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The mechanical properties of a bone are a good indicator of

^o
the health and condition of that bone, and possibly of the

ui	 w

N	 ^^	 skeletal	 system as a whole. Among the better correlated
r-	 V co

	N	 zechanical properties to bone 	 condition	 are	 stiffness

	

uvi	 properties. However, no clinical method is currently available

'to measure such properties noninvasively.

	

o	 The long bones of the forearm and leg are the most
v	 o

sccessible for mechanical testing. Hence, many investigators
w .-4	 LO

H w a	 have concentrated their efforts on these 	 bones.	 various
v, •.4

0 o &14 a	 approaches have been taken involving either ultrasonics or
^saav^^

.impedance testing.P	 9

	v-.	 One such impedance method was developed by Thompson'.
M	 ^

w o z A	 However, more developement is needed before this method is
t+ cN 0

W H N W	 suitable for routine use in a clinical setting. Much of that
0W 4j
W ca

..W -W	 needed developement work is presented.
ra4W Ln

O Vs M z 4 0	 A mathematical model of the vibrating forearm and le g

	

^wc q o	 9
A >4 a

c w s w systems is developed. Briefly, the model consists of a uniform,
W U X3
U H H \

a ^	 linear, visco-elastic, Euler-Bernoulli beam to represent the
cnxN 04
z w y U ulna or tibia of the vibrating forearm or leg system. The skin

and tissue compressed between the probe and bone is represented



by a spring in series with the beam. The remaining skin and

tissue surrounding the bone is represented by a visco-elastic

foundation with mass.

An extensive parametric study is carried out to determine

the effect of each parameter of the mathematical model on its

impedance response. Two accomplishments are obtained as a res.lt

of the study. First, an increased unders6anding of the effects

of the parameters is gained. Second, many qualitative

relationships between the parameters and the characteristics of

the impedance carve are derived.

A systems identification algorithm is developed, and

programmed on a digital coaputer, to determine the parametric

values of the mathematical model which best simulate the data

obtained from an impedance test. The algorithm is based on

minimizing the error function; a function similar in form to

that of a least-squares method.

Due to the complexity of the impedance equations of the

mathematical model, the error function is very nonlinear with

respect to its parameters. Consequently, the system of equations

obtained from a least-squares approach, is virtually impossible

to solve. Hence, an iterative procedure is developed which

involves the calculation of a change in each parameter which

brings that parameter closer to its correct value. To start the

iteration procedure, an initial guess for each parametric value

is obtained using the relationships derived in the parametric

study.

Data from several groups of impedance tests and experiments

have been made available through personal communication with

Ames Research Center. Among them are (1) in vitro monkey

r:_3'



experiments, (2) nonbiological tests, (3) Thompson t s origional

in vivo, human tests, and (4) more recent in vivo monkey tests.

The in vitro monkey experiments involve the measurement of

impedance of a monkey forearm in several stages as the ulna is

being excised. The mathematical model is shown to be a good

representation of the physical system by using it in its

appropriate form to simulate the whole set of experiments with a

Consistent set of parametric values. The nonbiological tests

involve the measurement of impedance of two systems: a "rigid"

mass and an aluminum beam. These "known" systems give an

indication of the accuracy of the impedance method. The use of

the computer program is %.emoustrated by applying it to the in

vivo human and monkey data.

Several ri-commendations are given. Additional in vitro

experiments are suggested to further understand the support

conditions of the forearm and leg systems. Improvements to the

testing procedure are also suggested.

The impedance testing procedure, with the recommendations

taken into account, promises to be a very useful clinical tool

for measuring mechanical properties of bones.

1 Thompson, G. A., 1973 0 "In Vivo Determination of Bone
Properties from lechanical Impedance measurement," abstract in
kerospice !Medical Association Annual Science !Meeting, Las Vegas,
pp. 133-134.
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CHAPTER I

INTRODUCTION

A. FORWARD

i_ The Neel for Measurement of Bone Properties

Numerous recent studies have centered on the noninvasive

measurement of mechanical properties of bones in _vivo. Many

different approaches have been taken such as impedance methods

and ultrasonic methods. Some of these approaches will be' 	 3

discussed in Sections I.D and I.E. Most of these studies have

been concerned with various kinds of stiffness measurements;

usually either modulus of elasticity (E) of the material of a

bone or the bending stiffness (EI) of a whole bone. These

stiffness measurements have many clinical applications. Among

them are the detection and the measurement of the degree of

deterioration resulting froA osteoporosis and other bone

diseases and the measurement of the degree of fracture healing.

However, relationships between stiffness measurements and bone

disorders must be knokt: to make the stiffness measurements

applicable. These and their clinical applications

will be discusse' in Section I.C. Before this discussion,

however, 4 brief review of anatomy is appropriate.

I
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B. ANATOMY

1,_ The Skeleton

The skeleton is the set of bones which form the internal

framework of the body. The functions of the bones are given by

Rove (1972) as follows:

1. The outward fors of the human body depends on the
shape and size of the bones, vhich are the main
supporting structures for other body tissues,
particularly the muscles.
2. Some parts of the skeleton protect the vital
organs; for example the bones of the cranium protect
the brain and the thoracic cage protects the heart,
lungs, liver and spleen.
3. By means of the levera ge obtained throu gh the
articulation of the banes with one another at their
joints, the muscles are enabled to carry out
movements, including locomotion.
4. The calcium contained in the bones not only

` strengthens them against stresses and strains but also
serves as a reserve from which it may be vithdravn
into the bloo3 streac should the need arise.
5. The red narrow contained in cancellous bone is the
tissue from which red and some of the white blood
cells are developed.

The skeletal system must be maintained so that these

functions 'can operate. !many diseases are associated vith the

deterioration of the bones, inducing adverse effects on their

functions.

Bone, like other tissues, consists of living cells and non-

living intercellular substance. However, the intercellular

substance (or matrix) in bone tissue, unlike other tissues, is

_ calcified. Calcium salts impregnate the cement substance of the

matrix thus giving bone its rigidity. !many bone diseases result

in a loss of these calcium salts and hence a loss of bone



3

rigidity.

There are basically four types of bones, characteri2ed by

their size and shape: long, shor.., flat and irregular. many of

these bones have been studied from a variety of different points

of view, in teres of monitoring bone integrity. The long bones

in the limbs of the body, however, are of greatest interest for

noninvasive mechanical testing. Their a=cessibility simplifies

testing procedures and their beamlike form facilitates

mathematical modeling.

2 Long Hones

The following four definitions are conventional among

anatomists. The term arm refers to the portion of the upper limb

between the shoulder and elbow, while the term forearm refers to

the portion between the elbow and wrist. The term thigh refers

to the portion of the lower limb between the hip and knee, while

the term leq refers to the portion between the knee and ankle.

The bones of the arm and forearm, shown in Figure 1.1a, are

the humerus, ulna and radius. dote the closeness of the ulna to

the outer surface of the forearm. Little or no tissue lies

between the skin and the ulna over most of its length. Tbus the

construction of the forearm sakes the ulna conducive to

noninvasive mechanical testing.

The bones of the thigh and leg, shown in Figure 1.1b, are

the femur, patella (knee cap) , tibia and fibula. The tibia, like

the ulna, is close to the outer surface and is also suitable for

noninvasive mechanical testing.

l
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C. CLINICAL APPLICATIONS OF STIFFNESS MEASURING T^ECHNIOUES

1. Bone Disease

"Osteoporosis is the tern used to describe a group of

diseases of diverse etiology which are characterized by a

reduction in the mass of Done per unit volume to a level below

that require9 for adequate mechanical support function." (!Crane,

1977). Osteoporosis results in a loss of bone strength due to

the loss of bone material. Although osteoporosis is a very

common metabolic disorder, often associated with other

disorders, the etiology in most cases is not known. Two of the

most common types of osteoporosis are disuse osteoporosis and

senile osteoporosis.

Disuse osteoporosis results from a lack of stress applied

to a bone. The type and degree of stress applied to a bone

significantly affects the remodeling of bone. Remodeling of the

bone is the continuous lifelong process of the formation and

resorption of bone material. A lack of stress applied to the

bone can result in a decrease of bone material (i.e., resorption

will exceed formation).

Disuse osteoporosis occurs in paralytics and bedridden

patients with diseases not related to the skeletal system. !Many

studies have been done on the effects of immobility, some as old

as thirty years, e.g., Deitrick, Vhedon and Shorr (1948).

Bone mineral losses have also been found to occur in

astronauts after an extended period of time in a weightless
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environment. The changes in calcium are clearest in the 84-day

Skylab mission, see Whedon et al. (1976). Urinary calcium

excretion was monitored and measurements of bone mineral content

(BmC) were taken of several bones. Urinary calcium excretion

increased steadily during the first few weeks in flight, and

leveled off at about double the value observed during the

preflight control period, with no suggestion of decline toward

the end of the flight. 1 maximal loss of 7.9 per cent in BBC was

observed in the os calcis while the radius and ulna did not

change measurably. Among the implications expressed by Whedon et

al. (1977) is the following:

Since mineral is lost differentially in greater total
amounts from trabecular areas of bone, one must
consider the possibility that in very long space
flights local area losses of mineral of a degree
equivalent to osteoporosis, visible by ordinary x-ray
would take place and that the strength of critical
bones would be endangered.

Hence, during longer space flights such as a flight to mars (1.5

to 3 years duration), significant changes are expected to occur

in the long bones such as the radius or ulna and particularly in

the weight bearing tibia.

Whedon et al. (1977) also points out that "urinary calcium

inflight increased steadily to a plateau in virtually the same

pattern and degree as previously seen in bedrest studies."

Hence, one would expect that results from such studies are a

good indication of the effect of weightlessness. Ongoing

investigations are being conducted to study this effect over

long periods of restraint (six months or mote). See Toung and

Tremor (1978) .
Senile osteoporosis is an osteor rosis associated with

aging. Although the exact mechanisms which act to induce this
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osteoporosis are not known, it is believed to be at least

partially caused by hormonal imbalances which occur with age,

particularly with post-menopausal changes in women.

Other diseases such as rickets and osteonalacia also result

in a decrease in strength in bone. These two disease:_ are

associated with a defective mineralization of bone material.

2. Bone Strength

Each of the bone diseases discussed above results in a

decrease in bone strength, the force required to fracture the

bone. Therefore, a measuring technique would be valuable.

However, bone strength can not be measured directly except by

methods which entail destruction of the specimen. Therefore a

noninvasive acthod for inferring bone strength is needed. If

correlations can be found between stiffness and bone strength,

then the stiffness measurements, mentioned in Section I.1, will

be very useful. Once correlations are established to the :pint

that bone strength can be accurately inferred then the stiffness

measurements can be used to: (1) diagnose bone diseases, (2)

determine the extent of the deterioration caused by the disease,

(3) prescribe treatment and (4) caution patients to avoid

activities which will induce dangerous stress levels in their

bones.

3. Correlation Studies

Although bode diseases usually affect all of the bones in

the skeletal system, long bones are more accessible for testing.

Thus most of the studies have been concerned with long bones.

Mather (1967x) (19675) was among the first to correlate bone
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strength to other material and geometric properties of the bone.

Be ran simple bending tests on fresh, excised, human long bones

and found strong correlations between bone strength and such

"measureable" quantit=ies as age, modulus of elasticity and bone

geometry.

Farther correlation studies have been performed to relate

bone strength to bending stiffness of long bones. Borders,

Petersen and Orne (1977) tested fifty-six excised, fresh, canine

long bones (ulnae, radii and tibiae) in three and four point

bending. Jurist and Foltz (1977) tested forty-five excised,

embalmed, humai ulnae in three-point bending. In each case, the

for=e versus deflection was recorded while the bone was loaded

to fracture. Statistical correlations were found between bone

strength and various mechanical properties of the bones.

These two independent investigations were parallel althsugh

the specimens used in each were substantially difA"erent. Their

findings and conclusions support one another. In particular,

very strong correlations were found bp tdeen bone strength and

bending stiffness for the normal bones tested. BBC was also

measured near the center of each bone tested. Both studies

indicate a substantial corre l ation between BBC and both bone

strength and bending stiffness.

Thus, correlations have been well established between bone

strength and bending stiffness for healthy bones. Further

correlation studies involving various kinds of diseased bones

are needed to establish the effect of these diseases. it is

reasonable to expect that good correlations can be found for

diseased bones, since they exist for healthy bones. 1 reliable

method for measuring bending stiffness would then be very useful
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as a non-invasive indicator of bone strength.

4. fracture Healing

Another potential use of stiffness measurements is the

determination of the extent of fracture healing. A few recent

studies have already been done it this area. Among the first to

investigate the feasibility of such an application were Campbell

and Jurist (1971). They made impedance measurements on an

excised, intact human femur and further measurements on the same

bone in various injurious conditions, concluding that methods of

this type are indeed feasible. Further studies rz:e carried out

by Harkey and Jurist (1974) and Hoeksema and Jurist (1977) in

which resonant frequency was correlated to fracture healing.

Bourgis and Burny (1972) performed a theoretical study to show

the effect of a partially healed section on the mechanical

response of a bone. Abendschein and Hyatt (1972) made ultrasonic

measurements to obtain the modulus of elasticity of bones in

guinea pigs at various stages in the healing process, thereby

demonstrating its variation with healing.

In measuring bone properties for the purpose of monitoring

the healing process of a fracture, it would be advantageous to

know what the done properties were before the fracture occurred.

This, of course, is not possible in a clinical setting. However,

Borders, Petersen and Orne (1977) found, in the case of healthy

canine bones that paired bones (right and left bones of the race

type from one animal) have virtually identical mechanical

properties. If this paired bone relationship holds true for the

human skeleton as well, then measurements taken on a partially

healed bone can be compared to corresponding measurements on its
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paired bone to determine the extent of healing.

5_ ;aaaver ,g-Valuation

Still another potential use of in ♦ vo stiffneLs

measurements is the skeletal status evaluation of cadavers.

Human cadavers are used quite extensively for impact safety

studies. A noninvasive screening technique would be very useful

in determining the suitability of a cadaver to represent a

specific population in such a test. Although this approach to

cadaver evaluation is presently not in widespread use, the

concept was introduced and discussed in detail by Orne (1976) . 	 t

D. OTFFRS WORK

1_ Ultr aso n ics

It was shown in the last section that bone conditon is

related to the mechanical properties of the bone. Many

investigators have attempted, with varying degrees of success,

to measure these properties in vivo. lao major types of

approaches have been taken: ultrasonics and impedance testiLg.

` Craven, Costinini, Greenfield and Stern (1973) investigated

the plausibility of measuring the speed of sound in ulnae in

v ivo using a pulse-echo technique. They shoved a significant

difference in their n easirements for bones of two extreme groups

of subjects: young healthy males and older (post-menopausal)

females. Further investigations using this method were carried

out by Greenfield et al. (1975). They deduced the modulus of

elasticity from the speed of sound, measurements of geometry and

--•- Am---



r`
L

10

bore mineral content.

Abendschein and Hyatt (1970) measured the longitudinal wave

speed of standardized specimens of human femoral and tibial

diaphyseal cortices. In this preliminary in vitro study, they

found correlations between wave speed and a few physical

properties including modulus of elasticity. Selle and Jurist

(1966) made similar measurements on whole ez_ised ulnae and on

ulnae in vivo. The in vivo tests werz conducted on osteoporotic,

diabetic and normal subjects. Saba and Lakes (1977) investigated

the effect of the soft tissue on the measurement of wave speed

in long bones. They concluded that the presence of soft tissue

has a significant effect on these measurements and therefore

must by considered.

In each of the ultrasonic methods discussed above,

geometrical measurements were required to deduce the modulus of

elasticity of the bone being tested. These measurements can be

very difficult to obtain accurately in vivo and may even be

impossible in a clinical setting. h technique for measuring

bending stiffness EI such as impedance testing is a more

sensitive indicator of bone condition than measurements of

either the modulus of elasticity E, or geometric properties such

as I since both are usually affected by a bone disorder.

Furthermore, bending stiffness was shown in the last section to

be well correlated with bone strength.

Impedance

A variety of experimental procedures and apparatus have

been used to measure the mechanical impedance of excised long

bones and intact limbs. Host of those who have attempted to
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model their system at all have used relatively simple models

which do not account for all of the significant characteristics

of the impedance curves. Entrekin and Abrams (1976) measured the

mechanical impedance of the human forearm but did not attempt to

model it. Jurist (1970), Jurist and Kianien (1973) and Speigl

and Jurist (1975) measured the mechanical impedance of a similar

system but used it only as a method of measuring the resonant

frequency which they then related to the mechanical properties

of the ulna. Doherty, Bovill and Nilson (1974) made impedance-

like measurements on three excised tibia. They concluded that

"stiffness K, or dynamic mass S, are more sensitive to changes

in the physical state of the human long bone than is resonant

frequency F, due to the functional relationship of these

parameters", i.e., F is proportional to M/_K.

Garner and Blackketter (1975) used a finite element model

to simulate tL-eir impedance data from a buman forearm. This

procedure involves many X-rays of the forearm and very careful

measurement to determine its geometry.

Thompson (1973) measured the driving-point mechanical

impedance of a forearm near the middle of the ulna. He modeled

it with a fair amount of success as a simple single-degree-of-

freedom oscillator over a frequency range from 65 to 1000 Hz.

Thompson's procedure and apparatus will be discussed further in

the next x ection. Orne (1974) presented an improved model

consisting of a viscoelastic bean in series with a three-

parameter solid to represent the skin. Orne azd dandke (1975)

and Thompson, Orne and Young (1976) improved tie model further

by including a few different kinds of viscoelastic foundations

with mass to represent the tissue surrounding the ulna. This

}
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model has potential but more examination and sodification is

required before it can be used effectively for clinical

application.

E. VIBRATION TESTS AT A SSES RESEARCH CENTER

1. Apparatus and Procedure

A noninvasive nethod for measuring the driving-point

mechanical impedance' of an in vivo human ulna was developed by

Thompson (1973). The same procedure and apparatus has since been

modified and used on monkey ulnae and tibiae, (Peterson, 1977).

The forearm (or leg) is suspended across two aluminum

supports as shown in Figure 1.2. An aluminum block is placed

over the wrist (ankle) and secured by two screws. A downward

force is applied through the humerus (femur) to hold the

proximal end of the ulna (tibia) in place.

Specially formed plaster pads were made by Thompson for

each subject he tested. The plaster pads were formed to the

subject's wrist an3 elbow to maximize comfort while maintaining

rigidity of the supports. Petersen substituted the plaster pads

with a firm putty tduct seal) to increase comfort of the

subject, but with questionable results.

A Wilcoxon Research Impedance Bead (model Z-11) mounted on

the vibrating shaft of a Ling Altec electro-magnetic shaker is

' Driving-point mechanical impedance is precisely defined in
Section II.B. Briefly, it is the ratio of the amplitude of the
force to the amplitude of the velocity of the driving-point of a
system.

1W..



13

applied to the ulna (tibia) through a cylindrical probe. The

shaker is mounted on one end of a lever with counter weights

applied to the opposite end. Various sized weights are used to

apply and control a constant preload force on the ulna (tibia).

Preloads ranging from 200 to 600 gram-force (196x10 3 to 589x103

dyne) are used.

A schematic diagram of the impedance-measuring system is

shown in Figure 1.3. 1 sinusoidal electrical input signal is

generated by an audio oscillator and fed through an audio

amplifier to the electro-magnetic shaker. The shaker, which

works on the same principal as a loud speaker, converts the

electrical signal to a mechanical vibration of the impedance

head and probe. The probe, when placed against a forearm (leg),

forces the ulna (tibia) to vibrate at the frequency at which the

audio oscillator is set.

The force and acceleration signals from the impedance head

are fed through operational amplifiers and high pass filters to

a Hewlett-Packard gain-phase meter (model 35651). The gain-phase

meter displays the gain (in decibels) and the phase (in degrees)

of the force signal, in digital form, using the acceleration

signal as a reference. Traces of the force and acceleration

signals are also displayed on an oscilloscope.

The forcing frequency and the two readings from the gain-

phase meter are recorded by the operator at many different

frequencies over a specified frequency range. Thompson made

measurements in the range from 65 to 1000 Hz. Later measurements

were taken in the range from 100 to 3000 Hz.

_ s
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2. Proccssina the Raw Data

The gain reading from the gain-phase meter is in units of

decibels. 1 gain measurement in bels is defined as the common

logarithm of the ratio of the power P, of the electrical signal

being measured, to the power Po, of a reference signal.

Therefore in decibels, the gain is

G = 10 log P/P, (1.1)

Since for a given resistance, power is proportional to the

square of the voltage

G = 10 log V 2/Vg = 20 log V/V, (1.2)

where V is the voltage of the signal being measured and V. is

the voltage of the reference signal. The gain reading from the

gain-phase meter is the gain of the force signal relative to the

acceleration signal. Since the force and acceleration are each

proportional to their respective signals, the gain reading is

= 20 log cF/coa = 20 log F/a - 20 log c/co (1.3)

where c and co are the constants of proportionality and P and a

are the force and acceleration amplitudes, respectively. The

quantity, -20 log c/c o , is not known. Therefore the impedance-

measuring system must be calibrated in order to convert the gain

reading to an impedance.

A small calibration mass is attached to the impedance head

in place of the probe. A gain reading for the mass is taken at

100 Hz. This reading should be independent of frequency (at

least for relatively low frequencies) since F/a in this case is

the	 mass m, a constant. Equation (1.3) applied to the

--calibration mass is

Gam. = 20 log a - 20 log c/co 	 (1.4)

where G. is the gain reading for the mass. The result of
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subtracting equation (1.4) from equation (1.3) is

G - Gm = 20 log F/a - 20 log m	 (1.5)

Solve equation j1.5) for F/a

P/a = m antilog (G-GM ) /20 (1.6)

Equation (1.6) is the ratio of the amplitude of force to the

amplitude of the acceleration. Impedance, however, is the ratio

of the amplitude of the force to the amplitude of the velocity.

Since the input force (and hence the notion, if the system is

linear) is harmonic, the relationship between the velocity and

acceleration amplitudes is

a = vp	 (1.7)

where p is the forcing frequency. Therefore the impedance is

Z = F/v = up antilog (G-GJ /20 	 (1.6)

A computer program was developed by Thompson to carry out

the above computations. The calibration mass and its gain

reading are entered into the computer followed by each test

frequency and its corresponding gain-phase readings. The gain

reading at each frequency is converted to an impedance using

equation (1.8). The phase reading at each frequency is adjusted

by 90 0 to account for the difference between the acceleration

and velocity, i.e.,

phase of impedance = phase of F/a ♦ 900

Finally, the results are tabulated and plotted, e.g., see

Figures 1.4 and I.S.
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F. THE PURPOSE AND DIRECTION OF THIS ii ORR

1. Interpretation of Impedance Measurements

The mechanical impedance response of a given	 system

contains information about the mechanical properties of that

system. Hence, Thompson's impedance measuring technique

described in the last section is potentially a very powerful

clinical tool for determining bone properties. However, it alone

is not enough. Thompson's procedure produces an impedance plot

which must be interpreted to extract the mechanical properties

of the bone being tested. Two major concepts must be developed:

;1)	 an appropriate mathematical model and (2) a systems

identification technique.

A mathematical model which accounts for the predominant

zharacteristics of the system must be developed. Expressions for

the mechanical impedance of the model must be derived and

studied in detail to gain an understanding of its behavior.

Several versions of the model must be considered to determine

the importance of each of its parameters.

A systems identification technique must be developed to

determine the values of the parameters in the mathematical model

for any given test. when the values are correct, the model will

generate an impedance plot which matches the ispedance plot of

the system (i.e., the data from the test) over the frequency

range of the test. The technique must uniquely determine that

set of values. Furthermore, it must be systematic enough to
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program on a digital computer. A user oriented program will be

written to eliminate the need for a trained operator.

A set often vitro impedance tests will be discussed and

analysed using the systems identification technique. These tests

will establish some verification of the modeling.

The ultimate goal, of course, is to achieve a working

scheme to determine bone properties. The scheme will be applied

to sets of data from several impedance tests to show how it

works.
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CHAPTER II

MATHEMATICAL [MODELS

A. THE NEED FOR MATHEMATICAL MODELS

1. Constru_tion and Application

Real physical systems can be extremely complicated and

difficult to study. It is therefore advantageous to make some

simplifying assumptions about the system to be studied which are

approximately correct, thereby constructing a model which

represents the system. The model can then be studied to gain an

understanding of the system. Useful relationships between parts

of the system can be discovered as an outcome of the model

studies.

It is often of interest to make a specific measurement on a

part of the system being studied. Unfortunately, however, many

physical systems, especially biological systems, cannot be

disassembled to make that measurement without destroying the

system. Therefore, if a reasonable model of the system can be

constructed with sufficient correlations established between it

and the system, then noninvasive measurements can be made on the

system which infer the measurement of interest through the

model.

_t
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The accuracy of the assumptions made in constructing the

model has significant effects on both the outcome of the model

studies and the accuracy to which a measurement can be inferred.

Therefore, these assumptions should be accurate to construct a

reasonable model.

The measurement of interest here is the stiffness of a long

bone. The noninvasive measurement being modeled is the

mechanical impedance which will be defined more precisely in the

next section. A mathematical model of the forearm and leg will

be derived, studied and applied to the measurement of bone

stiffness in the chapters that follow.

B. IMPEDANCE

1. Definition

In general, impedance is the ratio of input to output of a

linear system. A linear system is one in which the output is in

the same proportion to the input, regardless of the amplitude of

that input. Bence, impedance is independent of amplitude. If the

input to a linear system is harmonic, then the output will also

r be harmonic, possibly with some phase shift. Impedance then, is

the ratio of the amplitudes of the harmonic input and harmonic

output and, mathematically, oust be a complex quantity to

account for the phase shift. If the output is taken to be the

physical response of a specific point in the system then the

impedance is said to be the impedance of that point.
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In a mechanical system, the input is usually a force. 2 The

corresponding output is the velocity of the point in the system

at which the impedance is being considered. If the point under

consideration is the point in the system at which the force is

being applied then the impedance is known as the driving-point

mechanical impedance (DP!!I) .

For a linear system, the DPMI is independent of the

amplitude of the input force.

.^. Justification

The three types of idealized mechanical elements are: mass,

damper and spring. The behavior of any linear mechanical system

can be simulated (over a small enough frequency range) using one

or some combination of these elements. Therefore, in order to

clearly define the behavior of a system, the three basic

elements must be distinguishable on the response curve of that

system in what ever form it is presented. The response curve can

be presented in a number of ways. It can be presented as the

ratio of force to acceleration, velocity or displacement.

Furthermore, it can be plotted on either a linear or a log plot.

The equation of motion for a force f, applied to each of

the basic elements is given in Tabel 2.1. If the input force is

harmonic, then the response will be harmonic, and the following

relationships hold between the amplitudes of the acceleration a,

velocity v, and displacement 6

a : p26	 v = p6	 (2.1)

Y In other types of mechanical systems the input might be, for
example, a torque or a hydraulic pressure. The corresponding
outputs in these cases are an angular velocity and a fluid flow
rate, respectively.
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where p is the forcing frequency. The ratios of the amplitudes

of the force to the acceleration, velocity and displacement are

easily derivable from equations (2.1) and the equation of motion

for each element. These ratios are also listed in Table 2.1.

Note that each of the ratios is proportional to an integer

power of the forcing frequency p. Therefore, a log-log plot of

one of the ratios versus the forcing frequency is a straight

line. The slope of the straight line is equal to the power of p.

For example, the ratio of the force to acceleration for a spring

is

P/a = kp- 2	(2.2)

Taking the log of equation (2.2) yields

log F/a = -2 log p + log k (2.3)

Equation (2.3) is a straight line with a slope of -2 on a plot

of log P/a versus log p, i.e., the line makes an angle of

arctan (-2) = -63.4 0 with the horizontal. In a similar manner,

the slope of the straight line produced by plotting each of the

other ratios is calculated and listed in in Table 2.1.

To maximize the distinguishability between the response of

the mass, damper and spring, the response curve must be

presented in such a way to maximize the difference in the slopes

of the response of each of the three basic elements. The slopes

in each case listed in Table 2.1 reveal that this can be

accomplished by presenting the response curve in the form of !/v

(impedance) rather than P/a or 716.
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C. TAE RILATIONSHIP BETWEEN THE MATHEMATICAL	 MODEL AND "I
P3TSICAL SYSTEM

1. Background

In modeling a mechanical system, the model used must, in

some sense, resemble the actual physical system. This

resemblance must be evident to give physical meaning to the

parameters of the model. The physical parameters associated with

the material characteristics, as well as those associated with

the geometrical characteristics, mast be accounted for in as

such detail as the investigator is willing to deal with. It is

often appropriate to start with a model which accounts for the

most obvious physical parameters to gain an understanding of the

system, and then to progress to other models which account for

some of the finer details of the physical system.

Modeling	 of	 the forearm system associated with the

impedance-measuring procedure developed by Thompson (1973)

(discussed in Section I.E) was first attempted by Orne (1974).

