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Introduction and Summary

This report considers the possible use of Chamber A for the replication

or simulation of space plasma physics processes which occur= in the Geosyn-

chronous earth orbit (GEO) environment. 	 It is shown that replication is not

possible and that scaling of the environmental conditions is required for

study of the of the important instability processes. Rules for such experi-

mental scaling are given. 	 At the present time, it does not appear techno-

logically feasible to satisfy these requirements in Chamber A.

It is, however, possible to study and qualitatively evaluate the problem

of vehicle charging at GEO. In particular, Chamber A is sufficiently large

that a complete operational spacecraft could be irradiated by beams and

charged to high potentials. Such testing would contribute to the assessment

of the operational malfunctions expected at GEO and their possible correction.

However, because of the many tabulated limitations in such a testing programs,

its direct relevance to conditions expected in the GEO environment remains

questionable.
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Philosophy of Simulation Experiments

Block (1976) has succinctly summarized both the relevance and limitations

of laboratory experiments in the space plasma physics area as follows:

a) New theories should as far as possible be tested in labora-

tury.

b) Theoretical processes which cannot or have not been reproduced

in the laboratory should often be met with scepl ici--m when

applied to space plasmas.

c) Most plasma processes observed in the laboratory are probably

of importance in space.

d) Proper application of a laboratory process to space conditions

requires a theoretical understanding of its dependence on all

plasma parameters and boundary conditions.

These rules inay seem self-evident, but they are unfortunately not always

obeyed, since too many theoreticians are not aware of the multitude of plasma

phenomena not understood theoretically, and too many experimentalists are

unaware of appropriate theories.	 There is of course at least a partial

excuse: paper proliferation.

Because of the immensity of space plasma configurations, scaling must be

applied to reduce the experiment size such that it can be accomodated in a

laboratory system. Block [1976] also gives a quantitative tabulation of the

the various scaling dependences shown in Table I.



Length, time, resistivity	 vary as L+1

Particle energy, velocity, potential,

temperature	 vary as Lo

Particle density and pressure, electric

and magnetic field, frequency 	 vary as L-1

Magnetic pressure, space charge density,

current density	 vary as L-2

Table 1. Plasma Scaling Laws

It seems reasonably clear that, in most instances, quantitative scaling

will not allow technologically feasible laboratory configurations; therefore

the concept of qualitative, limited scaling has been introduced. This means

that the relevant dimensionless numbers [such as the ratio of the electron-

neutral collision frequency to the electron cyclotron frequency] should be

kept qualitatively the same in the laboratory as in space. 	 Ratios mucn

smaller or larger than unity retain this property but not necessarily the same

order of magnitude.	 Problems of course remain with ratios that are near

unity.

In some cases, the need for even qualitative scaling can be relaxed still

further and idealized geometrical configurations and idealized particle dis-

tribution functions can be employed in the laboratory experiments. The objec-

tive here is the, test of theoretical concepts: the experimental conditions

need only satisfy the constraints of the specific theory, not duplicate the
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total complex set of phenomena. The direct relevance of the specific theory

under study to space plasma physics phenomena cannot be established by the

laboratory experiments alone.

The use of a very large experiment system offers several important advan-

tages.

1. The range of the parameter scaling is reduced, and therefore the

uncertainties associated with d:-ensionless ratios near unity are reduced. In

fact, the existing work that has been performed in Chamber A has been per-

formed under conditions where only minor scaling has been required. It should

be noted, however, that only extremely small scale l ocal phenomena have been

studded in the configuration. The study of longer range phenomena (several

meters) would obviously require at least qualitative scaling.

2. Operation at smaller magnetic field strengths and particle densities

reduce the pertinent electron plasma and cyclotron frequencies to a very

convenient range.

3. The temporal evolution of plasma phenomena is slowed.

4. Insertion of various diagnostics into the plasma is possible without

severe perturbations, which modify the properties under study.

