
NASA Technical Memorandum 83120

NASA-TM-83120 19810017163

A Computer Program for Estimating the

Power-Dehsity Spectrum of Advanced

Continuous Simulation Language

Generated Time Histories

H. J. Dunn
~-: - ~ ... ~. -", ~ ":' .. _. . ~

, :
j : --

JUNE 1981 J>',' ,

NI\SI\

1111111111111 1111 1111111111 111111111111111111
NF00382

NASA Technical Memorandum 83120

A Computer Program for Estimating the
Power-Density Spectrum of Advanced
Continuous Simulation Language
Generated Time Histories

H. J. Dunn
Langley Research Cmter
Hampton, Virgi11ia

NI\S/\
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1981

SUMMARY

A computer program for the calculation of the power-density spectrum (PDS)
from a data base generated by an Advanced Continuous Simulation Language (ACSL)
simulation program is presented. The program uses an algorithm that employs the
fast Fourier transform· (FFT) to calculate the PDS of the variable. This is done
by first estimating the autocovariance function of the variable and then taking
the FFT of the smoothed autocovariance function to obtain the PDS. The PDS pro­
gram is written so that it is transparent to the ACSL run-time executive (that
is, the time history of the recorded variable is replaced with its PDS) and
so that the ACSL user can perform a frequency analysis from the time-domain ACSL
simulation model. An example of the use of the program is presented that deter­
mines the frequency content of the output waveform for a Van der Pol oscillator.

INTRODUCTION

In engineering science, mathematical models are often developed to aid in
the understanding of the dynamic behavior of the physical system. These models
also are of benefit in examining the results of proposed modifications in the
physical system. The engineering models are often developed with the aid of
digital computer simulation programs. One of these programs is the Advanced
Continuous Simulation Language (ACSL) described in references 1 and 2. The ACSL
system is designed for modelling the behavior of continuous systems described
by time-dependent, nonlinear differential equations and transfer functions. The
inputs into ACSL are in two distinct groups: the first group contains those
inputs concerned with defining the model or structure of the system being simu­
lated; the second group contains the sequence of commands that execute this
model - i.e., change parameters, start runs, plot data. One of the outputs of
the ACSL program can be the time history of specified dynamic variables, sampled
at regular intervals and stored on a mass storage device. This record may be
compared with the behavior of the physical system to determine the fidelity of
the mathematical engineering model.

The accuracy of the engineering model may also be verified by use of power­
density spectrum (PDS) analysis. The PDS of the model can be calculated and
then compared with an experimentally measured PDS of the physical system. One
method used in the past to do this analysis utilizes a numerical quadrature pro­
cedure, to calculate the complex Fourier integral, at a number of selected
frequencies (see example program number 9 in ref. 1). If a complex system were
being analyzed or a large number of frequencies were required to define the PDS,
the numerical quadrature method could use a substantial amount of computer
resources. This paper describes a computer program which utilizes a fast Fourier
transform (FFT) technique to estimate the PDS of the model. Because of the
efficiency of the FFT, this program should require less computer resources than
other methods. The program is designed to be an extension of the ACSL system so
that the PDS analysis can be performed as part of the ACSL sequence of commands
that exercise the model. In the remainder of this paper, the PDS algorithm used

in this computer program is described, the computer program's subroutines are
discussed, the use of the program is described, and an example of the program
execution is presented.

PDS ALGORITHM

In this section, an overview of the algorithm used to calculate the PDS is
presented. This section is not intended to be a tutorial on the subject of PDS
analysis and computation. For further information on this subject the reader
should consult reference 3.

The PDS S(W) of the continuous dynamic variable x(t) is defined as the
Fourier transform of its autocorrelation function R (1:'), or

S (w) = Loo e-jW1:' R(T) dT

where the autocorrelation is defined as

R (1:') = E [x (t)x (t+1:')]

and E is the statistical expectation operator. Note that if x(t) is a zero­
mean function, i. e. , E [x (t)] = 0, then R (1:') is also the autocovariance
flUlction. If a sequence of numbers is derived fran the continuous variable by
periodic sampling, the Fourier transform of the continuous variable can be
approximated by

S (w) ... TS (Q)

where S(Q) is the discrete Fourier transform (DFT) of the sampled-data autocor­
relation function and T is the sampling period. The FFT algorithm is a fast
method of computing the DFT at a discrete number of frequencies. The FFT is used
by the program discussed in this paper not only to calculate the PDS fran the
autocovariance sequence, but also to calculate the autocovariance sequence fran
the input data sequence.

