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The work presented in [1,2; was extended with the

objective of formulating the differential equations of rrOtion

for both extensional and inextensional rotor blades including

the effect of cubic non-linearitio-3. A detailed report on

this work was prepared and published in a form suitable for

distribution [3).

One question that came up during this investigation

pertained the meaning of "inextensionality." That is to say,

when the blade is approximated as inextensional--for which case

the product (EA) of Young's modulus for the blade's material

and the blade's cross sectional area does not appear in the

equations of motion--"which line along the blade's span is

the inextensional line?" The answer to this question is

important for correctly formulating the equations for such

case when the inextensionality assumption is imposed a priori.

It seems that this question has not been properly addressed in

the literature and that some confusion exists, as exemplified

by the work in [4J where inextensionality is merely taken to

mean that this elastic axis through the blade's cross sections

shear centers along its span is the inextensional line. As

shown in [3) for the case of an isotropic blade, this does

not hold true in general.

The differential equations developed in [31 are formally

reduced to a set of three intecro partial differential equations

for a hingeless blade by elimination of the "extension" variable.

Both cases of hover and forward flight are addressed. The
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generalized aerodynamic forces are modelled using Greenberg's

extension of Theodorsen's strip theory. After the equations

of motion are obtained, they are systematically expanded into

polynomial non- li.nearities with the objective of retaining

all terms up to third-degree so that the influence of such

terms on the motion of the system may be evaluated. The blade

is modelled as a long, slender, initially straight beam of

isotropic Hookean material. Offsets from the blade's elastic

axis through its shear center and the axes for the mass, area

and aerodynamic centers, as well as radial non-uniformities of

the blade's stiffnesses and cross section properties are taken

into account. The effect of warp is also included in the

formulation.
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