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Near-Wall Similarity in a Pressure-Driven
Three-Dimensional Turbulent Boundary Layer

ABSTRACT

f	 3

Extensive measurements were made to determine the mean velocity

field, wall pressure field, and wall shear stress field for a pressure-

driven three-dimensional turbulent boundary layer in a forward quadrant

of the flow around a cylinder with trailing edge placed normal to a flat

j	 plate floor.
The direct force wall shear measurements were made with a unique,

omnidirectional floating element mechanical shear meter which sensed both

the magnitude and the direction of the local wall shear stress. To

establish the credibility of these direct force wall shear measurements,

extensive measurements were first made in a two-dimensional turbulent

boundary layer over a range of unit Reynolds numbers where generally

excellent agreement was obtained with a variety of direct and indirect

two-dimensional wall shear diagnostic, devices and techniques.

These three-dimensional velocity field, wall pressure field, and

wall shear field results were used to test the ability of ten near-wall

similarity models proposed in the literature for three-dimensional tur-

bulent boundary layers to describe the near-wall velocity field. Six of

these ten models are scalar, treating some form of an equivalent velocity

component. Three of the remaining four more complex models are two-

component vector models and the last is a scalar model which recognizes

the vector nature of the near-wall flow by way of a developed velocity.

All. of the ten models tested find their origin, directly or indirectly,

in an equilibrium boundary layer hy pothesis using a mixing length.

For profiles with monotone increasing skew and with skew angles up

to about 15-20% for profiles with an increasing and decreasing skew angle

of 10° or less, and for plane of symmetry flow away from separation, any of

the-six simpler models does a fair job of predicting near-wall similarity

in a region of primary focus of y+ > 50 with the qualification that in this

study the experimental data tends to ride higher than the theoretical

model lines. These (and many other) three-dimensional data show consistently

better behavior in a lower y+ range of secondary focus--the y+ range where

A '^l
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two-dimensional data i s characterized by more scatter and disagreement

among even carefully done experiments--and to some extent this better very-

near wall behavior compensates for the more rapid departure from similarity

in the higher y+ range of similarity more typical of two-dimensional

flows. It would appear that shear velocity magnitudes inferred by Clauser

chart type techniques using data in the y + range of 10 to about 100 would

be within 5-10% of values calculated for the direct force measurements

(uncorrected for any possible pressure gradient effects) provided that the

similarity lava be of the type that reflects the very near-Wall departure

from the log law-like behavior in this range of smaller y + values. The

third or fourth order Spalding formula or the two or three formula law of

the wall should be adequate to accomodate this lower y + range data.

For the above kinds of flows three of the four complex models gen-

erally are superior in describing the experimental data for the freestream

or principal flow components. For modest transverse velocities two models

;how some agreement with data but generally not nearly as good as for the

freestream or principal flow components. A difficulty with these more

complex models lies in the fact that each returns to two-dimensional

logarithmic-like law for small y+ values. Thus, assuming these models

could be used to infer local shear velocity magnitude (say to 5-1090,

there is the problem of fixing a lower y+ limit below which data could not

be used.

If one were to use these three more complex models in a computational

scheme replacing the no slip wall boundary condition at the wall with a

match to a similarity model near the wall, then for the flows described

above, such a match should be made in a range of about 50 < y + < 100.

Practical difficulities will occur since these three more complex models

all require an a rp iori knowledge of the pressure gradient magnitude and

direction, and two also require a p riori knowledge of at least the wall

shear direction.

For the restricted class of three-dimensional flows described above,

it appears that the local wall shear stress and nondimensionalizing shear

velocity for the various similarity models are related within a modest

uncertainty. This implies teat at least an approximate magnitude of local

wall shear stress would be inferred from such similarity models in a

I. b
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Clauser chart type of approach. This would also imply that with indirect

diagnostic devices which are not strongly sensitive to yaw angles (such as

Preston tubes and surface heat meters; would also give a reasonably good

approximation to the magnitude of the wall shear stress in such modestly

skewed flow as well, using a two-dimensional calibration. Note that

without the supporting results of this study with directly measured local

wall shear stresses, such use of a two-dimensional calibration in a three-

dimensional flow would be speculative at best. The same relative insensitivity

to yaw that would allow the use of such indirect devices in a skewed flow

would, however, render such devices as relatively poor in indicating the

local wall shear stress or limiting wall streamline direction. It would

appear that for such modestly skewed flows the combination of say a

Preston tube or surface heat meter together with an established wall flow

visualization technique could do a reasonably satisfactory job in mapping

a wall shear field. The combination of indirect magnitude sensing device

and flow visualization for the direction would be significantly easier to

use than a direct force sensing three-dimensional wall shear meter such

as used in this study.

It appears that for monotone, strongly skewed flows (say 20° and

greater) and for flows with increasing-decreasing skew of more than about

10% none of the ten three-dimensional similarity models tested here

seems adequate to describe the near-wall velocity field even approximately.

One additional model found in the literature could not be tested

because of the need for turbulent stress gradient data at the wall and

such data is exceptionally difficult to measure accurately.

;' G
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	 Briefly, near-wall si-hilarity refers to the experimentally determined

and demonstrated "sameness" of the velocity profile in the wall region of

a broad class of turbulent boundary layer flows when these are plotted in

suitably nondimensionalized coordinates. For two-dimensional turbulent

boundary layers* the concept of near-wall similarity is well accepted and

a brief review of these ideas will facilitate the discussion of nea—wall

similarity for three-dimensional turbulent boundary layers*.

Near-wall similarity is not to be confused with the rigorous, math-

ematical similarity type of analysis where for a given physical problem

all relevant variables are known and the governing equations can be suc-

cessfully nondimensionalized to seek out solutions to entire classes of

problems. Near-wall similarity is like this but not as rigorous for it is

'	 experimental, not analytical; only the strong variables appear known; it

is an experimentally based "sameness" of flow with all the usual uncer-

tainties of experimental studies. In the two-dimensional case it does

cover large classes of flocs. For example, exce pt for extremes in pressure

gradient, all turbulent boundary layers appear to ')e well described by the

same similarity law for all flows over hydraulically smooth surfaces

without suction or blowing.

For the 2DTBL the generally accepted similarity law is written as

+ = K In y+u	 + C

where u+ = u/u* , y+ = yu* /u and u * = T/p. Unlike the rigorous

mathematical similarity analysis, r, and C are experimentally determined

constants (that do change with roughness and suction/blawing) and some-

times appear to have at least a weak but not well defined dependence on

*The short forms 2DTBL and 3DTBL will be used as con-enient for the two-
and three-dimensional turbulent boundary layer.
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other variables. Apparent systematic variations in K and C are often

within the experimental uncertainty of the data itself and this causes

difficulty in firing the universality of these two parameters.

The various regions of flow characterizing a. 2DTBL velocity profile

with emphasis on those particular to this study are ehuwn in Fig. 1.1.

Following the suggestion of Coles (1956) the typical velocity profile for

• 2DTBL can be thought of as made of two main regions, a wall region and

• wake region. The wake region represents the large majority of the

profile and is often identified with velocity defect coordinates. The

wall region is a relatively small portion of the profile and is usually

identified with the classic logarithmic law of the wall. It is this

latter flow region which is the near-wall flow and the subject of this

near-wall similarity study.

Multiple designations for portions of the near-wall region have

evolved and are reviewed here to avoid ambiguity. This near-wall flow

zone is sometimes broken up into three subregions with a viscous sublayer

subregion very close to the wall, the logarithmic or law of the wall

subregion further from the wall (but well before the wake region of the

profile becomes strong), coupled by an intermediate, transition or buffer

subregion. One can write equations for the velocity profile in each of

these three subregions and this leads to a three formula law of the wall.

Alternatively, it is not uncommon to omit the transition, or buffer sub-

region, with the near-wall similarity zone made up of only the inner

viscous sublayer and the more remote logarithmic law of the wall sub-

region. This leads to a two formula law of the wall. The boundaries

between the Fubregions of the three and two formula law of the well

models are somewhat arbitrary. Finally, in examining a very large volume

if experimental data for 2DTBL flows, Coles (1956) shows a lack of con-

sistency in data among experimenters as one approached the wall in the

approximate y+ < 50 range. It is convenient to designate this zone of

flow as the very near-wall zone.

Because the law of the wall designation is often taken to refer to

the logarithmic equation which is not valid down to the wall itself, it

has sometimes been convenient to refer to the com?lete near-wal.l flow

region as the region of the extended law of the wall. Spalding (1961)

2
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and Kleinstein (1%7) have proposed a similar, single formula law of the

wall to describe the entire near-wall region down to the wall itself.

As a word of caution the reader is reminded that in discussions of

the entire velocity profile, particularly in the older literature, it has

been common to describe an inner or viscous wall region and an outer or

velocity defect (wake) region, which are joined by an overlapping region

and from which the original model of the logarithmic law of the wall

evolved. It is important not to cc;nfuse this overlap region, where the

law of the wall in its logarithmic form is valid, with the transition or

buffer subregion described in the three formula law of the wall model.

In this work near-wall similarity refers to the usual lav of the

wall subregion, the transition subregion, and the extreme near-wall

viscous subregion or sublayer. These three regions have also been col-

lectively referred to as the extended law of the wall region or simply as

the near-wall region.

It is worth noting that in the semi-logarithmic coordinates of Fig.

1.1 the near-wall region appears quite large. In fact, it represents

relatively thin layer of flow in the usual case. Based on his extensive

and exhaustive study of over 400 velocity profiles Coles (1956, 1968)

suggests that logarithmic like behavior begins at a y + value of about 50.

Even at larger y+ values there are significant and unresolved questions

on the accuracy of velocity measurements in the 2DTBL case with experi-

mental data typically above the logarithmic line. There appears to be no

self consistent ^ethod or technique to resolve these differences among

various sets of data. A frequent explanation is a traditional probe

displacement_ correction but Pierce and Gold (1977) have shown that this

does not always resolve such differences. Coles work also suggests that

for modest pressure gradients a y+ upper limit of about 300 is reasonable.

Above this value the wake contribution becomes more noticable. This

approximate upper limit is affected by pressure gradient, decreasing with

increasing adverse pressure gradieut. The region of 50 < y+ < 300 is

more than adequate to define the classic logarithmic law of the wall

region. Recognition of the difficulties in very near-wall velocity

measurements In the more thoroughly studied and better understood 2DTBL

4
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case, prompts this study in the 3DTBL case to focus on flow generally

t.	 outside this analogous very near-wall region and in an interval of %urinal

yvalues as in the two-dimensional case.
3

Aside from the fundamental importance of providing basic information

of the nature of the near-wall flow in 2DTBL's, this observed similarity

also serves (1) to provide a means of inferring the very difficult to

measure local wall sh--ar stress from the such easier to measure local

velocity profile data, (2) as the basis of the validity of indirect wall

shear diagnostic devices such as Preston tubes, rakes, fences, heat

meters, etc., and (3) to provide the potential for improving computer

solutions to turbulent boundary layer flows by reducing computational

steps and computer storage by matching outer computer solutions to accepted

inner velocity profiles based on established near-wall similarity models.

The motivation for establishing the existance of and limits on near-

wall similarity in the 3DTBL case are much the same as in the 2DTBL case.

The importance of local near-wall similarity laws in 3DTBL and channel

flows grows when one recognizes that the empirical eddy viscosity and

mixing length models often rely on wall similarity information, especially

in the near-wall behavior. For example, in the two-dimensional case, the

classic van Driest damping factor is designed to reto ,rn the logarithmic

law of the wall-like behavior in the computed velocity profile. Clearly,

it is essential to know the nature of this near-wall flow in the three-

dimensional case if one is to use such algebraic closure models in the

solutions of these kinds of problems. The question is even more critical

in current applications of higher order modeling of the Reynolds stresses

where in many existing solution techniques only turbulent stresses are

included in the motion equations, thus precluding any near-wall calcu-

lations where viscous stresses exist. Considerable economies in the

computer time and monies can be effected in 3DTBL and channel flow calcu-

lations if one replaces the no slip wall boundary condition at the wall

with a match to a near-wall similarity law near the wall thereby avoiding

the more dense regions of lattice points required by large gradients. A

good knowledge of and limits on local three-dimensional near-wall similarity

laws are, however, crucial to these solution techniques. It is recognized

5



that closure of the equations of motion with a turbulent energy model or a

turbulent stress transport model or similar higher level models does not

require the exclusion of viscous stresses in the motion equations and this

is only a consequence of many of these current methods of solution.

It should be noted that in the ZDTBL the near-wall similarity law is

a simple scalar law since the velocity profile is always collateral. That

is, all the velocity profile vectors are always in the same direction

(similarity laws for flow reversal circumstances do not appear to have yet

been proposed).

For the three-dimensional case the concept of near-wall similarity is

not so well established. To date, 11 models for the velocity profile in

the near-wall region have been found in the literature. Six of these

models are simpler scaler models, while five of these models recognize in

some more elaborate way the vector character of the 3DTBL velocity profile

with the vector turning continuously down to the wall.

The resolution of the near-wall similarity question in 3DTBL flows

requires the direct force measurement of both the magnitude and direction

of the local wall shear stress, the mean velocity field, and the wall

pressure field. The wall shear stress is required since a key question in

the test of similarity models in three-dimensional flow is whether or not

the local wall shear stress is related to some form of a three-dimensional

shear velocity as in q	 AT-  p, analogous to the two-dimensional case.

The test of existing proposed similarity models for the 3DTBL consists of

defining a local shear velocity from the directly measured local wall

shear stress and plotting the nondimensionalized exper"ental data in the

coordinates of the various proposed models for direct comparison with the

various analytical model forms. Some of these models require significant

additional experimental data input on wall shear magnitude gradients, wall

shear angle gradients, and wall pressure gradients as well.

The direct force measurement of local wall shear stress is an absolute

requirement in any serious study of the near-wall similarity question in

three-dimensional flows. This is an essential requirement since the

several near-wall similarity models proposed in the literature for the

3DTBL case all require the local wall shear stress (or some component of

it) in the necessary nondimensionalizing of experimental data. While the

6



t ,
	 use of indirect wall shear devices has been reported in some 3DTBL flows

(e.g., Pierce and Kroamenhoek (1968), Prahlad (1968), East and Hoxey

(1969), van den Berg (1976), Dechow and Felsch (1977), Higuchi and Peake

(1978)) with both Preston tube type devices and miniature surface mounted

heat meters, all such devices reported to date have used only two-dimen-

sional calibrations in three-dimensional flows. This, in effect, assumes

a priori and without justification, the validity of a two-dimensional

near-wall similarity law in three-dimensional flow--and this is wholly

unacceptable in any attempt at a definitime study of near-wall similarity

in a three-dimensional flow. Up to this point in time no indirect wall

shear diagnostic device has been calibrated for wall shear magnitude and

direction in a three-dimensional flow for subsequent use in any other

three-dimensional flow. The use of a two-dimensional calibration in a

three-dimensional flow presumes far more than is acceptable in a near-

wall similarity study in 3DTBL flows.

In summary, in the 2DTBL case near-wall similarity concerns itself

with the experimentally determined sameness of the flow from the wall

itself and through the region where the classic logarithmic law of the

wall is valid. This excludes the large outer portion of the velocity

profile where the wake character is strong. Practical experimental

difficulties in making accurate and repeatable measurements very close to

the wall suggests the excluFion of the very near-wall data in two-dimkmQional

uear-wall similarity studies. Since all the three-dimensional near-wall

similarity models give the two-dimensional logarithmic form of the law of

the wall in the limit of vanishing secondary flow and since in the two-

dimensional case an approximate y + range of 50 to 300 14 suggested for

modest pressure gradient flows, it would seem reasonable to focus attention

on a similar interval in a first look at the existence of near-wall similarity

in the three-dimensional case.

7
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II. REVIEW OF SIMILARITY MODELS
i

Introduction

Two-dimensional near-wall similarity has been studied for over fifty

years, while the first three-dimensional similarity model was suggested in

1956 by Coles (1956). Following White's (1174) review, in the 1930's

Prandtl, von Karman, and Millikan divided the boundary layer into two

distinct regions of flow, an inner or viscous region and an outer region,

which were joined in an overlap region characterized by a logarithmic law

as shown in Fig. 1.1. Later experimental work by Schultz -Gruaow (1940),

Ludwieg and Tillmann (1950), Deissler (1955), Clauser (1954), Laufer

(1953) and the analytical work by Clauser (1956), van Driest (1956) and

Coles (1956, 1957), solidified the near-wall similarity concept for two-

dimensional turbulent flows. ..

Coles (1956) suggested the first three-dimensional near-wall simi-

larity model mainly as an extension of the two -dimensional logarithmic

similarity law. Johnston (1960) introduced a second model and by 1976

eleven different three-dimensional near-wall similarity models appeared in

the literature. It was not until Tennant (1977)* that a preliminary yet

fairly extensive comparisord of some of these wos undertaken. The work

reported here is a more detailed and more thorough study of the pressure-

driven 3DTBL flow initiated by Tennant.

This review will examine different forms and origins for some of the

various smooth wall two-dimensional similarity models since many of the

early three-dimensional similarity models assumed forms similar to these

two-dimensional models. Subsequently, the three -dimensional models will

be examined to see what fundamental differences exist among these models.

Since the credibility of the experimental data is critical in verifying

any proposed model, a review of Preston tubes is also included since these

are a generally accepted method for two-dimensional wall shear inference

and Preston tubes were used to Lelp verify the direct wall shear measure-

ments made in two-dimensional flows by the omnidir,actional meter in

preliminary work to establish credibility of this mechanical meter.

Two-dimensional near-wall similar!:_; is a well accepted concept and

a two-dimensional similarity law exj5^s with the understanding that this

9
*See fooi:note, page 4n. 
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law say be expressed by different equations or models. There is, however,

some question surrounding the uniqueness of constants in these equations.

In contrast, there is not as yet an established three-dimensional simi-

larity law since, while several models have been proposed, none has been

validated by direct local force shear measurements, and such validation is

an absolute necessity in establishing the existence of such a law—what-

ever form or model it may ultimately take.

Two-Dimensional Near-lull Similarity

Figure 1.1 shows the near-wall or extended law of the Mall region

which typically composes approximately 10-20% of a two-dimensional tur-

bulent boundary layer. Prandtl (1933) first suggested using the variables

in Eq. 1.1. A similarity law for the inner flow or the viscous sublayer

followed by assuming that only viscous shear is important in a thin layer

immediately adjacent to the wall where

du
u dy	 -TO.

It follows that

U = To y/U.

It is convenient to define a two-dimensional shear or wall friction
*

	

velocity as u	
Ty/--
0/p, in order to nondimensionalize this result with

*
u	 u 

U
*	 v'

If we define

+ u
U =

U

and

*

Y = U

10



then for the viscous sublayer,

c

U = y .
	 2.1

la 
There are a number of ways of deriving the relationship that holds in

the logarithmic region. Hinze (1975) provides an excellent compilation of

these derivations. Two contrasting developments are reviewed briefly
f	

here. Historically the outer region was described by a velocity defect or

outer law by von Karman as

UW - u	 f (t o .PI, y I,	 •

It is useful to write the inner law, Eq. 2.1, in functional form as

u+ = f (Y+)

and the outer law as

UM - u

u

Since the inner and outer laws are both valid in some overlap region,

these are combined to give

U+	 du* 

u

For u+ to exist with both a multiplicative function f and the function g

with an additive term, functional analysis requires f and g to be logarithmic.

In inner variables this gives the logarithmic law

u	 +r,+	 += K In y
	 2.2

which describes the flow where the inner and outer regions of Fig. 1.1

join together. This overlap region has come to be designated the law of

the wall region or the logarithmic region.

11



The concept of a constant stress throughout the logarithmic region

can also be used with a mixing length or an eddy viscosity to give a

logarithmic form. For demonstration purposes Prandtl ' s mixing-length

theory will be reviewed. Since the logarithmic region is fully turbulent,

T = P 12 	 aulaul

ay ay.

Prandtl made two important assumptions: (1) that the mixing length in

this region is proportional to the distance from the wall, i.e., i - Ky

where K is usually taken to be von Karman ' s constant, and (2) that since

this inner region is small, T - constant = T A . It follows that

2
To = p K2y2 (dy) .

Introducing the wall friction velocity and separating the variables, one

obtains

R-- dy - du.
K y

and this can be rewritten as

+

K ^ - du+.
Y

Integration results in

+= K In y+u	 +C

where K, often taken as the von Karman's constant, and the constant C are

experimentally determined. More about these constants will be discussed

later. Townsend (1976) also uses the concept of a constant stress layer

to derive the logarithmic form from the turbulent energy equation for

channel flow.

Equations 2.1 and 2.2 constitute the classical, two-dimensional

similarity law for the near-wall region for smooth walls and this com-

bination is sometimes referred to as the two formula law of the wall. It

2.?
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Li
is worth noting that the identification of the shear velocity, u with

Z	 the wall shear stress, with u = T► O/p, comes directly from this kind of

analysis. Coles (1968) suggests such developments are not convincing

theoretical derivations, with the shear velocity empirically identified

with the wall shear stress mainly from pipe flow studies.

Occasionally a relation for the transition subregion shown in Fig.
t.

1.1 is assumed so that a smoother transition takes place between the

viscous sublayer and the logarithmic subregions. This relationship can take

the form of

U+ = A' In y+ + B'
	

2.3

where A' and B' are constants different from 11K and C. This three

formula law of the wall representation of the near-wall region, Eqs. 2.1,

2.2, and 2.3, may be set aside in favor of a single formula for the

entire inner region.

Spalding (1961) and later Kleinstein (1967) independently developed a

single formula for the entire near-wall region. Their expression, called

a third order equation, is

Y+ = u+ + 
e -KC le ICU +

	 KU+ - (
K2+) 2 - K6+ 

3 ).	 2.4

Development of this relation requires the constant shear assumption made

previously. This expression also satisfies the requirements that the eddy

viscosity is proportional to the cube of the distance from the wall in the

viscous sublayer as first noted by Reichardt (1951) and that the eddy

viscosity varies as the exponential of the distance from the wall as the

similarity law in the logarithmic region requires. In a later study Elrod

(1957) concluded that the eddy viscosity varies more closely with the

fourth power of the distance from the wall. Spalding presented an al-

ternate equation to satisfy that requirement by adding the term, (KU +) 4 A!,
to the bracketed expression in Eq. 2.4. This additional term, which gives

a fourth order equation, does little to alter the curve as is shown in

Fig. 2.1, yet this small change often enhances fits with experimental

data.

Other empirical expressions have been developed by Rocta 150),

13
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t
Reichardt (1951), Deissler (1955), van Driest (1956), and Mellor (1968);

howei.--r, none of these results in the more useful closed form expression

of Spalding. Even more recently, Rasmussen (1975) has developed a single

formula expression; however it appears to offer little advantage over

Spalding's form. Very recently Dean (1976) has combined Spalding's (1961)

inner law with a single polynomial for Coles' (1956) wake function for the

outer region as developed by Finley et al., (1966) and later by Granville

(1975). The rdbeat is a single formula for the whole turbulent boundary

layer profile.

Rough walls (Clauser (1956), Hinze (1975), Townsend (1976)), suction/

blowing (Kleinstein (1967)), and compressible flow (White and Christoph

(1972), East (1972)) general]._ have different law of the wall forms than

those given above but these vises will not be considered in this work.

There is considerable latitude over the choice of the two constants

that appear in essentially all forms of the two-dimensional near-wall simi-

larity law and designated K and C. Table 2.1 lists several of the more

popular pairs of constants and several more are available in the literature

but are omitted here because of their less frequent usage. Figure 2.2

shows that the choice of constants can have a significant effect on the

logarithmic section of the similarity law. The most popular pairs of

constants are those of Coles (1968) and Patel (1965), which give nearly

identical results, and to a lesser extent those of the N.P.L. (1958) and

this group does show reasonably close agreement when plotted in similarity

coordinates.

The possible dependence of the similarity constants on Reynolds
M

number is discussed by Kleinstein (1967) who presents an analysis showing

a qualitative dependence on Reynolds number, by Patel and Head (1969) who

state that the additive constant, C, varies for low Reynolds numbers,

Schraub and Kline (1965), who suggest the noniniversality of these constants

for pressure gradient flows, and Huffman .nd Bradshaw (1972) who also reviewed

this question in low Reynolds number flows 4nd suggest that for small shear

stress gradients the von Karman constant %ppears to remain at 0.41 while

the additive constant appears Reynolds .umber dependent.

Figure 2.2 with Table 2.1 shows the kind of disa greement that occurred

among careful experiments in the 2DTBL case. This kind of scatter among
i
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Table 2.1 Partial Listing of Two-Dimensional Law of the
Wall CC:.stants

It

Investigator K C

j Coles	 1968 0.41 5.0

Patel (1965) 0.42 5.45
1
t_

Clauser (1956) 0.41 4.9

4
s, Smith and Walker (1958) 0.46 7.15

N.P.L. Staff	 (1958) 0.47 5.9

Spalding (1961) 0.40 5.5

Townsend (1976) 0.41 5.61

Coles (1956) 0.40 5.1

i
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careful experiments should be considered in the evaluation of similarity 	 .-

models for the three -dimer. .sional case to be made in Chapter VI.

It would be useful to discuss the effects of pressure gradient and

inertial effects on the similarity law for the logarithmic region. Prandtl's

constant shear assumption seems adequate for many flows even for moderate

pressure gradients or moderately accelerating flows. For eases where

these conditions do not exist, the shear stress distribution will vary

thoughout the boundary layer. At the wall, the turbulent shear, as well

as the velocities parallel and normal to the wall, go to zero so that the

momentum equation provides that the viscous shear stress gradient normal

to the wall be balanced by the longitudinal pressure gradient:

a 
- (11 

au ) = dp

ayay	 dx

Noting that at the wall u 
ay 

- T O , one can write

T = To + dx y + O (y3 ) •	 2.5

Ignoring the higher order terms caused by inertial effects for the

moment, Eq. 2.5 may be rewritten in the form

T^

	

= l+a y	 2.6T
O

where

U	 dpCl __	
*3 dx

pu

Utilizing the mixing length assumption as before, it can be shown that,

(T ) 1/2= K
Y 
+y+ du+	

2.7T
o	

dy+

By combining Eqs. 2.6 and 2.; and integrating, one obtains

u+ = K[ln y+ + KC + 2 ln(	 1/2 
]+ 2(1+ay ) ;/2-2].	 2.8

(l+cay
+

 )	 +1

18
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This equation was originally derived by Townsend (1961) and for zero

pressure gradient reduces to the near-wall similarity law for the

logarithmic region. Van den Berg (1973) points out that for ay+ << 1,

Sq. 2.8 may be simplified to:

u+ - K[ln y `+ KC + 01-Z  j.	 2.9

Variations of this analysis have been made by Patel (1973), McDonald

(1969), Townsend (1961), and Mellor (1966).

The higher order terms in Eq. 2.5 that have thus far been ignored

represent the influence of acceleration of the flow which results from

the large velocity gradients near thc. wall. Van den Be-g (1973) estimates

that in the logarithmic region, these terms are on the order of half as

large as the pressure gradient effects.

Allowance for the inertial terms can be made by multiplying the

pressure gradient term by a factor representing the contribution of the

inertial terms in the region considered (Bradshaw, et al. (1967)). A

constant shear gradient is assumed. Townsend (1956) and van den Berg

(1973) suggest that since the shear gradient is essentially not constant,

a more satisfying procedure would be to estimate the contribution of the

inertial effects as _ action of the wall shear stress gradient in the

flow direction. If the shear stress varies little with distance from the

wall, the velocity profile may be assumed to depend only on the shear

stress at the wall. A first approximation of the inertial terms for a

given wall shear gradient in the flow direction can therefore be calculated

by employing the near-wall similarity law.

Following the derivation of van den Berg (1973), we may write the

near-wall similarity law in a more general form:

u+ = f(y+).