The utility of scaling experiments is clearly shown in the work of

l^
Bernstein et al. (1979) describing the Beam Plasma Discharge. These experi-

ments represented an inverse scaling, in which phenomena first observed in

small laboratory configurations were demonstrated to occur for the large

dimensions available in space experiments. 'rhey noted that the critical beam

current for ignition scaled quantitively with earlier work in the small

laboratory systems despite the very large change in parameters ( B—° = 103,
BI

Ne0/Ne I a 104 , Lo /L I = 0.02). where I represents near ionosphere conditions.

Although Soviet investigators did not produce the BPD under laboratory condi-
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tions approximating the ionosphere, they independently interpreted the

confusing results of several electron gun rocket flights in terms of the BPD.

In this report we will first summarize the plasma characteristics

existing at GEO and then determine whether, it is possible to perform meaning-

ful laboratory experiments relevant to processes occurring at GEO.

Plasma Characteristics at GEO

Fig. 1 is an overly complex schematic representation of the magnetosphere

taken from DeForest (1978). The location of GEO at all local times is indi-

cated. Obviously, GEO lies in a fixed geographical position with respect to

the Earth, but all the illustrated plasma boundaries show large temporal vari-

ations in radial location not only in assocation with diurnal and seasonal

Effects, but transiently with the level of geomagnetic activity. 'thus some-

times GEO may be located within the high density, co-rotating plasmasphere,

the ring current-plasma sheet region, and even, during severe geomagnetic

storms, within the unperturbed solar wind beyond the bow shock. Fig. 2, given

by Bernstein et al. (1974) snows the correlated dependence of the plasmapause

(the boundary between the co-rotating plasmasphere and the ring current

region) and the equatorial boundary of isotropic ion precipitation on geo-

magnetic activity characterized by the Kp index. Thus for quiet conditions,

GEO (L-6.6) lies partially within the plasmasphere; for more active condi-

tions, GEO lies entirely within the ring current region.

Chappell (1972) has given a comprehensive report on the distribution of

cold plasma (Te < 10 eV) within the magnetosphere. Within the plasmapause,

the dependence of plasma density on radial distance varies as R" 4. The plas-

mapause boundary is characterized by an abrupt drop (1-2 orders of magnitude)

decrease in plasma density; beyond tie plasmapause this cold density typically
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varies from 0.1 - 1 cm-3 . As represented in Fig. 1, the plasmapause is cir-

cular in shape; a more detailed representation is shown in Fig. 3 showing a

pronounced outward bulge in its location in the dusk sector (Chappell, 1972).

Mass spectrometric measurements indicate the dominant ion to be H + with some

He+ present within the plasmapause. At times localized regions of high cold

'	 plasma density (detached) are observed outside the plasmapause.

The region outside the plasmapause is populated by a low density, hot

l
	 plasma. Garrett (1979) has tabulated the hot plasma characteristics in this

region; the measurements considered were conducted predominantly from geo-

synchronous spacecraft. 	 Typically, electron temperatures (based on the
i

assumption of a Maxwellian velocity distribution) are in the range of a few

KeV; ion temperatures are N 20 KeV. Typical hot plasma densities lie in the

range of 1-2 cm-3 ; thus the ratio Nr./NH can be as small as 0.1. As might be

expected, the assumed maxwellian distributions represent only a qualitative

approximation; careful comparison indicates the presence of non-Maxwellian

i	 distributions. Large (order of magnitude) variations in density together with

smaller variations in temperatures occur. 	 The ion composition is highly

variable; at times H+ or 0+ may be the dominant ion: Both He ++ and He+ are

also observed but usually not as the dominant ion. The presence of He and 0+

I`	 (higher charge states of 0 have not been observed) ions indicate an iono-

spheric origin; He++ ions are attributed to a solar wind source. 'thus the hot

plasma population originates from both the solar wind and ionosphere with

large temporal variations in the respective abundances.