Orne modeled the ulna as a uniform, linear, visco-elastic,

simply-supported, Euler-Bernoulli beam. The skin which is

compressed between the ulna and the probe was represented by a

tri-p "-rameter solid in series with the beam. The harmonically

varying load applied by the probe is represented by a

concentrated force applied to the beam through the tri-

parameter solid as shown in Figure 2.1. Orne and Mandke (1975)

improved this model by including a one-degree-of-freedom mass
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with elastic and viscous resistance, uniformly distributed along

the beam to represent the tissue surrounding the ulna. This

refinement produced the capability of the model to account for

the sub-resonances that are evident in the otherwise smooth

impedance curves. A further refinement was made by Thompson,

Orne and Young (1976) in which the one-degree-of-freedom tissue

model was replaced by a continuous tissue model. Additional

refinements involving the boundary conditions of the beam will

be presented here. These models will also be applied, with some

moli:ication, to the leg system as well.

2. The 13one

Several assumptions have been made in mo3eling the bone as

a uniform, linear, visco-elastic, simple-supported, Euler-

Bernoulli beam. First of all, a uniform Euler-Bernoulli beam is

a beam which is based on the following two assumptions: (1) the

cross section of the beam does not change along its length, and

(2) the beam is slender enough that shear deformation is small

compared to bending deformation. The first assumption is

obviously not true of bones and will be investigated in detail

in Chapter IT. The second assumption wa. shown to be true by

Piziali, Aright and Nagel (1976). The bear is also assumed to be

linear. This assumption was verified by Thompson when he shoved

that the OPRI is independent of amplitude of the driving force

provided that amplitude is small. Finally the beam is assumed to

be visco-elastic. This is a reasonable assumption since the

structure of bone material, on the aicroscopic level, is a

fluid-filled matrix.
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3. The Supports

Orne (1974) reasons that the supports at thi ends of the

ulna are such that t:.-, resisting moment is negligible and the

transverse rigidity is such greater than that of the bone,

therefore the bone is simply-supported. However, other aspects

of the conditions at the supports have not been considered. The

transverse rigidity of the supports when the plaster pads are

repl. .d by putty is questionable. A possible misalignment

betweea the downward force applied through the humerus with the

support point of the elbow can conceivably cause an effectiae

resistance to rotation at the support.

several different classical and non-clasical beam boundary

conditions are proposed as possibilities for representing the

motion of the bone at the joints. These include various

combinations of translational and rotational springs at the

supports. One special case is considered in which the beam is

extended past the support to a translational spring to represent

the possible misalignment of the humerus over the support.

4. The Skin and Tissue

It is advantageous at this point to propose two

definitions. The skin and the thin layer of tissue which are

compressed between the bone and the probe will be referred to as

the skin. 111 of the susculature, skin an3 other tissue

surrounding the bone will be refered to as the tissue. The lack

of consistency of these definitions in the literature can be a

--source of misinterpretation. Therefore, the proposed definitions

will he'used here to insure clarity.

The tissue model is presented by Thompson, Orne and Toung
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(1976) as "an infinite series of one-dimensional visco-elastic

rocs attached to and vibrating with the ulna and rigidly

attached to and restrained against notion at their opposite ends

s by the radius." This model is conceptually identical to the

classical problem cf a bean on an elastic foundation. The

difference is that the classical foundation includes only a

stiffness element, whereas the tissue model includes stiffness,

damping and mass elements. The tissue model will often be

referred to as a visco-elastic foundation with mass, or simply

as the "foundation." The shear coupling between adjacent fibers

of the foundation is neglected. The fixed-end boundary condition

is replaced by a free-end boundary condition when modeling the

tibia.

The skin is represented in Orne t s model by a tri-parameter

solid, as shown in Figure 2.1. This may seem like a reasonable

representation since one would expect the skin to exhibit

damping as well as stiffness characteristics. However, a typical

set of impedance data from a piece of skin shown in Figure 2.2

indicates springlike behavior over the entire frequency range.

(Recall from Section II.B that the DPGI of a spring is a

straight line with a -45 degree slope.) Therefore the skin will

be represented here by a simple spring, as shown in Figure 2.3.
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D. THE BEHAVIOR OF THE MATHEMATICAL !MODEL

1. Impedance Equations and Parametric Study

The mathematical model described in the last section is to

be studied to gain an understanding of the system. In order to

conduct this study, equations for the DPSI of the model must

derived. These equations will contain, as one of their

parameters, the quantity to be measured, i.e., the bending

stiffness of the bone. The equations will be nondimensionalized

to reduce the number of independent parameters and then plotted.

The nondimensionalized plots will facilitate the study of the

mathematical model.

These plots can be used to study the model in a number of

ways. They will be used to deteraiue the effects that each of

the model parameters have on the plots. Further use of the plots

will be more productive if the effects of each parameter are

known.

Quantitatively, they will be used in generating

approximate, semi-empirical relationships between the parameters

of the mathematical model and the characteristics of the DPCI

Plot of that model. Relationships of this type will be useful-in

obtaining approximations for the valses of the parameters of the

system directly from its DPAI plot.

Qualitatively, the plots will be used to aid in determining

which parameters to include in the model of the system. This is

accomplished by = omparing the DPMI plot of the system to the

6h.—
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model plots to distinguish between the parameters which are

essential to obtain an appropriately shaped DPHI plot and those

which are not.

The DPMI equationz and their plots will be the subjects of

the next two chapters.
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CHAPTER III

IMPEDANCE EQUATIONS

A. THE GENERAL METHOD FOR DERIVING IMPEDANCE EQUATIONS

1. Background

Driving-point mechanical impedance (DPHI) is the mechanical

impedance of the point in the system at which the driving force

is being applied. To derive the DPMI of a mathematical model,

one must solve the equations of motion, evaluate the steady-

state solution for the velocity at the driving-point and take

the ratio of the force to the velocity. The method for deriving

the DPMI of the mathematical model described in Section II.0 is

presented in this section.

Orne (1974) and Orne and Mandke (1975) have derived the

DPRI of a simply-supported bean on a one-degree-of-freedom

visco-elastic-f oundation-with-sass. The analysis presented here

is sore general in that the boundary conditions are not

restricted to simply-supported. Six different sets of boundary

conditions are considered; the simply-supported case and five

nonclassical cases. A diagram of each case is shown in Figure

3.1. The visco-elastic-foundation-with-sass is continuous and

two types of boundary conditions on the foundation are allowed.
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2. The Derivation

1 convenient ray to define a coordinate system on the bean

is shown in Figure 3.2. y, (x,t) and y ,z (z,t) are the deflection

functions defined for 0 <z<a and 0<z<b, respectively, shown

positive in the figure, where the concentrated force is applied

at z = a (z = b). The equations of notion are

EI 8 4 y , /dx 4 + q I as y, /ax 4 dt + p 82 y, /atz = p, (x,t) , 0<z<a

(3.1)

EI 5 4 y,. /dz+ + Y I 8s y2 /dZ4 dt + p b2 y2 /Dt 2 = p2 (z.t) , 0<z<b

where

E is the modulus of elasticity of the beam material

I is the area moment of inertia of the cross section

n is the da pping coefficient of the beau material

p is the mass per unit length of the beam

p,,p 2 are the force per unit length of the beam due to the

reaction of the foundation. These equations are based on the

visco -elastic uni-axial stress -strain law, i.e., Q= E6 + ni. To

determine the DPdI, the steady state solutions to equations

(3.1) are required. These solutions are of the form

y, (x,t) - Y, ( z) ezp ipt
(3.2)

y2 (z, t) = YI (z) ezp ipt

(i.e., every point in the system is vibrating at the same

frequency) where p is the forcing frequency and Y, (z) and Yj (z)

are complex amplitudes of the beam vibration. Upon substitution

of equations (3.2) into equations (3.1). the following ordinary

differential equations are obtained

E*I d 4 Y j /dx 4 - pp zY, = P, (x), 0<x<a
(3.3)

E*I d 4 T2 /dZ 4 - pp= Y2 = PZ (z) , 0<2<b

where

^s
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E # = E(1 ♦ nip/E) = E (1 t 2i5p/w)

p, (x, t) = P, ( x) ezp ipt

P2 (z,t) = P 2 (z) ezp ipt	 (3.4)

w	 (Tr/L .) z EI/p

; = w912 E

In the cases where the foundation is not included,

P, (x) = Pz (z) = 0. In cases where the foundation is included

P , ( x ) = p; p2Y i (x)	
(3.5)

P 2 (z ) = p f P 2Y 2 (z)

where Nf is the complex, frequency-dependent quantity obtained

by solving the foundation wave equation

E4 6 2 n/a^ 2 ♦ ^ f 0 3 a/a- Z at - Pf
 82 n/at e = 0	 (3.6)

with the appropriate boundary conditions, as indicated in Figure

3.3, where

E; is the modulus of elasticity of the foundation material

r; is the damping coefficient of the foundation material

N is the density of the foundation material

u(^,t) is the displacement function of the foundation

and the shear stresses in the foundation are neglected. For the

fixed foundation

P f = - p {  cotY / Y	 (3.7)

for the free foundation

Pt = Pt tanw/2 / 41/2	 (3.8)

where	 .

pn/wE / 4 1 • 2i;j p/Wf

Pt is the mass per unit length of the foundation

wj is the fundamental frequency of the foundation

^f is the damping ratio of the foundation.

The result of substituting equation (3.5) into equation (3.3) is
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E*I d 4 Y, /dz • - p* p 2 Y, = 0

E*I d l$ Y2 /dz 4 - p*p 2 YZ = 0

where p*	 p + p*F . The solutions to these equations are

Y, (z)	 1, sinAx + B, cosaz + C, sinhaz + D, coshaz
(3.10)

Y2 (z) - 1 2 sinaz + BZ cosAZ + C j sinhaz + Dj. coshaz

where	 A* = p*p2/E*I

and A l , B, , C, , D„ Az, Bz, Cz and D 2 are eight unknown

constants which depend on the boundary and matching conditions.

The deflection, slope, bending moment and shear force functions

are found by using equations (3.2) , (3.10) and the following

e, (z, t)	 ay, /az	 e= (z, t) = ay2 /az

M I (s,t) = E*I 02y , /() X 2	 !!1 (z,t) = E*I 0 2y=/dz 2	(3.11)

1T, (z,t) = E*I 6 3 y, /ax 3	 Pz (z,t) = E*I 63%/az3

These functions are evaluated at the point of load application

(x = a and z = b) and substituted into the following matching

conditions

y, (a, t) + y z (b, t) = 0	 d, (a,t) + !!z(b,t) = 0 	 (3.12)

0, (a,t) - 02 (b, t) = 0 	 q, (a,t) - V 2 (b, t) = F ezp ipt

These are four of the eight equations required to solve for the

eight unknown constants in equations (3.10). The remaining four

equations are obtained by evaluating the appropriate functions

at Y = 0 or z a 0 and substituting then into the boundary

conditions listed for each case in Table 3.1.

For the case where the bean is extended a distance e, past

the left support, a third deflection fcn:tion with an additional

four constants is required on the interval -e<x<0. To determine

the twelve constants for this case, an additional four equations

are required. They are obtained from the following matching

conditions at z - 0
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Y, (0 1 t) a 0	 0 , (0, t) - 8 a (0, t) = 0
(3.13)

Y3 ( 0 • t ) a 0	 Hi ( 0 , t) - If CO 	 - 0

The deflection amplitude b, at the point where the load is

applied is determined by evaluating 1 1 ( x) at x - a or T= (z) at

z - b in equation (3.10) . The DPHI of the beam is obtained from

Z** = F/ip6 (3.14)

For the case where a transverse translational spring is in

series with the beam, the DPdI of the system is given by

Z* = (Z^*- i • iP/k)- 1	 (3.15)

For the case where the spring is not included in the model,

Z* = Zb.

The DP11I associated with each set of boundary conditions in

Table 3.1 is listed in Appendix 1. In each case, the diagrams of

Figure 3.1, the boundary conditions of Table 3 . 1 and the

equations of Appendix A are each numbered correspondingly. One

sample DPHI derivation (case 2) is presented in the following

section to show how the DPHI equations of appendix 1 have been

derived from the general method presented in this section.

B. 1 SPECIFIC EXAMPLE

1,_ Rotational Spring on One Xnd

, Case 2 was chosen as an example to demonstrate the method

used in deriving the DPHI. The support at z = 0 is perfectly

rigid with respect to translation while the resisting moment is

proportional to the rotation at that support. The support at

z - 0 is a simple support, i.e., per fectly rigid with respect to

translation and no resistance to rotation. These conditions are
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listed in mathematical fora in Table 3.1.

The general solutions to the . beam equations ( 3.1) were

found in the last section to be given by equations ( 3.2) and

(3.10). i.e.,

y, (z,t) = [ 1, siOx + B, cosAz + C, siuhAz + D, cosh Az] ezp ipt

•(3.16)

72 (z, t) _ [A Z  sin" + B2 cosAz + C 2 sinhAz + D 2 coshaz ] ezp ipt

The slope, bending moment and shear force functions are obtained

from the deflection functions (3.16) using equations (3.11).

These fun--tions are substituted into matching conditions (3.12)

to obtain the following four equations

A, sin*),a + B, cosaa. + C, sinhAa + D, coshAa 	 . ( 3.17)

+ 1 Z sinAb + BZ cos7Ib + C 2 sinhAb + D2 coshab = 0

1, costa - B, sinla + C, coshAa + D, sinhAa	 (3.18)

A2 co0b : b t sinAb - C, coshAb - DZ sinhAb = 0

-A, si0a - B, cosaa + C, sinh'^a + D, coshAa	 (3.19)

- AZ sinab - B2 cosAb + CZ sinhAb + D2. cosh7,b = 0

--A, cosaa + B, sinla + C, coshAa + D, sinhXa	 (3.20)

+ 12 cosib - Bz sinAb - C 2 coshAb - D2 sinhlb

= p / 2*113

These equations each contain all eight of the unknown constants.

With several algebraic steps, four new equations can be

generated from these four equations. Each new equation contains

only three of the unknown constants. Add and subtract equations

(3.17) and ( 3.19) . Add and subtract equations ( 3.18) and (3.20) .

Divide each of the four results by two to obtain respectively

C, sinhla + D, coshaa + C L sinhib + D. coshA.b = 0	 (3.21)

A, sinia + 8, costa + A 2 siulb + BZ cosAb = 0	 (3.22)
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C,	 coshaa + D,	 sinhaa - C Z coshab - D Z sinhab

= F / 2E*IA 3 (3.23)

I,	 costa - B,	 sinaa - 1 2 cosab + B Z sinAb

-F / 2E*Ilk 3 (3.24)

Multiply	 equation	 (3.21)	 by sinhab, multiply equation (3.23)	 by

coshab and add the two results

C, (sinhaa sinhab + coshaa coshab)

+ D, (coshaa sinhab + sinhaa coshab) (3.25)

+ CL (sinh 2 ab - cosh=ab)	 = F coshab / 2E*Ia3

Recall the following hyperbolic identities

cosh Z B - sinh z B = 1

cosh A cosh B + sinh I sinh B = cosh(I +B)

cosh I sinh B + sinh I cosh B - sinh(I+B)

Noting that a + b = L, equation	 (3.25)	 reduces to

C, coshU + D,	 sinh%L - C Z 	 F coshab / 2E*Ia 3 (3.26)

In	 a	 similar	 manner,	 multiply	 equation	 (3.21)	 by sinhAa,

multiply	 equation	 (3.23)	 by	 coshaa	 and	 subtract the second

result	 from	 the	 first.	 Then	 again	 using	 the	 hyperbolic

identities given above, the result reduces to

-C,	 + C 2 coshaL + D Z sinhaL = -F coshaa / 2E*IA 3 (3.27)

Multiply	 equation	 (3.22)	 by sinab, multiply equation (3.24)	 by

cosab and subtract the second result from the first

A, (sinaa sinab - cosaa cosab)

4- B, (cosaa sinab + sinaa cosab) .(3.28)

+ 1 2 ( sin h ab + cos 2Ab) - F cosab / 2E*I12

Recall the following trigonometric identities

cos r B + sin=B - 1

cos I cos B - sin I sin B - cos (I+B)

cos I sin B + sin I cos B - sin (I+B)
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Again noting that a + b = L, equation (3.28) reduces to

-A, cosU + B, sin AL + 1z = P cosAb / 2E+In3 (3.29)

In a similar manner, multiply equation (3.22) by sinAa, multiply

equation (3.24) by costa and add the two results. Then again

using the trigonometric identities given above, the result

reduces to

At - A L costL + B Z sinIL = -P costa / 2E*IA m (3.30)

Equations (3.26) , (3.27) , (3.29) and (3.30) , which contain only

three of the unknown constants each, apply •to any beam since

they have been generated without use of the boundary conditions.

Substitute the deflection, slope and bending moment

functions into the boundary conditions listed in Table 3.1 for

case 2 to produce the following four equations

B, + D, = 0	 (3.31)

-B, + D, = k, (1, + C,) / E+I1	 (3.32)

BZ + D Z = 0	 (3.33)

-BI + D L = 0 (3.34)

The equations above are easily solved for B, D, B Z and D Z in

terns of 1, and C,. The results are

B, = -k, (1, + C,) / 2E +I1	 (3.35)

D, = k, (1, + C,) / 2E+I1 	 (3.36)

B 2. = 0	 (3.37)

DL = 0 (3.38)

Substitute equations (3.35), (3.36) 6 (3.37) and (3038) into

equations (3.26), (3.27) , (3.29) and (3.30) and combine the

terms which have the same unknown constant

C, (coshAL + k, sinbAL / 2Ls I1)	 (3.39)

*-A, k, sinhlL / 2E •IA - CL s P coshAb / 2E+Ia3

C, = C Z cosh AL + T coshaa / 2E s Ia3 	 (3.40)

1
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-A, (cosAL + k,	 sinAL / 2E*IA) (3.41)

-C,	 k,	 sinAL / 2E*IA +	 AL	 = P cos;Lb / 2E*IA3

1,	 - 1. cosAL - P cosAa / 2E*I1 3 (3.42)

Substitute equations 	 (3.40)	 and	 (3.42)	 into equations	 (3.39) and

(3.41)	 and	 again	 combine	 terns	 which	 have the same unknown

constant and transfer all known terns to the right hand side of

the equations

1 2 k, /2E*IX cosAL sinhAL

+ C Z (cosh 2 AL + k,/2E*IA	 sinhAL coshAL - 1)

= P/2E*IA 3 [coshab - coshAa cosh AL (3.43)

- k, /2E*IA sinhAL (coshAa - cosAa) ]

-A Z (cos 2AL + k, /2E*IA sinAL cosAL - 1)

- C Z k,/2E*IA coshaL sinIL

= P/2E*I1, 3 [cosAb - cosAa cosAL (3.44)

- k, /2E*IA sinAL (cosAa -coshAa) ]

She	 last two sets of substitutions have been carried out in

su=h a way to reduce	 the	 set	 of	 eight	 equations	 and eight

unknowns to a set of two equations and two unknowns.

Again,	 recall hyperbolic and trigonometric identities, but

this time in a slightly different form, i.e.,

cosh 2 (A+B)	 -1 = sinh2 (1+B)

cos t (A+B)	 -1	 -Sin t (1+B)

cosh B -cosh ( ► +B) cosh 1 - -sinh (1+B)	 sinh A

cos B .-cos (1+B)	 cos 1 - sin (1+B) sin 1

Apply these identities 	 to	 equations	 (3.43)	 and	 (3.44) with

a + b - L to obtain
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A,. k, /2E*I-A cosAL sinhAL

♦ C 2_(sinh 2 AL ♦ k,/2E*IA sinh'AL cosh AL)

= F/2E*IA A [-sinhAa sinh2L	 (3.45)

- k, /2E*I1 siahAL (coshAa - cosAa)]

I t (sin 2 aL - k, /2E*IA sinAL cosAL)

- C Z k, /2E *IA cosh^L sinAL

= F/2E*I^* [sinAa :in AL	 (3.46)

- k,/2E*IA sinAL (cosAa -coshAa)]

Put equations ( 3.45) and ( 3.46) into matrix fors

[ A ] (C) _ (B)	 (3.47)

where

k, /2E*IA	 siah2AL
cosAL sinhaL	 *k,/2E *IA

sinh'AL coshAL
[A]

sinzAL	 -k, /2E*IA
-k, /2E*IA	 coshAL sinIL
sinAL cosAL

12

(C} -	 and
CZ

-sinbla siuhAL
-k, /2E*IA
(coshAa - cosAa)

(B) = P/2E*IA3
sinAa sinAL
-k, /2E* IA
(cosAa - coshAa)

matrix equation (3.47) can now be solved for A t and C= using

Cramers rule. The determinant of matrix [ 1 ] is

D s -k,/2r $ IA cosAL s3nhAL

k, /2E*Ia coshAL sinAL	 (3.48)

(sinh 2 AL • k, /2E*Ia sinhAL cosh AL)

(sin 2AL - k, /2E*IA sinAL cos AL)
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Multiply out equation (3.48) and combine like terms. The

determinant then reduces to

D = sinhAL sinAL [k, /2E *IA 	 (3.49)

(sinhAL cosAL - sinAL coshAL) - sinhaL sinAL)

The solution to matrix equation (3.47), with the determinant A

of matrix [ A ] defined by equation (3.49), is

Az = P/2E*I,13D

(-k, /2E*IA coshAL sinAL	 (3.50)

[-sinhAa sinhAL - k,/2E*IA sinhAL (coshAa - cosAa) ]

- (sinh 2AL + k,/2E*IA sinhAL coshAL)

[sinla sinAL - k,/2E*IA sinAL (cosAa - coshAa)])

Cz = P/2E*I13D

{k, /2E*I^ cosAL sinhAL	 (3.51)

[sinaa sinAL - k,/2E*IA sinAL (cosAa - coshAa)]

(sin 2 AL - k,/2E*I^ sinAL cosAL)

[-sinhAa sinhAL - k, /2E*IA sinhAL (coshAa - cosAa) ])

The constants A Z , B2 , C Z and D 2 are now known from equations

(3.50) , (3.37) , (3.51) and (3.38), respectively. The deflection

amplitude S, cat be calculated from either -Y, (x=a) or Y 2 (z=b) .

Therefore if Y2 is used then the constants A,, B it C, and D, are

not veeded to calculate S. (The calculation of S using Y, has

been made as a means of checking the following calculations but

it is not presented here.)

Substitute equations (3.50) , (3.37) , (3.51) and (3.38) into

the second of equations (3.10) and evaluate the result at z - b
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(-k, /2E*Il^ sinAb coshAL sin AL

[-sinhia sinhAL - k, /2E*I-A sinhAL (coshaa - cosia) ]

-sinAb (sinh ; AL + k, /2E*IA sinhAL coshaL)

[sinAa sinaL - k,/2E*I IA sinAL (cosAa - coshAa) ]

+ ki /2E*IA sinhAb cos AL sinh ,>.L	 (3.52)

[sinAa sin AL - k,/2E*I), sinAL (cosU - coshAa) J

-sinhab (sin= AL - k, /2E*I) sinU cos AL)

[-sinhAa sinhAL - k, /2E*IA sinhAL (coshAa - cosAa) ])

After several steps of algebra, equation (3.52) reduces to

S = P/2E*IPD sinhAL sin AL

([ sinhAa + k, /2E *IA, (cosh).a - cosAa) ]

[ sinh Ab sinAL - k, /2E*I'A

(sinhAb cosAL - sinAb costs AL) J	 (3.53)

( sin'Aa + k, /2E*IA (coshAa - cos Aa) ]

[ sinAb sinhAL - k, /2E*IA

(siahlb cos AL - sinAb cosh AL) J)

Define the following three constants

a = k, /2E*I% (coshU - costa)

= k, /2E*IA (sinAb cosh AL - siWkb cos AL) 	 (3.54)

Y = k, /2E* iX (sinAL cosh AL - sinhAL cos AL)

Substitute the expression for the determinant D, fro g equation

(3.49) into equation (3.53) and replace the appropriate terms

with ot, 13' and Y according to equations (3.54)

b = P/2E*I'X3

[- (sinhAa + a) (sinhU since	 (3.55)

+ (sinbM + a) (sin^l sinbn + ^) ]

/(sinh),L sin AL + Y)

Finally, substitute equation (3.55) into equation (3.14) to

i
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obtain the expression for the DPHI

Z* = 2E*IA3/iP

{j - (sinhia + a) (sinhAb sinAL	 (3.56)

+ (sinla + a) (sin*Xb sinhAL + $) ]

/ (si nh ,XL sin XL + Y))-'

Equations (3.54) and (3.56) are the expressions given in

Appendix A for case 2.

C. NON-DIM NSIONALIZATI:-:+ OF IMPEDANCE EQUATIONS

1_ Non-dimensionalization

The most effective way of studying the role of each

0 parameter in a mathematical model is to first nondimensionalize

the equations associated with that model, and then perform the

parametric study. The set of variables and parameters are

grouped together in a natural way to fora a set of

nondimensional variables and parameter, thereby reducing the

number of parameters to be studied.

One very natural and convenient way to nondimensionalize

the DP3I of a beam is to fora the ratio Z&VK, where Z is the

magnitude of the DPNI, w is the fundamental frequency of a

uniform simply-supported beam of the same length and K • is the

static stiffness

K s 48EI/L3	(3.57)

of that same simply-supported bean when centrally loaded. The

nondimensionalized DPAI will be plotted versus the

nondimensional frequency ratio p/w where p is the forcing

frequent;. The nondimensional parameters are listed in Table 3.2
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with their definitions.

The general form of the DPMI equation is given in Appendix	 3

A as

Z* = 2EI1 3 (1 + 2i7p/w) / ipf (AL)	 (3.58)

where E* has been replaced by E(1 + 2i;p/w) according to

equation (3.4) , and f (AL) is a function of AL involving

trigonometric and hyperbolic functions and nondimensional spring

constants. From equations (3.7) , (3.8) and (3.10) , AI, can be

written as

AL = [ (p + p; g (`Y)) P 2 / EI (1 + 2i5 p/w) 7'A L	 (3.59)

where

-1/y cot y	for a fixed foundation

g M =	 21,r tan Y/2	 for a free foundation

0	 for no foundation

and

W = 'rP/wi / 11 + 2i n P/w,

A few steps of algebra will produce the following equivalent

expressions in terms of the nondimensional parameters

),L = zr f-p^lw (1 + 2i 5p1w ) ''A ( 1 + Mg (1') )
(3.60)

Y = rr p/w a (1 + 2iT;Bp/w)-%4

Multiply equation ( 3.58) by w and divide by equation (3.57).

After some simplification, the result reduces to

Zw/K	 TT3i/24 fp7Lj ( 1 + 21^ p/w) L4

( 1 + Eg (y)) s4 f- & ( ,AL)	 (3.61)

If the spring in series with the bea n is included, then

multiplying the impedance equation by w /R rill simply change the

additional term from ip/k to i ( p/w) /(k/K) .

If the boundary conditions of the bean are nonclassical,

then terns involving spring constants vill appear in the
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function f (AL) . The terms that appear are

2k/E*IA 3	and	 k/2E*I;k

for translational and rotational springs, respectively (see

appendix A), In terms of the nondimensional parameters, these

terns reduce to

2k/E*IA* = T / (AL) 3 (i + 2i^p/w)

(3.62)
k/2E *I ,X = R / (AL) (1 + 21;p/w)

For case 6 (see Appendix A) the length of the extended part

of the beam e, also appears in the function f (AL) . However,

everywhere a appears in the function, L also appears. Therefore

the ratio e/L is taken as the nondimensional parameter E.

It is also possible to include damping in the nonclassical

supports. This is done by adding an imaginary, frequency-

dependent tern to the sypropriate spring constant. Thus k would

be replaced by k + ipc. In terms of nondimensional parameters, T

or R would be replaced by

T (1 + i C T p/w) or	 R O + iC R p/w)

respectively, where the new nondimensional parameter is

C T = CTtJ/k	 or	 CK = cqw/k

In the next chapter, the nondimensionalized DPMI equations

are plotted for several values of the nondimensional parameters.

The plots will be studied and many relationships between the

parameters will be determined.

i
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CHAPTER I9

PARAMETRIC STUDY

A. THE BASIC SIMPLY- SUPPORTED BEAN

1. The Bean

The bone of a vibrating forearm or leg system is

r' 
represented by a visco-elastic beam. Ideally, this beam is

assumed to be simply-supported. This is an incorrect assumption

for many driving-point mechanical impedance (DPHI) tests and

experiments. However, the simply-supported bean will be

investigated here first and the effect of changing the boundary

conditions will be deferred to the next section.

Figure 4.1 is the DPHI plot of such a beam with the driving

force applied at its center. The curves were generated, allowing

the bean damping to take on five different values.	 The

parametric values	 used	 to generate this and all other

nondimensional plots presented in this chapter, are listed -in
	 4

Table 4.1.

Comparing Figure 4.1 to a typical DPBI data plot shown in

i Figure 1.5, it can be seen that the bean alone does not produce

all of the characteristics neccessary to model a vibrating

forearm or leg system. Other elements must be added to the beam

. f
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to	 produce	 these characteristics. However, it is beneficial to

study and understand the beam	 itself	 before	 adding on	 these

other elements.

it	 low	 frequencies,	 the	 curves	 in	 Figure 4.1	 are

predominately springlike 	 (i.e.,	 the	 slope	 of	 the curve	 is

virtually	 negative	 one)	 with	 a stiffness equal to the static

stiffness of the beam. Thus the magnitude of the	 DPMI in	 this

region can be approximated by

Z,^„ = K/PLOW, (a. 1)

where	 (p m,Z L,r,,)	 is any point on the curve in the low frequency

range and K, in this case, is

K = 48EI/L 3 (4.2)

The minimum points of the curves appear to occur right	 at

the fundamental frequency of the bea` For all values of the beam

damping.	 The	 magnitude of the DPHI at that frequency, however,

does depend on the bean damping. To aid in determing the 	 nature

of	 that dependence, the concept of an equivalent single-degree-

of-freedom oscillator is introduced.

