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Near-Wall Similarity in a Pressure-Driven
Three-Dimensional Turbulent Boundary Layer

ABSTRACT

Extensive measurements were made to determine the mean velocity
field, wall pressure field, and wall shear stress field for a pressure-
driven three-dimensional turbulent boundary layer in a forward quadrant
of the flow around a cylinder with trailing edge placed normal to a flat
plate floor.

The direct force wall shear measurements were made with a unique,
omnidirectional floating element mechanical shear meter which sensed both
the magnitude and the direction of the local wall shear stress. To
establish the credibility of these direct force wall shear measurements,
extensive measurements were first made in a two-dimensional turbulent
boundary layer over a range of unit Reynolds numbers where generally
excellent agreement was obtained with a variety of direct and indirect
two-dimensional wall shear diagnostic devices and techniques.

These three-dimensional velocity field, wall pressure field, and
wall shear field results were used to test the ability of ten near-wall
similarity models proposed in the literature for three-dimensional tur-
bulent boundary layers to describe the near-wall velocity field. Six of
these ten models are scalar, treating some form of an equivalent velocity
component. Three of the remaining four more complex models are two-
component vector models and the last is a scalar model which recognizes
the vector nature of the near-wall flow by way of a developed velocity.
All of the ten models tested find their origin, directly or indirectly,
in an equilibrium boundary layer hypothesis using a mixing length.

For profiles with monotone increasing skew and with skew angles up
to about 15-20°, for profiles with an increasing and decreasing skew angle
of 10° or less, and for plane of symmetry flow away from separation, any of
the six simpler models does a fair job of predicting near-wall similarity
in a region of primary focus of y+ > 50 with the qualification that in this
study the experimental data tends to ride higher than the theoretical

model lines. These (and many other) three-dimensional data show consistently

better behavior in a lower y+ range of secondary focus--the y+ range where

.
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two-dimensional data is characterized by more scatter and disagreement
among even carefully done experiments--and to some extent this better very-
near wall behavior compensates for the more rapid departure from similarity
in the higher y+ range of similarity more typical of two-dimensional

flows. It would appear that shear velocity magnitudes inferred by Clauser
chart type techniques using data in the y+ range of 10 to about 100 would
be within 5-10% of values calculated for the direct force measurements
(uncorrected for any possible pressure gradient effects) provided that the
similarity law be of the type that reflects the very near-wall departure
from the log law-like behavior in this range of smaller y+ values. The
third or fourth order Spalding formula or the two or three formula law of
the wall should be adequate to accomodate this lower y+ range data.

For the above kinds of flows three of the four complex models gen-
erally are superior in describing the experimental data for the freestream
or principal flow comporents. For modest transverse velocities two models
show some agreement with data but generally not nearly as good as for the
freestream or principal flow components. A difficulty with these more
complex models lies in the fact that each returns to two-dimensional
logarithmic-like law for small y+ values. Thus, assuming these models
could be used to infer local shear velocity magnitude (say to 5-10%),
there is the problem of fixing a lower y+ limit below which data could not
be used.

If one were to use these three more complex models in a computational
scheme replacing the no slip wall boundary condition at the wall with a
match to a similarity model near the wall, then for the flows described
above, such a match should be made in a range of about 50 < y+ < 100.
Practical difficulities will occur since these three more complex models
all require an a priori knowledge of the pressure gradient magnitude and
direction, and two also require a priori knowledge of at least the wall
shear direction.

For the restricted class of three-dimensional flows described above,
it appears that the local wall shear stress and nondimensionalizing shear
velocity for the various similarity models are related within a modest
uncertainty. This implies that at least an approximate magnitude of local

wall shear stress would be irferred from such similarity models in a

Ihb




Clauser chart type of approach. This would also imply that with indirect
diagnostic devices which are not strengly sensitive to yaw angles (such as
Preston tubes and surface heat meters) would also give a reasonably good
approximation to the magnitude of the wall shear stress in such modestly
skewed flow as well, using a two-dimensional calibration. Note that
without the supporting results of this study with directly measured local
‘wall shear stresses, such use of a two-dimensional calibration in a three-
dimensional flow would be speculative at best. The same relative insensitivity
to yaw that would allow the use of such indirect devices in a skewed flow
would, however, render such devices as relatively poor in indicating the
local wall shear stress or limiting wall streamline direction. It would
appear that for such modestly skewed flows the combination of say a
Preston tube or surface heat meter together with an established wall flow
visualization technique could do a reasonably satisfactory job in mapping
a wall shear field. The combination of indirect magnitude sensing device
and flow visualization for the direction would be significantly easier to
use than a direct force sensing three-dimensional wall shear meter such
as used in this study. '

It appears that for monotone, strongly skewed flows (say 20° and
greater) and for fiows with increasing-decreasing skew of more than about
10°, none of the ten three-dimensional similarity models tested here
seems adequate to describe the near-wall velocity field even approximately.

One additional model found in the literature could not be tested
because of the need for turbulent stress gradient data at the wall and

such data is exceptionally difficult to measure accurately.




]
E

II.

III.

Iv.

VI.

CONTENTS

INTRODUCTION . & o o o ¢ o ¢ o o o o o o o o o o
REVIEW OF SIMILARITY MODELS

Introduction « ¢ & ¢ o ¢ ¢ ¢ e e b e e 0 e e
Two~-Dimensional Near-Wall Similarity . . . . . . .
Three-Dimensional Near-Wall Similarity . . . . . .
EXPERIMENTAL PROGRAM - INSTRUMENTATION AND WALL
SHEAR DIAGNOSTICS

Introduction « « . ¢« ¢« v ¢ ¢ ¢ e 0 v e v e e e e
Flow Tunnel . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o o o o« o &
Three-Dimensional Flow Geometry . . . . « « + .+ &
Velocity Measurements . . . « « « o « + o » o« o
Static Pressure System . . . ¢« ¢« ¢« ¢ ¢ o ¢ o . .
Omnidirectional Mechanical Floating Element Device
Two-Dimensional Mechanical Floating Element Device
Preston Tubes . . . ¢« ¢ ¢ v o ¢ v ¢« o v o o o o
Experimental Procedure . . . . . . + + ¢« + ¢ o« . .
Wall Shear Stress Measurement Techniques . . . . .
TWO-DIMENSIONAL MEASUREMENTS

Introduction . . . . . ¢ « ¢ o . . e o 0 e e 4 .
Static Pressure Field . . . . . . .« . . . « « . .
Velocity Profiles . . . . . ¢« « ¢ ¢ o ¢ v ¢« o + &
Direct Wall Shear Measurements . . « « « « ¢ & o+ &
Preston Tube Measurements . . . . « « ¢« « « o o &

Two~Dimensional Near-Wall Similarity Figures . . .

. THREE-DIMENSIONAL MEASUREMENTS

Introduction . « ¢ « ¢« ¢ ¢ &« ¢ ¢ ¢ ¢ 0 0 e e e e
Velocity Profiles . . . ¢« ¢« ¢« ¢« o ¢ o ¢ o« o o o« &
Static Pressure Field . . . . . . « « « « & « .+ &
Wall Shear Field . . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o« o
Wall Streamline Directions . . . . .« . + + ¢« ¢ o &
THREE-DIMENSIONAL SIMILARITY MODEL RESULTS

Introduction . . . o o « ¢« ¢ ¢ o 0 0 e 0 e e e e

Similarity Model Results . . . . . +« « ¢ &« & & « &

i.d

Page

10
21

57
58
60
60
63
63
72
74
78
79

101
101
101
110
125
133

147
147
159
160
172

179
185



[P

CONTENTS (CONTINUED)

P
.. .

Page
. ] . . 3 193
e ¢ o o e o« 223

Sl.llmllary e o o 6 6 o e & 8 e e ¢ 8 ° o & 2+ 2 e ¢
RHERmCES a @ & e & & e 6 & s 6 & e+ 0 o s s 2

ii




i s e

- [ - m

I. INTRODUCTION

Briefly, near-wall si:iilarity refers to the experimentally determined
and demonstratad 'sameness"” of the velocity profile in the wall region of
a broad class of turbulent boundary layer flows when these are plotted in
suitably nondimensionalized coordinates. For two-dimensional turbulent
boundary layers* the concept of near-wall similarity is well accepted and
a brief review of these ideas will facilitate the discussion of nea--wall
similarity for three-dimensional turbulent boundary layers%*.

Near-wall similarity is not to be confused with the rigorous, math-
ematical similarity type of analysis where for a given physical problem
all relevant variables are known and the governing equations can be suc-
cessfully nondimensionalized to seek out solutions to entire classes of
problems. Near-wall similarity is like this but not as rigorous for it is
experimental, not analytical; only the strong variables appear known; it
is an experimentally based '"sameness'" of flow with all the usual uncer-
tainties of experimental studies. In the two~-dimensional case it does
cover large classes of flows. For example, except for extremes in pressure
gradient, all turbulent boundary layers appear to »e well described by the
same similarity law for all flows over hydraulically smooth surfaces
without suction or blowing.

For the 2DTBL the generally accepted similarity law is written as
u+ = % In y+ +C 1.1
where u' = u/u*, y+ = yu*/u and u = /?;7;. Unlike the rigorous
mathematical similarity analysis, k and C are experimentally determined
constants (that do change with roughness and suction/blowing) and some-

times appear to have at least a weak but not well defined dependence on

*The short forms 2DTBL and 3DTBL will be used as convenient for the two-

and three-dimensional turbulent boundary layer.
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other variables. Apparent systematic variations in « and C are often
within the experimental uncertainty of the data itself and this causes
difficulty in fixing the universality of these two parameters.

The various regions of flow characterizing a 2DTBL velocity profile
with emphasis on those particular to this study are shown in Fig. 1.1,
Following the suggestion of Coles (1956) the typical velocity profile for
a 2DTBL can be thought of as made of two main regions, a wall region and
a wake region. The wake region represents the large majority of the
profile and is often identified with velocity defect coordinates. The
wall region is a relatively small portion of the profile and is usually
identified with the classic logarithmic law of the wall. It is this
latter flow rasgion which is the near-wall flow and the subject of this
near-wall similavrity study.

Multiple designations for portions of the near-wall region have

evolved and are reviewed here to avcid ambiguity. This near-wall flow
zone is sometimes broken up into three subregions with a viscous sublayer
subregion very close to the wall, the logarithmic or law of the wall
subregion further from the wall (but well before the wake region of the
profile becomes strong), coupled by an intermediate, transition or buffer
subregion. One can write equations for the velocity profile in each of
these three subregions and this leads to a three formula law of the wall.
Alternatively, it is not uncommon to omit the transition, or buffer sub-
region, with the near-wall similarity zone made up of only the inner
viscous sublayer and the more remote logarithmic law of the wall sub-
region. This leads to a two formula law of the wall. The boundaries
between the subregions of the three and two formula law of the wall
m dels are somewhat arbitrary. Finally, in examining a very large volume
sf experimental data for 2DTBL flows, Coles (1956) shows a lack of con-
sistency in data among experimenters as one approached the wall in the
approximate y+ < 50 range. It is convenient to designate this zone of
flow as the very near-wall zone.

Because the law of the wall designation Js often taken to refer to
the logarithmic equation which is not valid down to the wall itself, it
has sometimes been convenient to refer to the complete near-wall flow

region as the region of the extended law of the wall. Spalding (1961)

PRttt ol gt
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and Kleinstein (1967) have proposed a similar, single formula law of the
wall to describe the entire near-wall region down to the wall itself.

As a word of caution the reader is reminded that in discussions of
the entire velocity profile, particularly in the older literature, it has
been common to describe an inmer or viscous wall region and an outer or
velocity defect (wake) region, which are joined by an overlapping region
and from which the original model of the logarithmic law of the wall

‘g evolved. It is important mnot to confuse this overlap region, where the
' law of the wall in its logarithmic form is valid, with the transition or
buffer subregion described in the three formula law of the wall model.

In this work near-wall similarity refers to the usual lav of the
wall subregion, the transition subregion, and the extreme near-wall
viscous subregion or sublayer. These three regions have also been col-
lectively referred to as the extended law of the wall region or simply as
the near-wall region.

It is worth notiag that in the semi-logaritlmic coordinates ot Fig.
1.1 the near-wall region appea.s quite large. In fact, it represents
relatively thin layer of flow in the usual case. Based on his extensive
and exhaustive study of over 400 velocity profiles Coles (1956, 1968)
suggests that logarithmic like behavior begins at a y+ value of about 50.
Even at larger y+ values there are significant and unresolved questions
on the accuracy of velocity measurements in the 2DTBL case with experi-
mental data typically above the logarithmic line. There appears to be no
self consistent ~ethod or technique to resolve these differences among
various sets of data. A frequent explanation is a traditional probe
displacement correction but Pierce and Gold (1977) have shown that this
does not always resolve such differences. Coles work also suggests that
for modest pressure gradients a y+ upper limit of about 300 is reasonable.
,; Above this value the wake contribution becomes more noticable. This
V approximate upper limit is affected by pressure gradient, decreasing with

increasing adverse pressure gradieut. The region of 50 < y+ < 300 is
more than adequate to define the classic logarithmic law of the wall

region. Recognition of the difficulties in very near-wall velocity

measurements in the more thoroughly studied and better understood 2DTBL




case, prompts this study in the 3DTBL case to focus on flow generally

outside this analogous very near-wall region and in an interval of ~uminal
y+ values as in the two-dimensional case.

Aside from the fundamental importance of providing basic information
of the nature of the near-wall flow in 2DTBL's, this observed similarity
also serves (1) to provide a means of inferring the very difficuit to
measure local wall shoar stress from the much easier to measure local
velocity profile data, (2) as the basis of the validity of indirect wall
shear diagnostic devices such as Preston tubes, rakes, fences, heat
meters, etc., and (3) to provide the potential for improving computer
solutions to turbulent boundary layer flows by reducing computational
steps and computer storage by matching outer computer solutions to accepted
inner velocity profiles based on established near-wall similarity models.

The motivation for establishing the existance of and limits on near-
wall similarity in the 3DTBL case are much the same as in the 2DTBL case.
The importance of local near-wall similarity laws in 3DTBL and channel
flows grows when one recognizes that the empirical eddy viscosity and
mixing length models often rely on wall similarity information, especially
in the near-wall behavior. For example, in the two-dimensional case, the
classic van Driest damping factor is designed to retnrn the logarithmic
law of the wall-like benavior in the computed velocity profile. Clearly,
it is essential to know the nature of this near-wall flow in the three-
dimensional case if one is to use such algebraic closure models in the
solutions of these kinds of problems. The question is even more critical
in current applications of higher order medeling of the Reynolds stresses
where in many existing solution techniques only turbulent stresses are
included in the motion equations, thus precluding any near-wall calcu-
lations where viscous stresses exist. Considerable economies in the
computer time and monies can be effected in 3DTBL and channel flow calcu-
lations if one replaces the no slip wall boundary condition at the wall
with a match to a near-wall similarity law near the wall thereby avoiding
the more dense regions of lattice points required by large gradients. A
good knowledge of and limits on local three-dimensional near-wall similarity

laws are, however, crucial to these solution techniques. It is recogunized




that closure of the equations of motion with a turbulent energy model or a
turbulent stress transport model or similar higher level models does not
require the exclusion of viscous stresses in the motion equations and this
is only a consequence of many of these current methods of solution.

It should be noted that in the 2DTBL the near-wall similarity law is
a simple scalar law since the velocity profile is always collateral. That
is, all the velocity profile vectors are always in the same direction
(similarity laws for flow reversal circumstances do not appear to have yet
been proposed).

For the three-dimensional case the concept of near-wall similarity is
not so well established. To date, 11 models for the velocity profile inm
the near-wall region have been found in the literature. Six of these
models are simpler scaler models, while five of these models recognize in
some more elaboratz way the vector character of the 3DTBL velocity profile
with the vector turning continuously down to the wall.

The resolution of the near-wall similarity question in 3DTBL flows
requires the direct force measurement of both the magnitude and direction
of the local wall shear stress, the mean velocity field, and the wall
pressure field. The wall shear stress is required since a key question in
the test of similarity models in three-dimensional flow is whether or not
the local wall shear stress is related to some fo.m of a three-dimensional
shear velocity as in q* = /?;73, analogous to the two-dimensional case.
The test of existing proposed similarity models for the 3DTBL consists of
defining a local shear velocity from the directly measured local wall
shear stress and plotting the nondimensionalized experimuental data in the
coordinates of the various proposed models for direct comparison with the
various analytical model forms. Some of these mndels require significant
additional experimental data input on wall shear magnitude gradients, wall
shear angle gradients, and wall pressure gradients as well.

The direct force measurement of local wall shear strass is an absnlute
requirement in any sevious study of the near-wall similarity question in
three-dimensional flows. This is an essential requirement since the
several near-wall similarity models proposed in the literature for the
3DTBL case all require the local wall shear stress (or some component of

it) in the necessary nondimensionalizing of experimental data. While the
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use of indirect wall shear devices has been reported in some 3DTBL flows
(e.g., Pierce and Krommenhoek (1968), Prahlad (1968), East and Hoxey
(1969), van den Berz (1976), Dechow and Felsch (1977), Higuchi and Peake
(1978)) with both Preston tube type devices and miniature surface mounted
heat meters, all such devices reported to date have used only two-dimen-
sional calibrations in three-dimensional flows. This, in effect, assumes
a8 priori and without justification, the validity of a two-dimensional
near-wall similarity law in three-dimensional flow--and this is wholly
unacceptable in any attempt at a definitige study of near-wall similarity
in a three-dimensional flow. Up to this point in time no indirect wall
shear diagnostic device has been calibrated for wall shear magnitude and
direction in a three-dimensional flow for subsequent use in any other
three-dimensional flow. The use of a two-dimensional calibration in a
three-dimensional flow presumes far more than is acceptable in a near-
wall similarity study in 3DTBL flows.

In summary, in the 2DTBL case near-wall similarity concerns itself
with the experimentally determined sameness of the flow from the wall
itself and through the region where the classic logarithmic law of the
wall is valid. This excludes the large outer portion of the velocity
profile where the wake character is strong. Practical experimental
difficulties in making accurate and repeatable measurements very close o
the wall suggests the exclusion of the very near-wall data in two-dimunsional
near-wall similarity studies. Since all the tnree-dimensional near-wall
similarity models give the two-dimersional logarithmic form of the law of
the wall in the limit of vanishing secondary fiow and since in the two-
dimensional case an approximate y+ range of 50 to 300 ig.ﬁgggested for
modest pressure gradient flows, it would seem reasonable to focus atteation

on a similar interval in a first look at the existence of near-wall similarity

in the three-dimensional case.




II. REVIEW OF SIMILARITY MODELS

Introduction

Two-dimensional near-wall similarity has been studied for over fifty
years, while the first three-dimensional similarity model was suggested in
1956 by Coles (1956). Following White's (1774) review, in the 1930's
Prandtl, von Karman, and Millikan divided the boundary layer into two
distinct regions of flow, an inner or viscous region and an outer region,
which were joined in an overlap region characterized by a logarithmic law
as shown in Fig. 1.1. Later experimental work by Schultz~Grunow (1%40),
Ludvieg and Tillmann (1950), Deissler (1955), Clauser (1954), Laufer
(1953) and the analytical work by Clauser (1956), van Driest (1956) and
Coles (1956, 1957), solidifi:d the near-wall similzrity concept for two-
dimensional turbulent flows. ..

Coles (1956) suggested the first three-dimensional near-wall simi-
larity model mainly as an extension of the two-dimensional logarithmic
sfailarity law. Johnston (1960) introduced a second model and by 1976
eleven jifferent three-dimensional near-wall similarity models appeared in
the literature. It was not until Tennant (1977)* that a preliminary yet
fairly extensive comparison of some of these was undertaken. The work
reported here is a more detailed and more thorough study of the pressure-
driven 3DTBL flow initiated by Tennazc.

This review will examine different forms and origins for some of the
various smooth wall two-dimensional similarity modcls since many of the
early three-dimensional similarity models assumed forms similar to these
two-dimensional models. Subsequently, the three-dimensional models will
be examined to see what fundamental differences exist among these models.
Since the credibility of the experimental data is critical in verifying
any proposed model, a review of Preston tubes is also included since these
are a generally accepted method for two-dimensional wall shear inference
and Preston tubes were used to hLelp verify the direct wall shear measure-
ments made in two-dimensional flows by the omnidircctional meter in
preliminary work to establish credibility of this mechanical meter.

Two-dimensional near-wall similari.y is a well accepted concept and

a two-dimensional similarity law ex.s*s w:xth the understanding that this

*See foornote, page 9",




lav may be expressed by different equations or models. There is, however,
some question surrounding the uniqueness of constants in these equations.
In contrast, there is not as yet an established three-dimensional simi-
larity law since, while several models have been proposed, none has been
validated by direct local force shear measurements, and such validation is
an absolute necessity in establishing the existence of such a law--what-

ever form or model it may ultimately take.

Two-Dimensional Near-Wall Similarity
Figure 1.1 shows the near-wall or extended law of the wall regiomn

which typically composes approximately 10-202 of a two-dimensional tur-
bulent boundary layer. Prandtl (1933) first suggested using the variables
in Eq. 1.1. A similarity law for the inner flow or the viscous sublayer
followed by assuming that only viscous shear is important in a thin layer
immediately adjacent to the wall where

It follows that
u =T ylu.

It is convenient to define a two-dimensional shear or wall friction

%
velocity as u = 110/0, in order to nondimensionalize this result with

and

10




then for the viscous sublayer,

u =y, 2.1

»

There are a number of ways of deriving the relationship that holds in

1

the logarithmic region. Hinze (1975) provides an excellent compilation of

PRa—— P}
"o

¢ these derivations. Two contrasting developments are reviewed briefly

here. Historically the outer region was describud by a velocity defect or

Oy

R outer law by von Karman as
U, -~u-= f(ro,p,y,G).

It is useful to write the inner law, Eq. 2.1, in functional form as
ot = £ (y+)

and the outer law as

u
= )=s(%).

Since the inner and outer laws are both valid in some overlap region,

these are combined to give

For u+ to exist with both a multiplicative function f and the function g
with an additive term, functional analysis requires f and g to be logarithmic.
In inner variables this gives the logarithmic law
u+=llny++C 2.2
K
which describes the flow where the inner and outer regions of Fig. 1.1

join together. This overlap region has come to be designated the law of
the wall region or the logarithmic region.

11
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The concept of a constant stress throughout the logarithmic region
can also be used with a mixing length or an eddy viscosity to give a
logarithmic form. For demonstration purposes Prandtl's mixing-length
theory will be reviewed. Since the logarithmic region is fully turbulent,

. 42 |2u] 2w
T—pl ayayo

Prandtl made two important assumptions: (1) that the mixirg length in
this region is proportional tv the distance from the wall, i.e., % = ky
where k is usually taken to be von Karman's constant, and (2) that since

this inner region is small, t = constant = T, It follows that

2.2 ,du 2

T, =P Ky (a;) .

Introducing the wall friction velocity and separating the variables, one

obtains

Integration results in
u+ = %'ln y+ +C 2.2

where k, often taken as the von Karman's constant, and the constant C are
experimentally determined. More about these constants will be discussed
later. Townsend (1976) also uses the concept of a constant stress layer
to derive the logarithmic form from the turbulent energy equation for
channel flow.

Equations 2,1 and 2.2 constitute the classical, two-dimensional
similarity law for the near-wall region for smooth walls and this com-

bination is sometimes referred to as the two formula law of the wall. It

12




is worth noting that the identification of the shear velocity, u*, with
the wall shear stress, with u* = /?;73, comes directly from this kind of
analysis. Coles (1968) suggests such developments are not convincing
theoretical derivations, with the shear velocity empirically identified
with the wall shear stress mainly from pipe flow studies.

Occasionally a relation for the transition subregion shown in Fig.

1.1 is assumed so that a smoother transition takes place between the

viscous sublayer and the logarithmic subregions. This relationship can take

the form of
u+ = A' In y+ + B' 2.3

where A' and B' are constants different from 1/« and C. This three
formula law of the wall representation of the near-wall region, Eqs. 2.1,
2.2, and 2.3, may be set aside in favor of a single formula for the
entire inner region.

