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ABSTRACT

The robustness of the stability of multivariable linear time-invariant
feedback control systems with respect to model uncertainty is considered
using frequency domain criteria. Available and new robustness tests are
unified under a common framework based on the nature and structure of model
errors. These results are derived using a multivariable. version of Nyquist's
stability theorem in which the minimum singular value of the return dif-
ference transfer matrix is shown to be the multivariable generalization
of the distance to the critical point on a single-input, single-output
(SISO) Nyquist diagram. Using the return difference transfer matrix a
very general robustness theorem is presented from which all of the robust-
ness tests dealing with specific model errors may be derived. These latter
robustness tests regarding the stability of the feedback system under model
variations may be divided into two categories: (a) those that use only
the magnitude of the model error and (b) those that use some aspect of the
model error structure, in addition to its magnitude. The robustness tests
that explicitly utilize model error structure are able to guarantee feed-
back system stability in the face of model errors of larger magnitude
than those robustness that do not utilize model error structure and thus
represent an improvement of these latter robustness tests.

The robustness of Linear--Quadratic-Gaussian (LQG) control systems are
analyzed via this robustness theory and multiloop stability margins are
presented; in particular, a new type of margin, a crossfeed margin, is
introduced. Other frequency domain analysis and design techniques are
also briefly discussed and their relation to the present robustness
analysis is examined.
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1. INTRODUCTION

The importance of obtaining robustly stable feedback control systems

has long been recognized by designers. Indeed, a principal reason for

using feedback rather than open-loop control is the presence of model

uncertainties. Any model is at best an approximation of reality, and the

relatively low order, linear, time-invariant models most often used for

controller synthesis are bound to be rather crude approximations.

More specifically, a given system model can usually be characterized

as follows. There is a cerLain range of inputs typically bounded in

amplitude and in a certain frequency range for which the model is a

reasonable engineering approximation to the system. Outside of this

range, due to neglected nonlinearities and dynamic effects, the model

and system may behave in grossly different ways. Unforturately, this

range of permissible inputs is rarely spelled out explicitly along with

the model, but is rather implicit in the technology that the model came

from - there is no "truth in modelling" law in systems theory.

The term robustness as used in this thesis will refer to the

extent to which a model of a open-loop system may be changed from the

nominal design model without destabilizing the overall closed-loop feed-

back system designed to control the outputs of the open-loop system.

We stress that in this definition, we implicitly assume that the dynamic

compensator is fixed, that is, it does not change if, for whatever reason,

one suspects that the actual open-loop dynamics are different from those

used in the model. Real time chan(jes in the compensator structure tgains

or or.her changes) lead to adaptive control systems, a topic that will not
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be addressed in this thesis. Thus, the term robustness refers the

preservation of closed-loop system stability in the face of model un-

certainty not accounted for in the compensator design.

Robustness issues are not new in control system design. In classi-

cal single-input, single-output (SISO) servomechanism designs, robust-

ness specifications were often specified in terms of gain margin and

phase margin requirements. However, for multiple-input, multiple-

output (MIND) control systems, similar robustness measures are not

straight forward, and their interpretation must be done with care. Thus,

the major theme of this thesis is to address robustness issues for MIND

control designs.

The robustness problem can be logically divided into three distinct

questions:

(a) given a model of a feedback control system how close to

instability is it?

(b) given the class of model errors for which the control

system is stable, does this class include the model

errors that can be reasonably expected for this

particular system?

(c) haw can d robust feedback system be designed?

Question (a) is an analysis problem that can be solved exactly by an

appropriate mathematical formulation. This problem will be addressed

extensively in this thesis and is by far the easiest of the three

questions to answer. Question (b) cannot be answered without a proper

understanding of the physics of the physical system to be controlled

and the assumptions that were made in constructing a model to be used
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in controller design. Even with a good understanding of modelling de-

ficiencies it is difficult to characterize this knowledge in a form that

is mathematically easy to deal with from the analysis point of view.

Question (c) combines aspects of both questions (a) and (b) in that a

designer must be able to tell if there exists a controller that would

be able to tolerate the class of modelling errors he believes is reason-

able for a given open-loop system design model.

However, the robustness properties of a feedback system cannot be

optimized without regard to the deterministic and noise performance

requirements for the control system. For open-loop stable systems, this

is clearly demonstrated since the most robust control system is the open-

loop system with no feedback. Of course, for this open-loop stable system

the transient response to a step input command or the response to dis-

turbances may not meet the performance specifications. This underscores

the fact that there is a fundamental tradeoff between robustness,

determinstic performance and stochastic performance (performance with

respect to stochastic disturbance and/or sensor noise inputs). Speci-

fication of any oni of these system characteristics may place constraints

on the achievable performance or margin of :.tability for the other two

system characteristics. For example, with linear-quadratic-gaussian

MQG) regulators one may obtain acceptable deterministic responses to

command inputs and have an adequate margin of stability but the adequate

robustness properties may be obtained at the expense of an increased

response to process noise driving the open-loop plant if the deterministic

performance must be maintained.
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In signal-input, single-output (&ISO) control system design these

issues are well understood. The classical frequency domain techniques

for SISO design naturally handle the robustness characterizationl.

These techniques employ various graphical means (e.g., Bode, Nyquist,

inverse Nyquist, Nichols diagrams) of displaying the system model in

terms of its frequency response. From these plots, it is very very easy

to determine (by inspection) the minimum change in model frequency response

that leads to instability. From the same plots the system's transient

response and response to various inputs can also be estimated. Thus,

the classical control system designer can observe the fundamental trade-

.-3ffs that must be made from these plots.

This is in contrast to the multiple-input, multiple-output (MIMD)

case where these tradeoffs are often obscured. Many design techniques

for MIND systems such as pole placement completely neglect the robustness

issue in placing poles to obtain a good transient response. Other state

space methods attempt to overcome this problem by using state-space

models whose parameters may vary and then assuring that for a range of

parameter values the closed-loop feedback system will be stable. How-

ever, these parameterized state-space models cannot characterize modelling

errors arising from neglected dynamics and, therefore, omit an important

class of variations in the nominal design model for stability analysis?

In short, many state space methods do not naturally lead to techniques

that adequately account for modelling error.

1See the fundamental work of Bode [6), and any good classical textbook,
but especially [9).

2 T the dimension of parameterized state-space model is allowed to increase
then neglected dynamics could be accounted for.
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The presently available frequency domain MIND design techniques

(1,2,4,5,56) also have the problem that they do not ensure stability for

a sufficiently large class of modelling errors. They basically treat a

MI140 system as a series of single-loop design problems that are essentially

decoupled. They give good stability margins in a coordinate system that

makes the design problem simple but not in the coordinate system of the

input and output of the physical plant, the coordinate system in which

it is important to have robustness and good stability margins. For this

reason, these methods may not detect small modelling errors that could

potentially destabilize the closed-loop feedback system. The measures

of the robustness of a MIMO feedback control system presented in this

thesis do not suffer the above deficiency; they will always detect the

near instability of a feedback control system. However, in many cases

these robustness tests are conservative and therefore a significant

section of this thesis is devoted to eliminating this conservatism.

These results are derived in the frequency domain using a multivariable

version of Nyquist's criterion, singular values and the singular value

decomposition familar from numerical linear algebra [44). The approach

taken in this thesis is similar in nature to that of Doyle in [14) and to

that of Safonov in [18).

1.1 Thesis Contributions

The main contributions of this thesis are:

(1) a simplified derivation of available and new robustness
results for linear time-invariant systen+s.

(2) the unification of these robustness results under a common
framework based on a classification of various types of
modelling errors
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(3) the reduction of conservatism of robustness results using
only information about the magnitude of modelling error
by including information about the structure of the
modelling error.1,2

(4) the interpretation of robustness properties of LQG control
systems via the framework based on model error type.

The results of this thesis suuaarize and extend the state of the

art on the robustness of multivariable control system. However, the

practical application of these results is far from trivial and requires

sound engineering judgment about the nature of modelling errors based

on the physics of the controlled system. However, it is hoped that

practical experience with physical systems may provide further insight

as to how to successfully apply these new results since engineering

knowledge about modelling errors is not always easily interpreted in the

mathematical framework required by these results.3

1.2 Summary of Thesis

In chapter 2 some matrix theory results that are useful in later

chapters are collected to enable a clearer discussion of control related

'The original motivation for exploring this problem of conservatism that
lead to the development of these results were discussions with Mr. James
Lewis, a former classmate, working on MIM3 control systems for auto-
motive engines (42). The application of then current robustness results
proved conservative for an engine control systrsn similar to one that had
worked satisfactorily for years on production automobiles. This in
turn lead to the question of how the robustness of a control system
may be assessed when the sufficient conditions for stability are violated.
The nature of the solution of this problem was first suggested by Dr.
David Castanon.

2These results were further developed due to discussions with Dr. Sherman
Chan, who raised many thought provoking questions with regard to their
practical application.

3For an application of some of these results to control of multiterminal
DC/AC power systems the reader is referred to (46).
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robustness issues in those later chapters. The basic problem solved in

Chapter 2 is that of finding the nearest singular complex matrix to a

given nonsingular complex matrix under constraints on the class of

F-	 singular matrices considered. This is done using singular values and

the singular value decomposition of a matrix which are some of the

fundamental mathematical tools explained in Chapter 2.

The structure of the matrix E of smallest norm that makes A+E

singular, where A is a given nonsingular matrix, is given in the

solution to Problem A. The main new matrix theory result is given in

Problem B. Problem B poses the problem of finding the matrix of smallest

norm that makes A+E singular but where E is constrained to be unlike in

structure to the E matriA of Problem A. Problem C extends a special

case of Problem B to include more complicated structural constraints on

the matrix E.

Chapter 3 formulates the fundamental robustness theorem (Theorem

3.2) using a multivariable version of Nyquist's criterion from which

all robustness tests for linear systems in this thesis may be derived.

These robustness tests (Theorems 3.3 to 3.6 and 3.9) are formulated in

terms of the size or magnitude of different types of modelling errors.

They are first explained for SISO systems to demonstrate that the

HIM case simply generalizes the idea that if magnitude of the change in

the Nyquist diagram of the nominal system, induced by modelling error,

is less than the distance of the Nyquist diagram to the critical (-1,0)

point, then the closed-loop system will remain stable. These tests,

employinq various model error criteria are then used to formulate multi-

loop gain, phase and crossfeed stability margins. Corollaries 3.3 and 3.4
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give bounds on the amount of cross coupling between feedback channels

that the feedback system will tolerate;that is, they specify crossfeed

margins. The various robustness tests employing different model error

criteria are then related to the well-known small gain and passivity

theorems 1121 (Theorems 3.7 and 3.8). Extensions to simple nonlinear

systems are also given. The chapter concludes with a discussion of the

relative merits of the various results.

Chapter 4 begins with a discussion of how to distinguish between

model errors that increase the mar-,in of stability of the feedback system

and those that decrease the margin of stability of the feedback system.

This is first explained in the SISO case and generalized to the MIMD case

by using the matrix theory results of chapter 2. The basic results in-

volve defining the smallest error that destabilizes the feedback system.

If this type of model error can be ruled out on physical grounds, the

results describe the next smallest destabilizing model error and its

minimum magnitude (Theorems 4.1 and 4.2). This extends the robustness

tests of Chapter 3 enabling them to consider modelling errors of larger

magnitude (that violate the original tests) by eliminating only those

model errors, of smaller magnitude, that would destabilize the feedback

system, on the grounds that they are not physically realistic or

plausible types of modelling errors. The interpretation of the smallest

destabilizing modelling errors is discussed via block diagrams and

the singular value decomposition of the return difference transfer

matrix. An example is also used to illustrate the nature of these

results.

F.r

a
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In Chapter 5 the robustness properties of LQG control systems are

considered. Using the results of Chapter 3 and the multivariable Kalman

inequality the robustness properties of LQ state feedback regulators are

derived (Theorem 5.2). The multiloop gain, phase and crossfeed margins

for LQ regulators (Corollaries 5.1 and 5.2) and some variations (Corollaries

5.3 and 5.4) of the LQ regulator with better margins hold in a coordinate

system specified by the control weighting (R) matrix. It is shown that

if R is not selected properly the gain, phase and crossfeed margins

may become arbitrarily small. Using the results for the LQ state feed-

back regulator the stability margins for LQG regulators are explored

(Theorem 5.4). In general there are no guaranteed stability margins for

LQG control systems unless the Kalman filter embedded in the controller

possesses the correct dynamic model of the perturbed system and then the

stability margin-- for W regulators hold. This is not a practical

assumption and robustness recovery procedures for asymptotically recover-

ing the LQ guaranteed stability margins at either the input or output of

the open-loop system are discussed. Next, the possibility of recovering

stability margins at both input and output is discussed and related to

the problem of obtaining a characterization of the expected model error.

Chapter 6, very briefly discusses current frequency domain techniques

for MIMO design and robustness analysis (characteristic loci, inverse

Nyquist array and principal gain and phase methodologies). These are

placed in perspective with respect to the approach of this thesis.

Chapter 7 summarizes the key results, gives some conclusions, and

outlines some future research directions.
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1.3 Notation

The following conventions will be adopted in this thesis. 1111

matrices will be denoted by capital letters 1 , all scalars by lower

case letters and all vectors by underlined later case letters. Outside

of the chapter in which they occur, all equation numbers, theorem and

corollary numbers and figure numbers will be prefaced with the chapter

number followed by a period and tt-e number occuring within the chapter.

Thus, for example, equation (32) of Chapter 3 will be referred to as

(32) within Chapter 3 and as (3.32) outside of Chapter 3.

One exception to this convention is the matrix functions f(-) and NO
which take matrix arguments and are themselves matrices. These functions
are fo,.md in Chapters 3 and 4 respectively.

r
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Notation

s.t. subject to

tr (A) trace of the matrix A

AH complex conjugate transpose of the matrix A

A* complex conjugate of the matrix A

AT transpose of the matrix of A

det A determinant of A

<•,•> innerproduct

A i (A) ith eigenvalue of A

oi (A) ith singular value of A - O (AHA)

(^ • ^^ p pth	 order n,-,cm

I identity matrix

j fl

I1 • 11 E Euclidean (or Frobenius) matrix norm

A-1 inverse of the matrix A

3R	 the real numbers

Q	 the complex numbers

Cnxm	
the space of nxm matrices with elements in

a e A	 a is an element of the set A

n
JI a i	 the product (a la2 . , an)

i -1

(xI	 magnitude of the scalar x

A>B	 A-B is positive definite

A>B	 A-B is nonnegative definite

(A,B,C)	 realization of the linear system specified by the
time domain description
is - Ax+Bu

y - Cx
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Ms	 defined as

G(s)	 loop-transfer Matrix

a(s)	 perturbed loop-transfer matrix

L(s)	 multiplicative perturbation transfer matrix

OOL(a)
	 open-loop characteristic polynomial

^'CL (s)	 closed-loop characteristic polynomial

OOL(a)	
perturbed c9en-loop characteristic polynomial

CL (s)
perturbed closed-loop characteristic polynomial

NOI f(s),C) number of clockwise encirclements of the point f2

by the locus of f(s) as s traverses the closed
contour C in the complex plane in a clockwise sense.

DR	Nyquist contour of Fig. 3.10

0	 segment of DR for which Re[s] < 0.

SISO	 single-input, single -output

MIMO	 multiple-input, multiple-output

ORHP (CRHP) open-(closed) right-half-plane

OLHP (CLHP) open-(closed) left-half-plane

IQ	 linear-quadratic

LQG	 linear-quadratic-Gaussian

KF	 Kalman filter



2. MATRIX THEORY

2.1 Introduction

The purpose of this chapter is to introduce important tools from

matrix theory and prove some results which form the backbone of the robust-

ness theory of later chapters. The specific problem considered in this

ct.&pter is the following. Given a nontinqular complex matrix A, find the

nearest (in some sense) singular matrix A which belongs to a certain class

of singular matrices. Essential use of they singular value decomposition

for complex matrices is made in the solution of this problems as well as in

the definition of an appropriate constraint set to which A must belong.

It is thus necessary to review some preliminary definitions and

properties of special complex matrices and different vector and matrix

norms. After this preliminary review anal some specialized results for

2x2 matrices the singular values of a complex matrix are defined And

related to size of the error matrix E which is simply the difference

A -A. Next the singular value decomposition (SVD) is presented and the

expansion of an arbitrary matrix in the orthonormal basis generated

by the SVD is discussed. In the final section of this chapter the structure

..)f the error matrix E is studied via the SVD when E is both unconstrained

and constrained to a certain set of matrices.

2.2 Preliminary Definitions and Pro ertief-

The following definitions and properties are elementary and can be

found in the many books on linear algebra (44).
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2.2.1 Vector and Matrix Norms

It is useful to have a single number to measure the size of a vector

or n.atrix. This number is called a norm and is denoted by II•II.

For vector norms the following relations must hold

IIxII = 0 unless x = 0
	

(1)

IIa xII = IaI IIxII for any scalar a
	

(2)

I IX + YI I_ I III I + I IYI I
	

(3)

Three vector norms that are commonly used are given by

11I11  ° (Ix1 i p + Ix2IP +...+ Ixn i p ) l/p c (p = 1,2,*D)	 (4)

where xi are the components of x and Hall,. is interFreted as maxlxi l. The_	 1

norm 11 x I1 2 is the usual Euclidean length of the vector x.

Two vectors x and y are said to be orthogonal if their innerproduct,

<x,y>, defined by

<x, y> 0 1'y	 (5)

is zero. The Schwartz inequality,

IXII 2 11Y11 2 	 (6)

bounding the magnitude of the innerproduct, is important in solving least

squares and minimum norm problems of the type we are dealing with.

Turning to matrix norms, we denote the norm of a matrix A also by IIAII

where the following relations must hold

II A II > 0 unless A - 0	 (7)

=	 IIaAIi= I a I II A II for any scalar a	 (8)

II A+B11 _ IIAII + I I B II	 (9)



IIABII < IIAII 	II B II .

Corresponding to each vector norm there is an associated induced matrix

norm defined by

I J A I I 0 
max ( I ^ ^	

(11)

which satisfies the conditions (7) to (10) and is said to be subordinate

to the vector norm. For the three vector norms given by (4) the three

induced subordinate matrix: norms are

JJAIIl = max E Jaij J	 (12)
j	 i

I JAI' 00 = max E Iaij 	(13)
i	 j

(J A II 2 = max X1 /2 (AHA)	 (14)
i

where X i (AHA) are necessarily real as shown later.

From the definition of these norms it is apparent that

il Ax ll p < 1 J A II p 112 l1 p :	 p = 1,2,-	 (15)

is satisfied for all x. Any matrix norm which satisfies this inequality

is said to be consistent or compatible. Another matrix norm which is used

frequently that is compatible with the vector norm 1' -11 2 is the Euclidean

norm. The Euclidean norm for a matrix A is defined by

II A II E _ [ E E 
Iaijl2,1/2	

(16)

i j

The IJAI42 norm is referred to as the spectral norm. Some useful relation-
s..

^,.	 ships involving the spectral and Euclidean norms that can be developed

-15-

(10)

are
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I JAI I 2 < I JAI I E < n112I JAI 1 2	 (17)

where A is an n x n matrix. These inequalities follow from the fact that

AHA is positive semidefinite and

max X. AHA) < I JAI 12 - tr(AHA) < n max A i(AHA)	 (18)

Also, if A is an eigenvalue of A and x is a corresponding eigenvector,

then for consistent matrix and vector norms

I I AXJ I= I a I I JAI I_ I I A I I	 I IXI I	 (19)

I X I < I J A I I .	 (20)

From this we can obtain

I JAI 12 = max a i (AHA) < I IAHAI I m _ I IAI 1 1 1 I A I I. •	 ( 21)
i

2.2.2 Special Matrices

There are two types of matrices that will play a special role in

the ensuing analysis. They are known as hermitian and unitary matrices

and have special properties that make them useful.

Definition 1: A complex matrix A is hermitian if A = AH.

Definition 2: A complex matrix t' is unitary if UH = U-1

Property 1:	 All of the eigenvalues of a hermitian matrix are real.

Property 2:	 All of the eigenvalues of a unitary matrix have unit
magnitude.

Property 3:	 IIUII 2 = 1 if U is unitary.
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Property 4: If a matrix A is hermitian then there exists a unitary

matrix U such that A = U A UH where A is a diagonal

matrix of eigenvalues of A.

Note that Property 4 means that any hermitian matrix has a full linearly

independent set of eigenvectors which are orthogonal to each other. For

example, the columns of the U matrix in Property 4 are eigenvectors of

the matrix A.

Definition 3: A complex matrix S is skew-hermitian if AH = -A.

Property 5:	 All of the eigenvalues of a skew-hermitian matrix are
purely imaginary.

Property 6:	 If S is skew-hermitian then jS is hermitian.

Property 7:	 The diagonal elements of a hermitian ( skew Hermitian)
matrix are purely real (imaginary).

Rayleigh's	
If A is hermitian then

Principle

H
min 4 -AH-4- = Xmin (A)

	 (22a)
x#0 x x

and

max 2^ _ Amax (A)	 (22b)
x^0 x x

where the ratio xHAx4xHx is known as Rayleigh's quotient

which achieves its minimum (maximum) when x is an eigen-

vector corresponding to 
Xmin 

(A) (Xmax (A))- Note that

11x112 = 1 can always be assumed and thus the Rayleigh

quotient becomes simply xHAx.

2.2.3 Some Useful Results Involving 11 . 11 E 
and 11.112

Any complex matrix A can be decomposed into the sum of a hermitian

and skew-hermitian matrix as
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A - AM + ASH
	 (23)

where

AH
4-- 

2 (A+AH)	 (24)

ASH = 2 (A -A H)	 (25)

A result we will use later is the following

11AIIE _ IIAHIIE + IIASH'IE	 (26)

which can be seen directly from the following equations

IJ A I1 2= tr(AHA) = tr[(AH -ASH 	 + ASH)]	 (27)

= tr[AA1 - tr[ASH%l + tr[%ASH] + tr[ASH ASH ]

= tr [AHAH] + tr (ASHASHI

where we have used the fact that tr(AB) = tr(BA). Some very specialized

formulas for 2x2 matrices that are useful in deriving results in section

2.4 are the following. If A is hermitian then

IIAI1 2 = am (AHA) = Xm (A2 ) = max ( x i (A)1 2 	(28)
i

or

I JAI 1 2 = max Ia i ( A)1 ,	 ( 29)
i

For any matrix A with eigenvalues 1i

n
tr(A)	 E NAM	 (30)

i=1

n
det(A)	 T( X. (A)	 (31)

i-1 1
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Thus for a 2x2 matrix A

det(XI-A) = (X-11)(1-a2) = a 2 - ( a 1+X2 )X + X 
1 

X 
2

= X 2 - tr(A)X + det A	 (32)

and the eigenvalues of A are given by

1	
-^

ai (A) = rtr2(A)

J +
	

tr(A) 	 2 - det A	 (33)L 	 ]

Thus for a hermitian 2x2 matrix we have that

IIAII 2 = I tr(A) 
I +
	

[tr(A)  
2 _det A	 (34)

When A is not hermitian,but still 2x2,we simply replace A by AA in

(34) and obtain

H	 2	 tr (A. A)	 tr (AHA) 2	 H
IIA AII2 = IIAII2 =	 2	 +	 2	 - det (A A)	 (35)

or

IIAII2
2 

= 2 II A II 2 + ^[l2 IIAII2 ] 2 - Idet AI 2	 (36)

2.3 Singular Values and the Singular Value Decomposition [19,38,39,40,44,53,54]

'The singular values of a complex nxm matrix A, denoted a 
i 
(A), are

the k largest nonnegative square roots of the eigenvalues of A 
H 
A where

k = min(n,m), that is

o i (A) = ai 
2 

(AHA)	 i = 1,2,..., k	 (37)

where we assume that a i are ordered such that a i ? ai +1' The maximum
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and minimum singular values may alternatively be defined by

IIAXII2
Q max (A) a 

X00
	

I IXI 12 a 
I IAI 1 2 	 (38)

Ax

	6min 
(A) = min	

I I 1 2
 _ I I A l i Fl if A l exists	 (39)

	

xf0	 IIxII2

The smallest singular value 
a 
min (A) measures how near the matrix A is to

being singular or rank deficient (a matrix is rank deficient if both its

rows and columns are linearly dependent). To see this consider finding

a matrix E of minimum spectral norm that makes A+E rank deficient. Since A+E

must be rank deficient there exists a nonzero vector x such that IIxII 2 	 1

and (A+E) x = 0 i thus by ( 38) and ( 39)

a min (A) : IIAXII 2 = IIEXII 2 < IIEI1 2 = Qmax M .	 (40)

Therefore, E must have spectral norm of at least 0 min 
(A) otherwise 1+E

cannot be rank deficient. The property that

amin(A) ' amax(E)
	

(41)

implies that A+E is nonsingular (assuming square matrices) will be a basic

inequality used in the formulation of various robustness tests. The

inequality (41) implies that

A 
H 
A > E E
	 (42)

which is a useful inequality for algebraic manipulation. However (42)

does not imply (41) except when A H 
A and A share the same eigenvect.or
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t
for their minimum and maximum eigenvalues respectively.

A convenient way of representing a matrix that exposes its internal

t structure is known as the singular value decomposition (SVD). For an

nxm matrix A, the SVD of A is given by

k
A = UEVH = E 0.(A)u.V.	 (43)

i=1 
1 —1-1

where U and V are unitary matrices with column vectors denoted by

U = lul , u2 ,..., UI	 (44a)

V = Ivl , v2 ,..., vI	 (44b)

and E contains a diagonal nonnegative definite matrix L 1 of singular values

arranged in descending order as in

E1 -	 n > m
r -	 0	 --

(	

(45)

[E1 
01,	

n < m

and

El = diaglo l , 02 ,..., Qk I 	 k = min (m,n) .	 (46)

The columns of V and U are unit eiaenvectors of AHA and AAH respectively

and are known as right and left singular vectors of the matrix A.

Any unitary matrices, such as the U and V produced by computing the

SVD of a matrix, can be used to generate an orthonormal basis in which

to expref- an arbitrary matrix E. Let U and V be nxn unitary matrices

with colimns as in (44) and express E as
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E = E	 E <u . vH, E> u vH 	(47)
i-1 J-1

where the innerproduct for matrices is defined by

<A,B> ^ tr (AHB)	 (46)

for complex matrices A and B. Note that with this innerproduct the n2

rank one matrices uiv^ are orthogonal to each other and have unit spectral

and Euclidean norms and thus form an orthonormal basis. The matrix

< uivj , E> uivH is simply the projection of the matrix E onto the one-

dimensional subspace spanned by 1!iv7. If the elements of %v. are formed

into a n2 length vector x by stacking the n rows of u iv^ and the same

procedure is used to reduce the matrix E to a vector y then <u ivH F > is

equal to the usual xHy innerproduct between these n 2 length vectors.

This makes it clear that <uivH, E> uiv^ can be rearranged into a vector

(xHy)x which is just the projection of y in the direction of the vector x.

Also, if all the matrices uiv^ are formed into vectors, they will all be or-

thogonal to each other and have unit Euclidean length. We will thus think of the

n2 rank one matrices as representing n2 orthogonal directions and refer

to <uvH, E> as the projection of E along the direction u iv H.. This type of
 J

perspective is useful in studying the structure of the error matrix

E=A - A.

2.4 Error Matrix Structure

In this section we will use the tools developed in earlier sections

to solve the p oblem of finding a singular matrix A nearest to

a given matrix. This can be formulated more precisely as a mathematical

F.

fr
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optimization problem:

Problem A:

min IIEJ12
E

s.t. det(A+E) - 0	 (49)

In this formulation the matrix A is simply A+E, where we refer to E as

the error matrix. This is the simplest problem to solve since E is

unconstrained. In what follows we make the following technical assumption.

Assumption 1: The matrix A is nxn nonsingular and has distinct singular
values.

The assumption of nonsingularity of A asstu•es us of a nontrivial problem

otherwise E is identically zero when A is singular. The assumption of

distinct singular values is a technical one which allows us to avoid

some combinatoric problems associated with multiple solutions. Once

this section's material has been understood by the reader it is not dif-

ficult to remove this assumption.

Solution to Problem: A:

Suppose that A has the SVD given by

A = UF.VH
	

(50)

where

= diaq(al' 
02 ,... '

 (7
n I ;	

a)c 11

	

(51)

U = [u l , 12,..., 
-Un)
	 (52)

V - Iv l , v2 ,..., vn] .	 (53)
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Now since A+E must be Pingular there exists a unit vector x such that

(A+E)x = 0	 (54)

and thus from (38) and (39) or (11) we have that

%j min- 11	 11 2 = 11Ex11 2 _ II E 11 2 •	 (55)

For a minimum 115112 equal to amin(A) it is necessary that for some

arbitrary 0 that

x = e jev 	 (56)

otherwise

II Ax II	 > Cr 
min-	

(57)

This can be seen by considering

1	 11 2 u 1IoEVHX'1 2 = IIE(Vx)11 2 	 (58)

and defining a unit vector z as

z Q VHx	 (59)

and thus

112

11	 11 2 = II E S1 1 2 = ( E 02,zi l 2 )	 > an 	 (60)
1=1

unless

z  = 10, 0, ...,0,1)eie, 0 arbitrary 	 (61)

Therefore, Ax is given by
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Ax - Av ej® - (I u eje - -Ev e JO	 (62)

and hence

Ev - - a u	 (63)

By similar arguments involving the equation

H
x (A+E) - 0	 (64)

ore can show that

u 
H 
E - -0 vH	(65)

- n	 n--s,

From equations (64) and (65) we can characterize the form that all solutions

to Problem A must have, namely

P	 0
s	 -

HE - U ---------- y	 (66)

n

where P is (n-1) x (n-1) and
s

IIPS112 < o n	 IIE112	 (67)

but is otherwise arbitrary.

Recall from equation (47) the interpretation of <u v H , E> 
u 

vHH

as the projection of E onto the direction un vn. From (66) we see that

all solutions to Problem A have the same projection in the direction

;Iv which we shall call the most sensitive direction since this is
.n --n

the direction it is "easiest" to make A singular by changing its elements

the "least". Note also the additional conditions that for any two
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solutions to Problem A say E 1 and E 2 that

<^j,E l >. <unvj,E2 > . 0,	 j f n	 (68)

and

<u jvH, E 1 > 1 < u jvH, E2> 	 ' 0,	 j n	 (69)

requiring the projections of E 1 and E2 to be equal along any direction

ujvn and unvj where j - 1,2,...,n. In fact , the matrix P given by

P = UHEV
	

(70)

is just the matrix of projection b onto each of the n 2 directions ui_vi

(slightly abusing the notion of projection to mean < u i_vj,E > instead of

< u * E > u vH)t hat is,—i_y
j
	"i3

pij = < u ivi, E>	 (71)

Now suppose that we construct a constraint set for E so that E cannot

have a projection of magnitude o n in the most sensitive direction urn.

This means that the matrix A+E cannot become singular along the direction

u vH and thus	 JJEJJ, must increase if A+E is to be singular. To

find out just how much larger 11E112 must become we formulate the con-

strained optimization problem:

Problem B:

min	 11E112	 (72)
E

s.t. det(A+E) - 0

<u vH ,E >1 < 4P < d-^ —	 n
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Solution to Problem B:

The error matrix E 4q given by

P i	 0
s ^

E 
U ----+---------- VH

4	 Y

o '	 Y*	 -^

where P a arbitary and

I I Ps I I < Vanan-1 + {can - an-1^ _ J I E 11
2 ,	 (74)

where y is given by

Y = V '4 + 
0
n-1 )( ^ - j

n)e,	 8 arbitrary	 (75)

and A has the SVD

`^ 1

A	 U	 ,2	 V1i, 
a i 	 ai+l	

(76)

n

The proof of the solution to Problem B is somewhat involved and will be

broken into several steps. However, a geometric interpretation of a

simplified version of Problem B will be given at the end of this section

(this is how I actually first worked the problem). Nevertheless, there

is a need to understand the 2x2 analytical proof of the lroblem as well

as the next simple Lemma in order to understand the geometric interpre-

tation.

Lemma 1: If the SVD of A is giver. by

(73)

A - UL%1H	(77)
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then A+E is singular if and only if E+P is singular where

P = tyi'EV	 (78)

and i ,-w:thermore IIPII2 = 
IIEII 2 '

Proof:

A+E = U(E+P)VH 	(79)

and thus

Idet;A+E)I - Idet(E+P)I	 (80)

since Idet UI = Idet VI - 1 because unitary matrices have only eigenvalues

of the form 
eke 

(Property 2). Therefore A+E is singular if and only if

E+1' is. To show II E II 2 = II P II 2 write

E = UPVH 	(81)

then from (10), (78) and Prop-3rty 5 we have

II P II 2 _ IIUHII
2 

II E 11 2 11 V 11 2 = II E II 2
	(82)

and from (81) that

IIEII2_IIP112
	 (83)

and thus

II E II 2 = IIPII2 .

	
(84)

The significance of Lemma 1 is that we need only consider tAe cas- where

A is the diagonal matrix of singular values E, for once this probl=m

is solved for P, all we need do is use equation (81). There^ci:e, from this
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point on we make the following assumption.

Assumption 2: The matrix A is diagonal.

At this point we describe the steps in the solution to Problem B.

The first step is modify Problem B in accordance with Assumption 2. The

next step is to show that for the modified Problem B,if a nonhermitian E

solves the modified Problem B,then a hermitian solution E H also exists.

We proceed by finding all hermitian solutions to the 2x2 case and then

show that in the 2x2 case the solution is unique. The final step is to

show that the 2x2 case can be extended to the nxn case.

We now give the modified version of Problem B.

Modified Problem B (MPB):

min IJEJ12
E

s.t. det(A+E) = 0,

	le i<	 <0
	nn —	 n

A diagonal and A>0

This form of the last constraint occurs since U and V in the SVD of a

positive definite diagonal A are both simply the identity matrix.

We proceed to the next step in Lemma 2.