It follows that the velocity derivatives may be written as

19
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i

*
au du	 +df

If + YU d=	
dy J

*2
Du = u	 df
ay u dy+

Continuity provides that

V=- r Y du d
Y 
=-du

*
 

Y 
f.J	 dx	 dx 

0

By substituting these velocity gradients into the momentum equation and

integrating, one finds that

du	 y	 au	 auT - To = y dx + p	 (u ax + v ay)dy,

or in nondimensional ford,

T 1+ay+ + g I1	2.10

where

*

8 
= u du

U
*2 dx

and I 1 is a function of y+ which appears as the upper limit in the integral

I1
 f

Y
f2 dy+.

0

Applying mixing length theory as before, Eqs. 2.7 and 2.10 may be

combined to give

= 1+ (1 + ay+ + 6 11)1/2.

ay	 Ky

20
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Assuming that ay and S II , are small, this may be approximated as

au+ 	1	 a^ S I l) .
ay+ = KY (1 + 2 + 2

and integrated to give

+ B I
u+a K In y +KC+ ax2'-+ 22 ]

where

I2 	 (
y

iI dy+^

0	 +
y

To evaluate the integrals I I and I 2 , van den Berg suggests the use of

the similarity law for the logarithmic region giving

+	 2II = 2 [In y + (KC - I)] + - + constant.
K	 K

For large values of +g	 y the last two terms become small and may be

neglected. Substituting I I into the expression of I 2 gives

In 
y+)2

K

and the near-wall similarity iaw including pressure and inertial effects

takes the form,

+
+	

g 
(In y+)2y+].

u = K	 +[ In y + KC +-2- +	
2

2.

,hree--D imensional Near-Mall Similarity

Most analytical approaches used in the study of three-dimensional

turbulent boundary layers rely heavily on the experience gained in two-

dimensional turbulent boundary layers. This section will outline briefly

2.11

I2 =
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eleven proposed but unverified models for a suitable similarity model in

three-dimensional turbulent boundary layers.

The first six models are scalar models which have approaches centered

on finding an equivalent scalar velocity for a three-dimensional turbulent

boundary layer which, when inserted into the two-dimensional near-wall

similarity law in the logarithmic form of Eq. 2.2, would collapse the

velocity profiles, i.e.,

q+ a gequivalent _ I In Y
U 

 + C.
	 2.12

q

where q is here arbitrarily identified with the wall shear stress; with

q	 z p (or some similar form). Note that in these six models there

is no convincing theoretical analysis to support this identification.

Unlike the two-dimensional case, there is no body of experimental data

relating the wall shear stress to the shear velocity to provide an empirical

basis for this identification. At this point one simply seeks a suitable

nondimensionalizing constant to collapse a velocity Profile--that such a

nondimensionalizing constant is uniquely identified with the local wall

shear stress has aot been established. At least for small deviations from

two-dimensional flows, this seems to be a reasonable approach, but the

assertion by the investigators that q 	 /T /p is without verification,

and it should be noted that a parameter q might collapse the velocity

profiles without being related to the wall shear stress. It is this

identification of the nondimensionalizing shear velocity with the wall

shear stress which is the critical assumption in near-wall similarity in

the 3DTBL. This identification is empirical and it must be experimentally

demonstrated that the local will shear stress is in fact identified with

the nondimensionalizing shear velocity. In the following the symbol q

will be used to distinguish the shear velocity in the 3DTBL from its u

counterpart in tho 2DTBL case. It is noted once again that only the

direct measurement of wall shear stress can verify the relationship between

wall shear stress and q because indirect wall shear stress measurement

techniques using devices calibrated in 2DTBL flows presume arp iori that

the scalar two-dimensional near-wall similarity model describes adequately

the vector character of a three-dimensional near-wall flow.

22



Lit
Figure 2.3 shows a sketch of a three-dimensional turbulent boundary

layer velocity profile skewed in one direction only and Fig. 2.4 shows a

typical polar plot of such a velocity profile. Both notation and the

coordinate systems used in the first six models are also shown. It should

be noted that the approximate triangular shape of the polar plot is valid

only for the profiles where the boundary layer skew is unilateral or in

one direction only. For flows where there is recurvature of the freestream

Streamlines bilateral skewing may occur. Figures 2.5 and 2.6 show a

bilaterally skewed three-dimensional profile and a typical polar plot

which no longer can be characterized as having a triangular shape.

The first of the simple, scalar models was introduced by Coles

(1956) who suggested that the velocity vector, q u + w, could be

expressed as the sum of a wall, qw , and a wake, qwake, component. He

reasoned that: (1) near the wall the wake component would be small, (2)

that the direction of the mean flow near the surface is also the direction

of the wall shear, T o , as well as the direction of the wall velocity

component, and (3) that the wall velocity component in the direction of

the wall shear stress could be described by the two-dimensional logarithmic

similarity law. Assuming one can identify a nondimensionalizing shear

velocity q as

q 0 P	 2.13

then with 
gequIvalent 

qw and qw q cos Y one can write

q * =
cos y	 2.14

q	 q

with

Y+ = y^	 2.15
U

The Coles model becomes a scalar model in the wall shear direction with

q cos Y	
K 1n
	 + C.	 2.16

q
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Coles used the data of Kuethe, McKee, and Curry (1949) on a swept

airfoil to test his model. Coles pointed out that large angles of skew

were noted throughout the boundary layer, but that sudden changes in

flow direction within the sublayer were assumed to be fictitious. The

airfoil used was an elliptical planform with the major axis swept back

at an angle of 25.0°. Though the velocity profiles seemed to be fairly

well represented by Coles' model, no direct or indirect measurements of

wall shear stress were included. No y+ range was suggested for this

three-dimensional model but a range similar to the two-dimensional log

law would seem a reasonable first estimate.

It was later shown that the vector model proposed for the complete

velocity profile did not accommodate certain 3DTBL profile data. This

obsei.vation did not necessarily invalidate the proposed near-wall sim-

ilarity model since the shortcomings of the overall vector profile model

were not identified with the near-wall region of flow.

Four years later, Johnston (1960) introduced a second similarity

model by noting the existence of an apparently collateral region very

near the wall. He proposed that the angle which the near-wall velocity

vector has with respect to the freestream approaches the angle a  in the

collateral region, where a  is the limiting wall streamline angle and

coincident with the wall shear direction with

lim w - tan  .
u	 o

Y-0

He proposed that the two-dimensional similarity law for the logarithmic

region be used for local velocities in the direction of a o , where he

defined his equivalent scalar velocity as

_	 u
gequivalent cos a 

Nondimensionalizing with the shear velocity q as in Eqs. 2.13 for

q+ - gequivalent 
u/cos a 

*	 a

q	 q

gave the Johnston scalar model

2.17

U
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u/cos a
* ° K In	 + C	 2.18

3	 q

When q is along a° , u/cos a° is equal to the physically real q.

When q is not along ao , u/cos a° gives a fictitious velocity. Johnston

based his model on the experimental measurements of Kuethe, et al.

(1949) discussed previously, Gruschwitz (1935) who gave data in a turning
i

passage of a rectangular duct, and his own study (Johnston (1960)) over a

flat wall bounding a two-dimensional air jet impinging against a per-

pendicular back wall. He noted from his data that the applicability of

Eq. 2.18 would be from the outer portion of Region I into the inner

portion of Region II of the polar plot in Fig. 2.4. It is difficult to

specify a specific y+ range for this model since Johnston's data suggested

Region I was within the viscous sublayer while Hornung and Joubert (1963)

showed Region I to have y+ ranges which were well outside the viscous

sublayer.

~	 Both Cole's and Johnston's models assume that the mean flow near Zhe

surface is in the same direccion as the wall shear stress. The dangers

in such an assumpvion should be recognized. Much of the early data plotted

in the coordinates of Fig. 2.4 show two, three, or more velocity points

in the very near-wall region which appear to have the same direction,

suggesting the existence of a collateral near-wall flow. The very careful

measurements of Rogers and Head (1969) and Hebbar and Melnick (1976)

using very small instrumentation and emphasizing spatial resolution

showed no region of near-wall collateral flow. In addition, Pierce and

East (1972) and Klinksiek and Pierce (1973) have demonstrated with a

finite difference solution to a three-dimensional turbulent boundary

where the viscous stresses were retained in the motion equations that no

near-wall collateral flow was predicted in a computer solution. Since

only the viscous equations were being solved in the very near-wall region

where the turbulent stresses vanish, the Reynolds stress model used is

immaterial and the existence of a collateral region appears to be in-

consistent with the governing equations. Prahlad (1973) also presented

work supporting these computer results where he noted local streamline

turning in the immediate neighborhood of the wall which "suggests the

27



:ossibility of a fairly large variation in the flow direction within the

viscous sublayer." These results cloud the question of the accurate

measurement of the limiting wall streamline direction. It is therefore

especially important to note that when three-dimensional experimental

measurements are made of velocity profiles, typically with y + over 10,

the direction of the velocity vector nearest to the wall is probably not

the limiting wall streamline direction or the direction of the wall

shear. It is perhaps unfortunate that the polar plot shown in Fig. 2.4

gained such extensive early use since such a plot tends to obscure angle

changes near the wall and suggests support of the false assumption of

near-wall collateral flow.

In 1963 Hornung and Joubert (1963) presented the results of a study

of the flow around a circular cylinder with trailing edge standing on a

plate. Their measurements seemed to confirm Johnston's polar plot, but

in contrast to Johnston's assumption, they found the polar plot peak did

not necessarily lie within the viscous sublayer. Hornung and Joubert

suggested that the freestream profile follows the two-dimensional logarithmic

similarity law, nondimensionalizing with a shear velocity based on the

local wall shear stress as is Eq. 2.13. From their work (their Fig. 15)

it appears that the equivalent velocity is the streamwise component

gequivalent u

and the nondimensionalized velocity is

q + u	 2.19

q

so that their similarity model is written as

u*= ln3a+C	 2.20K 
q

They indicated that their model applied "up to the point where the

boundary layer becomes yawed," usually to y + < 150. No direct measure-

ments of wall shear were reported with inferred values determined by the

Clauser (1954) chart technique which assumes the two-dimensional log-

arithmic law of the wall. They noted that this technique based on the
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t	 two-dimensional similarity law would at most "deduce whether a correlating

quantity u I , :gay, exists or not. It is not possible to deduce that this

quantity u  is equal to (T O /p) but it will be assumed below that it is,

generalizing from two-dimensional flow."

The fourth model is a similar model of unknown origin first reported

by Pierce and Krommenhoek (1968). In this case the freestrear component

of the three-dimensional velocity profile was assumed to follow the two-

dimensional similarity law so that the equivalent velocity is the free-

stream component

gequivalent u

but in this case a shear velocity was defined from a component of the

wall shear stress in the freestream direction with

To^ = To cos a 

giving
*	 *

qc = q co

Thus the nondimensional velocity is

q+ u co
= *	 2.21

q

and Eq. 2.15 is modified to correspond to this with

y+ = yq /U	 2.22

s, that this fourth similarity model is

*
u co3! s a	 yq

*	 °	
K 

In	 + C	 2.23

q

Prahlad* (1968) introduced a fifth scalar similarity model based on

studies of flow around a circular cylinder and an inclined flat plate

*It was recently pointed out to the authors that H. G. Hornung used this
model as early as 1962 in his M.E. Sc. thesis at the University of Melbourne.
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placed normal to the tunnel wall. Prahlad assumes that the equivalent

velocity is the magnitude of the skewed velocity vector q hence

gequivalent	 IqI	 q

with the shear velocity taken asi	 as in Eq. 2.13. The Prahlad

similarity model is then

*
g l ln	 +C.
* K	 U

q

Prahlad (1968) used his own data to v7rify his model and found good

agreement in a two-dimensional law of the wall coordinate system. For

adverse or positive pressure gradients the y+ range of similarity was

approximately 20-+300, while for highly favorable or negative pressure

grad_.ints the upper limit of the y + range was reduced considerably,

depending on the gradient magnitude. No mention of any other three-

dimensional model was made.

Indirect wall shear measurements were made with Preston tubes which

used the two-dimensional Patel (1965) calibration. Prahlad noted that

larger Preston tubes give smaller values of wall shear than smaller

Preston tubes. He concludes that "This deviation implies departures from

wall similarity and conse quent errors in the use of the Preston tube

technique in these flows."

Based on their own experiments in a pressure-driven 3DTBL, East and

Hoxey (1969) proposed yet another similarity model based on the Johnston

triangular polar plot. They noted Hornung and Joubert's (1963) work

which disputed Johnston's finding t-hat Region I of rig. 2.4 was within

the viscous sublayer and cited their own experimental results showing the

triangle apex taking on large and widely varying y + values.

In summary, the East and Hoxey similarity model uses an equivalent

near-wall velocity defined as

gequivalent w q/cos al

2.24

where
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a l
 = sin 1 ((Klq*/Uo)-Isin 

01 1 - a1

l
d

-tan d2
1

K1 . 19.45

and U  is an imprecisely defined "wor'cing section reference velocity"

with dl and d2 the freestream and transverse displacement thickness.

In the development of this model, al was initially identified with the

angle a  of the polar plot in Fig. 2.4 and the constant K 1 was defined

through a relationship relating the value of the velocity ratio at the

apex to the shear velocity with

*
K1 q /Q C u/QapeX.

In order to better fit some of their experimental data, the constant K1

was assigned a fixed value and the freestream velocity Q was replaced by

the imprecisely defined reference vel.oci *.y. With these changes a l no

longer is identified with the polar plot angle ao.

The nondimensionalized velocity is then

q
t -

-
q/cos al

_
*

q

and the similarity model is written as

q/cos a
1	

*
*	 = K ln^+C

q

To generate a three-dimensional flowfield East and Hoxey used a

teardrop body, geometrically similar in appearance to the ones used by

Hornung and Joubert and in this study. Indirect wall shear measurements

were made using a Preston tube and razor blades with difficulties reported.

The angle of the velocity vector closest to the wall at 0.0254 cm (0.010

in.) was taken as the direction to orient the Preston tube and razor

blades assuming collateral flow to the wall. In their d'_scussion of wall

2.25

2.26
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shear measuring techniques, they indica— that in spite of the problems

associated with using floating element devices, such use would be preferred

assumin6 that such instrumentation was available.

In general spQ^Afic y ranges of applicability of these six models

are not given. ?o the case of the Johnston model subsequent measurements

have shown his upper limit of y+ F 50 might well be raised significantly.

As a generalization, aince these six models are all variations of the

logarthmic form of	 two-dimensional law of the wall, a first look for

similarity in the three-dimensional case would focus on the range of y+

from approximately 50 to 300, with the upper limit expected to be sensitive

to pressure gradient magnitude (Patel (1965), Patel and Head (1968)),

with the effect of pressure gradient direction in general not predictable.

In the comparison of models with experimental data to follow, the analytical

two-dime:._3ional similarity law used will be the third-order Spalding

formula, Eq. 2.4. This choice offers the advantage of allowing focus on

a seconda-y y range--that below y of 50. This is desirable since in
some of the earlier work (Prahlad (1968), Pierce and Zimmerman (1973),

Ezekwe (1974)) on similarity in three-dimensions, where only indirect

wall shear diagnostics were used, suggests that the very near-wall data

are more consistent in their behavior than in the two-dimensional case.

The last five model, tend to become quite complicated and while not

all in vector form, they all explicitly treat or at least recognize the

vector nature of the 3DTBL velocity profile, this in contrast to the

first six models which are in essence scalar models. Each of these

models w: ' 1 be discussed briefly in order of ascending complexity. The

complicaLions encountered in these last models come about through con-

sideration of some or all of the following: (1) separate consideration of

velocity components, (2) pressure gradients, (3) wall shear gradients,

and (4) wall shear angle gradients.

Chandrashekhar and Swamy (1976) proposed a model characterized by

separate, two-dimensional-like logarithmic equations for the freestream

and tra-isverse velocity components. Examining the data of East and Hoxey

(1969) for a pressure-driven 3DTBL Chandrashekhar and Swamy observed that

logarithmic functions could be applied separately to the freestream and

crossflow components of velocity with
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1.

i

i

i

4 *
1^ +	 ^1	 yu

u^ _	 = A log10	+ B 2.27
u^

a

t
where A = 5.4 and B - 4.9, and

-^ w	 yw*

w=	 C log	 + D 2.28
4	 *	 10	 v

l
4

,where C = 1.0 and D = 11.8.	 The values of A, B, C, and D were determined

} from the East and Hoxey data.

The nondimensionalizing shear velocities u^ and u4 are from the
r-

1 y

(

components of the wall shear stres3 where

*2

t
toy = To Cos ao	 pub

with

*
u^ = T3 O^/p =	 TO cos ao/p

or

*	 *
u^ = q Ico

and similarly

wr = q	 in a

The components of this model are shown in Fig. 2.7.

Note that the streamwise similarity law is essentially identical to

the scalar Pierce and Krommenhoek (1968) freestream model cited earlier

since Eq. 2.27 can be written as

u	 1	 yu

u^	 1

where the Chandrashekhar and Swamy value of K 1 is approximately 0.426.

Chandrashekhar and Swamy show similarity results for the freestream

equation with data in the approximate region of 9 < y + < 900. For y+ > 300
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(an approximate value) the data exhibits a two-dimensional wake behavior

and for y :19  the agreement is poor so that a y+ range of approximately
9 < y+ < 300 would be reasonable from their work.

Data for the transverse equation was found to have a very small slope
f	 hence the constants C sad D were difficult to evaluate. To alle y -.ate this6 .

problem, the w and y+ coordinates in Eq. 2.28 were modified with

w	 a 1og10 a + b
m

where	 a = maximum value of w^ in the >U3 -flow profile

A - y distance corresponding to wm/2 (with this y the

furthest from the wall)

The constants C, D, a, and b are easily related with

w
C - a m

w^

and

w	 w A
D - a + log10 * - log10 m

w
S

with East and Hoxey data giving values of C = 1 and D = 11.8. The y+

range for Eq. 2.28 was not specified but an examination of the transverse

similarity plots snowed data in the range 1 < y + < 60, with the best fit

appearing in the 1 < y+ < 15 range. For y+ > 15 the data points fell

consistently below the analytical model line.

The second of the complex similarity models was proposed by White,

Lessmann, and Christoph (1975) to provide a velocity profile expression

for use in their integral boundary layer analysis. This model uses a

freestream streamline coordinate system and the freestream profile u&(y)

is related to the pressure gradient using the mixing length theory to

obtain
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8u	 3u
T = TO + hl 

)z y :_ PK2y2 I a--^ l 
3^

Introducing a freestream shear velocity based on the freestream component

of the wall shearwith u^ = T^ , then u^ = u^ N O and the above can be

written as

du (1 + aCy+)^
_

dy+	Ky+

where

y+ = yu^
U

and

u 1 ap_
a^ *3

hl at
puE

Integrating,

S-1 S +1
u+ = K {2(S -So) + In (S+l So-1)}	

2.29

t	 o

where	 S = (1 + a C y + )

So (1 + e
-KC y+)

White, et al., mentioned attempts at developing a crossflow profile with the

same logic as for the u+ expression but without success. Based on the

unilateral hodograph model of Mager (1951) they ultimately suggested the

f orm

w^ u^0 (1 - y
+/6+) 2	 2.30

where	 0 = tan a
0

6+ = nondimensional boundary layer thickness
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It was noted that this form does not accommodate bilateral crossflow

profiles as shown in Fig. 2.5.

No similarity plots were given by White, et al., for this two-component

model as it was developed as part of a larger computational study not

aimed specifically at near-wall similarity. The approximate y + range of

Eq. 2.29 was inferred by White, et al., when they defined So such that for

zero pressure gradient the two-dimensional logarithmic law of the wall

would result. This suggests a y range of approximately 50 to 300. There
is no simple way to estimate the y+ range for the transverse similarity

model.

Perry and Joubert (1965) developed a near-wall model using similarity

arguments and treating the near-wall region as an equilibrium layer.

While not a vector model this model relates the mean velocity distribution

with the pressure gradient and the wall shear directions. The theory was

compared with the data of Hornung and Joubert cited earlier; however, the

results were inconclusive due to a lack of sufficient data. No direct or

indirect measurements of wall shear were reported. The details of the

analysis by Perry and Joubert are quite lengthy, and only a brief outline

of the development of their model will follow.

Considering a prismatic element with sides dx, dy, and dz at a small

distance y from the wall and neglecting inertia terms, a force balance on

the element in terms of a double subscript on the stresses after Perry and

Joubert gives,

a
x+^+

aTX a-[
XZ

= 0az

22 +
aT
--^"

aT+ ^Z = o
ay ax aZ

8 +
aT

aXZx

DT

+	
= 0.

ayZy

Townsend's (1961) equilibrium layer concept led Perry and Joubert to an

eddy viscosity model by which the shear stresses and strain rates are

related with
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Txy = p E1 [ay 
+ ax]

TxZ = P E2 [ az + a

Tyz = P E3 [ az + ay]

where El , E2 , and E3 are the three components of the eddy viscosity

expression.

Close to the wall the velocity derivatives 
ax 

and 
az
a re such

smaller than ay, hence

au

Txy = Cl P By

T	 = 0
xz

aw,_

TZY
E3 

p By

and the force balance becomes

a
^1z _ —

aTYV

ax ay

l=0
Y

aT

aZ ay

Integration of these gives

•- rs

Txy TXyo - y ax

T Zy TZy0 - y 'az
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Perry and Joubert assumed that the eddy viscosity is isotropic and that

the maximum shear stress acts in the same direction as the maximum strain

rate. They suggest that

[TXy + T ZY`l = PE[(dy) 2+(dy) 2 )	 2.31

and by dimensional reasoning that

E - KP^ITXY2 + TZY214Y.

Substitution of the stress and eddy viscosity expressions into Eq. 2.31

gives, after simplification,

T 2 -2 T	
22^i	 dug	 dw2[ 

O	
y 

o 
pa cos 0 + y a J = p KY[ (dy) + (dy) ]	 2.32

where

TO = [Tx + T2
Yo 	Yo

CL p I (_x) 2 + (IR) 2 1

and

TO Pic COS O = T X	 ( ) + T z
	

(^)
Yo	 Yo

is the scalar product of the wall shear and pressure gradient vectors

with 0 the angle between these two vectors. Integration of Eq. 2.32

gives

fo 

+	 dw 2-

0 	

y
u 	 11 + (du)	

du

q	 q

Y

KJ
	 1+ (1-2wcos 0 + w

2
 )
4 dY+

0	 y

2.33
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3
where w y+av/q* , q*	T, and y+ = yq*/v. The first integral of

Eq. 2.33 represents a developed velocity profile and is equal to the

length of the arc on a polar plot beginning at the origin. In the limit

for small values of y+ within the logarithmic region,

u
*=K lny +C,
q

so that Eq. 2.33 can be altered to read 	 '

f

u* K
	

y 
1 + [1-2wcos 0 + w 2	 +]^` dy + C.	 2.34

q	 1 y

Equation 2.34 is plotted in Fig. 2.8 for va5ious values of 0. The

effect of the pressure gradient parameter, au/q 	 is to cause the deviations

from the simple logarithmic line to shift bodily up and down along the

line. A value of 0 = 0 corresponds to the two-dimensional favorable

pressure gradient case. A value of 0 = 180° corresponds to the adverse

pressure gradient case. It should be noted that 0 depends on an a

priori knowledge of the direction of wall shear.

The upper y+ limit for this model is identified with th e apex of the

Johnston polar plot. While Johnston (1960) originally set the apex of the

polar model as y  = 15, Hornung and Joubert (1963) subsequently found this

apex to approach y+ = 150 and still later Perry and Joubert show three-

dimensional similarity plots with this apex as high as y + = 2000. All
1

this suggests a relatively large possible y' range for this similarity

model, from as low as about 10 to 2000 or more.

Following the same general methud as outlined for the two -dimensional

case, van den Berg (1973, 1975, 1976) developed a similarity model that

includes both pressure gradient and inertial effects. His theory was

compared with a limited number of measurements by van den Berg and Elsenaar

(1972) and Vermeulen (1971) where wall shear was indirectly measured by

the Stanton tube and sublayer fence methods respectively.
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boundary layer of a curved duct. Van den Berg emphasizes that his model

is not valid for large pressure gradients or for large changes of shear

stress from the wall value, and the restriction that his shear have a

small transverse component in the boundary layer presumes small skewing

as well, so that the model would be valid for only modest skewi%;g.

Beginning as in his two-dimensional case reviewed earlier, similarity

in the near-wall region for the three-dimensional case can be expressed

as

q+ u f (Y+)

Starting with the 3DTBL motion equations in Cartesian coordinates and

using a single subscript on the stress terms after van den Berg gives

a'[

XP a +p ay +P a _ x + -y	 2.35

aT
ZP a + oy + p^ _ - + ay

The acceleration terms were written in terms of components of a similarity

law where u = u f(y ) and w = w f(y ) and u and w are components of the

shear velocity q = TV 

0
1p in the direction of T O . Van den Berg noted that

a considerable simplification of these acceleration terms and in the

subsequent mathematics occurs if the similarity models are developed for

components of velocity along and normal to the local wall shear stress

directions which can be designated & and ^. These are in effect rotated

Cartesian coordinates not to be confused with frequent usage as orthogonal

curvilinear coordinates identified with the freestream flow. The corresponding

velocity components would be u , v, and w with shear velocity componants

u^ and w^ and while at a particular location w^ is zero, its derivatives

in the local Cartesia:: directions & and t; are not necessarily zero. This

choice of coordinate Gystem requires the a rp ior i knowledge of the local

wall shear direction.

In these local directions the acceleration terms were written as
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*
au	 3	 * 2	 * a^ df	 Y+	 +

+	 =	 f	 + fo	 fdYu	 + v--^	 w	
a	

q q	 8^	 +a^a^	 ay	 b	 dy

*
awl 	awl	 as	 * an 2

- +	
=	 f

u^ a^
	
+ a	 w^ a^
	 g	 a

This form of the acceleration terms is combined with the continuity

equation and substituted into Eqs. 2.35 and 2.36 and integrated for

stress distributions in y+ along the	 and C directions, giving

T	 1 + a ny+ + Sx ll + 
Y^ I3 	 2.37

o	 '
and

T4
= an + + S^Il 	2.38T	 y

o

where

u	 aP_
a	 *3 a&

P q

U_a^	 *3 a C

P q.

*
_	 v

S^	 a^*2

q

U a^

q

U a^_
Y	 acq*

' and ¢ is the wall shear stress angle wita
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+
I1 = J Y f2dy+

0

I3 f r	 fdy+ - Il
J 

Y

0

Values for I1 and I3 were obtained by numerical integration using data

tabulated from Coles (1955) and the two-dimensional similarity law, and

the I3 term was omitted as it was found to be significantly smaller than

I1'

These shear distributions, Eqs. 2.3 7 and 2.38, were substituted

into the mixing length relations simplified for small variations near

the wall with

du
a 1 T^	 2.39

dy+ Ky+ T 0

dw, = 1 TC

dy+ Ky+ 
TO

where Loth uE and w^ are nondimensionalized by q *	 T P. These are

integrated from 0->y to obtain

u+ = K In y++A+-12-q^y++ I I2}

= K(a^y+ + S S I 2 + B)

The integral I 2 was evaluated using his two-dimensional simple similarity

model and the constants A and B evaluated to give the two-component

tt..'ee-dimensional Sim.

u+ = 1(ln y*+K r
f,

w± = 1 C a^ (Y+ + h;

2.40
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r

is

s

1d

+	 *	 t
where of = U r /q and w^ = w( /q and b = 13. Recall that these components

are along and normal to the local wall shear directions, and for simplicity

the subscripts ^ and ; will occasionally be omitted in future use as convenient.

When only the pressure gradient effects are considered, the van den

Berg model reduces to a model similar to that of Perry and Joubert.

Figure 2.9 shows the effect of various 0-values on the u+ component of

velocity. The angle parametric values have been changed to conform to

that of Perry and Joubert for convenience in comparison and the qualitative

results are similar to those of Perry and Joubert. For this plot, all

the inertial terms have been set to zero. Figure 2.10 shows a similar

plot on a linear scale for the w+ component of velocity. Finally Fig.