Spalding (1961) and later Kleinstein (1967) independently developed a
single formula for the entire near-wall region. Their expression, called

a third order equation, is

+,2 +.3

-C [encu+ 1 -t - (mzxi - (Kz ).

v o=u +e 2.4

Development of this relation requires the constant shear assumption made
previously. This expression also satisfies the requirements that the eddy
viscosity is proportional to the cube of the distance from the wall in the
viscous sublayer as first noted by Reichardt (1951) and that the eddy
viscosity varies as the exponential of the distance from the wall as the
similarity law in the logarithmic region requires. 1In a later study Elrod
(1957) concluded that the eddy viscosity varies more closely with the
fourth power of the distance from the wall. Spalding presented an al-
ternate equation to satisfy that requirement by adding the term, (Ku+)4/4!,
to the bracketed expression in Eq. 2.4, This additional term, which gives
a fourth order equation, does little to alter the curve as is shown in
Fig. 2.1, yet this small change often enhances fits with experimental
data.

Other empirical expressions have been developed by Rocrta +50),

13
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Reichardt (1951), Deissler (1955), van Driest (1956), and Mellor (1968);
hower :r, none of these results in the more useful closed form expression
of Spalding. Even more recently, Rasmussen (1975) has developed a single
formula expression; however it appears to offer little advantage over
Spalding's form. Very recently Dean (1976) has combined Spalding's (1961)
inner law with a single polynomial for Coles' (1956) wake fumnction for the
outer region as developed by Finley et al., (1966) and later by Granville
(1975). The ré&sedt is a single formula for the whole turbulent boundary
layer profile.

Rough walls (Clauser (1956), Hinze (1975), Townsend (1976)), suction/
blowing (Kleinstein (1967)), and compressible flow (White and Christoph
(1972), East (1972)) generall ' have different law of the wall forms than
those given above but these ¢ 1ses will not be considered in this work.

There is considerable latitude over the choice of the two constants
that appear in essentially all forms of the two-dimensional near-wall simi-
larity law and designated x and C. Table 2.1 lists several of the more
popular pairs of constants and several more are available in the literature
but are omitted here because of their less frequent usage. Figure 2,2
shows that the choice of constants can have a significant effect on the
logarithmic section of the similarity law. The most popular pairs of
constants are those of Coles (1968) and Patel (1965), which give nearly
identical results, and to a lesser extent those of the N.P.L. (1958) and
this group does show reasonably close agreement when plotted in similarity
coordinates.

The possible dependence of.gre similarity constants on Reynolds
number is discussed by Kleinstein (1967) who presents an analysis showing
a qualitative dependence on Reynolds number, by Patel and Head (1969) who
state that the additive constant, C, varies for low Reynolds numbers,
Schraub and Kline (1965), who suggest the nonuiniversality of these constants
for pressure gradient flows, and Huffman .nd Bradshaw (1972) who also reviewed
this question in low Reynolds number flows cnd suggest that for small shear
stress gradients the von Karman constant -.ppears to remain at 0.41 while
the additive constant appears Reynolds '.umber dependent.

Figure 2.2 with Table 2.1 shows the kind of disasreement that occurred

among careful experiments in the 2DTBL case. This kind of scatter among

15
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Table 2.1 Partial Listing of Two-Dimensional Law of the

Wall Ccusztants

Investigator

Coles (1968)

Patel (1965)

Clauser (1956)

Smith and Walker (1958)
N.P.L. Staff (1958)
Spalding (1961)
Townsend (1976)

Coles (1956)

17
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0.41
0.42
0.41
0.46
0.47
0.40
0.41

0.40

o]

5.0
5.45
4.9

7.15

5.9
5.5
5.61

5.1
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careful experiments should be considered in the evaluation of similarity

models for the three-dimensional case to be made in Chapter VI.
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It would be useful to discuss the effects of pressure gradient and
inertial effects on the similarity law for the logarithmic region. Prandtl's

coanstant shear assumption seems adequate for many flows even for moderate

pressure gradients or moderately accelerating flows. For rases where
these conditions do not exist, the shear stress distribution will vary

thoughout the boundary layer. At the wall, the turbulent shear, as well

'»{, as the velocities parallel and normal to the wall, go to zero so that the
momentum equation provides that the viscous shear stress gradient normal

to the wall be balanced by the longitudinal pressure gradient:

3y duy _dp
ay Moy T ax °

Noting that at the wall u %$-= T,» one can write

- dp 3
T=T + I Y + 0(y™). 2.5

Ignoring the higher order terms caused by inertial effects for the

moment, Eq. 2.5 may be rewritten in the form

T +
e l+ay 2.6
o
where
o =-2_ 92
*3 dx °
pu

Utilizing the mixing length assumption as before, it can be shown that,

c%_) vz _ Ky+ du_ 2.7

) dy

By rombining Eqs. 2.6 and 2.7 and integrating, one obtains

+_1 + 2
u = K[ln y + «C + 2 1n| T 1/2+1

», I+ 2(1+ay ¥/ 2227, 2.8
B (1+ay )

18




This equation was originally derived by Towmsend (1961) and for zero
pressure gradient reduces to the near-wall similarity law for the
logarithmic region. Van den Berg (1973) points out that for uy+ << 1,
£q. 2.8 may be simplified to:

~ +
ul - %{1:1 v+ c + . 2.9

Variations of this analysis have been made by Patel (1973), McDonald
(1969), Townsend (1961), and Mellor (1966).

The higher order terms in Eq. 2.5 that have thus far been ignored
represent the influence of acceleration of the flow which results from
the large velocity gradients near the wall. Van den Be-g (1973) estimates
that in the logarithmic region, these terms are on the order of half as
large as the pressure gradient effects.

Allowance for the inertial terms can be made by multiplying the
pressure gradient term by a factor representing the contribution of the
inertial terms in the region considered (Bradshaw, et al. (1967)). A
constant shear gradient is assumed. Townsend (1956) and van den Berg
(1973) suggest that since the shear gradient is essentially not constant,
a more satisfying procedure would be to estimate the contribution of the
inertial effects as . .action of the wall shear stress gradient in the
flow direction. 1If the shear stress varies little with distance from the
wall, the velocity profile may be assumed to depend only on the shear
stress at the wall. A first approximation of the inertial terms for a
given wall shear gradient in the flow direction can therefore be calculated
by employing the near-wall similarity law.

Following the derivation of van den Berg (1973), we may write the

near-wall similarity law in a more general form:
+ +
u = f(y).

It follows that the velocity derivatives may be written as

19




= ax £ % +
dy
*2
du _u _ df
Iy v di+

Continuity provides that

y
- - du .o . _ du*
v [ dz(ly dx yf.
0

By substituting these velocity gradients into the momentum equation and
integrating, one finds that

y
- =y R, '
Tty 4y +9p l: (- +v ay)dy,

or in nondimensional form,

T +
T T l*roey +81; 2.10
[o]
where
*
-y du_
8 = %7 ax
u
and I1 is a function of y+ which appears as the upper limit in the integral
)'+
I, = f £ ayt

Applying mixing length theory as before, Eqs. 2.7 and 2.10 may be

combined to give

+

u 1 + o \1/2
B L aratrgptl
3y Ky

20




Assuming that uy+ and B Il’ are small, this may be approximated as

+ + B1
Ju - 1 ay 1

rr A A I
oy Ky

and integrated to give

+ B1I

tal + ay ,_ 2
u ;{ln y +«xC+ 2 + 3 ]
where
+
y~
12.f "_ldy+.
0 +
y

To evaluate the integrals I. and 12, van den Berg suggests the use of

1
the similarity law for the logarithmic region giving

+ + 2 v+
11 = xf [Iny + (xC - 1)]" + <5 + constant.
< P

For large values of y+, the last two terms become small and may be

neglected. Substituting Il into the expression of 12 gives

+
I, = xi-(ln y+)2

<

2

and the near-wall similarity iaw including pressure and inertial effects
takes the form,
+.2 +
+ 3 ((ny )7y
u+ = l-[ln y+ +cC+ 2+ — 1
X 2 2&2

2.11

Three-Dimensional Near-Wall Similarity

Mcst analytical approaches used in the study of three-dimensional
turbulent boundary layers rely heavily on the experience gained in two-
dimensional turbulent boundary layers. This section will outline briefly

21
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% eleven proposed but unverified models for a suitable similarity model in
x three-dimensional turbulent boundary layers.
The first six models are scalar models which have approaches centered
on finding an equivalent scalar velocity for a three-dimensional turbulent

boundary layer which, when inserted into the two-dimensional near-wall
similarity law in the logarithmic form of Eq. 2.2, would collapse the

velocity profiles, i.e.,

o

q *
+ equivalent 1 2.12
q g.Ju_*_—=:1nlgh.+C.

q

where q* is here arbitrarily identified with the wall shear stress with
q* = J;;7E'(or some similar form). Note that in these six models there
is no convincing theoretical analysis to support this identification.
Unlike the two-dimensional case, there is no body of experimental data
relating the wall shear stress to the shear velocity to provide an empirical
basis for this identification. At this point one sirply seeks a suitable
§ nondimensionalizing constant to collapse a velocity profile--that such a
l nondimensionalizing constant is uniquely identified with the local wall
1 shear stress has aot been established. At least for small deviations from
: two-dimensional flows, this seems to be a reasonable approach, but the
agsertion by the investigators that q* = /?;7; is without verification,
*
and it should be noted that a parameter q might collapse the velocity
profiles without being related to the wall shear stress. It is this
{ identificacion of the nondimensionalizing shear velocity with the wall
shear stress which is the critical assumption in near-wall similarity in
the 3DTBL. This identification is empirical and it must be experimentally
demonstrated that the local wall shear stress is in fact identified with
the nondimensionalizing shear velocity. In the following the symbol q*
will be used to distinguish the shear velocity in the 3DTBL from its u*

-

counterpart in th: 2DTBL case. It is noted once again that only the

direct measurement of wall shear stress can verify the relationship between

*

wall shear stress and q because indirect wall shear stress measurement
techniques using devices calibrated in 2DTBL flows presume a priori that
the scalar two-dimensional near-wall similarity model describes adequately

the vector character of a three-dimensional near-wall flow.

22 |
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Figure 2.3 shows a sketch of a three-dimensional turbulent boundary
layer velocity profile skewed in one direction only and Fig. 2.4 shows a
typical polar plot of such a velocity profile. Both notation and the

coordinate systems used in the first six models are also shown. It should

- be noted that the approximate triangular shape of the polar plot is valid

only for the profiles where the boundary layer skew is unilateral or in
one direction only. For flows where there is recurvature of the freestream
streamlines bilateral skewing may occur. Figures 2.5 and 2.6 show a
bilaterally skewed three-dimensional profile and a typical polar plot
which no longer can be characterized as having a triangular shape.

The first of the simple, scalar models was introduced by Coles

(1956) who suggested that the velocity vector, a =u+ 3, could be

" expressed as the sum of a wall, Ew’ and a wake, Ewake’ component. He

reasoned that: (1) near the wall the wake component would be smail, (2)

that the direction of the mean flow near the surface is also the direction

- of the wall shear, T,» s well as the direction of the wall velocity

component, and (3) that the wall velocity component in the direction of
the wall shear stress couvld be described by the two-dimensional logarithmic
similarity law. Assuming one can identify a nondimensionalizing shear

*
velocity q &s

* ..
q =71 /e 2,13
then with qequivalent = q, and q, = 9 cos y one can write
+ 3! - §.cos ¥ 2.14
q % *
q q
with
%
+_ yq . 2.15
y =%

The Coles model becomes a scalar model in the wall shear direction with

*
geosy 1y, ay, ¢ 2.16

*
q

23




—

,..,w
| SR

Freestream
3 Streamline

| S—————

f o

Tongent To Freestream
Streamline

Fig. 2.3 Typical Pressure-Driven Three-~
Dimensional Boundary Layer

l:——— Region | 44 Region 2 —#|

cle
N W s L

.
—-—

Fig. 2.4 Polar Plot for a Typical Pressure-Driven Threc-Dimensional
Boundary Layer

24




€ Freestream
Streamline
X
—

Tangent To Freestreom
Streamline

¢

Fig. 2.5 Bilaterally Skewed or S-Shaped Three-Dimensional
Boundary Layer

2
' —_

% o) A I 1 u/U
' .2 4 .6 .8 1.0

Fig. 2.6 Polar Plot of Bilaterally Skewed or S-Shaped Three-
Dimensional Boundary Layer

25




SR i Lt B M

bt LA T e

Coles used the data of Kuethe, McKee, and Curry (1949) on a swept
airfoil to test his model. Coles pointed out that large angles of skew
were noted throughout the boundary layer, but that sudden changes in
flow direction within the sublayer were assumed to be fictitious. The
airfoil used was an elliptical planform with the major axis swept back
at an angle of 25.0°. Though the velocity profiles seemed to be fairly
well represented by Coles' model, no direct or indirect measurements of
wall shear stress were included. No y+ range was suggested for this
three~-dimensional model but a range similar to the two~dimensional log
law would seem a reasonable first estimate.

It was later shown that the vector model proposed for the complete
velocity profile did not accommodate certain 3DTBL profile data. This
obseirvation did not necessarily invalidate the proposed near-wall sim-
ilarity model since the shortcomings of the overall vector profile model
were not identified with the near-wall region of flow.

Four years later, Johnston (1960) introduced a second similarity
model by noting the existence of an apparently collateral region very
near the wall. He proposed that the angle which the near-wall velocity
vector has with respect to the freestream approaches the angle @ in the
collateral region, where @ is the limiting wall streamline angle and

colncident with the wall shear direction with

1im ¥ = tan a .
u 0
y+0
He proposed that the two-dimensional similarity law for the logarithmic
region be used for local velocities in the direction of a s where he

defined his equivalent scalar velocity as

u .
=
equivalent cos a_

q

*
Nondimensionalizing with the shear velocity q as in Egs. 2.13 for

q+ = qeguivalent u/cos “o
* = *
q q

gave the Johnston scalar model
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u/cos a

*
—2.lnmit,e 2.18
K v

q

When q is along ® s u/cos @l is equal to the physically real q.

When q is not along as u/cos o, gives a fictitious velocity. Johnston
based his model on the experimental measurements of Kuethe, et al.

(1949) discussed previously, Gruschwitz (1935) who gave data in a turning
passage of a rectangular duct, and his own study (Jchaston (1960)) over a
flat wall bounding a two-dimensional air jet impinzing against a per-
pendicular back wall. He noted from his data that the applicability of
Eq. 2.18 would be from thk2 outer portion of Region I into the inner
portion of Region II of the polar plot in Fig. 2.4. It is difficult to
specify a specific y+ range for this model since Johnston's data suggected
Region I was within the viscous sublayer while Hornung and Joubert (1963)
showed Region I to have y+ ranges which were well outside the viscous
sublayer.

Both Cole's and Johnston's models assume that the mean flow near tvhe
surface is in the same direccion as the wall shear stress. The dangers
in such an assumpiion should be recognized. Much of the early data plotted
in the coordinates of Fig. 2.4 show two, three, or more velocity points
in the very near-wall region which appear to have the same direction,
suggesting the existence of a collateral near-wall flow. The very careful
measurements of Rogers and Head (1969) and Hebbar and Melnick (1976)
using very small instrumentation and emphasizing spatial resolution
showed no region of near-wall collateral flow. In addition, Pierce and
East (1972) and Klinksiek and Pierce (1973) have demonstrated with a
finite difference solution to a three-dimensional turbulent boundary
where the viscous stresses were retained in the motion equations that no
near-wall collateral flow was predicted in a computer sclution. Since
only the viscous equations were being solved in the very near-wall region
where the turbulent stresses vanish, the Reynolds stress model used is
immaterial and the existence of a collateral region appears to be in-
consistent with the governing equations. Prahlad (1973) also presented
work supporting these computer results where he noted local streamline

turning in the immediate neighborhood of the wall which "suggests the
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:0ssibility of a fairly large variation in the flow direction within the
viscous sublayer." These results cloud the question of the accurate
measurement of the limiting wall streamline direction. It is therefore (
especially important to note that when three-dimensional experimental -
measurements are made of velocity profiles, typically with y+ over 10,
the direction of the velocity vector nearest to the wall is probably not
the limiting wall streamline direction or the direction of the wall
shear. It is perhaps unfortunate that the polar plot shown in Fig. 2.4 gi
gained such extensive early use since such a plot tends to obscure angle
changes near the wall and suggests support of the false assumption of
near-wall collateral flow.

In 1963 Hornung and Joubert (1963) presented the results of a study
of the flow around a circular cylinder with trailing edge standing on a
plate. Their measurements seemed to confirm Johnston's polar plot, but
in contrast to Johnston's assumption, they found the polar plot peak did
not necessarily lie within the viscous sublayer. Hornung and Joubert
suggested that the freestream profile follows the two-dimensional logarithmic
similarity law, nondimensionalizing with a shear velocity based on the
local wall shear stress as 1a Eq. 2.13. From their work (their Fig. 15)

it appears that the equivalent velocity is the streamwise component

qequivalent v

and the nondimensionalized velocity is

q =& 2.19
q

so that their similarity model is written as

]
walgpay,g 2.20
K V]

q

They indicated that their model applied "up to the point where the
boundary layer becomes yawed," usually to y+ < 150. No direct measure-
ments of wall shear were reported with inferred values determined by the
Clauser (1954) chart technique which assumes the two-dimensional log-

arithmic law of the wall. They noted that this technique based on the
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two-dimensional similarity law would at most '"deduce whether a correlating
quantity u , say, exists or not. It is not possible to deduce that this

quantity u is equal to (xo/p)a but it will be assumed below that it is,

generalizing from two-dimensional flow."

The fourth model is a similar model of unknown origin first reported
by Pierce and Krommenhoek (1968). In this case the freestrear component
of the three-dimensional velocity profile was assumed to follow the two-
dimensional similarity law so that the equivalent velocity is the free-

stream component

qequivalent =

but in this case a shear velocity was defined from a component of the

wall shear stress in the freestream directien with

T =T cCOos aQ
o o)

0§

giving
* *
qC = q VYcos a,

Thus the nondimensional velocity is

u vYcos ¢
+ [o)
q = ——2 2,21
q

and Eq. 2.15 is modified to correspond to this with
+ *
y = yq/v 2,22

s that this fourth similarity model is

*

uvcos a yq
—e 2Ll i 2.23

q K v

Prahlad* (1968) introduced a fifth scalar similarity model based on

studies of flow around a circular cylinder and an inclined flat plate

k1t was recently pointed out to the authors that H. G. Hornung used this

model as early as 1962 in his M.E. Sc. thesis at the University of Melbourne.
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placed normal to the tunnel wall. Prahlad assumes that the equivalent
velocity is the magnitude of the skewed velocity vector q hence
qequivalent - lql =4

with the shear velocity taken as /rolp as in Eq. 2.13. The Prahlad
similarity model is then

*
9 =Ly, 2.24
K V)

Prahlad (1968) used his own data to v-rify his model and found good
agreement in a two~dimensional law of the wall coordinate system. For
adverse or positive pressure gradients the y+ range of similarity was
approximately 20+300, while for highly favorable or negative pressure
grad. »ncts the upper limit of the y+ range was reduc2d considerably,
depending on the gradient magnitude. No mention of any other three-
dimensional model was made.

Indirect wall shear measurements were made with Preston tubes which
used the two-dimensional Patel (1965) calibration. Prahlad noted that
larger Preston tubes give smaller values of wall shear than smaller
Preston tubes. He concludes that "This deviation implies departures from
wall similarity and consequent errors in the use of the Preston tube
tecinique in these flows."

Based on their own experiments in a pressure-driven 3DTBL, East and
Hoxey (1969) propused yet another similarity model based on the Johnston
triangular polar plot. They noted Hornung and Joubert's (1963) work
which disputed Johnston's finding <hat Region I of Fig. 2.4 was within
the viscous sublayer and cited their own experimental results showing the
triangle apex taking on large and widely varying y+ values.

In summary, the East and Hoxey similarity model uses an equivalent

near-wall velocity defined as

q = q/cos a

equivalent 1

where
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a

§
- 2
g, = -tan = —
1 61
Kl = 19,45

and Uo is an imprecisely defined "woricing section reference velocity"
with 61 and 62 the freestream and transverse displacement thickness.

In the development of this model, @, was initially identified with the
angle @l of the polar plot in Fig. 2.4 and the constant Kl was defined
through a relationship relating the value of the velocity ratio at the
apex to the shear velocity with

*
Kl q /Q = U/Qapex'

In order to better fit some of their experimental data, the constant Kl

was assigned a fixed value and the freestream velocity Q was repiaced by

the imprecisely defined referencz velocity. With these changes a, no
longer is identified with the polar plot angle a,.

The nondimensionalized velocity is then

+ _ q/cos a

¢ 1 2.25

q

and the similariiy model is written as

q/cos oy 1 *

— = 21+ 2.26

q K U

To generate a three-dimensional flowfield East and Hoxey used a
teardrop body, geometrically similar in appearance to the ones used by
Hornung and Joubert and in this study. Indirect wall shear measurements
were made using a Preston tube and razor blades with difficulties reportad.
The angle of the velocity vector closest to the wall at 0.0254 cm (0.010
in.) was taken as the direction to orient the Preston tube and razor

blades assuming collateral flow to the wall. In their d‘scussion of wall
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shear measuring techniques, they indica“- that in spite of the problems
agssociated with using floating element devices, such use would be preferred
assumin, that such instrumentation was available.
In general spocific y+ ranges of applicability of these six models -
are not given. To the case of the Johnston model subsequent measurements . .
have shown his upper limit of y+ = 50 might well be raised significantly. o
As a generalization, since these six models are all variations of the .
logarthmic form of :: two-dimensional law of the wall, a first look for ij
similarity in the three-diuensional case would focus on the range of y+
from approximately 50 to 300, with the upper limit expected to be sensitive
to pressure gradient magnitude (Patel (1965), Patel and Head (1968)),
with the effect of pressure gradient direction in general not predictable.
In the comparison of models with experimental data to follow, the analytical o
two-dimersional similarity law used will be the third-order Spalding
formula, Eq. 2.4. This choice offers the advantage of allowing focus on
a seconda*y y+ range-~that below §+ of 50. This is desirable since in
some of the earlier work (Prahlad (1968), Pierce and Zimmerman (1973),
Ezekwe (1974)) on similarity in three-dimensiouns, where only indirect
wall shear diagnostics were used, suggests that the very near-wall data
are more consistent in their behavior than in the two-dimensional case.
The last five models tend to become quite complicated and while not
all in vector form, they all explicitly treat or at least recognize the
vector nature of the 3DTBL velocity profile, this in contrast to the
first six models which are in essence scalar models. Each of these
models w: .1 be discussed briefly in order of ascending complexity. The
complications encountered in these last models come about through con-
sideration of some or all of the following: (1) separate consideration of
velocity components, (2) pressure gradients, (3) wall shear gradients,
and (4) wall shear angle gradients.
Chandrashekhar and Swoamy (1976) proposed a model characterized by
separate, two-dimensional-like logarithmic equations for the freestream
and transverse velocity components. Examining the data of East and Hoxey
(1969) for a pressure-driven 3DTBL Chandrashekhar and Swamy observed that
logarithmic functions could be applied separately to the freestream and

crossflow components of velocity with
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u€ =2 =A loglo S + B 2.27
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where A = 5.4 and B = 4.9, and

*

€

(al
“ x|
Yk |y

yw
= C log,, —55 +D 2.28

where C = 1.0 and D = 11.8. The values of A, B, C, and D were determined
from the East and Hoxey data.

* *
The nondimensionalizing shear velocities u_ and u; are from the

€

components of the wall shear stress where

%2

2

T, =T ¢cOSa_ = pu
o o

of
with

*
-
£ /roglp VTO cos aolp

(<]
[}

or

[}

* *
u = q Ycon al

and similarly

% . &k
w =q Ysin a
4 (o}
The components of this model are shown in Fig. 2.7.

Note that the streamwise similarity law is essentially identical to
the scalar Pierce and Krommenhoek (1968) freestream model cited earlier

since Eq. 2.27 can be written as

*
yu
L L
u “1 v
£

where the Chandrashekhar and Swamy value of k, is approximately 0.426.

1
Chandrashekhar and Swamy show similarity results for the freestream

equation with data in the approximate region of 9 §_y+ < 900, For y+ > 300
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(an approximate value) the data exhibits a two-dimernsional wake behavior

and for y+.§ 9 the agreement is poor so that a y+ range of approximately
9 < y+ < 300 would be reasonable from their work.

