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ABSTRACT

The insight into the physics of atmospheres of early type stars

obtained from IUE observations is discussed. The paper is concentrated on

the phenomenon of mass loss and stellar winds from hot stars, since many

of the IUE observations of early type stars were directed to that problem.

The mass loss rate of early type stars increases by about a factor of 102

to 103 during their evolution. This seems incompatible with the radiation-

driven wind models and may require another explanation for the mass loss

from early type stars. The winds of early type stars are strongly variable

and the stars may go through active phases. Eclipses in binary systems by

the stellar winds can be used to probe the winds. A few highly interesting

future IUE studies are suggested.

I. INTRODUCTION

Ultraviolet astronomy has changed our ideas about early type stars

(O,B,A) rather drastically. About fifteen years ago there was a general

tendency to believe that the atmospheres of these stars were reasonably

well understood. Although there were still quantitative discrepancies

between observed and predicted spectral features, the physical processes

in the atmospheres were considered to be well known. In a way, the atmos-

pheres of hot stars were very simple: a they were in hydrostatic equili-

brium, b and in radiative equilibrium, convection not being important

the opacities are mainly due to simple atoms.

Although these physical assumptions were simple, the actual calculation

of stellar atmospheres was still difficult, because of two complicating

factors: firstly, the large radiative intensities and the small particle
densities made it necessary to consider deviations from thermodynamic

equilibrium (non-LTE) in the calculation of the continuum and line opaci-

ties. And secondly, the effect of line-blanketing in the ultraviolet

could change the temperature stratification of the atmospheres by back-

warming. At about that time Mihalas and colleagues started the calculation

of non-LTE models, while Morton and co-workers calculated the first line-

blanketed model atmospheres for hot stars. It would be just a matter of

time and bigger computers to bring the theory and observations into agree-
ment.

There were a few stars (and very few astronomers) that did not f_t

this general scheme: e.g. the Wolf-Rayet stars with their strong emission

lines and large outflow velocities; the star P Cygni with its characteris-

tic line profiles (P Cygni profiles) indicating mass ejection; the shell

stars with their narrow shortward shifted absorption lines; the magnetic

Ap-stars and the metallic Am-stars with their peculiar abundances. It was

obvious that for these stars additional physical processes had to be
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taken into account, such as mass-ejection or magnetic fields. However, as

these kinds of stars were rather extreme, their existence did not shake

the general belief that the atmospheres of early type stars are in principle
very simple and not very exciting.

The physical reason for this was, of course, the fact that the visual

spectrum only shows us the tail of the energy distribution curves for the

early type stars. Since the radiation in this tail is not very sensitive

to the physical processes in the atmospheres, most of the interesting

properties of early type stars remained hidden for the ground-based

astronomers by the Earth's atmosphere. It is in this respect not surprising

that UV astronomy in general and the Copernicus and IUE observations in

particular have changed our insight into the structure and evolution of
early type stars.

In this paper I will concentrate on the new knowledge obtained by

IUE, extending the many interesting results obtained by the Copernicus

satellite, on the structure and stability of early type stellar atmospheres.

II. MASS LOSS IN THE HR-DIAGRAM

The first hlgh-resolution UV observations of Morton and his colleagues

(e.g. Morton, 1967) showed that early type supergiants are ejecting mass

with a velocity of about 2000 km/s at a rate of about 10-6 Me/yr. The

Copernicus satellite has extended these observations to a large number of

stars (Snow and Morton, 1976; Lamers and Snow, 1978), indicating that all

early type stars with _ _ < -6 (L > 2 104 Le) are losing mass at a rate
DO _ i0-_0high enough to be observable (M > 10-9 Me/yr). Stars with lower

luminosity only lose mass if their rotational velocity is large enough

(v sin i > 200 km/s) (Snow and Marlborough, 1976; Lamers and Snow, 1978).
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Figure i

The distribution of stars with and without observable mass loss in

the HR diagram. Circles: Snow and Morton (1976) Copernicus; Triangles:
Lamers et al. (1980a); IUE.

The Copernicus observations left a gap in the hot part of the HR

diagram unobserved; the region of Tel f < 20 000 K and _o I > -6 occupied
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by stars of types B3 and later, and luminosity classes III, II and lb.