2.11 she ws a typical similarity plot by van den Berg showing data comparison

with the two-dimensional similarity law, van den Berg's model with

inertial terms set to zero, and with the inertial terms included. It

should be noted that the inclusion of the inertial terms in the three-

dimensional case requires a rp iori knowledge of the magnitude and direction

of wall shear.

It is worth noting that the functional form of this similarity law

may be expressed as

*

u^ = f(Y+ ,^, a^)

w+ = g(Y+,	 , ^)

which is more complex than was initially assumed with different functions

for the two components. Some caution is noted over the use of the two-

dimensional similarity law in the evaluation of the integrals I l , I 2 , and

I3 , especially as these may appear in the transverse model development,

although van den Berg does restrict the model to small skewing and small

shear variations near the wall. Somewhat arbitrarily the y+ range of the

u+ and w+ models will be taken as approximately 10 to 300.

East (1972) pioposed the most complex three -dimensional similarity

model for compressible flews which requires shear stress distribution

information through the boundary layer and takes into account the non-

alignment of the velocity gradient and shear stress. This feature
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Fig. 2.9 The Velocity in the Direction of the Wall Shear Stress

at Various 0 and Iaj = 10 -2 as Given by van den Berg (1973)
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appears to have been built into the model so that it would fit into

Bradshaw ' s (1971) computational scheme which also treats this nonalignment.

Because the_ experimental program reported on here did not include turbulence

data in the flow field, comparisons of experimental data with this model

were not made. The model is reviewed here for completeness in the

survey of similarity models.

The East model consists of six partial differential equations and

two algebraic equations. Two of the partial differential equations were

derived by taking into account the variation in the orientation of the

shear stress vector, two were derived by relating the velocity vector

magnitude and magnitude of the velocity gradient, and the remaining two

were modifications to Bradshaw ' s (1971) turbulent stress transport equations.

These equaLions can only be solved numerical!;.

The first two equations take into account the variation in the

orientation of the shear stress vector. East made the first order

approximation

I T tI	 I .0I
w = y(ay)o

where y is the rotation of the tot;

the wall shear stress vector, TO.

stress near the wall. This stress

31 shear stress vector, t t , relative to

Note that this assumes a constant

is composed of a laminar and turbulent

component whose orientation is shown in Fig. 2.12. The relationship

between the shear stress components is given by

TC = u 2 (	 ,1^) 2 + T 2 + 2t-aayg l li^ c:os(a-Ei)

I T I 	 ITtI

sin(a-y)	 sin(a-S)

s •
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Fig. 2.12 Laminar and Reynolds Stress Orientation for the
East (i972) Model
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Fig. 2.13 Velocity and Velocity Gradient Orientation for
the East (1972) Model
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Nondimensionalizing and rearranging gives

+I2 +I=+tl- r +2sin2 (y+ ( )ofu+-R+))E^`-t+cos(y+('+)o(a+-b+) 2.43
By	 ay	 ay

where the negative square root is taken if

cos (y+003y+)o(a+-1)) < a

and

«
+y+(aW

 ) =tan 1{ 
sin (y+ (a0 ay+)o)-T+sin(y

+s+(aW
/ay

+)o) 	2.44

	

ay+ o	
cos(y+(aW/ay+)o)-T+cos(y+S*(alp/ay+)o)

where in the following the zero subscript refers to wall values and not

freestream stagnation values

u+ = u/uo

T+ = T/TO

a+ = a/(y+(aW/ay+)o)

S+ = My+ (Wa y +)o)

W+ = W/(y+(aW/ay+)o)

East obtained two more equations by relating the gradient of the

velocity vector magnitude Iql and the magnitude of the velocity gradient

13q/3yl. using the notation in Fig. 2.13 these relationships are

V I Y I = I _i cos (cx -4 )
ay	 ,ay

3 = (BOW sin(a-0)
ay	 Iql

t.
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i
which when nondimensionalized become

a	 = lDq
+l cos (Y+ (ak+)o(a+-0+)	 2.45

y	 y	 ay

a (Y+ (a0 ay+ ) m+)	 + +
o	 a	 a	

sin (y+ (1—) (a+-^+)) .	 2.46
ay+	 Iq+I 	 ay+ o

For compressible flow it was necessary to provide for density and

viscosity distributions in the boundary layer. East assumed Crocco's law,

2

cT + rq	 p= constant = cTp	 o

and the nondimensional temperature is

+ = T = 1 - F
2 q+

T 
T
0

where F is a compressibility factor given by

F = MW r(k-1)Cf A = M+ r(

and M+ is the shear velocity q divided by the sound speed at the wall.

This temperature expression allows the density ratio to be written as

P+ = P = (1 - F2q+2
)-1 	 2.47

PO

and the nondimensional viscosity as

u+= u

	

	
2.48= (1 - F lq+ )n

0

where

n	 0.76 at sea level.
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Last modified Bradshaw's (1971) transport equations in the wall

region to include the pressure diffusion term in order to obtain the

last two equations in his model. The Poisson equation for the fluctuating

pressure shows it is partially related to the mean velocity vector and

because of this East assumed the fluctuating pressure could be modeled

i	 by

p' = Apv'Iq

The pressure diffusion terms were written in the x direction as

P ay ( p ' u ') = p ay (Ap I g I u ' v ') = P ^y (Txlgi)

DT

and in the z direction

P 8y	
w	 p	 z ay	 jgj ay )

With the above, Bradshaw's shear stress equations in East's coordinate

system are

T 3/2 1 - Algl 8r0 =_LTi
p 1 2-a

lay {cos (a-R) -A cts(a-¢)}-(p) 	
R	

P ay	 2.49

0 = - I I sin(a-a) + Algl 
ay	

2.50

In a two-dimensional boundary layer where the T gradient is small,

East reduced Eq. 2.49 to obtain

T = P(1-A) 2 R 2 (S)2

where (1-A)R is the effective mixing length and A = 0.283. East then

replaced the mixing length, 9,, in Eq. 2.49 with the effective mixing

length and nondimensionalized Eqs. 2.49 and 2.50 to obtain
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at+ a (T+j19 I{cos(y+ (a"+)o(a+-B+))-A cos(y+ (^)o(a+-4+))}
ay	 ay	 ay	 ay

3/2

	

_ T+
	

(1-A) )/Alq+I.	 2.51

	Ky	 p

a (y+ (4l ay+) a+)	 +
+ °	 _ {I + sin(y+ (^)o(a+-B+))}/A^q+^ 	 2.52

ay	 ay	 ay

Summarizing, Eqs. 2.43-2.48, 2.51, and 2.52 form the system of

equations for East's model. The equations were numerically solved by

East as part of Bradshaw's (1971) program in the range 0 < y+ < 10,000.

No comparisons with experimental data was presented for these calculations,

East presents •results in q+ and y+ coordinates for his model for the

incompressible 2DTBL case and shows excellent agreement with well accepted

results for this case, noting that the closeness of fit of other results

to his is dependent on the choice of law of the wall constants K and C.

As an alternative to the similarity equations for two-dimensional flows

presented earlier in this report, East cites the results of Green* where

q+ is more properly designated u+ and

2	 +
u+ 

2K 
ln(y+ D + 1) - D(1 - exp (- Y--)) 	2.53

with recommended values of K = 0.40 and D = 9.0.

East also presents graphical results for the incompressible three-

dimensional case with strong cross flow and these are shown in Fig. 2.14.

These results are in terms of two parameters, a, the direction of the

viscous shear and (D^ /ay
+

) OP the gradient value at the wall of the total

shear vector angle.

*This reference is given in East as a 1971 unpublished RAE report by
J. E. Green entitled "A Note on the Turbulent Boundary Layer at Low
Reynolds Number in Incompressible Flow at Constant Pressure."
The library of the RAE was unable to provide any copy of this report.
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Two points should be noted: (1) that no effect on the similarity

law for the logarithmic region is seen until values of y + > 200 which is

nearly outside the expected limit of logarithmic region, and (2) that the

gradient of the angle of rotation of the total shear stress vector at the

wall is a most difficult parameter to measure.

Based on his own usage the y+ range for East's model would be estimated

at from 0 to almost 10,000. No experimental data was used to verify the

full or approximate model and no mention was made of any other three- 	 ,r

dimensional similarity models.

..
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Ill. EXPERIMENTAL PROGRAM - INSTRUMENTATION AND WALL SHEAR DIAGNOSTICS

Introduction

The testing of the validity of the several proposed models for near-

wall similarity in three-dimensional flows requires careful measurements

of (1) the velocity field - magnitude and direction, (2) both the mag-

nitude and direction of local wall shear stress by direct force measurement,

and (3) the wall pressure field which would be presumed to be the pressure

field through the boundary layer except in the immediate neighborhood of

separation. These measured values would allow calculation of gradients

in the wall pressure field, the wall shear stress magnitude and direction,

and the mean flow velocity direction, some of which are required in some

of the more complex similarity models. One proposed similarity model

also requires the gradient in the total shear angle at the wall and since

such measurements were not attempted in this program the last of the

11 three-dimensional similarity models reviewed was not tested.

There is an absolute need for direct force wall shear measurements

in the validation of any proposed similarity model in a three-dimensional

flow. This is an essential requirement since the several near-wall

similarity models proposed in the literature for 3DTBL flows atl require

the local wall shear stress--or some component of it--in the necessary

nondimensionalizing of experimental data. While the use of indirect wall

shear devices has been reported for 3DTBL flows (e.g., Prahlad (1968),

van den Berg (1973), Higuchi and Peake (1978)) with both Preston tube

*-oe devices and miniature surface mounted heat meters, all such devices

.)orted on to date have used only two-dimensional. cal'.brations in three-

nensional flows. This, in effect, assumes a rp iori and without jus-

Eication, the validity of a two-dimensional near-wall similarity law in

three-dimensional flow--and this is wholly unacceptable in any attempt

a definitive study of near-wall similarity in a three-dimensional

3w. Up to this point in time no indirect wall shear diagnostic device

s been calibrated for wall shear magnitude and direction in a three-

nensional flow for subsequent use in any other three-dimensional flow.

use of a two-dimensional calibration in a three-dimensional flow
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presumes far more than is acceptable in a near-wall similarity study in

3DTBL flows. It should be clear that in any attempt at a definitive

study of near-wall similarity in a three-dimensional turbulent flow, the

need for local direct force wall shear measurements of both magnitude and

direction is essential and absolute, the degree of difficulty required by 	
L.

such a measurement notwithstanding. While such direct force measure-

meets carry with them specific experimental uncertainties, some of which

are difficult to quantify at this point in time, such direct fore= measure-

ments are judged far more desirable than the use of indirect diagnostic

devices which in effect presume a two-dimensional-like near-wal` sim-

ilari #-.y behavior.

Fl n.a T.-.1

A large scal p , iow speed, modest turbulence level wind tunnel shown

4chematically in Fig. 3.1 was used in this study. Room ai- enters a 3.66

x 2.44 m (12 x 8 ft) inlet section, passes through a filter pad, a

matrix of nominally 2.54 cm (1 in.) diameter by 15.2 cm (6 in.) mailing

tubes, four 14 x 18 mesh screens (open area approximately 70X), and a 16

to 1 contraction nozzle designed for zero exit acceleration passing into

a 0.91 x 0.61 m (3 x 2 ft) tunnel section where boundary layer trips of

3.2 mm (0.125 in.) circular rods are used. The tunnel length to the

test section is nominally 4.88 m. (16 ft). The freestream flow field at

the test section is flat to nominally plus or minus 1% of the mean value

and the freestream turbulence was measured at 0.6%. The principal

instrumentation was contained in a test section of approximately 0.61 m

(2 ft) length which was followed by an additional 1.22 m (4 ft) tunnel,

finally passing into a rectangular to round 3.44 m (8 ft) transition

piece which led to the centrifugal fan inlet. Two rows of flow straight-

ness were placed at the fan entrance to minimize any possible inlet whirl

propagating into the test section and the fan itself was isolated from

the tunnel. Air speeds up to about 25.0 m/sec (82 ft/sec) where possible,

varied by adjustable louvers at the fan exit. The test section itself

could accommodate a variety of velocity and pressure traversing probes

and traverses mounted on its roof, and the floor pieces were interchangeable

providing for wall pressure field measurements and for wall shear stress
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measuring d,-.vices such as the direct force sensing mechanical shear

meters, Preston tubes, or heat meters.

Generally, it was not possible to obtain all data simultaneously

and tunnel similitude was maintained by holding the unit Reynolds number,

Re/L, at the tunnel inlet nominally constant for similar flow conditions.

In addition essentially all of the data was tak--.. at a nominally constant

room f:emperature with the day to day barometric variations generally

modest as well.

Three-Dimensional Flow Geometry

The pressure-driven 3DTBL flow was generated by a cylinder with a

trailing edge place normal to the floor of the tunnel as shown in Fig.

3.2. This configuration provided a wide range of skewing conditions, a

wide variation_ of pressure gradient and wall shear orientations, and

represents conditions encountered in a variety of real world circum-

stances. The cylinder itself has a diameter of 12.7 cm (5 in.), is 25.4

cm (10 in.) high and has a tapered end that trails to a sharp edgE with

an overall length of 29.2 cm (11.5 in.). The body is positioned in the

tunnel by a sting secured well downstream of the test section.

Velocity Measurements

Velocity measurements were made with a specially designed goose

neck, cobra, stagnation pressure probe consisting of three 0.51 mm

(0.020 in.) OD tubes with sensing face on the vertical axis of rotation.

The outside tubes were used to determine the flow direction and the

stagnation pressure was measured with the center tube. The static

pressure was sensed with an 0.40 mm (0.0156 in.) diameter pressure tap

located 0.653 cm (0.25 in.) off the tunnel centerline at the probe's axis

of rotation. Velocity measurements in the two- and three-dimensional

flow configurations range from 0.254 mm (0.010 in.) to approximately la

cm (7 in.) off the tunnel floor.

The probe was held in place and positioned by a specially designed

traversing mechanism locaced on the roof of the tunnel. A Unislide

translational screw provided for adjustment of the vertical p3sition,

while mating worm and spur gears allowed for rotation of the probe

around the vertical axis. Wall contact was determined by electrical
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Fig. 3.2 Teardrop Body Used to Generate the Pressure Driven Flow
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contact and the probe position could be determined by a Starrett long

travel dial gauge, the calibrated Unislide assembly, or a Gaertner

Horizontal-Vertical cathetometer. The uncertainty in the probe position

was taken to be 0.0254 mm (0.001 in.). Backlash problems in the vertical

movement of the transverse were essentially eliminated by ore directional

motion in all profiles.

The claw probe was nulled for flow direction using a Celesco Model

P90D differential pressure transducer and a companion CD25 transducer

indicator. While the dial vernier used for angular measurements had a

least count of 0.2% repeated measurements suggested an angular measurement

uncertainty of 0.5° for two-dimensional velocity profiles and 1.0° for

three-dimensional velocity profiles.

The dynamic pressure was sensed by a Datametrics model 1400 electronic

manometer with a Gould type 590 D-10 W-2P1-V1-4D transducer reading 2.54

microns (0.0001 in.) of water on its lowest range. Essentially all of

the data was taken with a least count of 25.4 microns (0.001 in.) of

water. The sensitivity and fast response time of the manometer required

either viscous dampers in the pressure lines o_ electronic averaging to

facilitate reading. For velocity readings less than 2.5 cm (1.0 in.) of

water the uncertainty was estimated at 0.076 mm (0.003 in.) of water

while at higher readings an uncertainty of 0.127 mm (0.005 in.) of water.

The uncertainties in probe position, flow direction, and dynamic pressure

are estimated from instrument least counts, differences in data repeated

in similar flow conditions, and differences in data taken by different

individuals in similar flow conditions.

In addition to the uncertainties in the physical position of the

probe, the angular measurement, and the dynamic pressure measurement,

there is the question of viscous, turbulence, velocity gradient, pi2ssure

gradient, and wall proximity effects which all contribute to possible

errors in two-dimensional flows while transverse velocity, pressure, and

shear gradients would also contribute to possible errors in three-dimensional

measurements. For the two-dimensional case, Dean (1958), MacMillan

(1956), Davies (1958), Young and Maas (1936), MacMillan (1954), and

Livesey (1956) have studied the effects of different combinations of

these problems with no uniform agreement. The most popular correction
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seems .o be a displacement correction due to the velocity gradient across

the pribe faro . Coles (1968) in analyzing the 1968 Stanford Conference

data chose to ignore very near-wall data because of the uncertainty over

choice of corrections to apply . The data presented in this study was not

corrected because of the uncertainty of such corrections.

Static Pressure System

For static pressure measurements the floor of the test section can

be replaced by an aluminum plate containing 52 static pressure taps in a

15.2 x 61.0 cm (6 x 24 in.) grid on 5.1 cm (2 in.) centers. The static

pressure taps are 0.40 mm (0.0156 in.) diameter fabricated to insure that

all edges were sharp. Pressures were measured by a Systems bi-directional

differential capacitance type pressure transducer used with a 48-port

Scanivalve sampling valve which sequentially sampled 44 static pressure

in from 0.1 to 1 second intervals. Figure 3.3 is a schematic of the

static pressure measuring system. Four ports on the Scanivalve system

were reseived for calibration purpo_js. The voltage signal of the central

transducer was fed into a Vidar model 240 voltage to frequency converter

and then to a Hewlett Packard model 5326A counter and read out on a

Hewlett Packard model 5050A printer. The counter provided a means of

averaging the signal from the VFC and triggered the Solenoid Controller

which in turn determined the sampling rate of the Scanivalve.

The pressure measuring system was calibrated against the DZCa-

metrics model 1400 electronic manometer by connecting these to a constant

low pressure source. Figure 3.4 shows a calibration curve for the Setra

transducer. Several calibrations were made and the linear curve shown

was demonstrated to be repeatable. Uncertainties from this system were

estimated from repeatability of data to be 3.45 Pa (0.0005 psi).

Omnidirectional Floating Element Device

The omnidirectional floating element device developed by Tennant

(1977) was used to measure wall shear in both the two- and three-dimensional

flows. A schematic of this floating element device is shown in Fig. 3.5.

The primary difference between this device and all other two-dimensional
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Fig. 3.5	 Sectional View of the Omnidirectional Meter
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floating element devices is its ability to simultaneously measure the

magnitude and direction of the wall shear force.

The button (disk) has a 2.86 cm (1.125 in.) diameter, a lip thick-

mess of 0.635 mm (0.025 in.), and the uniform gap between the button and

housing is 0.1.27 mm (0.005 in.). The button is supported by a 2.16 cm

(8.5 in.) long, 1.59 mm (0.0625 in.) diameter steel rod. Vertical

t
	 misaligriment between the button and housing was measured using shims to

be less than 0.0126 mm (0.0005 in.) and this was maintained each time the

meter was taken apart and reassembled. The lower section of the button

is immersed in a 10,000 centistoke fluid to dampen tunnel vibrations

while taking experimental data. To prohibit air leakage while taking

data the shear meter was sealed at all points of electrical entry and a

plastic enclosure was placed around the lower section of the meter.

Two Bently Nevada model 2388-3000 series eddy current proximitors

t

	 and model 300 probes, designated channels A and B, are placed at right

angles to each other and sense the movement of the steel target cube on

the rod holding the button. Manufacturer's specifications indicate a
d

4	 resolution of 1.27 pm (50 pin.) displacement, less than 1% nonlinearity

of full scale, and a temperature sensitivity of 0.0264 pm/°C (1.88

^	 r

	 pin./°F). The drift was measured at constant temperature to be 0.028

pm/5 min and 0.070 pm/5 min and this drift corresponds to a change in the

{{	 sensed load of less than 0.03 and 0.08 dynes/5 min for channels A and B.

4-	 Temperature effects were considered negligible since the calibrations and

96% of the data were within a 2.2°C (4°F) temperature range. The wall

shear magnitude and direction was determined by resolving the output

signals from the two probes.

Figure 3.6 is a schematic of the omnidirectional meter measuring

system. Two Hewlett Packard power supplies were used to provide minus 18

volts d.c. to the proximitors and two Racal Dana model 5100-16 multimeters

were used to read each proximitor's output. The probes were operated in

their linear -5 to -8 volt range.
f

The floating element was calibrated before being installed and on

E	 removal from the tunnel and calibration curves for each channel before

and after being in the tunnel were usually within 1%.

t
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Fig. 3.6	 Block Diagram for the Omnidirectional Meter System
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The meter was calibrated by weights on a calibration stand. A

strand of human hair was aligned at 45° with each Bently Nevada probe,

attached to a removable pin at the disk center, and placed over a small,

jeweled pulley. The angle formed by the hair and calibration stand top

was nearly zero so the entire load placed in the calibration pan would

act on the disk. Two vibrators were used to minimize dry friction effects

in the jeweled pulley and, to a lesser extent to simulate tunnel vibrations

as encountered during tunnel operations. After putting the human hair in

place, the calibration stand was leveled so that the button was centered

in its space in the top of the meter housing. A typical calibration

curved voltage output versus loading is shown in Fig. 3.7. A more

informative way to plot the calibration data is to show the sensitivities

for each load. Such a figure emphasizes the scatter for the lower

loadings which is most likely due to dry friction forces in the jeweled

pulley where such secondary forces become large with respect to the small

loads. The individual load sensitivities for the results in Fig. 3.7

are shown in Fig. 3.8 with the greatest scatter at the lower loadings.

Tennant (1977) modeled the supporting rod and its load with a

computer program called Line Solution Developer (LSD) which is based on

transfer matrix or initial parameter theory. These result: indicated

1) that the ideal system is linear over a larger range than which

the system is operated,

2) that eccentric moments due to weight imbalances in the target

or floating disk would have no effect on the linearity or

sensitivity, and

3) that any initial bend in the supporting beam would have no

effect on the linearity or sensitivity

and these results support the experimentally obtained linear calibration

curves. Calibration data were obtained well beyond the design data range

showing linearity well beyond the design movement.

Uncertainty estimates for the three-dimensional shear measurements

included contributions from possible errors in the

1) physical area of the floating element

2) voltage output of the transducers

3) sensitivity values from the calibration procedure

L

r'
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4) misalignment of the shear meter with respect to the reference

tunnel centerline

5) vertical misalignment of the floating element with respect to

the meter surface, and

6) transducer drift.

These uncertainties were combined in a Kline-McClintock (1953) type pro-

cedure and an overall uncertainty is estimated for each shear data point 	 ,y

reported. The inclusion of these severalp	 possible sources of error was

made in an attempt to have this overall uncertainty approach an Nth order

uncertainty estimate as described in Moffat (1980).

In an effort to establish a high degree of credibility to the

three-dimensional meter, a substantial number of measurements was taken

in two-dimensional flow conditions for comparison with a two-dimensional

direct force sensing shear meter and a series of Preston tubes over a

modest range of unit Reynolds members. Such two-dimensional measurements

were judged to be a valid test of the three-dimensional meter since it

was required to measure a force magnitude and a force direction (albeit

the nominal tunnel centerline direction) in the two-dimensional flows.

Two-Dimensional Floating Element Device

The two-dimensional floating element device developed by Pierce and

Krommenhoek (1968) and shown schematically in Fig. 3.9 was used to

measure wall shear in two-dimensional flows. In this device, the cir-

cular disk is free to move in only one direction and this movement is

detected by a linear variable differential transformer (LVDT). Since

Pierce and Krommenhoek reported on this meter, the origi-.a_ LVDT and

associated power supply with accompanying electronics has been replaced

(Rule (1976) and Pierce, Tennant, and Rule (1976)) by a Schaevitz 025MHR

LVD— with an LPM-205 signal conditioning module.

The disk in Fig. 3.9 has a 2.858 cm (1.125 in.) diameter and the

equally spaced gap between the button and meter housing is 0.127 mm

(0.005 in.). The button is supported by a pinless four-bar linkage of

two brass reinforced copper-beryllium fixtures while the lower part of

the hntton rests in a well filled with 30,000 ccntistoke methylsilozane

oil. '.he oil serves to damp out external vibrations from the tunnel
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t	 while measurements are being taken. Additionally, the meter is sealed to

prevent any air flow between the atmosphere and the tunnel. P. static

pressure tap in the surface of the meter was used in combination with the

claw probe previously described to take freestream velocity data to 	 t

construct C. values. The ov3ral-" two-dimensional floating element

system can be representated by the block diagram show y. in Fig. 3.10.

	

	 a
s

The meter was calibrated in the same device and in the same manner

as the three-dimensional meter but with the line of act.en of the cali-

brating weights aligned with the meter displacement direction. One

typical set of calibration results is shown in Fig. 3.11. The calibration

curve was fitted frok, a first order least squares fit of the calibration

data. The coefficient of determination (Burr(1974)), r 2 , was generally

0.99990 to 0.99999 for the calibration runs indicating excellent linearity.

As before, it is instructive to s!iow the sensitivities for each load and

data of Fig. 3.11 ids shown this way in Fig. 3.12 where large scatter is

also shown for the lower loadings.

For reliable wall shear readings the two-dimensional floating

element was calibrated before being installed in and after removal from

.he tunnel. If two calibrations differed by 1.5% the calibration after

removal was considered the more accurate since the floating meter was

subjected to less handling in removal than in installation.

Preston Tubes

The Preston tubes were individually mounted on 12.7 cm (5 in.)

diameter aluminum disks with the tune opening centered on the disk. The

opening of each stainless steel tube was hand crafted in order to insure

a smooth, round entrance free of burrs. The tubes were approximately

3.81 cm (1.5 in.) long and they were epoxied to the alum-inum disk. Tubes

with outside diameters c.? 0.46 (0.018), 0.71 (0.028), 0.91 (0.036), and

2.11 mm (0.083 in.) were used. The inside diameters were 0.241 (0.0095),

0.394 (0.0155), 0.584 (0.023), and 1.60 mm (0.063 in.) respectively.

Except for the largest tube, the static pressure taps were located 1.27

cm (0.5 in.) from the tube -Yoeni.ng in a line transverse to the direction

defined by the tube axis. In preliminary testing of the three smaller

tubes, static p ressure tap lccations as close as 0.64 cm (0.25 in.) to
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the Preston tube produced the same results as the taps located at the 1.27

cm (0.5 in.) distance. For the largest diameter Preston tube, the static

pressure tap was 2.54 cm (1.0 in.) from the Preston tube opening. Static

pressure taps closer than 1.27 cm (0.5 in.) gave readings dependent on

this separation distance, while readings with the static pressure taps

located from 1.6 cm (0.75 in.) up to 3.2 cm (1.25 in.) gave identical

results. The Preston tube measurements were made with the electronic

digital pressure measuring system described earlier.

Experimental Procedure -- 1
The experimental program was complet -d in two phases--the first

involving measurements in a two-dimensional nominally zero pressure
t

gradient boundary layer over a modest range of unit Reynolds numbers, and Lj

the second phase in a pressure-driven three-dimensional turbulent boundary

layer at a nominally constant unit Reynolds number.	 The first phase u

required measurements of static pressure field, velocity field, wall shear

stress by the three-dimensional shear meter, by the two-dimensional shear

meter, and by the series of Preston tubes. 	 The second phase involved

measurea:ats of the wall pressure field, velocity field, and wall shear

measurements with the three-dimensional shear meter.	 The measurements of

each phase were not necessarily made in the order listed above.	 Instrumentation

system requircments were such that these measurements could not be made

simultaneously. 	 In order to insure dynamically similar flow conditions

for any particular measurements, the tunnel unit Reynolds number based cn

freestream velocity and fluid properties at the tunnel entrance was held

nominally constant.	 This was accomplished by maintaining the laboratory

temperature within small temperature variations and making minor changes

in the tunnel speed as required for barometric changes.