Lemma 2: If a nonhermitian E solves MPB then there exists a hermitian

solution EH to MPB where

EH = 2 (E+EH )
	

(85)

and
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II EH II 2 - II E 11 2	.
	

(86)

Proof: Since A+E must be singular there exists a unit vector x such that

(A+E)x = 0	 (87)

and

XH(A+EH) = 0	 (88)

since A - AH and thus

xH (A+E)x = 0	 (89)

and

x  (A+EH) x = 0	 (90)

Adding (89) and (90) and dividing by 2 we obtain

xH (A+EH)x - 0 .	 (91)

Now since A+EH is hermitian, we know from Rayleigh's Principle (55) that

0 = xH (A+EH)r > A min (A+EH )	 (92)

where a min (A+EH) is strictly real (Property 1). If A min (A+EH) < 0 , then

since A > 0 there exists a positive scalar a < 1 such that

X min (A.LEH) = 0	 (93)

because the eigenvalues of a matrix are continuous functions of their

elements. However,

I1 OZH I1 2 —< 	 (II E I1 2 + I'I EH 11 2)- a lIEI1 2 < II E I1 2	 (94)

which means that IIE11 2 could not be a minimum if

I
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leH I < ^ < an	
(95)

n,n

which is satisfied since

leH	 i - JRe(enn)I < lenn i	 < an	
(96)

n,n

and thus it must be true that

X min (A+E
H) = 0 .	 (97)

Therefore,since 
JJ E J1 2 is minimum, from (94) with a - 1 we conclude that

II EH 11 2 = IIE11 2 	-	 (98)

The significance of Lemma 2 is that any solution E which is not hermitian

has a hermitian part (i.e., EH = 1/2(E+EH)) which is also a solution to

MPB. Thus by finding hermitian solutions to MPB we need only determine

if EH + ESH , where ESH is skew hermitian, can be a solution to MPB.

Continuing our proof, we now find all hermitian solution to MPB

for the 2x2 case. In this MPB may be restated as

MPbi 2x2 Hermitian Case:

min IIEJ12
E

s.t. det(A+E) = 0	 (99)

1di <m<Q

where

al	 0

A =	 (100)

0	
a2
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a	 b

Ex = E _	 , a,d real	 (101)
b*	 d

Solution:

^
E _	 (101)

Y* 'Y0

where

Y	 ((02-0) t 38	 @ arbitrary	 (103)

Proof: Calculating I+Ej1 2 via equation ( 34) we have

JIE"2 = 1 2+1I + (a±d ) 2 - ad + IbI2	 (104)

or

IIEJ1 2 = I
a+d ^ 

+	 ( a—d ) 2 + (b ( 2 	 (105)

From the singularity constraint on A+E we can determine lb 
12 

as

Ib12 = (al+a)(a2+d)	 (106)

and then substitute for l b 12 in (105) and obtain

E 1 1 2 = I a+('' + 4(a2d ) 2 + (a l +a) (a2+d) -	 (107)

Note from ( 106) , and the bound on +dl in ( 99) , that

-al < a	 (108)

since lb 12 > 0. Next we calculate the partial of IJE!'„ with respect to

a and d to locate a minimum. This results in
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(A+2-
d

	

a 11E11 2 s 1	
sgn(a+d) + 	 + ^2 	(109)as 	 2	

2

(2	 + (v1+a) (a2+d)

and

31JE11	 1	
a+d + 

Q2	 1

	

_ 1	 sgn(a+d) +	 (110)
ad	 2	 2

2d) + ( Q1+a) ( 02+d)

where sgn ( • ) is the sign function defined by

	

I	 , x>0

sgn(x) = undefined, x=0	 (111)

-1	 F x<0

Note that the partial in (109) and (110) do not exist at a = -d because

there is a iidp discontinuity in their values at that point. It also

happens that DIJE11 2 /3a is never zero but changes sign at a = -d in a

way to indicate a minimum at a = -d. To see this consider the ratio z

given by

_	 (a+d + 02

z	 t

1
-d^ 2 + (01+a)(02+d)

which can be shown, to have magnitude less than unity by the following

computations

02 < 01	 (113)

(0 2+d)a2 < 01(a2+d)	 (114)

(112)
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since by (99) a2+d is positive and thus

ad + aa2 + (a2+d)a2 < ad + aQ2 + aI (a2+d)	 (115)

(a2 	-)	 d)2 + a 2 + (a2+d)a2 < ad + aa2 + al (a2+d) (116)

2

^ —2) + 
a 2 (a+d) + a2 < ^a 2d\ 2 + 

(a
1 
+a) (a

2 
+d)	 (117)

J12	 2
la+dl + a21 	 <	

V 2d1 
+ (al+a)(a2+d)	 (118)

or

z2 < 1	 (119)

Now ajjEjj 2 Pa can be written as

DI JEJ 1 2	 1	 1
as	

= 2 [sgn(a+d) + z)	 2[+l+zl	 (120)

and thus a+d and a jj E j1 2 I as have the same sign which indicates that a

global minimum occurs at a = -d and implies that ja) - Id) < 4 < a2,

By similar simple arguments, it can be shown that aII E 11 2 /ad

is strictly positive for all jal _ (dl < indicating that the optimum

value for d occurs on the boundary d 	 Thus using (106) the value

of b may by calculated as

b =(^l al	 02-4) e j '	 (121)

since
a = -d =	 (122)

and thus

I( E J1 2	^2+(al+ ^)(a2-^)	 (123)

and specify E as

b
E _	 (124)

b* -^



The next step is to show that the only solution to the 2x2 case of

IPB is hermitian. To do this we use (36) to express II E II 2 as

II E II 2 ' 1 II E II 2 + J(-
2 II E I1 2 ) 2 - Idet E12
	

(125)

which is only valid in the 2x2 case. Now suppose that E is nonhermitian

and is decomposed into

E - EH + ESH	 (126)

where EH is of the form given in (124) and E SH is a nonzero skew hermitian

matrix. From (124) and (3,25) we note that

IIEH II 2 - 1 /2 IIEHII2
	 (127)

and that from (126) and (26) we have

IIEI12 s II EH' I22 + IIESHII2	 (128)

Now using (127) and (128), IIEII 2 in (125) may be written as

IIEII2	 2 IIEH + ESH IIE + c2	(129)

IIEII2 a 2 II EH 11 2 + 2 II ESH 11 2 + C2 > IIEH II2	 (130)

where c is some real scalar, the inequality in (130) follows because

ESH is not identically zero. Thus,any nonhermitian matrix E with hermitian

part EH that makes A+E singular must have a spectral norm strictly greater

than IIEH112.

Continuing our proof, we must extend the 2x2 case to the nxn case.

This is done by considering two special cases of the case where A is nx2
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and reformulating MPB to the case in which A+S must be rank deficient.

When A is of the form

Q1	
0

A	 0	 a2	 Al
---------	 ---	 (131)

0	
0

and E is conformably partitioned with A and given by

E
E - -1-	 (132)

E2 j

it is clear that for A+E to rank deficient it is necessary that A l + $1

is singular and thus E 1 must be of the form given by (124). Also since

	

I I E I i E = II E1 1 IE2 + I i E2 1 I E
	 (133)

we can conclude by the same argument used in (125) through (130), that 82

is identically zero. This can be generalized to the case where A is

composed of two orthogonal vectors x and y so that the SVD of A is given

by

A- x y =UEY
	

(134)

where

1X1 1, 0

0	 I irl 1 2	 .	
(135)

0

Since E is of the form of A in (131) we have just considered, we need

n
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only solve for the EO that makes E + EO rank deficient with minimum IIEO112_
and use the unitary matrices U and V of (134) to calculate the B that makes

A + E rank deficient with minimum 11E112. This is of course given by

E - UEOVH	(136)

We are now finally ready to calculate the nxn solution to MPB. In

the general nxn case when A+E is singular there exists a vector x such

that

(A+E)x = 0	 (137)

with

x	 [xi, xn )	 (138)

where x l is an n-1 dimensional vector, with H 1 " 2 - 1, and xn-1 , the last

element in x, is strictly real and nonnegative. Note ti,.t x -ould never be such

that x l would be zero since that would require the last column of A+E to

be identically zero which is inconsistent with the bounds in (99). By

defining a npecial matrix Z we may rewrite (137) as

1
(AZ + EZ)	 0
	

(139)
x
n

where

xl	 0
i

(140)
0	 i	 1

i

Now note that AZ + EZ must be rank deficient and that

i

4
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1'5$ 11 2 < 11211 2 11 5 11 2 - 11511 2 	(141)

and also that AZ has the form (134) and is given by

w	 0

-	 '	 (AZ	 ^ -?-_Q_	 142)
i
'	 n

where

T = (a1xl' a2x2 # '' an-lxn- 1l	
(143)

Since 1111 11 2 - 1 and xn-1 is real and nonnegative we have that

II!112 1 an-1	
(144)

with equality holding if and only if

xT	 [O,O,...,1J	 (145)
—1

Using (124), (142) and (144) we conclude that

IIEZ 11 2 5 1 m + (an-1W (an 0	 (146)

with equality holding if and only if (145) holds. As will be shown later

II E 11 2 = IIEZ11 2 so the bound in (141) is achieved and thus it is necessary

that II EZ12 is minimized requiring (145) to hold which implies that

--0--
Z	 1 0

(147)

0 1

Thus since EZ is known the last two columns of E are determined. Using

analogous arguments it can be shown that the last two rows of 2 are also
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completely determined and thus E, the solution to MR, has the torn

	

!	 0
!-A

'	 YE _	 ^	 (148)

0	 Y* -^

where

Y = eje r(a1+m)(Q2-^), a arbitrary	 (149)

II ps 11 2 < 0+(a1+0)(02-0)	 (150)

but otherwise P 8 is arbitrary so that

II E 11 2 = r^2 + (0 l+0)(02 -0) = (IEZ ll 2
	(151)

Using Lemma 1 with these results gives the desired solution of Problem B

given in (73) to (75) .

At this point we will give a geometric interpretation of a special

case of MPB and possible extensions of constraint set for E.

2.5 Geometric Interpr etation

A special case of MPB with 	 0 has a nice geometric interpretation

using vectors. With m - 0 we require that E must have no projection

it the direction u vH. If we think of the columns of the matrix A,
-n—r^

where

	

Q1	 0

A =	
02	

(152)

	

0	 cn
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as orthogonal vectors then in the 3x3 case the A matrix could be displayed

as in Fig. 1.

Fig. 1t Column Vectors of A Matrix

In the 2x2 case, MPS simply poses the problem of making two vectors parallel

with minimum "effort" with the proviso that the original component in the

x-direction of the shortest vector must remain unchanged. This is illustrated

in Fig. 2 where a  and a2 are the resultant vectors when a1 and tit are changed

minimally in order to align then. If there was no 4 bound as in the case

in Problem A the optimal changa would be to shrink the o2 vector to zero.

Note that for MPS whr-- ^ is zero that the magnitude of the change U .e.,

IIE11 2 is simply the geometric mein of the two ssallest tin this case the

only) singular values which is computed from (103) with $-0. If we now
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Y tT1a2

(7i ^

&1 ff2

^12

	 X

Fig. 2: Column Vectors of A - A+E

proceed to the 30 case of Fig. 1 MPB poses the problem of snaking the

shortest vector parallel to some linear unitary combination of the other

two vectors without ch4nging the original x-component of the o 3 vector.

The term linear unitary combinotion of vectors is nonstandard. It mans

that in a weighted stun of vector.A, the weights themselves form a vector

of unit length. The solution to this problem is the same as in Fig. 2

and the fact that there is an additional orthogonal vector makes no dif-

ference. The solution is depicted in Fig. 3 where only the two shortest

vectors are changed. The x vector is a unitary linear combination of the

02 and o f vectors and its tip sweeps out an elipse in the y-z plan: as

the particular unitary combination changes. The "effort" required tt,
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Z

A

Fig. 3: Solution to MPB with ^=

align 
a3 

and x is the geometric mean of their lengths. Thus since the

c2 vector always is shorter than x, it is the best vector in the set of

vectors generated by unitary linear combinations of 
a1 

and 
c2 

to align

with the 
a3 

vector.

The observations allow us to generalize Problem B by acccmodating

a much larger constraint set for the E matrix. This is suggested naturally

by supposing that in addition to the constraint

<u vB , F> 0	 (153)
7r-n
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in Problem B we also have the constraint

< u vH , E > <u	 vH E > - 0	 (154)

	

-7r-n-1	 n-1-n

which rules out a solution of the form given by (73) to (75) with 0-0.

Thus we have ruled out what we will call "the worst perturbation" (i.e.,

an E on the form of (66)) as well as the "next worst perturbation", that

is an error matrix E of the form given by (73) t- (75). We use the ad-

jective worst because in our robustness work the singularity of A+E is

associated with control system instability and thus the smallest error

matrix that makes A+E singular is considered as the wor:,t possible type

of perturbation that is possible. The term "next worst" arises because

in Problem B with 0=0 we eliminate the worst type of perturbation from

consideration. Now we could continue this process and eliminate the

next worst perturbation by imposing (154) and ask what is the "next

next worst perturbation" and so on. If we do this a nice structure of

the "successively worst perturbations" emerges and can be formalized

in the following optimization problem.

min IIEII,
E

(155)

s. t. det (A+E) = 0

< u, vH , E > < u .v
i
H, E > = 0 for all (i, j) a 0

	

-1 'I	 - -

where A has the usual SVD given by

n

A = U?VH = r G. (A)u,vH	 (156)

	

i=1 1	
--^.-i
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Solution:

Let

JKak - min	 VCio j(i.j)OQ

E 1 =^okOR Iuk v_^e j$ + u Qvk a- je)

where

I20",	 if k-t
A

arbitrary, if kOZ

then

E - E 1 + E 0

where

1:E 0112 <	 I

and satisfies the projection constraint in (155) and also

< ujvH,EO > - <JL V . , E
0 
> - 0,	 j - 1,2,..., n

i - korR

but E0 is otherwise arbitrary.

What the solution to Problem C formalizes is the procedure of finding

the minimum effort required in aligning any two column vectors in the E

matrix or shrinking any of its column vectors and then determining which

of these is possible given the constraints or how each of the vectors may

or may not be changed or perturbed.

(157)

(158)

(159)

(160)

(161)

(162)

I_



-45-

To make this clearer we will illustrate the solutions to the problem

of finding the matrices E of minimum spectral norm that make A+E singular

under various constraints on the E matrix.

Example:

Let A be given by

9 0 0

A	 0	 4	 0	 (163)

0 0	 1

and consider the various constraints on E.

Unconstrained Case:

E	 0
s	 1

E _	 0	 (164)

1

0	 0	 -1

where iIEs112 < 1 but otherwise E s is arbitrary.

e
33 = 0 Case:

e11	 0	 0

E =	 0	 Q	 2ej8	 (165)

0	 2e 7A	 0

where le ill< 2 and otherwise e 11 and 0 are arbitrary.
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e23 in 	
= 0 Case:

	

0	 0	 3eje

E	 0	 e22	 0	 (166)

	

3e
-je	

0	 0

where le 22 1< 3 and otherwise 0 22 and 8 are arbitrary.

e13	 e23 22 e33 
^ 0 Case:

	

e 	 0

E =	 0	 -4	 0	 (167)

	

e 31	 0	 0

where

1e1112 + 1e3112 < 4 
s IIE112	 (168)

but otherwise ell and e31 are arbitrary.

1e331 
< 1/2 Case:

e 	 0

E	 0	 1/2	 3/2 eje
	 (169)

	

0	 3/2 e- 
JO	

-1/2

where

	le111 < IIE11 2 -	 -lz 7 1.58	
(170)
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and ell and A are otherwise arbitrary.

It is important to point out that we have limited ourselves to

constraints on E of a very special form and in general arbitrary con-

straints on the form of E lead Lo a mathematical nonlinear programming

problem that does not in general have a closed form solution. However,

it turns out that the special form of constraints cn E will be useful in

obtaining robustness results of Chapter IV. Next, however, we turn to the

basic robustness problem formulation of the next chapter.

2.6 Concluding Remarks

This chapter has briefly introduced singular values and the singular

value decomposition of a matrix and shown their use in finding the nearest

singular matrix A to a given nonsingular matrix A. The main results are

the solutions to Problems B and C which give the structure of the error

matrix E - A - A when E is constrained to belong to a certain set. The

norm of the matrix E is given by the geometric mean of the two smallest

singular values of the matrix A, when E has no projection in the subspace

spanned by u vn, where un and v are the left and right singular vectors

associated with on the smallest singular value of A.

These results were collected in this chapter in order not to entangle

the algebraic aspects of this problem with the robustness issues of feedback

control systems discussed in later chapters, which utilize these results in

the frequency domain via Nyquist's stability criterion.



The purpose of this chapter is to give a very simple explanation of

how to measure the stability robustness of multivariable feedback con-

trol systems using singular values of certain frequency response matrices.

The difference between multiple-input-multiple-output (MIND), multivariable

and single-input-single-output(SISO) feedback control systems with re-

spect to the robustness problem is illustrated by a worked example and

some of the shortcomings of treating a multi-loop system as a series of

single-loop systems are exposed. In this chapter, we assume that the

only information we possess about the model uncertainty or model error

is described by a single frequency dependent number which measures the

size or magnitude of the model error. Results that u-- only error

magnitude information are called unstructured. Those that use more

than just error magnitude information are called structured. The un-

structured robustness results of this chapter are first presented in the

SISO case in section 3.2 for additive and multiplicative types of

modelling errors to clearly illustrate the ideas that are later gener-

alized in the MIMO case.

In section 3.3 a multivariable version of Nyquist's theorem is

given and the worked example is given to show that although the stability

of a MIMO system may be determined from the multivariable Nyquist diagram

the stability margins for the MIND feedback system cannot be determined

from the multivariable Nyquist diagram. This is in contrast to the

SISO case where the stability margins can be determined by inspection
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of the Nyquist diagram. In fact, in the 8190 case, this is the main

reason for the value of the Nyquist diagram; it determines the stability

of a whole class of systems near the nominal system and not just the

stability of the nominal system.

In order to efficiently generalize the SISO results of section 3.1,

a very general robustness theorem is derived in section 3.4 that forms

the basis of the derivation of all subsequent robustness theorems in

this chapter. This theorem is based on the idea of deforming the Nyquist

diagram of the nominal feedback system into a Nyquist diagram of the

actual system without changing the number of encirclements of the critical

point required for stability in the multivariable Nyquist theorem.

In section 3.5, different kinds of modelling errors are defined and

it is shown that if the magnitude of these errors are bounded appropri-

ately then the feedback system will remain stable despite these modelling

errors. It is then shown, in section 3.6, haw these errors can be in-

terpreted from a block diagram of the perturbed or actual system that

incorporates these model errors and a comparison of the different theorems

guarding against different types of errors is made.

From bounds on the modelling errors it is sham in section 3.7.1

how guaranteed multivariable gain and phase margins may be defined and

determined. Section 3 . 7.2 introduces a new type of margin which places

bounds on the allowable amount of crossfeed from one feedback channel

to another. This crossfeed margin is also derived from bounds on the

modelling error obtained in the theorems of section 3.5. Using these

robustness results the example of section 3.3 is reworked in section 3.8,
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the stability margins are calculated, and the near instability of the

feedback system that was undetected by single-loop methods is detected

by the methods of this chapter.

In the section 3.9 additional robustness theorems are derived

and related to separating functions. These additional theorems include

versions of the well-known small gain and passivity theorems (12). The

separating functions are used to show the basic similarity of the various

robustness criteria to the small gain theorem. Section 3.10 gives some

simple extensions of the theorems for linear systems to the nonlinear

case. Concluding remarks about the relationships and use of the various

theorems is given in section 3.11.

The major new results of this chapter are contained in Theorems

2, 5 and 6. Theorem 2 is the general robustness theorem from which all

subsequent theorems are derived. Theorems 5 and 6 concern robustness

results for modelling errors not previously considered in the literature.

Versions of Theorems 3, 4, 7, 8 and 9 have previously appeared in the

literature 112, 13, 14, 19, 47, 48, 491 and are presented herein so as

to place in perspective the newly obtained results and support the

explicit interpretation of the robustness criteria as bounds on the

allowable modelling errors.

3.2 Robustness and the SISO NXqui st Criterion

The robustness of a SISO feedback system is determined by the

distance that its Nyquist diagram avoids the critical (-1, 0) point in

the complex plane. Suppose that we have the SISO control system of

Fig. 1
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UC (S)	 g 	 -u(S)

Fig. l: SISO System under consideration

where g(s) represents the nominal open-loop plant transfer function

together with any other compensation that has been introduced. Now

due to modelling errors the actual compensated plant is better repre-

sented by the transfer function i(s), a perturbed g(s). Therefore,

we would like to know if the closed-loop system will remain stable when

9(s) is replaced by g(s). This question is answered by drawing the

Nyquist diagram of q(s) and determining if the Nyquist diagram of g(s)

encircles the (-1, 0) point the same number of times as the Nyquist

diagram of g(s) does, (this assumes g(s) and q(s) have the same number

of unstable poles). Suppose the Nyquist diagrams of g(s) and q(s) are

those illustrated in Fig. 2.

From Fig. 2 one would conclude that the perturbed closed-loop

system is stable since the number encirclements of (-1, 0) is unchanged.

If d(w) denotes the distance to the critical point (-1, 0) and p(w)
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Fig. 2: Nyquist diagrams of nominal and perturbed systems

denotes the distance between g(jw) and g(jw), then it is apparent, from

Fig. 2, that the closed-loop system will remain stable if d(w) > p(w)

for all w. That is we could draw a graph, as in Fig. 3, denoting the

distance to the critical point (-1, 0) for all w and guarantee the

stability of the perturbed closed-loop system if the p(w) curve lay

below the d(w) curve.

There are several ways to define d(w) and p(w) but the most

natural seems to be

d(w) - ll+g(jw) ` 	 (1)

P(w) - ( 9Uw) - g(jw) (	 (2)
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distance to critical point

	

o	 d 
N

	

°	 e (w) l = p (w)

W

Fig. 3: Graph of d(w) and p((o) as a function of frequency, w .

This corresponds to an additive model of the error shown in Fig. 4 where

e(s) - g(s) - g(s) and p (w) - f e(jw) .

e (s)

	

uc (s)	 +	 g (s}	 +	 -u(s)

TO

Fig. 4: Addit4ve Model error e(s).

For a multiplicative model of the error between g(s) and g(s) we define

e(s) as

e(s) - g(a)	 (3)
y ts?
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With this definition of model error ja block diagram of the perturbed

closed-loop system is shown in Fig. 5

uC (s) +	 ;	 t+ e(s)	 g(s)

g (S)

Fig. 5: Multiplicative model error e(s).

Also, with this type of model error, the measures of distances, d(w)

and PM,, became

d (w) - I l+g-1ow) I	 (4)

and

q(jw) - q( jw)
P (w) - I e t jw) i-	 q (jw)	 t5)

Equation (4) is simply obtained by lettingq(jw) - -1 in (5) or by using

the additive drror robustness criterion that

19(jw)-g (jw)) < Il+g(jw)I
	

(6)

then dividing by Ig(jw)I to obtain the multiplicative error robustness

criterion that

p (w) - ( e ow) I - 9 ( iw	 ( i) - g w)	 < 11+q 1 ( OW) I - d (w)I	 9 OW)	 I
(1)
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and identifying the quantity d(w) - 11+9-1 001 as that which bounds the

magnitude of the modelling error.

In the MIMD case, the multivariable analogs of the criteria of (6)

and (7) Kill. be developed using singular values as well as robustness

tests involving other types of modelling errors. The basic test is to

upper bound the magnitude of sow type of model error (i.e., the distance

between the nominal and perturbed systems) by a generalization of the

distance to the critical point. The key problem in the MIND case is that

these distances can no longer be measured off of a multivariable Nyquist

diagram or a series of single-loop Nyquist dijQraM2,

3.2.1 Gain and Phase Margins

Classically, in the SISO case, a measure of the nearness of the

Nyquist diagram to the critical point is given by the gain and phase

margins. These margins are defined with respect to Fig. 6

+	 i a(s) ^ g(s)

Fig. 6: System for definition of SISO gain and phase :margins

The gain margin, denoted GM, is the largest interval (c l , C2 ) such that

if a(s) - k, k a real ccnstarst, then the system of Fig. 6 is stable for
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all k e (c l , c2). The number c  is the downward gain margin and the

number c2 is the upward gain margin. The phase margin, denoted PM, is

je (w)8 (w) real,the largest interval (-c 1, cl ) such that if a(jw) e	 ,

then the system of Fig. 6 is stable for all e c (-c l ,cl). These margins

are depicted in the Nyquist diagram of g(s) in Fig. 7.

I

	

a 1	 ^3	 1
.Now	 2

0	 1I
crossover
frequency

g0cd)

Fig. 7: Nyquist diagram with GM = (a,S) and PM - H2O).

The largest value of w such that jg(jw)j - 1 is known as the crossover

frequency and is used to indicate the bandwidth of a control system

feedback loop.

From Fig. 7 it is apparent that the gain and phase margins measure

Re

the distance of the Nyquist diagram to the critical point (-1, 0) at

some particular values of w. They are generally good indicators of the
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nearness of a system to instability but may not be accurate indicators of

robustness in pathological cases such as the one shown in Fig. S.

Im

Fig. 8: Nyquist diagram with GM =	 and PM = (-180°, 180°)

In the MIMO case it is also ;ossible to define multiloop gain and

phase margins which also provide an indication of s ystem robustness but

do not rule out the type of situation shown in Fig. 8 appropriately

generalized to the MIMD setting. This will be done in section 3.7.1

but first we turn to the development of multivariable generalizations of

the robustness tests of (6) and (7) .

3.3 Robustness and the Multivariable Nyquist Theorem

In this section we discuss a version of the multivariable Nyquist

theorem (1; and work a simple illustrative example that shows single-loop

4



UC(s) -u(s)G(s)

-58-

type of stability analysis is inadequate when applied to MIMJ systems.

The feedback system to be discussed is depicted in Fig. 9 where the loop

transfer matrix G(s) is assumed to incorporate both the open-loop plant

dynamics and any compensation employed.

f

Fig. 9: Feedback system where G(s) represents the
open-loop plant plus a c_r­+pnsator

In addition, G(s) is assumed to be derived from a r .te space realization

so that y(s) - G(s) u(s) is given in the time domain by

is=Ax +Bu 	 (8)

Y = Cx	 (9)

and thus

G(s) = C (Is-A) -1B .	 (10)

The basic issue of concern is to characterize the robustness of the

feedback system, i.e., the extent to which the elements of the loop

transfer function matrix G(s) can vary from their nominal design values

without compromising the stability of the closed-loop system of Fig. 9.

The analysis is based on the multivariable Nyquist theorem which is de-

rived from the following relationship



-59-

JCL (s)
	

(11)

where

OOL(s) = det(sI-A): open-loop characteristic 	 (12)
polynominal

^CL (s) = det(sI-A+BC): closed-loop characteristic	 (13)
polynominal

and from the Principle of the Argument of complex variable theory.

Definition (Number of encirclements): Let N(Q,f(s),C) denote the

number of clockwise encirclements of the point 0 by the locus of f(s)

as s traverses the closed contour C in the complex plane in clockwise

sense.

A simple version of the multivariable Nyquist theorem can now be

stated in the following form.

Theorem I (Multivariable Nyquist Thec em): The system of Fig. 9 is

closed-loop stable (in the sense that ^CL (s) has no closed-right-half-

plane (CRHP) zeros)if and only if for all R sufficiently large

N(0, det(I+G(s)], DR) _ -P
	

(14)

or equivalently

N(-1, -1+det(I+G(s)], DR) _ -P	 (15)

where DR is the contour  of Fig. 10 which encloses all P CHRP zeros

-The indentations on the imaginary axis are made to include open-loop
jw-axis poles which will be considered as unstable.
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Of ^0L (s) and where N(Q, f(s), C) is indeterminate if f(s 0) - Q for one

soe C.

Fig. 10: Nyquist Contour DR which encloses all zeros
of 0OL (s) in the CRHP, avoiding zeros on the
imaginary axis by identations of radius 1/R.

Notice that no controllability or observability assumptions have

been made. If [A,B,C,l is a nonminimal realization (501, pole-zero

cancellations will occur when G(s) is formed, eliminating uncontrollable

or unobservable modes. Nevertheless, it is important to count these

modes in the Nyquist criterion since infinitesimal changes in the matrices

A,B, and C may make them controllable and observable even though it is

not possible to detect the instability of these modes in terms of G(s).

However, by using the zeros of 00L(s) instead of the poles of the loop

transfer matrix G($), this version of the Nyquist theorem allows one to

test for the internal stability of the closed-loop system. For other

multivariable versions of Nyquist theorem refer to 11-61.
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Remark: When compared with the classical Nyquist theorem for the SISO

case, the multivariable Nyquist theorem is much more difficult to use,

for two reasons.

First, the dependence of det(I+G(s)) on the compensation implicit

in G(s) is complicated, and cannot easily depicted with a Nyquist, Bode or

related plot. This fact has motivated a considerable amount of research

on synthesis methods, e.g., (1) - (6). These will not be discussed at

length since the main thrust of this thesis is primarily analysis.

Second, and this is the !Ley observation, one cannot get a satisfactory

notion of the robustness of a feedback system directly from the multi-

variable Nyquist diagram. The following extremely simple example illustrates

this fact.

Example 1:

Consider the linear system 1 specified by

X l -1 0 xl

x2 0 -1 x2

yl x 

Y 2 - x2

which is illustrated in Fig. 11.

1	 b12	 u 
+	 (16)

0	 1u2

(17)

1This example is a modified version of one found in (58).
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U	 ♦ 	
1	

X1 

I	 y

	

t	 ♦ 	 -	 I	 i

b12

I	 ♦ 	 X2

	

U
	 I
2	 I	 1	 Y2^

Fig. 11: Internal Structure of Example 1

If the feedback compensation

u 

u2

is used the clos

x 	 ucl

x2 	 uc2

ed-loop system is given by

(18)

xl	-2	 -b12	 x 	 1	 b22	 ucl
+	 (19)

X,	 0	 -2	 x2	 0	 1	 uc2

The eigenvalues of this closed-loop system matrix are obviously -2, -2

indicating a stable system. The return difference matrix, I+G(s), is
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given by
_s+2	 b12
s+1	 s+1

I+G(a)

0	
s+2
s+l

and thus

det[I+G(s)) - 1 = 
29+3	 (21)
(s+l)2

The multivariable Nyquist diagram for this system is just the usual

Nyquist diagram of 2s+32 shown in Fig. 12 where we count encirclements
(s+1)

of the (-1, 0) point to determine closed-loop stability.

IM

(20)

Fig. 12: Nyquist diagram of 29+3
(s+1) 2

Since the system (16) is open-loop stable we also can conclude from Fig.

12 that the closed-loop system is stable since the Nyquist diagram does



-64-

not encircle the (-1,0) pointl.

Suppose now that we attempt to interpret this multivariable Nyquist

diagram as a SISO Nyquist diagram and read off the gain and phase margins.

We find that a SISO system with this Nyquist diagram has an infinite

upward gain margin, a gain reduction margin of -1/3 and a phase margin

in the neighborhood of +106°. These margins are usually indicative of

a highly robust system. For example, it is typically assumed that a

+6 dB gain margin (i.e., GH - 1 1/2, 21) and a 30 0 to 45° phase margin

is adequate insurance against model uncertainty within a limited band-

width in which the model is accurate and 20 dB upward gain margin and

+ 180° phase margin above the frequency range for which the model is

valid.

In practice, stability margins for multiloop systems are often

calculated for each feedback loop separately by opening one feedback

loop at a time while keeping the remaining loop6 closed and determining

the gain and phase margins for the resulting SISO systems. To make this

clear, consider Fig. 13 where a(s) has been inserted in one of the feed-

back channels.

By determining the allowable values of a(s) for a (s) a real constant

or of the form ej^ a gain and phase margin for the feedback channel with

a(s) in it may be determined. Moving the a ( s) to different channels,

a gain and phase margin may be associated with each feedback loop.

Note that the mere determination of stability is accomplished more simply
in the time domain by calculating eigenvalues of A-BC.
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•

Fig. 13: MIMO Feedback system used to measure gain
and phase margins in each feedback channel.

This is illustrated in Fig. 14 for our current example with the

first loop open and the second loop closed.

1	 '
Open- Loopl

LI Ct _ ^^` _ x Ut I	 r System

loop broken here
to check m argins	 bQ

Uc2 = 0 	 U21	 1	 (+	 Y2

L

Fig. 14: System with Loop 1 opened and Loop 2 closed -
used to check stability margins for SISO
system with input u  and output y 
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Carrying this procedure out on our example we obtain (setting n
cl m c2 m 0)

Loop 1 open I loop 2 closed:

y1	 8+ - s1 U1 (a)
	

(22)

Loop 2 opens loop 1 closed:

Y2 (s) - s1 u2 (s)
	

(23)

The Nyquist diagram for s+1 is given in Fig. 15.

IM

Fig. 15: Nyqu;st diagram ofs+1

Thus we see that in each feedback loop with the other held at its

nominal value we have the following stability margins

GK _ (-1, 'D)
	

(24)

PM - (-180 11 1 1800 )	 (25)
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Again the system would seem to be highly robust (using the pre-

viously mentioned typical margin requirements). In fact, if two dif-

ferent ai (s) are inserted simultaneously (instead of one at a time as

in Fig. 13) in the two feedback channels, the closed-loop system will

remain stable if both a i (s) are such that ai (s) a (-1, -) for ai(s)

real and constant and 8i G (-180°, 180°) for ai (s) - e j i . That is,

(24) and (25' hold simultaneously in both feedback loops 1.

Note, however, that the Nyquist diagrams of Figs. 12 and 15 do

not depend on the value of the parameter b12 and that as b 12 becomes

large the closed-loop system is close to instability in the following

sense. If the open-loop system of Fig. 11 is perturbed slightly to

obtain the system of Fig. 16, the closed-loop system obtained by nega-

tive identity feedback (i.e., u -y) is unstable and has closed-

loop poles at (l+f) /2. This situation cannot be detected by inspection

of the multivariable Nyquist-diagram or a series of single-loop Nyquist

diagrams. It also cannot be detected by characteristic loci plots

(4,5) which are merely polar plots of the eigenvalues of G(s) for

s 6 DR which in our case are both given by 11(s+l) plotted in Fig. 15.