The particle angular distributions are not completely isotropic. Because

of the mirror magnetic field geometry, particles with large vll/vl relative to

the magnetic field are preferentially lost to the atmosphere (within the loss

cone) — ± 6° at GEO.	 Williams and Lyons '(1974) report that during the
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recovery phase of large geomagnetic storms, the ion population in the region

extending 1-2 Re beyond the plasmapause may show a totally depleted loss cone

for ions. The empty loss cone indicates the absence of pitch angle scattering

processes.	 At large L, the ring current does, in fact, show a, completely

isotropic pitch angle distribution (full loss cone). This isotropy for ener-

getic electrons and ions is evidence for the occurrence of strong pitch angle

:.tattering which almor.t surely results from a variety of plasma instabilities

(the electromagnetic ion cyclotron (Cornwall et al., 1.970), electromagnetic

electron cyclotron (Kennel and Petschek, 1966), and electrostatic electron

cyclotron (Kennel et al., 1970) instabilities. 	 It appears likely that

electrostatic ion cyclotron modes are important at large L, but experimental

verification is lacking (Bernstein et al., 1974). 	 These particle losses to

the atmosphere are the origin of the diffuse aurora and provide a mechanism

which limits the energetic particle population in the outer magnetosphere.

Conversely, McIlwain (1975) has reported transient observations of KeV field

aligned (within the loss cone) electron and ion beams at GEO.	 Thus the

langular pitch angle distribution can range from vlu
	 u
> 1, to isotropy to 7 < 1.

Auroral arcs cannot be mapped to the equatorial plane on the auroral field

lines. General conclusions are that the arcs are generated in field aligned

accelerating regions located in the vicinity of 1-3 Re. The equatorial plane

ion beams may be associated with this acceleration, however.

Other important parameters at GEO include the solar UV flux together with

transient periods of eclipse and the dipole (mirror) magnetic field configura-

tion. The field strength at GEO is typically 100 + 50 x 10 -5 gauss. Typical-

ly, the hot plasma region is characterized by large 0 where B = 80— T " 0.25.
B

We note again that GEO can lie beyond the magnetosphere (at t:e sub-solar

point) so that the vehicle is immersed in the solar wind (DeForrest, 1973).
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TABLE'Z, Estimuies of Minimum, Typical, and Maximum Values for the first Four ,Moments of the Distribution Function (DeForest and
AfOlwain, 1971) as a Function of Local Time

Electrons	 Protons

o(W	 0300	 0600	 1200	 1800	 2100	 0000	 0300	 0600	 1200	 1800	 2100

Number Density, Parijelei cm''
Minimum 0.07 0.22 0.17 0.06 0,02	 0.04	 0.7 0,6 0.7 0.3 0.5 0,6Maximum 8,3 4.8 2.9 1.2 1.9	 4.4	 3.8 3.S 1.9 2.2 2,2 2,4Typical 2.0 2.0 1.2 0,4 0.10	 0.4	 1.2 1,2 1.2 0.9 0.8 1,1

Energy F/ux, erg CM'' s - 1 sr-'
,Minimum 0,21 0,38 0.42 0.26 0,04	 0.10	 0,16 0,13 0.05 0.13 0,14 0.14M a dm um 9.4 15.2 14.6 2.3 1,01	 7,2	 0.61 0,47 0,47 0.76 0,63 0,85
Typical 3.0 3,0 1.5 1.0 0.40	 0.5	 03 OJ 0.3 0.22 0,30 0,30

Number Flux, KP Particles cm'' s'' ar''
Minimum 15 37 32 IS 2	 9	 6 4 4 2 4 5,Maxximum 1510 1020 832 122 162	 864	 25 17 16 15 23 25
Typical 300 300 200 70 30	 60	 12 10 8 7 8 10

Pressure, l0' 1 ° dyta em"'
Minimum 2,7 6 6 4 0,4	 1	 66 51 25 31 54 56
Maximum 190 266 173 25 14	 128	 234 196 169 242 25 327
Typical 50 60 30 12 7	 8	 140 120 90 80 90 120

Data, from ATS 5, are for the energy range 50 eV to 50 kcV and 1970.