It would have been preferable to keep the flow body stationary while
L

moving the measurement sensors.	 This was practical for the pressure field ;t

and velocity field measurements, but the mechanical shear meter required

extensi4e leveling whenever the movable floor of the test section was

repositioned.	 Following the example of Prahlad (1968), it was decided to

keep the measurement location stationary and to move the body around that

location.	 Every effort was made to insure the accurate placement of the
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-were	 "obtain--- -	 - body at each vocation and_ attests- made to	 different wall

shear measurements by slightly misaligning the body. 	 These attempts

showed that slight misalignments did not result in measurable changes in

wall shear stress.	 Velocity measurements made after the body was removed

and then replaced proved to be repeatable also indicating that body place-

ment was -not a problem.	 Wall pressure field measurements made with the

body moved to a new position showed consistent and repeatable values

within experimental uncertainties.

The two-dimensional data were taken over a tunnel inlet unit Reynolds

number range from 0.71 to 1.33 x 106/m. 	 The three-dimensional data were

taken at a reference unit Reynolds number of 1.322 x 10 6/m + 1X.

Wall Shear Stress Measurement Techniques

In the last 100 years a large number of investigators have attempted

to measure wall shear in incompressible turbulent boundary layers.	 All

r ' but a small and recent number of these investigations have dealt with two-

dimens"onal flows.

For two-dimensional flows the techniques found in this review included

floating element devices used in channel flows by Tennant (1977), Pierce,

1=
Tennant and McAllister (1980), Brown and Joubert (1969), Smith and Walker

(1958), Vinh (1973), Allen (1977), Fowke (1969), Everett (1958), Boyce and

r'
Blick (1971), Boyce and Blick (1969), Waltrup (1971), Miller (1972);

1 in anuular shapes by Franklin (1961), White and Franklin (1964), Smith,

Lawn and Hamlin (1968), on a cylinder by Horsey (1974), and on flat plates

by Depooter, Brundrett and Strong (1977), Hakkinen (1955), Dhawan (1952),

Dershin, Leonard and Gallaher (1967), Shutts, Hartwig and Weiler (1955)

i
I'

and Furuya, Nakamura, Osaka and Honda (1975); Preston tubes used by Preston

(1954), Smith and Walker (1958), the NFL Staff (1958), Rechenberg (1963),

Ferriss (1965), Head and Rechenberg (1962), Patel (1965), Brown and Joubert

(1969), Miller (1972), and-Samuel and Joubert (1974); Stanton tubes used

by Stanton, Marshall and Bryant (1920), Konstantinov and Dragnysh (1960),

and Bradshaw and Gregory (1961); sublayer fences used by Wills (1963),

Nash-Weber and Oates (1971), Wanschkuhn and Vasanta Ram (1975); razor

blades used by East (1968), Wyatt and East (1968), Pai and Whitelaw (1969),

Miller1972 • heated elements used b 	 F	 and F '	 er(	 ),	 y	 age	 a_kn	 (1931), Ludwieg

i= (1950). Owen (1970). Ludwieg and Tillmann (1950), Liepmann and Skinner
1=
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(1954), Drinkuth & Pierce (1966), Bellhouse & Schultz (1966, 1968), Brown
LJ

{l_96-7L- -Armistead	 Keyes _<19W; and - electrochemical devices used by

Mitchell and Hanratty (1966), Kashinskiy, Kutateladze, and Mukhin (1974).
f`

Winter (1977) provides a more detailed review of some of these and other

works, as do Tennant (1977) and McAllister (1979).

Figure 3.13 lists most of these techniques/methods. 	 The floating

element technique is difficult to use, but only it can provide a direct

measurement of wall shear stress. 	 Except for the less direct momentum

balance calculations and liquid film move^ ,-nt measurements, all other

techniques that have been reviewed rely on the assumed existence and form

of near-wall similarity to infer wall shear stress.
1 -

{	 The indirect similarity techniques listed above may generally be

divided into two groups: 	 (1) those which infer wall (shear stress through

pressure measurements and (2) those which infer wall shear stress through

heat or mass transfer rate measurements near the wall. 	 Both groups rely

in one form or another on the assumed existence of near-wall similarity,,:

i.e.

u+ = f(Y+).

For instance Preston tubes are simply pitot tubes laid on the wall

and are used to measure dynamic pressure which is correlated with the

local wall shear stress. Stanton tubes and the razor blade technique are

similar to Preston tubes but are smaller and may even be confined to the

viscous sublayer. Heat and mass transfer techniques utilize near-wall

similarity through Reynolds' analogy. These methods sense flow conditions

in the thin thermal or concentration layers above the wall. These layers

must usually remain within the viscous sublayer for accurate calibration.

Miller (1972), Rechenberg (1963), Pierce and Krommenhoek (1968), and

Rubesin et al., (1975) provide more detailed discussions of these techniques.

The only techaique that directly measures the wall shear stress is

the floating element technique. In essence a small area of the wall is`1

isolated and the force acting on that area is measured. This technique

would appear to be the only one capable of resolving the question of near-
.

wall similarity in three-dimensional flow. However floating element

measurements can be very difficult due to a number of possible error sources.
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-Error-&- in the- measurement--of wail- shear with -a floating element

device in two-dimensional flows have been attributed to a number of

differentt effects as noted in Brown & Joubert (1969), Pierce and Kromenhaek
(1968), Everett (1958) and Allen (1977), and typically can include:

1) Misalignment of the floating disk with the surrounding wall can

cause significant errors though these errors can be minimized

through careful installation.

2) Secondary forces may be imposed on the edge or lip of the

floating disk by penetration of the freestream pressure into

the air gap. It is usually suggested that these errors can be

minimized by minimizing the lip thickness, thereby decreasing

the area over which the pressure may act but Everett's (1958)

results suggest that a thicker lip will result in reducing the

error. Regardless of how these errors may be minimized, they

can remain significant when the wall shear approaches zero.

Vinh (1973) suggests these errors are unique to the floating

element design itself.

3) The pressure gradieut will cause a pressure difference between

the boundary layer above any point in the air gap and cause

flow through it. These errors can be minimized but not entirely

eliminated by sealing the floating element casing from the

surroundings.

Of possible less importance, Brown and Joubert (1969) include:

4) The air gap will act as a roughness element in the smooth wall.

Everett (1958) suggests that the gap be reduced in size to

minimize errors as is the usual practice. Allen (1977) suggests

that less error is encountered for larger gaps.

5) The shear stress measured is the mean shear stress over the area

of the floating disk. If the flow geometry is large in comparison

to the floating disk, this effect can be minimized.

6) The floating element can alter the geometry of the device

according to its position and thus cause changes in the flow

pattern through the air gap. It would appear to be advantageous

if the floating element device were of the nulling type.

7) Even when the disturbance caused by the gap is ignored, there

will be a shear stress transmitted through the shear layer.
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imgaa	 pressure g=ad^t cau result fi d t1 ce

acting on tie fioati 	 element sorei$tance from the diskis
center.	 This normp t fare=oen thus case a	 th!►t
introduce errors for large-pressuregradients.

From the preceding list it can generally beconeluded-that the largest

errors for the floating element technique are derived from two sources;

k
(l) - element misalignment and (2):the pressure=gradient imposed on the

f	 = element.

Three experimental studies have been made concerting errors'induced

by floating element misalignment. 	 The supersonic studies of Allen (1977)

and O'Donnell (1964) appear to be the most comprehensive on disk mis-

alignment and they indicate varying effects of element protrusion on the

measured wall shear as shown in Fig. 3.14. 	 Supporting these results are

the low speed studies by (1) Furuya, et al. (1975) which indicated that

negative protrusions from 0-45 um (0-►0.0006 in.) have no effect, negative
protrusions from 15-30 pv, (0.0006->C.0012 in.) have a slight effect, and 	 i

positive protrusions of only 3 to 5 um (0.0001 to 0.0002 in.) have a

t=j noticable effect on T , (2) Smith and Walker (1957) who state negative
0

r protrusions up to 0.01.7 mm (0.0005 in.) have no effect and any positive

projections cause' '- ~ ,lerable errors in T o values, and (3) Morsy's

(1974) statement _	 positive 0.125 mm (0.005 in.) misalignment of the

disk with its solid boundary gives unacceptable T
o 
values. 	 From these

studies it would appear that negative disk projections of 0.0127 mm.

(0.0005 in.) to 0.0254 um (0.001 in.) are tolerable.	 O'Donnell points out

that on a smooth surface a misalignment error of 0.005 mm (0.0002 in.)

can be felt by hand and that an error of 0.013 mm (0.0005 in.) can b*:

often seen.	 Thus it should beossible to keep these errors below + 32P	 P	 _

of the flush reading.

Everett (1958), Pierce and Krommenhoek (1968), Brown and Joubert

(1969), and Miller (1972) have made experimental studies of pressure

gradient effects on floating elements. 	 These studies were made in small

subsonic wind tunnels. 	 Both Pierce and Krommenhoek, and Brown and Joubert
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i
studied the effects of adverse pressure gradients. Miller studied both

r	 adverse and favorable pressure gradients, and Everett's work was in a

favorable pressure gradient. Figure 3.15 shows their results. The

results of Pierce and Krommenhoek are based on 28 data points where the

wall shear stress was inferred from Clauser charts with Coles' (1962)

i
	 constants and compared with a floating element device that could not be

nulled. Brown and Joubert's results are based on more than 120 data

points where the wall shear was inferred from Preston tubes using Patel's

(1965) calibration and compared with a floating element device that was

nulled by tipping the device. Miller's results for favorable pressure

gradients were based on 9 data points. Miller used fully developed flow

between two plates and calculated the wall shear stress with a momentum

balance, i.e.,

T = —
Pdp

0 2 dx

where the distance between plates, d  was 0.318 cm (0.125 in.) and 1.27 cm

(0.5 in.). Miller's floating element was of the nulling type. Miller

used a different tunnel for his adverse pressure gradient studies. There

he compared wall shears using a Preston tube with Patel's calibration, a

near-wall similarity plot for the logarithmic region using Patel's constants,

and his floating element device corrected by + 10% using Brown and Joubert's

results. Compared with the floating element results, the Preston tube

measurements were reported to be 2 to 4% low, while the similarity plot

gave results that were high by as much as 5%. The poorest agreement was

in accelerated flow regions. In addition, Fig. 3.15 shows the pressure

correction suggested by Everett which takes the form

_ t dp
To - Tmeter 2 dx

where t is the thickness of the floating element lip. The gap-to-disk

diameter ratio was 0.0044 for the Pierce and Krommenhoek study, 0.004 for

the Brown and Joubert study, and 0.0035 for Miller's work. A significant

question in Fig. 3.15 concerns the nominally correct or reference TO used

to derive the correction factors for the wall shear reading, 
Tmeter' 

from

P ti	 a floating element device.
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T
	 Everett's (1958) work was completed in a high aspect ratio channel

ss i

and he assumed fully developed flow to equate the wall shear and pressure

gradient forces. The existence of nonuniform wall shear around the

channel perimeter can be considered as such effect R have been noted in

some more recent studies but in the case of undeveloped flows. In their

pipe studies Head and Rechenberg (1962) encountered wall shear differences

of up to 20% around a pipe circumference, and Furuya, et al. (1975) and

Bradshaw (1965) both reported flat surface spanwise wall shear differences

of up to 10%, and de Bray (1965) discussed the spanwise nonuniformity o,,` a

nominally two-dimensional turbulent boundary Layer on a flat surface.

Additionally, the effect of a possible channel height nonuniformity must

be considered. Ferriss (1965) presents an analysis for pipe flow showing
t

t+
	 tapers of 0.001 d p (do = pipe diameter) in an axial distance of one diameter

can cause the measured wall shear to deviate by 13% from the theoretical

wall shear for his flow rates. Similar effects could occur in nearly

parellel channel flows.

i

	

	 In the proposed Pierce and Krommenhoek (1968) floating element

pressure gradient correction factors the reference wall shear was deter-

mined by taking a velocity profile over the floating element flow station

for arbitrary pressure gradient and inferring the wall shear stress with

a Clauser chart using Coles' (1962) law of the wall constants. Here it

should be noted that the variation in inferred wall shear from different

law at the wall constants is sufficient to alter the Pierce and Krommenhoek's

pressure gradient correction. Additionally, the particular r.;rm of the

near-wail similarity law used also can alter the inferred wall shear value

in any such method.

Brown and Joubert (1969) used Preston tub2 wall shear readings as

their reference wall shear using Patel's (1965) calibration curve. They

reported their floating element wall shear values as consistent and

generally 4-5% higher than the Preston tube results for a zero pressure

gradient flow for a unit Reynolds number range of about 2 x 10 5 to 12 x 105/ft

with this difference attributed to slight secondary forces on the floating

element disk. In this study a comparison was made between 113 direct force

shear measurements with 75 Preston tube shear values from a series of

four different size Preston tubes for an essentially zero pressor- gradient

e
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flow over a similar but narrower unit Reynolds number range of about 2.4 x

106 to 4.4 x 106/ft. A statistical analysis for a second order fit to

these two sets of data showed-?hat-the direct force shears also exceeded

the Preston tube data, here #,y about 4% for the lower half of the Re/L

interval with the difference decreasing nearly monotonically to about 0.4%

at the upper end of this interval.

Miller's (1972) favorable pressure gradient results were the most

recent of such studies and perhaps the most thorough. He was careful to

maintain a uniform tunnel height ranging from 3.18->12.7 ms (0.125-0.5

in.) and to eliminate flow nonuniformity in the spanwise direction.

For the adverse pressure gradient corrections, Brown and Joubert

arrived at correction curves from a multiple curvilinear regression surface

using the variables of Fig. 3.15. Examining Fig. 3.15 several observations

can be made. Firstly, the studies of Pierce and Krommenhoek and of Brown

and Joubert are apparently in conflict for equal values of dm u N. One
suggests positive corrections associated with adverse pressure gradients

while the other suggests negative corrections. Although not shown in the

figure Pierce and Krommenhoek's results show a nearly constant +3 to +5%

correction required u to a value of the 	 dp/dx
Q	 p	 parameter dm 

T
= 33. The

correction from there out to a parameter value of 51 increases to +17X.

Everett's simple correction formula seems to support Pierce and Krommenhoek's

results qualitatively. However, Miller's studies in adverse pressure

gradients appear to support Brown and Joubert's results but it should be

recalled that Miller used the proposed Brown and Joubert corrections in

his own results. In contradiction however, Miller's studies in favorable

pressure gradients appear to be supported by Everett's formula. Winter

(1977) joins the Miller favorable pressure gradient curves with those of
Brown and Joubert for adverse pressure gradients and this requires a

complete reversal of the direction of these curves, with no evidence of

this kind of behavior reported by Miller.

For the zero pressure gradient case, Pierce and Krommenhoek's device

read consistantly low by 3 to 5% when compared to wall shear determined

from Clauser charts. Brown and Joubert's instrument read consistently

high by 4 to 5% when compared to Preston tube measurements. These can be

compared with Allen's instrument which read consistently low by 62 when



compared to Preston tube measurements.	 Miller does not report any data

for his device in a zero pressure gradient flow. 	 It should be noted that:

(1) these errors are calculated under the assumption that the near wall

similarity laws, the law of the wall constants, and the instruments that

depend on them can provide exact wall shear values, and (z) an approximate

nominal +5% uncertainty can exist between very carefully designed and

constructed floating element devices reported on up to this time.

It is important to note that all such corrections are unique to the

4£ geometric details of the particular mechanical meter for which they were

determined.	 Vinh (1973) shows experimental results comparing direct force

t' shear values with Preston tube results for two geometrically different

r floating element buttons or discs. 	 His results shcw strongly different
s

pressure gradient effects on the nominal wall shear values suggesting a

strong button geometry dependence. 	 Generalization of any of the results

t in Fig. 3.15 to shear meters in general would not seem warranted in view
i

of Vinh's results.

The edge thickness of the movable disk would appear related to
E

possible errors in floating element results. 	 Intuitively one would expect

to minimize a pressure force by minimizing the element lip thickness.

This is recommended and confirmed in the modeling of this effect by Brown

and Joubert (1969).	 Yet contradicting this are the experimental results

of Everett which show that a thicker lip minimizes pressure gradient

corrections.	 The latter experiments were in favorable pressure gradients

but the Brown and Joubert modeling of this effect does not appear to be

restricted by the gradient direction. If in fact the pressure gradient

effects appear as both direct pressure forces anu as residual secondary

forces attributable to secondary flows induced around and through the floating

element clearance gap, as modeled by Brown and Joubert, it may well be that

F_	 a thicker lip reduces the pressure gradient induced flow around the element

thereby reducing these residual secondary forces. Supporting this hypothesis

in Everett's recomaendation to minimize the clearance to element lip
i

thickness ratio.

jy	 Null type floating element designs have a uniform gap around the

L	 element and were used by Franklin (1961), Yaros (1970), Allen (1977),

((	 Smith and Walker (1957), Boyce and Blick (1971), Miller (1972), and
1=
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Depooter, Brundrett, and Strong (1977). Nonuniform gap widths have been

presumed to contribute some type of error but there is no quantitative

estimate or analysis to suggest the possible error magnitude. The advantages

of not having to null a displaced floating element are generally substantial.

The gap size has been considered as a roughness element exposed to

the flow and varying solutions have been suggested to reduce this effect.

Everett (1958) suggested a small gap size (minimizing the clearance to

edge thickness ratio) while Allen (1977) recommended a larger gap as more

desirable. Portions of the gap area have been treated as disk area assuming

a . shear stress is transmitted through the gap shear layer. Hakkinen's

(1955) transonic flow studies used half the gap area as adding to the disk

area while the transpiration study of Depooter, et al. (1977) used from

0.0 to 0 . 365 of the gap area., depending on the transpiration rate. Waltrup

(1971) and Dershin, et al., (1967) reduced the gap effect by using an

elliptic shaped disk. In contrast to these investigations is Dhawan's

(1952) conclusion after using spark Schlieren photos and attempts at

measuring the pressure disturbance caused by the gaps that no gap effect

was present. White and Franklin (1964) also concluded the gap effect was

negligible in their annulus work but their element size (a 10.16 cm (4.0

in.) diameter tube with a length of 10 . 16 cm (4.0 in.)) was large compared

to the 0 . 0762 mm (0.003 in.) gap width.

No discussions of possible errors in direct force wall shear stress

measurements in three-dimensional flows were found in the literature*.

Clearly possible errors similar to those for single line of action meters

used in 2DTBL flows can occur for unrestricted. line of action devices as

required in 3DTBL flows.

*As this report was going to press, Prof. Peter Joubert provided the authors
with a copy of the doctoral dissertation of K. C. Brown entitled "Three-
Dimensional Turbulent Boundary Layers," University of Melbourne, 1971.
Portions of this thesis dealing with two-dimensional wall shear measurements
with a direct force sensing single line of action device and pressure gradient
corrections are published as Brown and Joubert (1969) and are discussed in
this report. Regrettably, some very thorough work dealing with direct force
wall shear measurements and an examination of the suitability of four
similrrity models in pressure driven 3DTBL flows contained in the thesis
were not published and 'dience unknown to the authors for inclusion in the
body of this report. Footnote references to this work appear in the text.
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For three-dimensional flows the techniques employed for measurement

of wall sheL_ have been similar to those used in the two -dimensional case.

The techniques employed include: Preston tube type probes by Pierce and

Krommenhoek (1968), East and Hoxey (1969), Prahlad (1968, 1972, 1973),

Power (1973), Hebbar and Melnik (1976), Dechow (1976); Stanton tubes by

van den Berg and Elsenaar (1972); sublayer fences by Hebbar and Melnick

(1976) and Vagt and Fernholz (1973); razor blades by East and Hozey (1969)

and heated elements by Pierce and Krommenhoek (1968), McCrosky and Durbin

(1972) and Higuchi and Peake (1978). All the above are indirect measurement

techniques and were calibrated in two -dimensional flows. Only the work of

Pierce and Krommenhoek (1968) includes - three-dimensional measurements with

a floating element device.	 _-

The direct force measurements by Pierce and Kkommenhoek (1968) totaled

only five data points. Their test flow was the boundary layer confining a

jet impinging on a back wall. They compared their results with wall shear

values inferred from a directionally sensitive heat meter, a Preston tube,

and a yaw probe calibrated as a Preston tube. All the indirect devices

were calibrated in a two-dimensional flow, and agreement between these

devices and the floating element was within +10X. This would tend to

indicate that the nondimensionalizing 4all friction velocity is, for the

limited flow studied, at least approximately related to wall shear in the

same manner for both two- and three-dimensional flows. Regrettably, their

experiment lacked a sufficient number of direct wall shear measurements,

lacked companion velocity profiles, lacked static pressure data in the

neighborhood of the measuring location, and used a floating element

device unable to discern the direction of the wall shear vector.

On this last point, some further discussion is required, since the

3DTBL is seriously clouded by the question of limiting wall streamline

direction and its accurate measurement. Most of the experiments noted

earlier show two, three, or more velocity points in the very near--wall

region which have the same direction when displayed as in Fig. 2.4,

suggesting the existence of a collateral near -wall flow. The very careful

measurements of Rogers and Head (1969) and Hebbar and Melnik (1976) using

very small instrumentation and emphasizing spatial resolution show no

region of near-wall collateral flow. Additionally, Pierce and East (1972)
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and Klinksiek and Pierce (1973) have demonstrated in finite difference `u

solutions to a 3DTBL flow where viscous stresses are retained in tha

motion equations that no near-wall collateral flow is predicted by the

analysis.	 The question of modeling of the Reynolds stresses might be ^.J

raised but is irrelevant since the turbulence modeling was suppressed in

the very near-wall region (.viscous sublayer) and made no contribution to

the solution.	 In effect, in the extreme near-wall region the viscous
I

i

^	 boundary layer equations for the three-dimensional case were solved and in

this viscous extreme near-wall region the solution indicated that the

existence of a collateral boundary layer is inconsistent with the governing,
t

equations.	 Prahlad (1973) also presented work supporting these computer

results which revealed local streamline turning in the immediate neighborhood)
E^

of the wall.	 These results cloud the question of accurate measurement of

_ limiting wall streamline direction.	 Preston tubes and similar devices
L

have relatively poor spatial resolution and would be expected to respond

to some average flow direction over their faces. 	 The agreement found by r

Pierce and Krommenhoek between Preston tube and yaw probe directions and

those obtained by a directionally sensitive surface-mounted heat meter

suggests that the heat meter device also responds to thermal diffusion

over a thin near-wall region through which velocity direction is varying,

and hence the heat meter also appears to respond to an average near-wall

flow direction.	 Unfortunately, in that experiment the determination of

limiting wall streamline direction by the floating element device was not

made because of the good agreement noted among the Preston tube, yaw

probe, and heat meter. More recent work suggests that while indirect

devices may sometimes give reasonable estimates of wall shear magnitude in

3DTBLs, surface-mounted indirect devices generally give erroneous information

on wall shear direction.

More recently, the flush mounted type heat meter of the Pierce and

Drinkuth (1966) type has been modified and miniaturized for use in three-

dimensional flows. McCroskey and Durbin (1972) designed a two-element

foil for direct application to the flow surface, and Higuchi and Peake

(1978) modified the Rubesin et al. (1975) flush buried wire gage to include

two wires for use in three-dimensional flows. The Higuchi and Peake two-

wire meter is extremely small (typically 1/8" in diameter) and has the
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potential to make measurements over very small local areas. 	 It is essential

L;
to note that neither of these indirect devices has ever been calibrated in

a three-dimensional flow.	 Only limited use has been reported for the

McCroskey and Durbin gage and recent contact with one of its developers

did not encourage use.	 Higuchi and Peake have reported on the use of two

of the twos-wire heat meters in a three-dimensional flow.	 Their report

clearly shows that each element of the meter was calibrated only in a two-

dimensional flow using a Preston tube as the 'primary' standard. 	 Since

^J the calibration of a Preston tube is in effect dependent on the two-

dimensional near-wall similarity law, use of heat meters calibrated in a

two-dimensional flow with a Preston tube in effect assumes a rp iori the

validity of the two-dimensional near-wall similarity law in a three-

i dimensional flow. 	 Such an assumption is unacceptable in any experiment

dasigned to identify a near-wall similarity law in three-dimensional

L

flows.	 Higuchi and Peak also calibrated the directional sensitivity of

the two-element heat meters ir. a two-dimensional flow as well.	 Using

these heat meters in a three-dimensional flow, they reported flow angle

I' measurements differing typically by 5-15% with occasional larger differences,

when compared to standard wall flow visualization techniques. 	 While shear

magnitude data were reported for the heat meters for the three-dimensional

flow, there were no other data available to validate the two-dimensional

calibration of these two-element heat meters for use in a three-dimensional

flow.	 It would seem unnecessary to emphasize that simply using such a

device in a three-dimensional flow does not validate its two-dimensional

calibration for use in a three-dimensional flow. 	 Concerns over the use of

two-dimensional calibrations of heat meters in three-dimensional flows

were noted as early as 1966 by Pierce and Drinkuth (1966) when they suggested

this technique for flush mounted wire type sensors.

Rubesin, et al. (1975) note that in a two-dimensional flow the

calibration of a very fine wire heat meter in a laminar flow can be used

in a turbulent flow.	 However, those authors note that the analysis itself

which indicates this universality of calibration would introduce a nominal

10% error in such a universal calibration for two-dimensional turbulent

flow.	 Combining this magnitude error with the other probable experimental

errors of drift, meter resolution, etc., would likely result in an excessively

x
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large uncertain_. in using such a universal calibration in two-dimensional

work. The possibility of such a universal calibration existing in a

three-dimensional case has not been demonstrated and the simple extension

of the two-dimensional model into a three-dimensional flow is highly

suspect since this would appear to ignore the vector character of the

near-wall flow in the three-dimensional case (e.g., Rogers and Head (1969),

Hebbar and Melnik (1976), East and Pierce (1972) and Klinksiek and Pierce

(1973)).

It should be clear that in any attempt at a definitive study of near-

wall similarity in a three-dimensional turbulent flow, the need for local

direct force wall shear measurement of both magnitude and direction is

essential and absolute, the degree of difficulty required by such a measure-

ment not withstanding.

Other than the work by Pierce and Krommenhoek (1968), only Prahlad

(1968, 1972) appears to have sought to address the question of wall shear

in near-wall similarity in three-dimensional flows. Prahlad used Preston

tubes calibrated in two-dimensional flows to infer wall shear in the

limiting wall streamline direction as determined by yaw probes. The

objection to yaw probes to determine wall shear direction would be even

stronger than cited above for the heat meter. Prahlad studied the flow

around a cylinder and an inclined plate. His results for small skews

suggest that a nondimensionalizing kind of wall friction velocity correlates

his data. Since his measurement technique was indirect, it is impossible

to conclude any direct relationship between the wall friction velocity and

wall shear. Prahlad also noted two other results: (1) the effects of

pressure gradients in three-dimensional flows appear to be qualitatively

similar to those in two-dimensional flows, and (2) the larger Preston

tubes give smaller values of wall shear than smaller Preston tubes. With

regard to this last point, Prahlad notes, "This deviation implies depar-

tures from wall similarity and consequent errors in the use of the Preston

tube technique in these flows."

In establishing the credibility of the omnidirectional shear meter

used in this study, substantial measurements were made: in a 2DTBL flow for

comparison with the generally well accepted Preston tube method. A brief

review of Preston tubes particularly as regards calibration equations

Ll

C

94



follows. The Freston tubes were chosen because then have been broadly

studied in recent years and are considered reliable in two-dimensional

flows, with reasonably well defined pressure gradient restrictions. For

the interested reader Bertelrud (1974) and Allen (1973) contain bibliog-

raphies of Preston tube usage in high speed flows while Simpson and Whitten

(1968) and Depooter, Brundrett, and Strong (1978) discuss Freston tube

applicability in transpired turbulent boundary layers.