Clearly, theae eigenvalues do not depend upon the value of b12 , and

hence are unable, to detect the near instability problem just described.

An example is given in reference (43) which shows also that Rosenbrock's

synthesis procedure (1) based on diagonal dominance has similar de-

ficiencies. This deficiency can be interpreted as a failure to account

'This is not true in general and is one of the deficiencies of the loop-
at-& time method of determining stability margin&; one cwt expect
model uncertainty to only riiect one loop at a time!
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i PERTURBED PLANT	 I

NOMINAL PLANT	 ' 1

Ul	
4-	 fjl X1	

Y,

+ -
i ilybl 	 b 12

+ X2
,	 _	 f	 y2

Fig. 16: Perturbation in Nominal Open-Loop Plant
that makes closed-loop system unstable

for certain types of modelling error.

The difficulty we have uncovered can be explained in the fol-

lowing way. A multivariable system will not be robust with respect

to modelling errors if its return difference transfer function matrix

I+G(i4,,,) is nearly singular at some frequency w0 , since then a small change

An G(jwn) gill make I+t,(j^ exactlr^ singular. When this happens,

det ((I+G(jw0 ))	 0 and the number of encirclements of the origin counted

in the multivariable Nyquist criterion changes.

In this example, a small change in I+G(jw0) produces a large

change in dot (I+G(jw0)I showing that the near singularity of a matrix

cannot be detected in terms of its determinant. Instead, tests such
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as those developed in the following sections must be employed which

utilize the minimum singular value to measure the near singularity of

matrices (see equations (2.70) and (2.41)).

3.4 Fundamental Robustness Characterization

From the example of the previous section, we can see that the

problem of determining the robustness of a multivariable feedback

system, (i.e., its distance from instability), is of fundamental im-

portance. Some recent work in this area is due to Safonov 17,181, who

generalized an approach of Zames 110, 111. Safonov's work heavily

utilises concepts of functior.al  analysis, as is standard in the modern

input-output formulation of stability theory l . However, in the finite

dimensional linear-time-invariant case, a powerful robustness charac-

terization can be derived more simply in terms of the multivariable

Nyquist theorem.

In order to present the basic robustness theory from which all

the other robustness results that work with specific model error

criteria may be derived, we need the following notation.

Definition: Let d(s) denote the perturbed loop transfer function

matrix, which represents the actual system and differs from the nominal

transfer function matrix G(s) because of the uncertainty in the open-

loop plant model. We will assume that d(s) has the state space reali-

zation	 and open- and closed-loop characteristic polynomials

1See, e.g., 112) or 1131.

1
3
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given by

^OL(s) - det(al-A)	 (26)

and

(s) - det(sI44-BC)	 (27)
CL

respectively. Furthermore, we define G(s,e) as a matrix of rational

transfer functions with real coefficients whict are continuous functions

of a for all a such that O<e<1 and for all s e DR , which satisfies the

following two conditions

G(s,0) = G(s)	 (28)

and

G(s,1) = G(S)	 (29)

With these definitions we may state the fundamental robustness

theorem of this chapter. This theorem does not adopt a specific model

error criteria but works directly with a perturbed G(s) from which any

particular model error may be computed.

7heurem 2 (Fundamental Robustness Theorem): The polynomial 0
CL

(s) has

no CRIP zeros and hence the perturbed feedback system is stable if the

following conditions hold:

1. (a)^JL' g ) and ^OL (s) have the same number of CRHP

zeros

(b) if ^OL
(JWO) = 0, then OOL(IWO) - 0
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(c) 
JCL 

(s) has no CRHP zeros

2. det[I+G(s,e)] # 0 for all (s,e) a DRx[0,1) for all R
sufficiently large.

Proof: For any e in (0,1] and for all R sufficiently large the contour

DR will enclosed all open-right-half-plane (ORHP) zeros of OOL(s) and

OOL(s). By virtue of condition lb and the identation construction of

DR , DR will enclose all CRHP zeros of OOL(s) and 'OL(s). Also, for

R sufficiently large, DR avoids all open-left-half-plane (OLHP1 zeros

of OOL (s) ' ^OL(s) and OCL (s). From Theorem 1 (multivariable Nyquist

theorem) and conditions lc we conclude that

N(0, det(I+G(s,0)], DR) _ -P
	

(30)

where P is the number of CRHP zeros of ^OL (s) and also of $OL (s) by

condition la. Clearly, det[I+G(s,e)] is a continuous function of e

for all s e DR.

Now supF,,se that as a is varied continuously from zero to unity

that the number of encirclements given by N(0, det[I+G(s,e)], DR)

changes. Since det[I+G(s,e)] is continuous in (s,e) in DRx[0,1],its

locus on DR forns a closed bounded contour in the complex plane for

any a in [0,1]. The only way to change the number of encirclements

of the criticai point (0,0) is for the locus for some a in (0,1] to

pass through the critical point, that is for some e0 in [0,1]

det[I+G( s,e0)] = 0
	

(31)

for score s in DR.
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Condition 2 eliminates the possibility that det[I+G (s,G0)] equals

zero. This contradicts the assumption that N(O,det[I +G(s,@)], DR)

changes as a is varied from zero to unity, and thus it aunt be true that

it remains constant at -P for all e. However, this fact along with (20)

imply that

N(0, det[I+ (s)], DR) _ -P
	

(32)

•nd thus by condition la and Theorem 1 (Nyquist ' s theorem), kL(s) has

no CRHP zeros.

Q.E.D.

Remark: The basic: idea behind this theorem is that of continuously de-

foiming the Nyquist diagram for the nominal system G(s) into one cor-

responding to the Nyquist diagram of the perturbed or actual system

d(s) without changing the number of encirclements of the critical point.

If this can be done and the number of encirclements of the critical

point required for d ( s) and G ( s) are the same, then no CRHP zeros of

^Crl
(s) will result from this perturbation.

Imbedding arguments of this type have been previously used,

implicitly by Rosenbrock [1] and explicitly by DoylL [14], in connection

with linear systems and in the more general contra t of nonlinear and multi-

dimensional systems by DeCarlo, Saeks and Murray [15] - (17I, utilizing

homotopy theory from algebraic topology.

Remark: The significance of Theorem 2 is that various multivariable

robustness characterizations can be stated in terms of conditions that

guarantee condition 2 is satisfied. In checking condition 2, it is

unnecessary to consider all s e D R if JjG(s,e)jj 2 ^ 0 as 191 + m.
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This will be the case in what follows and it is related to the assumption

that the state-space realizations of G(s) and G(s) have no direct feed-

through from input to output so that JIG(s) 11 2 and 11G(s)112 approach

zero as Isl + m. It is therefore convenient to define the segment

"R as

SIR = {sjs a DR and Re(s) < 01
	

(33)

which is the only part of the Nyquist contour D R on which condition 2

need be verified.

3.5 Robustness Theorems and Unstructured Model Error

In this section, we develop theorems that guarantee the stability

of the perturbed closed-loop system for different characterizations of

model uncertainty (i.e., different types of model error). This is done

via Theorem 2 by using a specific error criterion to construct a transfer

matrix G(s,e) continuous in a on D R x[0,1) that satisfies (28) and (29).

Then a simple test bounding the magnitude of the error is devised which

guarantees that condition 2 of Theorem 2 is satisfied. This procedure

is carried out for four different types of errors. These tests use

only the magnitude of the modelling error and do not exploit any other

characteristics or structure of the model error and hence are based on

the unstructured part of the model error. These different types of model

errors will emphasize different aspects of the difference between

the nominal G(s) and d(s) and thus under certain circumstances will

give essentially different assessments of the robustness or margin of

stability of the feedback control system.
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Probably the most familiar types of errors are those of absolute

and relative errors. Absolute errors are additive in nature whereas

relative errors are multiplicative in nature. one can use both types

of errors to derive robustness theorems. However, the familiar notions

of gain and phase margins are associated only with relative type of

error since these margins are multiplicative in nature.

If we let the matrix E(s) generically denote the particular

modelling error under consideration, the absolute error is obviously

given by

E(s) _G(s) - G(s)	 (34)

and the relative error, in a matrix sense, by

E(s) = G 1 (s) [G(s)-G(s) ) .	 (35)

In (35) G 1 (s) could post-multiply the absolute error and serve as L-n

alternative definition of relative error in the matrix sense but all

subsequent results will still hold with trivial modifications. Usinq

these errors we will prove two robustness theorems. However, first

G(s,e) must be constructed.

Using (34) and (35) we can define G(s,e) by replacing d(s) in

(34) and (35) by G(s,e) and E(s) by eE(s) and solving for G(s,e). If

we do this we obtain

G(s,e) - G(s) + eE(s)	 (36)

where E(s) is the absolute error given by (34) or

G(s,e) - G(s)[I+eE(s)] 	 (37)
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where E(s) is the relative error given by (35). Both (36) and (37) imply

the same G(s,e) elthough they employ different types of errors to arrive

at G(s,e). In either (36) or (37) G(s,e) is simply given by

G(s,e) = ( 1-e)G(s) + ed(s)	 (38)

showing that G(s,e) is continuous in a for a on (0,1) and for all

s e DR and that G(s,e) satisfies (28) and (29).

In deriving stability margins based on theorems x-Ring different

error criteria, we will find it useful to define a multiplicative un-

certainty matrix L(s) to account for modelling errors in the open-loop

plant. The perturbed or actual system ?,(s) in this case is given by

6(s) = G(s)L(s)	 (39)

which implicitly defines L(s). Notice that for the relative error

criteria Ciat L(s) is very simply given by

L(s) _ (I+E (s) )	 (40)

where E(s) is given by (35). However, as will be shown later (40) is

not the only description of L(s); there are other types of relative

errors yet to be discussed in which the relationship between L(s) and

the generic E(s) is not so simply given by (31). We will use both L(s)

s defined implicitly in (30) and a variety of error matrices denoted

y E(s) in stating the subsequent robustness theorems.

Two robustness theorems based on the preceedings definitions of

.bsolute and relative errors in (34) and (35) respectively are the

ollowing.
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Theorem 3 [48,49): The polynomial $CL(s) has no CRHP zeros and hence

the perturbed feedback system is stable if the following conditions

hold:

1. condition 1 of Theorem 2 holds

2. a min [I+G(s)) > max [E(s))	 for all s e 12

where E(s) is given by (34), and Q  was defined

by (33) .

Proof: From (36) we see that I+G(r,e) is given by

I+G(s,e) - I+G(s) + eE(s) .

From the properties of singular values (see (2.41)) we know that

I+G(s) + eE(s) will be nonsingular if

0 min [I+G
( s) ) > max fez ( s) ) : e max[E(s) )	 (41)

which is clearly guaranteed by condition 2 since a is always between

zero and unity and thus condition 2 of Theorem 2 holds.

Q.E.D.

Theorem 4 [14,48,49): The polynomial ^CL(s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition 1 of Theorem 2 holds

2. a
min	 max

[ I+G-1(s) ) > Q 	[E(s)] for all s e IIR

where E(s) is given by (35).

Proof: From (37) we see that I+G(s,e) is given by
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I+G(s,e) = I+G(a) tl+eE(s) i

= G (s) II+G 1 (s) + eE(s) ]	 (42)

Here by writing G-1 (s) we assume it exists  so that I+G(s,e) is singular

if and only if [I+G -1 (s) + eE(s)] is singular. As in the proof of

Theorem 3, we know from (2.41) that condition 2 guarantees that

I+G-1 (s) + eE(s) is nonsingular, hence Theorem 2 is satisifed.

Q.E.D.

Theorem 4 was first proved by Doyle [14] using singular values

and Nyquist's theorem but under the slightly stronger condition that

E(s) be stable. An operator version of Theorem 3 is due to Sandell

[48] who was the first to consider additive perturbations. Laub [491

provides further numerical insights to the relationship of Theorems

3 and 4.

Before we give some discussion of these theorems and some possible

corollaries, we will develop some additional robustness theorems which

are complementary to Theorems 3 and 4 and are derived on the basis of

alternate definitions of the error matrix E(s).

Suppose that instead of measuring the absolute relative errors

The assumption that G-1 exists guarantees that any pertrubed system
G can be represented as d = G(I+E). However, if G is singular but

is in the range space of G then E may be implicitly defined as a
bounded soluticn of GE = d-G. In this case Theorem 4 still holds
if c', (I+G' 1 ) is replaced by its equivalent for all G, Q axIG(I+G)

min
which is bounded by condition 1 if G110. If G is not in the range of
G then G cannot be represented as 6 = G(I+E).
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between d(s) and G(s), we measure the absolute and relative errors

between d-1 (s) and G 1 (s). In the SISO case, this would correspond

to measuring the absolute and relative errors between the nominal and

perturbed systems on an inverse Nyquist diagram in which the inverse

loop transfer functions q -1 (s) and g 1 (s) are plotted. (The inverse

Nyquist diagram can also be used to determine stability by counting

encirclements of the critical points (0,0) and (-1,0) in the complex

plane.) 1 Therefore, it would be natural. to define the absolute and

relative errors between the nominal and perturbed systems as

E(s) _ C 1 (s) - G 1 (s)	 (43)

for the absolute error and

E(s) _ [G 1 (s) - G 1 (s))G(s)	 (44)

for the relative error. Using (43) and (44) we may define a G(s,e),

again by replacing 8(s) by G(s,e) and E(s) by eE (s) in (43) and (44) ,

and then solving for G(s m . If this is done, we obtain

G(s,e) _ [G 1 (s) + PEW))	 (45)

where E(s) is given by (43) and

G(s,e) - G(s) [I+GE(s)]-1	 (46)

where E(s) is given by (44). Both (45) and (46) give the same G(s,G)

which written in terms of G(s) and d(s) is

1 It is not intended to give a discussion of the inverse Nyquist criterion
[1) but only mention it to suggest that tho use of G -l(s) is as reasonable
as G(s) in a definition of model error.
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G(s,e) - [(1-@)G -1 (s) + ed-1 (8)1 -1	(47)

where now we see that a enters nonlinearly and it is not clear that

G(s,G) is continuous in a in (0,1] for all s e n  but is is clear that

it does satisfy (28) and (29). The type of G(s,e) in (47) could be

replaced by the one in (38) and theorems worked out in terms of the

errors described by (43) and (44). This approach was taken by Lehtomaki,

Sandell and Athans [51] and led to more restrictive and complicated

conditions to check than the approach using (47).

Since (45), (46) and (47) are all equivalent in that they give

rise to the same G(s,e) we may work with any one of them to prove

assertions about the continuity of G(s,e) required by Theorem 2. If

6-1 (s) and G-1 (s) exist, so that E(s) in (44) is well-defined, then we

can see that for G(s,e) to be continuous in a for (s,e) 8 DR x[0,1) all

we need to guarantee is that (I+@E(s)) is nonsingular . Notice that in

this case L(s) is simply

L(s) - [I+E(s)] -1	
(48)

and that [I+QE(s)] is nonsingular for all a in [0,1] if L(s) defined by

(39) has nc	 strictly negative eigenvalues. This is true since

if L(s) has no zero or negative eigenvalues, neither does I+E(s) and

thus E(s) cannot have eigenvalues in the interval (-m, -11 so that

SEW never has eigenvalues of -1. Therefore with these restrictions

G(s,e) is continuous in a on DR x(0,1]. We also see from (46) that

if E(s) is bounded (i.e., d-1(s) and	 1 (s) exist) and L(s) has no

zero or negative eigenvalues that 11G(8,e)11 2 -* 0 as !sl + - for any



-s0-

e in 10,11. This allows us to check for the nonsingularity of I+0(9,e)

only on nR x 10,11in Theorem 2. We may now state the theorems analogous

to Theorems 3 and 4.

Theorem 5: The polynomial k l, (s) has no CRHP zeros and hence the

perturbed feedback system is stable-if the following conditions hold:

1. condition 1 of Theorem 2 holds

2. L(s) of (39) has no zero or strictly negative real

eigenvalues for any s e %

3. a min [I+G-1 (a)1 > a	 [E(s)] for all s e i',R

where E(s) is given by (43)

Proof: From (45) we have that

I+G(s,e) - I + [ G-1 (s) + eE(s)I-1

- [I+G-1 (s) + eE(s)1[G 1 (s) + eE(9)1-1

- [I+G-1 (s) + eE(s)1G(s,e)
	

(49)

and since G(s,e) is nonsingular 1 , I + G(s,e) is nonsingular if and only

if [I+G-1 (s) + @E(s)) is nonsingular which is true by condition 3.

Condition 2 merely ensures that we have a G(s,e) continuous in 0 to

work with as required to apply Theorem 2. Thus, Theorem 2 holds

and ^
CL

( s) has no CRHP zeros. 	
Q.E.D.

11n this proof essential use of the fact that G(s) and Mai are both
invertible on D is made. This is different from the case of the
footnote of Theorem 4.



-81-

The next theorem works with the relative error between L -1 (s) and

G 1 (s) and plays a fundamental role in establishing the properties of

LQ (linear-quadratic) state feedback regulators which will be discussed

in Chapter S.

Theorem 6: The polynomial ^CL(a) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition I of Theorem 2 holds

2. L(s) of (39) has no zero or strictly negative real eigenvalues

3. Q
min 

[I+G(s) ) > a 
max 

[E (s) )	 for al l s e "R

where E(s) is given by (44)

Remark: If condition 3 is satisfied and o 
min 

[I+G(s)) < 1 then it can

be easily shown via (48) that condition 2 is automatically satisfied.

Proof: From (46) we have that

I+G(sre) - I + G(S)[I+eE( s)1 1 - [I+G ( s) + eE(S))[I+eE(8 )1 1 (50)

and condition 2 not only ensures G(s,e) is continuous  on DRx[0,1) but

also that I+eE(s) is nonsingular on the same set. Thus I+G(s,e) is

1In this proof no essential use of the fact that 1 and G-1 exist is
made. If E is implicitly defined by G - d(Z+E) rather t-an (34), then
Theorem 6 still holds. However, if d is not in the range space of G,
and vice versa, it is not possible to represent ^ as d - G(I-s-E)-l.
Thus, even if G' 1 and ^.'- 1 do not exist it may be that G(s,e) is
continuous on D x[0,1) by using the implicit definition of E if
can be so represented.
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nonsinqular if and only if tI+G(s) + 68( s)] is nonsinqular which is

guaranteed by condition 3. Hence, again Theorem 2 is satisfied and

therefore ^CL(s) has no CRHQ zeros.

Q.H.D.

Theorem 6 is an improved version of a theorem founts in 151).

Observation: The condition that L ( s) have no strictly real and negative

eigenvalues or be singular can be interpreted in terms of a phase

reversal of certain signals between the nominal and perturbed systems

or as the introduction of transmission zeros by the modelling error.

To make this precise, suppose that for some 
w0 

that L(jw0)x - Ax for

some complex nonzero vector x and some real X < 0. Then there exists a

vector u (t) of input sinusoids of various phasing and at frequency 00

which when applied to the nominal system produces an output y(t) and

produces an output a y(t) when applied to the perturbed system. This

is depicted in Fig. 17.

Nomino Iu(t)	 System	 Y(t)

Perturbed1---4P XY(t) System_

Fig. 17: Relationship between nominal and perturbed
system for special input +_(t) when L(jm0)
has eigenvalue A.
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Thus when A is negative the phase difference between the sinusoidal outputs

of the nominal and perturbed systems is 180*_ If An0 then the perturbed

system has transmission zeros at tjw0.

This fact is significant since Theorems 5 and 6 can never guarantee

stability with respect to model uncertainty when the phase of the system

outputs is completely uncertain above some frequency or with respect

to sensor or actuator failures in the feedback channels.

Note that in general that condition 1 of Theorems 3 to 6 and the

state-space description of the nominal and perturbed systems implicitly

place other restrictions on L(s) (and also E(s)). These are simply that

L(s) represent a finite dimensional linear time-invariant system that is

possibly unstable and that L(s) has no purely imaginary poles. Similar

conditions may be derived for each of the four forms of errors used in

Theorems 3 to 6.

3.6 Inte uretations of Robustness Theorems

Up to this point, it is probably unclear to the reader what the

significance of the various error criteria are and how they are related.

This can be partly clarified by an understanding of how each error

enters into the structure of the perturbed system from a b3 •_k diagram

perspective. This is done in Fig. 18 where a very pleasing s}mmetry

occurs that corresponis to the four 1)a2ic arithmetic operations of

addition, subtraction, multiplication and division. As can be seen

from Fig. 18 the absolute type of errors correspond to addition and

subtraction whereas the relative errors correspond to multiplication

and division. Other types of errors can be represented as combinations
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Block Diagram Error Criterion
of Perturbed System Perturbed Systems and

Stability Test

EW E(s) = G (s)	 - G(a)

+G(s) G(s)	 G(s) + E(s)

v	 (I+G(s)) > Q	 We) )
min	 max

Feedforward

(Addition)

+	 G(s)	 m E(s) = G l (s) - G-1 (s) 

EW G(s) _ (G 1 (s) + E(s))-1

Feedback
-1

6min (I+G
	 (s)) > v	

(E (s) )
max 

(subtraction)

EW
E(s)	 = G-1(s)(G(s)-G(s)]

+ G(s)	 = G(s) (I+E(s))
G(s)+ -1(s))	 > a	 (E (a) )min(I+G

(Multiplication)

+ E(s)	 _	 (G-1 (s)-G 1(s)]G(s)

^-	
G(S^

G(s)	 = G(s) (I+E(s))-1
EW

a
	 (I+G(s)) > max(E(s))min

(Division)

Fig. 18: Physical Representation of Perturbed Models
Corresponding to Various Error Criteria and
Associated Stability Test.

L
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of these basic types of errors.

For now however, we will defer that topic and discuss the inter-

pretations of the robustness theorems that deal with relative errors

and give same pictorial illustrations of why these theorems ensure that

i+G(s,e) is nonsingular and how they are related.

We shall work mainly with the relative error type theorems since

from them we may derive gain and phase margins for which design engineers

have a more intuitive feel. In the theorems dealing with absolute

type errors it is difficult to account for the effect of the compensator

implicit in G(s) on the model error (i.e., the model error depends on

the compensator used). This does not happen with the relative error

criteria.

To begin with, recall that in Theorems 4 and 6 that L(s) is given

respectively by

L (s) - I + E (s)	 (51)

for E(s) given by ( 35) and

L(s) = ( I+E(S)) -1 	 (52)

for E(s) given by (44). If we solve these last two equations for E(s)

we obtain from (51)

E(s) = L(s) - I	 (53)

and from (52)

E(s) - L 
1
(s) - I .	 (54)
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Thus by making 11R(s)11 2 small in (53) L(s) is kept close to the identity

matrix whereas in (54) it is L
-1 

(a)  that is kept close to the identity

matrix by making 118(s)112 small. This points out the difference in the

types of errors since the same L(s) may make one error quite large

while making the other only moderately large.

The basic inequalities in Theorems 4 and 6 written in terms of

L(s) are given respectively by

a
min	 max

[I+G 1(s)] > a	 [L(s)-II	 (55)

for Theorem 4 and by

a 
min 

[I+G(s)) > max[L 1 (s) - I)	 (56)

for Theorem 6. The inequality (55) is the MIND generalization of the

SISO inequality (7) of section 3.2 but written in terms of !t(s) rather_

than i(s). Thus in (55) we see that a
min

[I+G 1 (s)) is just the multi-

variable version of the distance to the critical point (0,0) and

a
ax

[ L (s)-I] is just the generalization of the distance between C(s)

and G(s). Similar interpretations of (56) can be made.

The SISO analogs of (55) and (56) are given by

I.i+g- 1 (s) ( > a > It (s) - 11	 (57)

and

I1+g(s) I > a > (Cl W-11	 (58)

respectively. In the fora using t(s) rather i(s), the inequalities

(57) and (58) provide a geometric insight to the relationship of g(s)
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and t(s). The admissable region of the complex plane for -g -1 
(s) and

L(s) satisfying (57) is depicted in Fig. 19. Fig. 20 gives the

analogous regions for g(s) and 4_ 1 (s) satisfying (58). From Fig. 19

it is clear that

-g-1 (s) # t(s)	 (59)

and from Fig. 20 that

-t-1 (s) # g(s)	 (60)

which simply ensure that lrg(s)t(s) = l+q(s) # 0 or that q(s) does not

pass through (-1,0). Recall that in Theorem 2 not only must l+q(s) # 0

but we must be able to construct a g(s,e) such that l+g(s,e) 0 0 for

e in (0,1]. However, due to the way that g(s,e) was constructed this

merely results in the requirement that

I1+g 1 (s)l > elt(s)-ll	 (61)

in the case of Theorem 4, and

Jl+g(s) { > e , t-1 (s) - 11	 (62)

for Theorem 6. These inequalities are obviously guaranteed by (59)

and (60) since e is between zero and unity.

The main point of this discussion was to show the use of circles

to divide the complex plane into disjoint regions, one in which t(s)

(or t-1 (s)) lies and its complement in which -g -1 (s) (or g(s)) must lie.

The fact that the radii of the circles can be interpreted as the magni-

tude of an error or the distance to the critical point is not crucial.

Later on in this chapter we will use the idea of separating the complex

plane into two disjoint regions to derive additional robustness theorems



-gr,(S)

n for Q(s)

Re

Irn

Fig. 19: Admissable regions for g >(s) and t(s)

satisfying ll+g 1 (s)l > a > li(s)-1,

Im

region for -0-1(s)
region for g(s)

-I-a^-:j

OrtIG N .-Aw-T, PAGE l l-

Fig. 20: Admissable regions for q ( s) and -Cl(s)

satisfying jl+q(s)^ > a > 1 1-1 W-11

%
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and clarify their relationships to the well-known small gain theorem

112).

To continue the discussion on the relationship of Theorems 4 and

6, we make the following observation that in (55) and (56) as a min 
(I+G)

and min (I+G-1) increases the bounds on L(s) and the error becomes

less stringent. Therefore, to tolerate both kinds of modelling errors,

one would like to make both a
min

(I+G) and a
min

(I+G l ) as large as

possible. However, these two quantities are related algebraically so

that we cannot make them both independently large. Their algebraic

relationship can be derived trivially from the matrix identity 149)

(I+G) -1 
+ (I+G-1 ) -1 o I
	

(63)

using the triangle inequality and the simple relationship Cr min 	 -

a-1 (A^1 ). There are three inequalities relating amin(I+G) to am. (I+G_I+G 1)
max

which are given by

a 1 (I+G) + a-1 (I+(; ) > 1	 (64)
min	 min	 -

0-1 (I+G) + 1 > a-1 (I+G_ 1 )	 (65)
min	 - min

a-1 (I+G 1 ) + 1 > a-1 (I+G)	 (66)

Two other inequalities relating a min 
(G) and a max (

G) to amin(I+G) and

a min (I+G 
1) are given by

a	 (I+G)
amp	

min

(G) > min	
-1 ^ amin ( G)	 (67)

a	 (I+G )



2

I
(G)

region than will Theorem 4. Likewise when a 
max 

(G) is small (i.e., all

_. A

-W-

These Mequalities are illustrated in Fig. 21.

0	 1	 2	 a'min(I+G)

Fig. 21: Shaded Area Represents Allowable
Values of 

(a min 
[I+G), Qmin[I+G-11)

ordered pairs.

From Fig. 21 it is clear that when a min 
(G) is large (i.e., large loop

gain in every feedback loop) that 
a min (I+G 

1) is necessarily near one

and a 
min 

(I+G) is large. This indicates that Theorem 6 will give a

better indication of control system robustness with respect to the model

error criterion (44) in the typically high performance - low frequency
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feedback loops are rolled off) Theorem 4 gives a better indication of

the robustness of the system with respect to the model error criterion

(35) since Q 
min 

(I+G 1) is large and m
in (I+G) is near unity. The exact

sense in which one theorem gives a better robustness indication de-

pending on the nature of G(s) will be made precise in the corollaries

of Theorems 4 and 6 that specify different types of stability margins

discussed in the next section.

3.7 Multiloop Stability Margins

In this section we shall derive guaranteed minimum gain and phase

margins for MIMD systems as functions of both a
min

[I+G(s)] and

a min [I+G 
1 (s)]. We shall also introduce the notion of a crossfeed

tolerance which again is specified by min [I+G(s)] or a min [I+G-1(s)].

These stability margins are simply corollaries to Theorems 4 and 6 and

are easily obtained by assuming specific forms for L(s).

3.7.1 Multiloop Gain and Phase Margins

In contrast to the SISO case, it is not clear what gain and phase

margins are in a multiloop system since gain or phase changes in one loop

may affect the calculation of the gain and phase margins in another loop.

Therefore, to avoid this problem we shall define what we mean by multiloop

gain and phase margins. This can be done with reference to Fig. 22

where L(s) is chosen to be a diagonal matrix.

Definition: The multiloop gain margin is the pair of real numbers cl

and c2 defining the largest interval  (ci f c2 ) such that when $i(s)

We could also use closed-intervals in the definition of these margins.
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i - 1,2,...,m in Fig. 22 are all real constants 
Li 

and satisfy the

inequalities

c  < Ii < c2 s' 	 - 1,2, ... ,m
	

(68)

the closed-loop system remains stable.

Definition: The multiloop phase margin is pair of real numbers cl and

-cl defining the largest interval (-c l ,c^) such that when L 0w),

1 0 (w)i - 1,2,...,m in Fig. 22 are of the form a 	 where i (w) are real

and satisfy the inequality

-c l < 01 M < c l 	i	 1,2,...,m	 (69)

and the closed- loop system remains stable.

We will denote the multiloop gain margin of (68) by

GM - (c 
1' 

c2 )	 (70)

and similiarly we denote the multiloop phase margin of (69) by

PM - ( -ci f c 1 ) .	 (71)

Note that in the SISO case (refer to Fig. 7) that these multiloop

stability margins reduce to the usual single stability margins but

that in the MIMO case they differ from the stability margins obtainable

a single loop at a time since these stability margins apply in all loops

simultaneously. Of course, the word "simultaneously" does not mean that

we can apply gain and phase changes simultaneously in the same feedback

s	 i(w)
'we assume also that a	 has a statem space representation in order
to ensure that ^ ( s) has a state space representation.



loop but that only strict gain changes or only strict phases	 may

occur in separate feedback channels simultaneously within the prescribed

limits of the multiloop stability margins. we 6016"ize that these types

of multiloop margins consider only a small class of modelling errors de-

scribable by a diMal L(s). With these preliminaries we are ready to

present the following corollaries to Theorems 4 and 6 respectively.

Corollary 1t If ®CL(a) has no CRO zeros and

Qmin(I+G 1 (s)) > a
	

(72)

for all s 6 ri, then the multiloop gain and phase margins are bounded  in

the following manner

GH D 11-0, 1+QI	 (73)

and

PH D(-2sin 1 2, 2 siu 1 2 ^.	 (74)

Proof: From Th,—ram 4 and (51) we know that OC(a) has no CRHP zeros

if for all s B

(L(s)-I) < Q(I+G lts))
	

(75)

and thus also if

'The symbol D refers to set inclusion. Thus A D R means that ! is
contained in A. Thus (73) means that the upward gain margin is at
least as big as 1+0 and that the gain reduction margin is at least
as small as 1-m. Similar statements apply to (74).
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Ca"(L(s)-I) < a	 (76)

for all 940 %. Now if L(s) is given by

L(s) - diagII1 (s), L2 (a) # .. . # im (s))	 (77)

then (76) implies that for all i

1 Z  (s) -11 < a	 (76)

If R i (s) is real and is denoted by Z  then

1-a < ii < l+a (79)

jm
i
 (w)

and if A i (jw)	 is of the forme 	 with mi (w) being real, than

jai(w)
e - 11 < a (80)

O i (w) 0i (w)

le 3 -2 1	 2- e (1 (81)

01(w)
-a < 2 sin

2	
< a (82)

or

10i M j < 2 sin-1 (Z)	 (83)

The bounds on the multiloop stability margins follow from (79) and (83).

Q.E.D.

Corollary 2: if ®CL C;, has no CM zeros and

a 
sin (I+G(s)) > 

a	 (84)

z_
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for all s 0 % and a < 1 than the multiloop gain arA phase margins are

bounded in the following manner

171:3	 J(8S)
(M 	 1+a

and

PM D 1-2 sinl , 2 sin 1 2	 (96)

Proof: Following the proof of Corollary 1 we similarly deduce that the

corresponding analog to equation (78) is

^iil (s) - 1^ < a	 (87)

and thus for real k i (s) denoted Li we must have that

l+a ^ 1 1 11a	 ^^)
joi(w)

and for Zi (jw) of the form e	 i(w) real, we have

(w)
e	 - 1 < a	 (89)

which implies

10 1 (w){ < 2 sin-1 (a/2)
	

(90)

Q.E.D.

It must be emphasised that corollaries 1 and 2 provide worst

case analysis bounds on what the actual stability margins are. This

can be illustrated in the 6180 case by Fig. 23 where 11+9(s)) > a for



^/	 1

B	 -t A	 p	 1,
	 Reg(s)

;C	 !

Possible Nyquist
diagram of g(s)

Fig. 23: Nyquist Diagram Illustrating Bounds of Corollary 2.

Since the only information about the system g(s) is contained in

the single parameter a, the only information utilized by Corollary 2 is

that g(s) touches the circle of radius a centered at -1 but that the

Nyquist locus of g(s) never penetrates the interior of the circle. Thus

to derive the worst case upward gain margin the corollary assumes that

'We have used 11+g(s)) > a rather than jl+g(s)j > a for convenience. The
only modification of Corollary 2 is to make the bounds in (85) and (86)
open sets.

i
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g(s) passes though point A. Similarly, the worst case gain reduction

margin and worst case phase margin are obtained by assuming that q(s)

passes through points B and C (or C') respectively. These worst case

margins are then useful bounds on the actual gain and phase margins. we

refer to these bounds as guaranteed minimum gain or phase margins.