The PDS algorithm used by the computer program described in this paper is
suggested by Oppenheim and Schafer in reference 3. An estimate of the PDS is
found by taking the FFT of the smoothed truncated autocovariance function of the
time history. The truncated autocovariance function is calculated by taking the
time history, composed of a data sequence of N data samples, and dividing it

2

into K data sequences, each of length L/2. The FFT of each of these smaller
data sequences, augmented with L/2 zero samples (forming a data sequence of
length L), are then used in a formula that uses the property of circular con­
volution to force the values of the autocovariance function to be correct for
the first L/2 data elements. In doing so, the truncated autocovariance func­
tion is calculated by using K FFT's of length L and one inverse FFT for a
real symmetric data sequence. This autocovariance function is then smoothed
with a data window and the PDS is calculated by taking the FTT of the real symr
metric data sequence. By using this method, N can be selected as large as
necessary to obtain a good estimate of the autocovariance function, while the
values of L and the sampling period are chosen to determine the frequency
range and resolution of the POSe

The subroutines that are used to calculate the FFT were obtained from refer­
ence 4, sections 1.2 and 1.3. In order to gain maximum efficiency, special pur­
pose FFT algorithms were used for real input sequences and for real, symmetric
input sequences. The basic FFT routine, which is common to all the special pur­
pose routines, is a fast radix 8-4-2 algorithm which performs as many base-8
iterations as possible and then performs one base-4 or base-2 iteration, if nec­
essary. Additional information on the FFT subroutines used can be found in
reference 4.

PROGRAM OESCRIPTION

ACSL is an application oriented system for investigating the dynamic behav­
ior of physical systems described by sets of differential equations. The inter­
face of the POS program to ACSL is illustrated in figure 1. Initially the model
description is read by the ACSL translator. The output of the translator
is passed to the run-time executive, which also reads the run-time commands from
the user. with the proper commands, the ACSL executive generates a data base,
the PREPARE file, consisting of the time histories of the specified dynamic
variables. The ACSL executive uses this PREPARE file to generate listings and
plots of the simUlation. The POS program of this paper, which is called by the
executive, reads the PREPARE file, calculates the posts of the variables,
and writes them on the PREPARE file. After the program has returned to the ACSL
executive, the executive can be directed to list or plot the posts.

The structure of the POS program is given in figure 2. There are four sub­
routines that were written for this report (POSMAIN, POS, WINDOW, INOOT). A
listing of each of the routines described in this section can be found in appen­
dix A. These subroutines call the FFT subroutines FFA, FFTSYM, and IFTSYM,
which are described in reference 4. The subroutines ZZLINE and ZZPAGE are ACSL
subroutines for output formating. The subroutines described in the subsequent
sections make use of the imaginary part of a declared complex number being
stored sequentially in memory after the real part of the complex number. For
this reason, care should be taken with program modifications not to disturb the
storage allocations in the calling statement to subroutine POSe In the sections
which follow, each of the programs developed in this report are discussed.

3

Subroutine PDSMAIN

Usage:

CALL PDSMAIN(A,MP,DELTT,L02,IWIND,IF02,AMAX,IDIV,LOG)

Argument list:

4

A

MP

DELTT

L02

IWIND

Wor k ar r ay with d imens ions of AMAX or gr eat er •

Equal to the number of dynamic variables written on the PREPARE file
by the run-time executive.

The sampling interval at which the data were recorded.

The number of data points in the calculated estimate of the autoco­
variance sequence, L/2. Must be a power of 2.

Selects the type of data window to be applied to the autocovariance
function:

IWIND Window type

1 Rectangular, or no window

2 Bartlett

3 Hanning

4 Hamming

5 Blackman

IF02 The number of data points in the calculated PDS.

AMAX The length of the work array A. Must be greater than:

512 + 2(MP-1) + MAXIMUM(A,B)

where

A = (L02+2) (MP-1)

B = (IF02+1) (MP-1)+IF02+2

IDIV If N is not equal to zero, the Nth dynamic variable is divided
into the remaining variables processed by the program. If N is
equal to zero, nothing is done.

LOG A logical variable, that if set true; the logarithm of the frequency
is placed on the PREPARE file. I f LOG is tr ue and IDIV is not equal
to zero, then the PDS of each variable, except for the Nth vari­
able, is converted to decibels.

This routine is called the ACSL simulation program. The purpose of this
routine is to organize the data storage required by the routine PDS. If the
amount of storage required exceeds the value of the variable AMAX, subroutine
PDS will not be called. Instead, the storage requirements will be printed and
the program will be abnormally terminated. If there is enough storage in
array A, subroutine PDS will be called. On return from the routine PDS, the
amount of storage required is printed along with the mean and variance for each
of the variables processed by subroutine PDS. PDSMAIN will then return normally
to the calling program.