Data for the transverse equation was found to have a very small slope
hence the constants C and D were difficult to evaluate. To allev:iate this
problem, the é: and y+ coordinates in Eq. 2.28 were modified with

wc y
;:-- a loglo A +b

where v, - maximum value of "C in the .. us~flow profile
A = y distance corresponding to w-/2 (with this y the

furthest from the wall)

The constants C, D, a, and b are easily related with

ui
C=a Y
Yz
and
w w A
D b m m
c ™ atlog x 1%y
g

with East and Hoxey data giving values of C =1 and D = 11.8. The y+
range for Eq. 2.28 was not specified but an examination of the transverse
y+ < 60, with the best fit
15 the data points fell

similarity plots showed data in the range 1 <
appearing in the 1 < y+ < 15 range. For y+.3
consistently below the analytical model line.
The second of the complex similarity models was proposed by White,

Lessmann, and Christoph (1975) to provide a velocity profile expression
for use in their integral boundary layer analysis. This model uses a

freestream streamline coordinate system and the freestream profile ug(y)
is related to the pressure gradient using the mixing length theory to

obtain
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Introducing a freestream shear velocity based on the freestream component

*
of the wall shear with ug = Vt°£/0 » then uz = ueluz, and the above can te

written as

+
du+ a1+ ky
+

dy+ Ky

)5

and

L.y 1%
13 *3h13€ !
Dug

Integrating,

+ 1 S-1 S +1
u = ;'{2(5 -So) + 1n ( } 2.29

S5 1)
£ S+l S° 1

where s = (1 + agy+)&

-kC +.%
y

So = (l+e )

White, et al., mentioned attempts at developing a crossflow profile with the

same logic as for the u+

g€
unilateral hodograph model of Mager (1951) they ultimately suggested the

expression but without success. Based on the

form

w: = uZe - y+/6+)2 2.30

~here O = tan ao

6+ = pondimensional boundary layer thickness
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Ic was noted that this form does not accommodate bilateral crossflow
profiles as shown in Fig. 2.5.

No similarity plots were given by White, et al., for this two-component
model as it was developed as part of a larger computational study not
aimed specifically at near-wall similarity. The approximate y+ range of
Eq. 2.29 was inferred by White, et al., when they defined So such that for
zero pressure gradient the two-dimensional logarithmic law of the wall
would result. This suggests a y+ range of approximately 50 to 300. There
is no simple way to estimate the y+ range for the transverse similarity
model.

Perry and Joubert (1965) developed a near-wall model using similarity
arguments and treating the near-wall region as an equilibrium layer.

While not a vector model this model relates the mean velocity distribution

with the pressure gradient and the wall shear directions. The theory was

compared with the data of Hornung and Joubert cited earlier; however, the
results were inconclusive due to a lack of sufficient data. No direct or
indirect measurements of wall shear were reported. The details of the
analysis by Perry and Joubert are quite lengthy, and only a brief outline
of the development of their model will follow.

il

Considering a p.ismatic element with sides dx, dy, and dz at a small
distance y from the wali and neglecting inertia terms, a force balance on
the element in terms of a double subscript on the stresses after Perry and

Joubert gives,

%£_+ ayxy + azxz =0
3p aryx aryz )

4 5y T . Tz O
2 4 Tox + Ty 0.
9z 9x oy

Townsend's (1961) equilibrium layer concept led Perry and Joubert to an

] eddy viscosity model by which the shear stresses and strain rates are

related with



du , v
xy 1 [ay + ax]

T =p €

w

Ju
T P e2 [32 + 311

v v

Tyz =P & [3; by]

where €1s €g» and €4 are the three components of the eddy viscosity

expression.

Close to the wall the velocity derivatives %;- and %;-are much

smaller than %;; hence

. u
xy 1° oy

9T
. _ _Xxy
9x dy
2,
y 0

3T

99 . __2Zy
3z dy

Integration of these gives

- -y 22
Txy 1xyo y X

= -y 92
sz szo Y 32
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Perry and Joubert assimed that the eddy viscosity is isotropic and that
the maximum shear stress acts in the same direction as the maximum strain
rate. They suggest that

du 2 dw, 2

2 2]” = pe[( ( ) 2.31

[t + 1
Xy zy

and by dimensional reasoning that

+ T

€ = Kp 2y

& 2 2.%
ltxy 1%y.

Substitution of the stress and eddy viscosity expressions into Eq. 2.31

gives, after simplification,

[t,2 - 2y _ pa cos 0 + y%a?]" " eyr g ) + (& )2]" 2.32
wvhere

T, = [riyo + Tiyolk

o =2 1D+ @By
and

- /9P P
T, Px cos O Txyo ‘ax) + 1zy° (32)

is the scalar product of the wall shear and pressure gradient vectors

with O the angle between these two vectors. Integration of Eq. 2.32

gives
+
dw, 2.1
N AR R R
o= 70
* *
q q
+
y
-1 [ L (1-2wcos 0 + MZ)& dy+ 2.33
K JO y+
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+ P B + *
where w = y au/q , q = fro/p, and y = yq /vu. The first integral of

Eq. 2.33 represents a developed velocity profile and is equal to the
length of the arc on a polar plot beginning at the origin. 1In the limit
for small values of y+ within the logarithmic region,

(]

o 1 +
*=glny +C
q
so that Eq. 2.33 can be altered to read .
u y+
—: Iy & f i [1~2wcos © + mz]ﬁ dy+ + C. 2.34
K +
q 1 vy

Equation 2.34 is plotted in Fig. 2.8 for vaSious values of 0. The
effect of the pressure gradient parameter, au/q* , 1s to cause the deviations
from the simple logarithmic line to shift bodily up and down along the
line. A value of © = 0 corresponds to the two-dimensional favorable
pressure gradient case. A value of © = 180° corresponds to the adverse
pressure gradient case. It shculd be noted that O depends on an a
priori knowledge of the direction of wall shear.

The upper y' 1imit for this model is identified with tae apex of the
E Johnston polar plot. While Johnston (1960) originally set the apex of the
polar model as y* = 15, Rornung and Joubert (1963) subsequently found this
apex to approach y+ = 150 and still later Perry and Joubert show three-
dimensional similarity plots with this apex as high as y+ = 2000. All
this suggests a relatively large possible y"L range for this similarity
model, from as low as about 10 to 2000 or more.

Following the same general method as outlined for the two-dimensional
case, van den Berg (1973, 1975, 1976) developed a similarity model that
includes both pressure gradient and inertial effects. His theory was
compared with a limited number of measurements by van den Berg and Elsenaar
(1972) and Vermeulen (1971) where wall shear was indirectly meusured by

the Stanton tube and sublayer fence methods respectively.
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boundary layer of a curved duct. Van den Berg emphasizes that his model
is not valid for large pressure gradients or for large changes of shear
stress from the wall value, and the restriction that his shear have a
small transverse component in the boundary layer presumes small skewing
as well, so that the model would be valid for only modest skewiig.

Beginning as in his two-dimensional case reviewed earlier, similarity o
in the near-wall region for the three-dimensional case can be expressed

as
+ +
q = £f(y)

Starting with the 3DTBL motion equations in Cartesian coordinates and

using a single subscript on the stress terms after van den Berg gives

28y 2, e 3,
| Piax 7 P oy P¥az ax 9y 2.35
l 91
dw W ow _ _ 3p z
puS;-+ P ay te -} 3z T dy ° 2.36

The acceleration terms weve written in terms of compcnents of a similarity

, * . * * *

F law where u = u f(y‘) and w = w f(y+) and u and w are components of the
*

shear velocity q = Vrolp in the direction of To' Van den Berg noted that

a considerable simplification of these acceleration terms and in the

RN . el

subsequent mathematics occurs if the similarity models are developed for
components of velocity along and normal to the local wall shear stress
directions which can be designated ¢ and . These are in effect rotated
Cartesian coordinates not to be confused with frequent usage as orthogonal
curvilinear coordinates identified with the freestream flow. The corresponding
v:locity components would be ug

* *
u5 and wc and while at a particular location wc is zero, its derivatives

in the local Cartesia: directions £ and ¢ are not necessarily zero. This

, Vv, and wc with shear velocity componants

choice of coordinate system requires the a priori knowledge of the local

wall shear direction.

In these local directions the acceleration terms werc written as




> * e +
u * * W y
..._i. fz .8_1— _5.9_2 f fd}'+
L 9% o€ LIS + 0
y

2 v

w w

_5- q*__—;-fz
414 9

This form of the acceleration terms is combined with the continuity
equation and substituted into Eqs. 2.35 and 2.36 and integrated for
stress distributions in y+ along the £ and ¢ directions, giving

1
k. +
il T T hrey AL T 2.
E lf and
5 - +
T .y + 6;11 2.
1 = o
E
E b6
where
i W =Y 2
. £ «3 9
" 0q
.y 2
% TT 3R
Pq
*
g =239
£ %2 9€
q
u 3¢
B, = % =7
3
g q 2
;a2
* 3L
g q
and ¢ is the wall shear stress angle with
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Values for I1 and 13 were obtained by numerical integration using data
tabulated from Coles (1955) and the two-dimensional similarity law, and

the 13 term was omitted as it was found to be significantly smaller than
I

l.
These shear distributions, Eqs. 2.37 and 2.38, were substituted

into the mixing length relations simplified for small variations near
the wall with

du+ T £

E__1 _E 2,39
dy+ Ky+ T *

o

+
dw T

4 1 Z
— == 2.40
dy Ky o

*
where toth uz and w+ are nondimensionalized by q = VTO/p. These are

integrated from 0>y to obtain

+

1 + 1 :

up = ;{ln y + A+ 2%y + Eﬁalz}
+_l +

WC = K(acy + SCI + B)

The integral I2 was evaluated using his two-dimensional simple similarity
model and the constants A and B evaluated to give the two-component 3

tuee~dimensional similarity model as




¥

b 1 RS

* *
where u: = uE/q and w: = w(/q and b = 13. Recall that these components

are along and normal to the local wall shear directions, and for simplicity

the subscripts § and § will occasionally be omitted in future use as convenient.
When only the pressure grad.ent effects are considered, the van den

Berg model reduces to a model similar to that of Perry and Joubert.

Figure 2.9 shows the effect of various O-values on the uz

velocity. The angle parametric values have been changed to conform to

component of

that of Perry and Joubert for convenience in comparison and the qualitative
results are similar to those of Perry and Joubert. For this plot, all
the inertial terms have been set to zero. Figure 2.10 shows a similar
plot on a linear scale for the wz component of velocity. Finally Fig.
2.11 shows a typical similarity plot by van den Berg showing data comparison
with the two-dimensional similarity law, van den Berg's model with
inertial terms set to zero, and with the inertial terms included. It
should be noted that the inclusion of the inertial terms in the three-
dimensional case requires a priori knowledge of the magnitude and directicn
of wall shzar.

It is worth noting that the functional form of this similarity law

may be expressed as

*
+
= £(y", 2, 29,

=
[

€ > 3g’ 3g
+ _ + 9p 9¢%

which is more complex than was initially assumed with different functions
for the two components. Some caution is noted over the use of the two-
dimensional similarity law in the evaluation of the integrals Il’ 12, and
13, especially as these may appear in the transverse model development,
although van den Berg does restrict the model to small skewing and small
shear variations near the wall. Somewhat arbitrarily the y+ range of the
u+ and w+ models will be taken as approximately 10 to 300.

East (1972) proposed the most complex three-dimensional similarity
model for compressible flcws which requires shear stress distribution

information through the boundary layer and takes into account the non-

alignment of the velocity gradient and shear stress. This feature
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Fig. 2.9 The Velocity in the Direction of the Wall Shear Stress

at Various O and |ai = 10-2 as Given by van den Berg (1973)
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0 and |af = 10-2, b = 13, as Given by van den Berg (1973)
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appears to have been built into the model so that it would fit into
Bradshaw's (1971) computational scheme which also treats this nonalignment.
Because the experimental program repoerted on here did not include turbulence
data in the flow field, comparisons of experimental data with this model
were not made. The model is reviewed here for completeness in the
survey of similarity models.

The East model consists of six partial differential equations and
two algebraic equations. Two of the partial differential equations were
derived by taking into account the variation in the orientation of the
shear stress vector, two were derived by relating the velocity vector
magnitude and magnitude of the velocity gradient, and the remaining two
were modifications to Bradshaw's (1971) turbulert stress transport equations.
These equaiions can only be solved numerically.

The first two equations take into account the variation in the
orientation of the shear stress vector. East made the first order

approximation

v
ay‘o

b= y(
>
where § is the rotation of the total shear stress vectcrv, Tt, relative to
->
the wall shear stress vector, To. Note that this assumes a constant
stress near the wall. This stress is composed of a laminar and turbulent
component whose orientation is shown in Fig. 2.12. The relatiomship
between the shear stress components is given by
2

15 = uz(—g—;})z + 1%+ 2)1'—3—3‘

N | 1|cos(a=8)

N

sin(a-y)  sin(a-B)
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Fig. 2.12 Laminar and Reynolds Stress Orientation for the
East (i97Z) Model

Fig. 2.13 Velocity and Velocity Gradient Orientation for
the East (1972) Model
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Nondimensionalizing and rearranging gives

+ 2 !
u+|29;|=t{1-r+ sinz(y+ (91;)0(u+-8+))i‘-1+c08(y+(2£;) @a-b") 2.43
dy dy 3y °

where the negative square root is taken if

z
5
3
i
i
!

cos (y'(u/ay")_(a7-1)) <0

and

eaap - sinG Gy )-TsinG 8 Guray") )
ay G—j;)o—tan {

Ay cos(y+(3w/3y+)o)—1+cos(y+8*(3w/3y+)o)

2.44

where in the following the zero subscript refers to wall values and not

freestream stagnation values

+

o= u/uo

T =T/T
/0

HERVICHCIEII
8" = 8/ G usayh) )
vt =T Gerayh)

East obtained two more equations by relating the gradient of the
velocity vector magnitude |q| and the magnitude of the velocity gradient

Iaq/ayl. Using the notation in Fig. 2.13 these relationships are

alal . Ja

5y Iy cos (u-d)

3¢ _ 139/ Lio(q-
3y lq| sin(a~-¢)
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which when nondimensionalized become

+ +
EJS:J" 33; cos (y' (32;) @ -¢5) 2.45
o
dy 3y Ay
+ +, +
3(y (3/3y ) ¢) +,. +
T - 133‘1%1—1 sin (78 ) _@*-e". 2.46
9y la 3y

For compressible flow it was necessary to provide for density and

viscosity distributions in the boundary layer. East assumed Crocco's law,

2
c T+ 4 . constant = ¢ T
P 2 po

and the nondimensional temperature is

2
T = %- =1 - F4t

(o]

where F is a compressibility factor given by
F = M /r(1C /4 = M /r(k-1)/2

*
and M+ is the shear velocity q divided by the sound speed at the wall.

This temperature expression allows the density ratio to be written as

2 4241 2.47

* =@ -Fq)

o] =

© o

o}

and the nondimensional viscosity as

2
- AR 2.48

£
Yo

where

n = 0.76 at sea level.




Last modiYied Bradshaw's (1971) transport equaticas in the wall
region to include the pressure diffusion term in order to obtaln the
last two equations in his model. The Poisson equation for the Tluctuating

pressure shows it is partially related to the mean velocity vector and

because cf this East assumed the flu:tuating pressure could be modeled

i by
= Apv'|q|

The pressure diffusion terms were written in the x direction as

p ay (p'u")= p 3y (Ao|q] u'v" p 3y (1 lQi)
__A dlaql E.:s

and in the z direction

With the above, Bradshaw's shear stress equations in East's coordinate

system are

Li lﬁl {cos(a=B) —A cos(a=¢)}- (T)3/2 1 A].glg_; 2.49
0= - '%—;1 sin(a-8) + Alq| %f; 2.50

In a two-dimensional boundary layer where the 1 gradient is small,

East reduced Eq. 2.49 to obtain

= p(1-A)%2? (%%)2

where (1-A)L is the effective mixing length and A = 0.283, East then
replaced the mixing length, £, in Eq. 2.49 with the effective mixing
length and nondimensionalized Eqs. 2.49 and 2.50 to obtain
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+ +
B e B teosty" Ay T-6")-a cosyt A _t-4h)
dy oy oy oy
W32
i — ) NP 2.51
+ 7+
AN
+. +, .+
3y (3w/ay ) B8') +
—2 {|3q+ siny' &) _@r-s"ialdtl L 2.52
3y oy ay

Summarizing, Egqs. 2.43-2.48, 2.51, and 2.52 form the system of
equations for East's model. The equations were numerically solved by
East as part of Bradshaw's (1971) program in the range 0 < y+ < 10,000C.
No comparisons with experimental data was presented for these calculations.

East presents results in q+ and y+ coordinates for his model for the
incompressible 2DTBL case and shows excellent agreement with well accepted
results for this case, noting that the closeness of f£it of other results
to his is dependent on the choice of law of the wall constants « and C.
As an alternative to the similarity equations for two-dimensional flows
presented earlier in this report, East cites the results of Green* where
q+ is more properly designated u+ and

2 +
+.1 + K - - - Y
u = In(y > + 1) D(1 exp ( D )) 2.53

with recommended values of v« = 0.40 and D = 9.0.

East also presents graphical results for the incompressible three-
dimensional case with strong cross flow and these are shown in Fig. 2.14.
These results are in terms of two parameters, a, the direction of the
viscous shear and (8w/8y+)0, the gradient value at the wall of the total

shear vector angle.

*This reference is given in East as a 1971 unpublished RAE report by
J. E. Green entitled "A Note on the Turbulent Boundary Layer at Low
Reynolds Number in Incompressible Flow at Constant Pressure."

The library of the RAE was unable to provide any copy of this report.
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Two points should be noted: (1) that no effect on the similarity
law for the logarithmic region is seen until values of y+ > 200 which is
nearly outside the expected limit of logarithmic region, and (2) that the
gradient of the angle of rotation of the total shear stress vector at the
wall is a most difficult parameter to measure.

Based on his own usage the y+ range for East's model would be estimated
at from 0 to almost 10,000. No experimental data was used to verify the
full or approximate model and no mention was made of any other three-

dimensional similarity models.
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[I1. EXPERIMENTAL PROGRAM - INSTRUMENTATION AND WALL SHEAR DIAGNOSTICS

Introduction

The testing of the validity of the several proposed models for near-
wall similarity in three-dimensional flows requires careful measurements
of (1) the velocity field - magnitude and direction, (2) both the mag-
nitude and direction of local wall shear stress by direct force measurement,
and (3) the wall pressure field which would be presumed to be the pressure
field through the boundary layer except in the immediate neighborhood of
separation. These measured values would allow calculation of gradients
in the wall pressure field, the wall shear stress magnitude and direction,
and the mean flow velocity direction, some of which are required in some
of the more complex similarity mcdels. One proposed similarity model
also requires the gradient in the total shear angle at the wall and since
such measurements were not attempted in this program the last of the
11 three-dimensional similarity models reviewed was not tested.

There is an absolute need for direct force wall shear measurements
in the validation of any proposed similarity model in a t¢hree-dimensional
flow. This is an essential requirement since the several near-wall
similarity models proposed in the literature for 3DTBL flows all require
the local wall shear stress--or some component of it--in the necessary
nondimensionalizing of experimental data. While the use of indirect wall
shear devices has been reported for 3DTBL flows (e.g., Prahlad (1968),
van den Berg (1973), Higuchi and Peake (1978)) with both Preston tube
type devices and miniature surface mounted heat meters, all such devices
reported on to date have used only two-dimensional cal“brations in three-
dimensional flows. This, in effect, assumes a priori and without jus-
tification, the validity of a two-dimensional near-wall similarity law in
a three-dimensional flow--and this is wholly unacceptable in any attempt
at a definitive study of near-wall similarity in a three-dimensional
flow. Up to this point in time no indirect wall shear diagnostic device
has been calibrated for wall shear magnitude and direction in a three-
dimensional flow for subsequent use in any other three-dimensional flow.

The use of a two-dimensional calibration in a three-dimensional flow
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presumes far more than is acceptable in a near-wall similarity study in
3DTBL flows. It should be clear that in any attempt at a definitive

study of near-wall similarity in a three-dimensional turbulent flow, the
need for local direct force wall shear measurements of both magnitude and
direction is essential and absolute, the degree of difficulty required by
such a measurement notwithstanding. While such direct force measure-

ments carry with them specific experimental uncertainties, some of which
are difficult to quantify at this point in time, such direct forc. measure-
ments are judged far more desirable than the use of indirect diagnostic
devices which in effect presume a two-dimensional-like near-wal  sim-

ilari«y behavior.

Flow Tunnel

A large s;ale, low speed, modest turbulence level wind tunnel shown
schematically in Fig. 3.1 was used in this study. Room ai— enters a 3.66
x 2.44m (12 x 8 ft) inlet section, passes through a filter pad, a
matrix of nominally 2.54 cm (1 in.) diameter by 15.2 c¢m (6 in.) mailing
tubes, four 14 x 18 mesh screens (open area approximately 70%), and a 16
te 1 contraction nozzle designed for zero exit acceleration passing into
a 0.91 x 0.61 m (3 x 2 ft) tunnel section where boundary layer trips of
3.2 mm (0.125 in.) circular rods are used. The tunnel length to the
test section is nominally 4.88 m. (16 ft). The freestream flow field at
the test section is flat to nominally plus or minus 1% of the mean value
and the freestream turbulence was measured at 0.6%. The principal
instrumentation was contained in a test section of approximately 0.61 m
(2 ft) length which was followed by an additional 1.22 m (4 ft) tunnel,
finally passing into a rectangular to round 3.44 m (8 ft) transition
piece which led to the centrifugal fan inlet. Two rows of flow straight-
ness were placed at the fan entrance to minimize any possible inlet whirl
propagating into the test section and the fan itself was isolated from
the tunnel. Air speeds up to about 25.0 m/sec (82 ft/sec) where possible,
varied by adjustable louvers at the fan exit. The test section itself
could accommodate a variety of velocity and pressure traversing probes
and traverses mounted on its roof, and the floor pieces were interchangeable

providing for wall pressure field measurcments and for wall shear stress
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measuring davices such as the direct force sensing mechanical shear
meters, Preston tubes, or heat meters.

Generally, it was not possible to obtain all data simultaneously
and tunnel similitude was maintained by holding the unit Reynolds number,
Re/L, at the tunnel inlet nominally constant for similar flow conditions.

In addition essentially all of the data was take: at a nominally constant N

room emperature with the day to day barometric variations generally

modest as well. -

Three-Dimensional Flow Geometry

The pressure-driven 3DTBL flow was generated by a cylinder with a
trailing edge place normal to the floor of the tumnel as shown in Fig.
3.2. This configuration provided a wide range of skewing conditions, a
wide variation of pressure gradient and wall shear orientations, and
represents conditions encountered in a variety of real world circum- v
stances. The cylinder itself has a diameter of 12.7 cm (5 in.), is 25.4
cm (10 in.) high and has a tapered end that trails to a sharp edge with -
an overall length of 29.2 cm (11.5 in.). The body is positioned in the

tunnel by a sting secured well downstream of the test section.

Velocity Measurements

Velocity measurements were made with a specially designed goose
neck, cobra, stagnation pressure probe consisting of three 0.51 mm
(0.020 in.) OD tubes with sensing face on the vertical axis of rotation.
The outside tubes were used to determine the flow direction and the
stagnation pressure was measured with the center tube. The static
pressure was sensed with an 0.40 mm (0.0156 in.) diameter pressure tap
located U.653 cm (0.25 in.) off the tunnel centerline at the probe's axis
of rotation. Velocity measurements in the two- and three-dimensional
flow configurations rangz from 0.254 mm (0.010 in.) to approximately 15
cm (7 in.) off the tunnel floor.

The probe was held in place and positioned by a specilally designed
traversing mechanism locaced on the roof of the tunnel. A Unislide
translational screw provided for adjustment of the vertical position,
while mating worm and spur gears allowed for rotatifon of the probe

around the vertical axis. Wall contact was determined by electrical
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Fig. 3.2 Teardrop Body Used to Generate the Pressure Driven Flow
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contact and the probe position could be determined by a Starrett long
travel dial gauge, the calibrated Unislide assembly, or a Gaertner
Horizontal-Vertical cathetometer. The uncertainty in the probe positinn
was taken to be 0.0254 mm (0.001 in.). Backlash problems in the vertical
movement of the transverse were essentially eliminated by one directional
motion in all profiles.