3.7.2 Crossfeed Tolerance

The previous stability margins have assumed that r (s) is diagonal.

If this is not true then there are cross couplings from one feedback

channel to another as in the example considered in section 3.3. The

ability to tolerate crossfeed type of perturbations is also determined by

the two quantities min[I+G 1 ( s)) and a min [I+G (s)) as in the following two

corollaries to theorems 4 and 6 respectively.

Corollary 3: The polynomial ^CL(s) has no CRBp zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition 1 of Theorem 2 holds

2	 amax [X(s)) < a
min 

(i+G-1(s))

and

a max [Y(s ) I < a min (I+G 1(s))

for all s @ QR and where L(s) is given by

I	 X(s)
L(s) =	 (91)

Y (s) I
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Proof: Immediate from the form of L(s) in (81) and Theorem 4.

In this corollary L(s) of (91) represents a bilateral crossfeed

perturbation where X (s) is the fraction of the control signals of the

second group of feedback channels fed into the first group of feedback

channels and Y (s) is the fraction of the control signals of the first group

of feedback channels fed into the second. If either X(s) or Y(s) is

identically zero, then L(S) of (91) represents a unilateral crossfeed

from one group of feedback channels to another. This is the particular

form of crossfeed considered in Corollary 4.

Corollary 4: The polynomial mCL (s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. condition 1 of theorem 2 holds

2. a
max	 min[X(s)] < Q	 [I+G(s)]

for all s e f^ and where L(s) is given by

I	 X(s)	 I	 0

L(s) =	 or	 (92)

0	 I	 X(s)	 I

Proof: Again immediate from Theorem 6 and the form of L(s) in (92).

3.8 Example of Section 3.3 Continued

If was shown that the system of Fig. 11 under the feedback u -Y

is nearly unstable if the value of b12 is very large. This nearness to

instability is easily detected using Theorems 3, 4, 5 or 6 because
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nnin(I4.6 1(s)] or min
[I+G(s)] became very small at frequencies below

1 radlsec. Fig. 24 shows a plot of a min 
(I+G(jw)] as a function of w

with b12 = 50.

0

-2.5

-5

-7.5

V -10

V -12.5

-7c-	 -15

v^

° -17.5

-20

O*minll

-22.5

-25
0.001 0.01	 0.1	 1	 10	 100 1000

Frequency (rod/sec

Fig. 24: Plot of ami (I+G(jW)) for Example

of Section 3.3 (b l2=50), see

Fig. 3.16.

If we use Corollary 2 we obtain the following bounds on the

multiloop gain and phase margins
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GM -) (.93, 1.08)	 (93)

PM D (-4.1°, 4.1°)
	

(94)

which are very conservative estimates of the multiloop gain and phase

margins. Nevertheless, they indicate a robustness problem which is

exhibited by the very small crossfeed tolerance of Corollary 4 which

gives

aax(X(j1)l < mintl+G(]1)l = 0.071 - -23 dB.	 (95)

This again is a worst-case bound on the allowable amount of crossfeed

at t-1 but in this case it turns out that the magnitude of the error

(i.e., E(s) = W1 (s)-G-1(s)]G(s)) induced by the crossfeed perturbation

of Fig. 16 is -20dB, nearly the smallest necessary to destabilize the

closed-loop system.

3.9 Separating Functions and Additional Robustness Theorems

At this point after having given several different robustness

theorems, whose method of proof depended upon the ability to ensure that

I+G(s,e) was nonsingular on DR x[0,1],we shall consider a more general

framework that allows us to generate stability theorems not necessarily

derived from any particular error criterion as Theorems 4 to 6 were.

After these additional theorems are generated we shall look for a possible

associated natural definition of model error which if bounded in magnitude

can not induce instability .

In this section, we will define G(s,e) of Theorem 2 in terms of

an L(s,e) giving
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G(s,e)	 G(s)L(s,e)	 (96)

where L(s,e) is now continuous on DR x[0,1]and such that (28) and (29)

hold and find conditions on G(s) and L(s,e) to guarantee closed-loop

stability. Recall from section 3.6, that the explanation of Why Theorms

4 and 6 worked is that they ensured (in the SISO case) that

l+g(s,e) s 1+g(s)9(s,e) ¢ o 	 (97)

on DR x[0,11. That is they divided the complex plane into two disjoint

regions by using a circle and then ensured that -q 1 (s) was in one region

and z(s,e) in its complement. The different theorems used different

circles and thus give different allowable regions where Z(s,e) may be

located. It thus seems natural to generate other theorems by choosing

different circles to separate the values of Q,(s,e) and -g-1(s).

A simple way to specify a circle or line in the complex plane is

to use a function f(-) known as a bilinear fractional transformation

(52) given by

f (z) = 
az+1.	

(98)
cz+d

where ad-bc # 0 and z is a complex variable as are a,b,c and d. A

circle or line can be specified by the equation

If(z)1 = constant	 (99)

where different values of a,b,c,d and the constant may give different

lines or circles (refer to Fig. 25 for an example). The function f(-)

has the proFerty that it always maps circles and lines into circles and
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if(-g-'(s))I>c,(s)
region for -907-'(s) f

(f(Amo)I<c,(s)
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-103-

Im z

Fig. 25: Exanple f (z) = 2z-( j-) k .

Im

Re

Fig. 26: Illustration of separating function in SISO case.
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lines. The inverse function of f(•) denoted f-1 (.) also is a bilinear

fractional transformation and thus shares these properties.

Now if we put -g1 (s) on the outside of a circle and 1(s,e) on

the inside of a circle to separate them (Fig. 26) then we have a pair

of inequalities of the form

If(-g 1 (s))l > cl (s) > (f(1(s,e))l	 (100)

on DRx(0,1] where c1 (s) is a positive scalar. It may be that in (100)

-g 1 (s) is on the inside of the circle and 1(s,e) on the outside de-

pending on how f(•) is chosen but the key point is that f(•) in (100)

separates -g 1 (s) and 1(s,e) and thus will be called a separating function.

In order to develop a test that does not depend explicitly on e

as in (100), we may define 1(s,e)

1(s,@) 
L1 

f-1 ((1-e) f (1) + of (1(s) )	 (101)

so that

fa(s,e)) _ (1-e)f(1) + of(1(s)) 	 (102)

Now since (100) must hold for L(9,0) - 1 and also for 1(s,l) - 1(s),

(102) implies that

If(i(s,e))I < (1-e)If(1)1 + elf(1(s))1 	 (103)

or

1f(9-(s,e))1 < max{lf(1)1, lf(1(s)){} 	 (104)

and so we need only verify (100) at e-0 and a-1. Now if
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I f (-Q 1 (s)) l > c1 (a) > I f a (s)) )	 (105)

we are assured that (100) holds for all @ in (0,1] since f(•) must be

picked to separate -q 1 (s) from 1 or g(s) from -1 and thus

I f (-9 1 (s)) l > (fad,	(106)

Of course, the definition of Z(s,e) in (101) may place restrictions on

I(s) in order that R(s,e) be continuous on DRx[0,1] that may need to be

checked in addition to (105).

The preceeding discussion of the scalar case can be directly

extended to the matrix case except that the circles become hyperspheres

and the absolute value signs in the inequalities are replaced by O min (•)

or a 
max 

G). The objective now becomes to make sure that I+G(s)L(s,e)

is nonsingular or equivalently (assuming G- 1 (s) exists) that L(s,e) -

[-G 1 (s)] is nonsingular on DRx[0,1].

Now suppose that we can find a function f( • ) mapping c, to

¢nxn such that f(A) - f(B) is nonsingular if and only if A-r is

nonsingular for all A and B in Qnxn for which f(A) and f(B) are defined.

This means that the nonsingularity of L(s,e) - [-G 1 (s)] can be checked

in terms of the nonsingularity of f(L(s,e)) - f(-G -1 (s)). A simple

sufficient condition that guarantees the nonsinaularity of f(L(s,e)) -

f(-G- 1 (s)) is the singular value inequality (see (2.41)) given by

a
min	 max

[f(-G-1(s))] > Q	 [f(L(s,e))] .
	 (107)

We again call f( • ) a separating function since through (107) f(.)

"separates" -G -1 (s) and L(s,e) (i.e., L(s,e) + G 1 (s) is nonsingular).
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In (107) L(s,G) may be defined by

L(s,8) - f lI(1--e)f(I) + @f(L(s)))	 (108)

which is analogous to (101). In (107) it is assumed again that

a min lf(-G-l(s))l > a max 
If(I))
	

(109)

since with L(s,0) - I the nominal system must satisfy (107) if f(•) is to

be an appropriate separating function. Therefore (107) can be guaranteed

for all a in 10,11 if

a min 
If(-G 1 (s))I > a max 

If(L(s))1	 (110)

for all s in DR.

In the matrix case, the separating functions f(-) may also be given

by the matrix bilinear fractional transformation

f (X) - (AX+B) (CX+D) -1	(111)

where A,B,C,D and X are complex matrices. To verify that they are indeed

separating functions we present the following lemma.

Lemma 1: If the matrices A, CX+D and CY+D are nonsingular then X-Y is

nonsingular if and only if (AX-B)(CX+D)
-1
 - (AY+B)(CY+D)-1 is non-

singular.

Proof: Suppose X-Y is singular. Then there exists a vector z such that

Xz - Yz
	 (112)

and thus
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(AX+B)z • (AY+B)z	 (113)

and

(CX+D)z - (CY+D)z .	 (114)

Since CX+D and CY40 are nonsinqular, let the nonzero vector v be giv,an

by

v - (CX+D) z - (CY+D) z
	

(115)

or

z - (CX+D) -1v - (CY+D) -1v .	 (116)

Now substituting in (113) for z given by (116) we obtain

(AX+B)(CX+D) -1v - (AY+B)(CY+D) -1v 	 (117)

that is (AX+B)(CX+D)-1 - (AY+B) (CY+D) - 1 is singular. To show the con-

verse, assume that (117) holds for some nonzero v and define a nonzero

z as in (116), then (113) holds and implies that

A (X-Y) z - 0 .	 (118)

Since A is nonsingular it must be that X-Y is singular.

Q.E.D.

One problem that occurs with the use of separating functions which

are not defined over all of e xn , as when CX+D is singular in (111), is

that the matrices X for which f(X) is not defined must be examined for

their effect on tre continuity of L(s, g) defined by (106) as well as its

effect on c 
Min 

If( -G  1 (s))) in (110) which may alternatively defined as
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11(f(-G- 1 (s)) }-l1IZl ( see 2.39) which may be well defined won thouo

a 
min lf(-G-1(s))] is not because (AX+B) in (111) may be invertible.

Although in 'o sea 1 and (111) the A,B,C and 0 coefficients are

matrices we will only use scalars a,b,c and d in the presentation of

several additional theorems. The first of these theorems is a somewhat

unusual version of the well-known small gain theorem (12). This theorem

is obtained by choosing f(X) - X, using origin centered circles.

Theorem 7 (Small Gain Theorem): The polynomial ict,(a) has no CM zeros

and hence the perturbed feedback system is stable if the following

conditions hold:

1. condition 1 Theorem 2 holds

2. min (-G-1 	 _ (' G (s) (' 2 < 1

for all aQS2R

3. a min ( -G 1 (s)) > 0 max We))

or equivalently,

11,(6)11 2 11L(s)11 2 < 1

for all s e "R.

Proof: In this case Lis,@) is given by

L(s,e) - (1--e)I + eL(s)
	

(119)

and thus (1 G(s ) L ( s ,e)11 2 is simply bounded by use of conditions 2 and 3 as

IIG(s)L(s,e)11 2 = 11(I-e)G(s) + GG(s)L(s)11 2	 (120)

< (1-e)JIG(s)11 2 + e11G(s)11211L(s)II

< (1-e) + e - 1

n -
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Clearly, from (120), I+G(s)L(s,o) = 1+0(8 ,0) is nonsingular and by

Theorem 2 icy (a)has no CRO zeros.

Q.Z.D.

Several remarks about this theoreme are in order. First the name

small gain theorem arias from the fact that condition 3 requires the

loop gain to be less than unity (small enough not to destabilize the

closed-loop system). Furthermore this version of the theorem is rather

unusual in that typically the conditions that ^CL(a) have no CRHP zeros

(condition lc of Theorem 2) and that 11G(s)11 2 < 1 are replaced by the

simple conditions that G(s) and L(s) are open-loop stable. Note that

JIG(s)l 1 2 < 1 and OICL(s) 
having no CRHP zeros guarantees the t G(s) is

open-loop stable. Also L(s) need not be stable as long as G(s) and

C(s) have the same number of CRHP poles. Recall from section 3.4 the

reason we require ^CL (s) to have no CRHP zeros is that the nominal closed-

loop system must be stable in order to determine its stability margins

and determine if it is robustly stable. We are not merely determining

the stability of some arbitrary system with loop transfer matrix G(s)L(s)

where L(s) - I has no special significance. This the main difference

between robustness theorems and stability theorems. In robustness theory

we are trying to determine when stability will be preserved and in stabi-

lity theory w are trying to determine useful conditions under which

stability will occur without the benefit of knowing that with L(s) = I

the feedback system (the nominal system) is stable. dote also that

condition 2 is simply condition 3 with L(s) a I and that condition 2

is the condition given in (109).
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Finally we point out taut 
-1 

(s) need not exirt since by alter-

nating formulating awn(-G 1 (s)) as IIG(s)I`21 we completely avoid the

problem. However, it is convenient to perform, some formal manipulations

with the f(-G-1 (s)) in order to gain insight on how to select certain

useful circles and than go back and determine what assumptions are

actually necessary.

It will now be shown how all robustness theorems using the L - GL

form, can be understood as a small gain theorem on an equivalent feedback

which is stable only if the original system is stable. For this purpose

we introduce Fig. 27 where for convenience the matrix L(s) appears in

the feedback loop instead of in series with G(s) and where we have

suppressed the dependence of G(s) and L(s) on s. In Fig. 27-1 we have

the original perturbed system which is transformed into Fig. 27-2 by

use of a constant scalar multiplier a. Obviously, the systems in Figs.

27-1 and 27-2 are equivalent in terms of stability, that is, one is

stable if and only if the other is stable. To go from the system of

Fig. 27-2 to that of 27-3 we employ what is known as a loop shifting

transformation. This simply adds a pair of fsedback loops with feed-

back gains of *bI around the system X11 G that cancel each other out

because they have opposite plarsty. Then cleverly, the +bI feedback

loop around 1 C is moved so that it becomes a feedforward loop around
a

the aL system. Again it is obvious that the systems in Figs. 27-2 and

27-3 are equivalent in terms of stability. Next, in order to go from

Fig. 27-3 to 27-4 we define the systems G  and L1 shown by the dotted

boxas in Fig. 27-3. Now we simply apply the same type of multiplier and



G2= [-f(-G-)]_'rz
L2 =	 f (L)

[(C-bd)6-odI][oI+bG]_'
= [OL -bl][OdL+ (c - bd) I]-'

o	
G o^ G	 QI

LL oI

_1_ -2-

G i G2

G 3 I	 , G^	 cI

I	 bI I	 d 	 I

I+	 L aI LI	 CI	 !

I
bI

I
I

I	 I
dI

I--- ---. ^--	 - -JL 1 L2
_3_ _q_

Fig. 27: Loop Transformations with Multipliers Ilustrating
the Relationship between the Small Gain Theorem
and the use of the Bilinear Fractional Trans-
formation f(-).
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and loop shifting transformation in one step to the system composed of

G1 and 
R1 

to obtain Fig. 27-4. Nov, however, we have in the loop shifting

transformation involving cG1 started out by adding two feedforward loops

of opposite polarity around cG1 and then moved the +dl feedforward term

around the 
c L

1 system so that it becomes a feedback loop. Again, we

claim that the system in Fig. 27-4 is stability equivalent to the system

of Fig. 27-3 and thus stability equiva?.cnt to the original system in

Fig. 27-1.

The next thing to notice is that the systems G 2 and L 2 defined by

the dotted boxes in Fig. 27-4 can be associated with a bilinear fractional

transformation f(•) by the following equations

G2 = [-f(-G 1)] -1 = [(c-bd)G - adI][aI + bG] -1	(121)

and

L2 = f(L) = IaL-bIIIadL - (c-bd)I) -1 .	 (122)

Suppose now that we may prove the stability of the G2 , L2 system of

Pia. 27-4 by means of the small gain theorem which has the basic in-

equality

IIG2 11 2 11 L2 11 2 < 1.	 (123)

This last condition, however, is equivalent to the condition

Qmin If (-G-1 ) ] > Q max 
If (L) ]	 (124)

where in both (123) and (124) the dependence on s has been suppressed

and must hold on DR. This shows that any particular robustness test as



Proof: This proof is accomplished most simply without resorting to

MY^Ii cit use of separating functions and, therefore, they will not be

Let I+G(s,e) by given by

I+G(s,e) - I+G(s)[(1-e ) I + eL(s)) - I+G(s)L ( s,e)	 (125)
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in (124) involving bilinear fractional transformation may be formulated

as a small gain test on an equivalent system. Also, though it was not

done here, the parameters a,b,c and d of the function f(.) can in

general be stable minimum phase rational transfer functions instead of

constant scalars.

Two final theorems which use a different separating function f(•)

will be discussed. They are the well-known passivity theorem [12] and

its generalization due to Barrett [47). The passivity theorem we shall

state has the same unorthodox assumption that closed-loop system is

stable rather than the usual assumption that the open-loop system is

stable. This again happens because we are using the theorem for deter-

mining robustness of a nominal system under modelling errors rather

then to ascertain the stability of an arbitrary system.

Theorem 8 (Passivity Theorem): The polynomial^CL (s) has no CRHP zeros

and hence the perturbed feedback system is stable if the following

conditions hold:

1. condition 1 of Theorem 2 holds

2. G(s) + GH (s) > 0,	 s e "R

3. L(s) + LH (s) > 0,	 s e Q 
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and notice that L(s,G) is such that

LH (s, e) + L(s,e) > 0	 (126)

on DR x[0,1). Now suppose that I+G(s, e) is singular for some (s, e)

in DR x[0,1]; then, there exists a nonzero vector x such that

[I+G(s)L(s,e)]x = 0 and hence

x = -G(s)L(s,e)x
	 (127)

Defining z = L(s,e)x, we note that z is nonzero else x in (127) is zero

and thus

z = -L(s,e)G(s)z	 (128)

Condition 2 and (128) imply that

H
zHG(s)z + ZHGH (s)z = -zHGH (s)[L(s,e) + L(s,e)IG(s)z > 0

(129)

and since G(s)z # 0 a contradiction to condition 3 is obtained and thus

I+G(s,e) is nonsingular on D R x[0,1]. Theorem 2 again holds and the

desired result follows.	 Q.E.D.

Remark: In conditions 2 and 3 the strictness of the inequalities can

be reversed and Theorem 8 still holds.

Specializing to the SISO case illustrates the types of G(s) and L(s)

that are required in Theorem B. Conditions 2 and 3 keeps g(s) and 1(s)

from entering the OLHP and show (see Fig. 28) that since g(s) cannot

encircle the -1 point, it must be open-loop stable in order to apply the



Re

-115-

Im

Fig. 28: Admissable Region for g(s) and i(s)
in Theorem 8 (shaded).

theorem. It is fairly obvious that the phase of g(s)R,(s) is strictly

less than 180° and thus g(s)i(s) # -1. We can interpret conditions

2 and 3 as separating -q 1 (s) and k(s) by the jw-axis since -g 1(s)

lies in the CLHP and Z(s) in the ORHP. The jw-axis can be viewed as

a degenerate circle of infinite radius cnd we will use this notion to

relate the passivity theorem to the next theorem which generalizes it.

To derive the generalization of Theorem 8 we perform some

algebraic manipulations on condition 2 (and also condition 3) to relate

these conditions to equivalent singular value conditions. First, note



2(GH+G) - ( I+G)H(I+G) - (I-G)H(I-G) > 0 	 (130)

and hence

(I+G)H(I+G) > ( I-G)H(I -G)	 (131)

This last inequality can be rewritten as

[(I+G) (I-G) -11H[(I+G) (I-G) -l l > I	 (132)

or

min[(I+G)(I-G) -1l > 1 .	 (133)

Similarly we can deduce from condition 3 that

a 
max 

[(I-L) (I+L) -1) < 1	 (134)

which when combined with (133) results in

a 
min [ (I+G) (I-G) -l l > 1 > ^[ (I-L) (I+L) -1 ) .	 (135)

In this last inequality, one wonders whether the 1 in the middle of (135)

is really necessary and that if we use an inequality of the form

a min [ (I+G(s)) (I-G ( s))-ll > ate [ (I -L(s)) (I+L (s))-ll	 (136)

if it will guarantee closed-loop stability when (136) holds on DR . The

answer to this question is yes, provided that we impose some -Aditional

restrictions on L(s). The next theorem formalizes this.

Theorem 9	 [47): The polynomial $
CL

(s) has no CRHP zeros and hence the per-

turbed feedback system is stable if the following conditions hold:



2. L(s) has no real eigenvalues less than or equal to -1

for all s e "R

3. gain[ 
(I+G (s)) (I-G(a) ) -lI > m[ (I-L(a) ) (I+L(s)) -1)

for all s e "R

Remark: If condition 3 is satisfied and Qmn[(I+G(s))(I-G(s))-ll < 1

in condition 3 then it can be easily shown that condition 2 is auto-

matically for all s e QR for which this inequality holds.

Proof: L(s,e) is given by

L(s,e) - f-1 [e f (L (9)) I	 (137)

since f(I) - 0 where

f (X) - (I-X) (I+X)
-1
 = f-1 (X)	 (138)

and thus

L(s,e) = [I - e(I-L(s)) (I+L(s))-11 [I+e(I-L(s)) (I+L(s))-11
-1

(139)

and is continuous on DR x[0,11 because of condition 2. Since f(•) is

a separating function, condition 3 implies that I+G(s)L(s,e) is

nonsingular on DR x[0,11 and hence Theorem 2 holds.

Q.E.D.

Note that in condition 3, the invertibility of I-C(s) is not

essential as long as G(s) 0 I for all 9 e DR since



r	 aI (I+G(s)) (I-G(s))-ll 	 ! (I-G(s)) (IfG(s)) -l j ^ al 	(140)min
k

and (I+G(s)) -1 must exist because ^CL(s) has no CRHP zeros and thus

++(I-G(s))(I+G(s))-111 is not zero unless G(s) • I. Utilizing condition

3 of Theorem 9 we may derive some corollaries on the stability margins

of the feedback system.

Corollary 5: If ^CL(s) has no CRHP zeros and

amin l ('+G (s) ) 
(1-G(s) ) - 11 > a	 (141)

for all s e QR and a < 1 then the multiloop gain and phase margins are

bounded in the following manner

GM D
1-a	 l+a	

(142)[l+a	 1-a

and

PM =) I-2 tan-la, 2 tan-1a) 	(143)

Proof: Analogous to the proofs of corollaries 1 and 2.

Note that in the case ail we obtain the bounds on the multiloop gain

and phase margins associated with the passivity theorem which are given

by

GM D (0,-)
	

(144)

and

PM D I-90 0 1 900 1 	(145)
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Also, as for Theorems 4 and 6 we may derive a corollary involving the

tolerance to crossfeed for systems that satisfy condition 3 of Theorem

9 but this will not be done here because it merely repeats the essential

natures of corollaries 3 and 4.

The similarity between the theorems of section 3.5 and the theorems

of this section is incomplete because it is not clear what type of

modelling error is being bounded in Theorems 7,8 and 9. It happens that

Theorem 7 cannot be interpreted in terms of bounding the magnitude of any

type of modelling error and Theorem 8 always bounds the magnitude of the

model error by unity. This can be seen by identifying Cr 
maxas

the magnitude of the model error which is true in the case of Theorems

4,6,8 and 9. In Theorem 7, a 
max [L(s)) ¢ 0 when L(s) - I and thus when

Ms) - G(s)(no model error) the magnitude of the "error" (i.e., max[L(s)))

is not zero. Therefore a 
Max 

[L(s)) does not correspond to the magnitude

of a modelling error. Another manifestation of the lack of similarity

between Theorems 4 and 6, and Theorems 7 and 8 is the fact that Theorems

7 and 8 cannot be applied to all G(s) and d(s) that satisfy condition 1.

of Theorem 2 whereas Theorems 4, 6 and 9 can. Theorems 7 and 8 place

additional conditions on the allowed G(s) (i.e., in the SISO case g(s)

must lie inside of the unit disk in the complex plane for Theorem 7

(Fig. 29) and the CRHP (Fig. 28) for Theorem 8). In Theorems 4, 6 and

9 (again in the SISO case) the Nyquist diagram of g(s) may approach the

critical point (-1,0) from any direction. This is not true for Theorems



Im
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_,	 ,	 Re

Fig. 29: Admissable Region for g(s) in Theorem 7

To discover the underlying error criteria associated with Theorems

8 and 9 make the following identification between L(s) and E(s) given

by

E (s) - -f (L(s)) 	 (146)

since in Theorems 4 and 6 it is f(-G-1 W) + 9(s) that is tested for

singularity. Thus, in t1w case of Theorems 8 and 9 we have that

E(s) - (L(s)+I)-1(L(s) -I) 	 (147)

or since L(s) - G(s)L(s)

E(s) - (G 1(s)G(s) +I) -1(G 1(s)G(s) -I) 	 (148)

and thus

E(s) - 10(a)+G(a) 1 -1(0(s)-G(s)) .	 (149)

Now note that we can write 2E (5) in the two following forms (dropping the

9 dependence)
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(&G) -12E	 2	 [^-G)
or

22 - (1 E-1 + 2 E-1)-1

where

El = G 1(0-G)

and

E2 m -0
-1 - G-']G 	 (153)

From (150) 2E(s) can he interpreted as a relative error between es and G

where the base value is taken as the arithmetic average of 4 and G.

Another interpretation that is suggested by (151) is that 2E can be com-

pared to a resistance as can the errors E 1 and E2 . Then (2E)
-1 is like

a conductance that is merely the average of the conductances 
Ei1 

and

E2 1 . We note that E l is merely the usual relative error between a.:d G

and that E2 is the negative of the relative error between 0-1 and G-1.

In a sense the error criteria for Theorem 9 is a compromise between the

error criteria of Theorems 4 and 6. Note that as E1 (or E2) became

small that 2E approaches E 1 (E2), that is 2E picks out the smaller of

the two types of errors and uses that as a measure of the error. Fig.

30 illustrates the nature of this error in a block diagram where by

(147) L(s) is simply (I-E(s))(I+E(s))-1.

This type of error criterion is pleasing in that it leads to the

symmetric (in a logarithmic scale) gain and phase margins of corollary

5 and correlates well with classical single-loop simultaneous design

requirements on gain and phase margin (47). To put all the various

theorems presented here in perspective, the Table 1 describes the

(150)

(151)

(152)
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Fig. 30: Physical Representation of Perturbed Nodal in Theorem 9

separating functions, error criteria and the multiplicative L(s) factor

corresponding to each the robustness test.

In the next chapter, robustness tests will be formulated that

utilize the structure of the modelling errors that were discussed in

this chapter. This means that having an understanding of how errors

enter into the system models will be important if any judgement about

their structure is to be made.

3.10 Extensions to Nonlinear Systems

The proceeding sections have dealt solely with the .tabilit),!robustness

properties of linear time-invariant systems. The purpose of this section

is to demonstrate that some of the theorems of the previous sections have

corresponding nonlinear counterparts. These theorems may be proved by

use of the well-known circle Theorem 110,111 formulated by Zames and
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later generalized by Savonov 17, 10) . However, these theorems will riot

be proved here due to the lengthy discussion of extended function Banach

spaces and other necessary mathematical development required. The key

observation to be recognised is that the guaranteed gain margin for

Theorems 4, 6 and 9 remain exactly the same when the multiplicative type

of perturbation represented by the matrix L(s) is replaced by a nonlinear

memoryless operator denoted as N (see Fig. 31). This means the gain of

each feedback loop may be changed as nonlinear function of the output

signal of the plant provided the effective linear gain change is within

the bounds specified by the guaranteed gain margin. This notation of

a gain margin for nonlinear systems is made more precise in the theorems

of section 3.10.1.

3.10.1 Guaranteed Gain Margins for Nonlinear Systems

One of the first problems encounter3d in determining the stability

of nonlinear systems; is to clarify what is meant by the notion of

stability. Various authors define stability differently but the basic

concept is that of boundedness. Thus, stability mast be defined before

discussing the generalizations of Thenrems 4, 6 and S. For the purpose

of this section we define stability in the following manner.

Definition (Stability): A causal system with an arbitrary input n(t)

and corresponding output X(t) is stable if there exists a nonnegative

scalar k such that

1l y (t)11 2 < k 11 y (t)11 2
	 (1S4)
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where H-112 is defined as

1/a
Iz(t)11 2 °_	 sT(t)z(t)dt	 (155)

The norm in (155) is proportional to the energy in the time signal

z (t) .

Using this definition of stability  we will examine the stability

oi: the feedback system shown in Fig. 3 where G is a linear time-in-

variant convolutional operator representing the nominal loop operator

and N( • ) is a memoryless nonlinear operator given by

N (x (t)) = [nl (xl (t)) , n2 (x2 (t)) , ... ,nm (xm ( t))) T	 (156)

where each ni (•) is a memoryless time-invariant nonlinearity and xi(t)

are the components of x(t).

uc(t) +	 XW N	 G	 M

Fig. 31: Nonlinear System

lIn the completely linear time-invariant case this definition of stability
requires that a stable system have all its roles in the open-left-half-
plane.

E __	 ,
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In Fig. 31 we assume that the nom1nPl feedback system with N (x (t)) - S(t)

is stable and that the transfer function of the loop operator -G is given

by G(s). Here N is playing the role of L(s) in the completely linear

ease (i.e., the perturbed loop operator d is given by GH).

A graph of the n i (xi (t)) components of NN(0) in (15C) might be

a saturation Vype nonlinearity shown in Fig. 32.

NA

Fig. 32: Saturation nonlinearity ni(xi)

In the next two simplified theorems, it is shown that by bounding the

graph of the ni (xi) appropriately the stability of the closed-loop

system is ensured and nonlinear guaranteed gain margins obtained.

Theorem 10: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) - x

2. NW is memoryless and time-invariant and given by (156)

3 for a 
1 

inf a 
min 

(I+G 1 (jw)) and for all scalar x
W>0

(1-a)x < n i (x) < (l+a)x	 for all i
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Remark: Here it is assumed for conveience that ^oL (jw) 0 0 for all w.

This theorem is the corresponding analogue to Theorem 4 and gives

bounds on the slope of the graph of n i (x) as shown in Fig. 33. The

bounds on a SISO case for the Nyquist locus of g(s) is shown in Fig. 34.

This is a simple application of the celebrated circle Theorem [10,11] as are

the next two Theorems.

Theorem 11: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) = x

2. N(x) is a memoryless, time-invariant nonlinearity given

by (156)

3. for a 
4- 

inf 
c min (

I+G(jw)) < 1 for all scalar x
w>0

1 -x < n (x) < 1 x	 for all i
l+a	 i	 1-a

Again we assume that ^OL(jw) 0 0 for all w and observe that the gain

margin for Theorem 11 is the same as in the completely linear case of

Theorem 6. A similar nonlinear extension for Theorem 9 is available.

Theorem 12: The closed-loop system of Fig. 31 is stable if:

1. it is stable with N(x) = x

2. N(x) is a memoryless, time -invariant nonlinearity given by

(156)

3. for a 
A 

inf a min ( (
I-G(jw)) -1(I+G(jw))] < 1 and for all scalar x

w>0

1-a x< ni (x) < i a x for all i.
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Fig. 34: Allowable region ( shaded) for Nyquist locus
of g(s) in Theorem 10
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In these three theorems the quantity ni (x)/x is upper and lower

bounded and can be considered as the effective l+near gain for the A

feedback channel when the component x i (t) of the vector x(t) takes on

the numerical value x. Thus with this interpretation of n i (x)/x as

an effective linear gain the guaranteed gain margins for the nonlinear

system are the same as those for the linear case.

Notice that in the case of a saturation nonlinearity as in Fiq.

32 that Theorem 11 cannot be applied since a < 1 in condition 3 implies

that ni (x) > 1/2x which cannot be satisfied for a saturation nonlinearity.

3.11 Concluding Remarks

This section will attempt to give a perspective on the usefulness

and relationship of the robustness results of this chapter. This chapter

has presented a variety of robustness results and one wonders if there

is a best robustness theorem to use in determining the largest class of

model errors that the feedback system will tolerate. Practically, the

newer to this question is no but theoretically Theorem 2 characterises

the largest  class of allowable perturbed loop transfer matrices {d(s)),

namely those whose multivariable Nyquist diagram is a deformed version

of the multivariable Nyquist diagram for G(s) having the same number

of encirclements of (0,0). However, the only practical way to determine

if this is true is to use one of the robustness theoorems of sections

3.5 and 3.9. These theorems work with different types of model error

-Largest under the restriction G(s) and G(s) have the same number of
unstable poles.
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and one can only say that one theorem is better than another if a
G

particular characterization of the model uncertainty has been selected

to be the sense in which better is meant.

For example, if one wanted to use the gain reduction margin as the

criteria for the best theorem, that is, the best theorem would be the

one that gave the smallest number for the gain reduction margin upper

bound. Then of Theorems 4, 6, and 9 one would say that Theorem 4 is

the best theorem to use since given any G(a), the upper bound on the

gain reduction computed from a min [I+G-1 (s)] is always less than or

equal to the upper bounds on the gain reduction margin computed from

a 
min 

[I+G(s) ] of Theorem 6 or from a min [ (I-G(s))-1(I+G(s)) ] of Theorem 9.

Similarly, if one wanted the best indication of the upward gain

margin, the lower bound computed from a min 
[I+G(s)] of Theorem 6 is best.