Subroutine PDS

Usage:

CALL PDS (BUFF,MP, KBUFF ,A,Xl ,Xl Pl ,MPM_l ,DELTT, XM,X2M,FREK,LP2,IWX,L02Pl , IF02Pl ,
IDIV,RA,RX1,RX1Pl,FREKX,LOG)

Ar gument lis t:

BUFF

MP

KaUFF

A

Xl

Xl pl

MPMl

DELTT

X2M

FREK

LP2

IWX

L02Pl

Data storage buffer used by INOUT with dimensions MP by KBUFF.

Number of variables on the PREPARE file.

Dimension of BUFF.

A complex wor k matrix with dimension MPM1.

A complex wor k matrix wi th dimensions L02Pl by MPM1.

A complex wor k matrix with dimensions L02Pl by MPM1.

MP-l.

Sampling interval.

A vector of length, MPM1, that on return contains the mean of the
dynamic variables.

On return oontains the variance of the dynamic variables.

A wor k matrix with dimensions IF02Pl by MPM1.

L+2.

The window-select integer, same as IWIND in subroutine PDSMAIN.

L/2+1.

5

IF02Pl

IOIV

RA

RXl

RXl Pl

FREKX

LOG

IF02+l, where IF02 is defined by PDSMAIN.

See subroutine PDSMAIN.

Work matrix that must be set equal to array A in the calling program.
On returning to the calling program, the scaled autocovariance
sequence is returned.

A wor k matrix that must be set equal to the array Xl in the calling
program.

A wor k matrix that must be set equal to the array Xl Pl in the calling
program.

A work vector with dimension of IF02pl.

See subroutine PDSMAIN.

Subroutine PDS calculates the algorithm proposed on page 560 of reference 3.
The major steps of the routine are as follows:

1. The mean and variance of the variables that are recorded on the PREPARE
file are determined and stored.

2. The number of data sequences of length L02
file are determined and stored in the variable K.
rewound.

that exist on the PREPARE
The PREPARE file is then

3. For each of the K segments, as the data sequence is inputed the mean
is subtracted and the data sequence is augmented with L02 zero-data samples.

4. The FFT for each of the segments is calculated by the routine FFA and
combined to form the input to the routine IFTSYM, which calculates the estimate
of the autocovariance function.

5. The autocovariance function is normalized by the variance and the
selected data window is applied by the routine WINDOW.

6. The scaled PDS is calculated, by the routine FFTSYM, by taking the FFT
of the smoothed autocovariance function.

7. The PDS is corrected for scaling and outputed to the PREPARE file.

Subroutine WINDOW

Usage:

CALL WINDOW(A,LP2,MPM1,IWX,FREK,IF02Pl)

6

Argument list:

A The input autocovariance sequence that is to be attenuated.

LP2 The number of data points in the autocovariance sequence.

MPM1 Number of dynamic variables being transformed.

IWX The type of window to be used. See subroutine PDSMAIN.

FREK Output smoothed autocovariance sequenc~.

IF02P1 The number of data points in the output sequence.

The purpose of this subroutine is to attenuate the autocovariance sequence
with a data window. On returning to the calling program, the array FREK con­
tains the attenuated sequence of the first L02P1 data elements with the remaining
IF02PI - L02P1 data elements equal to zero.

, ,

Subroutine INOUT

Usage:

CALL INOUT (BUFF ,N ,M, IN , UN, IERR)

Argument list:

BUFF

N,M

IN

UN

IERR

Input data buffer.

Dimensions of BUFF, N*M must be less than 512.

If equal to 1, the program will read data from the input device; if
not equal to 1, the program will write to the output device.

Input/Output device number •.

Positive if I/O error occurred; zero if an end-of-file condition
occurred; and negative if no I/O error occurred.

Subroutine INOUT is used to transmit data to and from the ACSL run-time
executive. The routine INOUT is used to read and write data to the PREPARE
file (unit number 8). The routine will be abnormally terminated if more than
512 words are to be transmitted or if an input/output error occurs. If, at
some time in the future, the run-time executive's method of writing data on the
PREPARE file is changed, this subroutine must be modified to conform to the new
accession method.

7

PROGRAM OPTIONS AND USAGE

The purpose of this section is to describe several of the options that are
available and to give some general guidelines on the use of the program. These
guidelines are as follows:

1. Since the PDS subroutine replaces the first variable that is stored on
the PREPARE file with the frequency, the independent variable of the simulation
(time, T), should be placed as the first variable on the file.

2. The sampling interval is the communication interval (CINT) in the ACSL
program. The sampling interval should be small enough so that aliasing does not
occur. A general rule is to choose a sampling interval at least equal to the
period of a frequency that is 20 to 40 times the highest frequency of interest.
This rule is arbitrary because it assumes that the actual PDS is almost zero at
this frequency.

3. The length of the data base is chosen so that the estimate of the auto­
covariance is ergodic. Since this length is dependent on the system and the
random process, it must be chosen by trial and error or experience.