2. The Equivalent Single-Degree-of-Freedom Oscillator

A single-degree-of-freedom oscillator (SDOPO) is a model

which consists of a mass connected to the "ground" by a linear

spring and a linear viscous damper as shown in Figure 4.2. Its

DPMI plot, shown in Figure 4.3, was generated, allowing the

damping to take on five different slues.

Note that Figures 4.1 and 4.3 are identical for frequencies

almost an order of magnitude above their fundamental frequency.

Define an "equivalent" SDOPO of a beam as the SDOPO whose static

stiffness K, fundamental frequency w, and damping ratio 7;, are
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equal to those of the beam. Then it can be said that a

centrally- loaded simply-supported beam behaves in the same

manner (i.e., has the same magnitude and phase angle of its

DPHI) as its equivalent SDOFO up to frequencies almost an order

of magnitude above their fundamental frequency.

The concept of an equivalent SDOFO is the key to deriving

some of the relationships between the parameters of the beam and

the characteristics of its DP11I .plot. The relative simplicity of

the DPHI equation of a SDOFO facilitates the derivations. 1

relationship derived between the parameters of the SDOFO and the

characteristics of its DPHI plot will be a good approximation

for any beam that behaves in a similar manner to its equivalent

SDOFO in the appropriate frequency range. The relationship must

be expressed in terms of K, w and *5 and these parameters must be

interpreted properly. One such relationship is the dependence of

the minimum point of the DPHI plot on the beam damping. Its

derivation follows.

The DPHT of a SDOFO is

Z+ = c + i (mp - K/p)	 (4.3)

In terms of K, w and ; the DPMI is

Z+ = K/w [ 2; + i (P/w - w/P)	 (4.4)

The magnitude of the DP8I is

Z = K/w 44; Z + (p/-) - w1p) (4.5)

To find the frequency at which the DP5I is minimum, take the

derivative with respect to the forcing frequency p; and set it

equal to zero

dZ/dp - K/-j 2 (P/w - w/P) (1 + -,Z/p2)

4 4 fz+ (P/W - U-j"P) _ 0	 (4.6)

The only real positive solution equation (4.6) is

. s
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No, ° w (4.7)

i.e., the minimum point of the curve does in fact occur at the

fundamental frequency regardless of the amount of damping

present. The magnitude of the DPdI at that frequency, according

to equation (4.5) , is

ZM,y s 2rK/w	 (4.8)

Equations (4.7) and (4.8) bold true for a centrally-loaded

simply-supported beam with K interpreted according to equation

(4.2).

More traditional frequency response curves are given in

terms of a ratio of deflection &, to static deflection F/K,

rather than force to velocity, i.e.,

SK/F = 1 /(1- P2 /,e 2 ) 2 • ( Z AP/w) 2

For exaaple, see Thompson (1972). In this case, the maximum

point occurs at

P = f  -	 2

Hence, the frequency at which the maximum occurs is dependent on

the damping. It was shown above that the minimum point of a DPdI

curve of a SDOFO occurs right at the fundamental frequency,

regardless of the damping. This is an additional advantage of

presenting the response of a system as an impedance.

3. The Location of the Driving Force

Figure 4.4 is the DPM1 plot of a simply-supported beam with

the driving force applied at four different locations along the

length of the beam.

Each of the curves have the same shape up to frequencies of

at least two times the fundamental frequency. The upward shift

in the curves is due to the increase in the static stiffness K
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of the beam, as the driving force is moved away from the center.

One might expect that equations (4.1) , (4.7) and (4.8) are still

valid in this case provided K is interpreted properly, i.e.,

K = 3EIL/a = b2	(4.9)

A few calculations to compare these equations to the appropriate

points on the DPNI plot indicate that they are, indeed, good

approximations.

In the high frequency range of Figure 4.4, a second

resonance appears at about four times the fundamental frequency.

The centrally-loaded beam does not exhibit such a resonance

since the anti-symmetric modes of vibration are not excited

under a symmetric loading.

C-)
B. THE EFFECT OF THE BOUNDAET CONDITIONS
-

1. Qualitative Effects

Ideally, the bone of a vibrating forearm or leg system is

assumed to vibrate as a simply-supported beam. A discussion

presented by Orne (1974) indicates that this is in fact true of

the system involved in the test procedure developed by Thompson

(1973) (discussed in Section I.E) . However, subsequent

modifications to this test procedure may have altered the

simply-supported	 condition of the bone. Therefore, it is

important to investigate the effect of various 	 boundary

©	 conditions on the DPHI of a beam.

Figures 4.5 through 4.9 are the DPHI plots of a beam with

five different, nonclassical boundary conditions: a rotational

spring	 on one end, a rotational spring on each end, a
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translational spring on one end, a translational spring on each

end and a translational spring on an extended beam,

respectively. In each case, the nondisensional spring constant

was allowed to take on five different values while holding the

damping in the beam and supports at a constant value.

A simple support on the end of a bean has infinite

resistance to translation and no resistance to rotation. The

DPMI of a simply-supported beam was presented in the last

section, Figure 4.1.

Adding a rotational spring to a support introduces some

resistance to the rotation which can occur at that support. The

effect on the system is to stiffen it as indicated by the shift

upward and to the right of the DPHI curves of Figures 4.5 and

4.6.

Adding a translational spring to a support relaxes some of

the resistance to the translation which can occur at that

support. The effect on the system is to reduce its over all

stiffness as indicated by the shift downward and to the left of

the DPMI curves of Figures 4.7 and 4.8.

Exten3ing the beam past its left support and adding a

translational spring to its end introduces a non-zero bending

moment at the left support. This bending moment offers some

resistance to the rotation which can occur there just as does a

rotational spring. Hence, an expression for an equivalent

rotational spring (ERS) constant was derived by equating the

bending moment at the left,support of the extended beam to the

moment caused by the sale rotation applied to the IRS. The

expression is

8 = 30T / (12 • 20T)	 (4.10)
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where the nondimensionalized parameters are as follows (see

Table 3..2)

R	 the ERS constant

T	 the translational spring constant of the

spring at the end of the extended beam

E	 length of the beam extension

The result of solving equation (4.10) for T is

T = 12R / (3e z - 2e3R) (4.11)

The set of four values of R used to generate Figure 4.5 were

used in equation (4.11) to produce an equivalent set of values

for T. These values were used to generate Figure 4.9. The DPMI

curves of Figures 4.5 and 4.9 are virtually identical.

Therefore, any system which can be modeled as an extended beam

with a translational spring on its end can be modeled equally

well as a beam with a rotational spring on one end provided the

parameters of two models are related according to equation

(4. 10) .

2. Re-nondimensionalizatiun

It is apparent that the curves of Figures 4.5 through 4.8

are sicilar in £bape regardless of the boundary conditions of

the beam. The location of each curve on its plot, however, is

affected by the boundary conditions. To investigate this

further, Figures 4.10 and 4.11 are generated. Figure 4.10 is

generated by choosing one curve from each of Figures 4.1 and 4.5

through 4.8 and re-nondimensionalizing it with respect to its

own static stiffness and fundamental frequency. (Recall that all

curves thus far have been nondimensionalized with respect to the

static stiffness and fundamental frequency of a centrally-
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i
loaded,	 simply -supported	 beam.)	 Figure	 4.11	 is generated by

t 'over^ changing the da pping value used	 for	 Figure	 4.10	 to	 a

value.

' Expressions for the static stiffness of a beam with various

boundary	 conditions	 have	 been derived and are listed in Table

I
4.2. The fundamental frequency	 in	 each	 case	 is	 obtained	 by

sole-Ing	 the	 appropriate	 characteristic	 equation. The natural

frequencies of a system occur when the DPHI goes to zero for the

case of no damping. For a beam, this occurs	 when	 the	 function

f(AL) goes to infinity. Hence, the characteristic equation to be

solved	 for	 each	 set	 of	 boundary	 conditions	 is obtained by

setting the denominator of f(AL) equal to 	 zero s	(See	 Appendix

I).	 The lowest value found for AL is than used in the following

equation to obtain the fundamental frequency

Lv,	 =	 (aL) 2 /L Z J EI/µ -	 (,^L/rr) 2 w 	 (4.12)

where W, is the fundamental frequency of the	 beam	 in	 question

and w is the fundamental frequency of a simply supported beam.

.	 The	 five	 curves	 in	 each	 of	 Figures	 4.10 an! 4.11 are

virtually identical up to frequencies of at least two tines 	 the

fundamental frequency. Hence, two conclusions can be drawn.

First,	 recall.	 that	 equations	 (4. 1) ,	 (4.7)	 and	 (4.8)	 hold

for a simple-Supported beam. Then these equations also hold 	 for

(or	 are at least very good approximations for) beams with other

boundary conditons provided K is interpreted according to 	 Table

4.1	 and	 w and V are interpreted as fundamental frequencies and

damping ratios of the beans.

` Secondly, the shape of the DPHI	 curve	 (in	 the	 frequency

3 Characteristic equations obtained in this way are in agreement
with Gorman	 (1975).
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range of interest, i.e., up to frequencies of at least two times

the fundamental frequency of the beam) is determined by the

damping ratio and the location of the DPdI curve on the plot is

determined by the static stiffness and fundamental frequency of

beam. The stiffness of the boundaries of the beam affect

each of these three quantities in the same way as does the

bending stiffness of the beam. Therefore the bending stiffness

and the boundary stiffness have the same effect on the DPRI plot

of a beam up to frequencies of at least two times the

fundamental frequency of the beam. At very high frequencies, the

curves begin to deviate fro m one another. Bovever, the deviation

is only significant if the damping is relatively low. Therefore,

the effects of the bending stiffness and the stiffness of the

k

^supports of a beaolike structure (i.e., an ulna or a tibia) are

not easily distinguishable on its DPMI data plot.

C. TH? EFFECT OF TAPER

1. 21alitative Effects

It can be seen from Figure 1.1 that lc ug bones are not

uniform. Some long bones, such as the ulna, have very severe

tapers. It is, therefore, worthwhile to investigate the effect

of taper on the DPHI plot of a beam.

A method of computing the DPMI of a tapered beam is given

in 1ppendix B. This method was ised to generate DPHI plots for

beaas with two different types of tapers: a linear taper which

roughly approximates an ulna and a quadratic taper which roughly

approximates a tibia (see Figure 4.12).
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The nondimensionalized DPMI plot in each case turned out to

be identical to that of a uniform beam. Apparently, DPnI data

only provides information about the overall stiffness of a

beamlike structure and not about its distribution. Therefore, no

information concerning the nature of the taper of a bone can be

extracted from its DPMI plot alone. However, using a model in

which the bone is assumed to be uniform, the average bending

stiffness is determined. This is the same average bending

stiffness which was measured and correlated to breaking strength

in the investigations by Borders, Petersen and Orne (1977) and

Jurist and Foltz (1977). These correlations provide a means of

inferring breaking strength from a measurement of bending

stiffness. Thus, knowlege of the exact geometry is not needed.

D. THE EFFECT OF THE FOUNDATION

1. Qualitative Effects

The tissue surrounding the bone of a vibrating forearm or

leg system is represented by a visco-elastic f ozndation with

mass. The boundary of the foundation is either fixed or free as

discussed in Section II.C. Figures 4.13 and 4.14 are DPMI plots

of a simply-supportea bean on a fixed foundation while Figures

4.15 and 4.16 are DPMI plots of a simply-supported beat on a

free foundation. Figures 4.13 and 4.15 were generated with the

damping in the foundation held constant while allowing the mass

per unit length of the foundation to take on five different

values. Figures 4.14 and 4.16, on the other hand, were generated

with the mass per unit length of the foundation held constant
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while allowing the damping in the foundation to take on four

different values. In each case, the stiffness of the foundation

is chosen to produce a fundamental subresonant frequency for the

foundation of one-half the fundamental frequency of the beam.

The arbitrary factor of one-half sufficiently seperates the

subresonant frequency of the foundation from the resonant

frequency of the beam to distinguish their effects.

The foundation exh-.bits two major effects on the DPIII

curves. First, the damping in the foundation smooths out the

DPMI in such the same way as the damping in the beam. The

minimum point of the curve moves upward as damping increases

regardless of the source of the damping (beam o: foundation) .

Secondly, the DPMI curve changes drastically in the region

around the subresonant frequency. This disturbance in the

otherwise smooth curve is evident in many of the data sets from

DPHI tests. It is therefore essential to include a foundation in

the mathematical model.

2. 2uantification of the Effect on the Hir.icum Point

Note from Figures 4.13 through 4.16 that the magnitude of

the DPMI at the minimum point of the curves is very dependent on

both the mass per unit length p` , and the damping ratio Jf, of

the foundation. This dependence, expressed in mathematical form,

can be used to determine approximate values for these parameters

for a forearm of leg system directly from its DP5I data plot.

The fundamental frequency w4 , of the foundation also

f effects the minimum point. However, it will be useful later to

have relationships expressing the dependence of p F and Tf on the

minimum DP51 while holding wF constant. The disturbance which
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appears in many data sets occurs at approximately one half the

fundamental frequency of the beam. Therefore, the relationship

to be derived will be based on a frequency ratio kVw; , of two.

Due to the complexity of the DPMI equations, the exact

expression for the dependence of p; and ft on the minimum DPHI

can not be determined. Therefore, approximate relationships are

derived. The details of the derivation are given in Appendix C.

The relationships expressing the dependence of pf and rf on the

minimum DPHI are

Z^,^^/R = 2S + 0.25 r" p{ /P

Z w; ti w/R = 2^ t 0.75 rfo pf/P

(4.13)

(4.14)

for the fixed and free foundation, respectively. Since these

relationships are approximate, t beneficial to demonstrate

their accuracy. This is done in Figu o 4.17. The minimum DP5I#s

tabulated in Table 4.2 are shown as squares on the plot while

equations ( 4.13) and ( 4.14) are shown as solid lines. The

approximation is quite accurate for the range of values under

consideration.

E. THE EFFECT OF THE SPRIN';-IN-SERIES

I. 22alitative Effects

The skin of the vibrating forearm or leg system is

represented by a transverse spring in series with the bean. DP3I

plots of a simply-supported bean with the spring in place are

given in Figures 4.18 and 4.19. Figure 4.18 was generated with

the damping of the beam held constant while allowing the spring

stiffness to take on five different values. Figure 4.19, on the
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other hani, was generated with the spring stiffness held

constant while allowing the damping of the beam to take on five

different values.

At very low frequency, the curves are predominantely

springlike (i.e., the slope of the curve is virtually negative

one). The apparent stiffness is simply the combined static

stiffnesses of the bean and spring in series. At very high

frequency, the curves are again springlike. However, the

apparent stiffness is higher than the apparent stiffness in the

low frequency range. In the high frequency range, the beam DP3I

is predominantely masslike (see Figure 4.1) while the spring, of

course, is still springlike. Thus, the beam DPHI is much higher

than that of the spring. Recall that MI's in series add

according to

Z* = (1/zs ♦ 1/Zl) — i (4.15)

The lower of the two DPM 's, the DPffI of the spring in this

case, dominates the overall DP51. Therefore, at very high

frequency the overall DPHI is simply the DPhI of the spring. In

other words, the bean, due to its sass and damping, does not

vibrate at high frequency.

The apparent stiffness at low and high frequencies have

often been used to approximate the bone and skin stiffnesses of

forearm or leg systems directly from the DPSI plots. A data

point is chosen from each of the (low and high) frequency ranges

and used in the following formulas

k = Z,p„ P«, (.M 	(4.16)

(4.17)

r-



Ahere	 k = skin stiffness

E = bone stiffness (eg., 3EIL/azb2

for a simply-supported beam)

( p*,6,m , Z N1j = a data point from the high-frequency range

(pLO. 6 Z,O-0 = a data point from the low frequency range

(see ; igure 4.20)

However, large errors are easily introduced with improper

choices of the data points. Recall that the data points must be

taken from sections of the data plot where the frequency is low

enough or high enough to indeed produce a slope which is

virtually negative 45 degrees. This stipulation does not present

a problem in the low frequency range. However, the data from

most DPMI tests have not been taken in a frequency range high

enough to attain the required negative 45 degree slope. However,

a new relationship has been discovered which allows the skin

stiffness to be approximated using the maximum point (see Figure

4.20) which occurs just before the high frequency negative slope

on the data plot. This eliminates the need for the high

frequency data.

2_ 2uantification of the Effect on the Maximum Point

It can be seen from Figures 4.18 and 4.19 that the maximum

point is severely affected by the spring. Although the maximum

value of the DPM1 has a significant dependence on the damping of

the beam, the frequency at which it occurs does not. Therefore,

an approximate relationship between the stiffness of the spring

and the frequency at which the maximum DPHI occurs can be

derived which is independent of the damping in the beam.

To find this relationship, 	 two	 simplifications are
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introduced to facilitate the analysis. First, replace the beam

by its equivalent single-degree-of-freedom oscillator ( SDOFO).

Recall from Sections IO.& and IO.B that a beam, regardless of

its boundary conditions, behaves in the same manner as its

equivalent SDOFO up to frequencies of at least two times their

fundamental frequency. In many cases the similarity in behavior

extends to as high as an order of magnitude above the

fundamental frequency. Recall further that at high frequency,

the DPHI of a spring-in-series dominates the total DPSI.

Therefore, a spring in series with a beam behaves in the same

manner as a spring in series with a SDOFO at any frequency

provided the spring is soft enough.

Secondly, since the frequency of interest is assumed to be

in3ependent of the damping, set the damping equal to zero. Then

the frequency which makes the DPMI maximum will actually be the

frequency which makes the DPM1 approach infinity. Thus, the

mo3el to be analysed is that which is shown in Figure 4.21 with

= 0.

The DPMI*s of the SDOFO and the spring are, respectively

Z* = sip + K/ip	 (4.18)

ZI = k/ip ( 4.19)

where p is the forcing frequency. The overall DPCI, according to

equation (4.15) is

Zs =[ 1/(mip + K/ip) + 1 /(k/ip) ]- 1 (4.20)

After replacing n by K/w2 and performing several steps of

algebra, equation (4.20) becoses

Z s - -iK/w (k/K)/(P/w) ( 1 - P2/ ) / ( 1 + k/K - p 2/w= ) (4.21)

The DPMI approaches infinity when the denominator of equation

(4.21) approaaches zero
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1 + k/K - PW2 , /w2 = 0	 (4.22)

Therefore the frequency at which the DPMI is maximum is given by

p2 /w2 = 1 + k/K	 (4.23)

Solve equations (4.17) and (4.23) simultaneously for k and K

k = ZwwPww p2PAA Alwz	(4.24)

K = Zoo p". p2. /u) 2 / (Pw,/w2 - 1)	 (4.25)

Equations (4.24) and (4.25) can now be used to approximate the

bone and skin stiffnesses without the use of equation (4.16),

i.e., without the use of a data point from the very high

frequency range.

Figures 4.18 and 4.19 show that the location of the minimum

point is only slightly affected by the presence of the spring.

This indicates that the relationships discussed in Section Io.K

and IV.B (equations 4.7 and 4.8) which relate the minimum point
t

to the damping ratio and the fundamental frequency are still

approximately valid in the presence of the spring. This is also

verified by considering the frequency which makes equation

(4.21) go to zero, i.e., set the numerator equal to zero

1 - pu,,, /w2 = 0	 (4.26)

or

P 2 /w2 	 1	 (4.27)

Since equations (4.23) and (4.27) were 	 obtained	 by

considering the case where = 0, they are approximations which

are independent of the beam damping. To investigate the accuracy

of these approximations, the minimum and maximum points of the

DPBI of the model of Figure 4.21 can be found without setting

the beam damping equal to zero. Although this analysis is nearly

icpossible in closed fora, the first few terms of a Taylor

series solution can be found. This very lengthy analysis is
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outlined in Appendix D. The fiLst three terns of the solutions

are

	

^ X	 S + 1 + 21S (2+S) / (1+ S) ; 2 	(4.28)

— 2/S 3 (2+S)/(1+S#) (4+16S+135 2 +4S 3 ) 54 + ...

	

z	 1 - 4/S 152 + 8 /S 3 (2+3S) 5 + - ...	 (4.29)MW

where S o k/K and 0 = p/w. Both series converge for 0<r<1 and

S>1 which is the range of values of interest.

Several typical values of ; and S have been tried in

equations (4.28) and ( 4.29) and compared to the results from

equations (4.23) and (4.27) , respectively. For example, with

0.2 and S = 5, equation (4.28) yields ^, = 2.453 while equation

(4.23) yields Pw,x = 2.449. This and *any other sets of values

indicate that equations (4.23) and (4.27) are indeed very good

approximations.
F4

. 1

0
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CHAPTER V

THE SYMMS IDENTIFICATION ALGORITHM

A. THE WEED FOR A SYSTEMATIC METHOD

1. The Need

Each of the parameters of the mathematical model

corresponds to one (or some coabination) of the geometrical or

material properties of the vibrating forearm or leg system. The

driving-point mechanical impedance (DPMI) of the system is

measured in a vibration test (Section I.E). The DPIII of the

model is calculated and depends on the values chosen for its

parameters (Section III.A). Therefore, the set of parametric

values for the model vhich generates a DPHI curve that closely

coincides vith the DPHI data points of the system infers the

geometrical and material properties of that system. A method for

finding this set of parametric values is needed.

2. Requirements

To obtain a consistent interpretation of the DPIII data, the

`-i	method used to find the parametric values (hence forth referred

to as "the method") mast be repeatable and slEtematic. The

method must be repeatable in the sense that each time it is

f



F

I

61

applied to a given set of DPSI data it must produce the same

results. The method must be systematic enough to program on a

digital computer for on-line analysis.

Although computers are capable of performing tremendous

amounts of computation, they are incapable of making subjective

decisions. The method mast be completely objective in nature and

expressible in mathematical fora.

Finally, the computer program which employs the method must

be set up in a user-oriented fashion. The user in a cli•iical

situation should not need extensive computer experience in order

to easily obtain results.

D. TAF ERROR FUNCTION

1. Definition

The first step in developing the method is to define an

error function which quantifies the difference between the

measured DPSI data and the calculated DP3I of the mathematical

model. The parametric values of the model will then be chosen in

a systematic way to minimize the error function. This is

accomplished using a systems identification algorithm (SIDA)

which is analogous to the classical least-squares approach to

curve fitting.

The error e,,, at frequency p,,, is the difference between

the measured DPMJ Z„, and the DPIII calculated using the model

Z„ (P; ), as shown in Figure 5.1a. The error function E, is the

finite sum over all the discrete test frequencies of the squares

A
of the percentage errors e„/Z,,, divided by the number of data
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points. The percentage error is used rather than the error

itself because of the wide range olf absolute values which the
DPMI can take in a single DPHI test. The division by the number

of data points normalizes the error function so that a

comparison of its value from two sets of data with different

numbers of data points is meaningful. The error, and hence the

error function, is a function of the parameters of the model

since it depends on the DPdI of the model. sn example of an

error function as a function of one of the model parameters,

represented by Pi, is shown in Figure 5.1b.

2. Ana lysis

Mathematically, the error function is expressed as

E = 11'N	 [ G" - Z " (1% /Z.,) 2 	(5.1)

where N is the number of data points. To obtain the parametric

values using a classical least-squares approach, one would set

the derivatives of the error function with respect to each of

the parameters equal to zero. The resulting equations would then

be solved directly for the parametric values. Due to the

complexity of the function which represents the DPMI of the

model, however, this approach is impract'.cal if not impossible.

Since the DPHI of the model is a continuous function of the

model parameters, it can be expanded in a Taylor series.

E = 1/NZ, [ Zn - ( Z n +	 dZ,,/d P i 6P l ) 1 2	 (5.2)
where M is the number of model parameters. Higher order terms of

the series have been neglected and the function which represents

^y)

	

	
the DPCI of the wodel and its derivatives are evaluated at some

initial set of estimated pars W.ric values.

Using this form of the error function, changes in the
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parametric	 values	 Z^P j ,	 rather	 than	 the	 parametric	 values

themselves, can be chosen to minimize 	 the	 error	 function.	 To

accomplish	 this, set the derivatives of the error function with

respect to the changes in the parametric values equal to zero
M

dE/d Pj	 a - 2/N ^ 1/Zn [Zn -	 ( Zn •	 dZn/d P; &P j ] dZn/dPj
P,	 w

=	 0	 ;	 j =	 1,2...!! (5.3)

After a few steps of algebra, equation 	 ( 5.3)	 becomes

dE &V j = - 21N	 (in - Z n )/Z„ dZ,/dPj (5.4)
M	 H A.

1/Z'- dZ n /d P,	 dZn /d P;	 6P L ] = 0;	 j = 1,2...M

Therefore the equations to be solved are

[ A]	 t,^&)	 _	 (B) (5.5)

Where the components of the matrices are
N

Aid 	=	 1122 dZ„ /dP;	 dZ„/dP j (5.6)

and	 Ba	 =	 (Z„-	 Z„) /Zn dZ„/dPj (5.7)

The derivatives of the DPNI of the model with respect to each of

the parameters is given in Appendix E.

3. Application

Since changes in the parametric values are calculated

rather than the parametric values themselves, the procedure is

iterative. The components of the A and B natrices are calculated

using the parametric values obtained from previous iteration.

The changes in the parametric values are calculated from

PP) _ [& ]-'  (B)	 (5.8)

and added to the old set of parametric values to obtain a new

set. Each succesive set of parametric values will reduce they

value of the error function. The procedure is repeated as many

times as necessary to obtain an acceptable set of parametric

values.
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To begin the iterations, an initial set of parametric

values aust be chosen which will facilitate quick convergence.

C. CONVPRGENCE AND TEE INITIAL GUESS

1. Definition

Convergence is said to have occurred in an iteration scheme

when further iterations no longer improve the result. In terms

of the SIDI, convergence has ocurred when the relative change in

any given parameter becomes smaller than a specified amount,

e.g., 0.1 percent. The characteristics of the error function

have a considerable effect on the convergence of the SIDI.

Therefore, some control lust be maintained over the error

function to insure convergence for the DPbI data from any

forearm or leg vibration test.

2. Restrictions on the Mathematical Yodel

When two parameters of a given mathematical model have very

similar effects on its DPHI curve, the effect of changing one

parametric value may cancel an opposite effect in the other to

produce no net effect in either the DPHI curve or the value of

the error function. In this case, the error function may contain

an infinite number of minimum points along some carve in the

error function space. There is no way to distinguish between

these minimum points. Therefore the DPdI data does not contain

enough information itself to uniquely define all of the

parameters of the model, and the SIDI will diverge. This problem

has ocurred with the boundary conditions of the beam and with
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the damping. To eliminate the problem, something more must be

known about one of the two parameters. A constant value can then

be assigned to it, allowing the rest of the parameters to be

determined by the SIDA.

It was shown in Section IT.B, that the static stiffness of

a beam, and hence its DPSI, is affected in mach the same way by

tae bending stiffness of the beam itself as by the stiffness of

the boundaries. Therefore, if the model includes a spring at one

or both ends of the beam. Then the DP81 data does not contain

enough information to determine all of the parametric values.

Therefore, the characteristics of the supports of the forearm or

leg must be known a re iori. one way to avoid the necessity of

determining the support characteristics is to always plac-i the

forearm or leg in the fixture in such a way to insure that the

supports are virtually simply-supported.

The sharp peaks of the minimum and maximun points of the

DPMI curve of an undamped beam are rounded-off when damping is

aided. Tux extent of the rounding-off depends on the amount of

damping present but not on its location, i.e., in the beam or

foundation, as was shown in Section IV.D. Since both the bone

and the tissue contribute to the overall damping of the system,

the DPSI data does not contain enough information to determine

all of the parametric values. A constant value will be assigned

to one of the damping ratios, thus allowing the other to be

determined by the SIDA. It will be seen in Section VI.A that the

tissue contributes such more to the overall damping than does

the bone. Consequently, the DPMI is relatively insensitive to

the value chosen for the damping ratio of the beam. Therefore,

it will be held constant at five percent of critical damping in
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the fundamental mode, a seasonable value.

With the boundary conditions being specified and the

damning in the beam held constant, the model has six parameters

to be determined by the SIDI. They are the bending stiffness EI,

and the fundamental frequency w, of the beam; the mass pL-r unit

length p., the fundamental frequency cam,, and the damping ratio

T j , of the foundation and the stiffness k, of the spring. This

version of the model will be referred to as the six- parameter

model (6PM) .

3. The Initial Guess

Even if all of the parameters are such that their effects

on the DPU'A curve are independent, it is possible that sore than

one set (but not and infinite number of sets) of parametric

values exist which will minimize the error function for the DPMI

data from any given vibration test. One of these referred to .as

the correct solution, is the set of parametric values

corresponding to the true geometric and material properties of

the forearm or leg system being tested.