These observations can be easily deduced via the relationships of amin[I+G]

and min [I+G 1] of Fig. 21 and similar relationships that may be derived

for a min [( I+G)(I-G) -1] in relation to a 
min [I+G] or a min 

[I+G 1 ]. It

seems likely that in some sense that Theorem 9 should prove best but

at present it is not clear what the particular criteria might be.

Another way to compare Theorems 4, 6, and 9 in the SISO case is to

compare the regions for allowable t(s) given a :.ominal g(s). This is

illustrated in Fig. 35 where g(jw0) - 3/4 for some w0 . As can be seen

from Fig. 35, Theorem 9 places the least restriction on k(jw 0 ) in the

sense that forbidden region for t(jw0) in the complex plane has the

smallest area for any of the theorems. In general, these regions for

L(jw0) may overlap but may not be contained in each other, so that each
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IM

Fig. 35: Allowable Regions for Z(jw0) if g(jul0 )	 3/4
using Theorems 4, 6, and 9.

Theorem 4: strictly inside circle A
Theorem 6: strictly outside* circle 8
Theorem 9: strictly outside* circle C

*Except for 0 and the negative real axis
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theorem may indicate a tolerance to a certain modelling error not

guaranteed by either of the other two ruining theorems alone. Note

that each of the circles in Fig. 35 pass through -4/3, the value for

R (jw0) which makes l+g (jw0 ) R, (jm0) - 0, and since 1(jwo) cannot be on

the circle's boundaries 1+q(jw0)Jt(jw0) # 0 is ensured.

In the MIND case, drawing appropriate circles cannot easily be done

and comparison of the theorems must proceed by devising some otter

appropriate criteria that is easy to check.

The observations made so far, have been made on the basis of only

the algebraic properties of the robustness inequalities of the theorems.

However, using the typical frequency dependence of G(s) some additional

typical comparisons may be made. In order to obtain a good response to

command inputs, typically of low frequency content, the loop gain in SISO

systems is large in the frequency band where good following of the

inputs is desired. The MIMD generalization of the loop gain is given

by 0 
min 

(G(s)) and a 
max 

(G(s)) where the former represents the lower

bound on the loop gain of the "slowest" loop of the feedback and the

latter represents an upper bound on the loop gain "fastest" feedback

loop. The crossover frequency of the SISO case becomes the frequency

range where a 
min 

(G(s)) < 1 and a 
max 

(G(s)) > 1 in the MIMD case.

In the high performance (good command following) low frequency

range a 
min 

(G(s)) is large and thus so is a 
min 

11+G(s)) (refer to Fig. 21)

and in this region the tolerance to the modelling errors of Theorems 5

and 6 is generally good.

In the frequency region above crossover amax Me)) is small and

thus a min (I+G 1 (s)) is large and, therefore, the tolerance to the modelling
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errors of Theorems 3 and 4 is generally good. This is the frequency

region where it is important to have good tolerance to nodal error

since in general modelling error increases as frequency does (because

of unmodelled high frequency dynamics in nominal design model). This

reccomends that Theorem 4 always be used since Theorems 6 or 9 cannot

be applied when the phase of the plant becomes completely uncertain as

it surely will at high enough frequency. A similar discussion of this

nature is given in 143).

As mentioned previously in this chapter, the theorems using a multi-

plicative model perturbation or relative error sezasure are generally

favored over the ones that use the additive model perturbatiion or

absolute error measure, because the compensation employed does not

affect the mezeure of modelling error. To make this clear, let Gp(s)

denote the open-loop plant transfer ma'rrix and Gc (s) the compensation

transfer matrix. Then for the relative error criteria of Theorems 4, 6

and 9 with G(s) - Gc (s)Gp (a) we have that

Theorem 4:	 G 1 (s)(0(s) - G(s)) - GP1 (s)(4p(s) - Gp (s))	 (157)

Theorem 6:	 (0-1(a) - G
-1 

(s)]G(s)  - 19-1 (9) - Gpi (s)lGp (s)	 (158)

Theorem 9:	 (L(s) f• G(s)l-1(0(s) - G(s)) - (Lp (s) + p($)1-ltdp(s)-Gp(s)l

(159)

where p(a) is the perturbed open-loop plant model. Thus we see that

the compensation Gc (s) does not affect the error computation. This is

not true for the additive or absolute error criteria.
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4. ROMTHESS ANALYSIS FOR LXMR SYSTEMS WITH STRDCTCRm
MOIL ERROR

4.1 Introduction

The robustness tests of chapter 3 used only the magnitude of

the model error in their formulation. It was shown there that if the

model error magnitude is bounded by a MIMO generalisation of the

"distance to the critical (-1,0) point" then the closed-loop stability

of the perturbed feedback system is guaranteed. However, there are

many model errors whose magnitude is greater than the MrM general-

ization of "distance to the critical (-1,0) point" and yet the

perturbed feedback system remains stable.

In this chapter, the robustness tests of chapter 3 are refined

to distinguish between those model errors which do not destabilise

the feedback system and those that do, but both of which have

magnitudes larger than the MIMO generalization of the "distance to

the critical (-1,0) point". To do this it is necessary to be able

to distinguish between model errors that increase the margin of

stability for the feedback system and those that decrease it. This

cannot be done on the basis of the magnitude of the model error.

Therefore,it must be done on the basis of the structure of the

model error.

The structure of model error, in general terms, is simply the

numerical relationship of the elements of the error matrix E(s),
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representing the difference between the nominal and the perturbed

loop transfer matrices. In other words, the structure of the model

is specified by magnitude and phase relationships between the

sij (s) elements of E(s). In this chapter the stte of E(s)

which is important to detemsine the stability of the perturbed feed-

back system is extracted using the results of chapter 2 and the

singular value decomposition (SW), to generate an orthonocnal basis

for the expansion of E(s). It will be shown that the projections of

E(s) on only certain elements of the basis need be known precisely

to extract the informations relevant for stability analysis. Thus,

only a partial characterization of the modelling error is necessary

and its structure is constructively produced by the method of analysis

used in chapter 2. Another recently proposed method, principal gain

and phase analysis 1571, which uses a somewhat different partial

characterization of the model error to extend the robustness test in

Theorem 3.4, is discussed in chapter 6.

in order to make a practical use of these results that utilize

the structure of the model error, it is necessary to determine if the

model error of minimum magnitude that will destabilize the feedback

system can be guaranteed not to occur. This assessment must be made on

the basis of engineering judgement about the type of model uncertainties

that are reasonable for the nominal design model representing the phys-

ical system. For discussions on how to practically determine what

constitutes a reasonable modelling error, the reader is referred to

. l
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1421 for a discussion of model errors in an automotive engine

control system and 1461 for a similar discussion with regard to

power system models.

Some knowledge of what is a reasonable model error is absolutely

essential since all models are uncertain in some frequency band.

Model error always occurs when the frequency is sufficiently high

and this uncertainty must be accounted for. In KW control systems,

the maximum crossover frequency where the loop transfer matrix,

G(s), has a norm of unity (i.e. the maximum w for which

11r- (JW)11 2R1) must occur in a frequency band where the model still

adequately represents the physical system if stability is to be

ensured. It is up to the designer to decide how and in what way

the model is uncertain.

Having now briefly described the key role of time model error

structure for the results of this chapter it is appropriate to

outline the remaining sectionsof this chapter. In section 4.2, it

is shown exactly how the structure of the modeling error can be

used to obtained improved versions of the theorems in chapter 3.

Theorems 4.1 and 4.2 show that the necessary magnitude of the

model error, at a particular frequency, that destabilizes the feed-

back system, but is essentially unlike in structure to the smallest

possible destabilizing model error, may be much larger in magnitude

than the magnitude of the smallest destabilizing model error.

This means by differentiating the model errors on the basis of their

`,I
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similarity to the structure of the smallest destabilizing error,

the feedback system can guaranteed to tolerate a possibly much

larger model error.

This is explained first for the SISO case and then generalised

to the MIND case. Section 4.3 interprets the nature of the smel-

ling error of minimma magnitude, that destabilizes the feedback,

via block diagram manipulations. Next in section 4.4, the example

of chapter 3 (illustrating the deficiencies of the single-loop type

of stability margins) is continued to show that the analysis of this

chapter predicts the type of model perturbation used to demonstrated

the near instability of the closed-loop system. Finally, in section

4.5, the possibility of combining different robustness tests as a

way of extending their usefulness is discussed.

4.2 Robustness Tests Utilizing Model Error Structure

In the robustness theorems of chapter 3, the key conditions

ensuring the stability of the perturbed closed-loop system were

inequalities of the form

omay.IE(a)I < Minlh(G(s))I	 (1)

where h(•) is some bilinear fractional transformation

(i.e., I+G, I+G 1,(I-G)-l(I+G)) and where U. swac hold for all

DWI. Recall from (3.33) that % is the portion of Dh in Fig. 3.10

for which Re(s)< 0, 	 This condition assures that the model error
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is sufficiently small so that a closed-loop system designed an the

basis of G(s) will remain stable when it is replaced by G(s).

However, the approach used to develop these robustness theorems

neglects the fact that there are perturbations or modelling errors

for which (1) does not hold, i.e., the model error is not small,

and yet the closed-loop system remains stable. These chapter 3

theorem are conservative if one restricts the allowable type of

model error structure because they guard against absolutely all types

of structure in linear model errors.

One way to reduce this conservatism is to obtain additional

conditions that distinguish between modelling errors that do not

destabilize the feedback system but violate the test of (1), and

those that violate the test of (1) but also destabilize the feedback

system. Or better yet, obtain some conditions that discriminate

between modelling errors, that violate (1), between those, that

increase and those that decrease the margin of stability of the feel-

back system.

The problem is illustrated in Fig. 1 for SISO systems where two

different perturbed systems g l (s) and g2 (s) produce exactly the same

size of relative error on the Nyguist diagram. As can be seen from

Fig. 1, the difference between the perturbed systems g 1 (s) and g2(s)

cannot be determined from the magnitude of the error alone.

Clearly, 42 (s) has a smaller margin of stability than the nominal
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Fig. 1: Two Different Perturbed Models with the same
Relative Error Magnitude on a SISO Nyquist
Diagram.

system g(s), and q l (s) has a larger margin of stability than the no-

minal g(s). Since this is a scalar system the only additional

information about the error needed to distinguish between q l (s) and

i2
 (s) is the phase of the error. Thus, in the SISO case this gives

us a complete characterization of the error.



g (s)
Fig. 2: Illustration of worst type of error in

SISO case on a Nyquist diagram.

Re

-141-

In the MINO case, the problem is not so simple because for

an nun system G(s) the error matrix E(s) has 2n2 degrees of

freedom (two for each element of E(s) i.e., gain and phase or real

and imaginary part). Thus, if a single degree of freedom is eli-

minated from E(s), by information in addition to the norm of E(s),

there are still 2n2-1 degrees of freedom left. Therefore, it is

important that exactly the right additional information about E(s) is

obtained so that only a partial characterization of E(s) is necessary

to distinguish between modellings errors that increase or decrease

the margin of stability of the feedback system. In order to do this it

is necessary to examine the structure of the smallest error that des-

tabilizes the feedback loop. We will call this error the worst error.

In the SISO case, the worst error is illustrated in the Nyquist

diagram of Fig. 2.
IM
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At point A, in Fig. 2, the Nyquist locus of g(s) is nearest the

critical -1 point and thus the worst error simply moves point A to

A' by "stretching" the Nyquist locus at that particular frequency to

just pick up an extra encirclement of the -1 point (the point A' is

infinitesimally close to -1). It is important to point out that this

type of perturbation could be applied to g(s) in any frequency EM

but that it need happen only at one particular frequency, 
160 

near,

in order to induce instability. Thus we will speak of the worst

error at a particular value of s6DR.

Notice also that there are any number of curves that we could

pass through A' representing perturbations of the original Nyquist

diagram of g(s) as depicted by gl (s) in Fig. 2, that induce instability

and are identical to the worst error at the frequency of point A but

differ at other frequencies. However, these curves will also be

considered as worst errors since it is really their nature at a

single frequency that is important in distinguishing them from other

curves.

One other point must be emphasized. The system g(s) may be

constructed quite simply by finding a continuous stable

X(s) = 9'(s) /g(s) that meets as closely as desired the ideal speci-

fications given by

it ideal (a) 6	 ( 2)

1	 ^i^o
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where w0 is the frequency corresponding to point A in Fig. 2. For

example, one continuous, stable R(s) that approximates 
I ideal (s) in

(2) can be generated simply by taking I(s) to be of the form

q(s)11 +g1(jW0)I
	

(3)

where

q(s)	 2 2p 2	 f s+a )c	 (4)
s +2pw0s+w0

To approximate 
f 
ideal (s) closely, p>O in (4) must be very small so

that (q(s)) is as small as desired whenever (s-jw0 I>e for a given

e. The constants a>O and c—+l in (4) are used to adjust the phase

of q(s) without affecting ig(s)) so that

q(jw0) = exp(]{argil+g
- 1 (jw

0) }) .	 (5)

This selection of p, a and c in (4) makes q(s) essentially zero

everywhere except in a suitably small frequency range near w 0 where

it has the value given in (5). Thus t(s) is as close as desired to

the specifications in (2) but is still continuous in s and stable.

The t(s) determined by (3), (4) and (5) produces a g(s) essentially

like the one of Fig. 2.

Returning to the MIMO case, we can make all the analogous state-

ments to those concerning Fig. 2, once we have specified the worst

error. Then similarities between the SISO and MIMO cases can be

easily demonstrated using the ideas of chapter 2 developed in

R
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Problems A and B and by use of the SVD on the matrix h(G(s)) of (1).

Suppose that the SVD of h(G(s)) is given by

h(G(s)) - U(s)E(s)VB(s)
	

(6)

where

U(s) _ [ul (s) ,u2 (s) ". '-Un(s) ]	 (7)

V(s) = 111 (s) ,v 2 (s) ....,^(s) )	 (8)

I(s) = diag[aI (s) .a2 (s) ,...,an ts) )	 (9)

ai(s)> ai+l(s)> 0
	

(10)

where the singular values a l (s) - a max (s) and an ts) s (Y min

Recall from ( 2.66) that the error matrix E(s) of smallest norm that

will make h(G(s)) + E(s) singular is given by

E(s)	 ;	 0O 	
H

E(s) = U(s) -------1--------- V(s)	 (11)

OT 	; -an(s)

where IIE0 W jj < an (s) but is otherwise arbitrary. I	Provided the

norm of the matrix E0 (s) is bounded by an (s), its structure is

completely unimportant information for the test determining the

singularity or nonsingularity of h(G(s)) + E 0 (s)• Therefore, E0(s)

will be taken as identically zero in the following discussion and

lOf course it must also be such that G(s) satisfies condition 1 of
Theorem 3.2.

i



-145-

thus, E(s) given by (11) reduces to

E(s) - -0 (9)U(s)vH(s)	 (12)

The E(s) given by (12) will be called the essential structure of

the more general form of E(S) given by (11) when E0
 
WOO. The

quantity -on (s)un (s)vH (s) is the component of E(s) given by (11)

that alone must be exactly known if it is to be ascertained whether

or not the matrix h(G(s)) + E(s) is singular. Hence, the description

of the E(s) given by (12) as the essential structure of E(s) given

by (11) is justified.

Remark: The fact that E(s) in (12) is singular or that E(s) in (11)

may be almost singular will be important in chapter 6 where a method

that assumes that E(s) is nonsingular or not even close to

being singular is discussed.

Again, as in the STSO case, the er; •or given by (12) need only

occur at one particular complex frequency s 0 to destabilize the

feedback system. That is, we may construct a perturbed d(s) having

the same number of unstable poles as the nominal G(s) that has the

property that E(s 0) satisfies (11) arbitrarily closely and hence

destabilizes the feedback system. The MIMO error matrix

E(s0) 	 -on (s0 ) u ( s 0 )v11(s 0) is the generalization of the model
errors that produce the i(s) and g' 1 (s) of Fig. 2 passing through point

A' just picking up an extra encirclement of the critical point (-1,0).

From (12) we see that for an arbitrary error matrix E(s) that the
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projection , 1 <U(a)vn(s) , E(s)> un (s)vH (s),	 of E(s) onto the

one dimensional subspace spanned by u
n
(s)vn (s) can be used to

determine if the component of modelling error in the most sensitive

direction un (s)vn (s) will move the multivariable Nyquist diagram

of the nominal system nearer or farther from the critical point

(0,0) in the complex plane. The direction of this movement of the

MIMO Nvc4uist diagram is simvly ascertained by determininc if

<u (s)vH(s),E(s)> is nearer or farther than a distance of o (s)
n	 n	 n

from the point (-Q n (s),0) in the complex plane. However, the quantity

<u (s)vH(s),E(s)> merely determines the effect of one component of
-n -n

the model error and does not take into account the effect of the

other components of the model error (i.e., the projections

<u i (s)v (s),E(s)> u i ( s)vi (s)) have on the multivariable Nyquist

diagram. Therefore, some restrictions on these other model error

components must be placed if their effect on the stability of the

closed-loop system is to be easily predicted.

Suppose now that we restrict the component of modelling error in

the most sensitive or worst direction uj^(s)v 
H
n (s) to be exactly zero

(i.e., <u (s)vH(s),E(s)>=0) so that it has no effect on the
-n -n

multivariable Nyquist diagram. Naturally, for this class of modelling

errors, one expects that the magnitude of the error required to

destabilize the feedback system should increase since the worst possible

1 The innerproduct notation <.,.> was defined in (2.48) of chapter 2
where a discussion of projections on subspaces is also given.
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type of error has been ruled out and indeed this is the case. The

elimination of this type of error can only be done using engineering

Judgement about what type of error can occur in the physical systems.

The next theorem assumes that the worst model error can be ruled out

and extends Theorems 3.4, 3.6 and 3.9, by allowing thew to deal with

errors of larger magnitudes than previously allowable.

Theorem 1: The polynomial iCL(s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following four conditions

hold:

1. (a) ^OL (s) and iOL (s) have the same number of

CRHP zeros.

(b) if 0OL (jw0 ) =0, then ^OL(jw0)=0

(c)
OCL(s) has no CRHP zeros

2. h(G(s)) is of the form:

(a) h(G(s)) = I+G(s), A(L(s))O(-0°,0] and

E(s) = jG 1 (s)-G 1 (s)]G( s ) or

E(s) = G(s)-G(s) for all se"R

or	 (b) h(G(s))=(I+G(s))(I-G(s))-1, 71(L(s))^(-m,-1]

and E(s) = la(s)+G(s)]- 1 jG(s)-G(s)] for all 80%

or	
(c) h (G (s) ) = I+G-1 (s) and E(S) = G 1 (s) jG (s) -G (s) ] or

E(s)	 [ G-i(s) -G 1 (s)] and X(L(s))p(--,0] for all

sei2 .
R
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3. vaxIE(a ) I <1%(a)vn-l(a)J1 /2

for all nfQR where an (a) and CY 1 (s) are the two

smallest singular values (assumed to be distinct)

of h(G(s))

4. <u (s)vH(s),E(s)>-0

for all 6120 where u (s) and vn (s) are the left and

right singular vectors of h(G(s)) associated with

a (s) .

Proof: Conditions 1 anG Z are the same conditions used in Theorems

3.3 to 3.6 and 3 . 9 to ensure that G(s,e) is continuous in a on

DRx(0 , 1) so that Theorem 3.2 can be applied. Therefore, we need only

show that h (G(s)) + E(s) is nonsingular. This, however, is

guaranteed by conditions 3 and 4 using the solution to Problem H in

chapter 2 (see (2.73) to (2.76)). 	 Q.E.D.

Note that in Theorem 1, conditions 3 and 4 are required to hold for

all 3eS^R even though they need only be used in the frequency range

where the sufficient conditions (all given by (1) of this chapter) of

Theorems 3.3 to 3.6 and 3.9 are violated.

The significance of Theorem 1 is that by requiring very little

information (condition 4) in addition to the magnitude of the model

error, the worst type of modelling error that could destabilize the

feedback system (and whose exclusion night be justified on physical

grounds) is effectively eliminated. Hence, the "size" of the error
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necessary to destabilize the system may inrraase significantly if

an-1(s) 
»an (s). Thus, the conservatism of the chapter 3 theorems

for this class of modelling errors is reduced. The essential structure

of the next worst error (i.e., next smallest error) that destabilizes

the system in this restricted class of modelling errors is given by

(from (2.73) with ^-0 because <u (s)v (9` , E(s)>=0)
-n M

B(s) = fv ls)v	 u (a)vH (s)e j8(a) +u	 (s)vH(s)e 
je(s)^.

n	 n-1
ts) C -n -^n-1	 -n	 -n

(13)

where (a) 8(s) is real and arbitrary and (b) the vectors

un-l(s),uM(s), vM-1 (s) and v,(s) are the left and right singular

erectors of h(G(s)) corresponding to a n-1 ( s) and an (a) respectively.

The spectral norm of the matrix E(s) in (13) is precisely

Van(s) an- 1(s).

However, it must be pointed out, that it is extremely unlikely that

condition 4 of Theorem 1 will hold exactly for a realistic modelling

error since the model error in the particular direction uit(s)vHH(s)

will rarely be exactly zero. A more likely expectation is that this

component of the error not be exactly zero but sufficiently small in

magnitude. By requiring only that the model error in the direction

un (s)vT (s) be sufficiently small, Theorem 1 may be modified so that

the essential nature of its results are still valid when the class of

model errors considered is characterized by

^<un(s)vH(s),E(s) >I < c(s)< an (s) - aminW.	 (14)
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The positive scalar c(s) in (14) bounds the magnitude of the worst

modelling error as a function of frequency to be less than 0 min (a)I

the minimum magnitude of the smallest destabilizing error required

to destabilize the feedback system. Therefore, the magnitude of the

model error in the most sensitive or worst direction u (s)vH(a)
-n -n

is not large enough by itself to destabilize the feedback system.

In order to destabilize the feedback system when the model errors

satisfy (14), other model error components, besides the model error

component in the worst direction, must contribute to the movement

of the MIMO Nyquist diagram through the critical point (0,0).

This is stated formally in the next theorem.

Theorem 2: The polynomial OCL(s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions

hold:

1. conditions 1 and 2 of Theorem 1 hold

2. cr max IF(s)J <Ion (s)Gn-1 (s)+c(s) ton(s)-on-1(s)))1/2

for all BM 

3. kun (s)vH (s),E(s) >J< c(s)< a (s)

for all seOR .

Proof: Identical to proof of Theorem 1 except that now the general

solution of Problem B ((2.73) to (2.76)) via conditions 2 and 3

guarantees that h(G(s)) + E(s) is nonsingular. 	 Q.E.D.
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The essential structure of the next worst perturbation that

does not violate condition 3 but destabilises the feedback system

is given by (from 2.73)

E(s) - tc(s)u	 (a)vH (s)-c(s)u (s)vH(a)+Y(a)u 	 (s)vH(s)+y*(s)u (s)gH (s))
-n-1 - n- 1 	 -n -n	 -n-1 —n 	 _n	 n-1

(15)
where

	

Y(s) _ It c (s) + on (s)) tc(s)-an-1 (8))1 1/2e j^ (s) 	 (16)

with f(s) being arbitrary but real. Note that as c(s)+ 0, in con-

dition 3 and in (15) and (16), that we recover the results of Theorem 1.

To make the meaning of the results of Theorem 2 clearer, the following

example is given.

Example 1: Suppose that we wish to determine stability robustness of

a 2x2 control system which actually has a loop transfer function

matrix G(s) but is represented by the nominal diagonal loop transfer

matrix G(s) given by

1
g ll (s)	 0	 0s+7.5 

G(s) _	 _	 (17)1
0	 922 (s)	 0	 s+0.5

so that the nominal closed-loop system has poles at -8.5 and -1.5.

If we use the relative error criterion

g11(s)-g11(s)	 12 (a)

E(s) - G 1 (s) [C(s)-G(s)) =	 gll(s)	 911 (s)	 (18j

g21 (s)	 422 ( s )-g22 (s)

g22 (s)	 922 (s)
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then the multiplicative uncertainty factor matrix L(s) is given by

	

911 ( s )	 912 (a)

	

911 (a)	 911(a)
L(s; ^ I+E (s) ^	 (19)

	

421 (s)	 i22 (a)

	

922 (a)	 922 (s)

First, we compute a min (T+G 1 (jw)) to determine the magnitude of

the smallest destabilizing model error E(s). This is simply given

by

min
' ^1.5+jW1 . J(1.5) 2+w2 > 1.5	 (20)

becausebecause

s+8.5	 0

I+G-1 (s) _	 (21)

	

0	 s+1.5

Now suppose that the error in the loop gain of each loop of

the feedback system is known within +501 of the nominal loop gain,

that is

	

s11(jc^)	 {
o.5 < 

g 
(
JW)	 ,^ll( jw) i< 1.5	 (22)

11	 11

922(jw)
0.5 <) 

g (jw) (4 
It22Ow) ( < 1.5	 (23)

22

Next, suppose that we are more uncertain about the channel crossfeeds

in the sense that we can only assert that

and

•
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g t jW)
le 12

(jw)l s lk12 (jw) l-f 912( jW) 1 < 
2

and that

921(jW)
le 21

(jw) ! = 1 Q'21 (jw) l	
911 

OW) I 
< 2 .

It follows from (22) and (23) that we can bound jell (jW)) and le22(jw)l

by 1/2 and thus, by (24) and (25), we can only conclude that

IIE(jW)JI 2 
= a max lE(jW)]< 2.5	 (26)

From (26) and (20) it is clearly possible to have

auuc (E (jw) )> (, min il+G-I OW) ] .	 (27)

Therefore, Theorem 3.4 of chapter 3 does not apply. However, we can

use Theorem 2 to ensure the stability of the perturbed feedback system.

To see this, note that the SVD of I+G 1 (jw) is given by

j81(w)
e	 0	 jjw+8.5 { 0	 1 0

I+G 1 (j W) =	

j82 (W)
0	 e	 0	 fiw+1.5^	 0 1

= U(jw)E(jw)VH(jW)	
(28)

where

81(w) = arg t jw+8.5]	 (29)

and

01(w) -	 (30)

(24)

(25)
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Note that condition 3 of Theorem 2 can be satisfied with c(jw)=1/2

since from ( 28) defining 3!2 (jw) and v 2 ( jw) and from (23) bounding

ZI22(jw) and thus e 22 (jw) we have that for all w

1<112( JW)
	1/2	 (31)

Thus, by (31) and ( 20) we have

a 2 (jw)> 1.5 > 1/2 > I<u 2 (jw)v2 (jw).E ( jw) >I. 	(32)

Next, we calculate the right -hand-side of condition 2 of Theorem 2

and a lower bound as follows

[C.	
1/2

1(jw)o2(jW)+c(jw) [a 2 (jw) - (' 1 (jw)]1	 = [Ijw+8.511jw+1.51

+ 1/2[jjW+l.5j-Ijw+8.5j)	
,.
	 JJ

2 > (8.5) (1.5)+( 2 )> 3. 	(33)

Therefore, using ( 26) we have that

Cy 	IE(jw)]< 2.5 < 3 <^o, (j-,i))a,,(jw) +c(jw) [a2 ( jw)-al ( jw)ll1/2
max	 —	 1 ^	

J (34)

and so cc-idition2 of Theorem 2 holds. Assuming condition 1 of

Theorem 2 holds we have shown that the perturbed feedback system is

stal:le. The next smallest destabilizing error can be calculated

from ( 15) and ( 16) with 0(jw) a0 and w=0

•
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since a min (1+0 1(jw))> min (2+G 1(0)) - 1.5 and is given by

1/2	 3
E(0) -	 (35)

3	 -1/2

which means that L(s) may be taken as the constant matrix L given

by

3/2	 3
L =
	

(36)

3	 1/2

Thus, we see that (refer to Figs. 3 and 4) crossfeed gain errors of

magnitude 3 and loop gain changF^; of +50% are required to destabilize

the feedback system if we insi; t t ..:. !22) and (23) must hold.

Nominal Open-Loop System G(s)

0	 +	 ut(s) i	 1

	

_	 i	 s+7.5	 1

	

1	 i

0	 +	 1u2(s)	 1
s+0.5

_j F

	

^	 I

yt(s)

Y2(s)

Fiq. 3: Nominal Feedback System (Stable).



U
5	

+	 (s)	 t
0 +	 s+ 0.5 Y2 (S)

a
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Perturbed Open-Loop System G(s)
I	 I
j	 +	 ul(s)	 1	 I1	 1.5	 s+7.5 1

3

3^--^

yi(s)

Fig. 4: Perturbed Feedback System (Unstable)

Remark: One possible exception, to the form of E(s) given in (13)

or (15) occurs when E(s) is such that at least, one o f the eigen-

values of L(s) is real and negative. In Theorem 1 and 2, condition 2

places restrictions on the eigenvalues of L(s) which may be violated

when at least one of the eigenvalues of L(s) is real and negative.

Tn this case, Theorems 1 and 2 do not apply and there may exist a

smaller error that destabilizes the feedback system but yet conditions

4 and 3, of Theorems 1 and 2 respectively, still hold. However, when
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the matrices U(s) and V (s) of the SVD of h(G(s)) are complex it is

very unlikely that L ( s) determined by the E(s) given in (13) or (15)

will even have real iigenvalues.

We can now consider placing additional constraints on the

modelling and further res':rict the class of allowable modelling errors

in the manner of Problem C in chapter 2 and derive the next theorem.

Theorem 3: The polynomial ^ CL (s) has no CRHP zeros and hence the

perturbed feedback system is stable if the following conditions hold:

1. Conditions 1 and 2 of Theorem 1 hold.

2. E(s) is of the form

E 1 (s)	 e2 (s)	 H

	

E(s) = U(s) -------1--------- V(s)	 (37)

eT	 0

where e2 ( s) and e3 (s) are vectors whose last

component is identically zero and where U(s) and

V(s) are defined in (6).

3. a max (E(S))<^Cyk(s)aZ(s)

where	 a (s) v (s) = min a (s) o (s)	 (38)
k	 (i, j)OM i	 i

and

	

M `^ { (n,n) , (n-l,n),(n,n-1) }	 (39)
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Proof: Direct application of Problem C of chapter 2 and Theorem 3.2

as in Theorems 1 and 2.

Theorem 3 allows us to determine the next larger magnitude of

the "next, next worst model error" required to produve instability

when the smallest destabilizing model error and the next smallest

destabilizing model error considered in Theorem 1 and given by (13)

are completely eliminated from consideration. Theorem 3 eliminates

these type of errors by requiring zero model error projections in

the worst direction un (s)vH (s) and the next worst pair of directions

u (s)vH (s) and un-1(s)_vH(s).	 The process of eliminating each

"successively worst direction" could obviously be continued and

larger magnitudes of these classes of errors would then be necessary

to destabilize the feedback system.

4.3 Block Diagram Interpretations of Worst Model Error

In this section, interpretations of the smallest destabilizing

model error will be given using block diagramsrevealing the role of

the SVD of the matrices of I+G(jw) and I+G -1 (jw) in the input-output

properties of the feedback system. The types of model error con-

sidered are those of Theorems 3.4 and 3.6 involving the relative errors

between G (jW) and G (jw) or G
-1 

(jW) and G-1 (jw) .
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At some particular frequency W0 , let the WD of I+G 1(jW0)

be given by

I+G 1 (jw0 ) = U (jw0M jw0)v (jw0 )	 (40)

so that the closed-loop transfer matrix at w 0 , GCL (jw0) is given by

n
GCL (jw0 ) 	

(I+G-1(jw0)-1= V (jw0 ) E 1(jw0)Ug
( jw0)

	i^1 
a (jw0)^i(jw0)Hi(jw0)

(41)

and thus

Vi Ow0 ) G CL ( jw0 )R,	0) ° a  (jw0)
	 (42)

A block diagram of a closed-loop stable system representing equation

(4') is given in Fig. 5.

cos^,0t	 u^ (jcao)
ru

+ 
a 

G(jc^o) 	 y	 v"(j^o)	 ^ ^ ^os^,0t
> 1'^0

Fig. 5: Block Diagram Interpretation of SVD of

I+G 1 (jw0 ) .
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This Figure illustrates that the left and right singular vectors

uj (jW0) and vj (jW0) collapse the MIMO closed-loop system into a SISO

system through which the signal cosW 0t passes with a change of

amplitude by a factor of 1 /Q j (jW0) determined by the singular values..

These vectors can be interpreted az input and output "directions"

where for each different value of the index j input/output direction

pair produces a different SISO system and represents a different route

through the MIMO system for the signal cosw 0t. Therefore, from

Fig. 5 with j=n, we see that if a  OW 0 )  = Q 
min (jW0) 

is near zero, then

the system will amplify a sinusoidal signal by a large factor of

1/0n (jW0) in the input/output directions of un (jW0) and vn (jw0). As

un (jw0) approaches zero the amplification factor approaches infinity

until at 0n (jw0)-0 the system with a bounded input produces an

unbounded output, that is, the system becomes unstable. This is all

rather obvious since if 0n (jW0 )=0, the matrix (I+G 1 (JO)0 ) ) -1 does not

exist and therefore there must be closed-loop poles on the jW-axis at

+jW0*

As in the case of I+G 1 (jW0) a similar interpretation of the

SVD of I+G(jW0) can be made. If the SVD of I+G(jw 0) is given by
H

I+G(jw0 ) = U(jW0 )E(jW0 )VOW 0 ) making the SVD of ['I+G(jW0)]-1

H	 n

[I+G (jW0 ) ] -1= V (jW0 ) E-1 (jW0 )U (jW0 )= i=l C  (
 
OW 

0)
vi (jW0 )Ai dw0) (43)
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then Fig. 6 gives the block diagram analogous to Fig. S. Figure 6

shows that the only change from the previous case shown in Fig. 5

is that the output is generated from the error signal a instead of

the system output signal y.

e	 1H( jwo)J--- p  I . Cos Wot
1Mwo)

COs Wot --+ u j(jw0) I V	
G(j ty0)	 y

Fig. 6: Block Diagram Interpretation of SVD
of I+G(JW0).