4. The frequency resolution of the PDS is determined ~ the sampling inter­
val (DELTT in the listing) and the number of data points in the autocovariance
function estimate (L02) and is equal to 1./(2.*DELTT*L02). The variable L02
must be a power of 2, but since the FFT routine is a radix-8 type, L02 should
be a power of 4 for the optimum use of the FFT routines.

5. The PDS may be calculated at closely spaced frequencies, as is conve­
nient and practical, ~ using the variable IF02. The frequency increment between
PDS data points is equal to 1./(2.*DELTT*IF02). A general rule is to make IF02
at least twice L02.

6. No matter how large the variable IF02 is, the frequency resolution of
the PDS is still determined ~ the length of the autocovariance estimate
(DELTT*L02). If in the PDS program, IF02 is smaller than L02, L02 is used
instead of IF02 for the frequency output interval calculation.

7. In the development of the program, the only feasible means for input­
ting the number of variables that are written on the PREPARE file (MP) to the
program was as a passed variable in the calling sequence. If the user does not
insure that MP is correct, unpredicted results can occur.

8. In parameter identification, it is useful to compare the magnitude of a
frequency response curve to the PDS of one variable divided ~ the PDS of another
variable. This can be done in the PDS program by setting the variable IDIV equal
to N, where N represents the PDS of the variable that is to be divided into
the other PDS's. No division takes place if IDIV is zero.

9. If the logical variable LOG in the calling sequence is set true, the
logarithm of the frequency is written onto the PREPARE file. Also, if IDIV is
not equal to zero, the PDS's of variables, except for the PDS of the Nth vari­
able, are converted into decibels.

8

10. So that the calculated POS can be easily compared to the magnitude of a
transfer function, the square root of the POS is taken before it is written on
the PREPARE file.

EXAMPLE OF PROGRAM USE

An example is discussed in this section which shows the subroutine being used
to calculate a POS of a time history and the ACSL run-time executive plotting
the results. The example presented is an ACSL program simulating a Van der Pol
oscillator. The equation for the Van der Pol oscillator is similar to that of
a free vibration of a spring mass system with viscous damping. However, the
damping term of this equation is nonlinear in that it depends on the amplitude
of the oscillation. At small amplitude levels, the damping is negative and the
amplitude of the oscillation grows. At large amplitude values, the damping is
positive and the amplitude diminishes. The combination of these two effects
leads to a stable limit cycle. The equation for describing a Van der Pol oscil­
lator can be written in parametric form as

where A determines the growth rate of the oscillation and x is the state
variable that represents the output of the oscillator. A dot over a symbol indi­
cates the derivative with respect to time. In reference 5, Rogers and Connolly
give an approximate solution for the fundamental frequency Wo in radians per
second as

Wo = 1 -
A2

8

The amplitude of the fundamental frequency and the first two harmonics are
defined as

AO = 2

Al = 0

2A
A2 =

9

A listing of the ACSL translator input for this problem is given in appendix B.
Except for the additional statements needed to specify the calculation of the
POS, the simulation program is identical to the example presented in reference 2.

9

The initial conditions are such that with A = 1, the simulation will oscillate
in a stable limit cycle with a fundamental frequency of 0.14 Hz. The subrou­
tine is configured to calculate the autocovariance function with data sequences
of 512 data samples, uses a Blackman data window and calculates a PDS having
1024 data points. Also, the program expects to find three variables recorded on
the PREPARE file every 0.063 sec. Since this results in the recording of approx­
imately 800 data points on the PREPARE file, there will be only one data sequencE
used in the algorithm. For this case, this will be sufficient since the autoco­
variance is a periodic and deterministic function. with the preceding values,
the frequency resolution of the PDS will be 0.016 Hz, and the frequency incremenl
between the plotted data points of the PDS will be 0.008 Hz.

A listing of the ACSL run-time executive input can be found in appendix C.
The simulation is constructed so that the initial START command generates the
data base to be used by PDSMAIN. This data base is displayed by the next two
plot commands. Figure 3 is the output generated by the ACSL run-time executive
for the first plot command listed in appendix C. This instruction produces a
plot of the variable X, the oscillator output, on the y-axis against the vari­
able T, time. A phase-plane plot of the system can be generated by plotting
the derivative of x (XD in the simulation), against the variable X. Fig­
ure 4 was generated by the second PLOT command in appendix C. When the second
START command is issued, the simulation has been reconfigured to call PDSMAIN
and return to the executive. The last PLOT instruction produces figure 5,
the desired PDS of the output variable, PDSX plotted against frequency W in
Hertz. The peak of the first harmonic is not exactly what was predicted in
reference 4. The applied window reduced the low-frequency peak. However, the
third harmonic peak is in agreement with reference 5.