Table Il, from Garrett (1979), shows some of the wide range of plasma

conditions encountered at GEO. Note that this table is limited to particles

with E > 50 eV.	 Thus the cold plasma component is omitted. 	 Because the

plasmapause also represents the equatorial boundary of the hot component, the

simultaneous occurrence of largee cold plasma densities together with the hot

component is unlikely except within a localized boundary region. Superimposed

on the diurnal variations are the even larger variations associated with geo-

magnetic activity.

The important plasma instabilities are basically characteristic of the

hot plasma component.	 In general, the free energy source lies in the pitch

angle anisotropy arising f1om the presence of finite loss cones. 	 The end

result of the instabilities is the establishment of an isotropic pitch angle

distribution; however, because of particle loss, complete isotropy may not be

realized and the instabilities may persist in steady state. 	 On the other
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hand, the instabilities may, in fact, be transient at a fast 4anouqh occurrence

frequency so that they appear steady state in the measurements.

The occurrence of the instabilities depends critically upon the total

plasma density (hot and cold components) although large cold plasma densities,

such as exist within the plasmapause, quench instability growth. 	 It is for

this reason, that the density gradient at the plasmapause has . been postulated

to be a likely region of ion cyclotron wave growth (Cornwall et al., 1970)

Unfortunately, although certain features of the ion pitch an g le distribution

are indeed consistent with the occur rrence of this mode, the close asociation

of ion cyclotron waves with changes in the pitch angle distribution has not

been well established. A particularly interesting active experiment (Project

Firewheel--this payload was launched in Spring 1980 but failed due to vehicle

malfunction) attempts to destabilize the hot ion and electron components near

GEO through the artificial increase in cold plasma density produced by large

chemical releases. The present space measurements have not conclusively esta,,

blished the required close association between waves and particle energy and

angular distributions inherent in the theoretical treatments. If these insta-

bilities could be successfully studied in a laboratory configuration, confi-

dence in the applicability of the theoretical treatments to space processes

would be greatly improved.

A second consequence of the presence of hot plasma coupled with the

absence of cold plasma is the charging of GEO Spacecraft to high potentials.

Charging itself leads to the gross distortion of some scientific measurements,

particularly those of the characteristics of the low to moderate energy

plasma.	 In fact, several techniques to reduce charging potential have been

proposed and tested in space. Unfortunately these techniques lead, in turn,

to the distortion of ocher ambient measurements, particularly plasma waves and
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consequently have not been empluyed on scientific missions where charging is

anticipated such as Galileo (Jupiter Orbiter). Of greater operational signi-

ficance is the occurrence of arcs from otvp point of the vehicle to another or

to the plasma. The large transient currentfi in the spacecraft structure

arising from these arcs represent a source of intense electromagnetic inter-

ference and may even produce component failures. Their occurrence has been

clearly demonstrated to be associated with periods of high geomagnetic

activity.

Charging results because an isolated, equipotertial object, immersed in a

plasma, assumes a potential relative to the plasma such that the net current

to and from the object equals zero; Ito + I from ' 0.

Current away from the object [negative charge to and positive char ^ from

the object] 1 ^,i Produced almost entirely by the flux of ambient energetic and

cold electrons impacting the object.

Current to the object [negative charge from and positive charge to the

object] arises from a variety of sources including:

1) Positive ions from the plasma impacting the object. In general,

unless T+ > Te, this flux is small compared to electron flux to the

object because v+ _ (m^ ve.

2) Secondary electron emission + backscatter.