Notice that in (41) and (43) the vectors u i (JwO) and vi(JW0)

depend on the particular frequency W0 that is selected when the SVD

is accomplished. Thus the input-output relationship of Figs. 5 and 6

are only valid at the frequency (, 0 . Note also that the unit vectors

<x
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uj (jw0) and v3 (jw0) are in general complex but may be realized by

passive attenuating filters that give the appropriate phase shift

or time delay at frequency w0.

In the SISO case when G(jw) is a scalar the vectors 
u 

and v_j

became the complex scalars u and v which have unit magnitude. Since

the input-output relationship in these figures is simply the positive

gain of 1/0 (jw0), it must be that at w-w 0 the phase of the pr-duct

u(jw0)v*(jw0 ) is simply the negative of the phase of

(l+g 1 ( jw0 ) ]-1 or 11+9(jw0)l-l.

Using Figs. 5 and 6 we may interpret the directional nature of

the smallest (according to a particular error criterion) model error

in G(jw0) that destabilizes the closed loop system. The gain from

input to output in Fig. 5, as mentioned before, is simply 1/0 i (jw0).

If the input-output directions u
M

(jw0) and vu (jw0 ) are used and if

an (jw0 ) is small, then a small amount of positive feedback around the

system of Fig. 5 will destabilize the system. This is shown in Fig. 6

where the output of the system of Fig. 5 is fedback to the input with

a gain of a. Notice in Fig. 7 that if a=0 n (jw0 ) the system becomes

unstable because the system amplifies the input by jQ 	
-1

n(jw0)-a) .

This additional feedback could be interpreted as a perturbation to the

system of Fig. 5. However, by block diagram manipulations it is not

difficult to see that this perturbed system is equivalent to those of

Figs. 8, 9 and 10.



Gt jwo)
COS wot +	 u nOwo) u

1	
w0Yoos t

-1b3-

OSa -can

Fig. 7: Destabilizing Feedback in Motet Sensitive Direction

uOw ) vH(jw ) for Error Criterion E = G

n	

l[G-^]•
0

COS wot
	

nQwO) + + ^G(jwo)
	

ynH7Q o)

	 CAS

un Owp) Yn(1

Fig , g: Equivaient to Fig. 7.
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Cos wot
	

+-	 G(jwo)
	 No ^	

Qn(jW+b -Q

I~a vn(jwo)yn(jwo)

Fig. 9: Equivalent to Fig. 8.

cos coot
	

run(j	 ^G(jwo*- aUn(jWO)YnHQWO)^ j	 v-n(jwo)	
Coswot

Fig. 10: Equivalent to Fig. 9 where Y - II-av_ n (jW )un(jw0)J-l.



c.
-165-

In Fig. 10 an explicit inversion of tI ^(jW0)v? (jtrp)ty^o)]

has bjen performed to simplify the block diagram.

From Figs, 9 or 10 it is clear that the stability of these equi-

valent perturbed closed-loop systems is caWletely characterized by

the behavior of the loop transfer function matrix G(Jw) which at

4PEW0 is given by

G(jwr^) a GOW0 )L(jwO l	 G (tw )11-= (jWo)v^(jwo)I
	

(44)

Thus , in the error criterion E(s) - G 1 (s)(G(s) -G(s)] given in (3.35)

we have that E(jW0) is given by	 '

E (JWo) a -au ^ (](.JO)vH(jWo)
	

(45)

This means that the perturbation matrix L(jW 0) that perturbe the

inputs to the open-loop G(jw 0 ) has the some effect as applying

additional positive feedback in the most sensitive direction

u
T1
OW0 )vn (jW0). Just as we have interpreted the worst error as ad-

ditional positive feedback in the direction u (jW„)vH(jW„) using the

SVD of 1+G-1(jW0), we obtain similar interpretations using the SVD of

I+G(jw0). Using Fig. 6 we may again determine the smallest des-

tabilizing feedback as given in Fig. 11 and its open -loop equivalent

in Fig. 12.
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COS W01

Qn(

COS trot

0s a<(Yn

Fig. 11: Destabilizing Feedback in Most Sensitive

Direction unOw0)VH(]wD) for Error

Criterion E - [ G 1-^ 1IG•

yn ( lam	 Qn(Ju►0 -a

cos (L;ot

r----	 I
i	 Guwo)

^^ jib	
' (I-a Vn(jwO)v^ (j^• d	 G(jcoo)	 Y

yig. 12: Equivalent to Fig. 11.
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Here again the model error criterion of (3.44) gives the model error

as

E(jW0)	 -CLU OW0 )vn(jW0 )	 (46)

and the perturbation L(jw 0) as

-1
L ( jWO ) = ( I-aun (JW0)vH (jW0 ) )	 (47)

Thus, by interpreting u j (jw0) and vj (jw0 ) as input-output

directions , the model error in a certain direction can be viewed as

the induced additional feedback in the directions specified by the

input vectors u.(jW0) and the output vectors v (jW0)..j

Thus to differentiate between those model errors that increase

the margin of stability and those that decrease the margin of

stability it is necessary to examine their contributions in certain

input-or•:tput directions.

A model error will decrease the margin of stability of the feedback

system if it can be interpreted as additional positive feedback in

the input/output directions u  (jW0) and vn (jw0), which are equivalent to the

most sensitive model error direction un (jw0)v_n (jW0 ), and the contri-

butions of th4^ model error in the other input/output directions are

negligible.

A model error will increase Cie margin of stability if it can

be interpreted as additional negative feedback in the input/output

directions u (jw0) and v_n (jw0) and the contributions of the model

error in tue other input/output directions are negligible.

•
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The contributions of the model error in the other input/output

directions are negligible, where the SVD of i+G 1 (jw0) is used, if

for all i and j not both equal to n, 
v.(jw0)GGL(jw0)U.(jw0) 

is suf-

ficiently close to v_,(jw0)GCL (jw0)ui (N). If 
the 

SVD

of I4^;(jw0) is used,the perturbed closed-loop system GCL (jw0) is

replaced by (I+G(jw0))-1 and G CL(jw0) is replaced by [I+G(jw0)1 -1 in

the previous sentence. The contributions of the model error in the

other input/output directions must be negligible because they may

potentially cancel out the effect or contribution of the model error

in the input/output directions un (jw0) and vn(jw0).

4.4 Example of Section 3 . 3 Continued

In this section, the example of section 3.3 is reconsidered

and it is shown how the model error given in Fig. 3.16, that

destabilizes the feedback system, can be predicted by computing the

smallest destabilizing or worst model error by the methods of this

chapter. Also, the class of modelling errors is restricted to

completely exclude this type of worst or smallest destabilizing error,

and the next worst or next smllest destabilizing error is computed.

The size or norm of this error is given by Theorem 1 and its structure

is given by (13).

These camputations are displayed graphically for both the relative

and inverse relative error criteria (i.e., E--G-1(G-G) and E=(G 
1
-G 1)G).

To make a comparison of the results with the different error criteria,
i

.. _	 -	 --
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Bode-like plots of the elements of L(jw), the matrix that makes I+G(jw)L(jw)

singular at every w, are given. These L(jw) matrices correspond to the

minimum modelling errors of a specific criteria within an appropriately

restricted class of modelling errors. As in the SISO case, illustrated

H
in Fig. 2, the pertubed system G(jw) needs only to correspond to

G(jw)L(jw) (for the L(jw) that makes I+G^jw)L(jw) singular at every w)

at a single frequency in order to destabilize the feedback system. The

magnitude of these model error is given by the corresponding plots of

the singular values of I+G(jw) and I +G 1(jw).

In Fig. 13 the singular values of I+G(jw), for our example, as well.

as their geometric mean are plotted in dB versus the frequency, w.

30

20	 max

10v	
10'max Qmin

v
0.E

of
0

-10

min

-2C

o.i	 w	 1 vv
	 1000

Frequency (rod./sec.)

Fig. 13: Singular Value Quantities of I+G(jw)
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These quantities determine the magnitude of the smallest

and next smallest modelling error (when the class of errGrs

is restricted by <u (s)vH(s),E(s)>=0) th,;t destabilize—n —n

the system when E = IG 1G 1]G. The magnitude of the smallest or

worst error is given by 
min 

and the magnitude of the next smallest or

next worst error is given by [a minx]1/2. The minimum of Amin occurs

near w=1 rad/sec, ( min = -23dB); thus the required magnitude of the

worst error is -23dB. However, at w=0, la
min 

Q 
max )

1/2 = 4dB, indicating

that the next worst modelling error occurring only in the frequencies

about w=0, is necessarily of a magnitude of 4dB in order to destabilize

the feedback system. Since IQmin G ] 1/2 approaches OdB as W-*-,max

there exists a modelling error in the high frequency range of the next

worst type that need only have a magnitude of OdB that will destabilize

the feedback system. Note, however that 0 dB is also the magnitude of

the worst error if the error is restricted to the high frequency range,

since a . = OdB as w+-.
min

The nature of the worst error corresponding to min in Fig. 13,

is obtained by plotting elements of

L (J W) = (I+E(jW))-1
	

(48)

where

E (JW) = IG 1 (jW) -G 1 (JW ) I G (JW)	 (49)

is such that I+G(jw) is singular at all W. This is displayed in

Figs. 14 and 15. Note that in Figs. 14 and 15 that the diagonal

elements of L(jw) near u):-1, (where amin = -23dB) are essentially unity
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while 112 (j) can be considered essentially zero (= -800 in magnitude)

and that X 21 (j) is essentially -.0708.

20

I11+ 122

0

-20

a

-4C

_6C

-8 0.1
	

1	 10
	

1UV
	

WOO

Frequency (rod./sec.)

Fig, 14: Magnitude Bode-like plots of elements of L(jw)
for worst model error.

21

IQ12
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Thus at Wpl, L(j) is given approximately by

1	 0

L(j)	 (50)

-.0708	 1

and represents a crossfeed type of perturbation as in Fig. 3.16 which

has a constant crossfeed perturbation L given by (with b12=50)

-200
0.1
	 ,	 ,o	 10' 0 ---	 1000

Frequency (rod./sec.)

Fig. 15: Phase Bode-like plots of elements of L (jw) for
Morse suodel error
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1	 0

	

L =	 (51)

	

-.1	 1

which gives a modelling error of -20dB. Therefore, we see that the

essential nature of the crossfeed perturbation (51) is detected by

the approach presented here as evidenced by L(0) in (50).

The above discussion points out that a control system designer

can generate these plots and determine what type of gain changes or

channel crossfeeds, that were neglected in his nominal design model,

should be examined carefully? because if these gain and crossfeed

errors occur the feedback system can became unstable. The control sys-

tem designer does not need to worry ahead of time about all the dif-

ferent types of model uncertainties that might occurs the nature of

these plots vs. frequency will provide him with guidance with what

type of modelling errors and in what frequency range he should be

most concerned with.

For comparison, the plots analogous to Figs. 13, 14 and 15 using the

singular values of I+G 1 (jw) rather than those of I+G(jw) and the

error criteria E = G 1 [G-G] = L-I are shown in Figs. 16, 17 and 18

	

respe,.tively.	 Note that, for w=1, Figs. 17 and 18 indicate nearly the

same (j) as in (50). However, as amin of I+G(jw) or I+G 1 (jw) both

increase as w increases,that from Figs. 14, 15, 17 and 18 that L(j1000)
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associated with a 11+G(j1000)] is approximately given by

0.1	 1	 10	 100	 1000

Frequency (rod./sec.)

Fig. 18: Phase Bode-like plots of alemtents of L(JW)
for worst model error,

30	 30e,j (1009)

L(j1000) =	 (52)

30e 
j(100-)	

3C

and L(j1000) associated with a 
min 

[I+G 1 (j1000)] is approximatr'y

given by
e-j (20-)
	

0.03e- J(90-)

L(j1000) =
	 (53)

30e )(90-)	 e-
 
J(200)
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Thus, as the tolerable error becomes larger as a 11+U(jw)] andmin

a min ll+G 1 Uw)] become larger (as shown in Digs. 13 and 16 respectively),

the type of errors that the different error criteria characterise may

be rather different as (52) and (53) indicate. When both C^nII+G(jw)j

minII+
-
1 (jw)j are sufficiently small the different error criteria

guard against the name type of model error or equivalently L(jw) as shown

by this example. This means that either test using C
min

II+G (jw) j or

a min li
+G 1 (jw ) j will detect the near instability of a control system.

However, they may give rather different estimates of gain and phase

margin when the feedback system will tolerate a class of modelling er-

rors of larger magnitude.

Now consider, the next worst ,odel error for the two error

criteria used in this chapter. Thus, the class of modelling errors

now considered must exclude the worst model error type just discussed.

The model errors now considered will have zero camponent in the most

sensitive direction u (1w)vH (jw), (i.e., uH (jw)E(jw)v (jw)M0).-n	 n	 --n	 --n

For the [G 1-G 1 ] G error criterion we may again draw Dode-like

plots of L (jw) that corresponds to the 10
i
 ^ ^j1/2 error magnitude

in Fig. 13. This is shown in Figs. 19 and 20 where the off-diagonal

elements of L(j ) are not plotted because their magnitudes are

insignificant.
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Fig. 20: Phase Bode-like plots of elements of L(jw)
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Recall that the error matrix E(jw) for the next worst error is specified

by (13) where e(jw) is arbitrary but real. In Figs. 19 and 20, 6(jw)

has hewn ret to zee,) in order to calculate a single L(jw). From

Figs. 19 and 20, it is cicar that the next worst type of error is to
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simply reduce the gain in one feedback channel and increase it in

the other while changing the phase of both channels. Here crossfeeds

between the feedback channels play no essential role. The plots

analogous to Figs. 19 and 20 are given in Figs. 21 and 22 for the error

criterion E-G 1 I6-G) -L-1 where again the off-diagonal elements of

L(jw) are insignificant.
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Fig. 21: Magnitude Bode-like plots of elements of L(jm) for
next worst error.
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Fig. 22: Phase Bode-like plots of elements of L(jW) for
next worst error.

Note that in this case, L(jw) increases the gain in both feedback chan-

nels while changing the phase of both channels. Thus, once more, we

see from Figs. 19-22 that the model error, or L(jW), the criteria guard

against are essentially different.

3
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4.5 improving Robustness Tests by Combining Tests

It has been demonstrated in this chapter that the usefulness of

the various robustness tests of chapter 3 can be extended by restricting

the class of allowable model errors so that the error structure is

exploited. In this section, it is shown that the usefulness of the

robustness tests can be extended by a combination of two tests forming

a single hybrid test. This effectively enlarges the class of allowable

model errors and, therefore, in certain circumstances the stability

of the feedback system may be confirmed when either test alone would

fail to be conclusive.

The basic idea is to use tests that employ the same G(s,e) in

their proof via Theorem 3.2; one uses one test for a certain subset

of frequencies and uses the other test for the remaining frequencies.

The reason that this procedure works is that both tests guarantee

exactly the same thing, that I+G(s,e) is nonsingular for all a in

10,11 for any s in their respective subsets. Let DR, the Nyquist

contour of Fig. 3.10, be decomposed into two subsets D 1 
and D 

2

whose union is DR and let TEST1 and TEST2 denote any of the tests

bounding the model error magnitude in the theorems of chapters 3 and

4 that employ the same G(s,e) in their proof. Then the following

theorem may be stated.



1. Condition 1 of Theorem 3.2 holds

2. D
R
 - 

D1R U D 2

3. TEST1 implies I+G(s,e) is nonsingular on D12110,11

4. TEST2 implies I+G(s,e) is nonsingular on D 2R I0,1]

Proof: Condition 2, 3 and 4 guarantee condition 2 of Theorem 3.2 and

therefore by Theorem 3.2, ^CL(s) has no CRHP zeros. 	 Q.E.D.

Theorem 4 allows us to combine tests that employ 'aoth absolute

and relative err--r measures as well as tests that utilize model error

structure and those that do not, provided they can work with the same

I+G(s,e). Even in the case where the tests were originally derived

by use of different G(s,e) matrices it is sometimes possible to find

a single G(s,e) from which versions of the original tests may be

derived via Theorem 3.2. For example, a version of Theorem 3.6 is

derived in (51] by use of the G(s,e) = (1-e)G(s) + ea(s) which is

used in the derivation of Theorem 3.4.

This version of Theorem 3.6 requires more complicated conditions

on the allowable L(s) than the eigenvalue restrictions on L(s) in the

present Theorem 3.6. However, these more complicated conditions are



automatically satisfied provided C ax (L 1 (s)-I)< 1. Therefore,

under this restriction on L(s), Theorem 3.4 may be used on D 1 
and

Theorem 3.6 on D 
2 

to prove the stability of the feedback system

under variations in the system model G(s).

Example 2: To show how tests may be combined reconsider the example

of section 4.2 where G(s) is given by

1	 0

G(s) =	 s+7.5	 (54)
1

0	 3-10.5

and where we use the same constraints on the model given in (22),

(23),(24) and (25). Notice from (26) that

a max (E(jW))< 2.5	 (55)

and that from (20) for all W>1

Amin (I+G 
1 (jW) ) _ 1. 5+jWl> 2.5 > CYmax (E ; jW)) .	 ( 56)

Therefore we could use Theorem 2 for all Wl and Theorem 3.4

which employs the test in (56) for all W>l to ensure the stability

if the feedback system.

Obviously, the division of the frequency axis could be carried

out for n different tests which divide the frequency axis into the

n subsets whose union is the whole frequency axis. In fact, as n

becomes large this suggests that a single test that depends contin-

uously on s could be devised. This was mentioned before in the context

4
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of separating functions whose coefficients themselves could be

transfer functions of s (see section 3.9).

4.6 CgMutational Considerations (19,49,53]

In this section, we discuss a few key relationships between the

nominal closed-loop system, denoted by GCL (s), and the quantities

involved in computing bounds on the allowable model error and the

most significant error structures considered in this chapter.

We first make the simple observation that if the SVD of a square

matrix A is given by

A = UEVH	 (57)

then the SVD of A 1 (assuming it exists) is given by

A l =VE 1 UH	 (59)

This relationship between the SVD's of A and A- '  is useful when

the quantities 
a min (I+G) ' a min (I+G-1 ) and a min 

[(I+G)(I-G)-1),

used in Theorems 3.4, 3.6 and 3.9, are required. The relationship

between these quantities can be determined from the following equations:

GCL = ( I+G-1 )	 (59)

(GCI,- 1/2I) -1 = -2(I+G)(I-G)-1
	 (60)

(G CL_I)-1 = -(I+G)	 (61)
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where the nominal closed-loop system GCL is given by

GCL G(T+G) -1 	(62)

Thus by calculating the SVD's of G CL-aT for a-0, a-1/2 and awl

one can easily obtain via (59), (60) and (61) the SVD's of T+G,

I+G 1 and (I-G)-1(I+G). This is significant since GCL need only

be calculated once for the three SVD's; also, no explicit inversion

of G or I-G is needed since if

G(s) - C(IS-A) -1B	 (63)

then GCL (s) is given by

GCL (s) - C(Is-A+BC) -1B	 (64)

Another computational saving can be realized if only approximations

to the minimum and maximum singular values of a matrix and not its

full SVD are required. Recall from (2.38) and (2.39) that Cr min

and cr ___ (A) are given by

min (A) - IIA 1 1121 	 (65i

and

Cr max
	 = IIAI1 2 .	 ( 66)

Using matrix linear algebra, it can be shown that

An-
1 { A I 11 < I J A I I z _An- I J A I i t	 (67)
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and

1 I JAI I,, _ I J A I 1 2 _ /n I JAI 1 .	 (68)

if A is an nxn matrix. Since the matrix norms IJAII I and IJAII„

are much cheaper to compute than IJAII2, the singular value quantities

min (I+G)• min (I+G 
l) and min[(I+G)(I-G)-1  may be approximated by

-1
min(I+G) = JIGCL-I ''2 =1I9C1-II1i1	 (69)

a,in (I+G l ) = 119111121 'J 1GC11 iil
	

(70)

min[(I-G)-1(I+G)7= 2 IIGCL-1/211121 = 2 1JGCL -1/2IJ1 - 1 (71)

within the bounds given by (67) and (68) when i=1 or m, for

computational savings. Note that as n increases these approximations

may be poor. However, all the robustness theorems of chapter 3 can

be formulated using the 1 or - norms rather than the 2-norm

(singular values) and approximations need not be used at all.

Nevertheless, the results on the structure of model errors are only

applicable in the case of the spectral or 2-norm.

4.7 Concluding Remarks

In this chapter we have shown how the structure of the model

error may be used to improve the theorems of chapter 3. The nature

of the worst model error was explored through the use of block

diagrams showing that it is equivalent to additional positivc: feedback

.	 l
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in the input/output directions u
n
(jw0 ) and vn (jm0). The axmmple

of section 3.3 was used to illustrate that the nature of the smallest

destabilising error can be obtained from Bode-like plots of L(jw).

Also improving robustness tests by combining different robustness

test over different frequency ranges was discussed as well as cou-

putational considerations for the efficient computation of quantities

required by the robustness tests of this chapter and those of

chapter 3.

To place these results in perspective, a design/analysis pro-

cedure is suggested. This procedure assumes that some particular

synthesis procedure, such as the IQG methodology,is used to obtain

specific controller designs. An outline of the procedure is the

following sequence of steps:

1. Obtain an initial controller design that meets basic

performance requirements but does not produce a con-

troller with a bandwidth larger thar the upper fre-

quency limit for which the model is valid.

2. Obtain an estimate on the allowable model error

magnitude ar a function of frequency and compare

with the values of 
min 

of I+G or I+G 1.

2.1. If the model error magnitude is less than min

of I+G or I+G 1 , stop.

2.2. If the model error :magnitude is larger than Amin

of I+G or I+G 1 then go to step 2.2.1.



2.2.1. Calculate the worst model error and check to see

if this error could possibly occur. if not go

to step 2.2.1.1 otherwise go to step 2,2.1.2.

2.2.1.1 Calculate the magnitude of the next worst error.

If the model error magnitude in step 2 is less

than this, stop. If not, canpute the magnitude

of the "next worst error" and continue with a

step similar to 2.2.1 etc. (this gets rather

tedious:).

2.2.1.2 Try to improve model to reduce model error or

change controller design. Return to step 1.

Exactly how to change the model to reduce model error based on

the analysis methods of this chapter is an open research question.

Also,it is not always clear how changes in controller design may af-

fect the quantities min (I+G) and a min (I+G 1 ). This is also an open

research problem. However, in spite of these difficulties (which in

the author's opinion may eventually be adequately circumvented) the

key to making practical use of the results of this chapter depends

on the engineer's ability to determine whether the model error mag-

nitude in the most sensitive direction, i.e., the projection magnitude

!<u (jw)v OW), E(Jw) > I, can be bounded. Clearly, engineering judgement--n	 -n

is necesarry; however, this engineering judgement may not easily

translate into this type of bound. Thus, practical experience in
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obtaining these type of bounds is necessary in ordir to further

improve the type of robustness tests that are appropric.te for the

kinds of knowledge about model uncertainty that the designer has

at his disposal.



5.1 Introduction

The previous two chapters dealt with a loop transfer matrix G(s)

that contained compensation as well as ooer.-loop plant dynamics. The

robustness results of these chapters hold independent of the MIND design

methodology used to determine the compensation required.

This chapter will be concerned with deriving robustness result for

feedback control systems designed using the linear-quadratic-gaussian

(LQG) design methodology (41). This includes results for the linear-

quadratic (LQ) state feedback regulator and oome of its variations as

well as the LQG regulator.. The multivariable version of Kalman's inequality

and Theorem 3.6 form the basis for the derivation of these results.

In section 5.2, the LQ and LQG control problems are stated for

completeness and the definition of the loop-transfer matrices for the

feedback systems is given. Section 5.3 continues with a discussion of

the multivariable Kalman inequality derived from the Riccati equation.

The stabilit •. ,rgins for LQ regulators is then discussed in section 5.4

where it is shown that these regulators have guaranteed minimum stability

margins which makes them attractive and that the control weighting R

matrix determines the coordinate system in which these stability margins

hold. Stability margins for the state feedback regulator, whose feedback

gain is determined by a Lyapunov or a nonstandard parameterized Riccati

equation, are also given. Section 5.5 concludes with a discussion of the

stability margins for LQG regulators. It is shown that stability margins for

LQG regulators are the same as those for LQ state feedback regulators but
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only at a point inside the LQG compensator. These margins cannot be

automatically guaranteed at the physical input or output of the plant

unless the Kalman filter of the LQG compensator has an exact model of the

perturbed open-loop plant, a very restrictive assumption. However,

robustness recovery procedures (35, 361 are discussed that allow a properly

designed LQG control system to asymptotically recover the LQ state feed-

back stability margins at the input or output to the physical plant pro-

vided that the plant is minimum phase. The significance of having margins

at various points in the feedback loop is also discussed with reference

to modelling error characterization.

Some of the results of this chapter have appeared previously in the

literature. Based upon the preliminary gain margin results in Wong and

Athans (27), Safonov and Athans (25) gave the definitive treatment of

guaranteed minimum multiloop stability margins for the LQ state-feedback

regulator allowing for nonlinear perturbations in the feedback loop. It

was later sh-.wn by Doyle (33) that there are no guaranteed minimum sta-

bility margins for LQG regulators. Kwakernaak (36), and Doyle and Stein

(35) have outlined procedures whereby the LQG regulators may asymptotically

recover th-n LQ regulator guaranteed margins.

The contributions of this chapter are mainly the simplified derivation

and characterization of LQ regulator stability margins. The structure

(diagonal vs. nondiagonal) of the control weighting R matrix is shown to

have important impact on the stability margins. If R is rw%ndiagonal the

LQ regulator may i.sve arbitrarily small gain margins If It is not a

multiple of the identity matrix it is shown that ability to tolerate
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crossfeed perturbations is drastically reduced. Those results also apply	 i

to the variations of the LQ regulators discussed in Section 5.4. Also,

in section 5.5 an inequality is derived that ensures that stability margins

will apply at both the input and output of the physical plant.

5.2 The LQ and LQG Regulators

For the sake of completeness, the IQ and IQG regulator problems and

their solution will be given for the linear-time-invariant, infinite time

horizon case (41).

5.2.1 LQ ReZulator Problem

For the open-loop plant given by

i(t) - Ax (t) + Bu (t)
	

(1)

find the optimal control u*(t) that minimizes the quadratic cost functional

J (u) given by

OD

J(u) - f [xT (t)Qx(t) + uT (t)Ru(t)ldt
	

(2)

where Q > 0, R > 0, (A,B) is stabilizable and (A. Q1/2 ) is detectable.

The optimal control u• (t) is given by

u' (t) - -R-1BTr. x(t)	 (3)

where K % 0 satisfies the algebraic Riccati equation

ATK + VA + Q -KBR-IBTK - 0.	 (4)

The block diagram of this regulator control system is shown in Fig. 1.

as
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OPEN-LOOP PLANT

+ 12--
Yl 

(Is -A)-' B x2 Xt

- ^	 Q T
-^ 0jKj-
FEEDBACK GAIN

Fig. 1: IQ Regulator

To calculate the loop transfer matrix G(s) at the input to the plant,

we break the Loop at point O in Fig. 1 so that now ul and u2 are no

longer equal. Next we calculate the transfer function matrix from 11 to

-u2 . This is G(s), the loop transfer matrix at the plant input and is

given by

G(s) = R lBTK(Is-A) lB 	 (5)

To calculate the loop transfer matrix at the output of the plant (at point

0 of Fig.l) we follow an analogous procedure. we Lreak the loop at

point O2 of Fig. 1 and calculate the transfer function matrix from xl

to -x2 whica is given by

-x2 (s) _ (Is-A)-1B 
R-1BTK 

xl (s)	 (6)

i

^I
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Thus ( Is-A) -1BR-IBTK is the loop transfer matrix at the output of the plant.

In general, if Gp (s) denotes an open-loop plant with input u(s) and

output y ( s) and u ( s) = -G (s)y (s) where G (s) represents the transferc	 c

matrix of a compensator, we call Gc ( s)Gp (s) the loop transfer matrix at

the input and Gp ( s)Gc (s) the loop transfer matrix at the output.

5.2.2 II G Regulator Problem

Let the stabilizable, detectable open -loop plant be given by

x(t) = Ax(t) + Bu(t) + ^(t)	 (7)

Y  = Cx (t) + @ (t)	 (8)

where the noises &(t) and 8(t) are both Gaussian, white, zero mean, mutually

independent and stationary with

E[^(t)ET(T)I = ' 6(t- T); : ' 0	 (9)

E[O(t)6T(T)) = 0 6(t-T); 0 > 0	 (10)

Find the optimal feedback control u*(t) depending causally on y(t) that

minimizes the quadratic cost functional J(u) given by

T
J(u) = lim 1 d [xT (t)Qx(t) f uT (t)Ru(t))dt	 (11)-	 T-*- T

where Q > 0 and R > 0. The optimal control u*(t) is given by

u*(t) = -G i(t)	 (12)-	 r-

where i(t) the state estimate is generated by the Kalman filter

A
(t) = Az (t) + Bu* (t) + G,(y(t) - Cx(t)) 	 (13)

_A
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or equivalently

x(t) = [A - BGr - GfC]x(t) + Gfx(t)	 (14)

with G  and G  being given by

Gr - R 1BTK	 (15)

G  = E JO-1	 (16)

with [A, Q1/21 detectable, [A, _1/2] stabilizable, K > 0 satisfying

ATK + KA + Q - KBR -BTK = 0	 (17)

and E > 0 satisfying

AE+ EAT +_ - ECTO-10E =0	 (18)

From (12) and (14) we see that the transfer function matrix from y(s) to

u(y) is given by

11* (S) _ -[Gr (Is-A + BGr + GfC ) -1Gf)y(s)	 (19)

and thus the block diagram of the LQG regulator is given by Fig. 2.

0	 +/^% u ts)	 C (Is- A)- ' B	 Y(S)

I Gr(Is-A+BGr+GfC)-1Gf

Fig. 2: LQG Regulator
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From Fig. 2, we see that the -loop transfer matrix at the input, G(s), is

given by

G(s) = G, (Is-A + BGr + GfC) -1GfC(Is - A) -1B .	 (20)

5.3 Multivariable Kalman Inequality

The subject of qualitative feedback properties of IQ control systems

is not a new one. An early and fundamental paper by Kalman [21] detailed

properties shared by all IQ regulators in the single-input case. Kalman

showed that the scalar return difference transfer function of a single-input

IQ state feedback regulator satisfies the inequality

ll+g(jw)l >	 for all w .	 (21)

This is both a classical condition for the reduction of sensitivity at the

feedback input to the system (see, e.g., [191) as well as necessary and

sufficient for a (stable) state feedback regulator to be optimal with

respect to some quadratic cost index. By inspection of the Nyquist diagram

corresponding to (21), (Fig. 3 with a=1), it is straightforward to observe

[22, pp. 70-761 that a SISO LQ state feedback regulator has a guaranteed

infinite upward gain margin, at least a 50% gain reduction margin and also

a guaranteed minimum phase margin of + 60 0 . (These margins were defined

in Section 3.7).

Anderson [23] developed a multivariable version of condition (21) as

a property of IQ state-feedback regulators; a similar generalized condition

arises in sensitivity theory  (see, e.g., Cruz and Perkins [241). In this

1Sensitivity refers to the variation in system responses due to infinitesimal
changes in the nominal system parameters. Robustness refers to the de-
lineation of finite regions of allowable variation in nominal system param-
eters that preserve stability.

.,
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chapter we will exploit the multivariable form of (21) together with the

results of Chapter 3 to establish the stability margin properties of LQ

and LQG optimal regulators.

Im g(s)

Fig. 3: Set (cross-hatched region) of allowable
values of g(s) when 11+8g(s)l > 1.

We will need a precise statement of the multivariable LQ version of

condition (21) in the sequel, and this is provided by the following

theorem. The proof is by straightforward manipulation of the algebraic

Riccati equation is included, for completeness.

For convenience we will assume that in all remaining theorems and

corollaries that the Nyquist contour D R of Fig. 3.10 is chosen with R

sufficiently large so that the theorems of Chapter 3 may be applied.

A
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Theorem 1 (LQ Kalman Inequality): If the matrix K satisfies the matrix

algebraic Riccati equation

ATK + ACA + Q - KBR BTK = 0	 (22)

with R > 0 and Q > 0 then

(I+G(s))HR(I+G(s)) - R + H(s) 	 (23)

where

G(s) = R 1BTK(Is-A) -lB (24)

H(s) _ [(Is-A)- 
1 
B) 

H (Q  + 2Re(s)K) HIs-A) -B] (25)

Furthermore, If Q > 0, B has full rank and K > 0 then (23) implies that

(I+G(s))HR(I+G(s)) > R,	 s e DR	(26)

Alternatively, if det(jwI-A) # 0, for all w, and K > 0 then (23) implies

that

(I+G(s))HR(I4G(s)) > R,	 s e DR	(27)

Proof: Direct manipulation of (22) gives

(s*I-AT)K + K(sI-A) + KBR -BTK 	 (Q + 2Re(s)K)	 (28)

where s* denotes the comp!ac conjugate of s. Premultiplyina and post-

mulitplying (28) by [(sI-A) -1B]H and [(sI-A) 
11 
B] respectively we obtain

RG ! s) + GH (s)R + GH (s)RG(s) - H(s) 	 (29)
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Adding R to both sides of (29) gives (23). Now Q + 2Re(s)K will be

positive semidefinite for s G DR if Q > 0 and the indentations of S

are sufficiently small or if Re(s) > 0, s @ DR which happens if det(3wI -A) 0

0 for all W. Thus under these conditions H(s) > 0 or H(s) > 0 respectively

for all s 8 DR.

Q.E.D.

It is important to point out that this theorem uses G H (s) rather

than GT (-s) as in (23). These two quantities are the same when s - iw,

but are different when Re(s) # 0. This is the case when s is evaluated

along the Nyquist DR contour and this contour is indented along the

imaginary axis (Fig. 3.10). It is necessary to use GH (s) in order to

apply the theorems of Chapter 3. Note, however, that when det(jwI-A) # 0,

for all w , (i.e., when the open-loop system has no poles on the jw-axis),

that RR is just the imaginary axis from -jR to jR. in this case (2?)

could be written as

(I+G(jw)) Zt(I+G(jw)) > R; 	 for all w ,	 (30)

which is the previously mentioned multivariable generalization of condi-

tion (21).