CONCLUDING REMARKS

A computer program for approximating the PDS from time histories generated and
stored by an advanced continuous simulation language (ACSL) simulation program
has been presented. The method uses an algorithm that employs the fast Fourier
transform (FFT) of the time history to calculate an estimate of the autocovari­
ance function of the time history. The power-density spectrum (PDS) is then
calculated by taking the FFT of the windowed autocovariance function. An exam­
ple was presented that determined the PDS for a Van der Pol oscillator.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 15, 1981

10

C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

APPENDIX A

PROGRAM LISTING

SUBROUTINE PDSMAIN(A,MP,DELTT,L02,IWIND,IF02,AMAX,IDIV,LOG)

A
MP
DELTT
L02

IWIND

IF02

PURPOSE

ANALYSIS

WRITTEN

TO CALCULATE THE PDS OF VARIABLES
WRITTEN TO THE PREPARE FILE

H.J. DUNN - NASA,LARC

MARCH, 1980

ARGUMENT LIST

WORK ARRAY
NUMBER OF VARIABLES WRITTEN ON THE PREPARE FILE
SAMPLING INTERVAL
THE NUMBER OF DATA POINTS OF THE ESTIMATED
AUTO COVARIANCE FUNCTION (MUST BE A POWER OF 2)
SELECTS THE DATA WINDOW TYPE,

IWIND WINDOW
1 RECTANGULAR
2 BARTLETT
3 HANNING
4 HAMMING
5 BLACKMAN

NUMBER OF DATA POINTS OF THE PDS (MUST BE A POWER
OF 2)

AMAX LENGTH OF THE WORK ARRAY A
IDIV IF IDIV=N THEN DIVIDE THE PDS OF THE NTH VARIABLE

INTO THE PDS OF THE REMAINING VARIABLES ON THE PREPARE
FILE

LOG IF LOG IS SET TRUE IN THE CALLING PROGRAM, THE
LOGARITHM OF THE FREQUENCY IS PLACED ON THE PREPARE
FILE

IF IDIV.NE.O AND LOG IS TRUE THE REMAINING VARIABLES ARE CHANGED
INTO DECIBELS

DIMENSION A(AMAX)
INTEGER AMAX
LOGICAL LOG
MPM1=MP-1
L=L02*2
L02P1=L02+l
IF02P1=IF02+1

11

12

APPENDIX A

IF(L02Pl.GT.IF02Pl) IF02Pl = L02Pl
LP2=L+2
KBUFF=512/MP
Nl=l
N2=Nl+KBUFF*MP
N3=N2+MPMl
N4=N3+MPMl
N5=N4+LP2*MPMl
N6l=N5+LP2*MPMl
N7l=N6l+LP2*MPMl
N62=N5+IF02Pl*MPMl
N72=N62+IF02Pl+l
N7=AMAXO(N7l,N72)
IF(N7.GT.AMAX) GO TO 100
CALL PDS(A(Nl),MP,KBUFF,A(N4),A(N5),A(N6l),MPMl,DELTT,

1 A(N2),A(N3),A(N5),LP2,IWIND,L02Pl,IF02Pl,IDIV,
2 A(N4),A(N5),A(N61),A(N62),LOG)

100 CALL ZZPAGE(l,ZO)
CALL ZZLINE(ZO)
CALL ZZLINE(4)
WRITE(6,200) N7

200 FORMAT(///10X,22HSTORAGE NEEDED EQUALS 18)
IF(N7.GT.AMAX) STOP 333
CALL ZZLINE(3)
WRITE(6,300)

300 FORMAT(//10X,8HVARIABLE,5X,4HMEAN,11X,8HVARIANCE)
400 FORMAT(10X,I3,5X,G15.4,G15.4)

DO 500 I=l,MPMl
CALL ZZLINE(l)
WRITE(6,400) I,A(N2+I-l),A(N3+I-l)

500 CONTINUE

C

RETURN
END
SUBROUTINE PDS(BUFF,MP,KBUFF,A,Xl,XlPl,MPMl,DELTT,

1 XM,X2M,FREK,LP2,IWX,L02Pl,IF02Pl,IDIV,
2 RA,RXl,RXlPl,FREKX,LOG)

DIMENSION BUFF(MP,KBUFF),Xl(L02Pl,MPMl),XlPl(L02Pl,MPMl),
1 XM(MPMl),X2M(MPMl),FREK(IF02Pl,MPMl),A(L02Pl,MPMl),
2 RXl(LP2,MPMl),RXlPl(LP2,MPMl),RA(LP2,MPMl),FREKX(1)

COMPLEX Xl,XlPl,A
LOGICAL LOG

C INITIALIZE VARIABLES
C

DO 9 I=l,MPMl
XM(I)=O.
X2M(I)=0.

