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ABSTRACT

Combination of extensive ground-based spectroscopic observation of high

excitation planetary with IUE data permit determination not only of improved

diagnostics but also better abundances for elements such as C and N that are

well-represented in the ultraviolet spectra A and also C, Ar and metals Na, Ca
and K whose lines appear in the %3200-8100X region. We summarize here some

of the principal results from a cooperative program being carried out in col-

laboration with S. J. Czyzak of Ohio State, G. Shields of the University of

Texas, and B. J. O'Mara and J. E. Ross of the University of Queensland.

INTRODUCTION

In our preliminary survey (ref.l), short-wave IUE data were affected by

image-processing difficulties that introduced systematic errors. These errors

have now been eliminated. Table 1 lists the measured intensities. Succes-

sive columns list approximate wavelengths, identifications, and for each

nebula (except NGC 6'741 and 6886) the logarithm of the flux in ergs cm-2sec -I

as received at the top of the earth's atmosphere. Quality is indicated by

a, b, c, d, e. Lines indicated by a or b are fairly strong; their accidental

errors should be of the order of 10%. Lines of quality c may have errors

amounting to 25 - 35%, while those of quality d are seriously affected by
noise; errors here can easily amount to 50 - 100%. We use e to indicate that

the feature is believed to be present; the tabulated intensity is to be
understood as essentially an upper limit. Thus ionic concentrations estimated

from lines of quality d are very uncertain; those from e quality lines are

upper limits. See Figs. 1,2,3

In principle, objects of small angular size that fit into the large slot
present no difficulties for determination of interstellar extinction. Follow-

ing Seaton (ref.2) one may compare the Hell intensity ratio 1(%1640)/1(%4686).

Although NGC 2440 has some outlying ansae, most of its radiation is accepted.
The nebular angular sizes of NGC 2392 and 6302 exceed that of the slot. For

NGC 6302 we find an extinction constant C = 1.44 from the Hell %1640/%2734

intensity ratio as compared with 1.41 from a comparison of radio and optical
data (ref.3). For NGC 2392, C = 0.15 is in accord with the 1640/2734 ratio

when account is taken of the %2734 intensity measurement.

The availability of extensive ground-based data covering a wide gamut of

ionization stages (ref.4 and unpublished data for NGC 2867, NGC 2440, NGC 6741,

NGC 6302, and Me 2-1) has made possible a more thorough investigation of

these objects than otherwise possible. For example, lines of [C%11], [Chill],

[C%IV], [Arlll], [ArlV], and [ArV] but especially [Nelll], [NelV] %4724, 25,

and [NeV] help bridge the gap from domains of low to those of high excitation.

Strata producing these lines overlap those responsible for lines of CIII, CIV,
NIII, NIV, NV, and OIV observed with the IUE. If a reasonable estimate of the

electron density can be found, we can use the [NelV] auroral/nebular line
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ratio to estimate the electron temperature in these hotter, inner regions
(eqn.4 of ref. 1).

In our earller analysls (ref.l) we obtained diagnostics from optlcal

region lines and calculated ionic concentrations from both optlcal and UV data.

We found the ionization correction factors (ICF's) by interpolation in a grid
of theoretical models based on Casslnelli's (ref.5) stellar fluxes and a fixed

chemical composition. These grid models give a correct general excitation

level but did not represent specific llne intensities closely.

Our new method is to calculate individuallzedspherlcally symmetrical

models for each nebula. We iterate an appropriate grid model, modifying the
stellar energy distribution and truncation of the nebular radius to fit the

observed intensity ratios for Hel/Hell, [0111]/[011], and [NeV]/[NelII].

Lastly individual elemental abundances are adjusted to reproduce the observed

optical region llne intensities. This objective could be achieved for transl-

tlons of ions of He, N, O, and Ne observed with ground-based equipment but

our present models are less satisfactory for the forbidden llne of S, C_ and
Ar. Curiously, if the lines of [ArlV] and [ArV] are represented, %7135 of

[Arlll] is too strong. The effect is exactly opposite to that found for our

models of low-excltatlon nebulae. Inclusion of latest available charge ex-

change cross-sectlons, recombination coefficients, etc., has had a profound
effect on our new series of models.

