL 31

P

0L6Z°S LENE "L 6LLL "L CHEL D L°0LZ (LO°Z 0050°0 9°L0L 99tiL°t S°0 0°9) P©®IqTL ¢ g
> >
3 - 3] o

- Q - a wd o«

") - ] o [ t e

1] /] -4 [~ - -] n 0 - ™

9 7] ot Q (] o 7] -0 a

O~ - - ] o -t ] m ] 0 )

ol O3 ne [ ] -4 (¥ (-] a ae -4

& 0 no 3] on - + O~ i “ O~

S - YN\ ~ ) ol i &2 w i 3 -~

N ae @ PO | -4 a +$C —t wd + 0 b

a «wa P 90 (] =] o ol « + Q. ©

w o b 0 > - a - -~ ~ 0 + ("] (ST} D

na ol uo o a - m a a on ¥

Q@ - - @ o Vo~ QL o0 o o - o
ac Ne 2o a -t 8N o\ Qe - . (=] (| 8 o~ >
* Y - o -wo k) LK. o ord rd oSN ot Q -t [ ] (]
- Qe - o~ o~ 0N~ W] LR -] <] F-x.-] %) (] ™Y
ol 3 a~ l ~ " a 7] 8 ~— a~ a [ Rd (= a a
- N [+ <+ o o 3¢ o o ] = Q 4 ¥ o (o] 0O
™) M 0 x ase a3 ma a o 3 o m o B A = P -
_, pajeInoYed UTyS sSlo3jomeled 9USSTL sSyajodueieg auog mwﬂvd&ﬂdﬂa poansvay

Ll Pu® 9| *Z siexuou jo sH627 puv sSwaeaiod 3aY3} IOJ SanIea OFI}omuIRd i

¢°L a74vl

it O € Q




142
TABLE C.1

Zmnw/K as a Punction of p, and 7

Pixed foundation

A\ % 0.2 0.3 0.4 0.5
0.2 0.135 0.138 0.141  0.144
0.5 0.184 0.191 0.199  0.207
1.0 0.263 0.279 0.297 0.311
2.0 0.818 0.455 0.491 0.517
5.0 0.867 0.988 1.084 1.123

Pree foundation

AN 4 0.2 0.3 0.4 0.5
0.2 0.164 0.184 0.199 0.208
0.5 0.257 0.309 0.346 0.369
1.0 0.813 0:513 0.598 0.643
2.0 0.725 0.938 1.113 1.213

5.0 1.655 2.192 2.670 3.049

P S



Pized foundation

P\ %, 0.2
0.2 0.035
0.5 0.08%
1.0 0.163
2.0 0.318
5.0 0.767

@ Free foundation

P\ Y 0.2
0.2 0.064
0.5 0.157
1.0 0.313
2.0 0.625
5.0 1.555

TABLE C.2
£(Rre%s)

0.3

0.038
0.091
0.179
0.355

0.888

0.3

0.084
0.209
0.418
0.838

2.092

0.4

0.081

0.099

0.197

0.391

0.984

0.8

0.099

0.236

0.898

1.013

2.570

0.5

0.044%

0.107

0.211

0.817

1.023

0.5

0.108

0.269

0.543

1.113

2.949

183




Fizxed foundation

TART 0.2
0.2 0.174
0.5 0.168
1.0 0.163
2.0 0.159
5.0 0.153

Pree foundation

BN 0.2
0.2 0.319
0.5 0.315
1.9 0.313
2.0 0.312
5.0 0.311

’
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TABLE C.3

g (%)

0.3 0.8 0.5

0. 188 0.206 0.222

6.183 0.199 0.213

0.179 0.197 0.211

0.178 0.196 ¢.209

0.178 0.197 0.206

0.3 0.4 0.5

0.420 0.495 0.539

0.817 0.892 0.538

o:a1s 0.498 0.543

0.819 0.507 0.557

0.818 0.514 9.590
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Pigure t1.1. Buman Long Bones.
{i} g g

(1) Ara and foreara shoving relative size,share and position of
its bones. (b) Thigh and leg showing relative size, shape and
position of its bones.
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FPigure 1.2. The Test Pixture.