Since Preston (1954) first reported the technique of laying a Pitot

tube on a solid boundary to indirectly measure the wall shear stress, many

investigators have published their own calibration curves. Table 3.1

lists a number of calibration formulas for Preston tubes with round, open

ends.	 Not included are the calibration results for rectangular Preston

tubes by Quarmby and Das (1969). 	 The calibration results in Table 3.1

were obtained under different conditions which are outlined in Table 3.2.
Preston's (1954) calibration results are generally considered inaccurate

and this prompted several studies before Patel's (1965) comprehensive

~t results appeared. 	 Patel's work is the most thorough as it is the only

Li

investigation to actually set usage limits depending on the type and

severity of pressure gradient present in the flow. 	 For adverse pressure

gradients, Patel set as a rough guide a Preston tube operating range as

L maximum 3% error 0 < a < 0.01, 	 q D/u `.200

maximum 6% error 0 < a < 0.015	 *q D/v < 250

Land

_

for favorable pressure gradients

maximum 3% error 0 < a < -0.005, q D/v<200 da/dx<0

maximum 6% error 0 < a < -0.007, q D/v<200 da/dx<0

where

L = _ya	
*3 dx

pu

A subsequent study by Brown and Joubert (1969) suggest that 6% limits

given above "are slightly optimistic."

It has been noted that Patel's three calibration equations do not

f	 o
match -Et the endpoints and one equation is transcendental in z (the y*

vaziable). Head and Ram (1971) presented tabulated results for Patel's

L
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Table 3.1 Preston Tube Calibration Equations

Investigator Calibration Equations#

Preston (1954) y* - 0.1505 + 0.5x* 2 < x* •	 4.1

Y* _ -1.396 + 0.875x* 4.1 < x* < 6.5

Head and Rechenberg ( 1962)

I

1	 y* -
i

-1.467 + 0.889x* 5.14 < x < 6.94

Ferriss (1965) y* - -1.422 + 0.881x* 4.79 < x* < 6.38

Smith and Walker	 ( 1958) y* - -1.366 + 0.877x* (	 5.0 < x* < 7.5

N.P.L. Staff ( 1958) y* - -1.353 + 0 . 875x*

i

1	
5.25 < x* < 7.20

Patel (1965) y* - 0.5x* + 0.037	 I	 x* < 2.90

y* =

i

0.8287 - 0.1381x*

+ 0.1437x* 2 	2.9 < x* < 5.60

- 0.006x*3

x* = y* + 21og10 (1.95y* + 4.10)

5.6<x*<7.6

Bertelrud ( 1976A) p	 - p
t 38.85x* - 88.53

z
0

4.80 < x* <	 7.72

#Symbol Definitions
*	

^p D2
r.	

log10( _ 2 )
4 pv

D Preston tube outer diameter

App =p t
 - p

*	 T D2
y = 109

10
( 0 2 )

4 pv
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calibration equations and Bertelrud (1976A) used the new variable instead

of the y* variable previously used in Preston tube calibratious. The

Bertelrud calibration : equation agrees well with Patel's results but the

x* range is limited with respect to the equivalent Patel range.

The relative ease in constructing and using Preston tubes has lead to

their widespread usage and the basic Preston tube or variations of it have

been used in attempts to measure wall shear stress in three-dimensional

flows by Fierce and Krommenhoek (1968) Prahlad (1968, 1972, 1973), East

and Hoxey (1969), Power (1973), Hebbar and Melnik (1976) aid Dechow (1977).

Without exception, these two-and three-dimensional studies used a two-

dimensional calibration equation, usually Patel's (1965) calibration

results.

The use of Preston tubes in three-dimensional flows requires the

alignment of the Preston tube axis and the wall shear stress vector since

misalignment can result in erroneous readings. Pierce and Krommenhoek

used a heat meter to determine the wall shear stress direction and then

aligned the Preston tube accordingly. In general, the other three-di-

rnensional studies aligned the Preston tubes with the direction of the

velocity vector nearest the wall as measured by a yaw type probe. This

assumes the existence of collateral flow at the wall and the error of this

assumption has already been discussed. Power (1973) using 1.651 mm

(0.065 in.) and a 3.188 mm (0.1255 in.) diameter Preston tubes, reported

C  differences of 2% between the two 3ifferent tube sizes. Differences of

this magnitude could very well be caused by uncertainty in taking the data

but Power believed the difference indicated "a possible effect of cross

flow skew across a Preston tube diameter." Contrasting these remarks is

Prahlad's (1972) work showing Preston tubes aligned with the local flow to

be relatively insensitive for a misalignment of up to 20° between the tube

axis and estimated wall shear stress direction.

The relative insensitivity of Preston tubes as reported by Prahlad

(1972) can in part be solved b;1, .%riAti.ons ir. the Preston tube design.

Prahlad tested two variations of the regular Preston tube design, the

single chamfered and Conrad probes shown in Fig. 3.16 each of which

demonstrated greater yaw sensitivity than a regular Preston tube.

L
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Singie Chamfered Probe

J
li
L^
L

li

Q" 

Flow

Direction

4 5^\	 Conrad Probe

Flow

Direction

45,

f

1

Gupta Probe

Flow ^	
4^"_	 D O O

Direction	
1	 2

Top View	 Side View

Fig. 3.16 Variations of the Preston Tube Design
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The placement of the static pressure tap needed in Preston tube

work can also cause errors in the measured wall shear stress. The

readings from static pressure taps too close to the Preston tube opening

are affected by the tube while taps located too far from the tube will

give erroneous readings if pressure gradients exist, and the existence of

transverse pressure gradients becomes imrortant in three-dimensional

flows. Gupta (1975) devised a variation of the Preston tube design also

shown in Fig. 3.16 which does not use a static pressure tap. This design

was oW y tested in a two-dimensional flow and its applicability to three-

dimenst)nal flows has not been determined but its geometry does offer

some possibility of flow alignment „y prior calibration in a uniform

flow for possible use in a three-dimensional flow. Bertelrud (1976B, 1477)

designed a probe which measures a modified static pressure with the

tube itself as well as the total pressure. This device was only tested in

a two-dimensional flow -ind while the geometry offers a more local pressure

measurement, the probe is necessarily larger and does not appear to offer

any convenient means of flow alignment in three-dimens:cnal use.

1
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'	 IV. TWO-DUMSIORAL KEA-WREKUTSs

Introduction

The principal purpose for taking tvo-dimensional measurements was to

develop credibility in the omnidirectional meter and confidence estimates

in the data acquisition techniques.

Static Pressure Field

The static pressure field was obtained over a 15.24 by 50.8 cm (6.0

by 20 . 0 in.) area for the tunnel speeds used. Very small spanwise vari-

ations wsrP detected and overall the static pressure decreased in t'.e

flow direction showing approximately the same magnitude favorable pres-

sure gradient of -13 . 57 Pa /m (-0.006 psi /ft) for all flow conditions.

i Velocity Profiles

Velocity profiles were taken on the tunnel centerline over the Re/L

j range of 0 . 66 to 1 . 33 x 106/m.	 Velocity profiles were taken off the

( tunnel centerline at +5.08 cm (2.0 in) and +10 . 16 cm (4.0 in.) at nominal

tunnel Re/L numbers of 1.12 x 106/m and 1 . 33 x 106/m.	 Table 4 . 1 lists
c
^- the nominal Re/L numbers which were identified with .Letter designations

for convenience in later use.

f Different notation was used to identify tunnel centerline and off

centerline two-dimensional velocity profiles. 	 Centerline profiles are

labeled as 2D X Y where X denotes the profile number and Y the particular

tunnel Re/L as given in Table 4.1.	 Off centerline profiles are labeled

as 2D+Z Y X where X and Y are interchanged but defined as before and Z is

the distance in inches off the centerline with the sign convention shown

in Fig. 4.1. For example, 2D 10 D indicates the tenth two-dimensional

velocity profile run at the D tunnel speed while 2D+2 C 1 indicates the

first two-dimensional velocity profile located two inches off the tunnel

r centerline at the C tunnel speed.

Data from 26 velocity profiles generally show small skewing is

present in all cases, increasing in a monotone fashion toward the wall.

L

`	 101



Table 4.1 Nominal Re/L by Letter Designation

Nominal Re/L(106/a)
	

Letter Designation

	

1.33
	

D
	 a

	

1.30
	

E

	

1.21
	

I

	

1.12
	

C

	

1.04
	

B

	

0.95
	

G

	

0.84
	

H

	

0.71
	

A
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Direction

Tunnel
Centerline

I

O O O O

-4	 -2	 +2

Spanwise

O

+4	 Test Locations

Fig. 4.1 Two-Dimensional Test Stations
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This skewing ranges from 0° to a maximum of 1.6° with an over

at the wall and is always positive as noted in Fig. 4.1, showing the same

variability and extent on 18 centerline and 8 off centerline profiles and

for the full range of tunnel flow conditions. Table 4.2 summarizes the

range of this skewing.

Six representative velocity profiles are show in the nondimensional

form in Fig 4.2 showing excellent repeatability. Profiles taken by four

individuals showed similar repeatability indicating that the velocity

data acquisition system was not dependent on any one operator for re-

peatable weasurements. Excellent repeatability is also shorn in Fig. 4.3

for three other tunnel speeds. Figures 4.4 and 4.5 both show similar and

anomolous spanwise ennuniformity at the tunnel test section for two

different tunnel speeds. The centerline and left of centerline profiles

at +2 and +4 inches show a very small spanwise variation of less than

approximately R and this variation tends to be consistent with a very

slight flattening of the profile away from the centerline. The profiles

to the right of the centerline show a more dramatic but repeatable

transverse variation that is difficult to explain. At the -2 inch

position there is a clear flattening of the profile of the order of 52,

while at -4 inches off the centerline there is an opposite steepening of

the profile, also of about 5%. No explanation could be found `ar these

relatively large right of center variations but their existence is

confirmed by their repeatability. Transverse measurements made on four

inch centers 1.9 a upstreav of the test section show no such variations

with all profiles coincident within experimental uncertainties. Similar

transverse measurements made 1. m upstream show an acceleration in the

l r portion of the profile at the -4 in. station similar to but slightly

less than that of the test section shown for profiles 2D-4C1 and 2D-4D1

in Figs. 4.4 and 4.5.

Bradshaw (1965) and de Bray (1965) have studied spanwise non-

uniformity using Preston tube data while Furuya and Osaka (1975) looked

at freestream velocity and turbulence intensity. Furuya, et al. (1975)

have also studied spanwise non-uniformity through Preston tube and

boundary layer velocity profile measurements which also showed similar

skewing trends as the two-dimensional velocity profile data in this

study. These investigators have generally concluded that these non-

uniformities are due to screens with &-mall open areas well upstream of
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Table 4.2 Summary of 2D Profile Angle Variations

Nominal Speed	 Re/L(106/m)	 Angle Range

A 0.71 0.2 to 0.4

H 0.84 0. to 1.4

G 0.95 0. to 1.0

B 1.04 0. to 1.2

B 1.04 0. to 1.4

C 1.12 0. to 0.6

C 1.12 0.1 to 0.8

G+2 1.12 0. to 1.0

C+4 1.12 0. to 1.0

C-2 1.12 0. to 0.6

C-4 1.12 0. to 1.4

I 1.21 0. to 0.4

I 1.21 0. to 0.4

E 1.30 0.	 to 1.0

E 1.30 0. to 0.6

D 1.33 0.	 to 1.4

D 1.33 0. to 1.0

D 1.33 0. to 0.8

D 1.33 0.	 to 1.0

D 1.33 -0.2 to 1.0

D 1.33 -0.2 to 1.6

D 1.33 0.2 to 0.6

D+2 1.33 0. to 0.8

D+4 1.3333 0 .	 to 1.2

D-2 1.33 0.	 to 1.6

D-4 1.33 0.	 to 1.6

Wft

. ad

C
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the data stations. An open area of 57% was suggested by Bradshaw, Furuya

and Osaka, and de Bray as the lowest open area which could be used to

insure minimal spanwise variations. Furuya, et al. made no recom-

mendations on reducing spanwise variations. Bradshaw further stated that

the 57% should only be taken as representative until other studies were

conducted in other wind tunnels. De Bray's results showed that even when

using screens with 60% open area the C  spanwise variations were +8%

which would suggest that the selection of the minimum screen open area of

57% does not always preclude sizeable spanwise variations in two-dimensional

flow fields. The four screens at the entrance to the nozzle section of

the tunnel used for this experiment each had an open area of 70% which is

well above the value suggested by these various studies.

De Bray's (1965) work indicated that spanwise variations are less

important for three-dimensional situations which "generally have large

pressure gradients." The three-dimensional pressure-driven flow studied

in the present experiment would fall into this category. All three-

dimensional measurements were made with the body on the minus side of the

text section as shown in Fig. 4.1, with the more uniform upstream flow in

the region of measurements.

Direct Wall Shear Measurements

Direct wall shear measurements by the two-dimensional and omni-

directional wall shear meters were taken over the tunnel Re/L range and

representative data points are shown in Fig. 4.6. The results by Rlile

(1976) and Tennant (1977) are included because they were taken in the same

tunnel several months before the present measurements and during this

period both floating element meters were disassembled, inspected, and

realigned, and the method of eddy current output measurement and LVDT

output measurement was changed.

The repeatability in Fig. 4.6 demonstrates the ability to obtain data

independent of personnel. Those readers interested in using Tennant's

(1977) two-dimensional wall shear values (his Table A4) are advised of a

computational error in. hii Re/L values.

The two-dimensiona'_ floating element wall shear results for the

tunnel centerline are given in Tables 4.3 through 4.1. For the data
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in Tables 4.6 and 4.7 the freestream velocity was measured simultaneously

with the wall shear for C  calculations. These C  values are compared

with those calculated for the Ludwieg-Tillman formula

C	
0.246Re-0'26810 0.678H

f	 0

and easily overlap when the uncertainties are considered as shown in Fig.

4.7.

The wall shear uncertainties were determined from the Kline-McClintock

(1953) propagation method with contributions from drift, vertical mis-

alignment, angular misalignment, calibration sensitivity, area uncertainty,

and voltage readout and are intended to at least approach an Nth order un-

certainty estimate as described in Moffat (1980).

Two-dimensional omnidirectional wall shear stress data were taken in
i	 .

three sequences and the data in Fig. 4.6 are representative of these three
i

sequences.	 Figure 4.8 shows the repeatability among the three data sets

and Tables 4.3-4.7 contain all the two-dimensional tabulated data. Station

identification is as fellows. 	 For centerline values 2D Y is a two-dimen-

sional run where Y indicates the tunnel Re/L.	 ror off-centerline values

21)+Z Y is a two-dimensional run where Y again indicates the tunnel Re/L

and Z is the distance in inches off the tunnel centerline after Fig. 4.1.

While the uncertainty was unique!y dependent on the individual wall

shear conditions, representative omnidirectional meter uncertainty char-

acteristics are presented in Fig. 4.9 and 4.10 as a constant magnitude

value shear typical of the D series unit Reynolds number was rotated off

the tunnel centerline to determine the directional sensitivity of the

meter.	 In these figures a 0.86 Pa wall shear stress was rotated 180° off

the tunnel centerline to show the effects of a given wall shear stress

orientation.	 It is noted that these figures would change somewhat,

generally showing larger uncertainties for smaller shear values.

The larger number of two-dimensional wall shear values at Re/L =

1.327 x 106/m for data Sets 2 and 3 allowed Figs. 4.11 and 4.12 to be

constructed.	 In Fig. 4.11 for data Set 2 the average T O was 0.82 + 0.02

t Pa. The estimated uncertainties encompassed all but four of the twenty-

four shear values.	 In Fig. 4.12 for data Set 3 the average T O was 0.83 +

0.02 Pa and fourteen of fifteen data points fell within the uncertainty
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Two-Dimensional Wall Shear Data Taken With the
omnidirectional Floating Element.
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range. Examining Fig. 4.8, the data of Set 3 is taken to be the most

consistent when comparing these results to an imagined line through all

the data points., The slight tendency for the Set 2 results to vary from

this mean is reflected in the four poor data points noted above. The

additional care and experience which went into the Set 3 results indicates

a greater degree of repes t_Ability. Overall, the uncertainty values used

in these shear data are estimated to be valid at 15:1 odds since this

reflects the added experience and improved techniques that were acquired

through these three data sets and these odds are suggested by the third

data set. In the various comparisons made among these two-dimensional

shear stress values odds of 20:1 are assumed so that the tabulated un-

certainties in Tables 4.3-4.7 were increased by 6% in such comparisons.

In examining the wall shear data in Sets 1, 2, and 3 in Tables 4.3-

4.7 the small variations in the angular orientation of the wall shear

vector exhibits an interesting pattern. In Sets 1 and 3 the wall shear

vector angle while small is positive for all but one data point while

the Set 2 angles are small but predominantly negative. Since all the

data in Sets 1, 2 : and 3 were taken in the same tunnel facility, the

angular differences were judged to result from two sources. First,

small differences in the alignment of the movable element with the

omnidirectional meter housing (vertical disk misalignment) could cause

small changes in the T O direction. This misalignment was measured at

eight equally spaced points on the disk circumference for each data set

with only one point no more than 0.0127 mm (0.0005 in.) above the meter

housing, and at most only one point no lower than 0.0127 mm (0.0005 in.)

below the meter housing. This small misalignment is estimated to have

had a minimal effect on the T O magnitude and is supported by the agreement

in T values for the different data sets at similar Re/L values. The
0

second source of angular uncertainty could result from the misalignment

of the tunnel centerline and a line bisecting the 90° angle between the

two proximitor probes. T;. + s is considered the most likely source for

the angular differences because of the difficulty in precisely making

this alignment. The line of action for all the T O vectors at similar

tunnel Re/L are contained within the angle uncertainty calculated for

that Re/L.
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Representative values of skin friction coefficient are shown in Fig

4.13 for data from Set 3 where wall shear and freestream velocity were

measured simultaneously and compared to Ludwieg -Tillmann values. Agree-

ment is considered good for all Re /L values since the Ludwieg -Tillmann

1{	 and direct ivall shear stress C  values overlap when the uncertainty

bands are considered. It is important to point out that the uncertainty

!	 estimated in the reported calculated C  values for the Ludwieg-Tillmann

formula reflect only probable errors in the calculation of input data to
r	 the formula from laboratory measurements. No probable error is assigned

to the formula itself and this is not realistic since the formula is not

likely to be absolutely correct in its predictions. A3 noted by White

^.	 (1974), an uncertainty as high as +101 can be assigned to the Ludwieg-

Tillmann formula itself. Including such an added probable error in the

estimated uncertainties shown for the Ludwieg-Tillmann formula would

increase these significantly and place all the data in good agreement

within such combined uncertainty bands.

Preston Tube Measurement s

Four different Preston tubes were used to indirectly measure the

wall shear stress using the calibration equations in Table 3 . 2 with data

obtained over an Re/L range of 0.7 to 1.35 x 10 6 /m. The tunnel inlet

unit Reynolds number was again used to insure similar tunnel flow conditions

between the Preston tube and direct force measurements. Freestream

E	 velocities over the measuring station ranged from 12.9 to 24.4 m/sec.

An essentially constant magnitude, small favorable pressure gradient

of -13.57 Pa/m existed for all tunnel flow conditions.

Wall shear stresses calculated from the various Preston tube cali-

bration equations reviewed in Chapter III and compared to the direct force

measurements are shown in Figs. 4.14-4. 17. Figure 4.14 compares the four

different sizes of Preston tubes to the original Preston tube calibration

equations. It is clear that the tube size is not properly accounted for

in these calibration equations. Figure 4.15 compares the N . P.L. (1958),
I

the Ferris (1965), the Bertelrud (1974), and the Smith and Walker (1958)

calibration equation results to the direct force measurements. Figure

t
4.16 shows the results of the Patel (1965) intermediate range formula for

l{
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the range of unit Reynolds uumbers of this study. There was substantially

more data available, especially at the higher unit Reynolds ambers than

could be show in Fig. 4.16, and more of these data in the range of the

boxed area in Fig. 4.16 are shown in Fig. 4.17 on an expanded scale. From
4

these figures it is evident that the intermediate range Patel calibration

equation gives better agreement with the direct force wall shear measure-
{
!	 ments than the Preston, N.P.L., Bertelrud, and with and Walker calibration

equations. The Ferriss formula appears to offer the same level of agree-

sent with the direct wall shear data as the Patel Equations but the Ferriss

formula is somewhat limited in its applicable range. The N.P.L. and the

is	 Smith and Walker wall shear value', 	 generally higher than the direct

force gall shear values. While the !;ertelrud results are generally lower,

the choice of dependent variable in this equation leads to overall wall

shear uncertainties for this calibration equation that are smaller than

!M	
for the other equations. Bertelrud purposely used different variables for

!_.	 his calibration equation given in Table 3.2 because tread and Ban (1971)

j	 showed these variables to be less sensitive to time Preston tube data

^j	 inputs than the x* and y* variables used by most other investigators. A

close examination of the Patel and Bertelrud results in Figs. 4.15 and

4.16 indicates that although both agreed with the direct wall shear data

within experimental uncertainty, the Patel calibration gives overall

better agreement. As in Depooter, Brundrett, and Strong (1978), all the

Preston tube data in this study also fell into the x* range covered by the

intermediate Patel calibration formula so that results from the remaining

two Patel formulas are not represented in Figs. 4.16 and 4.17.

Representative C  values using the results of Fig. 4 . 16 are shown in

Fig. 4.18 where agreement with the inferred C f results using the Ludwieg—

Tillmann formula is good. As with Fig. 4 . 7 the wall shear and freestream

data needed for Fig. 4.18 were taken simultaneously avoiding any possible

problems in matching data from different tunnel runs.

A actual number of data represented in Fig. 4.16 includes 75 Preston

tube shear values and 113 direct free shear measurements. A second order

r-	 statistical fit to these two sets of data indicated the direct force

shear values were nominally 4% higher then the Preston tube data over the

}r
,	 lower half of the Re/L interval shown with this difference decreasing
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Preston tube uncertainty

2.5
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P

i

i
	

l

y Ludwieg-Tillman
T uncertainty

3.0

x
w2.0'U

O 0.46 mm (0.018 in.) diameter Preston tube

6 0.71 mm (0.028 in.) diameter Preston tube

+ 0.91 mm (0.036 in.) diameter Preston tube

X 2.11 mm (0.083 in.) diameter Preston tube

O Ludwieg-Tillmann (inferred from velocity profile)

0.6	 0.8	 1.0	 1.2	 1.4

Re/L(106/m)

Fig. 4.18 C  Results For the Preston Tube Data Using the

Patel Calibration Equations
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nearly monotonically to about 0.41 at the upper end of this interval.

It is worth noting that these curve fits are heavily biased in that the

bulk of both data sets occured at the higher Re/L values and the agreement

between these two seta of data is well within 1% in this region.

Twc-Dimensional Near-tall Similarity Results

Repeatability in the velocity profiles, and the indirect and direct

wall shear values for these two-dimensional measurements establishes a

I high degree of credibility for the following two-dimensional near-wall

L' similarity plots and the subsequent three-dimensional wall shear measure-

ments.

Twenty-six two-dimensional velocity profiles were plotted in similarity

variables.	 These included eighteen profiles taken on the centerline of

to the tunnel over the full range of Reynolds numbers studied and eight

profiles taken at two- and four-inch distances off the tunnel centerline

in both directions at two of the nominally higher Reynolds number values.

Table 4.8 lists the profiles, wall shear values, and corresponding unit

f Reynolds numbers for these profiles and shear data.

It is informative to compare the measured velocity and wall shear

data to proposed near-wall similarity laws for the two-dimensional case

but two questions should be considered first.	 First, there is considerable

latitude over the choice of the two constants that appear in essentially

all forms of the two-dimensional near-wall similarity law and designated

K and C.	 This question is reviewed in Chapter II where Table 2 shows

several of the more popular pairs of constants in the literature.

Figure 2.2 shows that the choice of constants can have s significant

effect cn the logarithmic section of the similarity law.	 The Patel and

N.P.L. constants are used in the comparisons to follow. 	 The second

question concerns itself with the exact form of a similarity law that

will be used.	 As noted in the review of these models, a two-dimensional

near-wall similarity law for small y+ values to include very near-wall

data ca.i be written in various forms. 	 Three forms will be shown in the
i

following; the two formula law of the wall (the logarithmic form combined

with a sublayer form), the third order Spalding and the fourth order

Spalding forms.	 These are shown in Fig. 2.1 for one set of law if the

wall constants.
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Table 4.8 latched Hall Shear and Velocity Profile Re unitNumbers

Velocity Velocity Profile Re Hall Shear Re Hall Shear
Profile

unit unit (Pa)
1	 6

x 10	 )
1	 6

x 10	 )m M

2D 36 D 1.328 nominal 1.328 0.82*
2D 37 H 0.837 0.832 0.34
2D 38 A 0.710 0.705 0.28
2D 39 G 0.949 0.943 0.48
2D 40 b 1.055 1.052 0.58**
2D 41 C 1.116 nominal 1.120 0.60
2D 42 B 1.033 1.052 0.57**
2D 43 C 1.1.22 nominal 1.120 0.60
2D 44 E 1.312 1.314 0.81
2D 45 E 1.299 1.299 0.83
2D 46 D 1.334 1.335 0.83
2D 47 D 1.331 1.332 0.85
2D 48 D 1.328 1.328 0.84
2D 49 D 1.330 1.326 0.83
2D 50 D 1.330 1.326 0.83
2D 51 D 1.321 1.323 0.83
2D 52 I 1.211 1.217 0.72
2D 53 I 1.211 1.217 0.72
2D+2 D 1 1.329 1.324 0.87
2D+4 D 1 1.323 1.314 0.85
2D-2 D 1 1.326 1.327 0.79
2D-4 D 1 1.323 1.316 0.88
2D+2 C 1 1.119 1.109 0.60
2D-2 C 1 1.125 1.124 0.56
2D+4 C 1 1.124 1.117 0.62
2D-4 C 1 1.124 1.116 0.64

*
Average of 24 values from the Set 2 omnidirectional meter results.



1j,

Calculated uncertainties can be identified with the plotted experimental

data points and these uncertainties vary according to the wall shear

value and distance from the wall. The largest percent uncertainties

occur for the low unit Reynolds number runs with the smallest occurring

for the highest tunnel speeds. The percent uncertainties also decrease

as one moves away from the wall and they also decrease at a given wall
i

distance as the tunnel speed increases. This behavior exists because

the wall shear stress has a larger uncertainty at lower tunnel speeds

and the velocity magnitude uncertainty increases in the wall direction.

Figures 4 . 19 and 4 . 20 show the typical uncertainties for a high and low

unit Reynolds number run at the extremes of the data. The similarity

law shown is the Spalding third order formula for the Patel and N.P.L.

constants.

^•

	

	 Figure 4.21 shows mainly D series velocity profiles both on and off

the tunnel centerline and compares these to the Spalding third order

L

	

	 similarity formula for both the Patel and N.P.L. constants. This figure

suggests that the Patel constants would represent these data well.

Figure 4.22 shows the same data compared to the Spalding fourth order

similarity formula and the difference is seen in the low y + value data

fitting better with the fuller curve. Figure 4.23 shows the same D

series data fitted to the two-formula law of the wall similarity law.

It appears that in the y+ range of 50 to 300 all three of these models

fit the data very well and if one includes the very near wall data (y
+

values less than 50) the Spalding fourth order similarity model would be

preferred slightly over the third order model in terms of fit, and over

the two-formula law of the wall in terms of the convenience of a single

formula model. If the choice of y+ as independent variable is important,

then the two-formula law of the wall could be selected. Clearly, the

three-formula law of the wall could be manipulated to include a logarithmic

buffer region formula to better fit the buffer region data.

Thirteen profiles taken over the range of Reynolds numbers of the

twodimensional data, with the exception of any D sequence data, are

shown in Fig. 4.24 for comparison with the Spalding third order similarity

model for both the Patel and N.P.L. constants. The data generally lie

well within the uncertainty intervals and the interval defined by the
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L

two curves for each of the two sets of constants. The suggestion of a

Reynolds number dependence on the similarity constants is strong. A

car°ful look at the individual profiles shows that in general the lower

unit Reynolds number flows favor the N.P.L. constants and the higher

unit Reynolds number flows favor the Patel constants, but exceptions to

this trend are noted so that any stronger generalization is not warrented.