Several successive iterations of the SIDI can produce a set

of parametric values associated with one of the local minimum o^

riximum points of the error function. 'Yo illustrate this

concept, aL error function is shown in Figure 5.1b. Un' one

these minimum points represents the correct solution, and it

appears to be the only one in which all of the parametric values

are positive. The initial values chosen for the parameters to

start the iterations, referred to as the initial 	 quess,
`^ J	

detervine whether or not the SIDI will converge and to which

minions or maximum point. Therefore, the initial guess must be

i
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close enough to the correct solution to allow the SIDI to

`-	 converge to it.

The Beans for acquiring the initial guess is provided by

the relationships established in the parametric study ( Chapter

IV). The initial guess is calculated from a few key data points

using these relationships. in many cases, the intial guess is

close enough to the correct solution. However, if one or more of

the key data points happens to contain an excessive amount of

experimental error then the initial guess will not be close

enough. This problem is overcome by temporarily simplifying the

model.

The model is simplified by eliminating the foundation. The

damping effect that the tissue has on the bone is accounted for

by a higher than norual d,,r.ping in the beam. The simplified
F

model has only four parameters to be determined by the SIDA.

They are the bending stiffnes EI, the fundamental frequency w,

and th,^ damping ratio -', of the beat and the stiffness k, of the

spring. This version of the model will be referred to as the

four-parameter aole1 (4PP1).

A reduction in the number of parameters in the model is

accompanied by a reduction in the number of minimum and maximum

points in the error function. This increases the chance for

convergence to the correct solution when applying the SIDI. The

result s from applying the SIDA to the 4Pd are used as part of an

isprov--d initial guess for the 6PM, thus increasing the chance

for convergence when applying the SIDI to the 6PA. The process

described herein occurs iu three phases. The SIDI is applied in

a different gay in each phase.

^n phase our, the SIDA is applied to the 4PS. The initial
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guess is determined by solving equations (4.7), (4.8), ( 4.28)

and (4.29) for the four parameters

E I = a l b = /3 L^ Z ,.owP, (P„,,, /P„„ r) 2 / [ (P.Mz/aM ,N ) 2 - 1 1 	 (5.9)
w	 P M,N	 (5.10)

3° = 1/2 Z mjwp A,qy/Z LvwPLov [ (p#M;, /Pw,,J) 2 - 1 J / ( Pµ41 /PM111) 2	 (5.11)

k = Z ,.owP"W (P,,,v/PM,u) _	 ( 5.12)

where ( p„W,ZL,,,J, (p,,,, , Zmj) and (pm A ,Zxuj are the key data points

as shown in Figure 4.20, and # is a constant which depends on

the boundary conditions of the beam (see Table 4.2).

In phase two, the SID1 is applied to the 6PE. However, only

the foundation parameters are allowed to vary. The bending

stiffness and the fundamental frequency of the beam and the

stiffness of the spring are held constant at the values

determined from phase one. The damping ratio of the bean is

^•^'	 reduced to the reasonable value of 0.05 as mentioned earlier.

Phase two allows the values of the foundation parameters to be

improved without disturbing the bean and spring parameters. The

initial guess is partially based on experience rith simulating

DPHI data "by hand” and partially based on equation (4.16). The

fundamental frequency and damping ratio are guessed from

experience to be one-half of those :%f the beat. The mass per
unit length is calculated by solving equvtluu (4.16). Thus the

initial guess is calculated fro•

p{ _ ,r/L4 EI /w 2 2(5 - 0-05)/1(f/2)"	 (5.13)

	

tot = w12	 ( 5.14)

(5.15)

In phase three, the SID1 is again applied to the 6PS. Allr

six parameters are allowed to vary. The initial guess is simply

the results of phases one and two. The SID1 converges to the
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correct solution for the DPHI data from almost any reasonable

forearm or leg vibration test. Examples will be given in

Chapters VI and VII.

D. THE COMPUTER PROGRAS

1_ The Program

A Fortran computer progran was written to carry out the

process described in the last section. Due to the complexity of

the DPRI functions being evaluated, the program is writter: in

double precision. A listing of the program is given in

Appendix F.

.J The computer program is divided into three phases of the

total process. Each phase is similar in structure. A general

flow chart of the program is shown in Figure 5.2 and a more

detailed flow chart of one phase is shown in Figure 5.3. Control

passes through the main loop of each phase of the program until

the iterations are terminated by the passing of one of the four

tests as indicated in the diamond shaped boxes in the flow

chart.

The first test is to deteraine whether or not a negative

value was obtained for one of the parameters in the previous

iteration. Unlike the other three tests, the consequence of

passing this test depends on the phase. In phase one, the

parameters are returned to their old values. In phase two, the

tissue parametric values are returned to their initial guess. in

phase three, the 6P5 is disregarded and the parametric values

obtained for the 4Ph are recalled.

A
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The second test is to determine whether or not the value of

0 the error function has increased in the last iteration. If it

has, then this is an indication that the parametric values are

either moving away from the correct minimum point of the error

function toward a maximum point or that the SIDA has over-

stepped the minimum point. In either case, the old set of

parametric values are closer to the correct solution than the

nev set. Therefore, the parameters are returned to their old

values.

The third test is to determine whether or not convergence

has occurred. Convergence is considered to have occurred when

all of the percentage changes in the parameters have become less

than one-tenth of a percent.

The fourth test is to determine whether or not ten

iterations have occurred. A limit of ten iterations is placed on

each phase to insure that the iterations will not go on

indefinitely.

If all four tests fail in a given iteration, ihen control

is transferred back to the top of the loop and another iteration

is carried out.

L. The Matrix Equation

Vithin each iteration of the SIDA, a matrix equation of the

form

[ A ] (6P) _ (B) (5.5)

is generated. The solution is to be obtained within the computer

progas using the subroutine DGELG from the IBS Scientific

Subroutine Package (*SSP). DGELG solves the matrix equation

using Gaussian elimination.
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Accuracy of the calculations ' is an important factor since

it can influence convergence of the SIDA. Matrix A, however, is

an ili-formed matrix, i.e., its elements vary in absolute value

as such as ten to twenty orders of magnitude. I11-formed

matrices are very difficult to solve accurately. Therefore,

equation (5.5) will be modified to eliminate the ill - formedness

of matrix A.

Consider matrix equation ( 5.5) in component form
M

A 'j Lpi = B j	 j	 1, 2... b	 (5.16)

Eguation (5.16) represents M linear algegraic equations, where H

is the number of parameters to be determined by the SIDA. Each

of the algebraic equations can be multiplied by a constant

without altering the solution.
M

(C, A ^ j ) lap ;, = ( C ; B ^ )	 j = 1,2... d	 (5.17)

where Cj , j = 1,2...11 is a set of N constants. Furthermore, the

coefficients of each unknown can be multiplied by a constant if

that unknown is divided by the same constant. Using the same set

of a constants, the symetry of matrix A is preserved.
M_

( C , C , Ac;) (aP /C L ) = ( C i B ; ) :	 j = 1,2...M	 (5.18)

thus the new matrix equation is

[ A ]	 [ B ]	 (5.19)

where

A
A t j = C; Cj Iii
pP^ = pp! /C.,	 (5.20)

Bi	 = Cj B 1

Refering to the definitions of A ij and B j given in

equations (5.6) and ( 5.7) , the orders of magnitude of each of

the quantities in equation ( 5.16) are as follows:

i,j has order P 1 Piz
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OPi 	 has order	 Pi

® 1.B.	 has order	 P !

The difference in the orders of magnitude of ZSP^,	 i	 -	 1,2...q

results	 in	 the	 ill-formedness	 of matrix A. However, matrix a

will be well-formed if the constants are chosen	 so	 that	 each

element of matrix	 is of order one. This can be accomplished by

choosing

C,	 =	 1/B,.	 i	 1,2...!! (5.21)

Then the new matrix equation becomes

[	 ]	 PP) =	 [I) (5.22)

where

8 B	 Z^P	 = B 6P 5.23

and all of the components of the column matrix I are unity.

Matrix	 equation	 (5.22)	 can	 be	 solved	 without	 loss of

accuracy because matrix b is well-formed. The solution, however,

is different from the solution to	 matrix equation	 (5.5).	 The

relationship	 between	 the	 two solutions is known from equation

(5.23).	 Hence the solution to equation 	 (5.5)	 is calculated	 from

the solution to equation	 (5.22)	 by
A

UPI,	 = APL /B L	;	 i =	 t, 2... n (5.24)

3. Inpnt

To make the computer program user orierted, the input

required to run it has been simplified as such as possible. only

four lines of information are required in addition to the data

points themselves. The input is checked by the computer prograa

and error messages are printed out to inform the user if it is

not in proper form. in example of input is given in Figure 5.4.

The first line is a title. The user can insert anything he



73

vishes with a limit of sixty characters. The title is printed on

both the output and the plot.

The second line contains the support length of the 	 forearm

and	 the	 length-to-probe	 location	 ratio.	 This	 ratio	 is the

distance between the left support and the driving point 	 divided

by	 the	 support length. The ratio must be a number between zero

and one. If it is not, then an error	 message	 is	 printed.	 The

length and ratio are read in free format.*

The	 first	 two	 columns	 of	 the	 third	 line	 contain	 an

integer s 	 1	 negative integer indicates that the specimen is an

ulna and a positive integer indicates that 	 the	 specimen	 is	 a

tibia.	 Recall	 that the boundary condition on the foundation of

the model is either free or 	 fixed	 depending	 on	 the	 type	 of

specimen being represented. This is the only indication given to

the	 program	 concerning	 the	 type	 of	 specimen.	 The	 data is

interpreted according to the value given on this line regardless

of what information is entered in the title. If a 	 zero	 appears

on this line,	 then the foundation is not included in the model.

The	 fourth	 line	 contains	 the number of the data points.

This number must also appear as an	 integer	 in	 the	 first	 two

columns.	 It	 least eight but no more than sixty data points are

allowed. In error message is printed if this is violated.

Starting with line five, the remaining	 lines	 contain	 the

data	 points,	 one per line. The forcing frequency, magnitude of

• Free format: There is no restrictions on the fora of the
number, i.e., with or without a decimal point, with or without
scientific notation. d comma and/or at least one space must

All	 appear between each entry.
3 Integer: Decimal points and rcientific notation are not
allove3. late, a one--digit number with no sign must appear in
column two.
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the DPMI and the phase angle of the DPMI must appear in order

	

_.'	 and in free format.

The only other restriction on the input concerns units.

Frequencies and phase angles are entered in Hertz (cycles per

second) and degrees, respectively. all other quantities must

have consistent units. No conversion factors have been written

into the program. The CGS system is suggested, i.e., all

quantities are expressed in terms of centimeters, grams, seconds

and dynes.

4. Output

To make the progran user oriented, the output must be easy

to read and interpret. An example of output is given in Figure

	

^^^^
	 5.5. The corresponding computer plot is given in Figure 5.6.

l^
The title, given by the user on the first line of the

input, is printed at the top of the output page followed by the

length and ratio. The parameters of the model are listed with

their values. The data points and their corresponding DPbI's of

the model are tabulated. Finally the value of tae error function

is given.

A computer plot is also generated as Part of the output.

The squares represent the DrMI data points. The solid line

represents the DPMI of the model, calculated using the final

parametric values, determined by the SIDA. Both the magnitude

and the phase angle of the DPdI are plotted to visualize the

quality of the simulation.

A

^j
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V

CHAPTER VI

VERIFICATION OF THE MATHEMATICAL MODEL

A. IN VITRO !MONKEY ETPERIHENTS

1. Pr opo sed Expe riments

A series of experiments was proposed by Orne and Mandke

(1975) to verify the mathematical model. These experiments are

designed to isolate the effects of the various components of the

vibrating forearm system. The experiments involve the

application of the test procedure, described in Section I.E., to

a monkey arm under three different conditions.

T^ - tomy of the arm and forearm of a monkey is quite

similar that of a human arm and forearm. There are, of

course, some minor differences but the similarity is strong

enough so that the results of these experiments will provid,_ and

indication	 of	 the	 validity	 of the application of the

n athesatical model to experiments done with either sp,icies.

A few modifications, including the addition of a fourth

condition, were introduced before the experime"t s were conducted

by Peterson (1977). A description of the experiments (in

modified form) is given here.

The arm of a sacrificed monkey is disarticulated at the
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shoulder	 and immediately frozen to maintain freshness until the

experiments could be performed.	 The	 specimen	 was	 thawed	 and

allowed	 to	 come	 to	 room	 temperature	 before	 testing.	 The

following	 experiments	 were	 then	 performed	 as	 quickly	 as

possible.

The	 monkey arm is positioned in the test fixture. A weight

is placed at the top of the humerus to	 represent	 the	 downward

force	 applied through the humerus by the live subject, as shown

in Figure 6.1.	 This first condition should resemble an 	 in	 vivo

test as such as possible. The dri «ng-point mechanical impedance

(DPtlI)	 of this system is measured.

A	 small piece of skin is removed from the forearm to allow

the probe to be applied directly to the ulna. This is the second

condition. The DPEI is again measured.

All	 of	 the	 tissue	 surrounding	 the	 bones	 between	 the

supports	 is	 removed. The joints and the tissue surrounding the

Joints at the supports is left intact. Care is 	 taken	 that	 the

support	 conditions	 are	 not	 altered	 between	 the first three

conditions. A third set of DPMI data is taken.

Finally, the ulna is completely excised. Soles are 	 drilled

in the ends of the ulna to accommodate small steel pins. Care is

taken	 in drilling the holes so that the orientation of the ulna

is not changed between the third and fourth conditions. The pins

are supported in brackets as shown in Figure 6.1. The fourth set

of DPEI data is taken.

2_ The Mathematical Model

The DPNI plots produced by the experiments are to be used

to verify the mathematical model described in section II.E. To
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do this, the DPHI plots are simulated using the mathematical

model in its appropriate form. The validity of the mathematical

model is verified by demonstrating its capability to accurately

simulate each of the DPMI plots produced by the experiments.

Furthermore, each parametric value obtained by the simulations

must be within a range of reasonable values and, of course, must

be non-negative.

In the fourth condition (excised ulna) , the ulna is

supported wy a pin and bracket at each end. The pins, which are

made of steel are smooth and relatively rigid. The smoothness of

the pins produces essentially no resistance to rotation while

their rigidty provides essentially infinite resistance 	 to

translation. 6 Therefore the excised ulna can be modeled as a

simply-supported beau. For each successive condition, in

reversed order, the element is added to the mathematical model

which corresponds to the component of the system which was

removed in obtaining the previous condition.

The third condition (musculature removed) differs from the

excis ,̂ A -ulna condition only in the manner in which the ulna is

supported. Ideally, the joints provide simple supports for the

ends of the ulna, yielding identical DPSI plots for the two

conditions. If the two DPffI plots are not identical, however,

then the DPSI plot cf the arm in the musculature-removed

condition . will provide and indication of the true boundary

conditions of a live forearm.

The second condition (probe on ulna) has all of the tissue

j The relative rigidity of the pins was verified by calr..ulating
the static stiffness of a pin and comparing it to a typical
value of static stiffness of a bone. A difference of two to
three orders of magnitude was found.
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surrounding the ulna and radius in place. The layer of skin

betveen the probe and ulna in this case has been removed.

Therefore the mathematical model includes the foundation but not

the spring -in-series.

Finally, the first condition (intact arm) is modeled

according to the mathematical model description given in Section

II.C. Since all of the components of the vibrating forearm
a

system are present, all of the elements of the mathematical

model are present.

The form of the mathematical model for each successive

condition (in reversed order) contains all of the parameters

present in the previous condition together with one or more

additional piramenters. The parametric values obtained for the

previous condition are preserved while values for the additional

parameters	 are	 obtained using the systems identification

algorithm (SIDI) described in Chapter V. This	 consistent

building-block approach to modeling the intact are gives greater

confidence that the model actually represents 	 a physical

system and that arbitrary curve-fitt4ng is reduced to a minimum.

3_ Application of the Systems Identification I_gorithm

1 set of computer programs was written to carry out the

simulations discussed above using the SIDI. These computer

programs are eacv sir,'lar to a `one-phase" version of the

computer program described in Section V.D. The most significant

modification i s that the derivatives, calculated within each

^-	 iteration of the SIDI, are :.-placed by finite differences,
v: _)

i.e.,

dZn /dP^ - [ Zn (P, ♦ 1P. ) — Zn (P,) ]/SP.	 (6.1)
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where the finite increment ir, the parameter SP,, is taken to be

.•'	 one percent of the current value of the parameter.

Early on in the development of the SIDI, some sets of data

were simulated using the SIDI both with exact derivatives and

with the derivatives approximated by finite differences. The

values of the derivatives and the finite differences were

printed out by the computer programs so that they could be

corpared. Their values were found to be in agreement within at

least two, and often within three decimal places. Hence,

accuracy of the finite differences does not present a problem.

A trade-off exists between the effort spent in deriving

exact expressions for the derivatives of the DPCI function with

respect to each parameter of the mathematical model and computer

^j time spent in calculating the finite difference approximations

to those derivatives. The set of computer programs used to

simulate the in vitro experiments must be very adaptable.

Several versions of the mathematical model are use in an attempt

to produce good simulations, but each corresponding version of

the program is run only a few times. When finite differences are

used rather than exact derivatives, such less effort is required

to change the compute: program and emp! ,.^y a different version of

the mathematical model. Therefore, the extra computer time spent

to calculate the finite differences is justified by their

adaptability and convenience. on the other hand, the computer

program which was developed to simulate in vivo tests is to be

run many times without changes. The same program is used with

ff many different sets of data. The effort spent in deriving exact

expressions for the derivatives required for this computer

program is justified by the sa y ing of such computer tire.
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Another important difference is that the set of "one-phase"

computer programs is not as user-oriented as the computer

program described in Section V.D. Adaptability is required not

only in the •athematical model but also in the method of

establishing the initial guess. Therefore, the initial guess is

calculated "by hand" and read in at the beginning of the

computer program. This adaptability is more important than the

simplicity of tha input in this case.

4. Results From Monkey 663

The series of experiments, described earlier in this

section, were performed on the forearms of three monkeys,

identified by their numbers, 659, 663 and 665. The DPHI data

produced by these experiments were simulated by the set of

computer programs discussed above, using the various versions of

the mathematical model. The resulting DPdI plots associated with

Monkey 663 are shown in Figures 6.2 through 6.5. The solid lines

represent the DPHI of the mathematical model while the boxes

represent the data points generated in the experiments. The

corresponding parametric values are listed in Table 6.1.

Figure 6.2 is the DPHI plot of the ulna in its excised

state. As expected, the DPHI data is well simulated as a simply-

sapported beam. Therefore the value obtained for the bending

stiff ness,is the best possible estimate of its true value.

Figure 6.3 is the DPHI plot of the same ulna with the

musculature removed but with • the joints left intact. It is

easily seen that the excised-ulna and musculature-removed plots

are quite different from one another other. The excised ulna is

virtuallo simply-supported. Therefore, since no other parameters

L - 1
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were changed between the excised-ulna and musculature-removed

cases, the support conditions of the ulna when the joints are

IL 	 intact must be something other than simply-supported.

The bone parametric values determined from the excised-ulna

case were used for the musculature-removed case; holding them

constant while determining values for the boundary condition

parameters that will- best simulate the data. The boundary

conditions which produce the best results were found to be a

rotational spring on one end of the beam and simply-supported on

the other. Damping was also included at both ends of the beam.

Based on the parametric studies of Section IQ.B, a

significant mount of resistance to rotation can be created if

the downward force applied through the humerus is not directly

in line with the support as shown in Figure 6.6. Hence, this is

most likely the major cause ei the resistance to rotation at the

support in these experiments, but experimental verification is

necessary.

Figure 6.4 is the DPMI plot of the are in which the layer

of skin between the probe and ulna is removed but the rest of

the tissue is left intact. The major difference between the

musculature-removed and probe-on-ulna plots is the increase in

damping in the latter case, i.e., the region around the minimum

point of the DPHI plot is moved upward. The tissue, in fact,

contributes much more to overall damping than does the bone.

Figure 6.5 is the DPAI plot of the intact arm. The major

difference between the probe-on-ulna and intact-arm plots is an

overall decrease in DPHI. This is to be expected since the skin

between the probe and the bone is in series with the bone. The

DP5I of the whole system is less than the DPHI of either part
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alone.

A slightly better fit is obtained using Orne's three-

parameter model for the skin (see Section II.C) rather than the

spring alone. However, the skin, when tested alone, does behave

as a simple spring, see Figure 2.2. These experiments would have

to be rerun to include higher frequencies to better define this

behavior.

Since the mathematical model has all of the capabilities

necessary to simulate the entire set of in vitro experiments, it

is a good representation of the physical system. In dealing with

an in vivo test, however, the support conditions of the physical

system must be evaluated. The parametric values obtained from a

simulation in this case, will be valid only if the boundary

conditions of the mathematical model are a good representation

'of the support conditions of the physical system.

5. Results From Mon key 665

The experiments run on Monkey 663, as discussed above, were

also run on Monkey 665. The data was simulated using the SIDA

and the same versions of the mathematical model. The resulting

DPHI plots are shown in Figures 6.7 through 6.10. The

corresponding parametric values are listed in Table 6.2.

Again, the excised-ulna data of Figure 6.7 is well

simulated as a simply-supported beam. The remainder of the data

sets, however, are not simulated as well. I disturbance,

occurring at about 200 bz, in the musculature removed plot

becomes progressively more pronounced in the probe-on-ulna and

intact-art plots. This disturbance is similar in appearance to

that which is expected from the tissue surrounding the bone.
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Bovever, the tissue is not the cause of the disturbance in this

case since it also appears in the musculature-removed plot. The

true origin of the disturbance in this data set is not known. It

is not likely, however, that it is a true characteristic of the

vibrating forearm system, since it does not appear in the data

from the other two monkeys.

The disturbance found to occur in most of the data from

human subjects is still thought to be a result of the tissue

surrounding the bone. This situation does not occur in the

monkey data, since the monkey has less tissue on his bones.

Similar experiments on a human cadaver arm must be run to verify

this effect.

6. Results From Monkey 659

0 The DPHI plots of donkey 659 are shown in Figures 6.11

through 6.15. The corresponding parametric values are listed in

Table 6.3. Two major differences exist between the procedure of

these experiments and that of Monkeys 663 and 665. First, DPMI

data for the ulna in its excised state was not taken until two

months after the other DPffI data. During that time, the ulna was

stored in a refrigerator. Second, DPAI measurements were taken

on the intact arm at both a 400 and 600 gram-force preload.

As in the other two cases, the excised-ulna data of Figure

6.11 is , well simulated as a simply-supported beam. The

musculature-removed data of Figure 6.12, however, could not be

simulated directly using the same boundary conditions in the

mathematical model as those used for eoLkeys 663 and 665. Recall

that the excised-ulna data was obtained two months after the

other-data. Although the attempt was made to maintain freshness,

33(((F
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significant deterioration had occurred. In fact, the SIDI

indicates a thirty-two percent decrease in the bending stiffness

of the ulna over that time. With this change in bending

stiffness taken into account, a good simulation was obtained for

the musculature-removed plot.

The probe-on-ulna data of Figure 6.13 is well simulated by

the mathematical model.

Figures 6.14 and 6.15 are DP1I plots of the intact arm with

400 and 600 gram-force preloads, respectively. is with the data

from Monkeys 663 and 665, the presence of the skin between the

probe and bone has the eff a_-t of decreasing the DPS I. This

decrease is less for the 600 than for the 400 gram-force

preload, as expected. If the preload could be made high enough

_	 without	 destroying the ulna, the decrease in DPSI would

eventually disappear altogether.

B. BENDING TESTS

1. Procedure

The DPMI technique and its analysis described herein,

results in a value measured for the bending stiffness of s long

bone. To verify that this measurement is valid, the bending

stiffness of an excised long bone, which has been measured using

the DPMI technique, was measured using another independent

technique. Each technique should give the same result. The

alternate technique involves a simple three-point bending test

from which a load-deflection curve is generated.

The ulna of Monkey 659 was tested in each of four
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conditions	 described	 In the last section. after the tests were

completed, it was wrapped in gauze, soaked in Ringer e s 	solution

an3	 frozen	 to maintain as such freshness as possible. The ulna

was then nailed from Stanford University,	 California	 to	 Wayne

State	 University,	 Michigan,	 where	 it	 was again frozen. Just

prior to testing, the ulna was brought to	 room	 temperature	 by

soaking it in a jar of Ringer l s solution.

A Material Testing System	 (MTS) machine was used to perforp

the	 bending tests. The ulna, already pinned from the OPMI test,

was placed in the bending fixture as shown in Figure	 6.16.	 The

MTS	 machine	 was programiaed to apply a constant deflection rate

to the center of the ulna. Several different	 deflection	 rates,

ranging	 from	 0.5 x 10- 3 to 0.5 in/s	 (1.27 x 10- 3 to 1.27 cm/s)

were used. These deflection rates are slow enough so 	 that	 mass

and	 damping	 effects	 are	 not present. The maximum deflection,

approximately one-half centimeter, produced stresses 	 which	 are

within	 the	 elastic	 range. The load-deflection curve, shown in

Figure 6.17, was gPaerated on an x-y recorder, using 	 the	 force

and displacement signals from the M"LS machine.

The	 static	 stiffness	 of	 the ulna is determined from the

load-deflection curve using the relation

X = IWA6	 (6.2)

where OF and 66 are shown in Figure 6.17. The bending	 stiffness

of the ulna, using a uniform bean model, is then determined from

the relation

EI - KL I/48	 (6.3)

The ulna was allowed to dry for a period of two months. The

value of the bending stiffness was then remeasured.
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2. Pesults and Evaluation

0

A summary of the measurements described above is given in

Table 6.4. Note that the value obtained for the bending

stiffness from each successive test is significantly lover than

that obtained from the previous test.

Although the attempt was made to keep the ulna as fresh as

possible, it had deteriorated to some degree. Table 6.4 suggests

a trend towards lover values of bending stiffness as the ulna

deteriorates. Therefore, higher values would be expected if the

bending tests had been performed immediately after the DPSI

tests. The percent difference would then be reduced, if not

eliminated all together.

With the effect of deterioration taken into account, the

bending stiffness values measured by the two independent

techniques are fairly consistent. Hence, these results support

the validity of the DPMI tests.

C. NON-BIOLOGICAL TESTS

1. The Systems

To verify that the equipment is actually measuring the DPSI

properly, ,the DPISI of two non-biological systems is measured.

Nor.-biological systems can be constructed in such a way that

their mechanical response is such more predictable than that of

a biological system. Furthermore, the components of that system

k^	 can be made of materials whose mechanical properties are well

known. In particular, the two systems at band are made of common
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metals.

The first system is simply the calibration mass discussed

in Section I.E. The second system consists of a uniform beam,

machined from a bar of aluminum, and supported by pins near its

ends.

2 Calibration bass

The calibration mass is cylindrical in shape,' is made of

brass and has a mass of 98.4 grams. The magnitude of the DPMI of

a pure mass is (see Table 2.1)

Z = up (6.4)

Therefore, a log-log plot of the DPSI data should form a

straight line on a ♦45 0 angle. However, this is true only for

relatively low frequencies. It very high frequencies the mass

deforms. Therefore, the DPSI curve should go through a series of

resonant and anti-resonant points.

DPSI data, taken for the calibration mass up to a frequency

of 3000 Hz, is shown in Figure 6.18. The calibration mass

vibrates as a pure mass up to a frequency of about 1000 Hz. It

then approaches its first anti-resonant point at approximately

2800 Hz.

The system is modeled as a simple one-dimensional

continuous rod with a harnonic force applied to its base. The

DPSI of such a model is

Zm - imp tangy' / W	 (6.5)

where

0	 _ 1' = rrp/w
a =mass

- fundamental frequency
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p = forcing frequency

The mathematical model was used with the SIDI, described in

Chapter Y, to determine that the fundamental frequency of the

system is 5519 Hz (i.e., the first anti-resonant point is W2 =

2760 Az). The DPHI of the model is shown as a solid line in

Figure 6.18.

The modulus of elasticity and density of brass are known

quantities and the height and diameter of the calibration mass

are easily measured. The fundamental frequency, estimated from

W = +r/L I E/Q	 (6.6)

is found to be on the order of 60,000 Hz, with a corresponding

anti-resonant point at 30,000 Hz.

Since the anti-resonant frequency determined from the DPHI

data is a whole order of magnitude lover than the expected

value, it must be a sub-anti-resonant ? point. If the frequency

range of the DPHI data could be extended beyond 3000 Hz, sub-

resonant and sore sub-anti-resonant points would be observed.

These points may be due to the deformation of the screw

connection between the impedance head and the calibration mass.

3. Aluminum Beam

The aluminum beam and its support brackets are shown with

their dimensions in Figure 6.19. The purpose of the aluminum

beam is to provide a standard to insure that the impedance

equipment is operating properly each time it is used. metal,

unlike biological materials, renains unchanged over a long

T "Sub-anti-resonant" point refers to a local disturbance whose
source is outside the system of interest; analogous to-"sub-
resonant" point, see Section IV.D.
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period of time. Therefore the true DPHI of the aluminum beam

® will remain unchanged. The DPII plot of the aluminum beam should

be generated prior to each use of impedance equipment. If any

deviation appears in this data then the equipment should be

checked for malfunctioning.