O

(a) Shovn with a buman forearm in position. (b) Shown with a
monkey leg in position.
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rigﬁ:e 1.5. Sample Plot Froa Thoapson's Progras.
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Pigure 2.1. Orne's Pirst Model of the Ulra in Thompson's
O Experimental Procedure.
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Pigare 2.2. Impedance Data From & Piece of Skin.
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rigure 2.3. Improved Nodel of the Ulna in Thompson's
Experimental Procedure.
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(a) Case 1: siaply-supported

(b) Case 2: rotational spring on one end

(c) Case 3: rotational spring on each end

(d) Case 4: translational spring on one end

(e) Case 5: translational spring on each end

(f) Case 6: translational spring on an extended bean




Pigure 3.2. The Coordinate System of the Beaxn.

et = u————e w

155

FL’ b o
Ay(xi:) l——z—-——

J Y \(zt)

e a
b - L




156

Pigure 3.3. The Poundation.

The coordinate systea and boundary conditions: (a) fixed, (b)
free.
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Pigure 4.2. Single-degree-of-freedos Oscillator.
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sedon Oscillator.
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rigure 4.3. DPMI of a single-degree-of-fr
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P/l

¢ Botational Spring on Pach Pnd.
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Pigure 4.6. DPNI of Case 3
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- Figure 8.7. DPNI of Case 4: Translational Spring on One End
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DFEI of Case 5: Translational Spring on Bach
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_ dimensionalized.
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FPigure &4.11. DPNI of Cases 1 Through 5, Re-non-
O dimensionalized.
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Pigure 4.12. Taper.

- {a) Linear, (b) quadratic.
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I(x) = I (1 - gx)e I(x) =X (1 ¢ Px!)O
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pigure &4.13. DPAHI Plot Exhibiting the Dependance of the
Mass Per Unit Length of a Fixed Foundation.

S ————

(The b:al boundary conditions are sipply-supported.)
c-

m--

-t

oT

ZU/K
2

H

Thl N

o adpe
N 4=
o4
- v
[-- 2 o
0 -4
M-b
w

o =L
N 4=

o




B Sl e

ZU/K

rigure 4.14.
Damping Ratio of a Pized Poundation.
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Pigure
Bass Per Unit Length of a Free Foundation.
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Exhibiting the Dependance of the
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Figure 4.16.

DPHI

Danping Ratio of a Free Foundation.

{(The beél boundary conditions are simply-supported.)
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Plot Exhibiting the Dependance of the
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{ Pigure 8.17. Comparison Between Actaal Minimum DPMI and
Cjé Approximate Equationms.

(a) Bgquation (4.17), fixed foundation, (b) equation (4.18), free
: foundation.
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Figure 84.18,
Spring Constant of a Spring in Series With Thae Beam.

174

DPEI Plot Exhibiting the Dependance of the
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Pigunre &.19. DPNI Plot Exhibiting the Dependance of the
Bear Daeping Ratio in the Presents of a Spring in Series With
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Pigure 4.20. A Typical Set of DPMI Data, Indicating Certain
Key Points.
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Figure §.21. Single-degree-of-freedon Oscillator in

Series with a Spring.
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Pigure 5.2. Plowv Chart of the Cozputer Progran.
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Figure 5.3. Flow Chart of One Phase of the Computer Progras

Establish initial guess

~]

B

Check:

yes .