Spherically symmetrical shells or constant density models cannot predict

successfully all nebular llne intensities. By representing certain excltatloIL

ratios we hope that the general ionization pattern is adequately predicted.
We then use the models to derive the ICF's and to estimate the electron tem-

perature in the hotter inner regions. The [NelV] aur/neb ratios support these

estlma_8_, although because of the high excitation potentials, the hottest
portions of Ne+++ zones tend to be favored. We can derive the chemical com-

position by a best fit of the predicted intensities or by calculating ionic

concentrations in the usual way and then using the models to derive the ICF's.

We prefer the latter method, although both procedures agree reasonably well

for most elements. The discordances tend to be larger for the clumpy nebulae_

NGC 2392 and NGC 2440, particularly for nitrogen when the model representation

was based on fitting the [Nil] lines.

Although a reasonably good representation is found for visual region

lines, agreement is less satisfactory in the ultraviolet. Many lines are

weak and accidental errors are large which makes comparison difficult. The

predicted NV 1239/41 intensities exceed the observed values which suggests
the models predict too high a level of ionization for nitrogen. The predicted

Clil/CIV intensity ratio always exceeds the observed one, presumably because
of optical depth effects (ref.6). The predicted OIV 1403/09 intensity, how-

ever, tends to be less than the observed one. Theoretical predictions of the

0111 1661/66 feature tend to agree with the observed values, thus providing
an independent check on the calibration and on the interstellar extinction.

Although theoretical and observed [NelV] aur/neb ratios tend to agree, when
differences occur, they suggest that the electron temperature exceeds model

predictions. Curiously, although a condition of acceptance of a model is that

the [NelII]/[NeV] line ratios are correctly represented, predicted [NelV]
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intensities are too weak. Possibly a modification of the assumed stellar

energy flux or an improvement in the cross-sections would remove this discor-
dance.

The theoretical models suffer from simplistic assumptions about geometry

and density. Obviously, they are poor approximations for NGC 2440 and NGC
2392; no such model can predict even approximately a satisfactory spectrum

for NGC 6302. For this nebula, only approximate ICF's can be found.

Table 2 compares abundance estimates with those of a previous survey

based exclusively on ground-based data (ref.7) and solar values (ref.8).

Shields, Czyzak, and Aller are carrying out an analysis of NGC 2440 in which

the straightjacket of a constant density structure is no longer imposed.

(For consistency we treat NGC 2440 here on the same basis as the other nebu-

lae). Note that low carbon abundances are found in the clumpy planetaries,

NGC 2392, 2440, and especially 6302 which are not well represented in the

constant density approximation. All of these nebulae appear to be nitrogen

rich. Perhaps hlgh-excltatlon planetaries originate exclusively from rela-

tively massive stars in which nitrogen building has been prominent. Further-
more, the relatively small departures of the abundances of S, C, At, and K

from solar values suggest that these nebulae, particularly, cane from stars

that did not differ greatly from a solar-type composition.

Becket and Iben (ref.9) have calculated asymptotic giant branch evolution

of intermediate mass stars. They discuss abundance modifications for stars of

different mass and composition for the first dredge-up phase on the red giant

branch and for the second dredge-up phase on the asymptotic giant branch. The

depletion of C and 0 and the enrichment of He and N depends on mass and ini-
tial composition, being the more marked the greater the mass and the initial

He and/or heavy metal content. For massive (5-11 solar mass) progenitor stars,

our observed abundance modifications agree qualitatively with their results

(cf. their table 6) but the predicted helium enhancement is greater than the

observed. Probably few planetaries have progenitor stars as massive as five
solar masses.

Alternately, following Scalo, Despain, and Ulrich (ref.10) we can con-

sider highly evolved stars with double shells which develop high temperatures

(50 -80 x l0 s OK) at the bottom of their convective envelopes between shell

flashes. Near the upper end of this temperature range, full CNO processing

can occur; carbon will be destroyed, and nitrogen will be enhanced. Helium

will not be produced in excessive amounts. Stars down to a lower limit of
1.5 solar masses can be involved.