Thus, should one define a modest Reynolds number dependence of these

constants over the Reynolds number range of this two-dimensional, near

zero pressure gradient data, the uncertainty limits identify with this

variation would have to be generous. As noted in Chapter II the possible

dependence of the similarity constants on Reynolds number is discussed

by `leinstein (1967), Patel and Head (1964), Schraub and Kline (1965),

and Huffman and Bradshaw (1972).

As with the D sequence data, Figs. 4.25 and 4.26 show the variable

Re/L data in comparison with the Spalding fourth order similarity formula

and the two formula law of the wall, again, for the same two sets of

constants. And as in the earlier case, it is clear that the inclusion

of a buffer region formula as in the three formula law of the wall would

show an even better agreement than the two formula models.

The design and development of the flow tunnel, instrumentation, and

especially the three-dimensional shear meter is described more fully in

Tennant (1977). He also reports the results of preliminary data taken

with this system. The two-dimensional Tennant data is very similar to

that shown for this study but a close =-xamination of his similarity

plots shows slghtly better overall agreement with the N.P.L. constants.

A careful evaluation of both this and the Tennant data indicates that

for the unit Reynolds number over which the subsequent three-dimensional

measurements were made the Patel constants best represent .he two-

dimensional data. The margin of choice is not large. Additionally, the

three-dimensional flow conditions in this same test section will obviously

be different than for the two-dimensional case ev , a at the same tunnel

inlet unit Reynolds number. The subsequent three-dimensional similarity

models will be presented for comparison with the Patel constants in the

similarity models, but some limited comparisons will be made for both

sets of constants.
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It shoula be noted that no tube displacement or other corrections

were used for the velocity probe data reported either in this work or

the earlier work of Tennant (1977). In analyzing an extensive quantity

of two-dimensional near-wall data, Coles (1968) elected to ignore very
i	

near wall data for y+ values less than 50 because cf the wide scatter

among different sets of data in this iow y+ range. The reasons for such

scatter have	 been precisely determined with a variety of possible

error often ^• .oned (low Reynolds number effects, displacement corrections,

wall proxi rt9 affects, etc.). Note that the data in this study and the

preliminary data of Tennant (1977) do :got exhibit wide scatter for the

very near-wall region and follow the predictions of the third and especially

the fourth order Spalding similarity model well. Pierce and Gold (1977)

undertook a systematic study of such very near-wall data in a smaller

tunnel for 2DTBL flow and considered different impact probes, hot films,

gooseneck probes, straight probes, slight flow convergence and divergence,

and favorable and adverse pressure gradients. While for some of these

variations in instrumentation and flow conditions small systematic

changes in the very near-wall data were consistently noted, none of the

variations explored were adequate to move the very near-wall data as

often required for better agreement with the presumed behavior suggested

by models such as the third or fourth order Spalding formula. The

MacMillan (1956) tube displacement corrections for distance from the

wall were tried but the changes were not adequate.

In most of these figures the data for y+ less than 50 fall slightly

above theoretical predictions for either set of constants when using the

Spalding third order formula model and the agreement is improved with

the fourth order Spalding formula or the two formula law of the wall for

either sets of constants. The overall agreement of the data in this

study with any of these three models used in the y + range of 50-300

suggests that either set of constants and any of the three similarity

models used (clearly, the three formula law of the wall can be included

in this group) gives generally good agreement with the experimental

results. Overall, the Patel constants are favored because of their good

agreement with the extensive D series unit Reynolds number.

t'
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V. THREE-DIMENSIONAL MEASURMENTS

Introduction

Velocity field, wall pressure field, and direct force local wall

shear stress measurements were made in the pressure driven 3DTBL generated

by the teardrop body with axis placed normal to the floor shown in Fig.

3.2. Figure 5.1 shows the data stations on a 5.1 cm (2 in.) grid where

velocity field and wall shear data are reported here. Station designations

are made up of a letter and number with sign. The letter represents the

raw of the data station with A being the centerline of body and moving right-

ward in one-inch increments. The number represents the distance forward

of the body nose measured in inches with the zero being the leading edge.

Positive numbers are forward of the body and the sign is omitted. Negative

numbers represent stations behind the leading edge. Velocity profiles are

designated by an additional number indicating the number of the profile.

For example, profile C5 02 is the second profile taken at the C5 location

shown in Fig. 5.1.

The required static pressure field, wall shear field, and velocity

field were obtained separately. The unit Reynolds number of the tunnel at

inlet was maintained at an essentially constant value (1.322 x 10 6/m +

1%) to insure dynamically similar conditions during data acquisition. At

least two wall shear data points were taken at each point shown in Fig.

5.1. After repeatibility was established for the three-dimensional

profile data acquisition, generally one velocity profile was taken at each

of the data stations except for Al, Cl, E-3, and E-5. Close proximity to

the separation region resulted in very large velocity fluctuations at

these stations. Static pressure distributions were obtained on 1.7.7 cm

(v.^;1 in.) grid because of the larger number of data points required to

obtain reasonable polynomial curve fits to these pressure data for the

prediction of wa"A ;pressure gradients required in some of the three-

dimensional similari' - / models.

Velocity Profiles

Figures 5.2 through 5.11 show the velocity magnitude and angle

variation profiles along the various rows. The A column on the plane of

^a
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E7 Gl 17
0 0 0

E5 G5 I5
0 0 0

E3 G3 13
0 0 0

E1 G1 I1
0 0 0

E-1 G-1 I-1
0 0 0

E-3 G-3 I-3
0 0 0

5.08 cm

(2 in.)

E-5 G-5 I-5_j
0 0

5.08

0

cm .^

(2	 in.)

Flow
Direction

+

A7 C7
0 0

A5 C5
0 0

A3 C3
0 0

Al Cl
0 0

Fig 5.1	 Diagram Showing the Data Stations for the
Teardrop Flow
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L
symmetry shows two-dimensional behavior except that a very small amount of

L	
skewing occurs very close to the wall--nominally two degrees or less--but

the trend is clear. This small skew is similar to that identified with

L
the two-dimensional profiles taken with the body removed and discussed

earlier. Skewing along column C reaches over 30° as the body is approached.

Station E-1 shows an interesting velocity magnitude reversal near the

^-	 wall after the body leading edge has been passed with a corresponding

reversal in the skew angle as well. Columns G and I show substantially

less skewing though the nature of the skewed profile and the magnitude of

the skewing depends on the position along the particular column.

In general the minimum velocity magnitudes and maximum skewing occurs

for those flow stations closest to the teardrop. If one could imagine a

control volume enclosing the stations and body in Fig. 5.1, conservation

of mass suggests the flow velocities downstream of the teardrop will be

larger than those in row 7 because of the reduced flow area available

downstream in the body. This is the general case but the increase in

velocity is not uniform. As the flow sweeps past the teardrop body there

is a tendency toward returning to a two-dimensional-like profile.

Static Pressure Field

omitting the singular zero pressure gradient case, the pressure

gradient-wall shear vector orientations in two-dimensional flows are

limited. These vectors may be directed in the same sense or in the

opposite sense, but they are always collinear and may be treated in a

scalar sense. The three-dimensional case is more complex. Wall static

pressure measurements were made on a 1.27 cm (0.50 in.) grid to provide a

large number of data points to obtain reasonable polynomial curve fits to

the pressure data for the prediction of wall pressure gradients required

in some of the three-dimensional similarity models. As is well known, the

prediction of accurate gradients from experimental data requires special

care. The wall pressure readings for each row and column were curve fit

to a family of polynomial curves from second through eighth order with

graphical output. Each figure was individually examined and in some

instances the data was re-fitted through the same range of polynomials in

a piecewise manner--that is, polynomial representations were obtained for

i

159



IU

}

Li

two or three segments with data overlap in all cases. This procedure was

usually required where large variations in wall pressure occurred close

to the body. Derivatives along the longitudinal and transverse directions

were conputed for these families of polynomial curves for each row and

column, again with graphical output. For each row and column the choice

of derivative values was obtained by "consensus" from the three polynomial

representations which gave the closest agreement in the predicted derivatives.

While this procedure involved considerable personal attention to a large

quantity of data, it yielded the most consistant results and allowed for

an estimate in the uncertainty of the predicted derivative results.

Details of the instrumentation and method of estimates are given in

Nelson (1979). Figure 5.12 shows the pressure gradient vectors for a

forward quadrant of the body and Fig. 5.13 shows the pressure gradient

vector map for the forward half of the body. Figure 5.13 was constructed

to determine if the side wall boundary layers affected the body flow

field as the body was moved about to take the necessary data. The

results is this figure show excellent symmetry and are a good indication

that the overall flow field was not noticeably changed by moving the

body siLce only the most remote data n the far sides show modest differences.

This same computer software was used to predict gradients in the

wall shear magnitude and in the wall shear direction which were required

by some of the models tested. A lower degree of accuracy is identified

with these two sets of gradients because of the smaller amount of data

points for each row or column in the array over which gradients were

calculated.

Wall Shear Field

The direct wall shear measurements by the omnidirectional meter for the

tear drop flow are tabulated in Tables 5.1 - 5.5. The wall shear
magnitude and angular uncertainties were determined after a Kline-McClintock

error analysis as for the two-dimensional omnidirectional wall shear

uncertainties and here again an attempt was made to approach an Nth order

uncertainty estimate as discussed by Moffot (1980). No corrections of any

type have been applied to the data in these tables. At least two wall

shear readings were obtained on a 2.54 cm (1 in.) grid for the quadrant

shown in Fig. 5.1 except for the I column where a 5.08 cm (2 in.) spacing

160



1.6 kPa/m

4--,

10 psf/f

E7
	 w	 }'

E5	 45 45

E3	 G3	 *I3

	

E1G1	
#I1

E-1	 G-1	 I-1

E-3	 G-3	 ,I♦3

E-5	 G-5	 I-5

. \ % )k
Fig. 5.12 Pressure Gradient Map for One Quadrant of the

Teardrop Body
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was used. Additional wall shear values were obtained in a row 9 inches in 1
front of the tear drop nose and at stations All and A13. The wall shear

vectors at the flow stations shown in Fig. 5.1 have been drawn to scale in

Fig. 5.14. The curvilinear rectangle at each vector tip indicates the

uncertainty estimated for the magnitude and direction of each shear vector.

shown. The separation line shown in the figure was determined from a oil	
y

streak visualization study shown in Fig. 5.15 and obtained with titanium	 is
E -'

dioxide particles suspended in a diesel fuel-mineral oil mix.

Figure 5.16 shows a comparison of the preliminary data of Tennant

(1977) with that reported here. These data are not directly comparable

since they were obtained at different tunnel unit Reynolds numbers. The

larger wall shear stress magnitudes of Tennant', data are a result of a

12% higher unit Reynolds number. For comparison purposes it is noted that

extensive measurements in a nominally two-dimensional flow indicated a 20%

higher wall shear for the higher Reynolds number tunnel conditions than

for the lower speed conditions. It is noted that the pseudo two-dimen-

sional nominally symmetric flow at station A7 shown in Fig. 5.16 reflects

an equal difference. It is not possible to predict shear magnitude

differences between the readings in the fully three-dimensional flow

field. Agreement between the wall shear stress angles is generally

within the uncertainty bands shown, although it should be noted that these

angles would also be expected to change slightly for a change in tunnel

unit Reynolds number. Note that the largest &Iferences appear near the

separation horseshoe vortex where measurements were very difficult because

of larger fluctuations in the detected wall shear. Overall, each data set

gives similar results for the two different unit Reynolds numbers showing

the repeatability of the omnidirectional meter between the two studies.

Repeatability of measured data within each study was generally well within

the indicated uncertainty bands.

As the leading edge of the body was approached a reversal of the wall

shear direction was noted near station A3. A complete flow reversal was

recorded at station Al with a very high local shear stress identified with

the horseshoe vortex behind the upstream separation sheet. It appears

that station Cl is also within the separation vortex. The shear vector

direction indicates a significant downstream wall flow component develops
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in a relatively short distance from the symmetry plane. This separated

flow near the cylinder-floor corner appears to be complex and is being
investigated by LDV techniques in a subsequent study. In the unseparated

region the wall shear appears well behaved as its angle turns first away

from the body as the flow approaches and moves around the cylinder, and

then turns toward the body as the flow reverses direction to follow the

trailing edge.

A superposition of the wall shear map and the pressure gradient map

shown ir- Fig. 5.17 indicates the very wide range of pressure gradient-wall

shear stress vector orientations varying from nearly collateral and in the

same senile along the center line (the A) stations, to nearly collateral

and in the opposite sense at E-1 and G-1, to nearly orthogonal at station

G-1. These results confirm the anticipated further difficulties in the

application of any pressure gradient corrections such as those in Fig.

3.15 to three-dimensional flog: measurements.

Wall Streamline Directions

As discussed earlier, recent experiments (Rogers and Head (1969),

Hebbar and Melnik (1979)) and analyses (Pierce and East (1972), Klinksiek

and Pierce (1973)) do not support the assumption of a collateral near-wall

xayer in three-dimensional turbulent flow as suggested by polar represen-

tations of velocity profiles as in Fig. 2.4. Thus the assumption that the

limiting wall streamline direction or the wall shear stress direction can

be taken as the flow direction indicated by a small velocity pr gbe very

near to the wall is at best highly suspect. Figure 5.18 compares the

velocity vector direction at 0.25 mm (0.010 in.) from the wall and the

measured wall sheaf stress directions from the omnidirectional meter. The

wall shear stress and velocity vector angles can differ significantly;

for example, at station C3 the angles differ by over 13% and are well

itside any reasonable uncertainties for both measurements. These results

are consistent with studies noted earlier which indicate that the velocity

vector generally changes direction continuously to the wall. Since the

measurements of local wall shear stress direction can be significantly

different from the typical necrest wall velocity direction, the common

practice of inferring the limiting wall stream line angle from the latter

i
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l
can yield significant errors for at least some flow conditions. Limiting

wall streamline directions were measured from the oil streak patterns

shown in Fig. 5.15 and the results are presented in Table 5.6. With only

a few exceptions, there is excellent agreement between the oil streak

directions and the direct force wall shear directions, and as noted

above, these directions are different from those of the nearest wall

velocity vector indicating further turning of the velocity vector down to

the wall.

The strong agreement between the oil streak limiting wall stream line

directions and the direct force wall shear directions suggests that any

pressure gradient effects on the direct force sensing shear meter affected

the wall shear directions minimally, if at all. The results in Table 5.6

are interesting from another point of view. It has been suggested, at

least informally, that the demonstrated use of miniature, dual sensor,

buried wire flush mounted heat meters in a three-dimensional turbulent

flow by Higuchi and Peake (1978) in effect validates the use of such

devices for quantitative results in other such three-dimensional flows.

It has been inferred that the smallness of such miniature heat meter

sensors would result in a minimal thermal penetration into the skewed

near-wall flow so that the limiting wall streamline direction would be

accurately measured. The comparison of wall flow angles measured by oil

streak patterns and the dual element heat sensor calibrated in a two-

dimensional flow and reported in Heguchi and Peake show consistent and

typical differences ranging from about 5° to as much as 15°. Based on the

high degree of agreement found in this study between the wall flow angles

measured from the oil streak patterns and the wall shear direction measured

by the direct force sensing shear ineter, at this point in time it would

seem somewhat presumptuous to assume that such miniature heat sensors do

in fact report limiting wall Streamline directions accurately. Paren-

thetically, it is also noted that the wall shear magnitude values reported

by Higuchi and Peake were based on a two-dimensional calibration using a

Preston tube. No validation of this two-dimensional calibration was

attempted in any three-dimensional flow.

Finally Ftg. 5.19 shows the relative orientations of the freestream

streamline directions and the local wall shear stress directions. As

s^

175



Table 5.6

Comparison of Flow Angles

I

t	 -

t

1

L
Station Shear Velocity Oil

Meter Probe* Streaks

A7 - 0.9 0 1.30 + 0.50
A5 - 1.8 1.7

C7 7.5 6.8 7.0
C5 20.3 14.2 20.5
C3 52.3 39.1 47.0

E7 10.1 8.4 10.0
E5 18.8 14.7 18.0
E3 31.7 26.6 31.5
E1 31.1 36.2 32.5

G7 9.4 9.1 10.5
G5 13.7 12.7 16.0
G3 16.9 16.5 16.5
G1 14.7 17.8 15.5
G-1 3.5 13.1 5.5
G-3 - 6.9 3.9 - 4.0
G-5 -11.9 2.0 -10.5

I7 6.4 7.6 7.0
I5 8.2 9.0 8.0
13 9.3 11.0 9.0
I1 6.9 10.0 7.3
I-1 1.5 7.2 4.0
I-3 - 4.6 1.1 - 3.0
I-5 - 8.1 - 2.7 - 7.0

#Tunnel inlet unit Reynolds number of 1.30 x 106/m

Probe OD = 0.25 mm (0.020 in.) with the probe on the wall
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expected, the collinear upstream character of these two families is

quickly lost when significant freestream streamline curvature begins with

the corresponding pressure-driven secondary flow in the boundary layer.

The figure also suggests that if one identifies wall streamlines with the

local wall shear stress, then these wail streamlines appear to turn substantially 	 i

less than the freestream streamlines. An ultimate return toward parallelism

appears downstream when the freestream streamlines lose their curvature.

The freestream streamlines in the lower quandrant of Fig. 5.19 tend to

become parallel with the body centerline, rather than follow the body

contour. This behavior appears to relate to the thickening of the separation

horseshoe vortex as it wraps itself around the body as evidenced by the

nearly constant width shown for the downstream portions of the separation

line in Fig. 5.15. The influence of this separation vortex and the free-

stream flow in close proximity to the body, particularly in the regions

downstream of the midplane of the body, remains to be determined in further

work in this three-dimensional, separated flow.
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VI. THREE-DIMENSIONAL SIMILARITY MODEL RESULTS

t ^s

Introduction

In making an assessment of the validity of any near-wall similarity

model for a three-dimensional flow, the first question that arises is

ii	 that of over what range of y+ values might one expect to find similarity.

l	 As discussed earlier, in his extensive study of 2DTBL data, Coles k1956,

1968) suggests that the logarithmic behavior begins at about y of 50

and for moderate pressure gradient flows extends to about 300. Questions

on possible inaccuracies in velocity measurements arising from high-

turbulence effects and wall interference or wall proximity effects for

data in the lower range of this 50 < y+ < 300 interval for two-dimensional

}	 flows would also likely be valid for these dimensional flows as well.

It is also noted that the upper limit of y = 300 is reduced in adverse

s	 pressure gradient flows and tends to increase in favorable pressure

^-	 gradient flows. For the two-dimensional case Perry (1966) and Brown and

Joubert (1969) suggest a formal measure of the departure of the near-

!_;	 wall velocity profile from the logarithmic form in terms of a pressure
1

gradient parameter and based on the half power model used to describe

}	 the flow in this region.

For the three-dimensional data in this study this two-dimensional

experience will be used as a guide in the test for similarity. For the

six simpler similarity models, for the Perry and Joubert model, and for

the principal flow component of the three more complex models, the

primary focus will be on data in the 50 < y + < 300 range and clearly

this upper limit of 300 must be considered flexible just as in the twc-

dimensional case. One might expect the six simple similarity models to

behave as in the 2DTBL where pressure gradient strongly affects the

range of similarity. Some of the more complex models incorporate pressure

gradient information and in these cases the agreement with experimental

velocity-wall shear data might be expected to be maintained at these

higher y+ values even in pressure gradient circumstances.

It is worth noting, however, that ir, the early study of three-

dimensional flows with indirect wall shear measurements with Preston
t 

r	 tubes (which presumes the existence of two-dimensional like near-wall
j
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similarity in three-dimensional flows), Prahlad (1968) showed a high degree of

velocity profile data consistency in the y+ < 50 range though not with the

logarithmic like law. Such consistency was also found in the velocity data

of a few others including Ezekwe (1914), and in the measurements in this

study as well.* It will prove to be useful to evaluate these similarity

models in a secondary focus in this y+ < 50 range as well.

In the case of the three models which propose a transverse component

of the flow (in the coordinate system unique to each model), there is no

firm basis for a choice as to the y+ region to focus on in looking for

near-wall similarity.

In the following discussion and related figures the ten similarity

models tested are frequently indentified by letter rather than name desig-

nation and while the designations are obvious Table 6.1 summarizes the

short-form usage.

The test of the suitabili'y of the ten similarity models evaluated

here is a graphical or visual est. In each case an "analytical" sim-

ilarity line is shown as a solid line of q+ (or u+ and w ) vs. y+. In some

models (PJ, B, and WLC) input from experimental data is required _to construct

this analytical line while in the others this line is independent of experi-

mental data. Next, the experimentally measured velocity profile and local

wall shear stress are combined as the various models specify to provide

pairs of q+ (or u+ and w ) and y+ coordinates and these are shown as symbols.

For the ten similarity models including all velocity components, each

velocity profile-	 ar station would require 13 figures. To reduce the

number of figures r._,._,ed, multiple plotting was used to show the ten

similarity models in a sequence of six figures on a single page. The

following describes the general scheme and specific exceptions will be

noted in the text as they occur. The first two figures on the top of each

page combine the six, simpler similarity models, three to a figure. This

is convenient since for these six similarity models the analytical m:)del is
.L

identical--it is the equivalent velocity used in constructing the q' and

y+ pairs from experimental data that differs among the models. In these

first two figures the analytical model line is the two-dimensional near-

wall similarity model and this has been drawn for the Spalding third order

*Similar consistent behavior is reported by K. C. Brown. See footnote on
page 89.
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Model

Coles (1956)

Johnston (1960;

Prahlad (1968)

Hornung & Joubert (1963)

Freestream Profile
Pierce and Krommenhoek (1968)

East & Hoxey (1969)

Perry & Joubert (1965)

van den Berg (1973)

Chandrashekhar & Swamy (1976)

White, Lessmann, & Christoph (1975)

Short Forms

C

J

P

HJ

F

EH

Pi

B

CS

WLC

e 6.1. Three-Dimensional Similarity Model Designations
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1!

equation. This choice allows a comparison of these models in the 50 <y+

< 300 range of principal focus as well as the very near-wall interval of

y< 50 of secondary focus. Analytical lines for both the NPL and Patel

constants are shown for comparison purposes. The four more complex similarity

models are shown iii pairs in the next four figures. For these figures only

the model lines for the Patel constants are shown except for the CS model,

where the specific constants given by the model authors are used. Addi-

tionally, since these four models all return the two-dimensional like

logarithmic law, the model lines are terminated at y+ = 50 since one does

not expect log-like behavior below this value. The first figure of the

first pair shows the PJ model and the principal flow component, u + , of the

WLC model, with the PJ analytical model line labeled. In many instances

these two analytical lines appear nearly identical. The second figure of

the pair shows the transverse, w+, component of the WLC model, with the

analytical model line arbitrarily drawn only up to y + of 300. In several

instances this figure is omitted because flow conditions were such as to

prohibit the calculation of this component or because the component model

is not appropriate to the flow conditions. The last pair of figures shows

the principal and transverse components of the B and CS models, with the CS

analytical model line labeled. The transverse analytical model line of the

B model is shown up to y+ of 300 while the CS line is limited to y + of

150. This latter arbitrary choice was made based on the region of similarity

shown by Chandrashekhar and Swamy (1976) wher the mode] was proposed. The

reader is again cautioned that the two-component similarity models do not

use the same coordinate systems and this should be recognized in any attempted

generalizations. Thus the ten three-dimensional similarity models can be

compared to the velocity-wall shear data in six figures. To facilitate the

comparative evaluation of the ability of the-e ten similarity models to

predict the measured data, the set of six graphs corresponding to each

station has been grouped and reduced in size to fit on a single sheet and

these are shown as Figs. 6.1 - 6.25.

Before studying these graphical results it is further worth noting

that the ability to accurately assess the three-dimensional near-wall

similarity models depends on the accuracy of the experimental data. The q+

(or u+ or w ) and y+ uncertainties in plotting the results from the same



experimental data generally vary for each similarity model because of the

different ways the data are manipulated to calculate these quantities for

each model.	 Additionally, the uncertainties for a given model vary as one

moves throughout the boundary layer.	 This variation was demonstrated

across the boundary layer in the two-dimensional similarity plots by showing

the uncertainty for the data nearest and most remote from the wall in Figs.

4.20 and 4.21. 
1

In the three-dimensional case a comparison of experimental data with

an analytical model can involve two kinds of uncertainty. 	 Such a com-

parison requires that for each of the models an experimentally determined

air of	 +	
+	 +	 +

p	 q	 (or u	 or w) and y	 values be plotted and there is an exper-

ivnental uncertainty in the variutis quantities needed to calculate a q+ (or

u+ or w ), y+ pair.	 This uncertainty is here called an experimental

uncertainty in q+ (or u+ or w+) and y+.

In the case of the six simpler models and one of tour complex models,
+	 +	 +	 +th-a analytical q	 (or u	 or w ) and y	 values (the solid lines) require no

experimental data input and so no uncertainty is identified with the analytical

model line.	 However, in the more complex models of WLC, PJ, and B, the

analytical model line predicting the q+ (or u+ or w+) and y+ variations

requirea the input of specific experimentally measured data such as as

measured pressure gradient vector, a. wall shear vector, or gradients in the

magnitude and direction of the wall shear vector. 	 By inputing experimental

data into an analytical model line there is introduced into that analytical

model prediction an uncertainty here called a model uncertainty. 	 Note that

this model uncertainty is different from what has been called the experimental

uncertainty	 n calculating a	
+	 +	 +	 +

y	 g	 q	 (or u	 or w ), y	 pair from velocity profile-

wall shear data, although both these kinds of uncertainties arise from

r various possible measurement errors. 	 The CS model has no analytical model

uncertainties as defined above Because no experimental data input i„ needed

to construct these lines.	 Thtt	 total uncertainty for the WLC, B, and PJ

comparisons in the cimilarity figures discussed here would combine the

{ model uncertainty as defined above and the experimental uncertainty in

calculating; the q+ (or u+ or w+),y+ data point pair for the velocity profile

and wall shear data.	 In comparing an experimentally measured q + (or 
it+ 

or

w ), y	 pair to a model, one would need to consider both the experimental
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and analytic&3 model uncertainties to establish a corresponding combined

uncertainty. Two further points should be made in this regard. First, it

should be noted that each of these models includes two empirical constants.

Since these ten models all come directly from, or are developed from,

variations of the traditional two-dimensional mixing length concept, these

constants are designated K and C and this insures the return of the two-

dimensional model in the case of vanishing skew or transverse flow. The

question of the uniqueness and accurate specifications of these two constants

In the two-dimensional case has already been discussed and these amb;F;uities

should also be recognized here. Secondly, the uncertainties reportea for

the local wall shear measur-ients include no pressure gradient effects.

This is due to the lack of agreement among proposed corrections (and no

corrections in pressure gradient flows should be included as one of these

proposed corrections) for the limited studies reported in two-dimensional

flows, coupled with the apparent strong dependence of proposed corrections

on tha geometric particulars of the mechanical meter used. An effort is

currently being made to determine possible pressure gradient effects on the

mechanical shear meter use' -.n this study in two-dimensional flows.

In the following figures the direct force wall shear stress measured

value is used to calculate the nondimensionalizing shear velocity par-

ticular to each model. Assuming the model is properly derived, perceived

agreement between the nondimensionalized measured profile and the model

line would support the relationship between the particular s:" PRr velocity

and the local wall shear stress. The existence of uncertain-_.-! in the

measured velocity and wail shear data in each q + (or u+ or w ) -.n3 y+ pair

as well as uncertainties in the analytical model line due to the constants

K, C and in some cases the input of experime.ta data as well, should be

considered in these visual comparisons. It is worth reminding the reader

that if one fits any portiorL of the near-wall or very near-wall data to any

given similarity model with any given similarity constants by inferring a

shear velocity from these data (Pierce and Zimmerman, (1973)) then one can

expect a near perfect fit over the profile region used to infer the non-

dimensionalizing shear velocity. Such a superior fit does, however, not in

genezal confirm any relationship between the shear velocity and the local

wall shear stress.