Th2 claw probe was nulled for flow direction using a Celesco Model
P90D differential pressure transducer and a companion CD25 transducer
indicator. While the dial vernier used for angular measurements had a
least count of 0.2°, repeated measurements suggested an angular measurement
uncertaincy of 0.5° for two-dimensional velocity profiles and 1.0° for
three-dimensional velocity profiles.

The dynamic pressure was sensed by a Datametrics model 1400 electronic
manometer with a Gould type 590 D-10 W-2P1-V1-4D transducer reading 2.54
microns (0.0001 in.) of water on its lowest range. Essentially all cof
the data was taken with a least count of 25.4 microns (0.001 in.) of
water. The sensitivity and fast response time of the manometer required
either viscous dampers in the pressure lines o: electronic averaging to
facilitate reading. Fcr velocity readings less than 2.5 cm (1.0 in.) of
water the uncertainty was estimated at 0.076 mm (0.003 in.) of water
while at higher readings an uncertainty of 0.127 mm (0.005 in.) of water.
The uncertainties in probe position, flow direction, and dynamic pressure
are estimated from instrument least counts, differences in data repeated
in similar flow conditions, and differences in data taken by different
individuals in similar flow conditions.

In addition to the uncertainties in the physical position of the
probe, the angular measurement, and the dynamic pressure measurement,
there is the question of viscous, turbulence, velocity gradient, pr:ssure
gradient, and wall proximity effects which all contribute to possible
errors in two-dimensional flows while transverse velocity, pressure, and
shear gradients would also contribute to possible errors in three-dimensional
measurements. For the two-dimensional case, Dean (1958), MacMillan
(1956), Davies (1958), Young and Maas (1936), MacMillan (1954), and
Livesey (1956) have studied the cffects of different combinations of

these problems with no uniform agreement. The most popular correction

.
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seems -0 be a displacement correction duec to the velocity gradient across
the probe face. Coles (1968) in analyzing the 1968 Stanford Conference

data chose to ignore very near-wall data because of the uncertainty over
choice of corrections to applv. The data presented in this sctudy was not

corrected because of the uncertainty of such corrections.

Static Pressure System

For static pressure measurements the floor of the test section can

be replaced by an aluminum plate containing 52 static pressure taps in a

15.2 x 61.0 cm (6 x 24 in.) grid orn 5.1 em (2 in.) centers. The sta%ic :
pressure taps are 0.40 mm (0.0156 in.) diameter fabricated to Iinsure that

all edges were sharp. Pressures were measured by a Systems bi-directional

differential capacitance type pressure transducer used with a 48-port

Scanivalve sampling valve which sequentially sampled 44 static pressure

in from 0.1 to 1 second intervals. Figure 3.3 is a schematic of the
static pressure measuring system. Four ports on the Scanivalve system
were reserved for calibration purpo :s. The voltage signal of the central
transducer was fed into a Vidar model 240 voltage to frequency converter

and then to a Hewlett Packard model 5326A counter and read out on a

L el kR L R 1 ek i a bk e

Hewlett Packard model 5050A printer. The counter provided a means of
averaging the signal from the VFC and triggered the Solenoid Controller
which in turn determined the sampling rate of the Scanivalve.

The pressure measvring system was calibrated against the Data-
metrics model 1400 electronic manometer by counecting these to a constant i
low pressure source. Figure 3.4 shows a calibration curve for the Setra ‘
transducer. Several calibrations were made and the linear curve shown
was demonstrated to be repeatable. Uncertainties from this system were

estimated from repeatability of data to be 3.45 Pa (0.0005 psi).

Omnidirectional Floating Element Device

The omnidirectional floating element device developed by Tennant
(1977) was used to measure wall shear in both the two- and three-dimensional
flows. A schematic of this floating element device is shown in Fig. 3.5.

The primary difference between this device and all other two-dimensional
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Fig. 3.5 Secrional View of the Omnidirectional Meter

66




IR R

pom———y,
. «

vy
a B

floating element devices is its ability to simultaneously measure the
magnitude and direction of the wall shear force.

The button (disk) has a 2.86 cm (1.125 in.) diameter, a 1ip thick-
ness of 0.635 mm (0.025 in.), and the uniform gap between the button and
housing is 0.127 mm (0.005 in.). The button is supported by a 2.16 cm
(8.5 in.) long, 1.59 mm (0.0625 in.) diameter steel rod. Vertical
misalignment between the button and housing was measured using shims to
be less than 0.0126 mm (0.0005 in.) and this was maintained each time the
meter was taken apart and reassembled. The lower section of the button
is immersed in a 10,000 centistoke fluid to dampen tunnel vibrations
while taking experimental data. To prohibit air leakage while taking
data the shear meter was sealed at all points of electrical entry and a
plastic enclosure was placed around the lower section of the meter.

Two Bently Nevada model 2388-3000 series eddy current proximitors
and model 300 probes, designated channels A and B, are placed at right
angles to each other and sense the movement of the steel target cube on
the rod holding the button. Manufacturer's specifications indicate a
resolution of 1.27 uym (50 pin.) displacement, less than 1% nonlinearity
of full scale, and a temperature sensitivity of 0.0264 um/°C (1.88
pin./°F). The drift was measured at constant temperature to be 0,028
um/5 min and 0.070 pm/5 min and this drift corresponds to a change in the
sensed load of less than 0.03 and 0.08 dynes/5 min for channels A and B.
Temperature effects were coasidered negligible since the calibrations and
96% of the data were within a 2.2°C (4°F) temperature range. The wall
shear magnitude and direction was determined by resolving the output
signals from the two probes.

Figure 3.6 is a schematic of the omnidirectional meter measuring
system. Two Hewlett Packard power supplies were used to provide minus 18
volts d.c. to the proximitors and two Racal Dana model 5100-16 multimeters
were used to read each proximitor's cutput. The probes were operated in
their linear -5 to -8 volt range.

The floating element was calibrated before being installed and on
removal from the tunnel and calibration curves for each channel before

and after being in the tunnel were usually within 1%,
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Block Diagram for the Omnidirectional Meter System
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The meter was calibrated by weights on a calibration stand. A
strand of human hair was aligned at 45° with each Bently Nevada probe,
attached to a removable pin at the disk center, and placed over a small,
jeweled pulley. The angle formed by the hair and calibratiun stand top
was nearly zero so the entire load placed in the calibration pan would
act on the disk. Two vibrators were used to minimize dry friction effects
in the jeweled pulley and, to a lesser extent to simulate tunnel vibrations
as encountered during tunnel operations., After putting the human hair in
place, the calibration stand was leveled so that the button was centered
in its space in the top of the meter housing. A typical calibration
curved voltage output versus loading is shown in Fig. 3.7. A more
'1nformativé way to plot the calibration data is to show the sensitivities
for each load. Such a figure emphasizes the scatter for phe lower
loadings which is most likely due to dry friction forces in the jeweled
pulley where such secondary forces become large with respect to the small
loads. The individual load sensitivities for the results in Fig. 3.7
are shown in Fig. 3.8 with the greatest scatter at the lower loadings.

Tennant (1977) modeled the supporting rod and its load with a
computer program called Line Solution Developer (LSD) which is based on
transfer matrix or initial parameter theory. These result: indicated

1) that the ideal system is linear over a larger range than which
the system is operated,

2) that eccentric moments due to weight imbalances in the target
or floating disk would have no effect on the linearity or
sensitivity, and

3) that any initial bend in the supporting beam would have no
effect on the linearity or sensitivity

and these restlts support the experimentally obtained linear calibration
curves. Calibracion data were obtained well beyond the design data range
showing linearity well beyond the design movement.

Uncertainty estimates for the three-dimensional shear measurements
included contributions from possible errors in the

1) physical area of the floating element

2) voltage output of the transducers

3) sensitivity values from the calibration procedure
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4) misalignment of the shear meter with respect to the reference

tunnel centerline

5) wvertical misalignment of the floating element with respect to

the meter surface, and

6) transducer drift.

These uncertainties were combined in a Kline-McClintock (1953) type pro-
cedure and an overall uncertainty is estimated for each shear data point
reported. The inclusion of these several possible sources of error was
made in an attempt to have this overall uncertainty approach an Nth order
uncertainty estimate as described in Moffat (1980).

In an effort to establish a high degree of credibility to the
three-dimensional meter, a substantial number of measurements was taken
in two-dimensional flow conditions for comparison with a two-dimensional
direct force sensing shear meter and a series of Preston tubes over a
modest range of unit Reynolds members. Such two-dimensional measurements
were judged to be a valid test of the three-dimensional meter since it
was required to measure a force magnitude and a force direction (albeit

the nominal tunnel centerline direction) in the two-dimensional flows.

Two-Cimensional Floating Element Device

The two-dimensional floating element device developed by Pierce and
Krommenhoek (1968) and shown schematically in Fig. 3.9 was used to
measure wall shear in two-dimensional flows. In this device, the cir-
cular disk is free to move in only one direction and this movement is
detected by a linear variable differential transformer (LVDT). Since
Pierce and Krommenhoek reported on this meter, the origira. LVDT and
associated power supply with accompanying electronics has been replaced
(Rule (1976) and Pierce, Tennant, and Rule (1976)) by a Schaevitz 025MHR
LVL™” with an LPM-205 signal conditioning module.

The disk in Fig. 3.9 has a 2.858 em (1.125 in.) diameter and the
equally spaced gap between the button and meter housing is 0.127 mm
(0.005 in.). The button is supported by a pinless four-bar linkage of
two brass reinforced copper-beryllium fixtures while the lower part of
the bhutton rests in a well filled with 30,000 centistoke methylsilozane

oil., ihe oil serves to damp out external vibrations from the tunnel
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while measurements are being taken. Additionally, the mater is sealed to
prevent any air flow between the atmosphere and ths tunnel. A static
pressure tap in the surface of the meter was used in combination with the

claw probe previously described to take freestream velocity data to

construct Cf values. The ov2rall two-dimensional floating element

N
S———
- .

system can be representated by the block diagram showr in Fig. 3.10.

-

The meter was calibrated in the same device and in the same manner

as the three-dimensional meter but with the line of act.on of the cali-

brating weights aligned with the meter displacement direction. One

typical set of calibration results is shown in Fig. 3.11. The calibration
curve was fitted frow a first order least squares fit of the calibration
data. The coefficient of determinationr(Burr(1974)), rz, was generally
0.99990 to 0.99999 for the calibration rums indicating excellent linearity.
As before, it is instructive to show the sensitivities for each load and
data of Fig. 3.11 ii shoun this way in Fig. 3.12 where large scatter is
also shown for the lower loadings.

For reliable wall shear readings the two-dimensional floating
element was calibrated before being installed in and after removal from
che tunnel. If two calibrations differed by 1.5% the calibration after
removal was considered the more accurate since the floating meter was

subjected to less handling in removal than in installation.

Preston Tubes

The Preston tubes were individually mounted on 12.7 cm (5 in.)
diameter aluminum disks with the tute opening centered on the disk. The
opening of each stainless steel tube was hand crafted in order to insure
a smooth, round entrance free of burrs. The tubes were approximately
3.81 cm (1.5 in.) long and they were epoxied to the alun.'num disk. Tubes
with outside diameters ¢: G.46 (0.018), 0.71 (0.028), 0.91 (0.036), and
2.11 mm (0.083 in.) were used. The inside diameters were 0.241 (0.0095),
¢.394 (0.015%), 0.584 (0.023), and 1.60 mm (0.063 in.) respectively.
Except for the largest tube, the static pressure taps were located 1.27
cm (0.5 in.) from the tube spening in a line transverse to the direction
defiaed by the tube 2x1is. 1n preliminary testing of the three smaller

tubes, static pressure tap lccations as close as 0.64 cm (0.25 in.) to
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the Preston tube produced the same results as the taps located at the 1.27
cm (0.5 in.) distance. For the largest diameter Preston tube, the static
pressure tap was 2.54 cm (1.0 in.) from the Preston tube opening. Static
pressure taps closer thanm 1.27 cm (0.5 in.) gave readings dependent on
this separation distance, while readings with the static pressure taps
located from 1.6 cm (0.75 in.) up to 3.2 em (1.25 in.) gave identical
results. The Preston tube measurements were made with the electronic

digital pressure measuring system described earlier.

Experimental Procedure

The experimental program was completed in two phases--the first
involving measurements in a two-dimensional nominally zero pressure
gradient boundary layer over a modest range of unit Reynolds numbers, and
the second phsse in a pressure-driven three-dimensional turbuleant boundary
layer at a nominally constant unit Reynolds number. The first phase
required measurements of static pressure field, velocity field, wall shear
stress by the three-dimensional shear meter, by the two-dimensional shear
meter, and by the series of Prestcn tubes. The second phase involved
measurer-ats of the wall pressure field, velocity field, and wall shear
measurements with the three-dimensional shear meter. The measurements of
each phase were not necessarily made in the order listed above. Instrumentation
system requircaments were such that these measurements could not be made
simultaneously. In order to insure dynamically similar flow conditions
for any particular measurements, the tunnel unit Reynolds number based cn
freestream velocity and fluid properties at the tunnel entrance was held
nominally constant., This was accomplished by maintaining the laboratory
temperature within small temperature variations and making minor changes
in the tunnel speed as required for barometric changes.

It would have been preferable to keep the flow body stationary while
moving the measurement sensors. This was practical for the pressure field
and velocity field measurements, but the mechanical shear meter required
extensive leveling whenever the movable floor of the test section was
repositioned. Following the example of Prahlad (1968), it was decided to
keep the measurement location stationary and to move the body around that

location. Every effort was made to insure the accurate placement of the
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'body“at'eaeh';ocaticn'and"attéﬂptSfWéré made €6 obtain different wall

shear measurements by slightly misaligning the body. Thgse attenpﬁs
shouedrthat slight his#lignnents did not result in measurable changés in
wall shear étress. Velocity mcasurements made after the bddy vas removed
and then replaced proved to be répeatable also indicating that body ﬁlace-
ment was not a problem. Wall pressure field measurements nade vith the
body moved to a new position showed consistent and repeatable values
within éxperimental uncértain:ies. -

7 ‘The two-dimensional data were taken over a tunnel inlet unit Reynolds
number range from 0.71 to 1.33 x 106Im. The three-dimensional data were
taken at a reference unit Reynolds number of 1.322 x 106/n + 1%,

Wall Shear Stress Measurement Techniques

In the last 100 years a large number of investigators have attempted
to measure wall shear in incompressible turbulent boundary layers. All
but a small and recent number of these investigations have dealt with two-
dimensional flows.

For two-dimensional flows the techniques found in this review included
floating element devices used in channel flows by Tennant (1977), Pierce,
Tennant and McAllister (1980), Brown and Joubert (1969), Smith and Walker
(1958), Vinh (1973), Allen (1977), Fowke (1969), Everett (1958), Boyce and
Blick (1971), Boyce and Blick (1969), Waltrup (1971), Miller (1972);
in amwlar shapes by Franklin (1961), White and Franklin (1964), Smith,
Lawn and Hamlin (1968), on a cylinder by Morsey (1974), and on flat plates
by Depooter, Brundrett and Strongi(l977), Hakkinen (1955), Dhawan (1952),
Dershin, LeonardrandVGallaher (1967), Shutts, Hartwig and Weiler (1955)
and Furuya, Nakamura, Osaka and Honda (1975); Preston tubes used by Preston
(1954), Smith and Walker (1958), the NPL Staff (1958), Rechenberg (1963),
Ferriss (1965), Head and Rechenberg (1962), Patel (1965), Brown and Joubert
(1969), Miller (1972), and Samuel and Joubert (1974); Stanton tubes used
by Stanton, Marshall and Bryént (1920), Konstantinov and Dragnysh (1960),
and Bradshaw and Gregory (1961); sublayer fences used by Wills (1963),
Nash-Weber and Oates (1971), Wanschkuhn and Vasanta Ram'(1975); razor
blades used by East (1968), Wyatt and East (1968), Pai and Whitelaw (1969),
Millerr(1972); heated elements ﬁéed by'Fage and Falkner (1931), Ludwieg
(19505, Owen (1970), Tudwieg and Tillmann (1950), Liepmann and Skinner
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(1954), Drinkuth & Pierce (1966), Bellhouse & Schultz (1966, 1968), Brown
—-— (1967), -Armistead-& Keyes (1968); and electrochemical devices used by
Mitchell and Hanratty (1966), Kashinskiy, Kutateladze, and Mukhin (1974).
Winter (1977) provides a more detailed review of some of these and other
works, as do Tennant (1977) and McAllister (1979). 7 o
Figure 3.13 lists most of these techniques/methods. The floating
element technique is difficult to use, but only it can provide a direct

measurement of wall shear stress. Except for the less direct moméntum

balance calculations and liquid film move~~nt measurements, all other

techniques that have been reviewed rely on the assumed existence and form } ;

of near-wall similarity to infer wall shear stress. ,.%
The indirect similarity techniques listed above may generally be f} 7

divided into two groups: (1) those which infer wall shear stress through g é

pressure measurements and (2) those which infer wail shear stress through I}

heat or mass transfer rate measurements near the wall. Both groups rely ¢ L

in one form or another on the assumed existence of near-wall similarity,

N——

i.e.
+ +
u = f(y).

For instance Preston tubes are simply pitot tubes laid on the wall .
and are used to measure dynamic pressure which is correlated with the
local wall shear stress. Stanton tubes and the razor blade technique are
similar to Preston tubes but are smaller and may even be confined to the i
viscous sublayer. Heat and mass transfer techniques utilize near-wall

similarity through Reynolds' analogy. These methods sense flow conditions ij

in the thin thermal or concentration layers above the wall. These layers
must usually remain within the viscous sublayer for accurate calibration.
Miller (1972), Rechenberg (1963), Pierce and Krommenhoek (1968), and

Rubesin et al., (1975) provide more detailed discussions of these techniques. i

The only techuique that directly measures the wall shear stress is

the floating element technique. In essence a small area of the wall is

[
»
e

{

isolated and the force acting on that area is measured. This technique

- would appear to be the only one capable of resolving the question of near-

wall similarity in three-dimensional flow. However flvating element

[
3
£3

¥
¥

measurements can be very difficult due to a number of possible error sources. -
L
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1)

2)

3)

~ Errors in the measurement of wall shear with a floating element -
device in two-dihensional flows have been attributed to a number of
different effects as noted in Brown & Joubert (1969), Pierce and Krommenhoek
(1968), Everett (1958) and Allen (1977), and typically can 1nc1ude$

Misalignment of the floating disk with the surrounding wall can -
cause significant errors though these errors can be minimized
through careful installation.

Secondary forces may be imposed on the edge or lip of the
floating disk by penetration of the freestream pressure into

the air gap. It is usually suggested that these errors can be
minimized by minimizing the 1lip thickness, thereby decreasing
the area over whichk the pressure may act but Everett's (1958)
results suggest that a thicker lip will result in reducing the
error. Regardless of how these errors may be minimized, they
can remain significant when the wall shear approaches zero.

Vinh (1973) suggests these errors are unique to the floating
element design itself.

The pressure gradieut will cause a pressure difference between
the boundary layer above any point in the air gap and cause

flow through it. These errors can be minimized but not entirely
eliminated by sealing the floating element casing from the

surroundings.

Of possible less importance, Brown and Joubert (1969) include:

4)

5)

6)

7)

The air gap will act as a roughness element in the smooth wall.
Everett (1958) suggests that the gap be reduced in size to
minimize errors as is the usual practice. Allen (1977) suggests
that less error is encountered for larger gaps.

The shear stress measured is the mean shear stress over the area
of the floating disk. If the flow geometry is large in comparison
to the floating disk, this effect can be minimized.

The floating element can alter the geometry of the device
according to its position and thus cause changes in the flow
pattern through the air gap. It would appear to be advantageous
if the floating element device were of the nulling type.

Even when the disturbance caused by the gap is ignored, there

will be a shear stress transmitted through the shear layer.
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errors: for the floating element technique ‘are derived from two soutces.
(1) element misalignment and (2) the presSuretgradient imposed on the

,element.

Three experimental studies have been wmade cencefning errors- 1ndueed
by floating element mesalignment. The snpersonic studies of Allen (1977)
and 0'Donmnell (1964) appear to be the most comprehensive on disk nis- ;
alignment and they indicate varying effects of element protrusion on the
measured wall shear as shown in Fig. 3.14. Supporting these results are
the low speed studies by (1) Furuya, et al. (1975) which indicated that
negative protrusions from 0-+15 ym (0+0 0006 in.) have no effect, negetive '
protrusions from 15+30 um (0.0006+C.0012 in.) have a slight effe~t, and
positive protrusions of only 3 to 5 um (0.0001 to 0.0002 in.) have a
noticahle effect on Ty (2) Smith and Walker (1957) who state negafive
protrusions up to 0.0127 mm (0.0005 in.) have no effect and any positive
projections cause’ ‘-+*nlerable errors 1nrro values, and (3) Morsy's
(1974) statement . positive 0.125 mm (0.005 in.) misalignment of the
disk with its solid boundary gives ‘unacceptable T values. From these
studies it would appear that negative disk projections of 0.0127 mm.
(0.0005 in.) to 0.0254 mm (0.001 in.) are tolerable. O'Donnell points out
that or a smooth surface a misaligmment error of 0.005 mm (0.0002 in.)
can be felt by hand and that an error of 0.013 mm (0.0005 in.) can b«
often seen. Thus it should be possible to keep these errors below + 3%
of the flush reading.

Everett (1958), Pierce and Krommenhoek (1968), Brown and Joubert
(1969), and Miller (1972) have made experimental studies of pressure
gradient effects on floating elements. These studies were made in smzll

subsonic wind tunnels. Both Pierce and Krommenhoek, and Brown and Jouberc¢
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studied the effects of adverse pressure gradients. Miller studied both
adverse and favorable pressure gradients, and Everett's work was in a
favorable pressure gradient. Figure 3.15 shows thelr results. The
results of Plerce and Krommenhoek are based on 28 data points where the
wall shear stress was inferred from Clauser charts with Coles' (1962)
constants and compared with a floating element device that could not be
nulled., Brown and Joubert's results are based on more than 120 data
points where the wall shear was inferred from Preston tubes using Patel's
(1965) calibration and compared with a floating element device that was
nulled by tipping the device. Miller's results for favorable pressure
gradients were based on 9 data points. Miller used fully developed flow
between two plates and calculated the wall shear stress with a momentum

balance, i.e.,

-

il
N"Un-
L

where the distance between plates, dp was 0.318 em (0.125 in.) and 1.27 em
(0.5 in.). Miller's floating element was of the nulling type. Miller

used a different tunnel for his adverse pressure gradient studies. There

he compared wall shears using a Preston tube with Patel's calibration, a
near-wall similarity plot for the logarithmic region using Patel's constants,
and his floating element device corrected by + 10% using Brown and Joubert's
results. Compared with the floating element results, the Preston tube
measurements were reported to be 2 to 47 low, while the similarity plot

gave results that were high by as much as 5%. The poorest agreement was

in accelerated flow regions. In addition, Fig. 3.15 shows the pressure

correction suggested by Everett which takes the form

=tdp
2 dx

Yo ~ "meter
where t is the thickness of the floating element lip. The gap-to-disk
diameter ratio was 0.0044 for the Pierce and Krommenhoek study, 0.004 for
the Brown and Joubert study, and 0.0035 for Miller's work. A significant
question in Fig. 3.15 concerns the nominally correct or reference T used

to derive the correction factors for the wall shear reading, T from

meter’
a floating element device,
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Everett's (1958) work was completed in a high aspect ratio channel
and he assumed fully developed flow to equate the wall shear and pressure
gradient forces. The existence of nonuniform wall shear around the
channel perimeter can be considered as such effects have been noted in
some more recent studies but in the case of undeveloped flows. In their
pipe studies Head and Rechenberg (1962) encountered wall shear differences
of up to 20% around a pipe circumference, and Furuya, et al. (1975) and
Bradshaw (1965) both reported flat surface spanwise wall shear differences
of up to 10%, and de Bray (1965) discussed the spanwise nonuniformity o: a
aominally two~dimensional turbulent bcundary layar on a flat surface.
Additionally, the effect of a possible channel height nonuniformity must
be considered. Ferriss (1965) preserts an analysis for pipe flow showing
tapers of 0.001 dp (dp = pipe diameter) in an axial distance of one diameter
can cause the measured wall shear to deviate by 137% from the theoretical
wall shear for his flow rates. Similar effects could occur in nearly
parallel channel flows.