Lamers et al. (1980a) have filled in this gap with IUE observations of 22

stars of spectral types B5 to FO. The search for mass loss indicators in

the UV resonance lines (P Cygni profiles or extended violet absorption

wings) is summarized in Figure i. This figure shows that the limit of

observable mass loss occurs at _ _ = -6 over the entire range of 7500 < Tef f
< 40 000 K. If we remember thatD_e evolutionary tracks of massive stars

are approximately horizontal in the HR diagram, this implies that stars

which do not lose mass at the main sequence (MboI > -6) will not lose
mass in the hydrogen shell-burnin_ nhase either. Stars which do suffer

mass loss on the main sequence will continue to do so in the hydrogen

shell-burning phase.

The fate of rapidly rotating stars of I_ _ > -6 at the main sequence
.DOI

is still uncertain. They may lose mass during the hydrogen core burning,

but when the star expands with conservation of angular momentum in each

layer, the rotation-induced mass loss may stop. IUE observations of

slightly evolved B-stars are required to answer this question.

Apart from the region in the HR diagram shown in Figure I, mass loss

also occurs in very hot highly evolved stars like some O-subdwarfs and

central stars of planetary nebulae. These will be discussed by Heap

(these proceedings).

III. MASS LOSS RATES

The most extended set of mass loss rates for early type stars prior
to IUE was from Barlow and Cohen (1977) based on the infrared excess of 44

luminous O, B and A stars, ranging in temperature from 8500 to 50000 K.

The rates derived by these authors show a correlation with luminosity:
M = L1"_s. These observations provided a very strong argument in favor of

the radiation-driven wind theory from Castor et al. (1975) which predicted
M = L with _ = 0.80 and a very weak dependence on gravity. However,

the stars studied by Barlow and Cohen were only supergiants and there was

some indication that at least one main sequence star (T Sco, BO V) had a
much smaller rate.

Recent IUE observations of main sequence O-stars have changed this

picture drastically. A combination of the mass loss rates from evolved 0

and Of stars (Lamers et al., 1980b) with those of unevolved 0 V stars

(Conti and Garmany, 1980) shows very clearly that the mass loss rate is

not a simple function of luminosity, but that it increases drastically
from O V, through 0 III or O(f) to O f stars (Figure 2). The rates for O

(f) and O f stars are about a factor 30 and I00 respectively, larger than

those for O V stars of the same luminosity. The rates for WR-star of the

same luminosity are about a factor i0 larger than for the 0 f stars.

Remembering that the evolutionary tracks are approximately horizontal in
the HR diagram, we can express this behavior in terms of evolution. The

stars with initial mass M > 15 M@ (_ I < -6) have a small mass loss rate_DOI .
near the main sequence. The mass ±oss rate increases very strongly by

about a factor i00 during the hydrogen core-burning phase to the hydrogen

shell-burning phase. The Wolf-Rayet stars, which supposedly represent an

even later stage of evolution, (Conti, 1976) have again higher rates. So

the mass loss rate increases during the stellar evolution by as much as a

factor 102 or 103 , whereas the luminosity hardly changes.
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Figure 2

Mass loss rates from O-stars. Notice the large range of M for constant

luminosity (Conti and Garmany, 1980).

Obviously, the luminosity is not the main parameter which determines

the mass loss rate, contrary to the predictions of the radiation-driven

models. This suggests very strongly that we may have to look for an

alternative mass loss mechanism which should be closely connected to the

evolution stage of the star and thus its interior structure.

IV. THE ACCELERATION OF THE STELLAR WIND

Whatever the mechanism may be that determines the mass loss rate from

a star, the large outflow velocities which have been observed in the UV

resonance lines are most likely due to radiative acceleration (e.g.

Cassinelli et al., 1978). One way to determine the acceleration is to

measure the terminal velocity, v , reached in the wind at a large distance
from the star. (This should not be confused, as is often done, with the

edge velocity, Ve. e' measured from the extension of the violet wings of i

the UV resonance _nes: for stars with a small mass loss rate Vedg e can
be much smaller than v ).