5.4 Stability Margins of LQ Regulators

We can now employ Theorem 1 in conjunction with the results of

Theorem 3.6 to establish the robustness properties of multivariable LQ

regulators. Recall from Theorem 3.6 that one of the key quantities for

multivariable robustness analysis is the minimum singular value a min (I+G(s)),
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where G (s) is the loop transfer matrix. Unfortunately, the inequalities

(26) and (27) of Theorem 1 do not provide a bound on amin (I+G(s)), where

G(s) is the LQ regulator loop transfer matrix defined by (24). However,

if we define

G(s) - R}G(s)R }	 (31)

then ( 27) (for example) can be rewritten in the form

(I+d(s))H ( I+d(s)) ? I,	 s e DR .	 (32)

Equation ( 32) provides the bound

6
min 

(I+G(s)) > 1,	 s e RR 	(33)
—

on the minimum singular value of I+G(s).

To work with G(s) instead of G(s), it is necessary to manipulate the

system of Fig. 4 into the equivalent ( for stability analysis) form depicted

in Fig. 5. Then using (26) and ( 27) together with Theorem 3.6 leads

directly to the following result. ( Recall from ( 3.27) that 0CL(s)

det(sI-A+BC) where G(s) = C(Is-A ) -1B, was used in Theorem 3.2 to

determine the stability of the perturbed closed - loop system.)

Theorem 2: The polynomial CL (s) has no CRHP zeroes provided the fol-

lowing conditions are satisfied:

I. (a) ^CL(s) and 
OL 

( s) have the same number of CRHP zeros

(b) if $OL (3W0) 
= 0 the ^OL (jW0 )	0

(c)
^CL(s) has no CRFP zeros
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I Perturbed system G(s)

UC(s)	 +	 i	 L(s)	 w G(s)	 -u(s)

L- -------- --

Fig. 4: Feedback system with multiplicative
representation of uncertainty in G(s).

— — — 

^(s) — I — — — G(s) — —

UC(s)	 +	 i	 R f L(s) R-	; i	 OG(s O ;	 -u(s)
----- --- J L-------J

Fig. 5: Feedback system for stability margin
derivation (compare Fig. 4).
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2. G(s) is specified by (4) where K>O satisfies (2) and (A,B)

is stabilizable, ( A, Q} ] is detectable and B has full rank.

3. With y(s) ^ a 
max 

IR}L-l (s)R-}-IJ either of the fallowing hold:

(a) Q>O and Y(s) < 1,	 s e %

(b) ^OL(jw) # 0 for all w and y(s) < 1,	 s e S .

Proof: It is well-known that condition 2 ensures that 0CL (s) has no CRHP

zeros. Defining d(s) ^_ R }G(s)R -1 , we see that G(s) has a state-space

realization (A, BR-} , R } BTK) and thus its open- and closed-loop charac-

teristic polynomials $OL(s) and $CL 
(s) are identical to those of

(A,B,R 'BTK). Thus any assum tions about 0OL(s) and 0CL
( s) obviously

apply to 0OL(s) and $CL ( s). Similarly, by defining L(s) 0 R}L(s)R },

we may work with G(s) and L(s) instead of G(s) and L(s). The conditions
A

(26) and ( 27) of Theorem 1 are equivalent to a min (
1+G(s)) > 1 and

a min (I+G
( s)) > 1 respectively. The condition 3a and The ,)rem 1 require

that

o 
max 

(L 1 (s)-I) < 1 < gin( I+G(s)),	 s e o 	 (34)

and by Theorem 3.6 we conclude that mCL (s) has no CRHP zeros. Alterna-

tively condition 3b and Theorem 1 require that

am (L 1 ( s)-I) < 1 < amin(I+G(s)) 	 (35)

which again by Theorem 3.6 means ^CL(s) has no CRHP zeros.

Q.E.D.
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t
G	 Note that the condition c max (R^L-1(S)R-}-I) < 1 in condition 3a

can be rewritten as

RL(a) + LH (s)R - R > 0,	 S 8 %	 (36)

or with s - jut

L(jw)R 1 + R -LH (JW) - R-1 > 0;	 for all w.	 07)

The inequality (37) was used by Safonov and Athans (251 to prove the LQ

state feedback guaranteed gain and phase margins although their method,

of proof is quite different. They implicity assume that L(jw) is stable,

something which we do not require.

Theorem 2 can now be employed to establish the guaranteed minimum

multivariable gain and phase margins associated with LQ regulators.

Important Remark: We emphasize that these margins are guaranteed

only if the control weighting matrix R is chcsen to be a diagonal matrix;

we will s,.bsequently present an example showing that ",e margins can be

made arbitrarily small for an appropriately chosen non-diagonal R matrix.

Corollary: The LQ regulator with loop transfer matrix G(L) satisfying

(16) with a diagonal R>0 has simultaneously in each feedback loop a

guaranteed minimum gain and phase margins given by

GM -D (i, -)
	

(38)

P.4 :)1-60 0 , 60 01
	

(39)

if Q>0 and

A	 a



r.M 3 (i, m)
	

(40)

PM :)(-60 0 , 60 °)
	

(41)

if Q 10 and 0 or, (jw) 0 0 for all w.

Proof: Prom Theorems 1 and 2 we know if Q > 0 then

a
max	 max

(R#I. 1(s)R-i-I) - a 	 (L 1 (s)-I) < 1,	 s e 12	 (42)
—

satisfy ng condition 3a wren L(s) and R are diagonal. If OCL (jw) f 0

for all w then

I max (L 
1 (s)-I) < 1,	 s e %	 (43)

satisfying condition 3b when L(s) and R are diagonal. The remainder of

the proof is completely analogous to Corollary 3.:.

Q.E.D.

Note that the margins of Corollary 1 are based on the inequality

(42). This inequality will not hold for all s C "R for "real world"

modelling uncertainties. In the SISO case, this is clearly demonstrated

by the physical fact that the phase of g(jw) is coepletely uncertain at

high enough frequencies. This means that for some w0 , Ww0) is real

and negative -- that is, there is a 180° phase difference between g(jw0)

and q(j("0). If Z(jW0) is real and negative, then 1R-1 (jW0) - 1` > 1
and (42) is violated. This means that a physical system cannot actually

have an infinite upward gain margin because its Nygaist diagram elways

will cross tae negative real axis at some sufficiently large frequency.
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Results related to Corollary 1 have been derived by various ati

(261 - (29 1; but the definitive treatment inciading the multivarial

margin result ir- due to Safonov and Athan d ( 25). The approach of

thesis, based o-i relatively Simple frequency domain arguments, is r

If R is not diagonal then the quaranteers of Corollary 1 do nc

apply. The following example illustrates that the gain margins ma;

arbitrarily mall.

Example 1:

Consider the IQ regulator specified of Fig. 1 with

1

(A,B Q } )	 I2.	
, 12)	 (44) ]

0	 1

where I 2 is the 2x2 identity ;matrix and R ' 0 is a nondiagonal control-

waightinq matrix given by

R - BT (K-2+2K
-1 1 -1B 

,	 (45)

where K'0 is arbitrary. By section of R in (45), K satisfies (2). Now

let the muliplicative perturbation !(s) be given by the constant matrix

L where

1	 0
L '

	

	 (46)
0 l+e

and e # 0 is arbitrary. The zeros of CL (s) are the eigenvalues of the

perturbed closed-loop system matrix ACL where

ACL R A-BLB-1 (2I+K 1)
	

(47)

or
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r
(p1+2) + @ p2-1	 p2 + 8 e (P3+2)

ACL -
	 (48)

(1+E)p2 	 (1+6)(p3+2) - 1

where we have let K-1 be denoted by

K-1

	 p l	 p2	
(49)

P2 p3

For ACL to have no CRFP eigenvalues it is necessary fur tr ACL < 0. How-

ever, by inspection of (48), if p 200 then for any e f ^ there exists a

8 that will make tr ACL > 0 and theiefure for arbitrarily small e, the

perturbed closed -loop system will be unstable. Thus an LQ design can have

an arbitrarily small gain margin.

The taasic problem explosed this example is that the margins are really

guaranteed at a different point in the loop than where we would like.

This is illustrated in Fig. 6 where the perturbation L(s) is inserted at

point O1 	 When L ( s) is diagonal, as when calculating gain and phase

margins, and R is also diagonal. then R } and L(s) commute and points 0

and O have identical guaranteed gain and phase margins. Point O is

where it is important to have margins (i.e , at the input to the physical

plant), not inside the compensator at point ^1	 If R is not diagonal

and j R-* i 1 2 11 R} 2 - '` 1, a "small" perturbation at poiiit C2) may look

like a "large" perturbation at point lO because of the amplifying effect

of the nondiagonal R matrix scaling.

p

	

	 Returning to Example 3.1 of the Chapter 3 once more, an IQ feedback

control law is given that has the sane closed- loop poles as before,
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+	 _	 2 u	 X
0	 R	 (1-Als   	 ICk

	

R i	 R-1 BT K

Fig. 6. IQ regulatcac with margin.,.uarant^	 Oat point
for &i R > 0 and at both 1 and 2 for diagonal
R > 0.

but avoids the near instability associated with the negative identity

feedback. This examplr shows that with R=I, a min 
(I+G(jw)), the upper

bound on tiie allowable magnitude of modelling error of (3.44) given by

a 
max 

(L 1 ( jw) - I), is automatically greater than or equal to unity.

Example 2:

With b12 = 50 in (3.20) as in the plot of (Y min
	 in Fig. 3.24,

an IQ design using R=I and

2501	 -50

Q = 3	 (50)

[-50	 1,

gives a feedback gain of

r



ll	

1	 -50

R -BTK	 (51)

0	 1

and a closed-loop system matrix ACL of

ACL - A - BR lBTK = -21
	

(52)

This makes I+G(s)

s+2	
0U-1

I+G(s) =	 s+2	
(53)

0	
s+l

and thus

amin (I+G (ju)) _	
w2+4 } > 1	 (54)
w +1

As one might expect the ability of LQ regulators to tolerate cross-

feed perturbatior_s defined in Section 3.7.2 is also affected by the choice

of the control weighting matrix R. This is made precise in the following

^.oro 13. ary .

Corollary 2: The LQ regulator with loop transfer matrix G(s) satisfying

condition 2 of TheDrem 2 will tolerate (i.e., CL (s) will have no MW

zernes) a crossfeed perturbation of the form

L(s) =	 or [
0	 I	 X(s)	 I

I	 h(f:)	 Z	 0

(55)

where

I
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A	 (R )	
min 2(R )

a2	
1

(X(s)) < min ^ min
	

s @ Q	 (56)
max	

max 2)Amax(R1)	 R .

provided condition 1 of Theorem 2 is satisfied and where R is given by

Rl 	 0

R =	 (57)

0	 R2 1
and is con ormably partitioned with L(s) and either Q > 0 or ^OL OW) # 0

for all w holds.

Proof: Only conditions 3a and 3b of Theorem 2 need to be verified for the

L(s) of (55) the rest are satisifed by assumption. Note that for s e "R

0	 -RiX(s)R2}

	

a 
max 

(RiL 1 (s)R-4 - I) = max
	

or

0	 0

0	 0

	

a	 (58)
max

-RZ	 1X(s)R_
	

0

< Q	 (X(s)) max(a	 (0) a	 (R	 a	 )amax 1max2 }) ^ max(R2max(R1}))mac

and hence if

	

^} (R )	 a} (R )
a	 (X (S) 	 max	

max 1	 max 2	 < 1	 (59)
max	

^min (R2 )	 ^min (RI J

then conditions (3a) and (3b) are both satisifed. However, (59) is
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equivalent to (56).

Q.B.D.

Note that

	

.min (R )	 Amin (R )	 }
J1 min (R) 

< min	
1	 2	 11min (R)	

(60)
)1 max (R) —	 Xmax (R2 )	 Amax (R1 )	 — maw x (R)

which indicates that if the ratio of Xmin (R)/Xmax (R) is very small that the

ability to tolerate crossfeed perturbations is drastically reduced. As

illustrated in Fig. 6 the use of R scales the inputs and outputs such that

the stability margins are obtained in the scaled system rather than the

original system. This means that if our original model has the coordinate

system in which we would like to guarantee margins, that R should be

selected as R = pI for some positive scalar p.

The effect of the R matrix on the tolerance of the closed-loop system

to general modelling errors of the form of (3.44) can be accounted for by

using the inequality

o 
max 

(R }L 1 (s)R
-}

-I) < II R '11 2 1I R} I1 2 max (C
l ( s) -I)	 (61)

To guarantee stability via Theorem 2 we must have

^max (R
}L 1 (s)R }-I) < 1
	

(62)

which is ensured if

amax {L 1 (s)- I) < III R'11 2 1I R} 11 2 ) -1 - l^ x^R) j }	 (63)

From (63), it is clear that the tolerance to model error may be reduced

by a factor 
V 

in(R)/ max(R) from the case where R - pI for a positive



-212-

scalar p when equality holds in (61).

5.4.1 Variations of IQ

Since IQ designs have inherently good margins provided R is selected

appropriately, it is natural to search for variations of this method. One

such variation, proposed by Wong and Athans [27), is to solve a Lyapunov

rather than a Riccati equation to compute K used in (3).

The Lyapunov equation with Q > 0 given by

ATK+KA+Q =0
	

(64)

guarantees that the eigenvalues of A lie in the OLHP if K > 0 and [A, Q})

is detectable. The corresponding Kalmar type inequality for loop transfer

matrices G(s) specified by (24) where K > 0 satisfies (64) is given by

RG(jw) + GH (jw)R > 0;	 for all w
	

(65)

and is the furdamental inequality used to derive stability margins. When

Q > 0 the inequality (65) becomes strict. The stability margins for this

type of feedback are given in the next theorem and its c^--sollaries.

Theorem 3: For G(s) of the form of (24), $CL(s) has no CRHP zeros if the

following conditions hold:

1.
0OL(s) has no CRHP zeros

2. K > 0 satisfies (6 16) with Q > 0, R > 0 and [A, Q ; ) detectable,

and B has full rank

I

k
s<

3. either of the following ho.'_ds

(a) Q > 10 and RL ( s) + LH (s ) R > 0, s e "R

(b) RL(s) + LH (s)R > 0,	 s e Q  .



Proof: Conditions 1 and 2 and the Lyapunov stability criterion guarantee

that condition 1 of Theorem 2 is satisfied. As in the proof of Theorem 2

we may work with G(s) - R}G(s)R } and L(s) - R}L(s)R } instead of G(s)

and L(s). Condition (65) is simply condition 2 of Theorem 3.8 with G(s)

replacing G(s), and I,(s) replacing L(s) in its condition 3 is simply

condition 3b. Thus by Theorem 3.8 the theorem is proved when condition

3b holds. 'When Q > 0 and condition 3a is satisfied, the strictness of

the inequality of condition 3 of Theorem 3.8 may be changed to > and the

> of its condition 2 to > and Theorem 3.8 remains valid. Thus when condi-

tion 3a holds the theorem is proved.

Q.E.D.

Corollary 3: For G(s) as in Theorem 3 with R diagonal the guaranteed

gain and phase margins are given by

GM D [0, -)	 (66)

PM D [ - 90°, 90°)	 (67)

if condition 3a of Theorem 3 holds and

GM D (0,°D)
(66)

PM D ( - 90°, 90°)	 (69)

if condition 3b of Theorem 3 holds.

Proof: Similar to Corollary 3.5.

The importance of Corollary 3 is that the standard LQ guaranteed

gain reduction margin of i can be reduced to 0 by using K satisfying the

Lyapunov equation (43) with Q > 0 rather than the Riccati equation (2).
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Of course, it is .possible to have a zero gain reduction margin only for

open-loop stable systems. However, standard LQ state feedback does not

guarantee a zero gain reduction margin even in the open-loop stable

case, and has been criticized on these grounds [20). Having a zero or

small gain reduction margin is important in situations where actuators

may fail or saturate, respectively, ani there is no opportunity to re-

configure the control system. In fact, the motivation for the thesis

[26] (which in turn lead to most of the robustness developments reported

in this chapter) was a study supporting the design of the automatic depth-

keeping controller for the Trident submarine, in which saturation of one

of the two hydrodynamic control surfaces produced an unstable closed-

loop system.

Corollary 4: For G(s) as in Theorem 3 the crossfeed tolerance is given

by

2	 Amin(R1)	 amin(R2)

0 max (X(s)) < 4 min
	 Amax(R2 )	 amax(R1) ' 

s e i2R	(70)

where L(s) is given by (55), R > 0 is given by (57) and OL(s) has no

CRHP zeros.

Proof: Analogous to Corollary 2.

The significance of Corollary 4 is that usin g the Lyapunov equation

(64) to design the state ! edback the tolerance to crossfeed perturbations

has doubled over the crossfeed tolerance of the LQ state feedback regulator

in Corollary 2. However, (64) Qnn only be uF<vi on open-loop stable systems

and thus even though the guaranteed stab lity margins for the Lyapunov

.A
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state feedback regulator are better than for the IQ regulator its use is

limited. What is necessary is a compromise between these design approaches

that is applicable to unstable open-loop systems.

Another way to modify the LQ design procedure that is a compromise

between Theorem 2 and Theorem 3 applicable to unstable open-loop systems

involves the use of a parameterized Riccati equation given by

ATK + KA + Q - BKBR 1BTK = 0
	

(71)

where B is an adjustable parameter and 0 < S < 2. The feedback law is

still given by (3) and G(s) is still given by (24) with K .> 0. Since the

S in (71) may be Jumped together with the R matrix, (71) is just a standard

Riccati equation and therefore has a unique solution K > 0 under the

appropriate assumptions (condition 2 of Theorem 2). The standard IQ

optimal feedback law associated with (71) is given by

u  _ -BR-lBTKx(t) .
	 (72)

Instead of (72) we will use p(t) _ -R -BTKx(t) as in (3). Thus depending

on whether 6 > 1 or 6 < 1 we are merely decreasing or increasing, re-

spectively, the optimal feedback gain by a scalar factor of 1/S. Also

with G(s) given by (24) the standard IQ loop transfer matrix is simply

SG(s). From Theorem 1 we know that if Q > 0

[1+^G(s) I  
1 

R[1+BG (s) ) >	 R	 s e S'R	 (73)

which in the SISO case becomes

+ g(s),	 S	 s e SZR	 (74)

and is illustrated in Fig. 3. To obtain bounds on L(s) to ensure stability
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we merely work with 
S 
L(s) and SG(s) and apply Theorem 2 for the standard

LQ regulator problem. Doing this we obtain, in the SISO case, the in-

equality

(81^-1 (s)-1^ < 1,	 s e "R	 (75)

illustrated in Fig. 7. Note that from that the critical (-1, 0) point

is no longer contained inside the circle of Fig. 3 corresponding to (74)

if B>2 and thus there are no guaranteed margins. If 0 40 the guaranteed

minimum margins approach those of the Lyapunov feedback case given

Corollaries 3 and 4. In general, for the multivariable case the

IMAS)

Fiq. 7. Set of allowable values of Us) when

jSCl (s)-lj <1 and 0<B<2.

A
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(

guaranteed minimum margins, again if R is diagonal and Q is positive
s

definite, are given by

GM D [ 8/2, -),	 0 < S < 2	 (76)

and

PM D [-cos-1 2,
	

Cos-1 	) ,	 0 < 8 < 2	 (77)

These guaranteed margins (when B < 1) can also be obtained by similar

but distinctly different procedures reported in [30) and [311 which utilize

standard LQ regulators with vanishingly small control weights. Recently

[45) it has also been shown how to ensure preselected guaranteed minimum

gain and phase margins by using a Riccati equation with an associated

quadratic cost index, weighting the product of the state and the control.

5.5 Stability Margins of IQG ReTilators

A basic limitation associated with the IQ guaranteed stability

margins is that they are obtained only under the assumption of full state

feedback. State feedback can never be exactly realized, and often it is

impossible or too expensive to provide enough sensors to achieve even an

approximate realization. Thus one is motivated to investigate what

guaranteed stability margins might be associated with LQG controllers,

in which a Kalman filter (KF) is used to provide state estimates for

feedback.

Since the Kalman filter is the dual of the LQ regulator, dual ro-

bustness results are obtainable. They ensure a nondivergent Kalman filter

under variations in the nominal model parameters of the plant whose state

is to be --stimated (see section 5.2 for the use of the Kalman filter in
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the LQV regulator). To make precise the connection between the regulator

and filter problems, consider the linear system

x(t) - Ax(t) + ^(t)	 (78)

yM - Cx(t) + 8(t)	 (79)

where &(t) and 0(t) are zero mean white noise sources with spectral in-

tensity matrices r aid ID respectively. We wish to estimate x(t) given

< -r < t, such that the mean square error is minimize. Under the

assumption the (A,C) is detectable, it is well-known that the state esti-

mate is specified by

x(t) - Ax(t) + E CTO- lv (t)
	

(80)

v(t) - y(t) - Cx(t)
	

(81)

where

AE + EAT + H -ECTO -la - 0, E > 0 .	 (82)

If we calculate tle transfer matrix from v(s) +-.o y(s) - Cx^s), we find

that

y;s) _ (C(Is-A)
-lECTO- I)v(s) ^ F(a)V(s).	 (83)

Then, if ? > 0, F(s) satisfies the dual of (26) given by

(I + F(s)70 (I+F(s) ) H > 0,	 s P 
Q 
	 (84)

which guar-ntees the stability of the error dynamics under a range of

perturbations in F(s). Thus, if F(s) is perturbed to F(s) - F(s)L(s),
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where usual assumptions about G(s) are applied to F(a), the Kalman fitter

will remain nondivergent if

omax 
(0-^L 1 (s) 0^ -1) < 1,	 s e 

1^	
(85)

or equivalently,

OLH (a) + L(s)0 - 0 > 0 .
	 (86)

It is now readily apparent that F(s), the loop transfer matrix of the

error dynamics loop of the Kalman filter, is the dual of G(s) in the

LQ regulator and has the same guaranteed margins at its input, v(s), for

diagonal 0.

Safonov and Athans [32) have developed these dual results for the

nondivergence of the extended Kalman filter. Furthermore, they have con-

sidered the stability properties of a nonlinear LQG control system formed

by the cascade of a constant gain extended Kalman filter and the LQ state

feedback gain. The LQ state feedback gain and the constant gain of the

extended Kalmar. filter are computed from the linearized model parameters.

However, the extended valman filter must have the true .nonlinear model

of the plant. This violates the basic premise of robustness theory, that

is, the controller has no knowledge or at most minimal knowledge of the

model error. Nevertheless, the result emphasizes that model mismatch

and not control or filter gains are responsible for a reduction in the

margin of stability. We next examine these results in the completely

linear case where the LQG stability margins are much easier to obtain.

The standard LQG control system block diagram is shown in Fig. 8.

with various points of the loop marked. To determine the robustness of
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the LQG control system we insert perturbations at points (2 )and 03 (the

input and output of the physical plant) and find out how large they can be

made without destabilizing the closed-loop IQG system. it is therefore

convenient to calculate the lor e, transfer matrices at points 
O 

to (47)
 
.

The loop transfer matrix at point @ will de noted by TK (») and is

calculated by breaking the loop at point UK (see section 5.2) and using

it as the input as well as the output. For `-he four points indicated in

Fig. 8 we have

T1 (s) - GrO W B
	

(87)

T2 (s) - C r (0-1 (s) + BGr + G =C) -1GfCO(a)B	 (88)

T3 (s) - CO(s)BG r (Q-1 (s) + BGr + GfC) -lGf 	(89)

T4 (a) - COWG f 	(90)

where

G 
	 R-1BTK - regulator gain	 (91)

G 
	 ZCTO -1 - filtE: gain	 (92)

O(s) ^ (Is-A)
-1
	(93)

Note that points at 
T, 

and 4) we hw ,e the standard Iy regulator and

Kalman filter loop transfer matrices respectively given previously in

(20) and by F(s) in (83) . Th!is at points 10and 
4O 

( inside the

IQG controller) the IQ and KF minimum guaranteed stability margins apply.

The following theorem is a much simplified version of a theoremm Proved

in 1321 and gives LQG stability margins at points Q2 and	 (the

4
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input and output of the physical plant), where we denote the open-loop

plant as GpIQ) 
d 
C(Is-A) 

1 
B and Gc(s) 

4 
Gr (Is-A + BGr + GfC) -1Gf as the

compensator. We use N(s) to denote output perturbations in P (s) at

point 3O in Fig. 8.

Theorem 4: The LQG feedback control systea+ of Fig. 8 is asymptotically

stable under variations in the open-loop plant Gp(s) A C(Is-A) - 'B if the

following conditions hold:

(a) the perturbed open-loop plant Gp (s) = C(Is-A) -1B is such	 (94)

that the det(sI-A) and det(sI -A) have the same number of

CRHP zeros and if det(jw0I-A) = 0 then det(jw0I-A) - 0.

(b) (A,B) is stabilizable, Q > 0, k > 0 and K > 0 satisfies 	 (95)

(22) and B ha3 full rank.

(c) Gp (s) = Gp (s)L(s) = N(s)Gp (s)	 (96)

and either

a	 (R }L 1 (s)R-} -I) < 1	 (97)max	 -

or

a max 
(0 }N-1 (s) 8 } -I) < 1	 (98)

hold for all s e "R .

(d) the LQG controller transfer matrix G c (s) from the plant

output to the plant input is given by

Gc (s) = Gr (Is-A + BGr + G fC)
-1G`	

(99)

where G  and G  respectively satisfy (91) and (92).



-223-

Proof: Breaking the loop at point G) of Fig. 8 we have a loop transfer
function matrix of

Gr %sI-A+GfC) -1 [GfC(Is-A) -1B + B) - Gr (sI-A) -B 
Q 

G(s)	 (100)

so that

OOL(s) = det[sI-A + GfC)det[sI-A)	 (101)

and

OOL(s) = det[sI-A + GfC) det[sI-A)	 (102)

Since the Kalmar filtering error dynamics are stable given (95) and since

(90 holds, conditions la and lb of Theorem 3.2 hold. Now by direct appli-

cation of Theorem 2 we concludethat the system of Fig. 8 is stable if L(s)

is inserted at point (1 j. However, this is not the location we desire to

have the margins guaranteed. Nevertheless, by manipulation of the block

diagram of Fig. 8 we may place L(s) at point O if we change B to BL(s)
inside the controller leaving G  = R 1BTK fixed (see Fig. 9). Thus,

however, is equivalent to changing (A,B,C) to (A,B,C) inside the controller

leaving G  and G  fixed. This also can be interpreted as giving the

Kalman filter the correct dynamic model of the perturbed open-loop system

without changing either the filter or regulator gains. The same result

follows if we start with the perturbation N(s) at point 
O 

where the KF

guarantees apply and move it to point 
O 

changing C to N(s)C (see

Fig. 10.) Again the Kalman filter has the correct model of G
P 

(s).

Q.E.D.

I
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Notice that in (%) L(s) represents the same perturbation in Gp(s)

at the input to the plant as N(s) represents at the output of the plant

and that G (s) is the same in both cases.
p

Thus the LQ and KF guaranteed stability margins will apply to LQG

controllers of the input and output of the physical plant but under the

restrictive assumption that the system model embedded within the Kalman

filter is always the sane as the true system (i.e., the perturbed system).

For the more realistic case in which the internal model of the Kalman

filter remains unchanged, there are unfortunately no guaranteed robustness

properties l , as Doyle has demonstrateu with a simple counterexample [331.

This counterexample is extreme, but it is possible to obtain LQG con-

trollers with inadequate stability margins that look quits reasonable

in the time domain. Fig. 11 shows the Nyquist plot of a single-input

design reported in the literature [34); note that the phase margin is

less than 10°.

5.5.1 Robustness Recove

Fortunately, there are two dual procedures that do not require

the Kalman filter to have the true system model and that still recover

the LQ and KF guaranteed minimum margins. These procedures use the

asymptotic properties of the Kalman filter and LQ regulator (see [43)

and can be used only if the plant is minimum phase. If W is a non-

singular arbitrary matrix, then by selecting = in (82) as p BWWTBT

and letting p -► - - the loop transfer matrix T 2 (s) in (88) opproaches

lIn other words, the robustness properties of LQG designs will depend
on the actual values of A,B,C,Q,R,7 and 0.



-227-

Fig. 11: Nyquist diagram for LQG design in (34)
(H(ju)) = loop transfer function).

T1 (s) of (87) if the minimum phase assumption holds (35]. Thus the

LQ regulator guaranteed margins will be recovered at the input to the

plant. Kwakernaak (36) proposeed the dual of the above procedure to

obtain low sensitivity feedback systems. His procedure makes T3(s)

of (89) approach T4 (s) of (90) by selecting Q in (4) as p CTWTWC and
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letting p-)-- and thus the KF guaranteed minimum margins will be recovered

at the output of the plant l . However, it is not always the case that an

IQG controller needs to be robustified by these procedures since in some

cases the LQG control system will have better stability margins than its

full state feedback counterpart [42). Also, in this case one must keep

in mind that the stochastic error performance of the robustified LQG

controller may be better (due to lower controller bandwidth) than the

LQ state feedback regulator.

Even when these procedures are used, the guaranteed stability

margins apply at the input or output of the physical plant but not

necessarily at both input and output. It is desirable to have margins

at both these locations since the perturbations in Gp (s) are repre-

sented as either Gp (s)L(s) or N(s)Gp (s) and we would not like small

perturbations in either input or output to destabilize the system.

Margins at both input and output can be ensured if the inequalities

a min 
(I+Gc(s)Gp(s)) > 1	 (103)

and

a . (I+G (s)G (s)) > 1	 (104)
min	 p	 c	 —

both hold. The relationship between Uiese two quantities when Gp(s)

and Gc (s) are square matrices is given by the following lemma.

}'Dowdle [37) has adapted these procedures for use with minimal order
observer based compensators and their duals.
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Lemma 1: For arbitrary complex square matrices Gp (s) and Gc (s) it is

true that

1 a	 (I+G (s)G (s) ) < a	 (I +G (s)G (s) ) < ka	 (1+G (s)G (s) )
k min	 p	 c	 — min	 c p	 — min	 p	 c

(105)

where

a max ( p(s) )	 a 	 (Gc(s) )max
k min a min (Gp(s))	 a min (Gc(s))	

1.	 (106)

Proof: Use the property of matrix norms that 1IABIJ < (JAI! JIBIJ on the
equation

[I + Gp (s)Gc (s))
-1
 = Gp1 (s)[I + Gc (s)Gp (s)) -1Gp (s)	 (107)

to obtain the left inequality of (105) with k = a 
max 

[Gp(s))/a min [Gp(s)].

The right inequality in (105) is obtained by reversing the roles of

Gp (s) and Gc (s) in (107).

Q.E.D.

The quantity k is the minimum of the condition numbers  of Gp(s)

and G
c 
(s) with respect to inversion. From (105) we conclude that if k

is close to unity then approximately the same robustness guarantees will

apply at both input and output. Note that we have no control over

Gp (s) so that if Gp (s) is nearly singular we must design our compensator

so that o 
max 

(Gc (s)) ` a max (G c (s)). On the other hand, if our plant is

well-conditioned with respect to inversion, our compensator G c (s) need

not be so severaly constrained, allowing more flexibility in achieving

1 In the numerical analysis of the linear equation Ax - b, the condition
number of A, given by a max (A) /o min (A), bounds the error in the computed

solution x in terms of an equivalent error in b [44).

a



5.5.2 Characterization of Model Error

Note in (103) and (104) that ensuring that both min[I+Gp(s)Gc(s)]

and a min [I+Gc(s)Gp(s)] are greater than unity gives upper bounds on two

different types of allowable modelling errors. These modelling errors

differ in that one represents the perturbed open-loop model Gp (a) as

Gp (s)L(s), an equivalent perturbation in the input to G p (s), and the

other represents Gp (s) as N(s)Gp (s), an equivalent perturbation in the

output of Gp (s). These are both relative modelling errors between

Gpl (s) and Gpl (s) and are given by

E i (s) = L 1 (s)-I	 [Gp (s)-Gpl(s)]Gp(s) 	 (108)

E0 (s) = N-1 (s)-I = Gp (s) [Gpl (s)-Gpl (s)]	 (109)

where E i (s) is the model error in Gp (s) reflected to the input of Gp(a)

and E0 (s) is the model error in Gp (s) reflected to the output. The re-

lationship between E,
1
(s) and E

0
 (s)is given very simply by (since they

represent the same Gp(s))

Ei (s) = Gp1(8)E0(s)Gp(s)
	

(110)

and thus we conclude that

k Gmax (EO (s)) < max(Ei(s)) < k 
a	 (EO (s))	 (111)

where

k	
a min [Gp(s)]

0 max [Gp (s) ]	
(112)
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If k is very large, (111) shows that what may look like an unreasonably

large error at one point in the loop (either the input to G p (s) or its

output) may look like a very reasonable size error at another point in

the loop. The stability of the closed-loop system with respect to

these errors is guaranteed under appropriate assumptions  if for all

s e n R

0 max [Ei (s)I < Cr min [I+Gc(s)Gp(s))	 (113)

or

0 
max 

[E0 (s)I < o min [I+Gp(s)Gc(s)) .	 (114)

Now suppose that 0 
max 

[E i (s)), from our knowledge of the open-loop system

physics, seems unreasonably large and condition (213) does not hold

but will hold for all reasonable size errors. It the perturbed model

Gp (s) however is such that o 
max 

[E0 (s)) seems reasonably small, that is

an error of that magnitude could be justified (again by our knowledge

of the open-loop system physics), then a sufficiently small value of

min
[I+Gp (s)Gc (s)] (small enough so that (114) does not hold) indicates

that there is danger of the perturbed closed-loop becoming unstable.