The aluninua beam was designed to have a static	 stiffness

and	 fundamental frequency in the same range as a typical monkey

ulna. Unfortunately, it is not possible to produce a uniform

beam with these properties and with a cross section large enough

to accomodate rigid support pins. Therefore, it was necessary to

make the ends of the beam larger in cross section than the aid-

portion. Only a very small effect on the DP!!I data plot due to

the enlarged ends is anticipated.

A typical set of DPlSI data from the aluminum beam was

simulated using uniform, simply-supported beam model with the

SIDI. Its DPMI plot is shown in Figure 6.20.

The modulus of elasticity E, and density e, of aluminum is

knovn s and the dimensions of the beam are given in Figure 6.19.

The bending stiffness and fundamental frequency are calculated

using

El = Evd •/64	 (6.7)

W = ( Tr2 /L2 ) EI/P11 = (Tf2 d/4L2 ) -] E%P	 (6.8)

In area-moment method of analysis and a Rayleigh method analysis

were carried out to determine the effect of the enlarged ends on

the bending stiffness and fundamental frequency, respectively.

These values, together with those determined from the DPSI data

are listed in Table 6.5.

• E = 7z10 11 dyne/tm2, P = 2.7 g/cm 3 , e.g., see Faires (1965).
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It is seen from Table 6.5 that significant differences are

0 apparent between the predicted values of the bend;::] stiffnes

and fundamental frequency and their values determined from the

DPHI data. Some, but not all, of that difference is accounted

for by including the effect of the enlarged ends of the beam.

The only other possible source of the discrepancy (assuming, of

course, the impedance equipment is fkiactioning properly) is in

the boundary -conditions. It was shown in Section IV.B, that

resistance to rotation at an otherwise simple support of a beam

tends to move the DPHI curve upward and to the right. Therefore,

there might be and excessive amount of friction in the pins

which support the beam. I light oil should be applied to the

pins to eliminate this friction.

It is seen from Figure 6.20 that the DPBI data and the DPBI

of the mathematical model are well correlated up to a frequency

of about 1000 Hz. The anti-resonant point of the mathematical

model, however, is a few hundred Hz higher than the anti-

resonant poi._ of the system.

Recall that a sub-anti-resonant point was observed near

this frequency in the DPAI data of the calibration mass, most

likely due to deformations in the screw connection at the

impedance head. It is possible that a similar sub-anti-resonant

point is occurring dus to the screw connection between the

impedance • head' and the probe. This sub-anti-resonant point may

or may not be exactly the same frequency as the previous one.

Since the sub-anti-resonant point is relatively close to the

anti-resonant point of the beam, the observed anti-resonant

point is a combination of the txo.
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CHAPTER VII

APPLICATION TO EXISTING kkTA

1. THOMPSO N'S ORIGIVAL ETA

1_ Results

Thompson measured the driving-point mechanical impedance

0	 (DPHI) of the forearm of several human subjects using the
impedance measuring equipment which he developed (see Section

I.E) . The tests were performed over a frequency range from 50 to

1000 Hz using three different preload forces. The systems

identification algorithm • (SID&) was then used to determine

parametric values for the mathematical model which best simulate

the data for eight of these subjects. The DPIII plots from one of

these subjects, Subject TT, are shown in Figures 7.1, 7.2 and

7.3. The solid lines represent the DPAI of the mathematical

noiel while the boxes represent the data points generated by

Thompson. .'^i DPHI plots of the remaining seven subjects are

• The computer program which incorporates the SID & is similar to
the one presented in Section 9.;). Ste only difference is that
the computer program used here has the capability of simulating
three sets of data simultaneousi:, ,,bus detersiniug the three
values for the spring -in-series; oDe corresponding to each
preload.
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presented in Appendix G. The corresponding parametric values for

all eight subjects are listed together with other available

information in Table 7.1.

2-- Discussion

The	 parametric values listed in Table 7.1 are good

approximations of the geometrical and material properties of tb

physical system provided the mathematical model is a good

representation of that physical system. Therefore, to

investigate the validity of these values, it is necessary to

evaluate the support conditions. All other aspe--ts of the

mathematical model were shorn in previous chapters to ^e very

good approximations of the vibrating forearm system.

Shen positioning the subject's forearm in the fixture,

Thompson carefully lined up the humerus with the support "by

eye". The misalignment (discussed in Section VI.A) may not be

perfectly eliminated but it is certainly significantly reduced.

Thus the	 supports	 are	 relatively free from rotational

resistance.

Thompson made the supports as rigid as possible with

respect to translation by forning plaster pads under both the

wrist and elbow. Be demonstrated the rigidity of the supports by

showing that the DPCI was independent of both the clamping force

at the wrist and the downward force applied through the humerus

rt the elbow.

Based on the discussion above, the supports are virtually

simply-Supported. The parametric values listed in Table 7.1 were

obtained using the SIDI and the mathematical model with simply-

supported boundary conditions. Therefore these values are very
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good approximations to the actual geometrical and material
F^
^-%	 properties of the vibrating forearm system for each subject.

Furthermore, the simulations appear to give accurate results.

The error functions associated with each plot are within two

percent and about half of them are within one percent.

The mass per Gait length of the bone p, is calculated by

solving equation (3.4)

p = (rr/L) 4 EI/cuz (7.1)

where L is the support length, EI is the bending stiffness and w

is the fundamental frequency. This value represents the total

mass per unit length of the bone. Measurements of bone mineral

content (BBC) were also taken for each subject using a Horland-

Cameron Bone Mineral Analyzer. This value represents the mineral

mass per unit length of the boLe. Values for P and BCC for each

subject are als(, listed in Table 7.1. it is reasonable to expect

these two quantities to correlate quite well since all bones

tested are bones of healthy, young adults. The correlation

coefficient r is in fact 0.81, a reasonably high value.

Strong correlations have been found to exist between

bending stiffness and BCC. (see Borders, Peterson and Orne, 1977

and Jurist and Foltz, 1977). Since the existence of this

correlation is well established, it is reasonable to expect a

similar correlation between the values of bending stiffness and

BCC liste3 in Table 7.1 provided the values for bending

stiffness are valid. The correlation coefficient r, of such a

correlation, was found to be 0.87, a value comparable to

findings of Borders, Petersen and Orne (1977) and Jurist and

Foltz (1977).

Each of the points discussed above support the validity of
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parametric values listed in Table 7.1.

B. !MONKEY DATA

1. Results

Since the development of Thompson's impedance measuring

equipment, DPMI data has been generated on a routine basis for

the forearms and legs of monkeys at Ames Research Center.

Ninety-four sets of such data fro g twenty-six different monkeys

have been made available through personal communication. These

tests were run over a frequency range from 100 to 2000 or 3000

Hz. The preload force in most cases was 600 gram-force (589 x

10 3 dyne), although some tests were ran with both a 600 and a

300 gram-force (294 x 10 3 dyne) preload.

The computer program presented in Section V.D was used to

determine parametric values and generate a DPMI plot for each of

these sets of data. A representative set of six of these DPMI

plots are presented in Figures 7.4 through 7.9. They are from

the tests ran on the leg and forearm of !Monkeys 2, 16 and 17.

The corresponling parametric values are listed with other

available information in Table 7.2.

2. Discussion

The DPMI plots of the

simulations are quite accurate.

however, indicate that the

Furthermore, the SIDA did not c

these data sets (forearms of

legs appear to indicate that the

The DPMI plots of the forearms,

simulations are not accurate.

Dnverge when applied to two of

Monkeys 2 and 16) using the six-
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parameter model' O (6P11). This trend is present throughout most

of the data.

To investigate the validity of the parametric values listed

in Table 7.2, it is necessary to perform two evaluations. First,

the cause of the difference between the leg data and the forearm

data must be determined. Second, the support conditions must be

evaluated.

Form the ratio k/K using the parametric values listed in

Table 7.2, where

K = 3EIL/a 2b 2 = the spring constant of the bone

= 48EI/L 3 for the probe at the center (tibia)

= 62SEI/12L3 for the probe at .6L (ulna)

k = spring constant of the skin

The value of k/K is also listed in Table 7.2 for each limb.

Since k/K is the ratio of the spring constants of the skin and

bone, it is a major factor in determining the magnitudes of the

DPMI data. The stiffness of the skin k, is made as high as

possible by increasing the preload force on the electromagnetic

shaker to a tolerable limit. If it were possible to increase k

to infinity, then the resulting DPMI plot would be that of the

system without the skin. If k is relatively low, such that k/K

is equal to 2 or 3, then most of the characteristics of the

underlying system will be "masked" by the presence of the skin.

Therefore; k/K must be high enough to *expose" all of the

characteristics of the rest of the system.

in view of these comments, examine the values of k/K listed

so The results obtained from applying the SIDI with the four-
parameter model (4P11) are presented in these cases. For an
explanation of . the KPM and the 6PS, see Section O.C.
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for each limb in Table 7.2. Note that in general, k/K is such

0 higher for the forearm than for the leg. In particular, note the

extremely high values for the forearm of !Monkeys 16 and 17. k

is relatively constant since the preload is the same for all

bones. Hence, it is reasonable to expect this large variation in

k/K because the bone stiffness 1C, varies significantly with the

size of the bone. Table 7.2 shows that K is almost an order of

magnitude larger for the tibiae than for the ulnae. Therefore

the data which best exhibits the characteristics of the system

Zthe bone, tissue and supports) are those of the forearms

because k/K is greater. Furthermore, the most revealing forearm

data is from donkeys 16 and 17.

Referring to Figures 7.8 and 7.9, it can be seen that there

is an additional relative ainimum in the DPSI data at about 1200

Hz which the simply-supported beam model can not account for.

This is typical of the sets of data which have a high k/K value.

Based on the above discussion regarding the masking effect of a

low k/K value, it is reasonable to suspect that this additional

relative minimum is characteristic of most of the limbs but that

it is hidden by the low k/K value in many cases, particularly

with the legs.

In Section I9.B 8 it was shown that although the boundary

conditions do not affect the shape of the DPMI curve at low

frequency, they can affect it at high frequency. k DPMI curve

with a general shape similar to that of the DPMI data in Figures

7.8 and 7.9 can be generated if the boundary conditions of the

® beam are those of case 5, i.e., a translational spring (and

damper) at each end. This is further demonstrated by the non-

dimensionalized DPHI plot shown in Figure 7.10. This figure was
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generated using the following non-dimensional parametric values:

0.1

T, = 2k, L m/EI = 10

Tz = 2k2 L3 /EI = 10

CT, = c, w/k , = 2

CTz = czw/k. = 2

k/K = 20

Furthermore, the masking effect of a low value of k/K is

accounted for in this model as demonstrated by Figure 7.11,

where its value was reduced from 20 to 2. Knowing the type of

boundary conditions which can possibly produce the kind of DP8I

data in Figures 7.8 and 7.9, speculations can be made on the

cause of such data.

At some point in the development of the impedance measuring

procedure, the plaster pads at the supports (discussed in

Section VII.I) were replaced by putty. Moct putty exhibits both

springlike and danperlike behavior. Therefore, it is very likely

that the putty is a major factor in producing the second

relative minimum in the DPKI data. Furthermore, it is difficult

to rigidly support the tibia rt the ankle. The soft tissue

surrounding the tibia may also be contributing to the springlike

and danperlike behavior of the support.

The boundary conditions of the mathematical model used to

obtain the parametric values listed in Table 7.2 are simply-

supported. Since the support conditions of the forearms and legs

for the DPffI tests discussed above are not simply-supported, the

0
parametric values are not accurate.
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CHAPTER VIII

CONCLUSION

R. SUMMARY

1. Overview

A brief summary of the research project as a whole is

given, followed by a summary of the contributions of this work.

It is important to consider the relationship between this work

and the work of other investigators involved in the research

project and to give them appropriate credit.

The impedance measuring equipment and procedure were

developed by Thompson (1973). He measured the driving-point

mechanical impedance (DPbI) in vivo of the forearm of several

healthy, young, adult, human subjects. Thompson also used s

single-degree-of-freedom oscillator (SDOFO) in series with a

spring as a mathematical model to interpret his data.

Orne (1974) proposed a visco-elastic beam model to better

simulate the DP5I data. Orne and Handke (1975) farther improved

the mathematical model to account for some of the finer details

of the D°H1 Oata. They also proposed a series of experiments to

be run nn a monkey forearm to verify the mathematical model.

Petersen	 (1977) performed the experiments which Orne
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proposed." One of the ulnae from these experiments was also

tested statically in three-point bending on a Materials Testing

System (MTS) machine.

A series of experiments involving the measurement of

breaking strength of excised canine long bones was performed;

see Borders, Tetersen and Orne (1977). Bending tests were

conducted on an MTS machine and correlations were established

between the various parameters measured in these tests.

Petersen (1977) made some modifications to Thompson's test

procedure and applied it in vivo to both the forearm and leg of

monkeys. DPMI data has since been collected for monkey forearms

and legs on a routine basis by Howard (personal communication)

at Ames Research Center.

Concurrently, the mathematical model was further developed.

An extensive parametric study was made using the mathematical

model. A systems identification algorithm (SIDS►! was developed

and applied to the data obtained during the experiments and

tests mentioned above.

2. Parametric Study

parametric study has been carried out (Chapter Iv) to

determine the effect of each parameter of the mathematical model

on its DPHI response. Two accomplishments were attained as a

result of the study. First, an increased understanding of the

effects of the parameters was gained. Second, many qualitative

relationships between the parameters and the characteristics of

li These experiments were rerun with a wider frequency range on
both the forearm and leg of a monkey. However, the impedance
measuring equipment was not functioning properly and the DPMI
data could not be interpreted.

x
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the DPbI curve were derived. k brief description of the

mathematical model followed by a sumzary of some of the major

findings is given here.

The ulna of the vibrating forearm system is represented by

a uniform, linear, visco-elastic, Euler-Bernoulli beam. The skin

and tissue compressed between the probe :nd bone is represented

by a spring in series with the beam. The remaining skin and

tissue surrounding the bone is represented by a visco-elastic

foundation with mass.

1 linear beam model, regardless of its boundary conditions,

generates a DPM1 curve which is identical in shape to that of a

SDOPO up to a frequency of at least two times, and often as such

as ten times the fundamental frequency.. This is demonstrated by

the figures presented in Chapter Ia for several different types

'of non-classical boundary conditions. The	 only	 parameter

affecting the shape of the curve is the damping ratio.

Furthermore, the position of the curve on the plot is entirely

determined by the static stiffness and fundamental frequency of

the beam.

None of the boundary conditions discussed in Chapter I9

produce a rigid body mode of vibration, i.e., produce a zero

fundamental frequency. In fact there exists only two cases of

boundary conditions which will produce a rigid body mode: free-

free and pinned-free. The DPHI curve in these two cases is

identical, up to three or four times the first antiresonant

frequency, to a SDOPO with the driving force applied to its

base.

A few approximate relationships between the parameters of

the beam and the characteristics of its DPHI curve have been
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derived. They are useful for obtaining a first approximation for

the parameters directly from a set of DPbI test data.

A transfer matrix method of analysis was developed to study

the effect of taper (appendix B) . This method allows any

parameter which is varying along the length of the beam to be

approximated by a series of step functions constant within each

element of the bean. The transfer matrix is generated from the

exact solution of the beam within each element. (Mote: the

equations which make up the matrix could also be rearranged to

form a stiffness matrix, thus producing a finite element

representation of the beam.)

The conclusion drawn from applying the transfer matrix

method to a calculation of the DPEI is that the taper does not

affect the DrmI in the frequency range of the DPMI tests. D

uniform beam and a tapered beam with the same static stiffness

each produce a DPIII curve which is identical up to frequencies

of at least an order of magnitude above the fundamental

frequency.

A visco-elastic foundation with mass has two effects on the

DPMI curve of a beam. First, it produces a subresonant

disturbance in the otherwise smooth curve. This disturbance is

present in many DPMI data sets. Second, the foundation produces

a damping effect, similar to the damping in the beam. Hence, the

minimum point of the DPHI curve is affected by the parameters of

the foundation. This effect could not be quantified in close

form due to the complexity of the DPOI equations. However,

approximate relationships were derived which are valid for some

range of parametric values.

A spring in series with a bean has its major effect in the
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high frequency range. The total DPMI of two systems in seriestis

dominate3 by whicLever system has a lower DPSI. Thus, the spring

dominates the total DPAI in the high frequency range where its

DPHI is low. The high frequency data from a DPAI test has been

used in the past to approximate the stiffness of the spring.

However, data is not available in a high enough frequency range

to completely eliminate the effect of the beak. Hence, this

approach led tc significant errors in estimating the spring

stiffness, which in turn led to errors in estimating the

stiffness of the beam. In alternate approach has been developed

which is such more accurate. The approach is based on the

location of the maximum point of the DPNI curve which occurs due

to the spring. This eliminates the need for the high frequency

data, otherwise required to make the estimate.

3. The Systems Identification Algorithm

A SIDA has been developed to determine the parametric

values of the mathematical model which best simulate the data

obtained from a DPHI test (Chapter V) . The SIDA is based on

minimizing the error function; a function similar in form to

that used in a classical least-squares method.

Due to the complexity of the DPRI equations of the

mathematical model, the error function is very nonlinear with

respect to its parameters. Consequently, a system of equations

obtained by setting the derivative with respect to each

parameter equal to zero, is virtually impossible to solve.

Rather than solving for the parametric values directly, an

iterative procedure was developed which involves the calculation

of a change in each parametric value which will bring that
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parameter closer to its correct value.

The expression for the DPNI of the mathematical model was

replaced by the first two terms of its Taylor series expansion

about the point associated with the current value of each

parameter. Then differentiating the error function y ith respect

to changes in the parametric values leads to a system of

equations which are. linear in these changes. To start the

iteration procedure, an initial guess for each parametric value

is obtained using the relationships derived in the parametric

study.

4. Evaluation of Existing Experiments and Tests

Data from several groups of DPhI tests and experiments have

been made available through personal communication with Imes

Research Center. Among them are (1) in vitro monkey experiments,

(2) nonbiological tests, (3) Thompson's original in vivo tests

and (C) more recent in vivo monkey tests.

The in vitro monkey experiments, discussed in Section VI.I,

involve the measurement of DPHI of a monkey forearm in several

stages as the ulna is being excised. The mathematical model was

shovn to be a good representation of the physical system by

using it in its appropriate form to simulate the whole set of

experiments with a consistent set of parametric values. Bending

tests were performed on one of the ulnae which were excised

during the experiments (Section VI.B). These tests verify the

value Obtained for the bending stiffness of that ulna. The

r. experi&eats, however, revealed that a problem exists in the

consistency of the support conditions of the specimen. This

problem will be snmmarized in the next section.
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DPHI tests were run on two nonbiological systems: a "rigid"

mass and an aluminum beau. The data from these tests were

studied, making use of some simple mathematical models (Section

VI.C). The re-sults indicate that the impedance measuring system

is, in fact, measuring the DPMI properly over most of the

frequency range.

Thompson, the developer of the impedance measuring

equipment, measured the DPHI in vivo of the forearm of several

human subjects. The mathematical model was used with the SIDA to

determine the parametric, values (Section VII. A) . The results

ind-cate that both the impedance measuring equipment and the

analysis procedure are working well. Values were obtained for

bending stiffness of the ulna of each subject.

The impedance measuring procedure has since been modified

and applie3 to forearms and legs of monkeys in vivo (Section

VII.B). These tests revealed a further problem with the support

conditions of the specimen and is also summarized in the next

section.

B. R ECOM M PN DATIONS

1. Problems Pevealed by Experiments

In simulating the in vitro experiments of Section VI.A,

only a few parametric values were determined from each set of

data. In particular, the bone parameters and the support

parameters were determined from two different DPeI data plots.

However, when simulating an in vivo test, values for the whole

set of parameters mast be determined simultaueoasly from a
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single	 set	 of	 data.	 If	 this	 set	 of	 parameters	 contains

stiffnesses of both the bone and supports, then 	 the	 number	 of

parameters	 will	 be	 too	 great.	 It	 is	 impractical	 to use a

mathematical model which has too many stiffness parameters since

it is impossible to identify each parameter individually. On the

other hand, the boundary conditions of	 the	 mathematical	 model

must	 be	 a good representation of the support conditions of the

physical system. The only way to solve this dilemma is 	 to	 have

some control over the support conditions in the in vivo tests.

Ideally, the support conditions in the in vivo tests should

be	 made	 simply-supported.	 To	 do this, all sources of lateral
s

translation and resistance to rotation at the supports	 mast	 be

eliminated.	 k	 systematic	 procedure	 should be developed which

consistently produces support	 conditions	 which	 are	 virtually

•3

simply-supported.

In	 practice, it way not be possible to consistently attain

the simply-supported support condition.	 However, even if this is

the case, a systematic procedure is needed for	 positioning	 the
I

specimen	 in	 the test fixture. Two requirements must be imposed

on this procedure. First, the 	 procedure	 must	 produce	 support

conditions	 which are as nearly simple-supported as possible (or

pra:,ti zal) . The purpose in striving for such a support condition

3

is to maximize the strength of the dependence of the DP9I of the

vibrating -forearm or leg system 	 on	 the	 bone	 stiffness,	 thus

maximizing	 the	 sensitivity	 of the DP!!I to changes in the bone

stiffness.	 Secondly,	 the	 procedure	 must	 produce	 support

© conditions	 which	 are repeatable. If the support conditions are

not to be known, then they must at least be consistent from	 one

test	 to	 the	 next.	 In	 this case, the value of bone stiffness
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inferred through the mathematical model will be an index of the

true bone stiffness rather than an absolute measure.

2,. rurther Suggested Experiments

Based on the parametric studies of Section IQ.B, a

significant amount of resistance to rotation can be created if

the downward force applied througL the humerus is not directly

in line with the support as shown in Figure 6.6. It is believed,

therefore, that this is a major cause of the rotational

resistance that was found to be present at one of the supports

in the in vitro monkey forearm experiments. This speculation can

be tested by running additional in vitro monkey 	 forearm

experiments. In these experiments, the support is to be

positioned in several different locations in the vicinity of the

elbow, thus varying the degree of misalignment. a value can be

obtained for the bending stiffness of the ulna using the simply-

supported beam model and the SID1 in each case. Then excising

the ulna, the true value of the bending stiffness can be

determined. A comparison of this value with the former values

will reveal whether or not the misalignment is the only cause of

the rotational resistance at the support, and which positioning

will minimize or eliminate it. Several sets of such experiments

will aid in establishing a standard, systematic method of

positioning for all future in vivo monkey forearm tests.

The in vitro experiments suggested in this section,-as well

as those discussed in Section 91.1 should also be performed on

monkey tibiae, human cadaver ulaae and any other type of

specimen to be routinely tested in vivo. llthough the modeling

concepts applied to the forearm of a monkey are also applicable
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to monkey legs and human forearms, the geometry of the supports

in each case is quite different. 1 standard, systematic method

of positioning is also needed in these cases.

3. Suggested !Modifications to the Est Procedure

The impedance measuring procedure currently being used at

Imes Research Center has one major flaw: the support conditions

of the specimen are not being controlled. Since the DPMI is just

as sensitive to the support conditions as it is to the bending

stiffness of the bone, the support conditions must be known in

order to determine the bending stiffness. If the boundary

conditions of the mathematical model are not a good

representation of the support conditions of the physical system,

then the value obtained for the bending stiffness will be in

Q error, possibly as much as an order of magnitude.

Two modifications to the impedance measuring procedure are

recommende3. First, the positioning procedure to be established

by the experiments suggested above should be adopted as part of

the procedure for each DPMI test. This will reduce, if not

completely eliminate the resisitance to rotation at the

supports. Second, Thompson's procedure, involving the use of

plaster pads under the wrist and elbow should be readopted. This

will eliminate the translation allowed by the patty at the

supports -(Section	 VII.B).	 The result of adopting these

modifications is that the support	 conditions will be

sufficiently controlled to obtain repeatable accurate results.

one further recommendation which say prevent the production

of meaningless DPNI data is suggested. A standard, such as the

aluminum beau (Section VI.B), should be used to insure that the
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impedance measuring equipment is operating properly over the

frequency range of the test. Each time DPffI tests are conducted,

the DPBI of the standard should be measured and the data briefly

examined. For example; using the aluminum beam shown in Figure

6.19, with the pins lubricated with a light oil, the general

shape of the DPBI data should be as shown in Figure 6.20. The

minimum point should occur at approximately 450 Bz and the

maximum point at approximately 2800 Hz. The static stiffness

should be 5.35 x 10 7 dyne/cm which corresponds to a DPBI of 8.5

x 10 4 dyne s/cm at 100 Hz. If these specifi-:ations are not set

to within a few percent, then the impedance measuring equipment

should be further checked for malfunctioning.

q. Concluding Remarks

The impedance measuring procedure developed by Thompson

(Section I.E), with recoaaeaded modifications discussed above,

can be used to generate an accurate, repeatable set of DPMI data

for a forearm or leg. A systematic, aser oriented analysis

procedure has been developed and programmed on a digital

computer. The computer program, listed in Appendix F, employs

the mathematical model, developed in Chapters III and IT, and

the SIDA, developed in Chapter T. The mathematical model

consists of a uniform, linear, visco-elastic, simply-supported

Euler-Bernoulli bean to represent the bone; a visco-elastic

foundation with mass to represent the tissue surrounding the

bone; and a spring between the bean and driving force to

represent the skin between the bone and probe. The SID,

determines values for the mathematical model which best simulate

the DPMI data using an iteration scheme to minimize an error
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function. The error function is similar to that which is used in

a classical least-squares curve fit. Due to the resemblance

between the mathematical model and the physical system, the

parametric values which produce a good simulation of the DPBI

will infer the material and geometrical properties of the

physical system.

One of these properties, the bending stiffness of the bone,

was shown to correlate quite well with its breaking strength, at

leas". for normal bones (Borders, Petersen and orne, 1977; Jurist

and Foltz, 1977). Breaking strength is a good measure of bone

integrity and therefore may be a good indicator for many bone

disorders such as osteoporosis. However, more correlation

studies are needed to determine the effects of various bone

disorders on the stiffness and strength of bones.

Bone mineral content (BnC) is currently being used in

ongoing experiments to monitor changes in the bones of monkeys

daring prolonged hypodynamic restraint (Young and Tremor, 1978).

Impedance testing is the only feasible technique currently

available as a possible countermeasure to BBC. The impedance

measuring and analysis procedures presented here can be used in

conjunction with measurements of BBC to better define the

condition of the bone being examined.

Young and Tremor (1978) report an average of 3.5 percent

loss in 'femoral BBC in ten restrained monkeys over the

relatively short time period of one month. Vhedon et al. (1976)

reports changes in BBC of 7.9 percent in the os calcis of

astronauts after 84 days in a weightless enviroment, in spite of

a rigorous exercise program. These changes are significant

although they occurred during a relatively short period of time.
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Auch larger changes are expected to occur over longer periods of

weightlessness, e.g., during a 1.5 to 3 year trip to !tars, or in

a severe case of bone disease such as osteoporosis.

Although the percent changes in bending stiffness which

occur with various bone disorders have not been measured, they

are expected to be at least as great as those found in BAC.

Bending stiffness is proportional to the fourth order of the

cross sectional dimensions while BAC is proportional only to the

second order, i.e.,

EI = E c, d 4 	 BAC = BAA A = BAD czd2	(8. 1)

where BAD is the bone mineral density,

I is the area of the cross section,

d is a cross sectional dimension,

and	 c,, c 2 are constants of proportionality.

Therefore, the bending stiffness is more sensitive than the BAC

is to changes in geometry. If percent changes in modulus of

elasticity are of the same order of magnitude as percent changes

in BAD, then banding stiffness will actually be a more sensitive

indicator than BAC. Bence, the expected percent changes in

bending stiffness are greater than those cited above for BAC and

greater yet for more severe cases. with the recommendations

discussed above taken into account, the impedance measuring

procedure is accurate and repeatable enough to detect and

measure these cbanges.