P > 0?2

Calculate 2

I

Calculate 42/ap

|

Calculate error

Check:

yes

has error
increased?

no

Fron previous phase or read section

Calculate (A], (B), {AP)

1

P=P ¢+ AP

Return parameters

Check:

have ten iterations
occurred?

to old valges
yes B
yes
s

To next phase or print and plot sectio:L




181
. Figure 5.8. Sample Input To Computer Progras.
O
L
+
; T - - -
s
n $LIST -DATA
5 1 SUBJECT TT 500 GM PRELOAD
i 2 23.4 -6
2 3 -1
% 4 28
» 5 65. «250E+06 =92,
v 6 70. 0220.2’06 -860
n 7 80. «175E¢06 ~-86.
% 8 90. . 145E406 —-82.
x 9 100. . 130E406 =79.:
» 10 110. .121E+76 =71,
% n 120. .107E¢06 -75.
Y 12 130. .969E+05 =73,
% 13 140. -697E+05 =70.
3 1 1) 160, .778E+05 -63.
" 15 180. .751E+405 =55,
| » 16 200. .698E+05 =52,
I 17 220. .658E+05 ~41.
O Do 18 250. .591E+D5_ =82,
Mt 19 275. .S572E+05 =31,
F 20 300. .574E405 -30.
i 21 325, .577E405 =21,
FRCY 22 350. .611E405 =17,
H u' 23 375, .698E+05 ~08.
Poay 24 400. .821E+05 -D2.
£ 25 850. < 105E+406 =05.
HEE 26 500. .127E+06 -18.
s 27 550. . 150E+06 =31
;e 28 600. .1U5E*06 -85,
ooow 29 700. < 116E+406 ~62.
oo 30 800. .938E¢05 ~67.
5 31 900, .B3SE+05 =639,
$ 32 1000. .819E¢05 -70.
5 END OF PILZ
$5
3¢
37 -
_
JOAPESIE v

4
3
2
!
|
a
f
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Pigure 5.5. Sarple Output Proa Cozputer Progras.
O
SUBJECT TT 500 GN PRELOAD
BOKE LENGTH PROBE LOCATION
23. 4 0.6
BONE STIPFHEESS BONE NAT FREQ BONE DANPING SKIN STIFFKESS
0.31692E+11 400.7 0.0500 0.38004E¢09
TISSUE MASS/LENGTH TISSUE MAT FREQ TISSUE DABPING
11.61 152.2 0.3785
EXPERINSENTAL THEORETICAL
PHASE PHASE
PREQ INPEDANCE ANGLE INPEDABCE ANGLE
1 65.00 0.2500E+06 -92.00 0.2372E+06 -87.80
2 70.00 0.2200E+06 ~-86.00 0.2176E+06 -87.53
3 80.00 0.1750E+06 -380.00 0.1851E+0¢6 -86.83
4 90.00 0.1450E+06 -82.00 0.1589E+06 -85.83
5 100.00_ 0.1300E+06 =-77.00 0.1372E+26 -84.32
€:: 6 110.00 0.12102+¢06 ~-77.00 0.1191E+06 -82.00
7 120.00 0.1070:+06 -75.00 0.1044EF+06 -73.58
8 130.00 _  0.9690:405  -73.00 0.9345E#05 _ -74.04
9 140.00 0.8970:+05 -70.00 0.8628E+05 -68.9%
10 160.00 0.7780E+05 -63.00 0.7962B+05 -60.71
11 180.00 0.7510:+05 -55.00 0.7503E+05 -56.20
12 200.00 0.69302+05 -52.00 0.693L4E+0S -52.61
13 220.00 0.6580r+05 -57.00 0.6361E+05 ~-48.18
18 250.00 0.5910£+05 -62,00 0.5720E+(75 -39.20
15 275,00 0.5720:+¢05 -37.00 0.5450E+05 -30.22
16 300.00 0.5740E+0% -30.00 0.5563E+405 -21.21
17 325.00 0.5770E+05 -21.00 0.5916E¢05 -13.84
18 350.00 7-6110E+05 -17.00 0.6505E405 -7.65
19 375.00 0.69802+05 ~8.00 0.7283E¢05 -8.02
20 400.00 0.8210F+05 -2.00 0.8209E+05 -2.40
21 450.00 0. 1050E+06 -5.00 0.1035E+06 =~3.43
22 500.00 0.1270E+06 ~18.00 0.1251E406 -12.22
23 550,00 0.1500£¢06__ ~31.00 0.1399+06 _ =23.86
24 600,00 0.1450E+06 -45.00 0.1429E+06 ~36.53
25 , 700.00 0.1160E¢06 =-62.00 0.1238E+06 -56.25
26 800,00 0.9380E¢05 -£€7,00 0.1005E406 -66.87
27 900.00 0.83902+05 -69.00 0.8319B¢05 -72.15