Energetic electrons and ions can eject low energy (< 50 eV) electrons

when they strike surfaces.	 For most clean materials the secondary yield is

< 1 although, of course, selected surfaces with yields > 1 have widespread

applications. The secondary yield is energy dependent with the maximum .yield

for electrons occurring at N 200,-500 eV at higher energies, the secondary

10
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yield decreases with increasing energy approximately as KE" m (Wall et al.,

1977).	 Similarly a fraction of the incident enegetic electron flux will be

backsc,^ e yed from surfaces. Wall et al. (1977) suggest the following empiri-

cal relationship for the backscatter yield, B — AE- n . For both equations the

quantities K, A, m, n are characteristic of the particular surface material

and the angle of incidence of the primary particles,

3) Photo electron emission

Surfaces irradiated with UV and shorter wavelength light emit photo,,

electrons. The photoelectron yield again depends upon the surface material

and the photon angle of incidence.

Both Oe secondary and photoelectron emission are primarily surface

phenomena. In space, after prolonged exposure in the ultra-high vacuum envi-

ronment cro±pied with energetic particle and solar photon irradation, it is

likely that the surfaces will be clean with ,yields characteristic of the

materials themselves.	 Under poor vacuum conditions (> 10-6 torn) surfaces

will be covered with monomolecular layers of contaminant materials; in general

such contamination results in Increased yields. Such layers cannot be removed

by prolonged pumping alone; rather baking at > 200'C or intense energetic

particle bombardment is required. Furthermore, at poor operating pressures,

the layers will be rapidly redeposited once they are removed.

Because it has been assumed that the surface is an equipotential (conduc-

ting) surface, spatial non-uniformities in the distrib,°ution of charging and

discharging currents do not lead to differential charging. Rather the final

uniform potential distribution arises from the total charging and discharging

currents.
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The magnitude of the charging and discharging currents and the potential

distribution are not uncoupled parameters however. 	 This situation arises

bec=;c the dimensions of the sheath surrounding the charged object increase

with increasing potential. 	 It is the dimensions of the sheath rather than

that of the object itself which determine the effective area for the collec-

tion of charge neutralizing current from the ambient plasma. Secondarily, the

energy angular distribution of particles striking the object surface will be

modified in their transit of the sheath region with consequent modification of

the secondary emission and backscatter yields. Complex computer programs have

been developed (see, for example, Katz et al, 1977) for this parameter inter-

dependence. If ion and electron gyroradii are large compared to sheath dimen„

sions, the configuration can be treated as unmagnetized. 	 At lower altitudes

where B is greatly increased, gyroradii may be < sheath dimensions and conse-

quently the magnetic field modifies the neutralizing current collection con-

figuration. However, the stability of such sheath configurations for condi-

tions where w  > we (typical of the ionosphere) has not been well established;

the consequence of such sheath turbulence has been proposed to produce

enhanced crossed field diffusion of plasma. At the present time most theore-

tical treatments of the neutralization at GEO do not consider magnetic field

effects.

Differential charging of various regions of the object surface results if

the surface is not an equipotential; that is if regions of the surface are

ins`lators.	 Because of the different photoelectron, secondary electron, and

backscatter yields coupled with both photon and energetic particle shadowing

arising from the object geometric configuration, differential charging of

various portions of the surface can be produced. Obviously the bulk conduc-

tivity of the insulating regions determines the conduction -harge loss and the

12
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magnitude of the potential differences which can be maintained. Thus the bulk

conductivity represents another surface material propr •ty influencing the

final potential distributions. 	 It is these large potential differences

between nearby regions which produce the vacu ut, arcs and both malfunction and

damage of spacecraft components.

Reference to Fig. 1 indicates that this high potential phenomenon is not

restricted to GEO. It can occur throughout the entire region of the magneto-

sphere beyond the plasmapause where the hot plasma of the ring current and

plasma sheet dominate the cold plasma. Charging, of course, occurs throughout

the magnetosphere; in the high density region within the plas:mapause, the

floating potential remains low (few volts) even in the presence of large

energetic particle fluxes such as the aurora. 	 In sunlight, photoelectron

emission may dominate plasma effects and a positively charged object results.

Such charging has negligible operational impact, but can severely impact

measurements of the local low energy plasma characteristics.