9 CONTINUE
L=LP2-2
L02=L02Pl-l
N=O
IERR=UNIT(8)

APPENDIX A

REWIND 8
15 CONTINUE
C
C CALCULATE MEAN AND VARIANCE
C

CALL INOUT(BUFF,MP,KBUFF,1,8,IERR)
IF(IERR.EQ.O) GO TO 10
K=LENGTH(8)/MP
DO 11 J=1,MPM1
DO 11 I=l,K
XM(J)=XM(J)+BUFF(J+1,I)
X2M(J)=X2M(J)+BUFF(J+1,I)**2

11 CONTINUE
N=N+K
GO TO 15

10 CONTINUE
DO 12 J=1,MPM1
XM(J)=XM(J)/N
X2M(J)=X2M(J)/N-XM(J)**2

12 CONTINUE

C
C
C

C

IERR=UNIT(8)
REWIND 8

K=N/L02
N=O

K IS THE NUMBER OF P~CORDS OF LENGTH L/2 ON FILE 8

C LOAD Xl AND SET INITIAL A=O
C

25 CONTINUE
DO 30 1=1, LP2
IF(I.GT.L02) GO TO 35
IF(N.NE.O) GO TO 40
CALL INOUT(BUFF,MP,KBUFF,1,8,IERR)
IF(IERR.EQ.O) GO TO 100
N=LENGTH(8)/MP
NI=O

40 CONTINUE
NI=NI+1
DO 31 J=1,MPM1
RX1(I,J)=BUFF(J+1,NI)-XM(J)
RA(I,J)=O.

31 CONTINUE
IF(NI.EQ.N) N=O
GO TO 30

35 CONTINUE
C
C
C

SET RX1(I)=0 FOR I L/2

DO 32 J=1,MPM1
RXl(I ,J)=O.

13

APPENDIX A

RA(I,J)=O.
32 CONTINUE
30 CONTINUE,

DO 36 I=1,MPM1
CALL FFA(X1(1,I),L)

36 CONTINUE
C
C START ALGORITHM
C

DO 50 I=l,K
IF(I.EQ.K) GO TO 55

C
C READ X1P1
C

DO 51 II=l,L
IF(II.GT.L02) GO TO 52 II',

IF(N.NE.O) GO TO 53
CALL INOUT(BUFF,MP,KBUFF,1,8,IERR)
IF(IERR.EQ.O) GO TO 100
N=LENGTH(8)/MP
NI=O

53 CONTINUE
NI=NI+1
DO 54 J=1,MPM1
RX1P1(II,J)=BUFF(J+1,NI)-XM(J)

54 CONTINUE
IF(NI.EQ.N) N=O
GO TO 51

52 CONTINUE
DO 61 J=1,MPM1
RXIPl(II,J)=O.

61 CONTINUE
51 CONTINUE
C
C CALCULATE FFT
C

DO 56 J=1,MPM1
CALL FFA(X1P1(1,J),L)

56 CONTINUE
GO TO 57

C
C X1P1(K)=0.
C
55 CONTINUE

DO 58 J=1,MPM1
DO 58 II=1,LP2
RX1P1(II,J)=0.

58 CONTINUE
57 CONTINUE
C
C CALCULATE A
C

14

APPENDIX A

DO 60 J=1,MPM1
DO 60 II=1,L02P1
A(II,J)=A(II,J)+X1(II,J)*(CONJG(X1(II,J»+(-1)**(II-1)

1 *CONJG(X1P1(II,J»)
60 CONTINUE
C
C X1=X1P1 AND REPEAT MAJOR LOOP
C

DO 50 J=1,MPM1
DO 50 II=1,L02P1
X1(II,J)=X1P1(II,J)

50 CONTINUE
C
C SHIFT REAL PART OF A INTO SINGLE REAL ARRAY
C

DO 82 J=1,MPM1
DO 82 I=2,L02P1
RA(I,J)=REAL(A(I,J»

82 CONTINUE
C
C TAKE INVERSE FFT OF A
C

DO 80 J=1,MPM1
CALL IFTSYM(RA(1,J),L,X1)

80 CONTINUE
C
C DIVIDE A BY SIMGA**2 AND K*L/2
C RA IS NOW THE ESTIMATE OF THE AUTO COVARIANCE FUNCTION
C

XN=K*L02
DO 90 K=1,MPM1
DO 90 I=1,L02P1
RA(I,K)=RA(I,K)/(XN*X2M(K»

90 CONTINUE
C
C
C

C
C
C

APPLY WINDOW

IFREK=(IF02P1-1)*2
CALL WINDOW(RA,LP2,MPM1,IWX,FREK,IF02P1)

TAKE FFT TO GET PDS

DO 91 J=1,MPM1
CALL FFTSYM(FREK(1,J),IFREK,FREKX)

91 CONTINUE
C
C OUTPUT PDS AND SCALE
C

IERR=UNIT(8)
REWIND 8
DF=1./(DELTT*IFREK)
XN=DELTT/(8.*ATAN(1.»