In the proposed Pierce and Krommenhcek (1968) floating element
pressure gradient correction factors tue reference wall shear was deter-
mined by taking a velocity profile over the floating element flow station

for arbitrary pressure gradient and inferring the wall shear stress with

a Clauser chart using Coles' (1962) law of the wall constants. Here it
should be noted that the variation in inferred wall shear from different
law at the wall constants is sufficient to alter the Pierce and Krommenhoek's
pressure gradient correction., Additionally, the particula: rocm of the
near-wail similarity law used also can alter the inferred well chear value
in any such method.

Brown and Joubert (1969) used Preston tub: wall shear readings as
their reference wall shear using Patel's (1965) calibration curve. They
reported their floating element wall shzar values as consistent and
generally 4-57% higher than the Preston tube results for a zero pressure
gradient flow for a unit Reynolds number range of about 2 x 105 to 12 x 105/ft
with this difference attributed to slight secondary forces on the floating
element disk. In this study a comparison was made tetween 113 direct force
shedar measurements with 75 Preston tube shear valucs from a series of

four different size Preston tubes for an essentially zero pressur« gradient
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flow over a similar but narrower unit Reynolds number range of about 2.4 x
106 to 4.4 x 106Ift. A statistical analysis for a second order fit to
these two sets of data showed *hat the direct force shears also exceeded
the Preston tube data, here by about 4% for the lower half of the Re/L
interval with the difference decreasing nearly monotonically to about 0.4%

) S

at the upper end of this interval.

Miller's (1972) favorable pressure gradient results were the most
recent of such studies and perhaps the most thorough. He was careful to
maintain a uniform tunnel height ranging from 3.18+12.7 mm (0.125-0.5
in.) and to eliminate flow nonuniformity in the spanwise direction.

For the adverse pressure gradient corrections, Brown and Joubert

arrived at correctiou curves from a multiple curvilinear regression surface [
using the variables of Fig. 3.15. Examining Fig. 3.15 several observations Lf
can be made. Firstly, the studies of Pierce and Krommenhoek and of Brown
and Joubert are apparently in conflict for equal values of dm u*/u. One i
suggests positive corrections associated with adverse pressure gradients
while the other suggests negative corrections. Although not shown in the
figure Pierce and Krommenhoek's results show a nearly constant +3 to +5%
correction required up to a value of the parameter dm Qg[ég = 33. The
correction from there out to a parameter value of 51 incPeases to +17%.
Everett's simple correction formula seems to support Pierce and Krommenhoek's
results qualitatively. However, Miller's studies in adverse pressure -
gradients appear to support Brown and Joubert's results but it should be

recalled that Miller used the proposed Brown and Joubert corrections in ;_
4 his own results. In contradiction however, Miller's studies in favorable

‘ pressure gradients appear to be supported by Everett's formula. Winter

(1977) joins the Miller favorable pressure gradient curves with those of

Brown and Joubert for adverse pressure gradients and this requires a

complete reversal of the direction of these curves, with no evidence of

this kind of behavior reported by Miller. ?;
For the zero pressure gradient case, Pierce and Krommenhoek's device .

read consistantly low by 3 to 5% when compared to wall shear determined

from Clauser charts. Brown and Joubert's instrument read consistently

high by 4 to 5% when compared to Preston tube measurements. These can be

compared with Allen's instrument which read consistently low by 62 when
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compared to Preston tube measurements. Miller does not report any data
for his device in a zero pressurc gradient flow. It should be noted that:
(1) these errors are calculated under the assumption that the near-wall
similarity laws, the law of the wall cconstants, and the instruments that
depend on them can provide exact wall shear values, and (2) an approximate
nominal +5Z uncertainty can exist between very carefully designed and
constructed floating element devices reported on up to this time.

It is important to note that all such corrections are unique to the
geometric details of the particular mechanical meter for which they were
determined. Vinh (1973) shows experimental results comparing direct force
shear values with Preston tube results for two geometrically different
floating element buttons or discs. His results shcw strongly different
pressure gradient effects on the nominal wall shear values suggesting a
strong button geometry dependeuce. Generalization of any of the results
in Fig. 3.15 to shear meters in general would not seem warranted in view
of Vinh's results.

The edge thickness of the novabie disk would appear related to
possible errors in floating element results. Intuitively one would expect
to minimize a pressure force by minimizing the element 1lip thickness.

This is recommended and confirmed in the modeling of this effect by Brown

and Joubert (1969). Yet contradicting this are the experimental results

of Everett which show that a thicker lip minimizes pressure gradient
corrections. The latter experiments were in favorable pressure gradients

but the Brown and Joubert modeling of this effect does not appear to be
restricted by the gradient direction. If in fact the pressure gradient
effects appear as both direct pressure forces ami as residual secondary
forces attributable to secondary flows induced around and through the floating
element clearance gap, as modeled by Brown and Joubert, it may well be that

a thicker lip reduces the pressure gradient induced flow around the element
thereby reducing these residual secondary forces. Supporting this hypothesis
in Everett's recomamendation to minimize the clearance to element lip
thickness ratio.

Null type floating element designs have a uniform gap around the
element and were used by Franklin (1961), Paros (1970), Allen (1977),

Smith and Walker (1957), Boyce and Blick (1971), Miller (1972), and
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Depooter, Brundrett, and Strong (1977). Nonuniform gap widths have been
presumed to contribute some type of error but there is no quantitative
estimate or analysis to suggest the possible error magnitude. The advantages
of not having to null a displaced floating element are generally substantial.

The gap size has been considered as a roughness element exposed to
the flow and varying solutions have been suggested to reduce this effect.
Everett (1958) suggested a small gap size (minimizing the clearance to
edge thickness ratio) while Allen (1977) recommended a larger gap as more
desirable. Portions of the gap area have been treated as disk area assuming
a shear stress is transmitted through the gap shear layer. Hakkinen's
(1955) transonic flow studies used half the gap area as adding to the disk
area while the transpiration study of Depooter, et al. (1977) used from
0.0 to 0.365 of the gap area, depending on the transpiration rate. Waltrup
(1971) and Dershin, et al., (1967) reduced the gap effect by using an
elliptic shaped disk. In contrast to these investigations is Dhawan's
(1952) conclusion after using spark Schlieren photos and attempts at
measuring the pressure disturbance caused by the gaps that no gap effect
was present. White and Franklin (19€4) also concluded the gap effect was
negligible in their annulus work but their element size (a 10.16 cm (4.0
in.) diameter tube with a length of 10.16 cm (4.0 in.)) was large compared
to the 0.0762 mm (0.003 in.) gap width.

No discussions of possible errors in direct force wall shear stress
mcasurements in three-dimensional flows were found in the literature%*.
Clearly possible errors similar to those for single line of action meters
used in 2DTBL flows can occur for unrestricted line of action devices as
required in 3DTBL flows.

*As this report was going to press, Prof. Peter Joubert provided the authors
with a copy of the doctoral dissertation of K. C. Brown entitled "Three-
Dimensional Turbulent Boundary Layers," University of Melbourne, 1971.
Portions of this thesis dealing with two-dimensional wall shear measurements

with a direct force sensing single line of action device and pressure gradient

corrections are published as Brown and Joubert (1969) and are discussed in
this report. Regrettably, some very thorough work dealing with direct force
wall shear measurements and an examination of the suitability of four
similerity models in pressure driven 3DTBL flows contained in the thesis
were not published and uence unkanown to the authors for inclusion in the
body of this report. Footnote references to this work appear in the text.
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For three-dimensional flows the techniques employed for measurement
of wall shez. have been similar to those used in the two-dimensional case.
The techniques employed include: Preston tube type probes by Plerce and
Krommenhoek (1968), East and Hoxey (1969), Prahlad (1968, 1972, 1973),
Power (1973), Hebbar and Melnik (1976), Dechow (1976); Stanton tubes by
van den Berg and Elsenaar (1972); sublayer fences by Hebbar and Melnick
(1976) and Vagt and Fernholz (1973); razor blades by East and Hozey (1969)
and heated elements by Pierce and Krommenhoek (1968), McCrosky and Durbin
(1972) and Higuchi and Peake (1978). All the above are indirect measurement
techniques and were calibrated in two-dimensional flows. Only the work of
Pierce and Krommenhoek (1966)Vincludea,;hregjdimensional measurements with
a floating element device. R E" SIS

The direct force measurements by Pierce éﬂdkaéﬁh9dhoékz(l968) totaled
only five data points. Their test flow was the boundary iayer confining a
jet impinging on a back wall. They compared their results with wall shear
values inferred from a directionally sensitive heat meter, a Preston tube,
and a yaw probe calibrated as a Preston tube. All the indirect devices
were calibrated in a two-dimensional flow, and agreement between these
devices and the floating element was within +10%. This would tend to
indicate that the nondimensionalizing wall friction velocity is, for the
limited flow studied, at least approximately related to wall shear in the
same manner for both two-~ and three-dimensional flows. Regrettably, their
experiment lacked a sufficient number of direct wall shear measurements,
lacked companion velocity profiles, lacked static pressure déta in the
neighborhood of the measuring location, and used a floating element
device unable to discern the direction of the wall shear vector.

On this last point, some further discussion is required, since the
3DTBL is seriously clouded by the question of limiting wall streamline
direction and its accurate measurement. Most of the experiments noted
earlier show two, three, or more velocity points in the very near-wall
region which have the same direction when displayed as in Fig. 2.4,
suggestiﬁg the existence of a collateral near-wall flow. The very careful
measurements of Rogers and Head (1969) and Hebbar and Melnik (1976) using
very small instrumentation and emphasizing spatial resolution show no
region of near-wall collateral flow. Additionally, Pierce and East (1972)




and Klinksiek and Pierce (1973) have demonstrated in finite difference
solutions to a 3DTBL flow where yiscous stresses are retained in the
motion equations that no near-wall collateral flow is predicted by the
analysis. The question of modeling of the Reynolds stresses might be
raised but is irrelevant since the turbulence modeling was suppressed in
the very near-wall region (viscous sublayer) and made no contribution to
the solution. In effect, in the extreme near-wall region the viscous
boundary layer equations for the three-dimensional case were solved and in
this viscous extreme near-wall region the solution indicated that the
existence of a collateral boundary layer is inconsistent with the governing
equations. Prahlad (1973) also presented work supporting these computer
results which revealed local streamline turning in the immediate neighborhood
of the wall., These results cloud the question of accurate measurement of
limiting wall streamline direction. Preston tubes and similar devices

have relatively poor spatial resolution and would be expected to respond
to some average flow direction over their faces. The agreement found by

' Pierce and Krommenhoek between Preston tube and yaw probe directions and
those obtained by a directionally sensitive surface-mounted heat meter
suggests that the heat meter device also responds to thermal diffusion
over a thin near-wall region through which velocity direction is varying,
and hence the heat meter also appears to respond to an average near-wall
flow direction. Unfortunately, in that experiment the determination of
limiting wall streamline direction by the floating element device was not
made because of the good agreement noted among the Preston tube, yaw

probe, and heat meter. More recent work suggests that while indirect
devices may sometimes give reasonable estimates of wall shear magnitude in
3DTBLs, surface-mounted indirect devices generally give erroneous information
on wall shear direction.

More recently, the flush mounted type heat meter of the Pierce and
Drinkuth (1966) type has been modified and miniaturized for use in three-
dimensional flows. McCroskey and Durbin (1972) designed a two-element
foil for direct application to the flow surface, and Higuchi and Peake
(1978) modified the Rubesin et al. (1975) flush buried wire gage to include
two wires for use in three-dimensional flows. The Higuchi and Peake two-

wire meter is extremely small (typlcally 1/8" in diamcter) and has the
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-magnitude data were reported for the heat meters for the three-dimensional

potential to make measurements over vary small local areas. It is essential
to note that neither of these indirect devices has ever been calibrated in 3
a three-dimensional flow. Only limited use has been reported for the
McCroskey and Durbin gage and recent contact with one of its developers

did not encourage use. Higuchi and Peake have reported on the use of two

of the twc-wire heat meters in a three~dimensional flow. Their report
clearly shows that each element of the meter was calibrated only in a two-
dimensional flow using a Preston tube as the 'primary' standard. Since

the calibration of a Preston tube is in effect dependent on the two-
dimensional near-wall similarity law, use of heat meters calibrated in a
two~dimensional flow with a Preston tube in effect assumes a priori the
validity of the two-dimensional near-wall similarity law in a three-
dimensional flow. Such an assumption is unacceptable in any experiment
designed to identify a near-wall similarity law in three-dimensional

flows. Higuchi and Peak also calibrated the directional sensitivity of

the two-element heat meters ir a two-dimensional flow as well. Using

these heat meters in a three-dimensional flow, they reported flow angle
measurements differing typically by 5-15°, with occasional larger differences,

when compared to standard wall flow visualization techniques. While shear

flow, there were no other data available to validate the two-dimensional

calibration of these two-element heat meters for use in a three-dimensional

flow. It would seem unnecessary to emphasize that simply using such a |
device in a three-~-dimensional flow does not validate its two-dimensional
calibration for use in a three-dimensional flow. Concerns over the use of
two-dimensional calibrations of heat meters in three~-dimensional flows
were noted as early as 1966 by Pierce and Drinkuth (1966) when they suggested
this technique for flush mounted wire type sensors.

Rubesin, et al. (1975) note that in a two~dimensional flow the
calibration of a very fine wire heat meter in a laminar flow can be used
in a turbulent flow. However, those authors note that the analysis itself
which indicates this universality of calibration would introduce a nominal
10% error in such a universal calibration for two-dimensional turbulent
flow. Combining this magnitude error with the other probable experimental

errors of drift, meter resolution, etc., would likely result in an excessively
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large uncertair.. in using such a universal calibration in two-dimensional
work. The possibility of such a universal calibration existing in a
three~dimensional case has not been demonstrated and the simple extersion
of the two-dimensional model into a three-dimensional flow is highly
suspect since this would appear to ignore the vector character of the
near-wall flow in the three-dimensional case (e.g., Rogers and Head (1969),
Hebbar and Melnik (1976), East and Pierce (1972) and Klinksiek and FPierce
(1973)). v

It should be clear that in any attempt at a definitive study of near-
wall similarity in a three-dimensional turbulent flow, the need for local
direct force wall shear measurement of both magnitude and direction is
essential and absolute, the degree of difficulty required by suchba measure-
ment not withstanding.

Other than the work by Pierce and Krommenhoek (1968), only Prahlad
(1968, 1972) appears to have sought to address the question of wall shear
in near-wall similarity in three-dimensional flows. Prahlad used Preston
tubes calibrated in two-dimensional flows to infer wall shear in the
limiting wall streamline direction as determined by yaw probes. The
objection to yaw probes to determine wall shear direction would be even
stronger than cited above for the heat meter. Prahlad studied the flow
around a cylinder and an inclined plate. His results for small skews
suggest that a nondimensionalizing kind of wall friction velocity correlates
his data. Since his measurement technique was indirect, it is impossihle
to conclude any direct relationship between the wall friction velocity and
wall shear. Prahlad also noted two other results: (1) the effects of
pressure gradients in three-dimensional flows appear to be qualitatively
similar to those in two~dimensional flows, and (2) the larger Preston
tubes give smaller values of wall shear than smaller Preston tubes. With
regard to this last point, Prahlad notes, "This deviation implies depar-
tures from wall similarity and consequent errors in the use of the Preston
tube technique in these flows."

In establishing the credibility of the omnidirectional shear meter
used in this study, substantial measurements were made in a 2DTBL flow for
comparison with the generally well accepted Preston tube method. A brlef

review of Preston tubes particularly as regards calibration equations
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follows. The Preston tubes were chosen because then have been broadly
studied in recent years and are considered reliable in two-dimensional
flows, with reasonably well defined pressure gradient restrictions. For
the interested reader Bertelrud (1974) and Allen (1973) contain bibliog-
raphies of Preston tube usage in high speed flows while Simpson and Whitten
(1968) and Depooter, Brundrett, and Strong (1978) discuss Preston tube
applicability in transpired turbulent boundary layers.

Since Preston (1954) first reported the technique of laying a Pitot
tube on a solid boundary to indirectly measure the wall shear stress, many
investigators have published their own calibration curves. Table 3.1

lists a number of calibration formulas for Preston tubes with round, open

ends. Not included are the calibration results for rectangular Preston
tubes by Quarmby and Das (1969). The calibration results in Table 3.1

were obtained under different conditions which are outlined in Table 3.2.

Preston's (1954) calibration results are generalily considered inaccurate

and this prompted several studies before Patel's (1965) comprehensive

results appeared. Patel's work is the most thorough as it is the only
investigation to actually set usage limits depending on the type and
severity of pressure gradient present in the flow. For adverse pressure
gradients, Patel set as a rough guide a Preston tube operating range as

maximum 3% error 0 < a < 0.01, q*D/u < 200

maximum 6% error 0 < a < 0.015, q*D/U < 250
and for favorable pressure gradients

maximum 3% error 0 < a < -0.005, q*D/05200 do./dx<0

maximum 6% error 0 < o < -0.007, q*D/U§200 doa/dx<0

A subsequent study by Brown and Joubert (1969) suggest that 6% limits
given above "are slightly optimistic.” I

1t has been noted that Patel's three calibration equations do not
*
match ¢t the endpoints and one equation is transcendental in To (the y

variabie). Head and Ram (1971) presented tabulatced results for Patel's
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Table 3.1 Preston Tube Calibration Equations L
Investigator Calibration Equations# l1
. b/
Preston (1954) y* = 0.1505 + 0.5x* 2<xk . 4.1
1 y* = -10396 + 0.875)(* 401 i X* _<_ 605
b -
Head and Rechenberg (1962) | y* = -1,467 + 0.889x* 5.14 < x < 6.94 -
] -
i bt
Ferriss (1965) y* = -1.422 + 0.881x* 4.79 < x* < 6.38
Smith and Walker (1958) y* = ~1.366 + 0.877x* 5.0 < x* < 7.5
N.P,L. Staff (1958) y* = -1.353 + 0,875x* 5.25 < x* < 7,20 —
Patel (1965) y* = 0.5x* + 0.037 x* < 2,90 | L
y* = 0.8287 - 0.1381x*
+ 0.1437x%2 2.9 < x*<5,60
- 0.006x*3
xk = yk + 210g10(1.95y* + 4.10)
| 5.6<x <76 |
| :
Bertelrud (1976A) P, - P !
L . 38.85x* - 88.53 ;
o +
l 4,80 < x* < 7,72
it
Symbol Definitions
* Ap D2 * TODZ
x = log;o( —Po—) y = logjo( =)
4pv 4pv

D = Preston tube outer diameter

App =P, - P
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calibration equations and Bertelrud (1976A) used the new variable instead
of the y* variabla previously used in Preston tube calibrations. The
Bertelrud calibratio. equation agrees well with Patel's results dut the
x* range is limitcd with respect to the equivalent Patel range.

The relative ease in constructing and using Preaton tubes has lead to
their widespread usage and the basic Preston tube or variations of it have
been used in attempts to measure wall shear stress in three~dimensional
flows by Pierce and Krommenhoek (1968) Prahlad (1968, 1972, 1973), East
and Hoxey (1969), Power (1973), Hebbar and Melnik (1976) ard Dechow (1977).
Without exception, these two-and three-dimensional studies used a two-
dimensional calibration equation, usually Patel's (1965) calibraticn
results.

The use of Preston tubes in three-dimensional flows requires the
alignment of the Preston tube axis and the wall shear stress vector since
misaligmment can result in erroneous readings. Pierce and Krommenhoek
used a heat meter to determine the wall shear stress direction and then
aligned the Preston tube accordingly. In general, the other three-di-
mmensional studies aligned the Preston tubes with the direction of the
velocity vector nearest the wall as measured by a yaw type probe. This
assumes the existence of collateral flow at the wall and the error of this
assumption has aiready been discussed. Power (1973) using 1.651 mm
(0.065 in.) and a 3.188 mm (0.1255 in.) diameter Preston tubes, reported
Cf differznces of 2% between the two different tube sizes. Differences of
this magnitude could very well be caused by uncertainty in taking the data
but Power believed the difference indicated "a possible effect of cross
flow skew across a Preston tube diameter.” Contrasting these remarks is
Prahlad's (1972) work showing Preston tubes aligned with the local flow to
be relatively insensitive for a misalignment of up to 20° between the tube
axis and estimated wall shear stress direction.

The relative insensitivity of Preston tubes as reported by Prahlad
(1972) can in part be solved b; wariations in che Preston tube design.
Prahlad tested two variations of the regular Preston tube design, the
single chamfered and Conrad probes shown in Fig. 3.16 each of which

demonstrated greater yaw sensitivity than a regular Preston tube,
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Singie Chamfered Probe

Flow

Direction
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4 5\ Conrad Probe
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Direction I |
45
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Fig. 3.16 Variations of the Preston Tube Design
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The placement of the static prescure ta2p needed in Preston tuve
work can also cause erroxs in the measured wall shear stress. The
readings from static pressure taps too close to the Preston tube opening
are affected by the tube while taps located too far from the tube will
give erroneous readings if pressure gradients exist, and the existence of
transverse pressure gradlents becomes important in three-~dimensional
flcws. Gupta (1975) devised a variation of the Preston tube design also
shown in Fig. 3.16 which does not use a static pressure tap. This design
was on'y tested in a two-dimensional flow and its appiicability to three-
dimensiimal flows has not been determined but its geometry does offer
some pcssibility of flow aligmment vy prior calibration in a uniform

flow for possible use in a threz-dimensional flow. Bertelrud (1976B, 1977)

designed a probe which measures a modified static pressure with the

tube itself as well as the total pressure. This device was only tested in
a two-dimensional flow 2nd while the geometry offers a more local pressure
measurement, the probe is necessarily larger and does not appear to offer

any convenient means of fiow alignment in three-dimens.cnal use.
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IV. TWO-DIMENSIONAL MEASUREMENTS

Introduction

The principal purpose for taking two-dimensional measurements was to
develop credibility in the ommidirectional meter and confidence estimates
in the data acquisition techniques.

Static Pressure Field
The static pressure field was obtained over a 15.24 by 50.8 cm (6.0
by 20.0 in.) area for the tunnel speeds used. Very small spanvise vari-

ations were detected and overall the static pressure decreased in t'.e
flow direction showing approximately the same magnitude favorable pres-
sure gradient of -13.57 Pa/m (-0.006 psi/ft) for all flow conditioms.

Velocity Profiles

Velocity profiles were taken on the tunnel centerline over the Re/L

range of 0.66 to 1.33 x 106/m. Velocity profiles were taken off the
tunnel centerline at +5.08 cm (2.0 in) and +10.16 cm (4.0 in.) at nominal
tunnel Re/L numbers of 1.12 x 106/m and 1.33 x 106/n. Table 4.1 lists
the nominal Re/L numbers which were identified with letter designations
for convenience in later use.

Different notation was used to identify tunnel centerline and off
centerline two-dimensional velocity profiles. Centerline profiles are
labeled as 2D X Y where X denotes the profile number and Y the particular
tunnel Re/L as given in Table 4.1. Off centerline profiles are labeled
as 2D+Z Y X where X and Y are interchanged but defined as before and Z is
the distance in inches off the centerline with the sign convention showm
in Fig. 4.1. For example, 2D 10 D indicates the tenth two-dimensional
velocity profile run at the D tunnel speed while 2D+2 C 1 indicates the
first two-dimensional velocity profile located two inches off the tunnel
centerline at the C tunnel speed.

Data from 26 velocity profiles generally show small skewing is

present in all cases, increasing in a monotone fashion toward the wall.
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Table 4.1 Nominal Re/L by Letter Designation

Nominal Re/L(10°%/m)

1.33
1.30
1.21
1.12
1.04
0.95
0.84

0.71

| G

Letter Designation
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Fig. 4.1 Two-Dimensional Test Statioms
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This skewing ranges from 0° to a maximum of 1.6° with an ayerage of 1.0°
at the wall and is always positive as noted in Fig. 4.1, showing the same
variability and extent on 18 centerline and 8 off centerline profiles and
for the full range of tunnel flow conditions. Table 4.2 summarizes the
range of this skewing.