Charging patterns also are produced when the object emits either electron

or ion beams. Usually beam currents are planned to be far in excess of the

maximum return (neutralizing) total current from the ambient medium even

within the high density lower ionosphere. 	 In the case of the space shuttle,

the collecting surface is N 80% insulating tiles.	 It is possible that very

large potential differences may be produced between different insulating areas

and between these and the conducting surfaces. 	 However, intense beams have

been launched from rockets with little evidence for charging to excessive

potentials. It is believed that charge neutralization is achieved through the

local production of a very high density plasma surrounding the vehicle which

can supply the required neutralizing current. This can be accomplished by
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either the Beam-Plasma-Discharge or an E x B (Pcnn,ng) discharge (Galeev et

al., 1976) in which the ambient neutral gas is ionized. 	 Success of beam

experiments planned for Spacelab require such "non-classical" local sources of

ionization.	 Other possible neutralization schemes include the use of plasma

sources and the deployment of very large area collecting surfaces, none of

which are planned for early flights.	 Measurements (Bernstein et al., 1980)

with an isolated electron gun payload in Chamber A have shown that BPD igni-

tion does neutralize beam emission currents of - 100 ma. Obviously, if neu-

tralization does occur, large differential charging potentials are eliminated.

What Can Be Studie d in the Large Vacuum Chamber

From the previous discussion, it is concluded that the most interesting

plasma phenomena are those associated with the hot plasma region. Although

conditions there are highly variable, we can assume the following to be repre-

sentative: Ne = 1 cm
-3

, Te = TH = 10 keV, and B = 10 -3 gauss. We therefore

obtain the following important dimensions:

Debye length, XD a 7 x 104 cm

Proton Gyroradius pH - 4.7 x 106 cm

Electron G,yroradius P  W 1.1 x 10 5 cm

Treatment of the ions and electrons as a magnetized plasma requires that these

be CC the dimensions of the system. Thus, even if the ambient magnetic field

in the chamber could be reduced to 10 -3 gauss, exact simulation of the GEO

plasma environmenc is not possible.	 Scaling according to the rules given

earlier is required.
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The plasma density and magnetic field strength required to reduce the

above dimension to < 10 cm for a 10 keV thermal plasma are

Plasma density 0 5 x 10 7 cm-3

PH	 a 4.7 x 102 gauss.

P e 	" 11 gauss

At the present time, I cannot identify any method of producing this plasma

density at i0 keV with a loss cone angular distribution in the chamber. This

is not ,,,eant to imply that scaled experiments are not possible; rather we

conclude that it is not feasible to produce even the qualitative scaling

conditions in Chamber A.	 Several laboratory experiments in small magnetic

mirror confinement systems have demonstrated the occurrence of the electro-

magnetic electron cyclotron instability, one of the critical instabilities

limiting the energetic electron population in the outer magnrtosphere (Ikegami

et al., 1,969; Jacquinot et al., 1969).

Simulation of charging phenomena present a very different set of con-

straints. As noted earlier, quantitative simulation of the charging process

requires quantitative duplication of all environmental and surface conditions.

Even if this could be accomplished, the finite dimensions of any laboratory

configuration (R < a 0 ) produces gross modifications in the sheath configu-

ration and hence the trajectories of the incident particles.

It is possible however to study the charging process in idealized experi-

ments which do not duplicate or scale the space environment. Here the objec-

tives are limited to the following:

1.	 To determine whether differential charging to large potential

difference can occur.
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2. To determine whether these large potential differences will produce

arcs, and at what potential difference arcing will occur.

3. To identify the operational consequences of such arcing.

The use of the large chambers offers several important advantages as

follows:

1. The large dimensions of the chamber allow the irradiation of larger

and more complex structures than can be studied in the presently

used laboratory experiments.

2. The availability of the solar simulator could allow photoelectron

emission to be included as an experimental parameter.	 However,

because the simulator does not duplicate the solar EVN spectrum (La

and shorter wavelengths), the value of the simulation is doubtful.

3. The role of electrically grounded conducting boundaries in the

breakdown process is reduced because of the greater distance from

the surface to the wall.