If we believe that having a reasonable size error, at the input of

the open-loop system, completely characterizes the class of Gp(s)

that should be considered then we may rule out the possibility that the

perturbed closed-loop system may become unstable as a result of the

fact that (114) is violated for seemingly reasonably sized errors at

lCon0itions 1 and 2 of Theorem 3.6 must be appropriately modified to
also deal with N(s).
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the output. However, our knowledge of what class of Gp (s) should be

considered may depend on what seam like reasonable errors at both input

and output to the open-loop system. That is, our knowledge of what

constitutes a reasonable class of Gp (s) to consider is built up from

our knowledge of what errors seem reasonable when reflected as equivalent

perturbations at diff rcnt points in the feedback loop. In this caste,

one could not rule out the small error at the output (1.e., 8 0 (s)) which

violates (114). Thus it depends on how we decide what constitutes a

reasonable class of G (s) that determines if %.e need to check to make
p

cure that bot1 the values a
min

(I+Gc (s)Gp (a)] and a min (I+Gp(s)Gc(a)] are

sufficiently large or that only one of them is sufficiently large.

In the author's opinion, it seems most likely that the class of

Gp (s) that should be considered is a composite class of the perturbed

models that arise from reasonably sized errors reflected to both input

and output of the open-loop system. Therefore, it would seem wise to

^heck the size of both a min (I+Gc(s)Gp(s)) and o min (I+Gp(s)Gc(a)).

5.6 Concluding Remarks

This chapter has derived MIMO stability margins for LQ regulators

and their variations including LQG regulators. This was accomplished

using tha MIMO version of Kalman's inequality and Theorem 3.6. The LQ

regulator was shown to have at least a 50% gain reduction margin, an

infinite upward gain margin and + 60° phase margin provided the control

weighting matrix R is diagonal. If R is not diagonal it was shown that

the LQ regulator gain margin may be arbitrarily rmall. If R is not a
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multiple of the identity the crossfeed tolerance is also reduced. The

R matrix determines the coordinate system in which the stability margins

hold. The margins in the R selected coordinate system may be much larger

than the actual margins in the coordinate system specified by the inputs

and outputs to the physical open-loop system. Similar comments may be

made for the variations of IQ state feedback using the Lyapunov and

modified Riccati equations.

The guaranteed margins for IQ regulators do not apply to LQG requ-

lators except when the Kalman filter embedded in the LQG controller has

a correct dynamic model of the perturbed system, a rather unrealistic

assumption. However, when the open-loop plant model is minimum phase,

there are two procedures that recover the guaranteed 'IQ margins

asymptotically. These guaranteed margins may be recovered at either

the input or the output of the open-loop plant but can only be guaranteed

to be recovered at both input and output when either the open-loop

plant transfer matrix or the compensator transfer matrix has a small

condition number near unity for all frequencies. The necessity of input

and output stability margins is shown to be dependent cn the ability

of the designer to characterize the set of reasonable perturbed models

for which the perturbed closed-loop system stability must be preserved.

It is important to point out that the LQG methodology is inherently

a multiloop design procedure which when coupled with the robustness

recovery methods and used intelligently provides a systematic design

procedure for robust multivariable compensators. This is in contrast

to the characteristic loci (4, 5, 561 and inverse Nyquist array (1,21
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methods (discussed in the following chapter) which reduce multivariable

controller design to a series of decoupled single loop designs. These

meths obtain good stability margins in the coordinate system of the

decoupled SiSO systems but not in the coordinate system of the physical

input and output of the open-loop multivariable system. Thus they may

not produce robust controller designs and it is nontrivial, given the

present state of the art to change these designs to obtain better robust-

ness properties.

one word cf caution is necessary when using the LQG approach to

controller synthesis. It has been popular to reduce many more general

control problems such as the tracki. ►g problem to a simple regulator

problem by state augmentation. State augmentation has also been used

to provide integral controllers or provide additional rolloff. When

using augmented versions of control problems solved via the regulator

problem one must be careful to determine exactly the point in the

feedback loop where the guaranteed stability margins will apply. In many

augmented regulator problems the point at which the guaranteed margins

apply is not the input or output of the physical open-loop plant but a

point associated with the addition of the augmented states.



-235-

S. ROBUSTNESS ANALYSIS WITH PMUE14CY DONA= NCTNODS

6.1 Introduction

The purpose of this chapter is to place in perspective current

frequency domain techniques for controller synthesis and evaluation and

their implications for the robustness characterization of feedback

control systems. We shall not present a full tutorial description of

these methods but only briefly describe their salient features with

regard to their importance in robustness analysis, the main therm of

this thesis.

In section 6.1 the characteristic loci (CL) 15,561 and inverse

Nyquist array (INA) (1,21 methodologies are discussed. It is shown

that these design methodologies ensure stability margins in a coordinate

system based on the diagonalization of the open-loop plant transfer

matrix rather than the coordinate system specified by the physical in-

puts and outputs of the nominal open-loop pleat. In some cases, the CL

and INA design methodologies will lead to acceptable stability margins

at the physical input and output of the system: however, in other cases,

the stability margins at the physical input and output of the system will

be drastically reduced. The discussion of this section is not original

but relies 'heavily on the work of Doyle and Stein (431 and Stein and

Sandell 1581.

In section 6.2, the principal gain and phase (PGP) analysis recently

proposed in 1571 is discussed. This method of analysis allows one to

ensure stability of a feedback control system by taking into account

the structure of the model in a somewhat differenL manner than that of
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Chapter 4. The main shortcoming of the PGP approach is that it is not

applicable to important classes of loop transfer matrices, G(s), and

important classes of model errors. It is shown that the PGP method

will fail for model error matrices E(s) that are singular or almost

singular. Recall that in Chapter 4 (equation (4.13)) it was shown

there exists a smallest destabilizing error matrix, E(s), that is

singular and thus the PGP analysis is not applicable for this important

class of model errors.

6.2 Characteristic Loci and Inverse Nyquist Array Methods

The CL and INA methodologies for the design of MIMD feedback control

systems take advantage of the large body of well-developed tools for

"..,0 control design by reducing the MIMD design problem to a sequence

of independent SISO design problems. To make this precise, consider

the feedback system shown in Fig. 1 where the nominal open-loop plant

transfer matrix denoted by Gp (s) and tl:e compensator transfer matrix is

dei,oted by Gc (s) giving a loop transfer matrix G(s) as either Gc(s)Gp(s)
or Gp (s)Gc (s) depending on whether the loop is broken at the input or the

output respectively.

Compensator	 Plant

uC +	 e Gc(s)	 "	 Gp(s)

Fig. 1: Basic Feedback System
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Both the CL and INA methods assume thet G p	d(s) can be diagonalize
3

L	 either exactly or approximately for all s e D R. Therefore, assume that

there exist matrices 'A(s) and V(s) composed of rational transfer functions

such that V(s)G (s)W(s) is bounded and either diagonal or diagonally
p

dominantl for all s e DR and is denoted by Gp ( s), i.e.

6p ( s) - V(s)Gp (s)W(s) .	 (1)

If Gp (s) is diagonally dominant then the diagonal matrix dpd (s) given

by

dpd(s) = diag ( 9pll ( s), gp22(s),...,gpnn(s))	 (2)

can be used as a good approximation to d p (s) within bounds specified by

the magnitude of the off diagonal elements of dp ( s). For the purposes

of this chapter we will assume exact diagonalization of Gp (s) by V(s)

and W(s), since all the same observations to be made will apply if

only diagonal dominance holds.

The form of the compensator proposed by the CL and INA methods

is shown in Fig. 2 where K(s) is a diagonal matrix given by

1 A nxn complex matrix A is diagonally dominant if for i = 1,2,...,n

n
ja..I >	 Ia•ji

j . 1
j#i

or

n

Ia ii I	 E	 Ia..I
j=1
j#i
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Compensator

G ts)
F lant

+ e i	 C s) ® W(s) lO G (s)	 YV(s)	 (	 p
_	 i

Fig. 2. Compensator used by INA and CL Methods

K(s) = diag[k I (s), k2(s),...,kn(s))	 (3)

If the loop transfer function calculated at point i,i=1,2,3,4,is denoted

by G,
i 
(s) , then

G 1 (s) = (W(s)K(s)V(s))Gp(s) = G c (s)Gp (s)	 (4)

and

G2(s) - K(s) (V(s)Gp(s)W(s)) = K(s)Gp (s)	 (5)

where we note that G2 (s) is diagonal. The CL and INA meths use (5)

to design the compensator Gc (s), by selecting each k i (s) in K(s) as

the appropriate robust compensator for each of the SISO systems repre-

sented by the diagonal elements of G p (s), denoted gpii (s). Thus, these
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methods prodsce feedback control systems with good margins inside the

compensator at point O in Fig. 2.
The key question is: when does this design methdology yield good

margins at point Q , the input to the physical system? To determine
the answer to this question, suppose that we insert the matrix Ll(s)

at point lO to account for model uncertainty and determine the

stability margins at the input to the physical system by placing bounds

on the allowable L 1 (s). If we represent the equivalent nodel uncertainty

at point 	 by L2 (s) then the relationship between L1 (s) and L2(s)

is given by

L2 (s) = W 1(s)L1(s)W(s).	 (6)

In chapter 3, the model error criterion (3.35) was used and is

given in terms of both L I (s) or G1 (s) and Gi (s) by

E. (s) = G- 1 (s) (G. (s) - G. (s) ) = L, (s) - I	 (7)

Thus, using (6) and (7), the tolerable model error at point (D is
related to that at point O2 by

E 2 (s) = W
-I

(s)E 1 (s)W(s)	 (8)

From (8) and the properties of singular values, we obtain

CT max [E2(s)I < c[W(s))Q max [E
1 (s))	 (9)

where c[W(s)] is the condition number  of W(s) and is given by

The condition number of a matrix is very large if the matrix is nearly
rank deficient or almost singular.

a
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a^[W(s))
c[w(s))	 amin [W(s) I 	 1

Suppose that the model error E2 (a) at point O of minimum magnitude

a 
max 

(E2 (s)) that destabilizes the feedback system is such that equality

holds in (9). Then the equivalent model error E l (s) at point 01
determined from (8) is of magnitude c[W(s)) 'max 

[
E2 (s)] and also de-

stabilizes the feedback system. Therefore, if the condition number

c[W(s)) is very large, the margins at point O1 , i.e., at the input to
the physical system, may be much smaller than these at point O , inside

the compensator.

The CL method selects W(s) to be the matrix of eigenvectors of

Gp (s) and V(s) = W 1 (s) when this possible choice for W(s) is rational;

otherwise, W(s) is chosen to be as rational approximation of the

matrix of eigenvectors of Gp (s). Since, the designer has no control over

Gp (s), this choice of W(s) does not guarantee that the condition number

c[W(s)] is near unity. Similary, the INA method seeks to find a rational

W(s) and V(s) that diagonalize Cp (s), (this is done numerically to

obtain constant matrices W(s) and V(s)) but there is no guarantee that

c[W(s)] is near unity. Similar conclusions may be drawn by breaking

the feedback loop of Fig. 2 at points 
	
and4D and working with V(s)

rather than W(s).

Therefore, these methods do not automatically produce robust con-

troller designs. Indeed, in some cases they can lead to nearly unstable

feedbacks systems (i.e., small stability margins at either input or out-

put) if the diagonalizing matrices W(s) and V(s) have large condition

(10)
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numbers at some frequency. They do produce good margins at a point inside

the compensator but that is not the appropriate place to require good

margins, from an engineering point of view. Doyle and Stein [43) give

a simple example which ex-'+uses this deficiency.

6.3 The Principal Gain and Phase Analysis Method

This method [57) utilizes model error structure information

to ensure stability of a perturbed feedback system. It uses the notions

of principal gains, and principal phases of an nxn complex matrix A which

are defined via its polar decomposition.

Definition (Polar Decomposition): Any nxn complex matrix A can be de-

composed into a product given by

A = U%
	

(11)

or

A = H 
L 
U
	

(12)

where U is a unitary matrix and, HR and HL are positive semidefinite

hermitian matrices. The representation in (11) or (17) is called a

polar decomposition of A.

Note that the polar decomposition in (11) and (12) are easily calcu-

lated from the singular value decomposition (SVD) of A as follows

A = (UV)(V Ev)
	

(13)

and

A = (UEUH ) (UV)
	

(14)

where A = UEO is the SVD of A.
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Definition (Principal Gains and Phases): The principal gains of the

matrix A in (11) (or (12)) are the eigenvalues of HR (or HL) which are

identical to the singular values of A. The principal phases of A in

(11) (or (12)) are the arguments of the eigenvalues of U in (11) and (12).
je

Since the eigenvalues of a unitary matrix are of the forme i,

the identification of the 6 i as phases is obvious.

Definition (Spread of less than 70: If the principal phases of a matrix,

denoted ^ i , are such that the complex numbers e 1 can all be contained

strictly in a half-plane in the complex plane that has the origin of the

complex plane on the boundary, then the principal phases are said to

have a spread of less than 7.

This is illustrated in Figs. 3 and 4.

IM

e 42+,

a

e^^3

Re

Fig, 3: Principal phases ^i with a spread of more than n.
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IM

Fig. 4: Principal phases ^
i 
with a spread less than 7T

In the scalar case, the matrices % and H L in (11) and (12) simply

represent the magnitude of the scalar version of the matrix A and the

matrix U becomes a scalar of the form e 3A and thus the usual notion of

the polar decomposition of a scalar is obtained.

The main theorem of PGP analysis will now be stated after some pre-

liminary definitions. Using the usual notation that G(s) represents

the mxm loop transfer matrix we define G CL (s) as the usual closed-loop

transfer matrix obtained under unity feedback which is given by

GCL (s) _ (I+G(s))-1G(s)	 (15)
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The model error criterion to be used is given by

E(s) © G 1 (s)(3(s) - G(s)I
	

(16)

where G(s) as usual represents the perturbed -loop transfer matrix. Let

the principal gains of GCL (jw) be denoted as a i (w) where 0 < ai (w) < ai+l(w)

and let the principal phases of GCL ( jw) be denoted as 8 i (w) where

9i(w) < ei+l(w). Similarly let the principal gains of E(jw) be de-

noted as 6 i (w) where 0 < 6i(w) < 6i+1(w) and let the principal phases

of E(jw) be denoted as e i (w) where c i (w) < Ei+1 M.

Neit, define the condition numbers c l (w) and c2 (w) as

cx (w)

C 1 (w) e a (w) > 1	 (17)
1

where a l is the minimum singular value (or principal gain) and a m is

the maximum singular value (or principal gain) of GCL and

S (w)
c 2 (w) _ Tm 

(m) ? 
1	 (18)

1

where 6 1 is the minimum singular value and d m is the maximum singular

value of E. Also defined the quantity ^ (w) asm

1 [cl (w ) - 11 c 2 (w)
4)M - tan	

1 - [c (w) - 1)c (w),	
(14)

1	 2

With these preliminary definitions the so-called Small Phase Theorem

(SPT) of [57) may be stated.

Small Phase Theorem: The perturbed closed-loop system is stable

if:
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1. E (s) is stable.

2. {0 i (w)) and {8 i (w) + e j (w)) have a spread less

than n for all w and i,j - 1,2,...,m

3. (c 1 (w) - 11c 
2 

(w) < 1	 for all	 w

4. (a) @m (w) + em (w) < n	 m (w)	 for all w

and

	

(b) 0 1 (w) + C 1 (w) ' t m (w) - IT	 for all w

This theorem basically ._:haracterizes the tolerable model errors as

those that do not introduce a significant amount of phase shift in the

principal phases of GCL (jw) when perturbed by model error ( condition 4).

Conditions 2 and 3 place restrictions on the type of system and the type

of model error that can be considered by the SPT. Condition 1 is simply

a condition that automatically guarantees that the matrices G(s) and

Ms) have the same number of unstable poles. This theorem, as those

presented in Chapter 4 of this thesis uses the structure of the error

matrix E(juw). However, the SPT does this by requiring restrictions on

its principal phases cAw) in conditions 2 and 4, and, therefore is

rather different from the characterization of model error in Theorems

4.1 and 4.2 in terms of the projection of th • error matrix E(^w) onte

various one dimensional subspaces generated by the singular vectors of

I+G-1 (jw) .

The main drawback of the SPT is that it cannot be applied in many

cases of interest. This is illustrated by the restrictions condition

3 places on the system and the model error in the following two simple

examples.
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Example 1: The SPT does not apply when the closed - loop transfer matrix is

given by

GCL (s) = diaq s+ 100 ' s+1	 (20)

because the condition number c 1 M defined by (17) is

100(w2+1) }
c 1 (w)	 2	 > 2 for w > 1.1	 (21)

W +100

and thus (c I (w) - 1) c2 (w) > 1 for w > 1.1 since c2 tw) > 1 for any matrix

E(s). Hence, condition 3 of the SPT is vi ,^lated. The loop transfer matrix

G(s) corresponding to GCL (s) in (20) is given by

G(s) - diaq[ s 1 	' s)	 (22)

Example 1 demonstrates that closed- loop systems with input-output

channels with widely differing bandwidths violate condition 3 of the SPT

because c 1 M > 2 for some frequency u;. In (20) the first input -output

channel with transfer function 101(s+10) has a bandwidth approximately

10 times as large as that of the second input-output channel with

transfer function 11(s+l). If c 1 (w) is to be less than 2 for all w,

it is necessary that all input -output channels of 
'CL 

(s)have roughly the same

bandwidth or equivalently the same speed of response. This same restriction

also applies to G(s). Clearly, this restrictive condition eliminates many

systems of interest from the point of view of robustness analysis via

the SPT.

Example 2: Suppose I+G 1 (jw) has the SVD given by

MI +G l (jw) = U (jw) E (jw) (7w)	 lE l ai (jw) u
i OW) vi OW)	 (23)
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where am(jw) - amin (jw). If the model error E(jw) is such that for some

w0 , for which am (jw0) < 0m (jw) for all w,

E(jw0) - -0m (j410)U(jw0 ) vn(jw0)
	

(24)

then from chapter 4 (equation 4.13) we know that the closed-loop feedback

system is destabilized by the model error E(a) but is stable for all wodel

errors E0 (jw) of magnitude o 
max 

[E0 Ow)) < 0 max [E(jw0)]. That is, E(jw0)

is the smallest destabilizing model error. However, conditions 3 of SPT

requires that

0max (E { jcn) )	 1

a min 
(E ( jw ) )	

c 2 (c') 
< c  (w) -1
	 (25)

and thus since E^jw0 ) is singular c 2 ((.'0 ) - +cO and condition (25) is violated

and thus also condition 3 of the SPT. Again, the SPT does not apply.

The results :)f the above example are significant because in a useful

robustness analysis method it is very important to detect the smallest

possible errors that may destabilize the feedback system and be able to

distinguish them from model errors of equal magnitude that do not de-

stabilize the feedback system. In many systems the smallest possible

destabilizing errors may lead to a singular error matrix E(jw) at

some frequency. Note that even when E(jw) is not sinTilar, the inequality

(25) is still easily violated if c 1 (A I 1 (i.e., all feedback loops do

not have the same bandwidth as illustrated by Example 1).

These two examples have shown the SPT is a fairly restrictive

theorem viewed from the robustness viewpoint. However, in certain cases,

"`	 the SPT may be an easy way to mast simply characterize a particular class

of model errors.
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This chapter has briefly examined the characteristic loci (CL)

and inverse Nyquist array (INA) control design procedures and sham

that they do not guarantee good robustness properties of the resulting

control system. The essential deficiency in these methods lies in the

fact that they can only guarantee the desired stability margins at a

point ins i de the compensator. The true stability margins at the inter-

face between the physical plant and the compensator can be boded

in terms of the stability margins insid ,) the compensator. This bound

depends on the condition numbers of the matrices used to diagonalize

the open-loop plant during the controller design procedure. If the

condition numbers of these matrices are large, then the stability

margins at the interface of the physical open-loop system and the com-

pensator may be exceedingly small. When this happens, there is no

presently known method to modify or ccrrect the CL and/or INA designs

based on information implicit in the diagonalizing matrices that have

large condition numbers in order to obtain the desired robustness

properties. Current research efforts  are being directed toward

developing methods of diagonalizing Gp (a) with rational transfer

function matrices that are unitary for s-jw. This would guarantee that

the margins that hold inside the compensator would also hold at the

input or output to the physical system.

In contrast, to these aforementior.sd difficulties the LQG design

procedure, utilizing the robustness recovery techniques discussed in

1Private communication with Professor Bernard Levy.
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Chapter 5, does provide a systematic procedure to synthesize controllers

that are robust or can be made robust if the nominal design model is

minimum phase. Thus, if an LQG controller is evaluated for robustness

and found lacking, there is a systematic way to restore the desired

robustness properties and not merely trial and error in the redesign of

the controller in an ad hoc manner. k drawback of LQG controllers is

the large dimenafon of compensator stairs, often larger than necessary

to meet performance and robustness objectives. However, in this era

of microprocessor and VLSI implementation of control compensators the

dimensionality of the compensator is not as crucial a problem, as was

the case a few years ago. Current research (591 in the design of reduced

order robust LQG controllers is progressing.

The other recently proposed principal gain and phase (PGP) fre-

quency domain analysis discussed in this chapter ensures stability

of a feedback system in the face of a special class of model uncertaintf

based on the model error matrix structure exhibited by its principa2

phases. it was shown however that this approach is not applicable to

systons whose closed-loop speed of resranse in different input-output

channels differ sigrificantl-,. Furthermore. it wns shown that PGP

analysis requites a nonsingular error matrix. However, in Chapter 4

it was shown the smallest destabilizing model error matrix may be taken

to be singular. Thus PG} analysis, cannot be applied to determine

if a singular model error matrix is stabilizing or destabilizing.

However, it must be said that it offers the potential in the case of

model errors known to be of a small principal phase nature, to provide

a relatively uncomplicated test for feedback system stability.
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7. SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

7.1 Summary

This thesis has addressed the following problem. Given a finite-

dimensional linear-time invariant feedback control system designed using

an inaccurate nominal model of the open-loop plant, how much and what kind

of model error can the feedback system tolerate without becoming unstable?

Thus, this thesis deals primarily with the evaluation of the robustness

of stability of a feedback control system. This robustness evaluation is

absolutely essential since all models of physical processes are only

approximations to the actual relationship between the system inputs and

outputs. In the single-input, single-output (SISO) case, this evaluation

is readily accomplished using frequency domain plots,(e.g. using a Bode

diagram)to display the behavior and characteristics of the feedback

system. However, in the multiple-input, multiple-output (MIMO) case,

many generalizations of the SISO methods have proved inadequate because

they have not dealt with the MIMO system as a whole but as a sequence of

SISO systems.

This thesis has avoided this deficiency by utilizing standard

matrix theory concepts and methods appropriate for dealing with the MIMO

ca-s e, n mely the singular value decomposition (SVD) and properties of

special types of matrices. These were discussed in Chapter 2, where the

:Hain problem solved was the determination of the nearest singular

matrix, A, to a given nonsingular matrix, A, under certain constraints

on A -A. The solution to this problem (given in Problems A, B and C)
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is fundamental to the control system robustness results of Chapters 3 and

4.

The basic formulation of the control system robustness problem

was considered in Chapter 3 via a multivariable version of Nyquist's

stability theorem. There, a fundamental robustness theorem (Theorem

3.2) was derived that implicitly characterized the class of perturbed

models that would not destabilize the control system, in terms of the

nonsingularity of the return difference matrix. various robustness

tests (Theorems 3.3 to 3.9), were then derived which can be used to

test the nonsinqularity of the return difference matrix for severa1.

types of model error criteria. These results weia then related to the

small gain theorem and some simple extensions for nonlinear feed)a(A

control system were presented that demonstrate that the basic robustness

results of Chapter 3 are valid even when certain types of nonlinearities

are introduced.

Chapter 4 heavily utilizes the results of chapter 2 in determining

what types of mode error will destablize a given feedback system. Model

errors that tend to destabilize the feedback system are distinguished

from those that tend to stabilize the feedback system by examining their

structure as well as their magnitude. The key results, contained in

Theorems 4.1, 4.2 and 4.3, show that the magnitude of the model error

necessary to destabilize the feedback system may greatly .increase if the

class of model errors that can plausibly occur does not include model

errors that are essentially alike in structure to the model error of

minimum size that will destabilize the feedback system. This provides

A
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an important characterization of the model errors that are important in

feedback design. These types of model errors were then interpr°.ted via

block diagrams of the feedback system.

In Chapter 5, the robustness properties of control system designed

using the linear-quadratic-gaussian UQG) methodology were presented.

Multiloop guaranteed gain, phase and crossfeed margins were obtained using

the :obustness theory of Chapter 3. The key results of Chapter 5 are

contained in Theorems 5.2, 5.3 and 5.4 and their corollaries. These

theorems showed that the quasanteed LQ robustness properties hold in a

coordinate frame defined by the control weighting matrix (R) in the

quadratic performance index. It was also shown that LQG control systems

cannot automatically guarantee the same stability margins as the LQ state

feedback regulator unless tl , ., in` , nal model of the system embedded in the

compensator Kalman filter is cor. , c. This is a very restrictive condition

and therefore robustness recovery procedures were outlined that do not

require the campensat ,,r to have exact knowledge of the correct dynamic

model of the system. These procedures allow LQG controllers to recover

the robustness properties of LQ state-feedback controllers if the nominal

open-loop plant is minimum phase.

Chapter C contrasts the frequency domain techniques for MIMO analysis

and design (characteristic loci (CL), inverse-Nyquist array (INA) and

principal gain and phase (PGP)), to the methods taken in this thesis and

demonstrates that the CL and INA desi gn methdologies do not ensure robust

controller designs and that the PGP analysis is not able to determine the

robustness of importart classes of systems and model errors.
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7.2 Conclusions and Suggestions for Future Research

A systematic procedure for the design of robust feedback control

systems is the ultimate goal of any analysis of the robustness properties

of feedback systems. The impact of the analysis techniques developed

in this thesis upon controller design is obviously not that of a new

method for obtaining a controller given a model of the plant. Rather,

this thesis has dealt primarily with the characterization of model un-

certainty and how it affects current design methodologies.

The theoretical impact of this analysis consists of the following

developments:

• the formulation of a new robustness theorem that exposes

the fundamental character of all robustness tests which

can be derived from it.

• the unification of various robustness tests by the classi-

fication of the type of model error they bound

• the derivat -n c.f new robustness tests based on alternate

types of model error criteria not previously considered

in the literature

• the fundamentally new characterization of model error,

which requires only a partial knowledge of the model

error, based on its projections onto certain subspaces.

The design impact of this analysis is not as clearly defined and

future research to develop design techniques is nscvssary. However,

the design developments that seem possible are:

• controller redesign based on the model error structural

characterization of model errors critical to stability
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• model improvement to reduce model errors critical to

stability

The controller redesign and model improvement go hand in hand. Once

an initial design has been accomplished and the model errors critical

to system ^La:'Jlity are identified, these model errors can be incorporated

into a new model. and a new controller design, using this new model, may

be performed explicitly taking into account the characteristics of the

new model critical to system stability.

Other directions in future research that might prove productive are

tied to specific design methodologies. For LQG controllers, the develop-

ment of procedures for producing robust low order compensators from robust

high order compensators would be hiqhly desirable. To produce a robust

reduced order compensator, the loop transfer matrices corresponding to

the high order and reduced order compensators must be nearly alike. More

precisely, if Gh (s) is the loop transfer matrix resulting from the use

of the high order compensator. and G Q (s) is the loop transfer matrix re-

sulting from the use of the reduced order compensator then G Q (s) should

approximate Gh (s) in such a way that c Mill (I+G Q (s)) - C, min (I+Gh (s)) at or

below the crossover frequency range and 
emin(I

+G£1(s)) ^- 
a min ( I+G-1(s))

at or above the crossover frequency range. This is basically a model

reduction problem with the objective of matching singular values and

singular vectors of G Q (s) and Gh (s) rather than matching step responses

or other typical. model reduction approximation criteria.

The basic af>peal of the frequency domain design methods, namely

the characteristic loci (CL) and inverse Nyquist array (INA) methods,
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is that they, in many cases, produce lower order and simpler dynamic

compensators than the IQG approach. However, as was demonstrated in

Chapter 6, they do not automatically produce robust compensators because

they use diagonalizing matrices, V(s) and W(s), with possibly large

condition *nnnbers to diagonalize the open-loop plant Gp (s). This implies

that the gain and phase margins at the physical input and output of the

system may be much smaller than those in the diagonal coordinate system.

This difficulty would be eliminated if V(s) and W(s) could be guaranteed

to have condition numbers near unity and represent stable finite di-

mensional linear time-invariant systems. If V(s) and W(s) are chosen

as the diagonalizing matrices from the SVD of G
F' 
(s) then they are unitary

and have condition numbers of unity. However, with these choices for

V(s) and W(s), neither V(s) nor W(s) represent stable finite dimensional

linear-time invariant systems. Therefore, approximations to this choice

of V(s) and W(s) must be sought which approximately diagonali.ze G
F? 
(s).

This is basically a problem in realization theory. Further research is

necessary to determine whether sufficiently accurate approximations of

V(s) and W(s) (so that G
F' 
(s) is almost diagonal) will produce compensators

of lower order than compensators obtained by state space design methods

such as the WG methodology. If not, then these frequency domain techniques

would seem to lose their original appeal.

The above problems (the design of low order robust compensators

via the LQG method or tho frequency domain CL or INA methods) assume

that the r0l)ustness analysis of a control system can be carried out.

The value of this analysis depends crucially on the control system

designer's ability to characterize the uncertainty in the open-loop
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nominal design model in a particular mathematical fashion. Often, the

characterization of model error by its magnitude alone is insufficient

to guarantee the stability of the perturbed feedback system by the robust-

ness tests of Chapter 3. In this case, more detailed information about

the possible structure of the error transfer matrix, E(s), is needed in

order to guarantee stability of the feedback system. The robustness

tests of Chapter 4 require that the magnitude of the projection of the

error matrix, E(s), onto the subspace spanned by u (s)vH (s) also be

known. It is thus necessary to determine what magnitude of <u s)vn(s),

E(s)> constitutes a physically possible type of model error. If this

model error E(s) gives rise to a perturbed system ^(s) that violates the

basic physics of the underlying physical process then E(s) can be elimi-

nated from consid_ration. However, the control system designer does not

usually have information about the projections of E(s) onto subspaces and

what magnitudes of these projections are physically feasible. This

projection information must be somehow deduced from the information that

he does have or is able to obtain about the nature of the model error.

Similar model error characterization problems are encountered if

the principal gain and phase (PGP) analysis is used. Again, the structure

of the model error contained in the minimum and maximum principal phases

of the error matrix must be known. These quantities, like subspace

projections, are not the kind of information about modelling error

structure usually possessed by the control system designer. Often the

type of information available about model error is determined indirectly

by the knowledge of the acceptable range of parameter variations in a
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parameterized state-space model. Alternatively, it may be determined

indirectly from an available set of SISO Nyquist or Bode plots of measured

transfer functions for certain input and output variables of the physical

system under a number of different operating conditions. This type of

information does not directly provide the model error structure informa-

tion needed in the robustness analysis. It is therefore necessary to

devise methods for determining the required structural information about

model error. This information might be obtained by using a more detailed

class of models representing truth models of the physical system and

determining if the resulting model errors for this class of more detailed

models can ever have projections onto certain subspaces or ever have

principal phases outside some given range. On the other hand, frequency

domain measurements in certain input-output directions might obtained

from the physical system to determine what_ model error projections or

principal phases are possible. More experience with practical applications

is needed in order to determine how particular types of model error

structure information may be ascertained.

Another area for future research is the robustness properties and

stability margins for time: delay systems and multi-sampling rate digital

systems. LQG based regulators for time delay systems of the form

x(t) = AOx(t) + Ax(t -T) + Bu(t) can be determined from the solution of

Riccati-like equations. It is not unlikely that these regulators will

have some inherent robustness properties as does the standard LQ regulator.

However, continuous-time delay systems are infinite dimensional and

mathematically complex and hence it is not clear what type of robustness

results for these systems can be obtained. A possible approach to these

a
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type of problems is to first consider the optimal regulator for discrete

time delay systems of the form
-N+1

 ffi AA + AlN-n + B%L . These systems

are finite dimensional and can by state augmentation be formulated as

standard discrete time systems of the form 
4+1 - Aick + B4. Thus, the

optimal regulator for a delay system can be reformulated as standard

optimal regulator problem. The robustness properties of this augmented

standard optimal regulator may then be related to those of the regulator

of the time delay system. If this approach proves useful, the analogous

type of results for optimal regulators of continuous-time delay systems

may be possibly developed in spite of the fact that these systems are

infinite dimensional.

The robustness properties of multirate discrete time systems are

closely associated with those of discrete time-delay systems and the use

of multiple sampling rates in discrete time control systems is occurring

more frequently in practical applications. However, there is a lack

of robustness theory for this type of control system and most design

is done on a heuristic basis. Sampled data systems, give rise to

mathematically complex continuous-discrete hybrid operators if an

precise description of their continuous time behavior is desired.

Simple approximations are needed to describe this behavior in order to

make design use of the robustness results obtained in terms of these

operators. It would be practically very useful to obtain a method for

determining the sampling rate in terms of the desired stability margins.

The mathematical tools used in the analysis of the sampled data

systems are largely the same as for nonlinear systems. In nonlinear

system stability analysis, one of the basic problems is not being able

i
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characterize the nonlinear systems in a sufficiently simple manner that

is practically useful. There are many stability results like those

mentioned in section 3.10 but these results use only the grossest

characterization of the feedback system operators and hence are often

conservative. To sharpen these results, finer characterizations of the

feedback system operators must be determined and at present only a few

results of this type are known. These stability results involve the

concept of invariant limit sets (Lyapunov stability theory) or utilize

phase plane analysis. They are not part of input-output stability theory

to which the results and framework of this thesis are most similar.

The extension of the robustness results for nonlinear systems analogous to

the extension of the robustness results for linear systems by use of

model error structure in Chapter 4 is not possible because there is no

orthogonal decomposition such as the SVD available for nonlinear systems.

Other means of determining structure in nonlinear systems must be developed

and at present it is not clear to the author how this may be accomplished.
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