Six representative velocity profiles are shown in the nondimeasional
form in Fig 4.2 showing excellent repeatability. Profiles taken by four
individuals showed similar repeatability indicating that the velocity
data acquisition system was not dependent on any one operator for re-
peatable measurements. Excellent repeatability is also shown in Fig. 4.3
for three other tunnel speeds. Figures 4.4 and 4.5 both show similar and
anomolous spanwise nonuniformity at the tumnel test section for two
different tunnel speeds. The centerline and left of centerline profiles
at ¥2 and +4 inches show a very small spanwise variation of less than
approximately 3X and this variation tends to be consistent with a very
slight flattening of the profile away from the centerline. The profiles
to the right of the centerline show a more dramatic but repeatable
transverse variation that is difficult to explain. At the -2 inch ;
position there is a clear flattening of the profile of the order of 52, —
while at -4 inches off the centerline there is an opposite steepening of
the profile, also of about 5. No explanation could be found for *hese
relatively large right of center variations but their existence is

poe  pwee g pmeen b

freme—

| c——

confirmed by their repeatability. Transverse measurements made on four
inch centers 1.9 m upstrear of the test section show no such variations
with all profiles coincident within experimental uncertainties. Similar
transverse measurements made 1. m upstream show an acceleration in the
lower portion of the profile at the ~4 in. station similar to but slightly
less than that of the test section shown for profiles 2D-4Cl and 2D-4D1 I
in Pigs. 4.4 and 4.5.
Bradshaw (1965) and de Bray (1965) have studied spanwise non-

uniformity using Preston tube data while Furuya and Osaka (1975) looked
at freestream velocity and turbulence intensity. Puruya, et al. (1975) g
have also studied spanwise non-uniformity through Preston tube and
boundary layer velocity profile measurements which also showed similar

; skewing trends as the two-dimensional velocity profile data in this

i study. These investigators have generally concluded that these non-

uniformities are due to screens with swall open areas well upstream of "
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Table 4.2 Summary of 2D Profile Angle Variations
Nominal Speed RgIL(IOGI-) Angle Range
A 0.71 0.2 to 0.4
H 0.84 0. to 1.4
G 0.95 0. to 1.0
B 1.04 0. to 1.2
B 1.04 0. to 1.4
c 1.12 0. to 0.6
c 1.12 0.1 to 0.8
C+2 1.12 0. to 1.0
C+s 1.12 0. to 1.0
c-2 1.12 0. to 0.6
Cc-4 1.12 0. to 1.4
I 1.21 0. to 0.4
1 1.21 0. to 0.4
E 1.30 0. to 1.0
E 1.30 0. to 0.6
D 1.33 0. to 1.4
D 1.33 0. to 1.0
D 1.33 0. to 0.8
D 1.33 0. to 1.0
D 1.23 -0.2 to 1.0
D 1.33 0.2 to 1.6
D 1.33 0.2 to 0.6
D+2 1.33 0. to 0.8
D+H4 1.33 0. to 1.2
D-2 1.33 0. to 1.6
D-4 1.33 0. to 1.6
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the data stations. - An open area of 57X was suggested by Bradshaw, Furuya
and Osaka, and de Bray as the lowest open area which could be used to
insure minimal spanwise variations. Furuya, et al, made no recom-
mendations on reducing spanwise variations. Bradshaw further stated that
the 572 should only be taken as representative until other studies were
conducted in other wind tunnels. De Bray's results showed that even when
using screens with 60% open area the Cf spanwise variations were +8%
which would suggest that the selection of the minimum screen open area of
57% does not always preclude sireable spanwise variations in two-dimensional
flow fields. The four screens at the entrance to the nozzle section of
the tunnel used for this experiment each had an open area of 70% which is
well above the value suggested by these various studies.

De Bray's (1965) work indicated that spanwise variations are less
important for three-dimensional situatiomns which ''generally have large
pressure gradients." The three-dimensional pressure-driven flow studied
in the present experiment would fall into this category. All three-
dimensional measurements were made with the body on the minus side of the
text section as shown in Fig. 4.1, with the more uniform upstream flow in

the region of measurements.

Direct Wall Shear Measurements

Direct wall shear measurements by the two-dimensional and omni-
directional wall shear meters were taken over the tunnel Re/L range and
representative data points are shown in Fig. 4.6, The results by Rule
(1976) and Tennant (1977) are included because they were taken in the same
tunnel several months before the present measurements and during this
period both floating element meters were disassembled, inspected, and
realigned, and the method of eddy current output measurement and LVDT
output measurement was changed.

The repeatability in Fig. 4.6 demonstrates the ability to obtain data
independent of personnel. Those readers interested in using Tennant's
(1977) two-dimensional wall shear values (his Table A4) are advised of a
computational error in his Re/L values.

The two-dimensicuna’ floating element wall shear results for the

tunnel centerline are given in Tables 4.3 through 4./. PFor the data
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Wall Shear Stress (Pa)
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0.8
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p> 4 Omnidirectional Meter ) Tennant
3 O McAllister
Two-Dimensional Meter (O Rule
4+ McAllister
&8 ~ Uncertainty Intervals -~ lf
T ] 1 LI i |
0.7 0.9 1.1 1.3 1.5
Re/L(10%/m)

Fig. 4.6 Two-Dimensional Direct Wall Shear Measurements
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in Tables 4.6 and 4.7 the freestream velocity was measured simultaneously

[E vith the wall shear for cf calculations. These cf values are compared
j vith those calculated for the Ludwieg-Tillmann formula
I_; C, = 0.246Re " 2681970-678H |
and easily overlap when the uncertainties are considered as shown in Fig.
4.7.
The wall shear uncertainties were determined from the Kline-McClintock
(1953) propagation method with contributions from drift, vertical mis-
alignment, angular misaligmment, calibration sensitivity, area uncertainty,
and voltage readout and are intended to at least approach an Nth order un-
certainty estimate as described in Moffat (1980).
Two-dimensional omnidirectional wall shear stress data were taken in
: ‘ three sequences and the data in Fig. 4.6 are representative of these three

J——

[N

sequences. Figure 4.8 shows the repeatability among the three data sets
and Tables 4.3-4.7 contain all the two-dimensional tabulated data. Siation
identification is as frllows. For centerline values ZD Y is a two-dimen-

sional run where Y indicates the tunnel Re/L. TFor off-centerline values
2p+Z Y is a two-dimensional run where Y again indicates the tunnel Re/L
and Z is the distance in inches off the tuunnel centerline after Fig. 4.1.

While the uncertainty was uniquely dependent on the individnal wall
shear conditions, representative omnidirectional meter uncertainty char-
acteristics are presented in Fig. 4.9 and 4.10 as a constant magnitude
value shear typical of the D series unit Reynolds number was rotated off
the tunnel centerline to determine the directional sensitivity of the
meter. In these figures a 0.86 Pa wall shear stress was rotated 180° off
the tunnel centerline to show the effects of a given wall shear stress
orientation. It is noted that these figures would change somewhat,
generally showing larger uncertainties for smaller shear values.

The larger number of two-dimensional wall shear values at Re/L =
1.327 x 106/m for data Sets 2 and 3 allowed Figs. 4.11 and 4.12 to be
constructed. In Fig. 4.11 for data Set 2 the average T, was 0.82 + 0.02

Pa. The estimated uncertainties encompassed all but four of the twenty-~

e g
i}

four shear valuves. In Fig. 4.12 for data Set 3 the average 1, was 0.83 +

0.02 Pa and fourteen of fifteen data points fell within the uncertainty

N 518, Ay A
P——
. N
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Fig. 4.7 C_ Results for the Two-Dimensional Floating Element
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and Velocity Profiles
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Fig. 4.8 Two-Dimensional Wall Shear Data Taken With the
Omnidirectional Floating Elcment.

119




3-0- ;
L)
3

S 2.9+
$ |
o %
hd L
-
[ '}
& |
v L
'g 2.8~
u -
-
c 15
> L.
a8
i 7]
-
ﬁ 2,7 ~ i
L]
4
<
=
3
e ]
>
o 2.6-1
-l
aQ
Fe ]
S
[ ]
J
[
=]

2.5+

L v v v v \J v ¥ ]

0 20 40 60 80 100 120 140 160 180

Angle of Wall Shear Vector Measured from
the Tunnel Centerline (degrees)

Fig. 4.9 Variation in Wall Shear ‘Lignitude Uncertainty as a

: Constant Magnitude Shear Stress is Rotated off the
Tunnel Centerline

120




”~~
n
9
o
w 1.7
v
o
A 4
v
-t
E?
e —
o 1.6
&
13
®
>
| )
]
b
&
1.5 <
-4
-t
Q
e
c
-~
>
8
- 1.3 4
P
J
1]
9
9 9
£ 7 T T 1 T T T Y ¥

0.0 20 40 60 80 100 120 140 160 180

Angle of Wall Shear Vector Mcasured from the
Tunnel Centerline (degrees)

Fig. 4.10 Variation in Wall Shear Angular Uncertainty as a
Constant Magnitude Shear Stress is Rotated off the
Tunnel Centerline

121




e Db b et i+

Re/L = 1.327 + 0.004 x 10%n

Average
6 Value
® 5= r a
ob
-]
ol
3 4
3 i i
Yt
°
L 3
v
O )
5
= 2 - p— | —
- _[1 I]
o N—y T T T T T | —

0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86

T
0

(Pa)

Fig. 4.11 Set 2 Omnidirectional Meter Results for

Re/L = 1.327 x 10%/p
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Fig. 4.12 Set 3 Omnidirectional Meter Results for
Re/L = 1.327 x 106/m

123




AP

Liesl L S DL

range. Examining Fig. 4.8, the data of Set 3 is taken to be the most
consistent when comparing these results to an imagined line through all
the data points. The slight tendency for the Set 2 results to vary from
this mean is reflected in the four poor data points noted above. The
additional care and experience which went into the Set 3 results indicates
a greater degree of repeatability. Overall, the uncertainty values used
in these shear data are estimated to be valid at 15:1 odds since this
reflects the added experience and improved techniques that were acquired
through these three data sets and these odds are suggested by the third
data set. Ian the various comparisons made among these two-dimensional
shear stress values odds of 20:1 are assumed so that the tabulated un-
certainties in Tables 4.3-4.7 were increased by 6% in such comparisons.

In examining the wall shear data in Sets 1, 2, and 3 in Tables 4.3-
4.7 the small variations in the angular orientation of the wall shear
vector exhibits an interesting pattern. In Sets 1 and 3 the wall shear
vector angle while small is positive for all but one data point while
the Set 2 angles are small but predominantly negative. Since all the
data in Sets 1, 2. and 3 were taken in the same tunnel facility, the
angular differences were judged to result from two sources. First,
small differences in the alignment of the movable element with the
omnidirectional meter housing (vertical disk misalignment) could cause
small changes in the T direction. This misalignment was measured at
eight equally spaced points on the disk circumference for each data set
with only one point no more than 0.0127 mm (0.0005 in.) above the meter
housing, and at most only one point no lower than 0.0127 mm (0.0005 in.)
below the meter housing. This small misalignment is estimated to have
had a minimal effect on the L magnitude and is supported by the agreement
in T values for the different data sets at similar Re/L values. The
second source of angular uncertainty could result from the misaligmment
of the tunnel centerline and a line bisecting the 90° angle between the
two proximitor probes. T.. is is considered the most likely source for
the angular differences because of the difficulty in precisely making
this aligmment. The line of action for all the T vectors at similar
tunnel Re/L are contained within the angle uncertainty calculated for
that Re/L.
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Representative values of skin friction coefficient are shown in Fig
4.13 for data from Set 3 where wall shear and freestream velocity were
measured simultaneously and compared to Ludwieg-Tillmann values. Agree-
ment is considered good for all Re/L values since the Ludwieg-Tillmann
and direct tall shear stress Cf values overlap when the uncertainty
bands are considered. It is important to point out that the uncertainty

estimated in the reported calculated C_, values for the Ludwieg-Tillmann

formula reflect only probable errors ii the calculation of input data *o
the formula from laboratory measurements. No probable error is assigned
to the formula itself and this is not realistic since the formula is not
likely to be absolutely correct in its predictions. As noted by White
(1974), an uncertainty as high as +10% can be assigned to the Ludwieg-
Tillmann formula itself. Including such an added probable error in the
estimated uncertainties shown for the Ludwieg-Tillmann formuls would
increase these significantly and place all the data in good agreement

within such combined uncertainty bands.

Preston Tube Measurements

Four different Preston tubes were used to indirectly measure the
wall shear stress using the calibration equations in Table 3.2 with data
obtained over an Re/L range of 0.7 to 1.35 x 106/m. The tunnel inlet
unit Reynolds number was again used to insure similar tunnel flow conditions
between the Preston tube and direct force measurements. Freestream
velocities over the measuring station ranged from 12.9 to 24.4 m/sec.

An essentially constant magnitude, small favorable pressure gradient
of -13.57 Pa/m existed for all tunnel flow conditions.

Wall shear stresses calculated from the various Preston tuhbe cali-
bration equations reviewed in Chapter III and compared to the direct force
measurements are shown in Figs. 4.14~4.17. Figure 4.14 compares the four
different sizes of Preston tubes to the original Preston tube calibration
equations. It is clear that the tube size is not properly accounted for
in these calibration equations. Figure 4.15 compares the N.P.L. (1958),
the Ferris (1965), the Bertelrud (1974), and the Smith and Walker (1958)
calibration equation results to the direct force measurements. Figure

4.16 shows the results of the Patel (1965) intermediate range formula for
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Fig. 4.15 2.11 mm (0.083 in.) Preston Tube Results Using the
N.P.L., Ferriss, Bertelrud, and Smith and Walker
Calibration Equations
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Fig. 4.16 Preston Tube Results Using the Patel Calibration
Equations
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the range of unit Reynolds uumbers of this study. There was substantially
more data available, especially at the higher unit Reynolds numbers than
could be shown in Fig. 4.16, and more of these data in the range of the
boxed area im Fig. 4.16 are shown in Fig. 4.17 on an expanded scale. From
these figures it is evident that the intermediate range Patel calibration
equation gives better agreement with the direct force wall shear measure-
ments than the Preston, N.P.L., Bertelrud, and Smith and Walker calibration
equations. The Ferriss formula appears to offer the same level of agree-
ment with the direct wall shear data as the Patel eguations but the Ferriss
formula is somewhat limited in its applicable range. The N.P.L. and the
Smith and Walker wall shear value: =. generally higher than the direct
force wall shear values. While the iertelrud results are generally lower,
the choice of dependent variable in this equation leads to overall wall
shear uncertainties for this calibration equation that are smaller than
for the other equations. Bertelrud purposely used different variables for
his calibration equation given in Table 3.2 because Head and Ram (1971)
showed these variables to be less sensitive to the Preston tube data
inputs than the x* and y* variables used by most other investigators. A
close examination of the Patel and Bertelrud results in Figs. 4.15 and
4,16 indicates that although both agreed with the direct wall shear data
within experimental uncertainty, the Patel calibration gives overall
better agreement. As in Depooter, Brundrett, and Strong (1978), all the
Preston tube data in this study also fell into the x* range covered by the
intermediate Patel calibration formula so that results from the remaining
two Patel formulas are not represented in Figs. 4.16 aud 4.17.
Representative Cf values using the results of Fig. 4.16 are shown in
£ results using the Ludwieg-
Tillmann formula is good. As with Fig. 4.7 the wall shear and frecstream

Fig. 4.18 where agreement with the inferred C

data needed for Fig. 4.18 were taken simultaneously avoiding any possible
problems in matching data from different tunnel runms.

A actual number of data represented in Fig. 4.16 includes 75 Preston
tube shear values and 113 direct free shear measurements. A second order
statistical fit to these two sets of data indicated the direct force
shear values were nominally 4% higher then the Preston tube data over the

iower half of the Re/L interval shown with this difference decreasing
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nearly monotonically to sbout 0.4X at the upper end of this interval.

It is worth noting that these curve fits are heavily Liased in that the
bulk of both data sets occured at the higher Re/L values and the agreement
between these two sets of data is well within 12 in this region.

Twc-Dimensional Near-Wall Simiiarity Results
Repeatability in the velocity profiles, and the indirect and direct

wall shear values for these two-dimensional measurements establiches a
high degree of credibility for the following two-dimensional near-wall
similarity plots and the subsequent three-dimensional wall shear measure-
ments.

Twenty-six two-dimensional velocity profiles were plotted in similarity
variables. These included eighteen profiles taken on the centerline of
the tunnel over the full range of Reynolds numbers studied and eight
profiles taken at two- and four-inch distances off the tunnel centerline
in both directions at two of the nominally higher Reynolds number values.
Table 4.8 lists the profiles, wall shear values, and corresponding unit
Reynolds numbers for these profiles and shear data.

It is informative to compare the measured velocity and wall shear
data to proposed near-wall similarity laws for the two-dimensional case
but two questions should be considered first. First, there is considerable
latitude over the choice of the two constants that appear in essentially
all forms of the two-dimensional near-wall similarity law and designated
«x and C. This question is reviewed in Chapter 1I where Table 2 shows
several of the more popular pairs of constants in the literature.

Figure 2.2 shows that the choice of constants can have s significant
effect cn the logarithmic section of the similarity law. The Patel and
N.P.L. constants are used in the comparisons to follow. The second
question concerns itself with the exact form of a similarity law tnat
will be used. As noted in the review of these models, a two-dimensional
near-wall similarity law for small y+ values to include very near-wall
data ca.a be written in various forms. Three forms will be shown in the
following; the two formula law of the wall (the logaritimic form combined
with a sublayer form), the third order Spalding and the fourth order
Spalding forms. These are shown in Fig. 2.1 for one set of law >f the

wall constants.
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Table 4.8

Velocity
Profile

2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D

2D+2
2D+4
2D-2
2D-4
2042
2D-2
2D+4
2D-4

*

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

e NsEs N RN -A-N-]
e e N e

Average of 24 values from the Set 2 omnidirectional meter results.
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1.328
0.837
0.710
0.949
1.055
1.116
1.033
1.322
1.312
1.299
1.334
1.331
1.328
1.330
1.330
1.321
1.211
1.211
1.329
1.323
1.326
1.323
1.119
1.125
1.124
1.124

Velocity Profile Reu

nit

Wall Shear Re
(%xlOG)

nominal 1.328
0.832
0.705
0.943
1.052

nominal 1.120
1.052

nominal 1.120
1.314
1.299
1.335
1.332
1.328
1.326
1.326
1.323
1.217
1.217
1.324
1.314
1.327
1.316
1.109
1.124
1.117
1.116

unit

1t Numbers

Wall Shear
(Pa)
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»
*
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»
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*
Average of 10 values from the Set 1, Set 2, and Set 3
omnidirectional meter results.
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Calculated uncertainties can be identified with the plotted experimental
data points and these uncertainties vary according to the wall shear
value and distance from the wall. The largest percent uncertainties
occur for the low unit Reynolds number runs with the smallest occurring
for the highest tunnel speeds. The percent uncertainties also decrease
as one moves away from the wall and they also decrease at a given wall
distance as the tunnel speed increases. This behavior exists because
the wall shear stress has a larger uncertainty at lower tunnel speeds
and the velocity magnitude uncertainty increases in the wall direction.
Figures 4.19 and 4.20 show the typical uncertainties for a high and low
unit Reynolds number run at the extremes of the data. The similarity
law showm is the Spalding third order formula for the Patel and N.P.L.
constants.

Figure 4.21 shows mainly D series velocity profiles both on and off
the tunnel centerline and compares these to the Spalding third order
similarity formula for both the Patel and N.P.L. constants. This figure
suggests that the Patel constants would represent these data well.
Figure 4.22 shows the same data compared to the Spalding fourth order
‘similarity formula and the difference is seen in the low y+ value data
fitting better with the fuller curve. Figure 4.23 shows the same D
series data fitted to the two-formula law of the wall similarity law.

It appears that in the y+ range of 50 to 300 all three of these models

fit the data very well and if one includes the very near wall data (y+
values less than 50) the Spalding fourth order similarity model would be
preferred slightly over the third order model in terms of fit, and over

the two-formula law of the wall in terms of the convenience of a single
formula model. If the choice of y+ as independent variable is important,
then the two-formula law of the wall could be selected. Clearly, the
three~-formula law of the wall could be manipulated to include a logarithmic
buffer region formula to better fit the buffer region data.

Thirteen profiles taken over the range of Reynolds numbers of the
twodimensional data, with the exception of any D sequence data, are
shown in Fig. 4.24 for comparison with the Spalding third order similarity
model for both the Patel and N.P.L. constants. The data generally lie
well within the uncertainty intervals and the interval defined by the

135

-« ..“

oo S




"0 9€ 02 NNY ¥CG4 107d ALIYVIIWIS TVNOISN3IWIA-OM1 6T'H "OI4

- SNd A
vO— nO— «O— .O— oO~ .ﬂv
t l 1 1 o

-0 0

SN

T
0-¢cl

81
(VINWYO04 ONIATVdS)
136

1

oo

T

0:#c

spueq L3jureiaaduf

—
0°0¢




% Y 8€ Q2 NNY ¥04 107d ALTHYTIWIS TYNOISN3IWICG-OM1 0% "O14

M SNd A
“” 90— nO— NO” _O— oO— .nw

l 1 | i ''o

‘9
n

.
0
SNid

0°¢l

137

r
0°81

ve

—
0°0¢ :

(VI5WN04" ON1ATVdS)

IR e

spueq mu:wmuhwucb

o e kgl AT s D T R o b el B




*¥30¥0-Q¥IHL ONIQIVdS 3H1 804 SAVIY3AC vivad TZ'h °9Old

SN1d A
QO— nO— uO— _O~ oo.rn.U
{ | 1

! o

43Q¥0-QyIH1 ONIQVdS

I €6 0¢ X
| I ¢G5 dc
ﬁ I G v-4C X

138

o

<

[

Y
BO4d+XO4+ XN

T

0

0°0€




- ,M,,%, __________ -EE
-
A : *¥30Y0-H1¥N04 INIQAIVdS JHL ¥0d4d SAVIHIAO viva d&i'h -914
SNld A
OO— nO— NO— .O_ OO— .nv
” i 1 | 1 lo
430Y¥0-HI¥NO4d INIQ1VdS -o
r
I €6 02 X o
1 ¢S 42 * .
| 0 v-0C X —
a ¢-ae¢ A me
. v+0C Z 5
| g ¢+0c X
,, a 1g dec <
g 06 ¢ < N
g 6 G2 X -
. a 8v G¢ +
, d /¥ G w
¢.§ a ov 4 @ o
| d 9¢ dc¢ U “-
o | ——d ; st — -

L g

139




;
| "TIVM 3HL 30 MY YINWH04 OML 3IHL ¥04 SAVI¥IA0 YIVA €2'h 914
W SNd A
- 01 01 0 0l Ol o
wﬂ L 1 | 1 l o
- 7IVM 3HL 40 MY YINWY03 COMi —©
1 €6 a2 X -
1 25 de * - 3
| 0 ¥-0C X —
1 0 2-062 A |5
| d v+0dZ Z - |
| 0 ¢+0¢ X
g IS d¢ <+ ,,
0 0S a2 & Iw w
g 6y 4 X o WM
| v a 8y G2 + ,M
a /¥ 02 v
< Bk Q9% 02 Q g |
g 9¢ ae @ ‘g




*430YH0-QYIHL ONIQIVYdS 3H1 ¥04 SAVIH3IAO vivad hi'h 914
SN1d A
v°~ nO— NO_ .O— GO— o
1 1 ] 1 lo

d43050-QY¥IHL 9NIAVdS

. - . w..
[——— [P | FR——— (S

IT<OOOMmoOowuw

J ¢+0c¢
Sy Q¢
vy Q¢
¢y dc
¢y Q¢
iy Q¢
Oy ac
6¢ Q¢
8¢ Q¢
48 Q¢

O

0-clt

SNnid

"8

BO<4d+XOFNXN
ve

0°0¢

141




two curves for each of the two sets of constants. The suggestion of a
Reynolds number dependence on the similarity constants is strong. A
csraful look at the individual profiles shows that in general the lower
unic Reynolds number flows favor the N.P.L. constants and the higher

unit Reynolds number flows favor the Patel cons*ants, but exceptions to
this trend are noted so that any stronger generalization is not warrented.
. Thus, should one define a modest Reynolds number dependence of these
constants over the Reynolds number range of this two-dimensional, near
zero pressure gradient data, the uncertainty limits identify with this
variation would have to be generous. As noted in Chapter II the possible
deperdence of the similarity constants on Reynolds number is discussed

by Xieinstein (1967), Patel and Head (1964), Schraub and Kline (1965),
and Huffman and Bradshaw (1972).