R technician in the clinical setting, can carry out the

= impedance testing procedure and ran the computer program to

determine the bending stiffness of a bone and interpret the

result in terms of a particular bone disorder, all with a

minimum of training. The test takes only a few minutes and is
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entirely noninvasive. Two developments are needed to ascertain

the feasibility of this technique. They are: (1) to develop a

systematic positioning procedure, and (2) to develop the

correlations between BBC, bending stiffness and various bone

disorders. Both of these are quite achievable.
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CHAPTER IZ

APPENDIX

A. IMPEDANCE EQUATIONSATIONS

The driving -point mechanical impedance (DPISI) of a single-

degree-of-freedom oscillator is

Z* = c + i (mp - R/p)

The DPSI of a beam is of the form

Z* = 2E*IA 3 /[ iPf (AL ) I

where

X 4 = µ*pZ/E*I

and f(AL) is a function which depends on 	 the	 boundary

conditions. For each set of boundary conditions listed in Table

3. 1, f (AL) is as follows:

1. Simply-supported

f (AL) = sinAa sinAb/sinAL - sinhAa sinblb/sinhAL

2. Rotational spring on one end

f (,1L) _ [ (sinla + a) (sinAb sinhAL + ^)

(sinhAa • a) (sinhAb sinAL +

(sin^L sinhAL + Y)

where	 k, (cosh*^a - coda) /2E*I

--	 = k, (sinAb coshAL - sinbAb cos AL)/2E*IA

Y = k, (sin),L coshAL - sinhAL cos AL)/2E*Ia

i
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3. Rotational spring on each end

	f (AL) _ [ (sinAa + a) (sinAb	 (sinhAL + Y + s=)

- (sinhAa + at) (sinhAb +	 (sinAL - Y - b,)

- (sinAb + ^) (sinhla + a) (Y + S')

- (sinAa + a) (sinh),b + 	 (Y +

[ (sin^L - Y - s,) (sinhAL + Y + b=) + (Y + 63 ) (Y + b+) ]

where	 a = k, (coshAa - cos),a) /2E*IA

= kZ(coshAb - coslb) /2E*IA

Y = k, kZ (sinhA L + sinAL)/(2E*IA) 2

d, = (k, + kd cosAL/2E*IA

82 = (k , + kz) cosh'AL/2E*I A

b3 = (k, cosAL • k L coshAL) /2E*I^

d = (k1 cosAL • k, cosh^L) /2E*IN

Aft	
a. Translational spring on one end

f (AL) = sinAa sinAb/sinAL - sinhAa sinhAb/sinhAL - 02 /6

where	 = sinAb/sinAL + sinbAb/sinhAL

S = coshAL/sinhAL - cos AL/sinAL - 2k,/E*IA3

5. Translational spring on each end

f(AL) - sinAa sinAb/sinAL - sinhAa sinhAb/sinhAL

- (^ 2 Si + a2 d, + 2 a p V) / ( 6, S= - Y2)

where	 oc = sinAa/sinAL + sinhAa/sinhAL

9 - sinAb/sinAL + sinhlb/sink AL
Y	 1/sinhAL	 1/sinAL

^, a cosh/sinhAL - cos AL/sinAL - 2k, /E*IA2

b2 = coshAL/sinhAf. 	 cosAL/sinaL - 2kz/E*Ia3

I
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6. Translational spring on an extended beam

f(aL) = sinXa sinAb/siOL - sinhAa sinhAb/sinhAL

- ^ 2/[ (Y + kE)/( s - k) - S]

where	 = sinhAb/sinh*XL - sin^b/sinlL

Y = 2(cosAe coshle + 1)/sinAe sinble

,k - 2k3/E*V^3

c = cosh^e/sinhle - cosAe/sinAe

S - coshA/sinh:XL - cosu/sin XL

u
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The transfer equation across the driving force is

(Y(k+ )) = (Y(k )) ♦ ( F)

where	 0
(F) = 0

0
F

and the (♦) and (-) superscripts refer to the state variables

just to the right and left of the driving force applied at the

kth node. Let

[ a ] = [ T „] [Tk.,]--- [ TZ] I T , l

I V ] = [ Tr,] I T ..,] ... I T ,,.,] [Tk.,]

IS] = I V ] [U]

then the following two matrix equations are obtained by

successive substitutions from one transfer matrix equation to

the next

(Y(k') _ [ II ] (Yo).

(Y„ ) = [ S ] (Yo) ♦ [ Y I (F)

These two matrix equations represent eight algebraic equations

of twelve state variables. Your of the state variables must be

known from the boundary conditions leaving eight unknown state

variables.

Any set of classical or non-classical boundary conditions

can be applied to these eight equations. The siiply-supported

boundary condition states that

After applying these, the first, fifth and seventh equations are

7r = U 11 00 • D,sVo

0 = SILO, * s„ro • '„ F

0 = sJUeo + sawn ♦ V14Y

The solution for YK, after eliminating 00 and To from these
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three equations is

®	 pk	 F I o ,: ( nj4 S i4 - o14 S3.) ♦ U w ( V ,4 S tz — V 	 I/(SIZS3- - Si4S„)

2

Finally, the DPHI is

Z* = F/ipyX

or

Z* = (-i/P) ( S ,1 S34 - S 14 S3L /C U 1L( v54S14 — 0,4 Ss4) ♦ U I4( V" SJz — VAS,z)

Since the exact solution for each element vas used, the

accuracy of the total solution is as good as the accuracy of the

step function approximation of the taper.

0

r
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C.	 DEPENDENCE Or THE	 FOUNDATION	 PARAMETERS ON THE	 MINIMUM

POINT OP AN IMPEDANCE PLOT

The minimum driving-point mechanical impedance	 (DPHI) is to

be determined for various combinations of the values of the mass

per unit length pt , and the damping ratio ^;* of the foundation.

Several	 DPnI	 plots,	 similar	 to those of Figures 4.13 through

4.16 were generated.

DPHI plots are generated by evaluating the 	 DPHI	 equations

at	 a	 finite	 number	 of points and joining those points with a

sequence of straight line segments. 1 	 large	 enough	 number	 of

points are taken to give the DPHI plots the appearance of smooth

O
curves. The	 values	 of	 the DPHI and the forcing frequency for

each point are listed in the computer printout	 associated	 with

each plot. The true minimum point may not occur precisely at one

of	 these	 points. In such a case, the true minimum point occurs

at some frequency between the frequencies 	 of	 the	 lowest	 DPHI

listed	 and	 an	 adjacent	 point. The true minimum DPHI is lower

than	 either	 of	 these	 points.	 See	 Figure	 C.I.	 A	 good

approximation	 to	 the	 true	 minimum	 DPHI is obtained from the

values of the DPHI and forcing frequency 	 of	 the	 lowest	 point

listed and its two adjacent points as follows:
a

Let	 ( za , yo )	 describe	 the coordinates of the true minimum

point,	 i.e.,

zo a Paw/W	To s Z„'.,w/K

Similarly, let ( zz. ,y= ) , (z, , y, ) and ( z 3 ,y 9 ) describe	 the

coordinates of the lowest listed point and its two adjacent

points, respectively. See Figure C.1. Approximate the DPHI
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equation by a quadratic equation in the region around these

points

y- 1• BZ ♦ CZ=

1, B and C are constants which can easily be found by solving

YI • = A ♦ Bx, • CZ?

yt = A + Bx t t Cif

y, = A + Bx 3 + CZ1

The minimum point frequency is found by seting the derivative of

the DPBI equations equal to zero

y'=B•2rss0

Zo = -B/2C

The minimum DPHI is obtained by replacing z with the expression

for xo

yo = 1 - B2/4C

The minimum DPBI was determined in this may for several

DPMI plots, each generated with a different combination of

values of ft and 'rj . The results are tabulated in Table C.1.

For the case where P, = 0 and ^; = 0 (i.e., no foundation) ,

the minimum DPBI is given by

Z M^^w/ 1	2

(see Sections IV.1 and IV.B). Therefore a reasonable form to

assume for the minimum DPAI is

Z" W W/1 = 2j • f (p f ^ ^^ )
where f (p j rjj ) is a function of p j and r; whose value is zero at

pj* 11 0 and h = 0. Values of this function are found from values

of the minimum DPBI by subtracting 2^. The results are tabulated

®	 in Table C.2.

Note that the values of f(p 4 , 1,) see n to increase linearly

with p l /µ. Assume that the dependence of p; on f (pj , ^4 ) is in
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fact %-"car, i.e., assume

Z M,,,w/K - 2 r • pt/ p 9 (fj)
where 9(r;)	 is a function of	 r̀  whose value is zero	 at	 ft -o.

Values	 of	 this	 function	 are found from values of f (pr, ^'^)	 by

dividing by their respective values of	 pj /p. The	 results	 are

tabulated in Table C.3.

To	 determine	 the	 form	 of the function g ( ,fj ) , its values

were plotted on a log-log grid. All points 	 were	 found	 to	 lie

very close to a straight line. Therefore g(-r,) is of the form of

a power of rj , i.e.,

Z Mww/K - 2f + p j /p A

where	 n	 is one-third for a fixed foundation and one-half for a

free foundation. To	 find	 the	 valves	 of	 1, a	 least-squares

technique	 was	 employed. The best values for A were found to be

one-fourth for a fixed foundation and three-fourths for	 a	 free

foundation.

The	 relationships	 which	 approximate the dependence of pr

and Yj on the minimum DPHI are

ZN,„w/K - 2; ♦ 1/4 p j /p 	 rAA

and

Zmww/K = 2T • 3/4 p{ /p ;j%*

for a fixed and free foundation, respectively. These

relationships can be used to determine approximate values for

the tissue parameters of a vibrating forearm  or leg system

directly from its DPMI data plot. Such an approximation is

necessary to establish the initial guess for the systems

identification algorithm discussed in Section V.C.
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D. THE bINIMUM AND MAXIMUM POINTS OF AN IMPEDANCE PLOT

Expressions for the minimum and maximum points of the

driving-point mechanical impedance ( DPIII) plot are to be found.

The lengthy analysis will be outlined briefly here.

The DPHI of a single-degree-of-freedom oscillator in series

with a spring (see Figure 4.21) with 	 # 0 is

Z* _ [ 1 /(mi P + c ♦ K/iP) + 1/(k/iP) ]-i

After replacing a by K102 , c by 2Krlo and performifig severai

steps of algebra, this equation becomes

2V S ( P 2 -1) -2tS f (Y2-1-S)
-i[4r 2 SP+S (P 2 -1) (P 2 - 1 - S ) ]

Z* = K/w
(Q2-1-S) z+i:52P

where S = k/K and = p/w. The magnitude of the DPSI is

[25S(r,2-1)-2;S#(r 2 -1
Q
-S) ]2

+[ 4r 2 5^ +S ( g 2 - 1) (Y 2-1-S) ]2

^(^2 -1-S) 2 +43'2p

To find the minimum and maximum points, take the derivative

of the magnitude of the DPSI and set it equal to zero.

(p( P2 -1 -S) 2+4,'2p}
x{[ 4rS^- 2rS (f' 2-1-S)-4_rS¢2]

+[ 4f2 S+2Sg(2^ 2- 2- S) ]
x[ 4f 2 S^+S  (^2 - 1) ( g2 - 1 - S ) ]}
- { (5 2 -1-S) 2 +49 2 (N2-1_S) +4-0'2)
T {[ 2 , S (R 2 -1) -2''Sa(r2-1-S) ]2
+[ 4S k Sg+S (^ 2 - 1) (js 2- 1 -S) ]2)

dZ/dp K/ _	 = 0
(fig(62-14-22}

f. 2, s ( p	 1) -2 I. . - 2-1-S)]2
+[ 4 . °2S 9 +5 Q2- 1	 2- 1 -Sj ]2

The denominator is positive and therefore non-zero for all

positive values of and S. Therefore the numerator must be

set equal to zero. The expression in the numerator, when
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multiplied out, is a sixth order polynomial in 5 2 . As an

alternative to the difficult task of solving it, Taylor series

expansions of 02 with respect to Ym can be found which satisfy

the sixth order polynomial equation.

Assume that the solutions for 0 2 exist and are of the form

`MAI 
= $ + 1 +	 a,;2n

2 = 1 + 2 bnr 2n
MIM

A-I

where ^ 	 p.,/ o and
	

pm, /w. These equations will produce

the correct solutions for r = 0 according to equations (4.23)

and (4.27). Substitute the assumed form of the solutions into

the numerator of the equation. The coefficients of the constant

term and the '^2 and 1 6 terms are each set equal to zero. In each

case, the constant term was found to be identically equal to

zero, indicating that equations.(4.23) and (4.27) are actually

the correct first order approximations to the solutions. The

equations obtained from the '52 and ^+ terms are solved to obtain

the first two unknown coefficients of each of the Taylor series.

Hence, the first three terms of each of the Taylor series are

found to be

02 = S + 1 + 2/S ( 2 +S ) / (1+S) -g2

- 2 /S 3 (2+S)/(1+S3) (4+16S+135 2 +4S 3 ) -g• + ...

Pwy = 1 - 4/S f2 + g/S3 (2+3S) f+ - ...
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E. DERIVATIVES OF THE IMPEDANCE

The driving-point mechanical impedance (DPAI) equation to

be differentiated is

Z* = [ipf (9^L) /[ 2EI ( 1 + 2i'^P/w) ,X a ] + iP/k ) -1

where

f (AL) = sinla sinAb/sin^U - siWka sinh;lb/sinhAL

- [Tr4/L4 p2/W2 + p2 µ; /EI g(W ) ]I' (1 + 2iSP/,,,l -i/•

Y' = prr/w^ / 4 1 + 2i rf P/w4.

and the function g (y) , depends on the type of foundation

included in the model. Three cases are considered. Case l: no

foundation. The function g (W) , is zero and A re(_uces to

1 = it/L (P/w) V2 ( 1 + 2i3^P/c.') -^►

Case B: fixed foundation

g (w) = -cot Y / Y

Case C: free foundation

g (w) = tan Y12 / V'/2

Define X and Y as the real and imaginary parts of the

inverse of the complex DPGI, respectively, i.e.,

Z* = (X + iY) -1

The magnitude of the DPHI is

Z = ( 12 + Y=) -Yt

The derivative of the magnitude of the DPMI with respect to one

E	 of the model parameters is

dZ/dP - -(1 2 + Y 2 )-*2 (I dI/dP + Z dT/dP)

--- or dZ/dP = - Z3 (I dI/dP + Y dY/dP)

where P represents any one of the model parameters. The value of
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Z, Y and their derivatives are calculated froa13

`^ J	 I = Real ( 1/Z*)	 dX/dP = Real[ d (1/Z*) /dP]

T = Inag(1/Z*)	 dY/dP = Inag[d(1/Z*)/dP]

Since the DPHI is a function of EI, w, Y, k and 1; and A is

a function of EI, w, re p $ , w4. and 1;,; the derivatives are of

the fora

d (1/Z *j /dEI = a (1/Z*)/aA dA/dEI + a(l/Z*) /aEI

d (1/Z*) /3w = a (1/Z*) /aA dA/dw + a (1/Z*) /aw

d ( 1 /Z *) /d^ = a (1/Z*)/aA dVd_r + a ( 1 /Z *) /ar

d (1/Z*) /dpf = a ( 1 /Z*)/aa dA/d pi

d (1/Z*) /duw;	 u ; 1 /Z *) /aA dA/dwf

d (i /Z *) /dr4 = a (1 /Z *) /aa d l/d'Cf

d(1/Z*)/dk = a(!/Z*)/ak

The partial derivatives are

a (1/Z*) /aEI = - ipf (1L) [ 2 (EI) _ (1 + 2ijp/w) ^, 3 ]-1

a (1/Z*) /Dw = -p 2 f (;kL) [w 7 EI (1 + 2irp/w) 2 ,X3 ]-1

a (1/Z*) /Z)' = p2 f (-IL) [ ,AEI (1 + 2iyp/w) 2A3 ]-1

a (1/Z*) /ak - - ip/k2

a (1/Z*) /aA = -3ipf ( AL) [ 2EI ( 1 + 2irp/w)^ 4 ]-1

+ ip df/del [2EI ( 1 + 2ixp/w)1 3 ]-1

vhere

13 Since I and T are real continuous functions, and i = f-1^ is a
constant, the distributive property of the derivative holds,
i.e.,

d (X + iT) /dP dX/dP + i dY/dP

Bence Real[ d ( I + iY) /dP ] - dI/dP

and	 Iaag[d (I + iT) /dP] = dY/dP
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Df/dA _ [a cosAa sinAb + b sinAa cosAb

- L sin^ka sinAb cosAL/sinAL] / sinAL

[a coshAa sinh^b + b sinhAa coshAb

- L sinhAa sinhAb cosh AL /sinhAL] / sinhAL

Since A is a function of EI, w, ^;, p f and Y; and `N is a

function of w; and Y,; the derivatives of A are of the form

dA/dEI = aA/aEI	 dA/dµ; = 8A18pj

d A /dw = aA/aw	 dA/dw{ = aA/V d4'/dwf

dA/d; = aA /a*;	 dA/d ;f = aA/a Y' d W/d-'f

The partial derivatives of are

Case A

a A/an - o

as /aw = - rr/2wL (p/w) 0 (1 + 2ifp/w) -1h

+ iTijp/2LuR ( p/w) L"^' ( 1 + 21fp/,a1 -SA

01/0;, = -trip/2wL ( p/w)" ( 1 + 2i3p/w)-52

Cases 8 and C

OA /OEI = - p 2pf / (EI) = g ( 'P ) (1 + 2i^p1w)-1A

[rr 4 /L4 p2/W2 + p2 p f/EI 9M 1'- 34

0A/6-, _ -1/2u-) r 4/L4 p2lW2 ( 1 + 2i 3p/w) - %^

[Tr+ /L• p2/w2 ♦ P2pf /EI g (Y) I"IV4

+ i5p/2w= (1 + 21rp/w) -*A

[,r • /L • p2 lW2 + p 2 , l f /EI g(IF) ] L4

as/a5 _ -ip/2w (1 + 2i^p/w) -ffA

[1r 4/L4 p2 /LLR.+ p2 pf /EI g(w) ]L4

aA/ap f 	p 2/4EI 9 (y) (1 + 2i^p /w)-3/+

[rr
+ /L• P Z/w= + p2 pE /EI g(y) r IA

aA/aY = pz p; /4EI dg/dY (1 + 21rp/w) - O

[Tr 4/L4 p2/µ,t + p=p* /EI 9 (^') ]-^►

vhere
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(case B)

(case C)

•	 dq/dP

dq/dW

The di

d 4w/d w4.

dw /d'gc

_ [t' CSCZ W + cots']/W2

1/2 [Y/2 sec 2 W/2 - tangy/2]/(W/2)2

^rivatives of W are

-1 /wf pTr/w^ (1 ♦ 2 i *;4.p/w4 -0

-i fj p/w.^2 pTr/w; ( 1 + 2i ;p p/w;) -42

-i p/wj- pTrlwp t l+ 2i;gy p/w'.) - W*

e

6.---



F. THE COMPUTER PROGRAM

I listing of the Fortran computer program vhich determines

the parametric values of the mathematical model used to simulate

a set of driving-point mechanical impedance data from a forearm

or leg vibration test is given. Ill of the function subroutines

required by the program are not available in double precision.

Therefore, five function subroutines have been vritten to

accommodate the main program. They are also listed. The

subroutine DGELG from the IBM Scientific Subroutine Package

(*SSP) is used to solve the system of linear algebraic equations

vithin each iteration of the systems identification algorithm. I

listing of DGELG can be found in IBM (1968) .
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C TEiZS^POGBAM._EEFLOYS ^M_1T.EPATZYE^ROCEDORE_TQS_ONOE^_OE TH£
C CORRECT VALUES OF TN.E PARAMETERS IN A YILRATING LONG BONE
C EXPERIMENT,	 BY MINIMIZING THE PERCENTAGE ERROR IN THE MAGNITUDE
C OF THL IMPEDANCE.
C
C THE INPUT DATA !LUST BE ARRANGED AS FOLLOHS:
C C AR D 1	 T ITLE	 15A4
C CARD 2	 LENGTH AND LENGTH-TO-PROBE-
C LOCATION RATIO	 FREE
C CI R D 3	 BO UN DA &Y CONDITION OF TISSUE	 I2
C CARD 4	 NUMBER OF DATA CARDS TO FOLLOW 	 I2
C THE REST OF THE CARDS CONTAIN THE FREQUENCY AND THE MAGNITUDE AND
C PHASE ANGLE OF THE IMPEDANCE, ONE POINT PER CARD, IN FREE FORMAT.
C
C THE SIX PARAMETERS IN THIS MODEL ARE:
C BEI	 ST IF FN ESS O F THE BONE
C -FREQUENCYBYN	 A1ATU-BAL	 OF THE BONE	

r

C TMU	 MASS P "-'R UNIT LENGTH OF THE TISSUE
C T bI N 	NATUR AL FREQ UENCY O F TH E TISSUE
C TZETA	 EAtSFING RATIO OF THE TISSUE
C 9	 STIFFNESS OF THE SKIN
C B Z ET A,	 T. : -'-- DAMPING RATIO OF THE BONE, IS HELD AT A CONSTANT
C VALUE.
C

C THE F OUNDAT ION IN TFE MOD EL, WHIC H R_°PR ES E N T S TH E_ TI S S UE F C AN
C HAVE EITHER A	 FIXED OE FEEE BOUNDARY DEPE.NDI6G ON ThE VALUE ON
C
C

CARD 3.	 -1 CORRESPONDS TO A FIXED BOUbDARY.	 1 CURBESPONDS TO A
FREE BOU NDA 8Y.

C

C THIS PROGRAM CONTAINS ROUTINES 9HICH • LOOK I 	AT THE DATA AND
C C HOOSE INITIAL SETS OF PARA !". ETER VALUES.
C

C THE ITERATIONS ATE CARRIED OUT IN THREE PHASES:
C 1.	 AFOUR PARAMETER MODEL IS EMPLOYED TO OBT AIN A GOOD
C

W — __ . -	 - - -- - . _.	 - ---	 - — - - --- - - --- - -	 - -----
APP&OYIC6TIu^h	 TO ` hE BONE AND SKIN PARAMETERS.

C 2.	 THESE ARE HELD FIXED WHILE A GOOD APPROXIMATION TO THE
C TIS S UE	 IS OBTA I NED FO B A S IX P AEAME_T_i,R MODEL._PARAPETERS
C 3.	 ALL 5Zx PIFiA '7ETEE5 ARE ALLOiiED TO VbL' Y—TU OBTAIN THE FIbAL
C SET OF PARAMETERS FOR THE SIX PARAMETER MODEL.
C
C DECLARATION STATEMENTS.
C

_COMPL_EX#1 6 DC F PL X,CDSQRT , CDTAH , CDSINH , CDSIN,CDABS , CDCOSH,CDCOS
CUrIPLE Y* 16	 DZI (6)
COMPLEX*16 ARG,LAMDL , Z&,ZB , ZL,ZBI , ZTI,ZC,BOoTQ,Qo

1 ZBI1_,Z BI2, DZI DL,COT, CSCS, S ECS
REAL^d	 DBL^,DREaL,L'IMAG,DATAB,DABS
REAL f 8	 N (60) ,P (60) ,ZE (60) , PHIE ( 60) ,Z (60) , PHI (60) , DZ (60 , 6) , DP (6),

1 A6(6 , 6),A4(4 , 4),A3(3 , 3),B(6),DP6(6),DP4 (4), DP3(3 ) ,DX(6 ) ,DY(6)
REAL&	 Pi,BL,B6ATl0,L'A,Bb,^EI,Siti,EPN,LZETA,

1 TMU,TRN,TPN,TZETA,K,GK,Z"fIN,ZMAX,NMIN,WMAx,Y,Y,ERROR,EREOLD,
2 SBEI,SbHN,SBZETA,SK,STEO,STYN,STZETA,A

---

--- INTEGER TITLE(15)` "t I	
NqL REAL UP ( 60) ,ZP ( 60) ,PHIP ( 60) , ZEP (60) ,PHIEP ( 60)	 F	 jg

WUALIN
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c	 READ IN DATA.
C

PR_INT74
1 PI=3. 14159D 0
t READ ( 5,5)	 TITLE
3 5 FOPIAT15A41

READ (5,FMT)	 BL,BRATIO
i BL=DABS (BL)
i IF(B$ATIO.LE.O.DO.OB.BBATIO.GE.1.DO) GO TO 6
1 GO TO 8
3 6 PRINT7

7 FORMAT ( l	TH E VALUE GIVEN TO THE LENGTFI-TO-PROBE-LOCATION'/
1 •	 RATIO MUST BE BETWEEN ZERO AND ONE.'/)	

__

f STOP
8 CONTINUE

'. BA=BL # BRATIO
I BB=BL-BA

READ_C5120)IBC
IF (IBC.)'Q.0)GO TO	 16
IBC=ISIGW(1,IBC)

' IF(I6C.E^.IPPINT12
2 FOfolA- 	('	 THE BOJNDARY OF THE FOUNDATION IS FIXED	 (ULNA).'/)

IF (IBC. EQ. 1) PRINT 13
13 FORMAT('	 THE BCUNDARY OF TJE FOUNDATION IS FREE	 (TIBIA).'/)

GO TO	 18
16 PRINT17

_ 17 FOR	 (MAT '	 THE FOUNDATION IS NOT INCLUDED IN THE _80DE^)
18 CO:iTIdUE

READ(5,20)	 DI
20 F0PMAT_(I2)

IP (N. LT. 8) GO TO '21
IF(N.GT .60) GO 20 23
GO TO 25

21 PRINT22
22 FORMAT('	 A MINIMUM OF EIGHT DATA POINTS IS REQUIRED.'/)

STOP
23 PRINT24
24 FORMAT('	 A MAXIMUM OF SIXTY DATA POINTS IS REQUIRED.•/)

STOP_
25 COliTIBUE

DO 26 I=1,1
R_EAD(5,FMT)	 9(I1,ZY(I),PHIE(I)
Ii (I) = DABS (Qi f )
ZF. (I) = DABS (ZE (I))

26 P (I) =fl (I) $2.DOsPI
PflibT^ 4

C
_ C PHASE 1

C
C DETERMINE INITIAL SET OF PARAIETERS.

_ ^•., C
f1:K=0. DO
DO 27 1- 1, 4

27 KK=XK#ZE (I) *p (I)
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K K = -iR/-4.-D 0
NN =N/2

i8 WMAx= W (NN-1)

i9 ZMA X = Z E( N=1)
i0 DO 30 I=NN,N
.1 IF ( ZE(I) .GT.ZMAx) GO TO 29
; 2 G O TO 30

,3 29 ZMAX =ZE (I)
i4 vmkx=W (I)
)5 30 CONTI NUE

► 6 KN=N/4

; 7 EN N = 3*l1/4
8 W m I N,HIN N-1)
9 ZMIb = ZE (NN — 1)

' 0
t

DO 32 I= NN, AINA
' 1 I FAZE(I) .LT.ZMIN)GO TO 31
'2 GO TO 32
'3 31 ZMIN=ZE(I)
'4 W' IK=w M
5 32 CONTINUE
6 K=KK *( WIAX/WHIN)**2

7 !CK _1.D0^{{1.D01KK)-j1.DOLlC)1
$ BEI= (BA = bb) * f 2/3. DO/BL*KK

9 BWN=WAIN
0 BZETA=Z?lN;P I*BW NKK

--I PRis r33	 j

2 33 FORMAT(/ $ 	TEE INITIAL SET OF PARAMETERS IS;01)
3 PRINT7 7

PRINT78, B-I,BWN , BZEIA,K
C
C T HIS	 THE—BEGINNIN G OF T HE O UT S IDE LOOP.	 EACH RUN THROUGH THIS_IS
C LOOP CONSTITUTES Obi ITERh7lQi.
C

5
6^
7

_C
34

EIIROR_= 1. D20

!! d =0
MM=MM+ 1

C CHECK EACH PARAMETER FOR THE HON —NEGATIVITY CONDITION.