184



U

Similarity Model Results

The three-dimensional similarity mudel comparisons for the ten models

tested are shown in Figs. 6.1 through 6.25 for 25 stations as defined in

Fig. 5.1.	 In an attempt to organize the comparisons the pressure driven

# velocity profiles are divided into four categories based on the total

skewing of the local velocity vector relative to the freestream direction.

hi The first category is for skew angles of from 0° to nominally 5° (actually

less than 1 . 5°), the second two categories are for monotone increasing skew

U

angles from 5° to 15% and for more than 15% and the last category is for

profiles with first increasing and then decreasing skew angles. 	 In all

Lfrom

cases the changes in skew angle are with respect to a decreasing distance

in	 lastthe wall.	 It should be noted that the velocity profiles 	 this

group are incorrectly labeled by McAllister (1979) as s-shaped or bilaterally

t
skewed when in fact only one of these profiles (station I-5) is of that

type.	 Table 6.2 lists the profiles in each of these categories.

Only the pseudo two-dimensional plane of symmetry profiles along the

A column, stations A7, A5, and A3, show the total velocity vector skewing

less than 1.5° and these are shown in Figs. 6.1-6.3. 	 As discussed in Chapter

V, and similar to the two-dimensional profiles discussed in Chapter IV, the

profiles at A7 and A5 show a monotone increasing and positive turning (per

Fig. 4.1) of up to 1.4 ° as the wall is approached.	 The profile at A3 shows

t
a turning of nearly one degree close to the wall, with return toward the

freestream direction at the wall, hence this profile has a very slight bulge

in its turning.	 While all these turning angles are less than 1.5° end a large
f

measure of these angles can be accommodated in the angular uncertainty estimates,

this behavior is consistent and taken to be real.

In an overall view, the six simpler models show a degree of agreement

t ' with the data for stations A7 and A5 not unlike that typical of early work

in two-dimensional flows and shown in Fig. 2.2.	 There is closer agreement

with the Patel line and as the adverse pressure gradient becomes more

severe, a smaller region of apparent (or approximate) similarity is noted.

In the limit of vanishing transverse flow these six simpler scalar similarity

models all return the two-dimensional similarity law and from this view the

results for A7 and A5 are not surprising. It is worth noting that there

appears to be an inconsistent and slightly lesser slope to the data in the

4 ^
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Table 6.7. Velocity Profile Grouping by Skew Angle

Increasing-
Skewing Type
	

Decreasing

Velocity
Profiles
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0
region of primary y+ focus.	 A similar result is reported for plane of

symmetry flows by Brown* and is attributed to the lateral divergence of the

streamlines with the transport of lower momentum wall flow upwards resulting

in these slightly lower mean velocities.	 If this effect is to be included

in any similarity model then the characteristics of the neighboring flow

must be included and clearly the six simpler models are not adequate to

include such an effect. 	 In the y+ range of secondary focus the data follows

the general shape of the Spalding line very well though riding consistently

higher.	 The possibility of a pressure gradient error in the wall shear

must be noted since the slightly higher q+ values shown could result from a
*

low wall shear and hence low q 	 and this would intuitively be the direction

forof such an error	 these stations.	 Possible pressure gradient effects on

the mechanical meter are currently being evaluated. 	 The preliminary work

of Tennant (1977) shows a better agreement with the theoretical model line

for these six models at station A7 but similar behavior with the experimental

data riding high for station AS.	 Finally, it is noted again that if one

were to fit the lower y+ data to the model lines then these several data

would result in an excellent fit with the lesser slope of the following

data more apparent.

t^
The principal flow components of the four more complex models show

good agreement and except for the CS model suggest no pressure gradient

error in the wall shear measurements.	 For the A column these complex

models are all in essentially the same direction and with the nearly zero

skew measured none of the transverse model comparisons are meaningful.

Since the complex models were developed around equilibrium and mixing

^ length analyses following the 2DTBL case, it is not surprising to see this

: kind of agreement in the typical y+ range of primary focus.	 At station

^- A7 the PJ, WLC, and the B models all predict the effect of the modest

rising pressure well but at AS, where the adverse pressure gradient becomes

larger, the B model appears to account for this effect more effectively,

with the PJ and WLC models overpredicting the pressure gradient effect.

For these data the better agreement in the region of expected similarity for

the PJ, WLC, and B models than for the six simpler two-dimensional-like models

*See footnote on page 90.

L
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suggests that the ability to include pressure gradient effects is important

in this y+ region. The station A3 shows generally poor agreement with all

models and this appears to be due to the close proximity to separation.

These models can be traced to Townsend's (1956) equilibrium balance between

turbulent energy production and dissipation in 2DTBL similarity, and in

close proximity to a separation region boundary the existence of equilibrium

can be questioned.

The second group of profiles considered all showed a monotone in-	 (j

creasing skew angle relative to the local freestream direction and limited

to 15% These are shown in Figs. 6.4-6.15. Profiles C7, E7, G7, G5, I7,

15, 13, and I1 all show an increase in the local skew angle a maximum wall

value of between 5° and 10° as measured with the claw probe resting on the	
{

wall. Profiles C5, E5, G3 and G1 show a maximum value between 10° and 15°.

These two subgroups are considered together as list.d in Table 6.2. In

general, the six simpler models all show about the same kind of behavior(

relative to the experimental data with the data tending to ride above but

closer to the Patel line than the NPL line. In they 	 g	 primaryy range of rimar

focus there is a tendency for the experimental data for the higher y+

values to dip down somewhat and as with the plane of symmetry profiles one

could argue that a better fit with the data would occur with a lesser slope

in the logarithmic portion of the model lines. In the y +,range of secondary

focus it is worth noting that the data again tends to follow the general

shape of the two-dimensional, Spalding single formula law of the wall

rather consistently.

For this group of profiles the WLC model for these freestream flow

components and the PJ model show generally good agreement with the data in

the y+ range of primary focus upward toward 150 or 200 depending on the

profile with only profile G1 as an exception to this generalization. These

profiles also show a very consistent behavior in that for y+ < 50 the data

drops down below the log like model lines and follows the form of the

typical two-dimensional transition lines sketched between the u + = y+

sublayer and the log-like behavior as for the six simpler models in the

first two figures in each series. All of these profiles have modest transverse

flow because of the limited skewing angle and five transverse profiles are

shown for the WLC model with good agreement in the y + range of 10 to about

100 for skew angles up to 7°, and relatively poorer agreement with a maximum
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°.skew angle approaching 12Only five of 12 transverse profiles are shown

for tb 4	model because of the difficulty in determining the nondimensional

layer	 freestreamboundary	 thickness by evaluating the	 model at the boundary

layer edge as suggested by the model authors. 	 In several casea this evaluation

I introduced a negative argument in a square root quantity.	 While other

estimates could have been made for this required thickness, consistency

suggested omitting such transverse profiles since some representative cases

were available.

The CS and B models for the principal flow component (freestream

component in the CS model and wall shear direction component in the B

model) also show similar good agreement for these 12 profiles. 	 Some care

must be exercised in separating the CS and B lines in the figures. 	 The CS

model line is straight while the B model line generally shows some curvature.

In general the B model line better approximates the data and tends to

better represent the data at higher y + values shown in Fig. 6.5 for star' .on

C5.	 In some cases the CS model also shows reasonably close agreement with

the experimental data as in stations G5 and G3 but the B model appears

^. superior.	 For y+ < 50 the data behaves as described above.	 For the transverse
s

components of these 12 profiles the CS model generally shows very poor

agreement.	 The choice of the principal flow direction in the B model
i
C results in an especially small transverse component near the wall with both

the model line and the experimental data very close to zero for all profiles

in the y+ range less than 300.	 The data and model line both agree in the

sense of showing small values but the small transverse flow does not seem

t
to offer a reasonable test for the transverse model.

The third group of profiles is shown in Figs. 6.16-6.18 for stations

C3, E3, and E1.	 These profiles are also characterized by a monotone

increasing skew angle from the freestream toward the wall with a maximum

skew angle ranging from 20° to 32°. 	 For this group with the larger skew

t_ angles, the six simpler models begin to show significant differences as a

result of the way the experimental data is manipulated to generate the

equivalent q+ values.	 The J, C, and EH models tend to show larger differences

at the higher y+ values.	 Any region of similarity seems to be in the y+

range of secondary focus, but only up to a maximum skew of about 20°.

C
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The PJ model and the freestream component of the WLC model show a

small region of good agreement for a maximum skew of 20° with decreasing

agreement with increase in maximum skew angle as in station E1 at 25° and

C3 at 32°. The transverse component for the WLC model in Fig. 6.17	 ^)
i..1

could not be computed for the reason noted earlier. For this figure

the PJ and WLC models are repeated but this time using the NPL constants

(rather than the Patel constants) in the model lines to show the effect of

the choice of constants. Note that the NPL constants tend to lower slightly

the model curves for both these models just as in the two-dimensional case

as shown in the top two figures for the six simpler models.

The CS and B models show a small region of good agreement with the

experimental data for the principal flow direction for the 20° maximum skew

case of E3, with relatively poor agreement as the skew increases. The
6-J

transverse component of the CS model generally shows poor agreement with

the experimental data. Again, the choice of coordinate system aligning	 1

itself with the wall shear in the B model leads to small transverse velocities

in the region where similarity would be expected even for these cases of

large skew. For stations E3 and C3 the model lines and experimental data

show poor agreement. Station El with 25° maximum skew shows some agreement

over a modest y+ range (at a near zero though slightly negative w values)

with the experimental data and model line going in opposite directions at

y+ of about 100. The transverse component of the B model is strongly

dependent on the transverse pressure gradient of the flow field and the

rate of change of the turning of the wall shear vector. These are the

principal contributions to this component and the nature of the model line

in these figures is largely determined by these gradients. Van ien Berg

(1973) does indicate that this similarity model be restricted to modest

skewing, while this group has substantial skewing.

The fourth group of profiles includes stations E-1, G-1, '-3, G-5, I-1,

I-3, and I-5 shoum in Figs. 6.19-6.25. In the previous two groups of

profiles, skewing of the velocity vector through the boundary layer was

monotone increasing with the turning angle increasing continuously down to

the wall relative to the local freestream direction. This ;rind of profile

is typical of many, if not most, of the pressure-driven profiles for three-

dimensional flows shown in the literature. The velocity profiles in this
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last group are characterized by not having a monotone increasing skew

angle.	 In all of these profiles as one moves through the boundary layer

toward the wall there is first an increasing skew angle toward some maximum

value away from the wall, with a subsequent decreasing of the skew angle to

the wall.	 Two profiles in this group are singled out. 	 Station E-1 in 'Fig.

6.19 has the widest range of skew angle, first increasing to about 29° and

the decreasing to about 24°.	 Station I-5 in Fig. 6.25 is a bilaterally

skewed profile such as shown in Figs. 2.5 and 2.6. 	 In this case the skew

angle range is only about + 2° so that this is a modest case at best.

Bilaterally skewed flows are typically identified with freestream streamline

re-curvature where the change in direction of the curvature of the freestream

streamlines changes the direction of the pressure gradient forces imposed

! on the boundary layer by the freestream flow.	 This change in direction of

transverse pressure force acts to reverse the secondary flow direction of

the boundary layer flow with the lower momentum fluid near the wall influenced

more strongly and hence changing direction of the secondary flow more

quickly.	 The first signs of this are the diminishing of the skew angle for
4

the flow near the wall as shown in Klinksiek and Pierce (1970). 	 The remaining

^- five profiles of this group IV have their maximum skew angle between 0-10°

i and nominally all in the same direction.	 (Station G-5 shows a slight

bilateral skew behavior but, while consistent, is within experimental

1

angular uncertainty.)

t For this group of profiles, with the exception of Station E-1, the six

simpler models show varying degrees of agreement with the data, but generally

in the lower y+ range of secondary focus and with the velocity data typically

somewhat high.	 Again, the high velocity data position could be explained

by adverse pressure gradient force effects on the shear measurement but

some of these stations showing this typically high velocity data are in

near zero and even positive pressure gradients where such possible pressure

L_- effects should at least begin to show an opposite influence on the data.

r There is also a tendency for the velocity data to suggest a lower slope to

the log line in the six simpler models. 	 In the plane of symmetry case this

has been attributed to lateral streamline divergence but such streamline

divergence is somewhat more difficult to identify clearly in this group of

profiles.

is
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For this group of profiles, the six simpler models generally show

reasonably good agreement with the experimental data although the profiles

with large reversals in the skewing direction near the wall show a rapid

drop off in the nondimensionalized velocity	 s the	 +y	 y	 values increase as

shown in Figs. 6.20 for station G-1 and especially in Fig. 6.19 for station

E-1.	 The total turning angle in these figures is approximately 10° or less

with the exception of station E-1.	 With such small turning angles the six

simpler models all tend to show nearly identical results which, as in the

earlier three groups of data, tend to lie somewhat above the theoretical

line of the models in the lower y+ regions.	 Figure 6.19 for station E-1

shows a singular behavior apart from the other profiles in this group.

This is because of the relatively large turning angles which increase from
t,

0° to about 29° and then decrease to about 24° at the wall. 	 With such `J

large turning angles the six simpler models show large differences in their

equivalent velocities.	 None of the simpler models describe the flow at

this station very well.

The WLC model for the freestream flow component and the PJ model show

good agreement with the experimental data for the four profiles with skew

of less than about 5° (Stations G-5, I-1, I-3, and I-5), with lesser agreement

for the profiles showing skew in the 5° to 10° range (G-1 and G-3). Station

E-1 in Fig. 6.19 shows poor agreement with the two models giving significantly

different predictions. The transverse WLC model could only be computed

for two of `the seven profiles but the small transverse components again

makes the comparison questionable. The CS and B models also show reasonably
i
good agreement with the experimental data with the exception of station E-1.

Again the good agreement is identified with the relatively modest skew

and the poor agreement at station E-1 is identified with the large reversing

spew. It is interesting to note that in Fig. 6.19 for station E-1 the B

model tends to show very good qualitative agreement in predicting the

general shape of the experimental data. The transverse component for the

CS model again tends to show relatively poor agreement with the experimental

data. The transverse component of the B model is again treating only very

small velocity magnitudes. It is also noted that for thts particular group

of profiles there is a consistent disagreement between the direction of the

transverse component predicted by the B model and measured for the profiles

dJ
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in the region of expected similarity. Station E-1 provides a strong test

of the transverse component CS model since large skewing is present.

Figure 6.19 shows extremely poor agreement with this model.

Summary

Generalizing, it would appear that for profiles with monotone increasing

skew and with skew angles up to about 15-20 4 , any of the six simpler models

does a fair job of predicting near-wall similarity in a region of primary

focus for y+ > 50 with the qualification that in this study the experimental

Ldata tend to ride higher than the theoretical model lines. 	 These (and

many other) three-dimensional data show consistently better behavior in

the lower y+ range of secondary focus--the y+ range where two-dimensional

data are characterized by more scatter and disagreement among even

carefully done experiments--and to some extent this better very near-

near wall behavior compensates for the more rapid departure from similarity

in the higher y+ range of similarity more typical of two-dimensional.

flows.	 It would appear that shear velocity magnitudes inferred by

Clauser chart type techniques using data in the y+ range of 10 to about

100 would be within 5-10% of values calculated for the direct force

measurements (uncorrected for any possible pressure gradient effects).

It would of course be essential that the similarity law be of the type that

reflects the very near-wall departure f rom the log law-like behavior in

this range of smaller y+ values.	 The third or fourth order Spalding formula

such as used here or the two or three formula law of the wall described in

Chapter II and adapted to the method Schraub and Kline (1965) by Pierce and

^. Zimmerman (1973) should be adequate to accommoeate this lower y + range data.

For profiles with an increasing and decreasing skew angle of 10° or

less, as occurs with the change in direction of transverse pressure forces

identified with freestream streamline curvature, and for plane of symmetry

L,
flow away from separation the agreement with the experimental data for the

six simplex models is similar to that for the monotone increasing skew

angle profiles with modest skewing described above as less than about 20°.

For the profile with increasing and decreasing skew with large maximum skew

angle (29°) none of the models, simple or complex, does an adequate job in

representing the data.

For the above kinds of flows three of the four complex models generally

are superior in describing the experimental data for the freestream or
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principal flow component. The exception is the CS freestream model which

behaves as the six simpler models. For modest transverse velocities the

WLC and B models seem to be the most encouraging but the degree of agreement

is generally not nearly as good as for the freestream or principal flow

component. The PJ model and the freestream component of the WLC model and

the principal flow component of the B model tend to show the best agreement

with the data. A difficulty with these more complex models lies in the

fact that each returns the two-dimensional logarithmic like law for small

y+ values. Thus, assuming these models could be used to infer local

shear velocity magnitude (say to 5-10X) there is the problem of fixing a

lower y+ limit below which data would not be used since this and other

studies suggest the typical data is better described by some kind of

"transition" description in the very-near wall region of say y + S 50

as discussed earlier. Thus these models would not use well much of the

data available to infer even an approximate shear velocity (or wall shear)

magnitude.

Similarly, if ona were to use these three more complex models in a

computational scheme replacing the no slip wall boundary condition at the

wall with a match to a similarity model near the wall then, for the flows

described above, such a match should be made in this range of about 50 <

y+ <..100. Practical difficulties will occur since these three more complex

models (White, Lessmann and Christoph, Perry and Joubert, and van den Berg)

all require an a rp iori know' ;e of the pressure gradient magnitude and

direction, and the latter two also require an a rp iori knowledge of at least

the wall shear direction. Yet it is interesting to note that, in general,

the corrections to the neat wall similarity law for pressure gradient and

inertial effects appear to contribute to the similarity model in a y + range

that is often beyond any modest region of perceived similarity.

The question of pressure gradient effects or corrections to the	 J

direct force measurements is currently being pursued. It is noted, however,

that while the high q+ values of the plane of symmetry flows suggest a

low wall shear value due to an adverse pressure gradient effect, a

corrected, higher wall shear value would cause this same velocity data

to appear low for the Perry and .Joubert model and the principal flow direction

components of the other two models which otherwise do a reasonable job of
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1.

-wall flow,	 least in	 Thepredicting the nearat	 modest y+ regions.	 various

wall shear and pressure gradient orientations in Fig. 5.17 do not suggest a

Lconsistent behavior of possible pressure gradient effects on the measured

wall shears.	 Adittionally, preliminary work in a shear-driven flow in a

i near-zero pressure gradient field indicates results similar to those for
3

this pressure-driven flow.	 This would also suggest small pressure gradient

L

corrections at moat.

In retrospect it is not surprising to find reasonably similar and fair

agreement among these ten similarity models (the principal flow component

L in the three vector models) for the monotone increasing skew profiles of

modest skew as well as the plane of symmetry profiles. 	 All these models

^s can trace their origin directly to the classic Townsend equilibrium concept

for two-dimensional turbulent boundary layers and subsequent variations of

the classic mixing length hypothesis. 	 It can be argued that skewing in the

three-dimensional case taxes the applicability of this basically two-

dimensional approach with an approximate upper limit of 15°-20° of skew.

Within this upper skew limit for these flows it appears that the local wall

r shear stress and nondimensionalizing shear velocity for the various simila'.Lty

plots are related within a modest uncertainty. 	 This implies that at least

as approximate magnitude of local wall shear stress would be inferred from

jsuch similarity models in a "Clauser chart" type of approach as developed

by Pierce and Zimmerman (1973) for at least the simpler similarity models

reviewed and t v: -,ted here.	 This would also imply that with indirect diagnostic

devices which are not strongly sensitive to yaw angles (such as Preston

tubes and surface heat meters) would also give a reasonable good approximation

to the magnitude of the wall shear stress in such modestly skewed flow as

well, using a two-dimensional calibra t ion.	 Note that without the supporting

t results of this study with directly measured local wall shear stresses,

such use of a two-dimensional calibration in a three -dimensional flow would

t.
be speculative at best.	 The same relative insensitivity to yaw that would

allow the use of such indirect devices in a skewed flow would, however,
t
{ render such devices as relative _; poor in indicating the local wall shear

a	 ( stress or limiting wall streamline direction. 	 It would appear that for

^

such modestly skewed flows the combination of say a Preston tube or surface

heat meter together with an established wall flow visuali7:;i:ivn technique
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could do a reasonable satisfactory job in mapping a wall shear field. The

combination of indirect magnitude sensing device and flow visualization for

the direction would be significantly easier to use than a direct force

sensing three-dimensional wall shear meter such as used in this study.

It appears that for monotone, strongly skewed flows (say 20° and

greater) and for flows with increasing-decreasing skew of more than about

10% none of the ten three-dimensional similarity models tested here seems

adequate to describe the near-wall velocity field even approximately.

196



 I(
L
Ll

L
i
L

L

G
L
FL

I L

lu

P *

• ••i	 w.•

^^ I	 • JCMry ST:N •^.CEN

o	 • EAST AN; nCAE ►

. •	 arr

T PLUS

pa.
^^	 • .M:'E. :ESS"ANN. A CMR: ^(CPM

.,	

O P E a RY .ND JCJBE R T	 / • •
•

i

4b

s
; I	 n

n CMANCR.SMEKMAR AND SWAM*	 n

•	 • VAN CEN BERG	 n

n

S

.

° O►

<	 oa-

j	 • -n*%UNG AND .0,@Ea(
o	 • °^A »LAC •'C:EL

• iQ'	 'C	 C	 'Y	 t0'
PLUS

^+i	 a -MI T E. _ESSMANN. S CMNISTOPY

• i0'	 i0'
P, us

2

• CMAN:RASMEKMAR AND SWAI!T

+ VAN OEM BERG

i

r••.. • . A,....• •

T PLUS -
r

1 PLUS

Fib. 6.'	 Three-Din:ensiona *- -S imilarity Plots `.Jr .1"

197



-ftirEL
.°L

•

a JC •v5']v •CCEL
•	 ES •ZOEL

wO -011f,

t

r
i•

0

+T
• r	 la	

• •:use

.b•'E. -^

.,
do

^ _°•.ANC	 •►0	 __.iE='

a• I •'^•••_^0 vCCEI

•	 a	 ,a

I a'

	

•	 •lam

WHITE. _ESS F* 4 vM. L CMP:ST

	

I	 e PEROT .-to JOAER ► 	
• •

•

•
•

	

.^	 •

•
•

•

r I

1 I

=1

r •LJS

_	 •MITE. ,ESS^• NN. l CrR15*C^•t

•

7

•.

•

• r	 _	 _

• • L JS

i

• CWIMGR4S"ENM•A .MO S.4.1

•	 TAN DEN SERC	 • '	 r•N	 3E•.
`I	 ,n	 I

iJ

•—_ _ - T_—	 ..^.,__ _	 —^. • tom, .. _ ..

TV
T oLVS	 f R .S

Fig. o._ Three-Dimensional Similaric% ?lots for A5

198



1 •

`I

J

1•^

y	 'C•EE CT;E •" i4llQf.-f

^' T

• 16• 	iC	 ^C	 •C	 ^0'
• PLUS

IL
ri	 al
L
u	 .z /	 .•ST ENO M$i^•

l.J
e

sz .
e

1	 ',
^I

Pti
Assmiimh.

> >:PR•O7ugEQr
•

s /
e /

a 	 r
•• US

a WO VE. LESS:ANN. • Ct+P:ST::PH

•I

;n! i

":4

^i

	

. 1.....s	

,. .

	

y^	 r
• PLUS

a
	

"r

• CMAM CRp4 -V MAR 0 $rinT
,^	 . iN 0 !M ^EQG

4
	 ^^ /	 IX/:SS

i
_	 / I

1

Lr	 p	 7

I PLUS

•

	j 	 • CN^Nu p• S•'C'MiR .N^] S.Ii MT

	

,1	 n VAN pEN BERG

•
4,e 17 1

S 1

C as

.I

.f

I f
u

0
, a.
	

C

rie' . o..)	 iiiree-Dimecsiorai -irr..:arit y Plots for as

199



I

I

	

•^^t_	 ^^`	
^,	

:fie

	.• 	 -.

	

••j	 =—	 • i^

	

1•^	 • CYiS `ODE_	 .:acs5-yE.. ^•Jc;A

i
• Y	 ^f	 ^ Y	 Y	 f	

e ^f	 .f	 Y	 t	 ^'

	

^S	 t •L US

	

^I	 .M!TE. _ESS^•%N. L CPA iS'7Pti 	 •	 n 1	 _	 ESi^ ..• a :a .:'moo.

	

1
	 ERR- ENO jOUBE R '	 ^••

J

	r P^pS	 °_^S

	

e	 •

• C 4 kNORIiSHEKNeR rNO SWAMI	 -NO S.Arr

	

j	 v w DE .. BERG	 ,	 •	 VAN OE N 9EAG
	.1	 •

•
•

•

•
i• •	 :LS

I

T PLUS r P_'^S

Fig. 6.4 Three-Dimensional Similarity Plots for C7

U
U

200

I



b
L
i.

r

s]

^i

l

o'

• p 7	
- - S ?
	 •a'	 :a'

_CwaS'.0 .'-CCEL
:OLES14MEL

n EAST .rO "CIE,

•

.4• .E • 3f a.

7 ^

:LS

GO

PLUS

Fig. 6.5 Three-Dimensi.-nal Simiiarit y Plots for C5

> :.•aJa.;.E.h.R AMC Sd•i-.	
..

• +.M fM 3E 

J 
••

f• •
SYL!

N!7
i

i

	

s	 •
•

	

u	 a•

	

z-	 •

alpa•

•oaa,•c S ao OUSELiE

	

AL	
C.4 S'vE.n vaO^..E

o'
/	 • PR•hL.O +OOE^

	

•	 ,Q
I PLUS

a ^

I	 •^

•L,	
.3

• .•• :'E. .Ess•" a— L C»IS T OPV	 •
0 eEaa • N: ._.?2 •T	 1

•
•

•
•

_	 • +SITE. _ESS-.•M. L ;M11STCF"

1

i^

z.

.t

X12

'zu

na

U

201



t.
2:!!

^	 ff
MPL

•f

L	 i 1	 .•
o	 •f•

• .0"TOD MODEL
fir,	 • COIES TEL

o	 • EAST AM nOxET

r	 .r	 =i	 +r	 ,r
T PLUS

,

3	 -!If. .ESSMA rm. a C041src q
•PERRY ASO UGERT	 J^	 N

f	 ^

f

wJ

nJ

..^•	 '^	 T OIL US^a

• Pa. El	
NV._

	

•	 •

	

a	 j

• MDRNUNG AND JQUKQt

	

L	 F4EESTREAM PRDFSLE
a• /	 + PRANLAD MODEL

IF PLUS

n AWE. ESS"A•N. a :MAISTCp-

i
•1

i

^ f

l

•t

^ n/. nn ... n ...

r	 ato r 	,.

t

i

1

'	 c

A _MANQRASMEAMAR AMC SWAMI	 ••

• 4AN ZFN 3ERG	 ••

e ^

i •CILS

i

i

•,a	 a , a	 a	 •a
I PLUS

• ..rA.pRAS^Er..A• Ar0 i•A..

•1	 iAN Iw SExC

^ ( -s.a5

AMP•+••••••	
^ •.