15

16

C

F=DF/2.
J=O
DO 70 I=1,IF02P1
J=J+1
BUFF(l,J)=F

APPENDIX A

IF(LOG) BUFF(1,J)=ALOG10(F)
F=F+DF
DO 71 K=1,MPM1
KP1=K+l
BUFF(KP1,J)=SQRT(ABS(FREK(I,K)*XN*X2M(K)))

C IF IDIV=N DIVIDE F(N,J) INTO F(I,J)
C FOR 1=1 TO MPM1, I.NE.N
C

IF(IDIV.EQ.K.OR.IDIV.EQ.O) GO TO 71
BUFF(KP1,J)=BUFF(KP1,J)/BUFF(IDIV,J)
IF(LOG) BUFF(KP1,J)=20.*ALOG10(BUFF(KP1,J))

71 CONTINUE
IF(J.NE.KBUFF) GO TO 70
J=O
CALL INOUT(BUFF,MP,KBUFF,0,8,IERR)

70 CONTINUE
IF(J.NE.KBUFF.AND.J.NE.O) CALL INOUT(BUFF,MP,J,0,8,IERR)
ENDFILE 8
RETURN

100 CONTINUE
PRINT 101

101 FORMAT(10X,20HBUFFER ERROR)

C

RETURN
END
SUBROUTINE WINDOW(A,LP2,MPM1,IWX,FREK,IF02P1)
DIMENSION A(LP2,MPM1),FREK(IF02P1,MPM1)
REAL HANN, HAMM
BART(I)=FLOAT(L02P1-I+1)/XL02P1
HANN(I)=.S*(1.+COS(3.141S9*FLOAT(I-1)/XL02P1))
HAMM(I)=.S4+.46*COS(3.14159*FLOAT(I-1)/XL02P1)
BLACK(I)=.42+.S*COS(3.14159*FLOAT(I-1)/XL02P1)

1 +.08*COS(6.28319*FLOAT(I-1)/XL02P1)

C SET FREK=O
C

L02P1=LP2/2
XL02P1=FLOAT(L02P1)
DO 11 J=1,MPM1
DO 11 I=1,IF02P1
FREK(I,J)=O.

11 CONTINUE
DO 12 I=1,L02P1
AMP=l.
IF(IWX.EQ.2) AMP=BART(I)
IF(IWX.EQ.3) AMP=HANN(I)
IF(IWX.EQ.4) AMP=HAMM(I)

APPENDIX A

IF(IWX.EQ.5) AMP=BLACK(I)
DO 12 J=1,MPM1
FREK(I,J)=A(I,J)*AMP

12 CONTINUE

C
C
C
C
C
C
C
C
C
C
C
C
C

RETURN
END
SUBROUTINE INOUT(BUFF,N,M,IN,UN,IERR)

BUFF

IN

UN

IERR

INPUT/OUTPUT ARRAY

=1, READ DATA
OTHERWISE, WRITE DATA

UNIT NUMBER

NEGATIVE IF NO DATA ERROR
ZERO IF EOF

DIMENSION BUFF(512)
INTEGER UN
K=N*M
IF(K.GT.512) STOP 222
IF(IN.EQ.1) GO TO 1

C WRITE DATA
BUFFER OUT (UN,O) (BUFF(l),BUFF(K»
GO TO 2

1 CONTINUE
C READ DATA

BUFFER IN (UN,O) (BUFF(l),BUFF(K»
2 IERR=UNIT(UN)

IF(IERR.GT.O) STOP 111
RETURN
END

17

18

APPENDIX B

ACSL TRANSLATOR INPt1r

PROGRAM VAN DER POL'S EQUATION
"----------PROGRAM CONSTANTS"
CONSTANT LA = 1.0

,PI = 3.14159
TSTOP

"----------STATE INITIAL CONDITIONS"

50.0

CONSTANT XIC =-1.5340, XDIC = .76552
"----------DEFINE COMMUNICATIONS INTERVAL"
CINTERVAL CINT = 0.063
"----------DEFINE CONSTANTS FOR PDS"
ARRAY A(10000)
INTEGER AMAX,MP,L02,WINDOW,FREQCY,DIV
LOGICAL LOG,SKIPP,SKIPT
CONSTANT AMAX = 10000

,L02 512
,FREQCY 1024
,W o.
,PDSXD O.
,SKIPP .TRUE.