As with the D sequence data, Figs. 4.25 and 4.26 show the variable
Re/L data in comparison with the Spalding fourth order similarity formula
and the two formula law of the wall, again, for the same two sets of
constants. And as in the earlier case, it is clear that the inclusion
of a buffer region formula as in the three formula law of the wall wouid
show an even better agreement than the two formula models.

The design and development of the flow tunnel, instrumentation, and
especially the three-dimensional shear meter is described more fully in
Tennant (1977). He also reports the results of preliminary data taken
with this system. The two-dimensional Tennant data is very similar to
that shown for this study but a close zxamination of his similarity
plots shows slghtly better overall agreement with the N.P.L. constants.

A careful evaluation of both this and the Tennant data indicates that

for the unit Reynolds number over which the subsequent three-dimensional
measuremer ts were made the Patel constants best represent the two-
dimensional data. The margin of choice is not large. Additionally, the
three-dimensional flow conditions in this same test section will obviously
be different than for the two~dimensilonal case ev-a1 at the same tunnel
inlet unit Reynolds number. The subsequent three-dimensional similarity
models will be presented for comparison with the Patel constants in the
similarity models, but some limited comparisons will be made for both

sets of constants.
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It shoula be noted that no tube displacement or other corrections
[ were used for the velocity probe data reported either in this work or

.

the earlier work of Tennant (1977). In analyzing an extensive quantity
of two-dimensional near-wall data, Coles (1968) elected to ignore very

—

near wall data for y+ values less than 50 because cf the wide scatter

among different sets of data in this iow y+ range. The reasons for such
scatter have . - been precisely determined with a variety of possible

error often - ~* oned {low Reynolds number effects, displacement corrections,
wall proxi ity effects, etc.). Note that the data in this study and the
preliminary data of Temnant (1977) do not exhibit wide scatter for the

very near-wall region and follow the predictions of the third and especially
the fourth order Spalding similarity model well. Pierce and Gold (1977)
undertook a systematic study of such very near-wall data in a smaller

tunnel for 2DTBL flow and considered different impact probes, hot films,

gooseneck probes, straight probes, slight flow convergence and divergence,

S and favorable and adverse pressure gradients. While for some of these

3
3

variations in instrumentation and flow conditions small systematic
changes in the very near-wall data were consistently noted, none of the
variations explored were adequate to move the very near-wall data as
4 often required for better agreement with the presumed behavior suggested
: » by models such as the third or fourth order Spalding formula. The
MacMillan (1956) tube displacement corrections for distance from the
4 - wall were tried but the changes were not adequate.

In most of these figures the data for y+ less than 50 fall slightly
above theoretical predictions for either set of constants when using the
Spalding third order formula model and the agreement is improved with
the fourth order Spalding formula or the two formula law of the wall for

either sets of constants. The overall agreement of the data in this

e aaule o did

study with any of these three models used in the y+ range of 50-300
suggests that either set of constants and any of the three similarity
models us2d (clearly, the three formula law of the wall can be included

in this group) gives generally good agreement with the experimental

results. Overall, the Patel constants are favored because of their good

agreement with the extensive D series unit Reynolds number.

145

R T At T A T P A



ST AT QR PP

V. THREE-DIMENSIONAL MEASUREMENTS

Introduction

Velocity field, wall pressure field, and direct force local wall
shear stress measurements were made in the pressure driven 3DTBL generated
by the teardrop body with axis placed normal to the floor shown in Fig.
3.2. Figure 5.1 shows the data stations on a 5.1 cm (2 in.) grid where
velocity field and wall shear data are reported here. Station designations
are made up of a letter and number with sign. The letter represents the
row of the data station with A being the centerline of body and moving right-
ward in one-inch increments. The number represents the distance forward
of the body nose measured in inches with the zero being the leadins; <dge.
Positive numbers are forward of the body and the sign is omitted. Negative
numbers represent stations behind the leading edge. Velocity profiles are
designated by an additional number indicating the number of the profile.
For example, profile C5 02 is the second profile taken at the C5 location
shown in Fig. 5.1.

The required static pressure field, wall shear field, and velocity
field were obtained separately. The unit Reynolds number of the tunnel at
inlet was maintained at an essentially constant value (1.322 x 106/m +
1Z) to insure dynamically similar conditions during data acquisition. At
least two wall shear data points were taken at each point shown in Fig.
5.1. After repeatibility was established for the three-dimensional
profile data acquisition, generally one velocity profile was taken at each
of the data stations except for Al, Cl, E-3, and E-5. Close proximity to
the separation region resulted in very large velocity‘Eluctuations at
these stations. Static pressure distributions were obtained on 1.27 cm
(6.3 in.) grid because of the larger number of data points required to
obtain reasonable polynomial curve fits to these pressure data for the
prediction of wa'l pressure gradients required in some of the three-

dimensional similari*; models.

Velocity Profiles

Figures 5.2 through 5.11 show the velocity magnitude and angle

variation profiles along the various rows. The A column on the plane of
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Flow
Direction
- +
A7 c7 E? G7 17
o o ) ° o
A5 CS ES G5 I5
o o 3 o o
A3 c3 E3 G3 13
o o o o )
Al Cl El Gl 11
0 ° [ )

E-1 G-1 I-1
o [ -]
6.35 cm
(2.5 in.)
E-3 G-3 1-3
[ (-] 0o
5.08 cm
(2 in.)
E-5 G-5 I-5 *
o o [
5.08 cm
(2 in.)

—-

Fig 5.1 Diagram Showing the Data Stations for the
Teardrop Flow
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symmetry shows two-dimensional behavior exccpt that a very small amount of 3
skewing occurs very close to the wall--nominally two degrees or less--but
the trend is clear. This small skew is similar to that identified with
the two-dimensional profiles taken with the body removed and discussed

earlier. Skewing along column C reaches over 30° as the body is approached.

Py

Station E-1 shows an interesting velocity magnitude reversal near the
wall after the body leading edge has been passed with a corresponding

reversal in the skew angle as well. Columns G and I show substantially

R e e

less skewing though the nature of the skewed profile and the magnitude of

the skewing depends on the position along the particular columm.

In general the minimum velocity magnitudes and maximum skewing occurs
for those flow stations closest to the teardrop. If one could imagine a

control volume enclosing the stations and body in Fig. 5.1, conservation

of mass suggests the flow velocities downstream of the teardrop will be
larger than those in row 7 because of the reduced flow area available
downstream in the body. This is the general case but the increase in
velocity is not uniform. As the flow sweeps past the teardrop body there

is a tendency toward returning to a two-dimensional-like profile.

Static Pressure Field

Omitting the singular zero pressure gradient case, the pressure
gradient-wall shear vector orientations in two-dimensional flows are
limited. These vectors may be directed in the same sense or in the
opposite sense, but they are always collinear and may be treated in a
scalar sense. The three-dimensional case jis more complex. Wall static
nressure measurements were made on a 1.27 cm (0.50 in.) grid to provide a
large number of data points to obtain reasonable polynomial curve fits to
the pressure data for the prediction of wall pressure gradients required
in some of the three-dimensional similarity models. As is well known, the
prediction of accurate gradients from experimental data requires special
care. The wall pressure readings for each row and column were curve fit
to a family of polynomial curves from second through eighth order with
graphical output. Each figure was individually examined and in some
instances the data was re-fitted through the same range of polynomials in

a plecewise manner--that is, polynomial representations were obtained for
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two or three segments with data overlap in all cases. This procedure was
usually required where large variations in wall pressure occurred close
to the body. Derivatives along the longitudinal and transverse directions
were conputed for these families of polynomial curves for each row and
column, again with graphical output. For each row and column the chaice
of derivative values was obtained by "consensus" from the three polynomial
representations which gave the closest agreemen: in the predicted derivatives.
While this procedure involved considerable personal attention to a large
quantity of data, it yielded the most consistant results and allcewed for
an estimate in the uncertainty of the predicted derivative results.
Details of the instrumentation and method of estimates are given in
Nelson (1979). Figure 5.12 shows the pressure gradient vectors for a
forward quadrant of the body and Fig. 5.13 shows the pressure gradient
vector map for the forward half of the body. Figure 5.13 was constructed
to determine if the side wall boundary layers affected the body flow
field as the body was moved about to take the necessary data. The
results ia this figure sliow excellent symmetry and are a good indication
that the overall flow field was not noticeably changed by moving the
body siuce only the most remote data n the far sides show modest differences.
This same computer software was used to predict gradients in the
wall shear magnitude and in the wall shear direction which were required
by some of the models tested. A lower degree of accuracy is identified
with these two sets of gradients because of the smaller amount of data
points for each row or column in the array over which gradients were

calculated.

Wall Shear Field

The direct wall shear measurements by the omnidirectional meter for the

tear drop flow are tabulated in Tables 5.1 - 5.5. The wall shear

magnitude and angular uncertainties were determined after a Kline-McClintock
error analysis as for the two-dimensional omnidirectional wall shear
uncertainties and here again an attempt was made to approach an Nth order
uncertainty estimate as discussed by Moffot (1980). No corrections of any
type have been applied to the data in these tables. At least two wall

shear readings were obtained on a 2,54 cm (1 in.) grid for the quadrant

shown in Fig. 5.1 except for the I column where a 5.08 cm (2 in.) spacing
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Fig. 5.12 Pressure Gradient Map for One Quadrant of the
Teardrop Body
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was used. Additional wall shear values were obtained in a row 9 inches in ._}
front of the tear drop nose and at stations All and Al3. The wall shear
vectors at the flow stations shown in Fig. 5.1 have been drawn to scale in
Fig. 5.14. The curvilinear rectangle at each vector tip indicates the

uncertainty estimated for the magnitude and direction of each shear vector

— L...._,,
T R 1

shown. The separation line shown in the figure was determined from a oil E

streak visualization study shown in Fig. 5.15 and obtained with titanium j

P

dioxide particles suspended in a diesel fuel-mineral oil mix.

Figure 5.16 shows a comparison of the preliminary data of Tennant
(1977) with that reported here. These data are not directly comparable 8

since they were obtained at different tunnel unit Reynolds numbers. The

larger wall shear stress magnitudes of Tennant': data are a result of a .j
12% higher unit Reynolds number. For comparison purposes it is noted that
extensive measurements in a nominally two-dimensional flow indicated a 20% gi
higher wall shear for the higher Reynolds number tunnel conditions than -
for the lower speed conditions. It is noted that the pseudo two-dimen-
sional nominally symmetric flow at station A7 shown in Fig. 5.16 reflects
an equal difference. It is not possible to predict shear magnitude
differences between the readings in the fully three-dimensional flow
field. Agreement between the wall shear stress angles is generally
within the uncertainty bands shown, although it should be noted that these
angles would also be expected to change slightly for a change in tunnel
unit Reynolds number. Note that the largest d.fferences appear near the
separation horseshce vortex where measurements were very difficult because
of larger fluctuations in the detected wall shear. Overall, each data set
gives similar results for the two different unit Reynolds numbers showing .
the repeatability of the omnidirectional meter between the two studies.
Repeatability of measured data within each study was generally well within
the indicated uncertainty bands.
As the leading edge of the body was approached a reversal of the wall
shear direction was noted near station A3. A complete flow reversal was
recorded at station Al with a very high local shear stress identified with
the horseshoe vortex behind the upstream separation sheet. It appears
that station Cl is also within tlie separation vortex. The shear vector

direction indicates a significant downstream wall flow component develops
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Fig., 5.14 Wall Shear Vector Map
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and Tennant (1977)

Fig. 5.16 Comparison of Wall Shear Maps of McAllister (1979)
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in a relatively short distance from the symmetry plane. This separated
flow near the cylinder-flocr corner appears to be complex and is being
investigated by LDV techniques in a subsequent study. In the unseparated
region the wall shear appears wall behaved as its angle turns first away
from the body as the flow approaches and moves around the cylinder, and
then turns toward the body as the flow reverses direction to follow the
trailing edge.

A superposition of the wall shear map and the pressure gradient map

shown ir Fig. 5.17 indicates the very wide range of pressure gradient-wall
shear stress vector orientations varying from nearly collateral and in the )

same sence along the center line (the A) stations, to mearly collateral

and in the opposite gense at E-1 and G-1, to nearly orthogonal at station

bl
G-1. These results confirm the anticipated further difficulties in the 7'
application of any pressure gradient corrections such as those in Fig. : ?
L
3.15 to three-dimensional flow measurements.
Wall Streamline Directions 3

As discussed earlier, recent experiments (Rogers and Head (1969), i 3
Hebbar and Melnik (1973)) and analyses (Pierce and East (1972), Klinksiek

P

and Pierce (1973)) do not support the assumption of a collateral near-wall

iayer in three-dimensional turbulent flow as suggested by polar represen-

FE VTR AL RO WD

tations of velocity profiles as in Fig. 2.4. Thus the assumption that the
limiting wall streamline direction or the wall shear stress direction can
be taken as the flow direction indicated by a small velocity prnbe very

near to the wall is at best highly suspect. Figure 5.18 compares the

~. .
Ol v gt b

velocity vector direction at 0.25 mm (0.010 in.) from the wall and the

measured wall shear stress directions from the omnidirectional meter. The )

wall shear stress and velocity vector angles can differ significantly;

i

for example, at station C3 the angles differ by over 13°, and are well

. atside any reasonable uncertainties for both measurements. These results

are consjstent with studies noted earlier which indicate that the velocity
fi vecter generally changes direction continuously to the wall. Since the

measurements of local wall shear stress direction can be significantly

different from the typical necrest wall velocity direction, the common

,; practice of ihferring the limiting wall stream line angie from the latter

172
4




\ N
A3 _C3 \E3 63 13
i ‘ﬂ'/ «\\5‘ \
! A
\\ Y
- - \ |
Al ciN El: c1\ Il ¢

|
|
I \ N
E-5 G-5 1-5
\
\
b
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Fig. 5.18 Wall Shear and Nearest Wall Velocity Vector Map
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can yield significant errors for at least some flow conditions. Limiting
wall streamline directions were measured from the oil streak patterns
shown in Fig. 5.15 and the results are presented in Teble 5.6. With only
a few exceptions, there is exrcellent agreement between the oil streak
directions and the direct force wall shear directions, and as noted
above, these directions are different from those of the nearest wall
velocity vector indicating further turning of the velocity vector down to
the wall.

The strong agreement between the o0il streak limiting wall stream line
directions and the direct force wall shear directions suggests that any
pressure gradient effects on the Jdirect force sensing shear meter affected
the wall shear directions minimally, if at all. The results in Table 5.6
are interesting from another point of view. It has been suggested, at
least informally, that the demonstrated use of miniature, dual sensor,
buried wire flush mounted heat meters in a three-dimensional turbulent
flow by Higuchi and Peake (1978) in effect validates the use of such
devices for quantitative results in other such three-dimensional flows.

It has been inferred that the smallness of such miniature heat meter
sensors would result in a minimal thermal penetration into the skewed
near-wall flow so that the limiting wall streamline direction would be
accurately measured. The comparison or wall flow angles measured by oil
streak patterns and the dual element heat sensor calibrated in a two-
dimensional flow and reported in Heguchi and Peake show consistent and
typical differences ranging from about 5° to as much as 15°. Based on the
high degree of agreement found in this study between the wall flow angles
measured from the oil streak patterns and the wall shear direction measured
by the direct force sensing shear meter, at this point in time it would
seem somewhat presumptuous to assume that such miniature heat sensors do
in fact report limiting wall streamline directions accurately. Paren-
thetically, it is also noted that the wall shear magnitude values reported
by Higuchi and Peake were based on a two-dimensional calibration using a
Preston tube., No validation of this two-dimensional calibration was
attempted in any three-dimensional flow.

Finally F!g. 5.19 shows the relative orientations of the freestream

streamline directions and the local wall shear stress directions. As
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Table 5.6

Comparison of Flow Angles#

Station Shear Velocity 0il
Meter Probe* Streaks
A7 - 0.9° 1.3° + 0.5°
! A5 - 1.8 1.7
c7 7.5 6.8 7.0
C5 20.3 14,2 20.5
C3 52.3 39.1 47.0
E7 10.1 8.4 10.0
E5 18.8 14.7 18.0
E3 31.7 26.6 31.5
El 31.1 36.2 32.5
G7 9.4 9.1 10.5
G5 13.7 12,7 16.0
G3 16.9 16.5 16.5
Gl 14.7 17.8 15.5
G-1 3.9 13.1 5.5
G-3 - 6.9 3.9 - 4.0
G-5 -11.9 2.0 -10.5
I7 6.4 7.6 7.0
I5 8.2 9.0 8.0
13 9.3 11.0 9.0
I1 6.9 10.0 7.3
I-1 1.5 7.2 4.0
I-3 - 4.6 1.1 - 3.0
I-5 - 8.1 - 2.7 - 7.0

#Tunnel inlet unit Reynolds number of 1.30 x IOb/m

*
Probe OD = 0.25 mm (0.020 in.) with the probe on the wall
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Fig. 5.19 Freestream Streamline and Local Wall Shear
Directions
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expected, the collinear upstream character of these two familles is

quickly lost when significant freestream streamline curvature begins with

the corresponding pressure-driven secondary flow in the boundary layer.

The figure also suggests that if one identifies wall streamlines with the
local wall shear stress, then these wall streamlines appear to turn substantially
less than the freestream streamlines. An ultimate return toward parallelism
appears downstream when the freestream streamlines lnse their curvature.

The freestream streamlines in the lower quandrant of Fig. 5.19 tend to

become parallel with the body centerline, rather than follow the body
contour. This behavior appears to relate to the thickening of the separation
horseshoe vortex as it wraps itself around the body as evidenced by the
nearly constant width shown for the downstream portions of the separation
line in Fig. 5.15. The influence of this separation vortex and the free-
stream flow in close proximity to the body, particularly in the regions
dowvnstream of the midplane of the body, remains to be determined in further

work in this three-dimensional, separated flow.
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VI. THREE-DIMENSIONAL SIMILARITY MODEL RESULTS

Introduction

In making an assessment of the validity of any near-wall similarity
model for a three-dimensional flow, the first question that arises is
that of over what range of y+ values might one expect to find similarity.
As discussed earlier, in his extensive study of 2DTBL data, Coles (1956,
1968) suggests that the logarithmic behavior begins at about y+ of 50
and for moderate pressure gradient flows extends to about 300. Questions
on possible inaccuracies in velocity measurements arising from high-
turbulence effects and wall interference or wall proximity effects for
data in the lower range of this 50 < y+ < 300 interval for two-dimensional
flows would also likely be valid for these dimensiondl flows as well.

It is also noted that the upper limit of y+ = 300 is reduced in adverse
pressure gradient flows and tends to increase in favorable pressure
gradient flows. For the two-dimensional case Perry (1966) and Brown and
Joubert (1969) suggest a formal measure of the departure of the near-
wall velocity profile from the logarithmic form in terms of a pressure
gradient parameter and based on the half power model used to describe
the flow in this region.

For the three-dimensional data in this study this two-dimensional
experience will be used as a guide in the test for similarity. For the
six simpler similarity modecls, for the Perry and Joubert model, and for
the principal flow component of the three more complex models, the
primary focus will be on data in the 50 §.y+ < 300 range and clearly
this upper limit of 300 must be considered ilexible just as in the twc-
dimensional case. One might expect the six simple similarity models to
behave as in the 2DTBL where pressure gradient strongly affects the
range of similarity. Some of the more complex models incorporate pressure
gradient information and in these cases the agreement with experimental
velocity-wall shear data might be expected to be maintained at these
highe~ y+ values even in pressure gradient circumstances.

It is worth noting, however, that in the early study of three-
dimensional flows with indirect wall shear measurements with Preston

tubes (which presumes the existence of two-dimensional like near-wall
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similarity in three-dimensional flows), Prahlad (1968) showed a high degree of
velocity profile data consistency in the y+ < 50 range though not with the
logarithmic like law. Such consistency was also found in the velocity data
of a few others including Ezekwe (1974), and in the measurements in this

study as well.* It will prove to be useful to evaluate these similarity
models in a secondary focus in this y+ < 50 range as well,

In the case of the three models which propose a transverse component
of the flow (in the coordinate system unique to each model), there is no
firm basis for a choice as to the y+ region to focus on in looking for
near-wall similarity.

In the following discussion and ~elated figures the ten similarity
models tested are frequently indentified by letter rather than name desig-
nation and while the designations are obvious Table 6.1 summarizes the
short-form usage.

The test of the suitabili’y of the ten similarity models evaluated
here is a graphical or visual est. In each case an "analytical" sim-
ilarity line is shown as a solid line of q+ (or u+ and w+) vs. y+. In some
models (PJ, B, and WLC) input from experimental data is required to construct
this analytical line while in the others this line is independent of experi-
mental data. Next, the experimentally measured velocity profile and local
wall shear stress are combined as the various models specify to provide
pairs of q+ (or u+ and w+) and y+ coordinates and these are shown as symbols.
For the ten sﬁ;ilarity models including all velocity components, each
velocity profile- ‘ar station would require 13 figures. To reduce the
number of figures r. ._.ed, multiple plotting was used to show the ten
similarity models in a sequence of six figures on a single page. The
following describes the general scheme and specific exceptions will be
noted in the text as they occur. The first two figures on the top of =ach
page combine the six, simpler similarity models, three to a figure. This
is convenient since for these six similarity models the analytical mudel is
identical--it is the equivalent velocity used in constructing the q+ and
y+ pairs from experimental data that differs amonr the models. In these
first two figures the analytical model line is the two-dimensional near-

wall similarity model and this has been drawn for the Spalding third order

*Similar consistent behavior is reported by K. C., Brown. Sce footnote on
page 89,
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Table 6.1. Three-Dimensional Similarity Model Designations

Model

Coles (1956)

Johnston (1960;

Prahlad (1968)

Hornung & Joubert (1963)

Freestream Profile
Pierce and Krommenhoek (1968)

East & Hoxey (1969)
Perry & Joubert (1965)
van den Berg (1973)

Chandrashekhar & Swamy (1976)

White, Lessmann, & Christoph (1975)

Short Fcrms

HJ

EH

PJ

CS

T
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equation. This choice allcws a comparison of these models in the 50 §_y+
< 300 range of principal focus as well as the very near-wall interval of
y+ < 50 of secondary focus. Analytical lines for both the NPL and Patel
constants are shown for comparison purposeé. The four more complex similarity
models are shown ii pairs in the next four figures. For these figures only
the model lines for the Patel constants are shown except for the CS model,
where the specific constauts given by the model authors are used. Addi-
tionally, since these fcur models all return the two-dimensional like
logarithmic law, the model lines are terminated at y+ = 50 since one does
not expect log-like behavior below this value. The first figure of the
first pair shows the PJ model and the principal flow component, u+, of the
WLC model, with the PJ analytical model line labeled. In many instances
these two analytical lines appear nearl; identical. The second figure of
the pair shows the transverse, w+, component of the WLC model, with the
analytical model line arbitrarily drawn only up to y+ of 300. In several
instances this figure is omitted because flow conditions were such as to
prohibit the calculation of this component or because the compoanent model
is not appropriate to the flow conditions. The last pair of figures shows
the principal and transverse components of the B and CS models, with the CS
analytical model line labeled. The transverse analytical model line of the
B model is shown up to y+ of 300 while the CS line is limited to y+ of
150. This latter arbitrary choice was made based on the region of similarity
shown by Chandrashekhar and Swamy (1976) wher the model was proposed. The
reader is again cautioned that the two-component similarity models do not
use the same coordinate systems and this should be recognized in any attempted
generalizations. Thus the ten three-dimensional similarity models can be
compared to the velocity-wall shear data in six figures. To facilitate the
comparative evaluation of the ability of the.e ten similarity models to
predict the measured data, the set of six graphs corresponding to each
station has been grouped and reduced in size to fit on a single sheet and
these are shown as Figs., 6.1 - 6.25.