For these qualitative studies of charging, low density energetic electron

and ion beams from wall mounted accelerators, can provide a reasonable

approximation of the natural energetic electron. The characteristics of these

electron beams together with the techniques for electron beam generation

outlined in	 Spire report [1979] appear adequate. Energetic ion beams are

unnecessary because vehicle charging by energetic ions in nature is

unlikely. A low energy ion source would be desirable.

The poor vacuum conditions in Chamber A will provide some uncertainties

in the significance of the results for the following reasons:

1.	 Both the secondary electron and photo electron fields are dependent

on surface properties. The presence of contaminant layers modifies

)6

a



	

the surface characteristics severely. 	 Also the presence of such

layers may modify breakdown characteristics. Cleaning by baking or

prolonged electron bombardment together with ultra high vacuum tech-

niques are usually employed to ensure clean surfaces. At pressures

> 1 x 10-6 torr, with significant H 2O vapor partial pressures, it is

questionable whether clean surfaces can be maintained after clean-

ing. Also bombardment cleaning may be dangerous to complex struc-

tures.

	

2.	 The passage of energetic particle beams through the residual neutral

gas will produce significant ionization. The fraction of primary 10

kV electrons producing 1 ion pair in a 20M path length, L, is given

by

MFP	 NoL	
1-2 x 10-2

The ionization electrons will eventually impact the chamber walls; the ions

will reach the target surface however and can modify the charge balance. At

P " 10-6 torr, this effect is unimportant; at 10-5 torr and greater, the

steady state ion flux can be extremely important in modifying the charging

process.

The following problems in simulation of plasma phenomena in general are

apparent:

	

1)	 The electromagnetic cyclotron instabilities are characteristic of

high 0 plasmas; at Lower a, electrostatic instabilities become dominant.

Almost all laboratory plasma devices (Tokamaks, Stellarators, mirrors, etc.)

	

currently operate in the low 0 (<10 -2 ) regime.	 As noted in the scaling

relationships, quantities such as density and magnetic field strength scale as

17
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L-1 whereas magnetic pressure scales as L" 2 . This implies severe difficulties

in the direct scaling of high B GEO plasma processes where B (ge0) m 0.25.

2) The magnetic field particle anisotropy configuration is difficult to

simulate. The hot plasma is confined in the mirror field geometry with a

mirror ratio Beq /"BM " -II' so that the loss cone in the equatorial plane is only

a few degrees. Yet, it is the particle spatial anisotropy arising from the

finite but small loss cone which provides the energy source for the instabi-

1ities. The use of a smaller mirror ratio increase the magnitude of the loss

cone and in turn modifies the vi/vu ratio from that at GEO.

3) A cold plasma density slightly larger than the hot plasma density

quenches most postulated GEO instabilities.	 Cold plasma, will be produced by

two processes:	 (a)	 charge exchange of energetic ions with ambient neutral

gas and (b) collisional ionization of the ambient neutral gas by the energetic

particles.	 Although the lifetimes of the hot and cold plasma components in

the mirror geometry will be different, a relatively dense cold component will

accumulate at large neutral gas densities.

4) No obvious techniques exist for the production of the hot plasmas/

electron and ion components in the density range > 10 7 .equired by simple

dimensional scaling within the mirror geometry.

For these reasons, it is concluded that the simulations of GEO-plasma

processes do not seen possible in Chamber A within the limitation imposed by

present technology. It should be noted that the EM electron cyclotron insta-

bility has been apparently produced in some experiments with fusion oriented

mirror devices, but the instability characteristics have not been studied in

sufficient detail to demonstrate their relevance to space plasma physics

processes (Ikegami et al., 1969; Jacquinot et al., 1969).