The most extensive study of terminal velocities, prior to IUE, was

made by Abbott (1978) who found v = 3 x v . This agreed very well
' _ sca 1/

with the radiation-driven wind models, whic_ predict v = (_/I-_) _v escape
if e _ 0.90. The IUE observations of late-B and -A type supergiants snow

that the ratio v /v decreases towards the cooler stars, and reaches a
^_ _SC

value of about u._ zor A type supergiants (Lamers et al., 1980a, Figure

3). This indicates that the radiation pressure is much smaller in the

winds of A-stars than in O-stars, as might have been expected. In this

respect it is interesting to notice that the mass loss rates of A-supergiants

are also much less than those of O-stars of the same luminosity (Praderie
et al., 1980).

Radiation pressure may not be the only mechanism which accelerates

stellar winds, as it may be insufficient to explain the large velocities
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of the _ stars. For example, Willis et al. (1979) derived a mass loss

rate of i.I x 10-4 M@/yr and _ = 1600 km/s for the _ star y Velorum
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Figure 3
The ratio between the terminal velocity and the escape velocity

decreases with decreasing effective temperature. Dots: Abbott (1978),

Circles: Lamers et al. (1980a).

(WC8 + 09I) from IUE observations. The momentum of the wind is Mv =
I.i x 103o erg/cm s. The total momentum of the radiation is L/c = 1.3 x

i02s erg/cm s. So the momentum of the wind is about 90 times as large as
the momentum of the radiation. Unless each photon can be scattered a

large number of times in opposite parts of the stellar winds (bouncing
back and forward between the front and rear end of the wind) the radiation

pressure is largely insufficient to explain the large wind velocity.

This suggests that not only do we have to look for another mass loss
mechanism £or hot stars (see III), but also for an additional mechanism to

accelerate the winds, at least in WR stars.

V. THE HEATING OF STELLAR ENVELOPES

The Copernicus observations have shown that the stellar winds are

superionized, i.e. the degree of ionization is higher than can be accounted

for by a wind in radiative equilibrium with the photospheric flux. In

particular Snow and Morton (1976) and Lamers and Snow (1978) have shown
that there is a one-to-one correlation between superionization and mass

• loss (including the Be-stars), suggesting that the two phenomena are in

some way connected to each other. The origin of this superionization is
unknown, but its presence indicates that somewhere above the photosphere,

the stellar gas is heated considerably. The heating may occur in the

subsonic part of the envelope, giving rise to a thin hot corona (AR

0.i R,, T = 5 x 106; Cassinelli et al., 1978); in the trans-sonic region
of the wind (Cannon and Thomas, 1977); or in the extended supersonic part

of the wind, producing either a homogeneous warm wind (T = 2 x 10S K;

Lamers and Morton, 1976) or an inhomogeneous wind with hot bow shocks of
high density and high velocity blobs (T = 106 K; Lucy and White, 1980).
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The recent observations of x-ray fluxes from hot stars by the Einstein

Observatory (Long and White, 1980) suggests that the temperatureshould be

in the range of l0s - I0 ? K and that the hot region is not located deep in
the wind, as predicted by the thin coronal model.

The IUE observations have given two very interesting results in this

respect. Firstly, Underhill (1980) found two narrow emission peaks in the

spectrum of the AO supergiant HR 1040 at the wavelength of the two C IV
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Figure 4

The C IV resonance lines (_ 1548.19, 1550.76) in the IUE spectra of
four supergia_ts. Notice the C IV emission peaks in the spectrum of
HR I040 (AO la) (Underhill, 1980).

lines. These were not found in the IUE spectrum of the same star observed

by Praderie et el. (1980). If the two peaks are real (and not due to
particle noise) their presence indicates the existence of a variable

chromospheric activity in the winds of supergiants of types as late as AO.

Secondly, the IUE observations of the two extreme superglants P Cyg (Bl
Is) and _ISco(Bl la - 0) which have a mass loss rate of about 2 x i0-s

Me/yr show the presence of narrow absorption features or P Cygni profiles
o_ low ions (Fe II, AI II, Mg II) in the wind (Hutchings, 1979; Cassatella

et el., 1979; Wolf and Appenzeller, 1979). Although the winds of early

type superglants are generally superionized, the winds of extreme supergiant$
with very large mass loss rates have a low de_ree of ionization. This

behavior might be explained by assuming that the dissipation or nonthermal

energy in the stellar envelopes is not sufficient to heat the very dense

winds of extreme supergiantsbecause of the high radiative cooling rate.