Before studying these graphical results it is further worth noting
that the ability to accurately assess the three-dimensional near-wall
similarity models depends on the accuracy of the experimental data. The q+

+ +
(or u+ or w ) and y uncertainties in plotting the results from the same
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experimental data generally vary for each similarity model because of the
different ways the data are manipulated to calculate these quantities for
each model. Additionally, the uncertainties for a given model vary as one
moves throughout the boundary layer. This variation was demonstrated

acfoss the boundary layer in the two-dimensional similarity plots by showiag
the uncertainty for the data nearest and most remote from the wall in Figs.
4.20 and 4.21,

In the three-dimensional case a comparison of experimental data with
an analytical model can involve two kinds of uncertainty. Such a com-
parison requires that for each of the models an experimentally determined
pair of q+ (or u+ or w+) and y+ values be plotted and there is an exper-
imental uncertainty in the varicus quantities needed to calculate a q+ (or
u+ or w+), y+ pair. This uncertainty is here called an experimental
uncertainty in q+ (or u+ or w+) and y+.

In the case of the six simpler models and one of four complex models,
th2 analytical q+ (or u+ or w+) and y+ values (the solid lines) require no
experimental data input and so no uncertainty is identified with the analytical
model line. However, in the more complex models of WLC, PJ, and B, the
analytical model line predicting the q+ (or u+ or w+) and y+ variations
requires the input of specific experimentally measured data such as a
measured pressure gradient vector, a wall shear vector, or gradients in the
magnitude and direction of the wall shear vector. By inputing experimental
data into an analytical model line there is introduced into that analytical
model prediction an uncertainty here called a model uncertainty. Note that
this model uncertainty is different from what has been called the experimental
uncertainty in calculating a q+ (or u+ or w+), y+ pair from velccity profile-
wall shear data, although both these kinds of uncertainties arise from
various possible measurement errurs. The CS model has no analytical model
uncertainties as defined above because no experimental data input i. needed
to construct these lines. T[he total uncertointy for the WLC, B, and PJ
comparisons in the timilarity figures discussed here would combine the
wodel uncertainty as defined above and the exparimental uncertainty in
calculating the q+ (or u+ or w+), y+ data point pair for the velocity profile
and wall shear data. In comparing an experimentally measured q+ (or u+ or

+ +
w ), y pair to a model, one would need to consider both the experimental
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and analytical model uncertainties to establish a corresponding combined

|

uncertainty. Two further points should be made in this regard. First, it

should be noted that each of these modeis includes two empirical constants.

———

Since these ten models all come directly from, or are developed from,

C

variations of the traditional two-dimensional mixing length concept, these

constants are designated x and C and this insures the return of the two-
dimensional model in the case of vanishing skew or transverse flow. The
question of the uniqueness and accurate specifications of these two constants 1
in the two-dimensional case has already been discussed and these amb.guities
should also be recognized here. Secondly, the uncertainties reportea for

the local wall shear measurciaents include no pressure gradient effects., i
This is due to the lack of agreement among proposed corrections (and no
corrections in pressure gradient flows should be included as one of these !
proposed corrections) for the limited studies reported in two~-dimensional

flows, coupled with the apparent strong dependence of proposed corrections

on tb2 geometric particulars of the mechanical meter used. An effort is
currently being made to determine possible pressure gradient effects on the
mechanical shear meter use! “‘n this study in two-dimensional flows.

In the following figures the direct force wall shear stress measured
value is used to calculate the nondimensionalizing shear velocity par-
ticular to each model. Assuming the model is properly derived, perceived
agreement between the nondimensionalized measured profile and the model
line would support the relationship between the particular siear velocity
and the lccal wall shear stress. The existence of uncertaiir:..es in the
measured velocity and wall shear data in each q+ (or u+ or w+) wnd y+ pair
as well as uncertainties in the analytical model line due to the constants
k, C and in some cases the input of experime. ta” data as well, should be
considered in these visual comparisons. It is worth reminding the reader
that if one fits any portion of the near-wall or very near-wall data to any
given similarity model with any given similarity constants by inferring a
shear velocity from these data (Pierce and Zimmerman, (1973)) then one can
expect a near perfect fit over the profile region used to infer the non-
dimensionalizing shear velocity. Such a superior fit does, however, not in
general confifﬁ any relationship between the shear velocity and the local

wall shear stress.
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Similarity Model Results
The three-dimensional similarity model comparisons for the ten models

tested are shown in Figs. 6.1 through 6.25 for 25 stations as defined in
Fig. 5.1. In an attempt to organize the comparisons the pressure driven
velocity profiles are divided into four categories based on the total
skewing of the local velocity vector relative to the freestream direction.
The first category is for skew angles of from 0° to nominally 5° (actually
less than 1.5°), the second two categories are for monotone increasing skew
angles from 5° to 15°, and for more than 15°, and the last category is for
profiles with first increasing and then decreasing skew angles. In all
cases the changes in skew angle are with respect to a decreasing distance
from the wall. It should be noted that the velocity profiles in this last
group are incorrectly labeled by McAllister (1979) as s-shaped or bilaterally
skewed when in fact only one of these profiles (station I-5) is of that
type. Table 6.2 lists the protiles in each of these categories.

Only the pseudo two-dimensional plane of symmetry profiles along the
A column, stations A7, A5, and A3, show the total velocity vector skewing
less than 1.5° and these are shown in Figs. 6.1-6.3. As discussed in Chapter
V, and similar to the two-dimensional profiles discussed in Chapter IV, the
profiles at A7 and A5 show a monotone increasing and positive turning (per
Fig. 4.1) of up to 1.4° as the wall is approached. The profile at A3 shows
a turning of nearly one degree close to the wall, with return toward the
freestream direction at the wall, hence this profile has a very slight bulge
in its turning. While all these turning angles are less than 1.5° #nd a large
measure of these angles can be accommodated in the angular uncertainty estimates,
this behavior is consistent and taken to be real.

In an overall view, the six simpler models show a degree of agreement
with the data for stations A7 and A5 not unlike that typical of early work
in two-dimensional flows and shown in Fig. 2.2. There is closer agreement
with the Patel line and as the adverse pressure gradient becomes more
severe, a smaller region of apparent (or approximate) similarity is noted.
In the limit of vanishing transverse flow these six simpler scalar similarity
models all return the two-dimensional similarity law and from this view the
results for A7 and A5 are not surprising. It is worth noting that there

appears to be an inconsistent and slightly lesser slope to the data in the
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Table 6.2, Velocity Profile Grouping by Skew Angle
Monatone increasing
Increasing-
Skewing Type 0s° 5 15° over 15° Decreasing
Velocity A7 c? C3 E-1
Profiles
A5 c5 E3 G-1
A3 E7 El G-3
ES G-5
G7 I-1
G5 I-3
- G3 1-5
Gl
17
15
13
11
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region of primary y+ focus. A similar result is reported for plane of

symmetry flows by Brown* and is attributed to the lateral divergence cof the
streamlines with the transport of lower momentum wall flow upwards resulting
in these slightly lower mean velocities. If this effect is to be included
in any similarity model then the characteristics of the neighboring flow
must be included and clearly the six simpler models are not adequate to
include such an effect. Ir the y+ range of secondary focus the data follows
the general shape of the Spalding line very well though riding consistently
higher. The possibility of a pressure gradient error in the wall shear

must be noted since the slightly higher q+ values shown could result from a
low wall shear and hence low q* and this would intuitively be the direction
of such an error for these stations. Possible pressure gradient effects on
the mechanical meter are currently being evaluated. The preliminary work

of Tennant (1977) shows a better agreement with the theoretical model line
for these six models at station A7 but similar behavior with the experimental
data riding high for station A5. Finally, it is noted again that if one
were to fit the lower y+ data to the model lines then these several data
would result in an excellent fit with the lesser slope of the following

data more apparent.

The principal flow components of the four more complex models show
good agreement and except for the CS model suggest no pressure gradient
error in the wall shear measurements. For the A column these complex
models are all in essentially the same direction and with the nearly zero
skew measured none of the transverse model comparisons are meaningful.

Since the complex models were developed around equilibrium and mixing

length analyses following the 2DTBL case, it is not surprising to see this
kind of agreement in the typical y+ range of primary focus. At station

A7 the PJ, WLC, and the B models all predict the effect of the modest

rising pressure well but at A5, where the adverse pressure gradient hecomes
larger, the B model appears to account for this effect more effectively,
with the PJ and WLC models overpredicting the pressure gradient effect.

For these data the better agreement in the region of expected similarity for

the PJ, WLC, and B models than for the six simpler two-dimensjonal-like models

*See footnote on page 90,
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suggests that the ability to include pressure gradient effects is important
in this y+ region. The station A3 shows generally poor agreement with all
models and this appears to be due to the close proximity to separation.
These models can be traced to Townsend's (1956) equilibrium balance between
turbulent energy prcduction and dissipation in 2DTBL similarity, and in
close proximity to a separation region boﬁndary the existence of equilibrium
can be questioned.

The second group of profiles considered all showed a monotone in-
creasing skew angle relative to the local freestream direction and limited
to 15°. These are shown in Figs. 6.4-6.15. Profiles C7, E7, G7, G5, I7,
I5, I3, and Il all show an increase in the local skew angle a maximum wall
value of between 5° and 10° as measured with the claw probe resting on the
wall. Profiles C5, E5, G3 and Gl show a maximum value between 10° and 15°.
These two subgroups are considered together as listod in Table 6.2, In
general, the six simpler models all show about the same kind of behavior
relative to the experimental data with the data tending to ride above but
closer to the Patel line than the NPL line. 1In the y+ rénge of primary
focus there is a tendency for the experimental data for the higher y+
values to dip down somewhat and as with the plane of symmetry profiles one
could argue that a better fit with the data would occur wﬁth a lesser slope
in the logarithmic portion of the model lines. 1In the y+irange of secondary
focus it is worth noting that the data again tends to follow the general
shape of the two-dimensional, Spalding single formula law of the wall
rather consistently. :

For this group of profiles the WLC model for these freestream flow
components and the PJ model show generally good agreement with the data in
the y+ range of primary focus upward toward 150 or 200 depending on the
profile with only profile Gl as an exception to this generalization. These
profiles also show a very consistent behavior in that for y+ < 50 the data
drops down below the log like model lines and follows the form of the
typical two-dimensional transition lines sketched between the u+ = y+
sublayer and the log-like behavior as for the six simpler models in the
first two figures in each series. All of these profiles have modest transverse
flow because of the limited skewing angle and five transverse profiles are
shown for the WLC model with good agreement in the y+ range of 10 to about

100 for skew angles up to 7°, and relatively poorer agreement with a maximum
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skew angle approaching 12°. Only five of 12 transverse profiles are shown
for th?* model because of the difficulty in determining the nondimensional
boundary layer thickness by evaluating the freestream model at the boundary
layer edge as suggested by the model authors. In several cases this evaluation
introduced a negative argument in a square root quantity. While other
estimates could have been made for this required thickness, consistency
suggested omitting such transverse profiles since some representative cases
were available.

The CS and B models for the principal flow component (freestream
component in the CS model and wall shear direction component in the B
model) also show similar good agreement for these 12 profiles. Some care
must be exercised in separating the CS and B lines in the figures. The CS
model line is straight while the B model line generally shows some curvature.
In general the B model line better approximates the data and tends to
better represent the data at higher y+ values shown in Fig. 6.5 for station
C5. In some cases the CS model also shows reasonably close agreement with
the experimental data as in stations G5 and G3 but the B model appears
superior. For y+ < 50 the data behaves as described above. For the transverse
components of these 12 profiles the CS model generally shows very poor
agreement. The choice of the principal flow direction in the B model
results in an especially small transverse component near the wall with both
the model line and the experimental data very close to zero for all profiles
in the y+ range less than 300. The data and model line both agree in the
sense of showing small values but the small transverse flow does not seem
to offer a reasonable test for the transverse model.

The third group of proriles is shown in Figs. 6.16-6.18 for stations
C3, E3, and El1. These profiles are also characterized by a monotone
increasing skew angle from the freestream toward the wall with a maximum
skew angle ranging from 20° to 32°. Tor this group with the larger skew
angles, the six simpler models begin to show significant differences as a
result of the way the experimental data is manipulated to generate the
equivalent q+ values, The J, C, and EH models tend to show larger differences
at the higher y+ values. Any region of similarity seems to be in the y+

range of secondary focus, but only up to a maximum skew of about 20°.
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The PJ model and the freestream component of the WLC model show a
small region of good agreement for a maximum skew of 20° with decreasing

L

agreement with increase in maximum skew angle as in station El at 25° and
C3 at 32°. The transverse componert for the WLC model in Fig. 6.17

—

could not be computed for the reason noted earlier. For this figure

the PJ and WLC models are repeated but this time using the NPL constants

o=

(rather than the Patel constants) in the model lines to show the effect of
the choice of constants. Note that the NPL constants tend to lower slightly

|

the model curves for both these models just as in the two-dimensional case

as shown in the top two figures for the six simpler models.

| S

The CS and B models show a small region of good agreement with the

experimental data for the principal flow direction for the 20° maximum skew

case of E3, with relatjvely poor agreement as the skew increases., The
transverse component of the CS model generally shows poor agreement with

the exrerimental data. Again, the choice of coordinate system aligning

itself with the wall shear in the B model leads to small transverse velocities

in the region where similarity would be expected even for these cases of

large skew. For stations E3 and C3 the model lines and experimental data &
show poor agreement. Station El with 25° maximum skew shows some agreement
over a modest y+ range (at a near zero though slightly negative w+ values)
with the experimental data and model line going in opposite directioms at
y+ of about 100. The transverse component of the B model is strongly
dependent on the transverse pressure gradient of the flow field and the
rate of change of the turning of the wall shear vector. These are the
principal contributions to this component and the nature of the model line
in these figures is largely determined by these gradients. Van len Berg
(1973) does indicate that this similarity model be restricted to modest
skewing, while this group has substantial skewing.

The fourth group of profiles includes statioms E-1, G-1, 5-3, G-5, I-1,
I-3, and I-5 shown in Figs. 6.19-6,25. In the previous two groups of
profiles, skewing of the velocity vector through the boundary layer was
monotone increasing with the turning angle increasing continuously down to
the wall relative to the local freestream direction., This kind of profile
is typical of many, if not most, of the pressure-driven profiles for three-

dimcensional flows shown in the literature. The velocity profiles in this
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last group are characterized by not having a monotone increasing skew

angle. In all of these profiles as one moves through the boundary layer
toward the wall there is first an increasing skew angle toward some maximum
value away from the wall, with a subsequent decreasing of the skew angle to
the wall. Two profiles in this group are singled out. Station E-1 in Fig,
6.19 has the widest range of skew angle, first increasing to about 29° and
the decreasing to about 24°, Station I-5 in Fig. 6.25 is a bilaterally
skewed profile such as shown in Figs. 2.5 and 2.6. In this case the skew
angle range is only about + 2° so that this is a modest case at best.
Bilaterally skewed flows are typically identified with freestream streamline
re-curvature where the change in direction of the curvature of the freestream
streamlines changes the direction of the pressure gradient forces imposed

on the boundary layer by the freestream flow. This change in direction of
transverse pressure force acts to reverse the secondary flow direction of

the boundary layer flow with the lower momentum fluid near the wall influenced
more strongly and hence changing direction of the secondary flow more
quickly. The first signs of this are the diminishing of the skew angle for
the flow near the wall as shown in Klinksiek and Pilerce (1970). The remaining
five profiles of this group IV have their maximum skew angle between 0-10°
and nominally all in the same direction. (Station G-5 shows a slight
bilateral skew behavior but, while consistent, is within experimental

angular uncertainty.)

For this group of profiles, with the exception of Station E-1, the six
simpler models show varying degrees of agreement with the data, but generally
in the lower y+ range of secondary focus and with the velocity data typically
somewhat high. Again, the high velocity data position could be éxplained
by adverse pressure gradient force effects on the shear measurement but
some of these stations showing this typically high velocity data are in
near zero and even positive pressure gradients where such possible pressure
effects should at least begin to show an opposite influence on the data.
There is also a tendency for the velocity data to suggest a lower slope to
the log line in the six simpler models. In the plane of symmetry case this
has been attributed to lateral streamline divergence but such streamline
divergence is somewhat more difficult to identify clearly in this group of
profiles.




AT

For this group of profiles, the six simpler models generally show
reasonably good agreement with the experimental data although the profiles
with large reversals in the skewing direction near the wall show a rapid
drop off in the nondimensionalized velocity as the y+ values increase as
shown in Figs. 6.20 for station G-1 and especially in Fig. 6.19 for station
E~1. The total turning angle in these figures is approximately 10° or less
with the exception of station E-1. With such small turning angles the six
simpler models all tend to show nearly identical resulcs which, as in the
earlier three groups of data, tend to lie somewhat above the theoretical
line of the models in the lower y+ regions. Figure 6.19 for station E-1
shows a singular behavior apart from the otner profiles in this group.

This is because of the relatively large turning angles which increase from
0° to about 29° and then decrease to about 24° at the wall. With such
large turning angles the six simpler models show large differences in their
equivalent velocities. None of the simpler models describe the flow at
this station very well.

The WLC model for the freestream flow component and the PJ model show
good agreement with the experimental data for the four profiles with skew

of less than about 5° (Stations G-5, I-1, I-3, and I-5), with lesser agreement

for the profiles showing skew in the 5° to 10° range (G-1 and G-3). Station

E-1 in Fig. 6.19 shows poor agreement with the two models giving significantly

different p}edictions. The transverse WLC model could only be computed

for two of the seven profiles but the small transverse components again
qakes'fhe c;mparison questionable. The CS and B models also show reasonably
gbod agreement with the experimental data with the exception of station E-1.
Aéain the good agreement is identified with the relatively modest skew

and the poor agreement at station E-1 is identified with the large reversing
sﬁew. It is interesting to note that in Fig. 6.19 for station E-1 the B
m&del tends to show very good qualitative agreement in predicting the
general shape of the experimental data. The transverse component for the

CS model again tends to show relatively poor agreement with the experimental
data. The transverse component of the B model is again treating only very
small velocity magnitudes. Tt is also noted that for this particular group
of profiles there is a consistent disagreement between the direction of the

transverse component predicted by the B model and measured for the profiles
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[j in the region of expected similarity, Station E-1 provides a strong test
of the transverse component CS model since large skewing is present,
[? Figure 6.19 shows extremely poor agreement with this model.

Summary
Generalizing, it would appear that for profiles with monotone increasing

(RN

<

skew and with skew angles up to about 15-20°, any of the six simpler models

| p—
[ SEen——

does a fair job of predicting near-wall similarity in a region of primary
focus for y+ > 50 with the qualification that in this study the experimental
data tend to ride higher than the theoretical model lines. These (and

-many other) three-dimensional data show consistently better behsvior in

D

the lower y+ range of secondary focus--the y+ range where two-dimensional

data are characterized by more scatter and disagreement amcng even

carefully done experiments--and to some extent this better very near-

near wall behavior compensates for the more rapid departure from similarity

in the higher y+ range of similarity more typical of two-dimensional

b

flows. It would appear that shear velocity magnitudes inferred by

Clauser chart type techniques using data in the y+ range of 10 to about
100 would be within 5-107% of values calculated for the direct force
measurements (uncorrected for any possible pressure gradient effects).

It would of course be essential that the similarity law be of the type that

reflects the very near-wall departure from the log law-like behavior in
this range of smaller y+ values. The third or fourth order Spalding formula
such as used here or the two or three formula law of the wall described in

Chapter 1I and adapted to the method Schraub and Kline (1965) by Pierce and

Zimmerman (1973) should be adequate to accommocdate this lower y+ range data.

For profiles with an increasing and decreasing skew angle of 10° or
less, as occurs with the change in direction of transverse pressure forces
identified with freestream streamline curvature, and for plane of symmetry
flow away from separation the agreement with the experimental data for the

six simpler models is similar to that for the monotone increasing skew

angle profiles with modest skewing described above as less than about 20°.
For the profile with increasing and decreasing skew with large maximum skew #

angle (29°) none of the models, simple or complex, does an adequate job in

representing the data,
For the above kinds of flows three of the four complex models generally

are superior in describing the experimental data for the freestream or
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principal flow component. The exception is the CS freestream model which
behaves as the six simpler models. For modest transverse velocities the
WLC and B models seem to be the most encouraging but the degree of agreement
is generally not nearly as good as for the freestream or principal flow
component. The PJ model and the freestream component of the WLC model and
the principal flow component of the B model tend to show the best agreement
with the data. A difficulty with thece more zcomplex models lies in the
fact that each returns the two-dimensional logarithmic like law for sm#ll
y+ values. Thus, assuming these models could be used to infer local
shear velocity magnitude (say to 5-10%) there is the problem of fixing a
lower y+ limit below which data would not be used since this and other
stuilies suggest the typical data is better described by some kind of
"transition" description in the very-near wall region of say y+ s 50
as discussed earlier. Thus these models would not use well much of the
data available tc infer even an approximate shear velocity (or wall shear)
magnitude. '
Similarly, if on2 were to use these three more complex models in a
computational scheme replacing the no slip wall boundary condition at the
wall with a match to a similarjty model near the wall then, for the flows
described above, such a match should be made in this range of about 50 <
y+ <.100. Practical difficulties will occur since these three more complex
models (White, Lessmann and Christoph, Perry and Joubert, and van den Berg)
all require an a priori know’ :e of the pressure gradient magnitude and
direction, and the latter two also require an a priori knowledge of at least
the wall shear direction. Yet it is interesting to note that, in general,
the corrections to the nea: wall similarity law for pressure gradient and
inertial effects appear to contribute to the similarity model in a y+ range
that is often beyond any modest region of perceived similarity.
The question of pressure gradient effects or corrections to the
direct force measurements is currently being pursued. It is noted, however,
that while the high q+ values of the plane of symmetry flows suggest a
low wall shear value due to an adverse pressure gradient effect, a

corrected, higher wall shear value would cause this same velocity data

to appear low for the Perry and Joubert model and the principal flow direction

components of the other two mcdels which otherwise do a reasonable job of

194

"

S




| G

predicting the near-wall flow, at least in modest y+ regions, The various

wall shear and pressure gradient orientations in Fig. 5.17 do not suggest a

consistent behavior of possible pressure gradient effects on the measured
wall shears. Addiitionually, preliminary work in a shear-driven flow in a

near-zero pressure gradient field indicates results similar to those for

]

this pressure-driven flow. This would also suggest small pressure gradient
corrections at most. '

—

E
In retrospect it 1is not surprising to find reasonably similar and fair §
:

agreement among these ten similarity models (the principal flow component

iy g

in the three vector models) for the monotone increasing skew profiles of

) modest skew as well as the plane of symmetry profiles. All these models
l; can trace their origin directly to the classic Townsend equilibrium concept
. for two-dimensional turbulent boundary layers and subsequent variations of
Z; the classic mixing length hypothesis. It can be argued that skewing in the
: three-dimensional case taxes the applicability of this basically two-

i dimensional approach with an approximate upper limit of 15°-20° of skew.
‘f Within this upper skew limit for these flows it appears that the local wall

;e shear stress and nondimensionalizing shear velocity for the various simila~>.ty
: L plots ave related within a modest uncertainty. This implies that at least

: an approximate magnitude of local wall shear stress would be inferred from
such similarity models in a "Clauser chart" type of approach as developed

by Pierce and Zimmerman (1973) for at least the simpler similarity models

!' reviewed and t:«sted here. This would also imply that with indirect diagnostic

devices which are not strongly sensitive to yaw angles (such as Preston

o tubes and surface heat meters) would also give a reasonable good approximation
! to the magnitude of the wall shear stress in such modestly skewed flow as
well, using a two-dimensional calibration. Note that without the supporting
i. results of this study with directly measured local wall shear stresses,
such use of a two-dimensional calibration in a three-dimensional flow would

g ; i be speculative at best. The same relative insensitivity to yaw that would

allow the use of such indirect devices in a skewed fiow would, however,

| ] render such devices as relative.; poor in indicating the local wall shear

stress or limiting wall streamline direction. It would appear that for

>

[' such modestly skewed flows the combination of say a Preston tube or surface

heat meter together with an established wall flow visualizsiion technique

-
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could do a reasonable satisfactory job in mapping a wall shear field. The
combinarion of indirect magnitude sensing device and flow visualization for
the direction would be significantly easier to use than a direct force
sensing three-dimensional wall shear meter such as used in this study.

It appears that for monotone, strongly skewed flows (say 20° and

greater) and for flows with increasing-decreasing skew of more than about
10°, none of the ten three-dimensional similarity models tested here seems

adequate to describe the near-wall velocity field even approximately.
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