INITIAL
IF(SKIPT) GO TO TERM

END$ "OF INITIAL"
DYNAMIC
DERIVATIVE

MP
WINDOW
DIV
PDSX
LOG
SKIPT

"----------VAN DER POL'S EQUATION"

= 3
5

- 0
O.
.FALSE.

= .FALSE.

XD = INTEG(LA*(1.0-X**2)*XD-X,XDIC)
X = INTEG(XD,XIC)

END$ "OF DERIVATIVE SECTION"
TERMT(T.GT.TSTOP)

END$ "OF DYNAMIC SECTION"
TERMINAL
TERM •• CONTINUE

IF(.NOT. SKIPP) •••

...

CALL PDSMAIN(A,MP,CINT,L02,WINDOW,FREQCY,AMAX,DIV,LOG)
END$ "OF TERMINAL"
END$ "OF PROGRAM"

APPENDIX C

ACSL RUN-TIME EXECUTIVE INPUT

PREPAR T,X,XD
SET CALPLT=.T.
START
PLOT "XHI"=TSTOP,X,"LO"=-5.0,"HI"=5.0
PLOT "XAXIS"=X,"XLO"=-5.0,"XHI"=5.0,

XD,"HI"=5.0,"LO"=-5.0
SET SKIPT=.T.,SKIPP=.F.
START
PREPAR "CLEAR",W,PDSX,PDSXD
PLOT "XAXIS"=W,"XLO"=O.O,"XHI"=O.72,

PDSX,"HI"=3.0,"LO"=O.
END

19

REFERENCES

1. Advanced Continuous Simulation Language (ACSL) -- User Guide/Reference Manual.
Mitchell and Gauthier, Assoc., Inc., c.1975.

2. Mitchell, Edward E. L.: and Gauthier, Joseph S.: Advanced Continuous Simula­
tion Language (ACSL). Simulation, vol. 26, no. 3, Mar. 1976, pp. 72-78.

3. Oppenheim, Alan V.: and Schafer, Ronald W.: Digital Signal Processing.
Prentice-Hall, Inc., c.1975, pp. 556-562.

4. Programs for Digital Signal Processing. IEEE Press, c.1979.

5. Rogers, A. E.: and Connolly, T. W.: Analog Computation in Engineering Design.
McGraw-Hill Book Co., Inc., 1960, pp. 146-149.

20

MODEL
DESCRIPTION

RUN-TIME
COMMANDS

ACSL
TRANSLATOR

ACSL
EXECUTIVE

PDS
PROGRAM

PLOTS,
LISTINGS

Figure 1.- ACSL and POS program interface.

PDSMAIN

PDS

INOUT FFA IFTSYM WINDOW FFTSYM

Figure 2.- PDS program structure.

21

5.00

3.00

1. 00

x
·1.00

·3.00

·5.00 +-----,------T------,j----,-j-----,j
0.00 10.0 20.0 30.0 40.0 50.0

T

Figure 3.- ACSL plot of Van der Pol oscillator output.

5.00

3.00

1. 00

XO

-1. 00

-3.00

-5.00 +--------y------,.------,----,------,
-5.00 -3.00 -1.00 1.00 3.00 5.00

X

Figure 4.- ACSL plot of phase plane for oscillator.

22

3.00

2.40

1. 80

PDSX

1. 20

0.60

0.00 -~----~i-------ri-------ri---===~i=======;i
0.00 0.14 0.28 0.43 0.57 0.72

W

Figure 5.- POS of Van der Pol oscillator.

23

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM-83120
4. Title and Subtitle 5. Report Date

A CDMPUTER PROGRAM FOR ESTIMATING THE POWER-DENSITY June 19B1
SPECTRUM OF ADVANCED CDNTINOOUS SIKJLATIOO LANGJAGE 6. Performing Organization Code

GENERATED TIME HISTORIES 505-34-33-05
7. Author(s) 8. Performing Organization Report No.

H. J. Dunn L-14217
10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center
11. Contract or Grant No.

Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration

14. Sponsoring Agency Code Washington, DC 20546

15. Supplementary Notes

16. Abstract

A oomputer program for performing frequency analysis of time-history data is
presented. The program uses circular oonvolution and the fast Fourier trans-
form to calculate power-density spectrum (PDS) of time-history data. The
program interfaces with the Advanced Continuous Simulation Language (ACSL) so
that a frequency analysis may be performed on ACSL generated simulation vari-
ables. An example of the calculation of the PDS of a Van der Pol oscillator
is presented.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Power-density spectrum
Unclassified - Unlimited Fast Fourier transform

Advanced oontinuous
simulation language

Subject Category 61

19. Security Oassif. (of this report) 20. Security Classif. (01 this page) 21. No. of Pages 22. Price

Unclassified Unclassif ied 24 A02

For sale by the NatIOnal Technical Information Service, Springfield, Virginia 22161

NASA-langley, 1981

End of Document