This situation resembles the presence of low ionization stages such as
Fe II in the spectra of early type shell stars.

VZ. VARIABLE STELLAR WINDS

The envelopes o2 early type stars are variable on timescales of

hours-to-years. The best tracer of variability in the visual spectrum is

the H^ llne and variations in the H profiles have been reported for

various kinds of early type stars, _uch as supergiants and Be-stars (Snow

et el., 1980; Stalio et el., 1979; Doazan et el., 1980). Apart from the
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Be-stars the changes in the profiles are usually not very drastic, but the
timescale of about one hour is surprisingly short. The UV resonance llne

profiles observed by Copernicus and BUSS also showed large variations on
tlmescales of hours-to-months (York et al., 1977; Snow et al., 1980;

Lamers et ai., 1978). On the basis of these observations I proposed that

mass loss is not a stationary process in early type stars, but that it

occurs in "puffs": sudden ejections of gas from the star (not necessarily

spherically symmetric) which are accelerated by radiation pressure. A

similar process may occur in variable Be-stars during their active phases,

in which case the puffs might be spherically or rotationally symmetric.
The IUE observations have provided a few very interesting examples

which demonstrate how strong the variations can be. Heck et al. (1980)

have identified six components in a number of UV resonance lines in _ISco

on June 21, 1979, which they attribute to the occurrence of a large number

of puffs. On September 13, 1979, most of the components had disappeared.

yCas (B 0.5 tv e) May 7, 1978
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Figure 5
The UV resonance lines of C IV, N V and Si IV in the IUE spectrum of

7 Cas (BO.I IV e). Notice the narrow absorption components at -1500 km/s
(Henrlchs etal., 1980).

It is interesting to note that the time of highest puff-activity coincides

with a sharp drop in visual brightness of about O. 15 magnitude.

A different, but possibly correlated, type of variatlon has been

observed in the IUE spectrum of 7 Cas (B0.5 IVe). In six out of ten IUE

spectra obtained from this star the lines of N V, C IV and Si IV have

sharp absorption components at about -1500 km/s (Doazan et al., 1980;
Henrlchs etal., 19SO, Figure 5). The appearance and disappearance of

these components suggest that puffs or shells are ejected very frequently

from this star. Because of their large outflow velocities (possibly due

to radiative acceleration) the narrow components can only be,observed for

about one week. (For an alternative explanation see Thomas etal., these

proceedings. )
These kind of observations show that mass loss may be a hlghly

nonstationary phenomenon in early type stars and that at least several

99



kinds of stars go through active phases. This again suggests that mass

loss cannot be due to radiation pressure only.

VII. PROBING THE STELLAR WINDS IN BINARIES

A few late type giants and supergiants, such as _ Aur, have an early

type comparison which can be used to probe the envelope of the late type
star, by studying the spectrum of the B-star when it moves behind the

extended envelope. The same approach can be used for the study of a few
early type binary systems.

Willis et al. (1979) has obtained IUE spectra of the Wolf-Rayet

binary y Velorum (WC8 + 091) in six different phases of the binary period.

Although this system is not an eclipsing binary in the visual spectrum,
the winds of both stars are so extended that eclipse effects can be seen

in many UV lines_ A_ an exampleo we show in Figure 6 the ratio of two IUE
spectra at 1500 _ % 1900 A, between phase 0.51 (when the O-star was

behind the envelope of the WR star) and phase 0.i. The many absorption

features in this ratio-spectrum show thepresence of the corresponding

absorbing ions in the wind of the WR star. By studying the phase dependent
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Figure 6

The ratio of two IUE spectra of the WRblnary y Velorum (WC8 + 09 I).

The absorption lines are due to eclipse of the O-star by the wind of the

WR star at phase 0.51 (Willis et al., 1979).

behavior of lines o_ high and low excitation and ionization Willis et al.

demonstrated that the wind of cbe WC star is highly ionized but that the

degree of excitation is low (T = I0 000K). This may be due to the

same mechanism which cools thee_6ds of the high mass loss supergiants
_ISco and P Cyg.