In surmnary, use of IUE data helps enormously in our understanding of the

spectra of gaseous nebulae and enables us to handle the problem of chemical

compositions more accurately. Curiously, in a number of instances the simple

extrapolation methods suggested by Seaton, Pelmbert and Costero, and others

for N, O, and Ne seem to work rather well.

%
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TABLE I,-LOGARITHM OF !NTENSETIES OF NEBULAR LINES

NGC NGC NGC Me NGC

l iden 2392 2440 2867 2-1 6302

1239/41 NV -ii.96b -II.45a -12.5:e -12.1e -12.095
1335 CII -ii.98 c -12.15d -12.45e

1391 SilV ''

1403, 1409 OIV -ii,53b -ll,60b -12°64d _Ii.79 c -12,38b

1487 NIV -ii.49h _10_95a _II,gQc -II.99d -ii.66a

1548/50 CIV _ll.06a _10.56a -10,81a -I0.62a -Ii.65a

1640 Hell -10.72a -I0.57a -10.795 -I0.90a -ll.80a

1661/66 O111 -ii.34b -Ii.52a -ii.98c -12.06e -12.33b
1747 NIV -ii.23a -ll.08a -12.06c -12.21d -II.68a

1892 Silll -ii.48c -ii.76b -12.70c

1906/09 CIII -i0.69b -i0.37a -i0.38a 'lO.80a -ii.83a

2326/28 CII -ii.76c -ii.46a -Ii.25a -12.10c
2422 [NelV] -ll.17b -ll.06a -ll.71b -ii.26a -ii.87a
2470 O11 -ii.84c -12.16d -12.64d
2511 Hell -II.88c -12.1 e -12.30c -12.73d

2734 Hell -12.08c -ii.87c -12.13c -12.27c -12.66c

2798/2800 Mgll -12.12d
2830 Hel -12.05c -12.14c -12.62d -12.75d

3024 O111 -12.4:c _12.8:d
3047 O111 -12.14d -12.05c -12.42d -12.32d

3133 O111 -ll.71b -ii.04c -ll.16a -12.39a -ii.52b
3187 Hel -ii.96c
3204 HeII -Ii.45b -ii.76c -ii.89b -ii.92c

TABLE 2.-SIrMMARY OF ABUNDANCE ESTIMATES

NGC NGC NGC Me NGC NGC NGC mean Solar
2392 2440 2867 2-1 6302 6741 6886 mean ref.7 ref.8

He 10.96 11.08 11.05 Ii.01 11.27 11.04 ii.01 11.03 11.02 11.08

C 8.35 8.37 9.03 8.88 8.04 9.01 8.83 8.77 9.10 8.62
N 8.32 8.78 8.13 8.23 8.96 8.4 8.8 8.58 7.97 7.94
O •8.56 8.61 8.65 8.73 8.71 8.74 8.63 8.67 8.66 8.84

Ne 7.69 8.03 7.91 8.20 8.02 8.34 8.21 8.11 8.02 8.1
Na 6.26 6.29 6.27 6.23 6.28
S 6.78 6.43 6.75 7.13 6.81 6.91 6.48 6.82 6.97 7.2

C_ 5.11 5.28 5.20 5.29 5.56 5.36 5_39 5.34 5.26 5.5
Ar 6.12 6.47 6.25 6.41 6.93 6,63 6.51 6.55 6.38 6.0
K 4.75 4.64 5.38 5.48 4,68 5.18 5.15 4.90 5.16

Ca 4.80 4.90 5.03 5.37 5.38 4.87 5.12 5.10 6.35

Extinct. 0.15 0.67 0.52 0.28 1.44 1.30 1.09
Coeff.

•Extinct. Coeff. = Iog[FT(H_)/FoCH_)]

where Fo(HS) = observed H8 flux.

FT(HS) = H8 flux corrected for interstellar extinction.
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Figure i. Calibrated IUE spectra. (a) For NGC 3918 we have added SWP 1906 and

SWP 3192 for _< 1950 A and all available large aperture spectrograms

for longer wavelengths. (b) For IC 2h_8 we have combined SWP 319h and

LWR 2756.
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Fig. 1 Far Ultraviolet Spectrum of CD-2312238
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Fig. 2. Far Ultraviolet Spectrum of NGC2392
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