28 1000.00 0.8130E+05 -70.00 0.7125E+05 =74.74

THE ERROR FPUNCTION POR THIS SET OF PARMETERS IS 0.00234246.
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Yigure 5.6. Sample Plot From Computer Prograa.
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Figure 6.1. Nookey Arm in Test Fixture.

O

(2) Intict ars, (b) Prode on ulpa, (c) Busculature removed, (d)
Excised ulna.
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Pigure 6.4. DPHMI of Monkey 663: Probe on Ulna.

o+
Tt
[« &
r~ 4
[« o

(G}

sv £ 2

JINBUIINT

o~

gdixi

x104

O o

x103

FREQUENCY

.

x102

1x1g!

xic4

“+ D
.ﬁs
-+ N

I

T

x103

O -
- J€WO
d
- @
ad

S

+

2102

to -~
Lﬁ.U
.r.-l

'
+ 1w

T ™

1

00 "06

n
v

c0°0

1x10

" 00°06-

319N 3SBHd

O

FREQUENCY

MINK 663 PROBE ON ULNA




:
w
%
]
m

188

Intact Are.

Pigure 6.5. DPMI of Monkey 663
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' - Pigure 6.6. Misalignment Betweer Humerus and Support at the

(O ribov.
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Excised Ulna.

Pigure 6.7. DPANI of Monkey 665
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Pigure 6.11. DPNI of Monkey 659: Excised Ulna.

MONK ‘659 EXCISED ULNA

r € 4 n
A ILY p0ixy

%
w 3ONUATdWI

-
-

o

nT
1x10’
210!

: 0006 ' 00°0 0 00 "06-
o 3T9NG 3SEHd

«< o
[L R 3
@D+

< €8¢

~ 4
<
"+
-«
™
~N 4+

NS T S o



195
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Pigure 6.12. DPMI of Monkey 659: Musculature Removed.
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Pigure 6.13. DPEI of Monkey 659: Probe on Ulna.
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Pigure 6.16. Bending Pixture Used For Three-point Bending
Test on the Ulpna of Monkey 659.
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Pigure 6.17. Load-deflection Curve From Three-point Bending
Test on the Ulna of donkey 659.
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Pigure 7.1. DPMI of Subject TT: 400 gm Preload.
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Pigure 7.2. DPMI of Subject TT: 500 gm Preload.
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Pigure 7.6. DPEI of Monkey 17: Tibia.
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Pigure 7.7. DPMI of Monkey 2: Ulma.
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7.9. DPMI of Monkey 17: Ulna.
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$ . Pigure 7.11. DPXI Plot Pxhibiting the Nasking Effect of the
¢ W Spring-in-series.
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. Pigure B.1. The Flements of a Tapercd Bean.

(a) Linear taper, (b) Quadratic taper
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Figure G.12. DPEI of Subject HB: 600 gm Preload.
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Figure G.14. DPMI of Subject HO: 500 gm Preload.
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{ (€\ Pigure G.15. DPMI of Subject MO: 600 gm Preload.
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Figure G.18. DPMI of Subject SS: €00 gm Preload.
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Pigure G.21. DPHY of Subdject VG: 600 ga Preload.
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