C
3 IF(BEI.L`r. 0. DO) GO_TO 35
9 I? (Bk h. LT. 0. DO) GO To 35
0 IF (BZETA. LT. 0. DO) GO TO 35
1 I F(K . LT . O.DO ) GO TO 35
2 GO TO 37
3 35 MMM=RM-1
! PRINT3 6 , MMM

36

_
NEGATIVE VALUE WAS OBTAINED FOR ONE OR MORE 	 1,0O	 /51v

1 @ OF THE PARAMETERS ON ITERATION BUSBEE I ,I2, 0 . •/5Z,
2 17 HE CU REEN T PA iAMETla VALUES 111 W/)

J PA IuT77	 -- 	 —	 ^-
I PRINT78,BEI,AAN,BZETA,E
3_ GO TO 48	 ^`itICP\ At. PAGE IS

3 cobTIDiUE 	OF Fi x* QUALMC
C CALCULATE Z AT EACH FREQUENCY.
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0 BPN=BWN*2. DO* PI
u1 DO	 45	 I= 1,21

2 BQ=DCtIPLX	 1(	 •D0,2.D0*BZETA *P (I)lB PN)3 LAKDA= DCMPLX (PI/BL,O. DO) *CDSQRT (DCAPLY (P (I) /BPN, O.DO) /CDSQRT (BQ) )
4 ZA= LAMDA *DCMPLI (BA,O.DO)
5 ZB =LAM DA*DC!!PLX(BB10.DO)
c ZL =LAK DA *DC M P L I (BL,0.D0)
7 ZBII = DCMPLX (0. 1)0,-.5D0*P(I)/BEI)/LAMDA** 3/BQ
8 ZBI2=CDSINH (ZA) tCDSINH {ZB)/CDSINH(ZL)

1 -CDSIN (ZA) *Ci,-IN (ZB) /CDSIN (ZL)
9 ZBI=ZBI1*ZBI2
0 ZTI=DCMPLX (0. DO,P(I)/K)
1 ZC=ZTI+ZBI
2 X=DR EA L (ZC)
3 Y=D IMAG (ZC)
4 ZC=DCMELX(1.DO,O.D0)/ZC
5 Z (I)= C Dk BS (ZC)

C
C CALCULATE THE DIRI9ITIYES OF Z AT ETCH FREQUENCY.
C

i DZIDL= (DCMPLX_(BA C O. DO) *CDCOSH (Z A) *CDSIHH (Z B)
2 +DCMPLI (BG,O.DO) *CDSINh(ZA) *CDCOSh (ZB)
3 -DCMPLI (BL,O.DO) *CDSINh (ZA) *CDSINil (ZB)
4 *CDCOSE (ZL) /CDSINH (ZL) )/SDSINII (ZL)

7 DZIDL= DZIDL- (vCMPLX (Ba, 0. DO) *CDCOS (ZA) +CDSIN (ZB)

0 2 +DCMPLI(BB4O.DO) *CDSIb (ZA) *CDCOS (ZB)
3 -DCMPLZ(BL,0.	 A)*CDSI N ZB)
4 *CDCUS (ZL) /CDSIb (ZL) ) /CDSIN (ZL)

3 DZIDL=DZIDL*Z BI1+DCMPLX (-3. DO, 0. DO) /LAMDA *ZBI
Q=DZIDL*DCMPLX(-.25DO,O. 	 ?)_ LA,1DA/BQ-ZB /BQ
DZI(1) =-ZBI/DCMPLX (BPI,O.DO)

1 DZI(2) = Q*DCrPLI (0. D0,-2. DO*BZETA*P (I)/BPN**2)
1 +DZIDL*DCMPLX (-.5_DO/L'LIN,0. D_0) *LAMDA

2 D'LI (3) = Q* DC MP I.X (0. DO, 2. D0*P(I)/B PH)
3 DZI(4) =- ZTI/DCMPLI (R,0.DO)
1 DZI_ (2) = DZ I (2) *CC M PLI (2. DO *PI,3. DO)
i DO 45 J=1,4
i DX (J) =DREAL (DZI (J) )

D1 (J)_DIMAG (07I (J) 1 i
3 45 DZ {i,J) = -Z (I) **3* (11 (J) *Z+DY (J) *Y)

C
C CALCULATE AND PRINT THE ERROR FUUCTION.
C

ERROLD=ERROR
ERR_08=0. DO	 -

c DO 4b I=1,19
'• 46 ERROR= ERROR+ ( (ZE (I) — Z (I) ) /ZE (I) ) **2

EF? ROR= ERROR/8
PHINT47,lSl1,ERSO

47 FORAIT(/'	 THE ERROR FUNCTION BEFORE ITERATION NUABEQ',

I2 (EROE. LT.	 02D) GO TO
48 BEI= BEI— DP4 (1)

BYN=SYN-DP4 (2)
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9_ BZ ET A,_E7. ET-A -DP 4l3^
0 K=K-DP4 (4)
1 GO TO 75
2 49 CONTINUE

C
C
C

SET UP AND SOLVE THE SYSTEM OF LINEAR EQUATIONS.

3 DO 55 J=1, 4
4 B (J) =0. DO
5 DO 50	 I- l t)1
6 50 B ( J)=B(J)+(ZE ( I)-Z(I))•DZ ( I,J)/ZE(I)•*2
7 DO 55 JJ=1, 4
8 A4 (J_1_4_4) =O. DO
9 DO 55 I=1,B
0 55 A4 (J,JJ) =A4 (J,JJ)+DZ (I,J) • DZ ( I,JJ) /ZE(I) **2
1 DO 54 J=114
2 DP4 ( J) =1.0DO
3 DO 58 JJ=1, 4
4 58 A4(J13J)_=A4_(J,JJ) /B_(^jjB(JJ)
5 CALL DGELG ( DP4,A4 , 4, 1, 1.E- 14,IER)
5 DO 59 J=1,4
7 59 DP 4 (J) _D P4 (J) / B (J)
3 PRINT60,IER
3 60 FORMAT (/' 	THE ERROR CODE FOR THE MATRIX INVERSION IS •,

1 Z2.'.')
C

_

C ADJUST THE VALUES OF THE PARAMETERS.
C

BEI=BEI + DP4 (1)
1 BWN=BWN + DP4(2)

BZETA = BZETA+DP4(3)
K=K+DP4(4)

C
_ C	 CHECK WHETHER OB NOT ANOTHER ITERATION IS NECESSARY.

C
1	 DP (1)=DP4 ( 1)/BEI

D'_(2) _DP4 (2)LBHN
DP (3) = D'-4 (3) /BZETA
DP (4) = DP4 (4)/A

t	 JJ=O
t	 DO 70 J=1,4
t	 70 It ( DABS ( DP (J)) .G T. 1. D-3) JJ=1

IF (J J. EQ. 1) GO TO 71
'	 PRINT73,!!M
t	 GO TO 75

71 IP( M M .LT_.10)GO TO 34
^Pi 1NT72, ( DP (J) ,J=1,4)

72 FOBAIT(/ 6	10 ITERATIONS HIVE OCCURED WITHOUT CONVERGENCE.'/
_	 1 • __THE PERCENT CHANGES IN THE PARA M ETERS ARE: •

2 //SZ, 4D14-.-S /)
73 FORMAT (/'	 CCNVERGENCE OCCUSED 03 ITERATION hURBE8' , I3,•.6)
74 FORMAT(Ill)
15--CO- -Nnli-1 E

- -	 PRINT74
C
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C	 SAVE PARAMETERS FOR THP. FOUR PARAIETER MODEL.C

1	 SBEI=BEI
; 2 	 SBWN=BWN

. 3	 SBZETA = BZET '.
4	 SK-K

C
C	 PHASE 2
C
C DETERMINE INITIAL SET OF PARAMETERS.
C

5 BZETA=.05DO
6 TZETA=S3ZETA/2.DO
7 TiiN=BNN12. DO
8 IF(IBC)129,236,130
9 129 = .25D0A_
0 N E=3
1 GO TO 132
2 1,30 A= .75DO
3 ` HE=2
4 132 TliU = Br.I/2.DO* (PI/BWN/BL $ * 2) **2* (SBZETA — BZETA) /A/TZETA* • ( 1. DO/NE)
5 PRINT33
6 PsINT77
7 PRINT78 , BEI,BWN , BZ ETA, K
3 PRINT79
9 PRlNT80,Tr.U,TWN,TZEIA

C
C SAVE INITIAL SET OF TISSUE PARAMETERS.

J STMU=TNU
1 STWN=T_WN
2 ST"LETA.=TZET A

C
C IS THE BEGINNING OF THE OUTSIDE LOOP.	 EACH RUN THROUGH THIS_THIS
C LOOP CUhSTITUI'fS UaI: ITF:BATIUb.
C

3 ERIIOR = 1.D20
4 aH=o
5 134 Elf=MM• 1

C
C CUECK EACH PARASETEH FOR THE NON — NEGATIVITT CONDITION.
C

IF_(lMU_.LT.0-DO)G3 TO	 135
f IF(Tiit+.LT.0.D0)GO TU	 135
3 IF(TZETA . LT.O.DO ) GO TO 135

GO TO 13 7
35 h i!5=lS.y=1

1 PBINT36,HHM
'- PRINT77
% PRINT7d^BEI,BHD,BZ£T^,lC
% PRINT79

PRINT80,TMU,TVN,TZETl
T!f U= STSU

" - TW8=STWN
TZETA=5TZETA
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_^- 	 eSO._TO _17.5
137 CON	 INUE

C
C CALCULATE Z AT EACH FREQUENCY.

i BPN=BHN*2.00*PI
T P N =T w N_ *2. DO* PI
DO	 145	 I=1,11
BQ = DCMPLI (1.DO,2. DO*BZETA*P (I) /BPN)
TQ_DCHI'LY_(1.DO l ^.D O* 7ZE	 N)TA*P jI)_/TP
ARG=DCHPLX (E (I) *Pi/TPN,0. DO) /CDSQET (TO)

' IF (IBC. EQ. 1) LRG = AEG/DCl,PLX (2. DO, 0. DO)
COT=DC_MPLX 11. DO, 0. DO) /CDT_A	 jARGj_—
LAM DA=CDSQE T (CDSQE2 ( (DCHPLX ( ( (PI/BL) **2*P (I) /BPN) **2,0. DO) +

1 DCnPLX (P(I) **2*TMU/BFI,O. DO)/A&G/COT**IBC*IBC)/BQ) )
ZA = LAMDA*DCMP_kl 	 3d^0. DO)
ZB=LA.".DA*DCHPLX (6B4O.DO)
ZL=LAm DA # JC HPL X (BL,O.DO)
ZBI1=DCnPLX (O._D0,—.5D0*P(I)/BEI) /LAM DA**3/BQ
ZBI2 = CD5IhH (LA)*CDSINEi(:.i3)/C DSItiiE(ZL)

1 — CDSIN (ZA) *CDSIN (ZB) /CDSIN (ZL)

_—
l s7.1?2_2

ZTI= DCHPLX (0. DO,P (I) /h)
ZC=ZTI+ZBI

_ X=DREA -LA zC)
Y = DI!!AG (ZC)
ZC = DC"FLI (1.DO,0. DO) /ZC
Z 	 =C DA BS (ZC)

C
C CALCULATE THE LPRIVITIVES OF Z AT EACH FREQUENCY.
C_

IF (15--EQ. 1)GO TO	 138
CSCS='•.NPLI (1. DO,O.DO) /CDSIN (ABG) **2

r _ —DZI (1)=DCHPLXP(I)*t2/HEI/4.D0,0.D"*COT/AUG/LAMDA**3_(—
DCnPLX ( — ,".J *P (I) '+"-2^PH/LLI/4. DJ, 0. DJ) /LA HDA* *3sDZI ( 2) =	 7

i (DCMPLI (1. DO, 0. DO) — DCCPJ.X (0. DO, TPN *TZETA/P (I) /PI **2) *A6G**2)
2 * (CSCS+COT/ARG)

DZI (3) =DC:SPL'1 (O.DO, — TAU*P (I) *TPH/PI**2/13EI/4. DO) *Aft:/LA!!DA* *3
1 *(COT+ABG*CSCS)

GO TO 139
1.3 CO Ea T I:i U 

SECS=DCAPLI (1. DO,O.DO) /CDCOS (ARG)**2
 =DC'IPLI (	 (I) **2 /f3EI/4. L`O,0.D O) /COT/A2(;/LAM DA**3---DZI _ (l)

DZI (i) - DCAPLI ( — i IJ *il (I) **s'—/Iii/u .i/L.DJ,G.i:J)/LA^7^,*sJ*
1 (DC":LX(1.DO, 0.LG) — DCl!PLI(0.DO	 4.DO*TPN*TZE-AA/P(I)/PI**2)*ARG**2)
2 * (S-CS — DC:;PLZ ( 1.CO,O.DO) /CCT/ARG)__	 _

DZI (3) =DCH AX {u. DJ,-1.y U*P(l) *TPL/PI+*2/BEI) *ARG%LAMDA**J
1 * (A::G*SECS — DCM PLI (1. DO, 0. DO) /COT)

139 CONT13 UE
)ZIDL= (DCHPLX (YA,O.DO) *CD^OSE1 (ZA)*CD5IZsEi(Z B)	 ,

2 +DCHPLX (b ,0.DO) *CDSIhU(ZA )*CDCOSB (Z3) 	 ^'•
3 —DC!lPLX (GL,O.DO) *CLSINE9(ZA) 4 CDSIl+fi (ZII)
4 -'CDCCS:; (ZL)/CD.JI hn (ZL)) /CDSI ad (7.L)

- DZIDL=DZIDL— (DCHPLX (BA, 0. DO) *CDCUS (ZA) *CDSIN (ZB)
2 +7c"iLX(EB4O. LO) *CDSI S (ZA) * CDCOS; Z B)
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3 	 -DCMPLX_(BL..,	 DSII^tZBj
4	 *LLCOS (ZL) /CDSI Q (ZL) ) /CDSI N (;;L)

6 DZIDL=DZIDL*ZBIi+DCnFLY(-3. DO, 0. DO)/LAMDA*ZBi
7 DO 140 J=1, 3
B 140	 DZI (J) = DZI (J) /BQ*DZI DL
9 DZI ( 2) =DZI -2) * DCMPLY (2. DO *PI,O.DO)
3 DO	 145 J=1.3
1 DX (J)=DREAL (DZI (J) )
2 DT (J) = DIMAG (DZI (J) )
3 145	 DZ (I,J)=-Z (I) **3* (DX (J) *t+DY(J)'*Y)

C
C CALCULATE AND PRINT THE ERROR FUNCTION.
C

4 ERROLD=ERROR
5 ERROR=O. DO
5 DO	 146_I=1, P
7 146	 ERROR = ER60R + ( ( ZE (I)-Z ( I)) /ZE (I)) **2
3 ERROR = ERROR/N
9 PRIVT4 7, 111, ERROR
3 IF (ERRROR. LT.ERROLD) GO TO 149
1 148	 TM U =TM U- DP3 (1)
2 TWN=TWN-DP3 (2)
3 TZETA=TZETA-DP3 (3)
4 GO TO 175
> 149	 CONTINUE

—'C
C SET UP AND SOLVE THE SYSTEM OF LINEAR EQUATIONS.
C

DO	 155 J=1,3
1 B(J) =0.DO

DO	 150	 I=1-f_I!_
150	 B(J) =B (J)+ (ZE(I)-Z(I)) *DZ(I,J)/ZE(I) **2

DO	 155 JJ=1,3
13 (J, JJ_) =0. DO
DO 155 1=1,,N	 --

3 155	 A3 (•t,JJ) =A3 (J,JJ)+DZ (I,J) *DZ(I,JJ) /ZE(I) **2
DO 15 8 J=1 ,3

> DP3(J) =1.ODD
i DO 158 JJ=1,3
r 158	 A3 (J,JJ) =A 3 (J, 33) /B (J) /B (JJ)
> CALL DGELG {DF3,A3, 3, 1, i. E- 14,IE8)

DO 159 J=1,3
159	 PAP3 (J) = DP3 (J) JB (J)

j PRId'T60,IER
C
C ADJUST THE VALUES OF THE PlEAMETERS.
C

' TMU=TMU + DP3 (1)
TON=TWN+DP3 (2)
TZETA=TZETl+DP3'a)—

C
l ,R•^ C
C

CHECK UHETHER OR NOT ANOTHER ITERATION IS NECESSARY.

-- DP (1) = DP3 (1)/TIla
DP( 21' =DP3(2)/TVN
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i_7,-, _^__ DP._(3l ^P^! 311_g .Z ES A
1b JJ=O
19 DO 170 J=1,3
10 _ 170 IF (D A B SSDP LJj_j_. GT. I. D-3) JJ=1
I t IF (Jj. EQ. 1) GO	 TO 171
!2 PRINT 7 3, RM
13 GO TO  17 5

171 IF(MM.LT . 10)GO YO	 134
5 Pj3INT172, (DP(J),J=1, 3)

1 6 _172 _FO_RMAT^ 10 ITERATIONS 	 OCCU_R_ED WITHOUT CONVERGENCE.'-__
1 '^	 THE PERCENT CHANGES IN THE PA&AliETE&S ARE:'
2 //51,3D14.5/51,3n14.5/)

7 _175 CONTIN UE
a PRIBIT74

C
C FHASE 3
C
C DETERMINE INITIAL SET OF PARAMETERS.
C

9	 PRINT33
0	 PRINT77
1	 —_-`__PRINT7S

t-

 BEItBON,BZETA,K
2	 PRINT79
3	 PRINT80 , TOU,TWN,TZETl

C
C	 THIS IS THE BEGINNING OF THE GOTSIDE LOOP. EACH 411-11 N THROUGH THIS
C.	 LOOP CONSTITUTES ONE ITERATION.

,. 1	 C

5	 hti=0
6	 234	 A!i=MM+ 1

C
C	 CHECK EACH PARAMETER FOR THE NON-N°GATIYITY CONDITION.
C

7 IF(BEI.LT.O.DO)GO TO 235	 ^!	 -
3 IF(BfiN.LT.0.tj0) GO TO 235
7 IF(T!!U.LT.O.DO)GO_To 235_ __

IF(T4b.LT.O.DO	 GO `TO 235
1 IF (TZETA. LT.O. DO) GO TO 235
Z (h.LT.O .DCG O TO 235_Ir•_

3 GO TO 237
s 235	 MNM=MH -1

INT36, RMM_PR
i PRINT77

T PRINT78,BEI,BVN,BZETI,K
3 PRIFT79

PR INT80,TMU,TWb,TZETA
236	 B EI= SB EI

1 
-

BWN=SDRN
--- BZETi=SDZETA

1 T5U=O.DO

1 TWN=0.D O

^^— -	 TZETI-i-0
----	 l^=SK

GO TO 275
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8	 237 CONTINUE
C
C	 CALCULATE Z AT EACH FREQUEHC7.
C

9	 BPN = BWN*2. DO*PI
0	 TPN= TNN*2. DO*PI
1	 DO 245 1=1,N
2	 B,Q=DCC PLX (1.DO,2. DO*BZETA*P (I) /BPbi)
3	 TQ=DCISPLX(1.DO,2.DO*TZETA*P(I)/TPN)
4	 IRG=D%..'	 ( F(I) *^PN, O.DO) /CDSQRT(TQ)
5	 IF (IBC. EQ. 1) AEG=ARG/DCMPLY (2. DO, 0. DO)
6	 COT= DCl9PLY ( 1. DO,0. DO) /CDTAN (AEG)
7	 LAM D A=CD SQFT (CDS,BT( ( DCMPL Y ( ( ( PI/BL) **2*P (I) /BP N ) **2,0. DO)

1 DCMPLY (P (1) * *2 *TdU/BEI, O. DO) /AEG/COT**IBC*IBC)/BQ) j
3	 ZA=LAMDA*DCMPLX (BA,O.DO)
9	 ZB=L A M D A*D CFPLX (BB O .DO)
9	 ZL=LACDA*DCMPLI (BL,O.DO)
1	 ZBII = DCMPLX (0.DO,– .5D0 * P(I)/BEI) /LAMDA* *3/BQ
2	 ZBI2=CDSINH (ZA) *CDSINH (Z_J /CDSINH(ZL)

1 -CDSIN (ZA) *CDSIl1 (ZB) /CDSIIi (ZL)
3	 ZBI=ZBI1*ZBI2

ZTI=DC_MPLI (O_DO,P(I) /K)
i	 ZC=ZTI*ZBI

i	 X=DREAL(ZC)
1	 Y_=DIMAG ZC
i	 ZC=DCMPLY(1.1)0,0.D0)/-'C

Z (I) =CDABS (ZC)
C
C	 CALCULATE THE DERIYITIYES OF Z AT EACH FREQUENCY.
C

1	 IF (IBC. EQ. 1)GO TO 238
I	 CSCS=DCt!PLX (i. DO,O.DOj /CDSIIi(ARG) **2

DZI (1) =DCMPLI (TMU/4.DD* (P (I) /BEI)**2,O.DO) *COT/ARG/LANDA**3
i	 DZI(2)=_D_CMPLI(-P(I)/ZPN**2/2.D),O.DO)/L_AMDA**3*

1 (RCMP'-X (P (I)/BF:i* (PI/bL) **4,0. DO)-DCMPLY (O.DO,BZE'TA) *LAADA**4)
DZI (3) = DCMPLI (-P (I) -%*2/BEI /4.DO,0. DO) *COT/ARG/LA!!DA**3
DZI(4) =D C M PLX (– TMU*P(I)*t,2/T PN/BEI/4.DO,0. D O )/Lk?$DA**3*

1 (DC?: PLX (1. DO, O	 CM PLX (O.13 —T- P---N-	 ETA—/	 AEG	 )
2 * (CSCS+COT/ARG)

D ZI (5)=DCMPLX (O.DO,– TMU*P(I) *TPN/PI s *2/BEI/4. DO) *ARG/L&BDA**3
1 *(COT+ARG*CSCS)
GO TO 239

238 CONTI N U E
SECS=DCMPLX (1.DO,O.DO) /CDCOS(ARG) **2
DZI (1) =DCMPLX ( – TMU/4.D0* (P (I)/BFI) **2,0. DO) /COT/AEG/LAMDA**3
DZI_(2) =DC M PL I ( – P (I)/EPli **2 /2. DO, O. DO) /LAMDA** 3*
(DCH1'LY (P (I)/Bra+ (Pi/ L) **4, b. DG) – LCMPLY (^.DZ,BZETA) *L DA i^-
DZI (3) =DCMPLX (P (I) **2/BEI/4. DO,O. DO) /COT/ARG/LAMDA**3
DZI (4) =DCMPLX ( – T:SU*P (T_) ** 2/TPN/gEI/4.DO,0.DO)/LAMDA**3*

^(D C" r^ L Y (1. D c0^ . D 0) = L C C^ P1, z (6: DJ ; ^ . b 0 ^3'P b^ T 2^ 1
2 * (SECS –DCMPLY (1.DO,O.DO) /COT/AEG)

DZI (51 =DCMPLX (O.DO,– TMU*P(I) *TPN /PI**2/BEI) *ARG/LIgDA**3
1 ^(aac<ts^C=3a; nP.z(1.-^^;^—̂ oj/coT)

'239 CONTINUE
DZIDL= (DCMPLX (BI,O.DO) *CDCOSH(Zl) *CDSINH (ZB)
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_ .	 2 +DCMPLYj.BBl0.G0)*CDSIVfl("',1',j*CD COS HIZO)
3 -DC!,i'LX (BI,O.DO) *CDS_h	 (^ A)*CDSI NH (ZB)
4 *CDCOSti (ZL)/CDSINIt (ZL) ) /CDSItill (ZL)

7 DZIDL=DZIDL- DCMPLX B:4	 DO	 *CDCOS (Z A) *CDSIN ZB_O.
2 +DCMPLX(Bt3,0.DO) *CDS1- 	(a) *CDCOS(ZH)
3 -DCMPLX (BL,O.DO) *CDSIN (ZA) *CDSIN (ZB)

_ 4 *CDCOS (ZL)JCDSIN (ZL)_)1CDSIN (ZL)
8 DZIDL=DZIDL*ZBI 1+DCtlPLX (-3. DO, 0. DO) /LAMDA*ZBI
9 DO 240 J=1,5	 •
3 240 DZ_I (J) = DZIAJ)fBQ*DZIDL
1 DZI (1) =DZI ( 1) -ZEI/rCMPLX (BEI, 0. DO)
2 DZI (2) =DZI (2) +ZEI/DQ*DCMPLY (0. DO,2. DO*BZETA*P (I) /BPN**2)
3 DZI(6)_7TIJDCAFLZ (kj_O.D0)
4 DZI (2) =DZI (2) *DCMi?LX (2. DO*PI,O. DO)
5 DZI (4) =DZI (4) * CClSPLX (2. DO*PI,O. DO)
o 1)0 245J=1^_6
7 DI (J) =DREAL (DZI (J) )
3 DY (J) =DIMAG (DZI (J) )
9 245 DZ (I,J) = -Z (I) **3* (DX (J) *X ♦ DY (J) *T)—

C
C CALCULATE AND PRINT THE ERROR FUNCTION.
C

ERROLD=ERROR
1 ERROR=O. DO
? _ DO 246 I=111

3 246 EiRJR=I H&OE • ((ZE (I) -Z (I)) /ZE (I)) **2
ERROR=ERROR/N
PRIHT47	 ?!`i	 ERRO_E
Ie(ERR06.LT.ERE0LD)GO TO 249

' 248 BEI=BEI-Dt'6 (1)
DW N= BW N-DP6 (2)
TMU=TMU- DPb (3)

1 TWS='XrN-DP6 (4)
I T'ZE:A=TZF,TA-DP6 5)

K = K-DFb (6)
GO TO 275

249 CONTINUE
C
C SET UP AND SOLVE THE SYSTE!! OF LINEAR EQUATIONS.
C

DO 255 J=1,6
B (J) =0. DO

' Do 25 0 I= 1, N
250 b(J) =B (J)+ (ZE (I) - Z (I)) *DZ(I,J)'/ZE(I) **2

DO 255 JJ=1,6
' A 6 ( :i	 JJ) =0. DO,

DO 255 I=mo, N
255 AS (J,JJ) =A6 (J,JJ)+DZ (I,J) *DZ (I,JJ) /ZE(I) **2

Do 258 J=1,6
b 	 (J) =1----oD0
DO 258 JJ=106

258 A6 (J, JJ) =A 6 (J,JJ) /B (J) /B (JJ)
CALL UGELG(Di'b^1b,b,1,j.E=1i1,^$

-- DO 259 J=1,6
25 9 DP b ( J) =DP6 ( J) /B (J)
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Qt P R_j.N3k_Q IER
^... C

C ADJUST THE VALUES OF THE PARM I ETERS.
C

1 BEI=BEI+DP6 (1)
2 BW N = BH N+DP6 (2)
3 T.4U= T,.4 U+ D P6 (3)
4 TWN = TUN+DP6 (4)
5 TZETA=TZETA+DP6(5)
6 K=K+DP6 (6)

C
C CBECK WHETHER OR NOT ANOTHER ITEEATION IS NECESSARY.
C

7 DP (1) = DP6 (1)/BEI
8 DP (2) =DP6 (2)/BSN
9 D PI=DP6 (3)/T rio
0 DP(4) =DP6(4)/TWN
1 DP (5)=DP6 (5)/TZETA
2 D p 6)= DP6 (	 )ZK
3 JJ=O
4 DO 270 J=1,6
5 270 IUDABS (DP (J)_I_.GT. 1. D-3) JJ =1
6 IF (JJ. FAQ. 1) GO	 SO 271
7 PRINT73,KM
8 GO_T0 _'75
9 271 ZF (" H. LT. 10) GO TO 234
0	

3
PRIM: 172, (DP (J) , J=1,6)

1	 `` • 275 CO h TING E
2 PBINT74

C
C	 PRINT THE FINAL PAE&METER VALUES.
C

3 PRINT76,TITLE,EL,BRATIO
4 76 FORMAT(5 X,15A ►j //7Y, 'BO N E LENCTH 1 ,51, 8 PROBE LOCATION '/F9.1,F15.1/)
5 PEI2;'i77
5 PRINT78, BEI,BWN,BZETA,1C
7 PRINT79_
3 PBIii TJ',TMU,TWl,TZETA
1 77 FORH T (5X,' F0N f STIFFNESS • ,51,' B09E EAT FREQ',r5Z,

1 ' BONE D MPIN,',5X, • SKI N 	 STIFFNE SS')

J 78 FOH'SAT (D 16.5,F13.1,F19.^t,D22.5/)
1 79 FORM? ,.T (51,' TIssUE SLSS/LENGTH', 5 1, *TISSUE HAT FREQ',5Z,

1 ' TISSI;E DA M PI_NG'_
2 80 F0BM 61 (F 10. 2, F23. 1, P21.4n
1 PRINT 81
1 :)1 FORKAT(311,•EXPEr?IMENTAL',14Y,'TBEOHETICALI/411,'PRASE',211,

IPASE i j1 X,^tiiQ^,Z; ZlSP^DAHCE^o.iY; A2iv1.E T^7^C^ IllPE[JAa	 ,
2 518'ANGLE'/)

C
C R L C ZC ar-Amy-IT F-1-ft Trzim.
C

 -, BPN = BW N*2. DO*PI
1`PN=TLii *2.DO Pf
DO 85 I=1,Y

3 $Q=DCMPLX(1.DO,2. DOtBZETI*P(I)/BPS)
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^_^'1_.__	 _IP(TKU. E_Q._0_. D0^_G2__TO e2
p	 TQ=DCMPLX (i.DO,2.D0+.ZETk*P (I) /TPN)
1 AR G = DC ti P L I ( P (I ) *PI/TPh,0.D0)/C D5ORT(TQ)
2	 IF(IBC._E0._1) AFG= ARG/ g_! PL1 (2. D 0, 0. DO)
3	 COT=DCMPLX (1. D0, 0. C0) /CDTAN (ARG)	 i
4	 LAMDA=CDSQRT (CDSQRZ ((DCMPLZ (((PI/BL) +*2*P (I) /BPN) * ¢ 2, 0. DO) •

1 D C_MPLX_ -AP 1!) ss 2 0 7MU/BEl.0.D 0) /1R G/COT # IBC+ IBC jBQ) )
5	 GO TO 83
6	 82 LANDA = DCMPLX ( PI/BL , O.DO) •CDSQRT ( DCHPLI (P (I) /BPN , O.DO) /CDSQRT (BQ) )
7	 83 ZA=L_AM DA *DCMPLI (BA,0.DO)
8	 ZB=LAMDA+DCMPLX (BB4O.DO)
9	 ZL--LAMDA*DCMPLX (BL,O. DO)
0	 Z BI=DCMFLX10._DOI_. 5DO s P (D_/Df_D fLAM DA # !3/BC?'^

1 (CDSIN H (ZA) +CDSINti (ZBJ /CDSINH (ZL) – CDSIN (ZA) *CDSIN (ZB) /CDSIH (ZL) )
1	 ZTI=DCMPLX (O.DO,P(I)/F)
2	 Z C--_D_C-M FLX tl. DO l O. DO) / (ZTI;ZBI)
3	 Z (I)=CbADS (ZC)
4	 PHI jI) =DATA H (DIMAG (ZC) /DRELL ( ZC)) s 180. DO/PI

C
C	 PgIliT THE IMPEDANCE.
C

5	 8 5 PRINT86 I,1d_(I)^ZF. (I)_,PHIE^I)_,Z__(i_)^PIiI (I)
6	 86 FORMAT (I7,F13.2,D16.4,F10.2,D16.4,F10.2)

C
C	 CALCU LATE AN D PRIN T THE ERRO R FUNCTION.
C

7	 ERROR=O. DO
3	 7 I=1, N
j	 87 ERiiOR=ERROR+ ((ZE (I) – Z (I)) /ZE (I) )
0	 EBBOR=ERROR/N
1	 _PRINTS6,EREO R
2	 --	 83 FOB:1AT (/' -- THc ERROR FUNCTION

3	 PRI N T 74

OR THIS SET OF PARAMETERS ISS',—',

C
C	 PLOT THE IMPEDANCE.
C	 _
—6090 I=1,9

5	 VP(I) =SNG1.(v(I))
o	 ZEP (I) =SNGL (ZF. (I) )

-	 PiiIEtP (I) =-S -N  G1. (F-11IE (I
3	 Z  (I)=SNGL (Z (I) )
a	 90 P H I P LI)_=SNP=L (PHI Q)Z_____

CALL PLTOFS(1.,1.12.,3.,1./2.,1.5,4.5)
1	 CALL PLGAXS(1.5,4. 5,• FliEQUE.NCY',-9,6.,O., i ., 1./2.)