Simulation of charging phenomena presents a very different set of circum-
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stances.	 As noted earlier, the quantitative simulation of the charging

process requires quantitative duplication of all environmental and surface

conditions.	 Even slight deviations from exact scaling would obviate results

from scaled experimen.s, and here quantitative simulation rather than scaling

would be the preferred approach.	 Of course, the finite dimensions of any

laboratory configuration with sheath dimensions larger than chamber dimensions

produces gross modifications in the overall sheath configuration because of

the grounded boundaries. The presence of grounded boundaries in near proxi-

mity allows the occurence of arcs from charged surfaces to ground; however,

because the walls are reasonably removed from the object in the large chamber,

and more closely spaced regions of large potential difference will be present,

the simulation improves with chamber size. It seems reasonable to derive the

following from a charging simulation experiment.

1) To determine whether differential charging to potential differences

exceeding a few KV can occur with maximum particle energies in the range of

20-30 K v (the range expected at GEO). These measurements do not necessarily

imply the magnitude of the potential differences which will be encountered at

GEO because of the limited nature of the simulation. Rather they indicate

that the surface and volume conductivity characteristics are such that they

will allow the existence of such large potentials.

2) To determine whether these large potential differences will produce

vacuum arcs, and at least, qualitatively, the minimum potential difference at

which arcing occurs.

3) To identify operational consequences of the arcing; these include

component failure (infrequent) and transient operational malfunctions.

The use of the large chamber offers some major advantages in the assess-

ment of the charging problem for large complexstructures as follows:
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1) It is possible to test a large complex spacecraft; present testing

procedures in small vacuum systems can only accomodate small objects and

therefore a total system test is impossible. Therefore, experiments in small

systems have been limited to tests of 'the surface and volume properties of

isolated surface materials. These data are subsequently included in the large

computer programs to evaluate the system charging problem.

2) The presence of the solar simulator allows for inclusions of photo-

emission effects in charging. However, the chamber does not adequately repro-

duce the space geometry so that shadowing and angle of incidence is changed.

3) The roles of electrically conducting boundaries have been discussed.

4) Complete systems can be irradiated so that operational effects can be

evaluated rather than estimated.

Present approach to the charging probl!i

At the present time, the vehicle charging problem at GEO appears reason-

ably well understood. Several approaches to the problem have been attempted

including

1) Ideally the use of conducting material for the spacecraft surface so

that the entire surface is an equipotential. For some cases when insulator

properties are required, insulating glass cloths have been developed which

retain their insulating characteristics at small applied potential differ-

ences, but where conductivity increases at potential differences in the few KV

range.	 Effectively use of such materials limits differential charging to

potential differences less than the vacuum arc threshhold..

For cases where the surface is the ideal equipotential, active techniques

can be employed to prevent charging of th ,,a entire vehicle to large potential

differences with respect to the ambient plasma.	 These techniques include
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field and/or tnermionic electron emission sources and plasma generators.

Obviously neither of these techniques will eliminate differential charging

effects caused by the presence of insulating surfaces; rather only the poten-

tial of the conducting surfaces will be clamped to the plasma potential.

2) In the case of insulating surfaces, the secondary electron and photo-

electron yields, together with the bulk conductivity (the conductivity may be

a function of the potential difference) can be determined in laboratory

experiments. Furthermore laboratory experiments also ,yield the threshold

voltage required for vacuum arcs. These data, coupled with assumed plasmas

distributions allow estimates of vulnerability of various insulating regions

of a spacecraft to charging problems.

3) Inclusion of the resultant charging probabilities into t'°e computer

codes for EMI susceptability then allow an evaluation of arcing consequences.

4) External arc sources can be used to experimentally simulate the EMI

effects of vacuum arcs.

To date, no attempt has been made to develop a test procedure for space-

craft to simulate the arcing problem. However, such a test is planned in the

near future at TRW in which an operation spacecraft will be irradiated by

energetic electron beams (A. Rosen Private Communication). 	 However, it was

the general consensus of opinion at both TRW (F. Scarf and A. Rosen) and the

Aerospace Corp. (R. Holzworth and J. M. Cornwall) that this planned test is

unique and that routine similar spacecraft testing to evaluate charging

effects would not be an operation requirement for future GEO flights.

V....
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