A careful study of the UV-line eclipses in a few early type binaries
with a wind would be extremely useful in determining the variation of

density, velocity and ionization in the stellar winds.

VIII. EARLY TYPE STARS IN OTHER GALAXIES

The brightest early type stars in the LMC and SMC can be observed
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with IUE. Since the metal abundance in both galaxies is smaller than in

our galaxy, a differential study of stars in the LMC/SMC compared to

galactic stars of the sametemperature and luminosity will demonstrate the
effect of metal abundances onstellar winds. The radiation pressure

forces which presumably accelerate the winds of luminous OB stars are

largely due to line opacities of CNO ions (Lamers and Morton, 1976). If
the mass loss were due to radiation pressure, stars with smaller CNO

abundances are expectedto have smaller mass loss rates. If the mass loss
is due to some other mechanism (see III) and the radiation pressure only

acts in accelerating the wind, we might expect that the mass loss rates

are the same in LMC/SMC stars and galactic stars, but that the wind

velocities of the SMC/LMC stars are smaller than those of similar galactic
stars.

Hutchings (1980) has studied the IUE low resolution spectra of 7 LMC

supergiants and hefound evidence that the radial velocities at minimum

intensity in the lines are about 0.7 times as large as those in corres-

ponding galactic stars. This, however, does not necessarily imply that
the wind velocities in the LMCstars are smaller. The theoretical P Cygni

profiles calculated by Castor and Lamers (1979) showed that a decrease in

line opacity (e.g. due to a smaller abundance of the observed ion) will

reduce the velocity at the line minimum, even if the wind velocity does

not change at all. Nevertheless, these first IUE observations of the

LMC/SMC stars are interesting since they demonstrate that differences with

galactic stars do exist. A_careful study of the UV lines combined with a

study of H to estimate the mass loss rates independently, might turn out

to be very valuable for our understanding of the mass loss phenomenon.

IX. CONCLUSIONS

I have concentrated on the subject of mass loss and stellar winds

from early type stars. There are two reasons for this: firstly, I think
that this is the most important problem in the study of early type stars

as it may change our concepts on the structure of stellar atmospheres and

evolution of massive stars, and secondly, this is a subject to which many
IUE studies were directed and where IUE observations have made a very _

important contribution.
Let me summarize the new insights which we have gained from the IUE

observations:

a The mass loss rate of an early type star with L > 2 x !0_L0

increa--sesdrastically during its evolution. It may increase by about a

factor 30 from the zero age main sequence to the hydrogen shell burning

phase, and another factor of 10 when it becomes a WR star. This rapid

increase seems to be incompatible with the radlation-driven wind theory

and may require another mass lossmechanlsm which should be closely related
to the stellar evolution phase.

b The terminal velocities in late-B and -A supergiants are consider-

ably smaller than those of O-stars, indicating a less efficient acceleration
mechanism. The momentum of the stellar winds of WR stars is about 102

times larger than the momentum of the radiation. This suggests that, at
least in WR stars, the acceleration is produced by a mechanism much more

efficient than radiation pressure.
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The presence of hot gas in the stellar winds as first suggested by

the UV lines from high ionizatlon stages such as N V and 0 VI, is confirmed

_y the observed x-ray fluxes. The winds of the extreme B-supergiants with

M = 2 x l0s Me/yr and the dense shells of shell stars, however, have low

ionization and exeltationtemperatures.

Thewinds of early type stars are variable on a time scale of

hours-to'years. The observations of a few early supergiants and of Be-

stars show that stars may go through active phases in which puffs or

shells are ejected frequently. For one star, _iSco, the active phase was

found to coincide with a decrease in visual magnitude.

Theexamples which I have given are in a way extremes in terms of variabil-

ity or mass loss. It is possible that we can explain the physics of the

more normal mass losing stars by ignoring these extremes. I am afraid,

however, that this is not very likely.

P.S. Based on our present knowledge, I can suggest a few IUE studies

which wouldbe most valuable in providing insight into the physics of mass

loss from hot stars: _: the study of few binary systems in which the

wind can be probed by eclipses in the UV lines; 2: the study of the

variability of a few stars in detail in UV, visual and x-rays; 3: the

study of mass loss and wind velocities of similar stars (same L and Teff)
with different abundances.
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