CAI.L_:'LGAXS (1._5,4._ 5,1IMP F D « CE9 ,9,6.,90. , 3.,1./2.)
3	 CALL P G h ID (1.5,4.5,2.,2.,383)
4	 CALL PLTLOG (3)
3	 CALL _PLINE( is-P(1),ZP ( 1),N,1,0,0,1)
a	 CALL PL1Ni:(Y,° (1).Za(1).M1.-j.^.
1	 CALL PLTREC
3 {	CALL PLTOFS (1.,1./2.,-90., 90.,1.5,1.5)

ci,L), 2tGA15(1.3;1.'5 vBh'UENc y	9;Z	 .^
CALL PAY IS (1.5, 1.5,'PEiLSE AbGLE',11,2.,90.,-90.,90.,.25)

1	 CALL PGElD (1. 5, 1.5,2.,1.,3,2)
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CALL_P_I.TLOC (21_
CALL Pi.Ihi (WV (1)rPEIP( 1),N,1,01011)
CALL PLINE ( WP(1), PHI EP ( 1),11,1,-1,0,1)
CALL PLTREC
CALL PGRID(0.,0.,8.5,11.,l,1)
CALL PSYMB ( 1.5,.5,.125, TITLE ( 1) 10.,60,0)
CALL PLTEND
END	 ^ ---

, 710NS IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,VODECK,LOID1NOSAP
:IONS IN EF FECT* _HA_ME = _MAIN	 , LIN E_C HT =	 57
A:ISTICS #	SOOECE STATEMENTS =	 509,PROGRAM SIZ =	 35900
ATISTICS # 30 DIAGNOSTICS GENERATED
ES IN MAIN

r'rt"^
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I	 1?EAL_-TUNC.TION _A_PFAL*8 (1)
2 `	 CC) ?,P	 X* 16 ", DCIIPLX
3	 BLAL*3 Y,CDA S,EDLI

4	 DREAL=CD; BS ( ( X+DCONJ G X	 DCMPLZ (2. D0, 0. DO) )
5^	 T=DBLE (REAL (X) )
6	 DREAL=DSIGN (DRELL,Y)
7 RETURN
8	 END
11 TIONS IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,YODECK,LOAD,IiOSAP
PTIONS I N EFF E CT* VAM v = DREAL	 , LINECNT =	 57
T^:ISTICS*

	
SOURCE STATEMENTS =	 8,PROGRAh SIZE =	 524

TATISTICS* 80 DIAGNOSTICS GENERATED
JRS IN DREAL

'E l
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1z7-P

2

1	 REAL F. U-.r_TIOti _DTMAG!8SX j
2'	 Y,DCMPLY
3	 REA1.*8 1,CDA13S, CELE

1 4	 _	 DI MAG = CD_A_BS (( R -DCONJG(X)) IDCyPLS (2.D0, O.DD) )
5	 T-DBLE (AICAG (X) )

6	 DIMAG=DSIGN (DIIIAG,Y)
^7	 BETUR N

9	 END
PTIOES IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECR,LOAD,NOBIP
P710N5 IN EFFECT* NAME = DIMAG 	 LINECNT =	 57
;hTLSTICS*	 SOURCE STATEMENTS =	 8,PROGELM SIZE	 53 0
TATISTICS* 50 DIAGNOSTICS GENERATED
OF.S IN DIM AG
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C9SPLEX__-f y_NSTIL1Ii..._CPSIHft*16 (1)
! ^J	 COMPLEX* 16 X,CDEXP,DCEPLX

CDSINH = ( CDEXP ( X)-CEEYP(-Y))/DCHPLZ (2..DO,O.DO)
RETURN
END

'TIONS IN EFFECT * ID,EBCDIC , SOURCE,XOLIST , MODECR,LOAD , EO!!AP
'TIONS IN EFFECT* NAME = CCSINH 	 LINECHT =	 57

A:ISIICS * 	SOUECE STATEEENTS	 S,PROGRA!! SIZE s	 526
'ATISTICS * NO DIAGHOSTICS GENERATED
>zS Ib CDSINB



;AX TERMINAL SYSTEM FORTRAN G(41336)	 CDCOSB	
'	 127-8
09-19-76	 2;

,^.	 CQ.CC_L^X F O NCTIQ^?^_^9.S^i ^16 (Y1
COMPLEX*16 X,CDEXP,DCliPLI
CDCOSH= (CDEXP (Y) *CDEIP (-Y)) /DCHPLX (2.DO, 0. DO)
RETURN
END

)TIONS IN EFFECT * ID,EBCDIC,SOURCE,NOLIST,NODECKOLOAD,NONAP
':IONS IN : FFECT * NAME = CCCOSH	 LINECNT	 57
'ATISTICS «	SOURCE STATEMENTS =	 5,PROGRA,M SIZE =	 522
'ATISTICS * 5 0 DIAGNOSTICS GENERATED
?ES Ili CDCOSH

9

3



GIN TERMINAL SYSTEM FORTRAN G(41336) 	 CDTIV	 09-19- 78 
t27-s

2,

1!^',	 COEPLEX.-ZyNCTION.-MIN*161X 1
2	 !:O8PLEX*16 X,CD5Ib,CDCOS,DCdPLX
3	 IF(DIMbG(X).LE.34.D1)GO TO 1
4	 CDTAN = DCMPLX ( 0. D0, 1. D0)
5	 GO TO 3
6	 1 IF (DIM AG (X) .GT.-34.D 1) GO TO 2
7	 CDTAN = DCMP_ LX ( 0. D0,-1. DO)
B	 GO TO 3
9	 2 CDTAN=CDSIIN (X) /CDCOS (X)
3	 3 RETURN
1	 END

PTIONS IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECKtLOID,NO[!AP
MONS IN EFFECT * NAME = CDTAN	 LINECNT =	 57
:AT̂ISTICS*	 SOURCE STATEMENTS :	 11,PR0GBA5 SIZE s	 628
TATISTICS • NO DIAGNOSTICS GENERATID
SRS IN CDTAN
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G. IRESULTS OF U LIyo TESTS Og THE TOREIPHS OF SrVEN UNI

SUBJECTS

The results of the " vivo tests performed on Subject TT

are presented and discussed in Section ♦ II.I. Similar results

from seven other subjects have been obtained and are presented

here. Driving-point mechanical impedance plots associated with

400: 500 and 600 gram-force preloads are given for each subject.

The corresponding parametric values in each case are listed in

Table 7.1.

i



129

0

i_B? S

0



130

TIBLE 2.1

Three Basic Types of Mechanical Elements

mass	 damp ► r	 spring

Equation of Motion	 f = am	 f = cic	 f = kz

F/a	 a	 c/p	 k/p2

Slope on log-log plot	 00	 -45 0 	 -63.40

F/v (impedance)	 up

Slope on log-log plot	 450

F/b	 ap2

Slope on log-log plot 	 63.40

C	 k/p

0 0	-450

cp	 k

450	00



atz =0

Tt 0

8 2 0

p2 0

n2 - 0

TZ = 0

kz9z — n 2 = 0

7z0
N Z = 0

k2yz + V2 - 0

!! Z	 = 0

atz -0

yz 0

p 2 = 0

131

1. Simply-supported

2. Rotational spring

on one end

3. Rotational spring

on each end

a. Translational spring

on one end

5. Translational spring

on each end

6. Translational spring

on an extended bean

TABLE 3.1

Boundary Conditions

atz-0

7, = 0

e, = 0

Y,	 0

k, 8 1 - 3 1	0

y,	 0

k, 8 1 - 81	 0

k,y i ♦ Y, =0

n, = 0

k, y, +o, r0

d, = 0

atx - -e

k 3 ys + T3 = 0

83 = 0
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TABLE 3.2

Von-dimensional Parameter Definitions

W.

lion-dimensional
Parameter

5

a

Definition in terms
of !Model Parameters

3' = WW2 E

a/L

b/L

!! Pj /p = L*/iT • pew= /EI

B U)Avj

TF - cujNf/2Ej

S k/R = kL3/48EI	 14

T 2kLs/EI	 :s

a k L/2 EI	 16

E q1

CT	 CTw/k

Cit	 c tw/k,

14 k is the spring constant of the spring in series with the
beam.

lsk is the spring constant of the translational spring at a
support.

ls k -- is the spring constant of the rotational spring at a
support.
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TABLE 4.2

Static Stiffnesses for Beans With Various Boundary Conditions

The stiffness of a bean is

K = ♦ 3 EIL/r21!2

where expressions for 4 are listed below for several different
boundary conditions.

Boundary Conditions

1. Simply-supported	 1

2. Rotational spring 	 6+4R,
on one end

3. Rotational spring
on each end

4. Translational spring
on one end

5. Translational spring
on each end

6. Translational spring
on an extended beam

6+a(3ac+4P) R,

6+4R, +4R Z +2R, R Z

6+a(3c(+4g)R l +6(3A+4a) BZ +2apR, RZ

T 14

6+T, k2

T, T Z O Q2

6 (Ti a 2 +T 2 02 ) 

t

+

'

T, T 2 a2 p2

24+4E3T3+4e2Ts

24+40T 3 + a(3a+4 g) g2T3
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TABLE 6.1

Parametric Values for the Forearm of donkey 663

Parameter Parametric

Name Symbol Value

Ulnas r-nport length L 17.1 ca

Length-to-probe-location ratio a 0.6

Dlnar bending stiffness EI 2.9795x109 dyne cat

Ulnar fundamental frequency w 332.0 8Z

Ulnar damping ratio 0.0425

Support rotational stiffness k, 0.86535x10° dyne cm

Support rotational damping c, 1.7136x 10 s dyne cm s

Tissue m ass per unit length PZ 1.85 g/cn

Tissue fundamental frequency 174.0 Hz

Tissue damping ratio ^F 0.4050

Skin stiffness k 2.2098009 dyne/cm

Condition

Excised ulna

!Musculature removed

Probe on ulna

Intact arm

Value of Error Function

0.0086

0.0112

0.0115

0.0132
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® T71BLE 6.2

Parametric Values for the Forearm of Monkey 665

Parameter Parametric

Name Symbol Value

Ulnar support length L 17.2 ca

Length-to-probe-location ratio a 0.6

Ulnar bending stiffness EI 5.0311x109 dyne caz

Ulnar fundamental frequency w 350.4 Sz

Ulnar damping ratio I	 . 0.0364

Support rotational stiffness k, 4.4382x109 dyne ca

Support rotational damping c, 2.2225x10s dyne ca s

Tissue mass per unit length PF 6.96 Vca

Tissue fundamental frequency Wj 101.0 Hz

Tissue damping ratio Tj 0.0792

Skin stiffness k 1.1155x10a dyne/ca

Condition	 Value of Error Function

Excised ulna	 0.0228

Musculature removed 	 0.0127

Probe on ulna	 0.0208

Intact arm	 0.0653
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T1B LE 6.3

Parznetric Values for the Forearm of donkey 659

Parameter Parametric

Name Symbol value

IIlnar support length L 17.2 cn

Length-to-probe-location ratio k 0.6

olnar bending stiffness	 (E0) EI 5.2498x109 dyne cm2

IIlnar bending stiffness	 (MR) EI 7.7120x109 dyne cm2

IIlnar fundamental frequency to 377.4 Hz

IIlnar damping ratio 0.0267

Support rotational stiffness k, 3.46822109 dyne cm

Support rotational damping e, 4.2095x10s dyne cm s

Tissue mass per unit length Ps 4.02 g/c a

Tissue fundamental frequency wi 145.1 Hz

Tissue damping ratio 0.5827

Skin stiffness-400 gm preload k 1.3543x10° dyne/cm

Skin stiffness-600 g n preload k 1.3924x10° dyne/ca

Condition

Excised ulna

!Musculature re

Probe on ulna

Intact arm 400

Intact arm 600

Value of Error Function

0.0094

moved	 0.0179

0.0111

gm preload	 0.0122

ga preload	 0.0169

0	 - ---
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TABLE 6.4

^--^	 Bending Stiffness Measurements on the Ulna of Monkey 659

Test	 Bending Stiffness
EI (10 9 dyne caz)

DPMI test (musculature removed)	 7.712

DPMI test (excised ulna)	 5.246

Percent difference 	 32.0%

Three-point bending test (MTS machine)	 4.827

Percent difference	 37.4%

Repeat bending test on dry bone	 4.530

Percent difference	 41.3%
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TABLE 6.5

Mechanical Properties of the Aluminum Beau

Predicted values

Bending Fundamental
Stiffness Frequency

EI w
(10 9 dyne cu e ) (Hz)

5.587 429.2

Corrected for enlarged ends	 5.670	 448.2

Percent difference	 1.5%	 4.4%

Measured values	 6.090	 489.3

Percent difference	 9.0%	 14.0%
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T18LE C.1

Zjnjaw/K as a Function of p,	 and

Fixed foundation

pj\r; 0.2 0.3 0.4

0.2 0.135 0.138 0.141

0.5 0.184 0.191 0.199

1.0 0.263 0.279 0.297

2.0 0.418 0.455 0.491

5.0 0.867 0.988 1.084

Free foundation

Pf \ Y; 0.2 0.3 0.4

0.2 0.164 0.184 0.199

0.5 0.257 0.309 0.346

1.0 0.413 0.518 0.598

2.0 0.725 0.938 1.113

5.0 1.655 2.192 2.670

0

0.5

0.144

0.207

0.311

0.517

1.123

0.5

0.208

0.369

0.643

1.213

3.049

A

142

v
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TABLE C.2

f(PE•;f)

Pined foundation

0

Pi\1;$ 0.2 0.3 0.4 0.5

0.2 0.035 0.038 0.041 0.044

0.5 0.084 0.091 0.099 0.107

1.0 0.163 0.179 0.197 0.211

2.0 0.318 0.355 0.391 0.417

5.0 0.767 0.888 0.984 1.023

Free foundation

Pt\ l; 0.2 0.3 0.4 0.5

0.2 0.064 0.084 0.099 0.108

0.5 0.157 0.209 0.246 0.269

1.0 0.313 0.418 0.498 0.543

2.0 0.625 0.838 1.013 1.113

5.0 1.555 2.092 2.570 2.949
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TABLE C.3

l'O 	 4 (;;)

Pined foundation

ptl;E 0.2 0.3 0.4 0.5

0.2 0.174 0.188 0.206 0.222

0.5 0.168 0.183 0.199 0.213

1.0 0.163 0.179 0.197 0.211

2.0 0.159 0.178 0.196 0.209

5.0 0.153 0.178 0.197 0.206

Free foundation

ps\-51 0.2 0.3 0.4 0.5

0.2 0.319 0.420 0.495 0.539

0.5 0.315 0.417 0.492 0.538

1.0 0.313 0.418 0.498 0.543

2.0 0.312 0.419 0.507 0.557

5.0 0.311 0.418 0.514 0.590

4
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FIGURES
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t^'t	
Figure 1.1. Human Long Bones.

C,	 J

(a) Arm and forearm shoving relative size,shape and position of
its bones. (b) Thigh and leg shoving relative size, shape and
position of its bones.

Q
	

(a)
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Figure 1.2. The Test Fixture.

(a) Shown with a human forearm in position. (b) Shown with a
monkey leg in position.
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,y

Figure 1.4. Sample Output From Thompson ' s Program.

LXP 730513 SQnJ T .T. .
-	 -̂% D •-PM -PRELOAD

C •_'T nJT DA Y ; c,JM": 1p { FOR CASE 2

FR:C	 A-0S Z	 ARu ?	 RE Z
- . 1•!7• -- -- {:.:. -SEr ^^aa _ ^^L'cCT	 -E'Y^; mac= C^^:^---	 nY+.!E

65. - '.2^'1E +00 	-92.' 2.3 -.1^5c+?7 ,^7_+?5 -.2L'c_ Ln:, ,31F nS
7-J•	 'U •3JF a 15	 .157E+n •1 0 L+'l'1 - .211c,_L1:) •!tn('t(t^^
a7• •1''r3^{-"6 - • 1:)^J 1j - 3U• - 3. ', - •127L +n_ -•15.+^15 - • 17z ^ Ln;^ .^ ► EL 1;

^^ • • 1 ::'^E+Jo •1JE f05 -82• 3.?	 .1	 5 •;;_ = +^^ x.14?= f'?^) .1 7 E F'1'^
.a7!1^-^^^•Lr-A-)6- 13c+	 -7 CA, -3 }--7z?+^'L-f-^i_.t-•il`.^1:^^•}^!^__ja••-.-11i^_.f:1=1

	

1 ^ ^• •= ^_^}^^ •7^E Lrl:: ^7 ^•	 ^ .O	 •?71E +05 •:!TE+ gL ,	 j^^L } 1 :) ft 1 F }"► ::-•	 •
_	 '21• - • ?i17= L 1tj •5! r-+'Z IL -75.	 'a 6 -- a 2 76E: 	 -.• -!Q E +44 - .	 •57i-L 1_... ..

13 71 • •^% 1^+1	 •^nCa^^'= -73•	 1.3	 •2,9-'C+75 •III+ 1 '4 -•0_15 a^trj	
;'trF t,.

_	 •	 _	 -
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Figure 1.5. sample Plot From Thompson' s Program.
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Figure 2.1. Orne's First eodel of the O1La in Thompsonls
Experimental Procedure.
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ligare 2.2. Impedance Data Pros a piece of Skin.
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Figure 2.3. Improved Hodel of the 	 Ulna in Thompsonss
Experimental Procedure.
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Figure 3.1. Diagrams of Beam models.
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(a) Case 1:
(b) Case 2:
(c) Case 3:
(d) Case 4:
(e) Case 5:
(f) Case 6:
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Figure 3.2. The Coordinate System of the Bean.
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Figure 3.3. The Foundation.

The coordinate systes and boundary conditions: (a) fixed, (b)
free.
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o Figure 4.1. DPMI Of a simply-supported Dean.
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Figure 4.2. Single-degree-cf- freedon Oscillator.
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o Figure 4. 3. DPRI of a Single-degree -of-freedoa Oscillator.
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o Figure 4.5. DPRI of Case 2: Rotational Spring on one End.
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v Figure 4.6. DPHI of Case 3: Rotational Spring on Each End.
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o Figure 4.7. DPRI of Case 4: Translational Spring on one End
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Figure 4.8. DPHI of Case 5: Translational 5nrina on Each
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Figure 4.9. DPAI of Case 6: Translational Spring on An
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Figure	 4.10.	 DPHI of	 Cases	 1	 Through 5, Re-non-
dim---=---•j-
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Figure 4.12. Taper.

(a) Linear, (b) quadratic.
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Figure 4.14. DPH Plot Exhibiting the Dependance of the
_s	 Damping Ratio of a Fixed Foundation.
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Figure 4.15. DPAI Plot Exhibiting the Dependance of the
!lass Per Unit Length of a Free Foundation.
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Figure 4.16. DPHI Plot Exhibiting the Dependance of the
Danping Ratio of a Free Foundation.
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Figure 4.17. Comparison Between Actual dinimum DPSI and
'	 Approximate Equations.

(a) Equation (4.17)p fixed foundation, (b) equation (4.18),p free
foundation.

a Actual minimum DPRI
— Equation (4.17) or (4.18)
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Figure 4.18. DPHI Plot Exhibiting the Dependance of theSprin g constant of A Snr; "?v ; - V.,.. -- .,	 _,C
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Figure 4.19. DPMI Plot Exhibiting the Dependance of the
Beam Damping Ratio in the Presents of a Spring in Series Vith
Thos ROAM-
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Figure 4.20. a Typical Set of DPdI Data, Indicating Certain
"-	 Key Points.
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Figure	 4.21.	 Single-degree-of-freedon oscillator in
Series vith a Spring.
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6 ..
	 Figure 5.1. (a) Error, (b) Error Function.
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Pigure 5.2. Plow Chart of the Computer Program.

Read in data
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Figure 5.3. Flout Chart of One Phase of the Computer Program
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0
	 Figure 5.4. Sample Input To Computer Program.

^i

c',

^ L	 3L IST -DATA

1 SUBJECT TT 500 GA PRELOAD
2 23.4 .6

^ t 3 -1
4 28
5 65. .250E+06 -92.
6 70. . 22 0E +06 -8 6.
7 80. .175E+06 -86.
8 90. .145E+06 -82.
9 1 0_0. .130 E4 06 -79.

10 110. .121E+16 -77.
11 120. .107E+06 -75.

sl 12 130. .96 9 E+0 5 -7 3.
13 140. .697E+05 -70.
14 160. .778E+05 -63.

 15 180. . 751E+05 - 5 5.
16 200. .698E+O5=52.

^e 17 220. .658E+05 -47.
1 8_	 _250. . 591E+05 - 4 2.
19 275. .572E+G5 -37.

4 20 300. .574E+05 -30.
21 325. .577E+05 -21.

^^ 22 350. .611E+05 -17.
4A I 23 375. .698E+05 -08.

24 4 00. . 821E+05 -02.
25 450. .105Et06-=^3.

- 26 500. .127E+06 -18.
^t 27 5 50. .150E+06 - 3 1.

28 600..145E +b 5.
se 29 700. .116E+06 -62.

3 0 800. . 938E+05 -67.
s. 3 0. .839ti05=b 9.
s^ 32 1000...819E +05 -70.
s^ END OF TILE
ss

Y
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Figure 5.5. Sample Output From Computer Prograi.

SUBJECT TT 500 GM PRELOAD

BONE LENGTH PROBE LOCITION
23.4 0.6

BONE STIFFNESS BORE HAT FRBQ DON& DAMPING SKIN STIFFNESS
0.31692E+11 400.7 0.0500 0.38004E+09

TISSUE MASS/LENGTH	 TISSUE VAT FBEQ	 TISSUE DAMPING
11.61 152.2 0.3785

EXPERIMINTAL THEORETICAL
PHASE PHASE

FREQ IMPEDANCE ANGLE	 IMPEDANCE	 ANGLE

1 65.00 0.2500r+06 -92.00 0.2372E+06 -87.80
2 70.00 0.2200E+06 -86.00 0.2176E+06 -87.53
3 80.00 0.1750E+06 -36.00 0.1851E+06 -86.83
4 90.00 0.1450E+06 -82.00 0.1589E+06 -85.83
5 1_0_0. 0 0_ 0 .1300:+06 -73. 00 0.1372E+06 -84. 3 2
6 110.00 0.1210E}06 -77.00 0.1191E+-0 .00'^
7 120.00 0.1070E+06 -75.00 0.1044E+06 -78.58
8 130 . 0_0 0._9690::+05 - 73.0_0 0 . 9345E++05 -7 4 . 0 4
9 140.00 0.8970:;+05 -7J.00 0.b6283:+G5 -66.94

10 160.00 0.7780E+05 -63.00 0.7962E+05 -60.71
11 1 8 0.0 0 0._7510'x:+05 - 55.0 0 +05_0._7503E -56.20
12 200.00 0.6930E+05 -52.00 0.6934E+05 -52.61
13 220.00 0.6580x.+05 -47.00 0.6361E+05 -48.18
14 250.0 0 0. 5910E+05 - 42. 0 0 0 . 57 20E++f15 -3 9 .20
15 275,00 0.5720s+05 -37.00 0.5490E+05 -30.22
16 300.00 0.5740E +0S -30.00 0.5563E+05 -21.21
17 325.00 0.577.0E+ 05 - 11.00 0.5916E+05 - 1 3.44
18 350.00 1.6110E+05 -17.00 0.6-5OF51 05	 =7.-6S-!
19 375.00 0.69800+05 -8.00 0.7283E+05 -4.02
20 400.00 0.8210E+05 -2.00 0.8209E+05 -2.40
21 x50.00 0.1OSOB+06 -5.00	 0.1035B" -
22 500.00 0.1270E+06 -18.00 0.1251E+06 -12.22
23 550.0_0 0. 1500E+06 -31.00 0.1399E+0 6 -23 .86
24 600 00 0.1450E+06 -45.00 0.14293;+06 -36:5
25 700.00 0.1160E+06 -62.00 0.1238E+06 -56.25
26 800.00 0.9380E+05 -67.00 0.1005E+06 -66.87
27 900. -69.00 0.8319E+05 -72.15
28 1000.00 0.8190E+05 -70.00 0.7125E+05 -74.74

THE ERROR FUNCTION FOR THIS SET OF PABAnETERS IS 0.0023 424 60

ORIGINAL PAGE IS
`)F 

P40R QUAI,t'I'i,
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Figure 5.6. Sample Plot From Computer Program.
r

w '

n

•
•

•

h

Ms

n

0

r
•

M

A

C

1x102	 /a10^	 1a10^
FREOUENCY

s

v

s "

`JS

1

tale,	-	 - - - -	 1ato2
	

ta10^

FREOUENCY

SUB..ECT TT S00 GM FRELDRO

O
Y

late,



(M) thl

0

(A (d)

(a) Intact are, (b) Probe on ulna, (c) Musculature removed, (d)
Excised ulna.



e

c

Figure 6.2. DPHI of Honkep 663: Excised ulna.C''
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Figure 6.3. DPHI of sonkep 663: dusculature Removed.
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Figure 6.4. DPGI of Donkey 663: Probe on Ulna.
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Figure 6.5. DPhI of Honkep 663: Intact Arm.
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.^ Figure 6.6. Misalignment Between Humerus and Support at the
Elbow.

r

HUMERUS

RADIUS

ULNA

LEFT SUPPORT
f'

MISALIGNMENT

tiAL YAV^ 15
► ttlVl ^R ^UA1fr

►F Pn'-



r-`717

Figure 6.7. DPHI of Monkey 665: Excised Ulna.
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Figure 6.8. DPMI of Monkey 665: Musculature Renoved.
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d
	 Figure 6.9. DPMI of Monkey 665: Probe on Ulna.
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Figure 6.11. DPHI of donkey 659: Excised Ulna.
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Figure 6.12. DPHI of donkey 659: Musculature Eenoved.
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Figure 6.13. DPHI of donkey 659: Probe on Ulna.
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Figure 6.14. DPHI of Nonkel 659: Intact Ira, 400 qa Preload
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5.15. DP31 of donkey 659: Intact Ira, 600 gn Preload
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Figure 6.17. Load-deflection Curve From Three-point Bending
Test on the Ulna of Bonkey 659.
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Figure 6.20. AP!!I of the Aluminum Bean.

M j



l^
C

f

f
C

a

eh
O
x

txt^^ 1x10 2 	1x103	 ix1Q4

FREOUENCY

WU
Z
Cr
O
LJ
CL

1-4

N

M '

N

Wr
N

M

N

W

fC

N

M

N

o	 -3	 •	 r	 e-9 e e n	 n	 r	 , r ^

204

Figure 7.1. DPHI of Subject TT: 400 ga Preload.
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Figure 7.3. DP3I of Subject TT: 600 qm Preload.
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Figure 7.4. DPHI of Honkep 2: Tibia.
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Figure 7.5. DPMI of !Monkey 16: Tibia.
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Figure 7.7. DPAI of Hanke7 2: Ulna.
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Pigare 7 . 9. DPMI of Monkey 17: Dina.
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Figure 7.11. DP5I Plot Exhibiting the Masking Effect of the
Spring-in -series.
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Figure B.I. The Elements of a Tapered Bean.

(a) Linear taper, (b) Quadratic taper
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Figure C.I. True Minimum of d Discrete DPNI Plot.
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Figure G.1. DP!!I of Suriect at? ann nu D-e,.._A
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Figure G.2. APHI of Subject BL: 500 gm Preload.
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Figure G.3. DPMI of Subject BL: 600 gr Preload.
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Figure G.4. DPbI of Subject CDG: 400 gm Preload.
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Figure G.5. DP!!I of Subject CDG: 500 go Preload.
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Figure G.6. DPHI of Subject CDG: 600 go Preload.
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v4evnT-A r._7- n pet of Subiect DG: 400 4 p Preload.
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Pigare G.B. DPHI of Subject DG: 500 gm Preload.
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Figure G.11. DPMI of Subject IB: 500 gn Preload.
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Figure G.12. DPHI of Subject MB: 600 gn Preload.
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Figure G.13. DPMI of Subject no: 400 gs Preload.
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Figure G.18. DPMI of Subject SS: 600 qu preload.
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Figure G.20. DPHI of Subject VG: 500 qe Preload.
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