1
•t	 to	 .a

r	 ^S

Fig. 6.5 Three-Dimensional Similarity Plots for C5

s	 +^
s

s	 '
<.	 •

201



j,•^
L

P T ^!
^•	 NPL

_ •,e•
*01 0

u++

e JONNSTON rODEL

TOLES	 t00EL

d n EAST	 AND MOAEY

• ,a	 r	 a	 a
r PLUS

III

10'

1

1

i.
"a

I

,C

'	 ^lJ •
R	 a AM;; C . LL SS" A NN. ^ C OP! ST,PN	 f

O PE •R; AND .OUBER T 	 •
f

•

.a

C	
' PLJS 7

!1	 '

PA ^•

o I	 •^

•
J

•

• „ORN,.;NC AND .OuBERr
. rREES • REAM P•CF:-E
• PC --LAO '"ODE,

C	 'a	 ,Y
' PLU:

R^	 .NI'E. LESS'•• vN. ^ .-a;i•:P«

•

I

N!1

i+

PLJS

N^

i
o

Ia

-f 	 I	 U. YDp AS-E--AQ AND SWAT?	 f	 I	 • ^MANji AS"c + MAR AND SYA••r
•	 v DEN SE 	 ff	 •j	 •AN =E y 3FrC

•

•••	 •I

i I _[1S

r PLUS ' 'S

Fig. 5.6 Three-Dimensional Simila r !	 Plor.s for E"

202



us!

^j

•1I
I

ra IQ	 +a	 a
T PLUS

. ra	 :7	 ra	 •If	 .tr
t PLUS 'L JS

to*

= rIMITE. LESSMARN. a CMRISTQPM 	 ••

e PERRr AND JOUKR T	•
•

•
P̂ ^^ • 	NPL

•

•
•

•v	 • /
PAt^•

la

•

/	 • JOHNSTON MODEL
• COLES MODEL
n EAST AND MOAET

IAT	 la	 Ir
Y PLUS

J	 ^•t
IIV•

• "ORNUNG AND JOUSERt
• fREESTREAM PROFILE

0 • PRAMLAO MODEL

l a 	 la	 IAr	 I•a 	 la
r PLU:

	

.	 *	 I3	 =i

. CMArDRASMEKMAR A%O SWA Mr	 t!	 • .NANQRASMEKMAR 4140 SWA-T

n n N DEN 9EQG	 * t	 rAr :Ev 9E4G

	

»	
ttt	 ,	 v

	

^	 • t	 I	 '^ i

H-1

	

a I	 • C LS	 ^.

• ►tus	 LOS

Fig. 6.6 Three-Dimensional Sim la- • t.tN Plots for E7

202



FIr
1 !	 y	 A^

J

° I

L	 NIJ
a^0

10	
Y PLUS

••	 A	 •

/	 w

0A TV,'A 1^

z-^

C JOHNS T ON MODEL	 • -ORNUNC AND JOUBERT
• COLES MODEL	 a^	 • FREESTREAM PROFILE
• EAST AND HOXEY	 °	 • PRAHLAD MODEL

0'	 17	 ! ?	 10'	 17	 17
Y PLUS

0'

e, PiJ

al	

• WHI T E.	 ,maiSTDPM	 /	 •

7 PERRY AND DOUSE-IT	 •
•

•

v~

i

•'^	 I	 I
e + r	 ^	 ^ •o'	 10'

Y P LUS

WHITE- :ESSMANN. L CHRISTOPH

cl

i'

d

ze^

+ PLUS
T

'	 e CP UIC ; A S^E AHAR AND SJAMY 	 .^	 a CMANDRASHEKHAR AND SWAMP

'•VAN OE 2E^G	 n VAN DEN BERG•^	 •	 4	 a n
e

• n 	 ^ I

R t 65k

t

i	 •	 d	 :&S

rrr

I

r	

; r r

	

^e.e•s as s s.. ° °•	 • rr

rrrr •rx• 1'y'j ^e^ r ^

	

1•IC tA.•^	 r	 • • a e . _ .^^
•

+ PLUS	 Y PLUS

Fig. 6.7 Three-Dimensional Similarity Plots for ES

a

203



•*

a	 to.

_^	 PATEL •%
NPL

x
0

u.

e ,OMNSTON MODEL
7

a	 • COLES MODEL

o'	 • EAST AND r.Ox£T

•'g ar 	 ^c	 ,y	 ^d	 ^a
PLUS

AI	 •••
•

L	
DAiFL •	

NPL

0

o	 ..
• -ORNUNG AND JOUBE-Ii

r QEES'4EAM PQOF14E
CL

o'I	 • P R A hLAD MODELIr^
.d	 Q	 ip 	 id	 :o•

T PLUS

L

1tJ•..
R,	. yr;TE. ESSM A NN. A CMRISTOPn	 •

o DCRRV AND JOUBER i	/ •
•

s	 •

as

s

7

1

I d	 J'	 ' e'
+ PLUS

INITE. LESSM A NN. : :-O :STOP..

•
X
7
1 ^

1• I
1

M

• !	 • . . • . .

e ,d	
a...S	

Y

31 ^ t
	• .FANCRASmEK"-	 .YAM/	 f	 • CNANORASOE•NAR AND iyAF--

•J	 iAN -E ll 9E•G	 f •	 e^	 . VAN DEN 9ERC

•^ /
UI!	 vi!

1	 1	 CtS

.e
. A. POW.

• ^d	 ^7	 'a	 ^o'	 ^o'	 •'d	 ^o' 
+ PLUS	 + PLUS

I

Fig. b.8	 Three-Dimensional Similaritv riots for G1

204 ^4^ 
)I



FU
ff
	 ,1

•^j^ 	 PATEI	
NPL"'	

PAIEL r % yPL

x	 a

Y	 u•	 u.

o	 a

e JOHNSTON MODEL	 7	 • HORNUNG AeO .CUBERT

a	 COLES MODEL	 i	 • FREESTREAM PROFILE

a^	 • EAST AND HOxEY	 o	 • PRAMLl.O MODEL

--
a r	 1 0,	 1w	 l w	 a	 s	 ,o•	 a	 r	 r

IT PLUS	 r PLUS

u

f
o	 P6J

OH:TE. LESSMANN. ! ^HRIS'O P H	 ••v
e PERRY AND ,CUBERT	 •

•
•

•

•I	 144* •

,yl	 J I7•

a•
•I

Y PLUS

I

•

> 'HANCRASHEKMAR ANO SWAM I 	0	 • CMANORA SHEe WAR AND S/AMY

4 A N DEN 3ERG	 e^	
n vAN GEv BERG

P
tt

i	 * t

•	 C tt

7	 ^
t	 C&S

i

••

• iT	 ^^	 r PLUS O'
	

' PLUS

Fig. 6.9	 Three-liimensional Similarit y Plots for G5

j	 205



R

_•	 PATEL

C3	 i

i
eye
vr•

j	 o JOHNSTON MODEL

ae	 • COLES MODEL

o'	
n EAST AND MO XET

T PLUS

s

	

C^	 a•s
s -

PAT EL 	 s

	

NPl	 ^ NPLs	 /

x-
0

a°-
w.

^	 MORNUNC AND .0^8ERT

r REESIREAM PRC$' E
v' • eAIAMLAO 400E-

: o •	 e ,a	 a	 a	 a
T PLUS

41

u
r

•^	 P.J
R	 .M!TE• .ESSMANN. 6 CMRISTDPM 	 /	 •••

^ vERkT ANO JOuBER'	 /	 •

•J	 ••

r	 o	 a	 .a	 r
V PLUS

e ^ MANDRASMEKMAR .NO SWAM I 	^..	 • CMANORASHEKMAR AND SCAM ►
• MAN OEM BERG	 ••	 •	 , VAN OEN BERGe	 ^•

•	 ^^ *•	 •

a	 a	
CAS

 a
i PLUS Y
	 a	 iC	 •'C	 p'	

PlU •
	 is	 o•

F iq. b. 10 T}h -ee-D!menslonaI iimi Iitrity PIo s tur G3

L

206



L
NOW—

R
°
R

^q .►r
_

_^ PANEL	 T '

J•

°

r

PA'EL	 / •_j'
S

NPL
A _^

NP 
L

^
^
r

^ ° r

r

IL
a°

a JOHNSrDN MODEL • HORNUNG	 AND	 .OuBERT

d • COLES MODEL
i FREESTREAM PROFILE

C3 • EAST	 AND MOxET
o' • PRAMLAD MODEL

L
•

a 'a	 s	 aa. PLUS
•,p

10.	 Y	 P	
" a	 s	 a

PL US

°^
R

PSJ

+	 "'I'E•	 LESSMANN.	 S	 CMRISTOPH
a	 PERRY	 AND	 JOUBERT	 ^Q4^	 I ryl

Q^4
I

1 f2 QQ4

I a
^

i

4Q

vrrrrr

rrr
x

e is	 10'	 ,a	 a	 0'
V PLUS

• CH ANDPASHEKHAR AND SWAMV 	 f^^	 • CHANORASHEKNAR AND SWAMV

• AN DEN BE;C	 =t	 °	 . VAN DEN BERG

Ins, °°	 e

IL	 + • •	 °	 C&S

dr

If

It

°••
°0•

• i0	 icr	 p	 t0' --,p	 a is	 o rw«	 is	 is
Y PLUS	 7S

Fig. 6.11 Three-Dimensionai Similarity Plots for G1

i

207



R ..•

PAtEI	 •
_'
Ix

NPL

0
LL j

z-
Z /
0

0.
t,t-

as

I

I e JOHNSTON MODEL

a COLES M00E.

o' EAS•	 ANO	 MOzc'r

a	 1 0,	 10.	 a
T PLUS

6Ji 11"17E. LESSMAN N. L CMRISTOPN 	 ••••

PERRY ANu JNJRE?T	 •
e

a

>e

• e is	 iC'	 ^a	 i0'	 ^a
r PLUS

0

u.
s-
0
<e
a_

J
a
O^

o	 e a

L

i
o AtEL	 •	 i

NP.y/

/I	 • MCRNUNC AYD JOUSE R T
1f

• F REESTR0 M poOFI-E 1
. o R4MLAO MODEL L

4
a	 a	 a	 o•

Y	 PLUS

1
L.

L

J

L.

C

.1	e

J	
• CMANORASMEKMAR A40 S4AMY 	 • CM A NO R ASHEAf AR AND SrAMT
n ifAN DEN BERC	 ^'	 n IAN DEN 9E4C

•
•

•

M	 u"

J
CAS

•^.... e e e e e>. e>

• r	 o	 .a	 ^a	 ^^	 • la	 .o•	 a	 ^,,•
I PLUS	 f °L US

Fig. 0.12 Three-Dimensional Similarit y Plot; for 17

208



L
A

^'

!,I

L
kill

_ see

^I
PATEL

0

NFL

io ..
JOHNSTON MODEL

i • COLES MODEL

a• I •EAST	 AND HOXEY

• la .a	 la	 la
Y PLUS

%^.►ATE`wpi	
NPL

• HORNUNGAND JOUBERr

i n FREESTRE AM PROFILE

o'	 • PRAHLAD MODEL

la	 ..7	 .a	 la	 1u•	 la
Y PLUS

i

i

L
I .

Lill

I^

4J

e^	

x WHITE. LESSMANN. l CHRISTOPH 	 n • of
e PERRY AND JOUSERi	 of

.I	

n

man 's

yr

o f	 r	 1	 r	 i
e la	 10'	 la	 la	 10'

Y PLUS

• CHANCRASHEKHAR AND SLAMY 	 •	 • CHANDRASHEKHAR AND SYAMY

•	 n VAN DEN BERG	 •!	 n VAN DEN BERG
•

„
.s

IL	
CL	 CLS

y 

II

	 a.

s^

R•^x•
T

e la	
1Q,	 la	 la	 la	 10	 I(N	 IO•

Y PLUS	 Y PLUS

Fig. 6.13 Three-Dimensional SimilariLy P1otS for IS

209
	

I'm



R

a

PATEL	 4

u.
z-

o

a°
w^

•

o JOHNSTONMODEL

i COLES MODEL

n. n EAST	 AND HOxEY

n .a	 .a	 .a	 .d
Y	 PLUS

o

R	 x WHITE. LESSMANN, 6 CHRISTOPH

o PERRY AND JOUBERT

0.

••
ur	 •••

i
>e

r. p 10.

	

	 d
• PLUS

1

WPL

a

P6J

• u 
• f.	 ,

PA TEL	
NPL

0

oJ •+j
w. f

o_.

• HORNUNG AND JOUBERT
• FREESTREAM PRO, ILE
• PRAMLAD MODEL

r'

L
o'

•.a 0.o	 d	 d
T	 PLUS' G^j

1

R

• CHANDRASHEKHAR AND SWAMP'•*	 • CHANORASHEKHAR AND SWAMIf
• VAN DEN BERG	 '	 .	 n T A N DEN BERG

n
n

C	 n
N!	 v+!

^ id	 i0,	 , p	 id	 ip	 • is	 7	 i d	 ^	 id	 ^d
T PLUS	 PLUS

Fig. 6.14 Three-Dimensional Similarity PL7,ts for 13

210



^a

_sl
►AtEI•	

NPL'^
PAtEL

ao ^
A>.
z-

o /
Iof iJ ^^ t

Z1

^ n

O .OMN$ION MOOEL • 4ORmj.G ANO ,CAE4r

a
• COLES MODE.

e.^I
• F REES •REAn °•OfILE

Q. n EAST	 AMD MOAEt C	 I • PRArgAO MODEL

.:p Ip	 I p	 I p	 Ip AiIP Ip	 I p	 ra
Y PLUS T	 PLUS

PL-
2	 M: E. LESS"ANN. L CMRIFTCPN

o PERRY AND ^OAERt	
Sao

I	 •

zI	

/ •

Ii
	

•

•

e^	 .••
yr.	 • .

a

e

Y PLUS

+ CrrANDRA$MEKHAR AND SYAMt 	 '	
I	

e CMANDPASAEKMAR AMC S/AMY

iAN ;Em SER I; 	 n VAN :EN 9ER6

• n

ae	
r^

CLS

1

I

..y	 ,^.	 ,y	 Ip	 ip	 .Ip
Y PLs S

Fig. 6.15 Three-Dimens`nnal Similarity ?l,,cs for I1

7 PI JS

id

211



.,o	 Q	 .0.	 ,0a	 jr
1 •LL:s

• C w•MOR a SMEXM.R 4+J S ,14M1

a
• iar :E^ 3ERG

IL

r

.I

Ia	 'a
• al JS

Fig. 5.16 "three-Dimensional Similarity Plots

I'v" L2

f	 ^ %PL

0

o.^	 . •. aML ^D ^CCE.	 a.J

• r	 a	 r	 ( j
1 PLUS	

{UUU

_ .ESS"^^^ L CMR.S'JPM

•

•c
O

•

a •	 ' COLES MOOED

o' • E a ST	 A%O »CtE•

• ' o 	 r	 a	 a	 a
T PLUS

.^	 atJ	 •
• •^'TE• - _SSr.tin. t C4fIST017i	 e
> ;"ERR , ^tiO .OutlER, ^ e

^^	 e

.	 e

212



^•r

1

;C"kS'Je ••OGEL

• COLES 'WE,

• E % S T 4r0 nCNEr

c	
r us C

	
Y
	 r

I PfAq -	 YJ jUGE o ' •tom

e^C
r.

ee

• e •
roe

ee

r

^I

i

i

i

L

a

_i

:-I

-'I

dr

a:r

s _

i-

r--

0.

3 -	 _	
•ate	

^	 •"'

e e

t
t

c
t

e
^e

I

r—̂
r

a

:c	 us r .r

> >

Ur	 r	 W
T

s'

J ^

^t

r ^-

1 `

i

f^
	

• r

I

Fig. 6.i7 Three—Dimensional Similarity ?lots for E3	
Reproduced (nom
best available copy.

213



• .(ytr^rC .rJ _:.9EsT

. a••.•^.J nC1flE.

o	 r
PLUS

a•

a.
0

:'

!1

s

1 	
..TE_a^09-

a	 •

• :O'Us . ou 'CCE,
`CDC FS •+G15,

• EKT asp wG^E•

r

.l ip	 ^.	 •	 a
►t US

!

Pu

!	 • ^• :TE. _ESSrorr. L C+MIS'CP
e .gssr q, :C66ES"

ii	 e

,_ a

_a

^I	 ass s

s
L I	 _ a e ^

R us

i• :..ti:•.y.E•r.s .ap S.a.n 	 • _^•s:c•i^f._•c • _ .•-•

^ I	:LS	 •^

ml •
•••	 i I _

11	 )^• c

--	 —rte'— - - ^ ` • .

PLUS

Fig. 6.18 Three-Dimensional Similarity Plocs for E1

."0

214



L

`•^/ •	
f `vArE,/^.^!•.	 ^	 rArfC	 ^^^ •

	

a:	 feeeiS3;ls:e^	 = i^•i'i•.

	• 	 a•

e ,C-%S'ON -CDC.	 j	 •ORNUNC ANO JCuBERT

• CO:ES L`CE:	 i	 ^REES'REAn PROc1:E

I	 o ^	 • E► Y 4r0 tiO yEV	 ^ ^	 . c1AhC40 nCOE:
I	 r	 '

La 	 a	 r

`	

• Y	
iQ	

t •:'JS 7
	 US

1J

	

•	 P^J
1	 fl	 4..r.c. ,ESSrANN. l ^-VS-;P.• ^eaee
+f	 ^cav• ANC JC^9E^'	 o

1

	

•i	 /O	 .

	

`	 es

1
	 aoe

17! 	 •....
{l	 a I	 p ^

.i
!	 ^	 I

r

IT PLUS

=MANCQAi+EKMAR • N^ S.AAT	 • 1NANCRASME—AR • `,0 SJArr
• . A N .EN 3E RC •	 . •VAN :E N BERG

•••

••
CLS

46 so*
.•^	

^.	
C a S

^^	 I

—^

	

r	 a
Pws	 r PLUS..

iFig. 6.19 Chree-Dimensional Similarity Plots for E-1

215



R

;I	 PciE

1	 I	

NPL

ca.

,.. .oeJ	 ^

O JONNSTON+OOEL

a	 ' COLES r^0 E.
o'	 • EAST AND "OAET

I PLJS

P

u•

0

a

0

Z-

. 10-

P6J
= WM;tE. LESSMANN. S CHRISTOPM

o PFRRI AND .CUBERr	 p00
o nnn

a.
o:

C ^ n

ZQ7'`

e •,a	 ^•	 .a	 a	 a
Y PLJS

PATEL
NPL

d^
` MORNUNC	 ANO	 JOLBER'
• .3EES'REA'1 PROFILE
e O RAML AO NOOEL

n
a	

• '7	 a	 a
PLUS [+

W

• pA ,1DRASrEKMAR 440 SWAMI • CYANORA ;yEKrAR A NC i n ANI
.^	 VAN 7EN BERG	 ^• "	 n rA^ 7Ev 3E":
2I	 •	 .•

	

Ile!
	

z
CLS

I PLUS	 NL.S a
	 . M

Fig. 6.20 Three-Dimensional Similarit y Plots for G-1

216



^L

vA 'EL< l	 .r
NPIL

L;	 Z-_-	 •.
o I	 ^•.

vi	 OF

'	 ^	 'C"t-S"ON	 "07EL

i	 COLES nOCEL
v'	 EAST	 •NO -OXE•

I

T VLJS

J^

I
I	 vLJ

[	 /MITI,	 _E S$MANN.	 \	 :NRISTC/M

e P E ROT • NO -CuSE Rr 	/ 	 -°°°

^	 •: Js

vAtE/

•y

t	 rP-

'	 -CPNUNC •NO .Oue(41
. caEESTREkh PROF:LE
• a9 4-LAD MOCEL

G	 ip	 y	 .p

^1
o

z-
0

N
J
a_•

o'

• p

• -^AN7P•;.g•..•a •rD S.An•

+^
	 • C+etNGa•S•£ n •••A rNC S.Art

•	 • IAN :E% HOC

^I

:tS

is	 A

t

Fig. 5.21 Tnrer:-Dimensional Similarity F'_ ^T •? :or C-1

iu 7Er 3Ea t t

tf
•	 1

t

•	 - ^^f^
ft0t	 ,

r
^ I
i

^j

217



t=-
^l

l

e^

^

•
• Ljh PFTE.	 •

L •-

W

^•vv. r

• ^ORNUNC Fhp JOUSERT

• C :EES TR E FM PROFILE U

0
.^ •	 'R.r.L.p	 r-00Et

•l op t0'	 •	

PLUS 1w
	 is	 0

s

5z

O ^
r

C i

M

. •^	 iQ'	 I r 	iN	 I r
T P1.uS

I.

•

Vu
•MI'E• _ESS" F MM.	 C•••ISTOP	 Oho
oc• g r FMO JOUBCPT	 O n •

O•

/ •••O

CL

•
H^

J

7. 1

-1

P--jS

!	 n SMITE. k.ESSP••MN. a :HP;STOPN
	 L.

•

V^

a
7•

• PtuS

• .^F•CR • SME •w n4 ISO SAAM	 •'.; .
•	 n r•♦ _ EM 8E • G	 • ^ n

r•

^I
a

'•i

.v	 r
T ^^. uS

	

I	 • CMFMCR.SNEKM.R ISO SJAMT

	

•J	 n f nM EM 8E•.

a!
0

	

a I	 C&S

	

•	 r	 rr	 o ^
	 r vtJS'

r

Fi g . 6.22 Three-Dimensionai Similarity Plats for G-5

218



Lw PATEL 4
NIL"

/^^ o•wz-
o J••

oe
V

^.z-
c

< { <

O JOHNSTON "OOEL

ae^
• COL°°-S	 '100E! a
• E-Si	 A, 0 HOxET a.

`	 ^

o'^

• ip iC'	 ip	 i0'	 ip
T PLUS

• ,p

PATE 
J^	 NPL

•

/	 HORNUNC AND AUSERT
• F REESTREAM PROFILE
• PRAHLAD MOOEt.

IV

T PLUS

Y	 Q'

Pa.

• :HANORASHE•HAR AND SWAM •	•• n

I	 n tAN OEN 9E4G

' f	 . C HA NO RA SHE •;

G

A R 4010 S.AMt

. IAN OEr BER

f^

i
R

•

;1	 + 4H1'E. LE'SMANN . L CHRSSTOPH

~^	 o PERRY ANO JOUBERt

•••
,I	 •
J	 •l

fI

.ri

s, p 	, 	 o•

•

r PLUS	 PLUS

Fig. 6.23 Three- DiI11CT1biUlldl Simiiarit y P1otS for I-1

219



u
u
c
u
n,
u
Ll

u

• I a	 is	 is	 Ia	 .o
Y PLUS

o
f
	pbU

e,	

n uMITE.LESSrANN. l Ck° ";(CPM
o PERRY AND UOUBERf 	 •••

• •
•

.I	 ••
ill	 .•

yr

i

x

• . r 	 a	 a	 a	 a
Y v i5

j^	 PATEL
L	 /	 NPL
a
0
w	 ^s
a.	 s	 r^
s-
c	

j

vn

t°	 • HORNUNG AND CuBERTI

a • FREESTREA M vROF:LE

o	 • P P A ML A O MODEL

a	 o or	 n	 . a
PLUS

! I	!

' A. CMANDRASNEK-AR AND SYAMY 	 to	 • CMANDRASHEKHAR AND SYAMY

•^	 • dell DEN 9ERG• •	•	 . VAN DEN 9E R O
•

•
At

of

J1	 ` ► S
3b. -

• . • •

+o...	 .r	 r• r	 ,v	 r	 r	 e•	 •.r
Y PLUS

Fig. 6.24 Tiicee-uimrusiuuei Situilarily Plus for 1 -3

220



r a

_ ^. ri
0

PA 'EL	 ^L
^^

aAlE^^
MPL

^ o

Il1i a ;OMNSTON MODEL n wOANUNG	 ANO	 O'8EA1

i• • COLES MODEL °0.EESIrR1	 M PR0F:LE

^•
. EAST	 AND -OXEY ° • P g AMLAD MODE:

[

L1
a

O

in ip	 ,p
Y PLUS

iJ  n	 n	 n
Y	 PLUS

I
f

u

AJ •

n 	 WHITE.	 .ESSMANN.	 6 CMRIS',OPM	 .P• 3 •	 /M; T E.	 LESS M ANN.	 L	 _-Q'STOPM
o	 PERRY	 AND	 JOuBERT •

Il
Q ^

•
•

•

••

J
a Q- II

J' iY	 in a •in ^.-	 .7	 iN	 p
Y	 PLUS L^-

Ai	 ;I

	

a CMANORASMEKHAR AND SWAMI t t*t I 	 A :MANDRASwE.HAR AND SrAMV
/AN OEN BERG	 t

.1
,

*t
t t,

v^

Jd

• .p	 .p	 .p	 .p	 .n
I PLUS

Fig, 6.25 Three-Dimensional Similarity Plots for I-5

Y PL J%- • 	.
ip

221



L

REFERENCES

Abarbanel, S. S., R. J. Hakkinen, and L. Trilling, (1969) "Use of a
Stanton Tube for Skin-Friction Measurements," NASA 2-17-59W.

Allen, J. M., (1973) "Evaluation of Preston Tube Calibration Equations

in Supersonic Flow," AIAA Journal, Vol. 11, No. 11, pp. 1461-1462.

Allen J. M., (1977) "Experimental Study of Error Sources in Skin
Friction Balance Measurements," Trans. ASME, Journal of Fluid
Engineering, Vol. 99, pp. 192-204.

Armistead, R. A. Jr., and J. J. Keyes Jr., (1968) "A Study of Wall-

Turbulance Phenomena Using Hot-Film Sensors," Trans. ASME, Journal of
Heat Transfer, Series C Vol. 90, pp. 13-21.

Bellhouse, B. J., and D. L. Schultz, (1966) "Determination of Mean and

Dynamic Skin Friction, Separation, and Transition in Low-Speed Flow
with a Thin-Film Heated Element," Journal of Fluid Mechanics, Vol. 24,
Part 2, pp. 379-400.

Bellhouse, B. J., and D. L. Schultz, (1968) "The Measurement of Fluc-
tuating Skin Friction in Air with Heated Thin-File Gauges," Journal
of Fluid Mechanics, Vol. 32, Part 4, pp. 675-680.

Bertelrud, A., (1972) "Skin Friction Measurement Techniques in
Incompressible Turbulent Flow - A Literature Survey," Aeronautical

Research institute of Sweden, FFA Rept. AU-726, (available from NTIS
as N73-17246).

Bertelrud, A., (1974) "Pipe Flow Calibration of Preston Tubes of
i	 Different Diameters and Relative Lengths Including Recommendations

lon Data Presentation for Best Accuracy," Aeronautical Research
Institute of Sweden, FFA Rept. 125, (available from NTIS as
N75-15000).

Bertelrud, A., (1976) "Surface Total/Static Tube for Skin Friction
Measurement," Aeronautical Research Institute of Sweden, Technical
Note AU-1133, (available as N76-16459).

Bertelrud, A., (1976A) "Preston Tube Calibration Accuracy," AIAA Journal,
Vol. 14, No. 1, pp. 98-100.

Bertelrud, A., (1977) "Total Head/Static Measurements of Skin Friction

and Surface Pressure," AIAA Journal, Vol. 15, No. 3, pp. 436-438.

Boyce, M. P. and E. F. Blick, (1969) "Fluid Flow Phenomena in Dusty
Air," ASME Paper No. 69-WA/FE-24.

I	 Boyce, M. P. and E. F. Blick, (1971) "Skin Friction Drag and Velocity

Profile Measurement Techniques in Two-Phase Flow," ASME Paper No.

I	 71-FE-32.

t.

1	 223

I



Bradshaw, x., (1959) "A Simple Method for Determining Turbulent Skin
Friction From Velocity Profiles," Journal of Aerospace Sciences,

Vol. 20, December, p. 841. 	 (I

Bradshaw, P., (1965) "The Effect of Wind-Tunnel Screens on Nominally 	 U
Two-Dimensional Boundary Layers," Journal of Fluid Mechanics, Vol. 22

Part 4, pp. 679-687.

Bradshaw, P., (1971) "Calculation of Three-Dimensional Turbulent
Boundary Layers," Journal of Fluid Mechanics, Vol. 46, Part 3,	 U
pp. 417-445.

Bradshaw, P., (1975) "Complex Turbulent Flows," Trans. ASME, Journal 	 j

of Fluids Engineering, Vol. 97, pp. 146-154. 	 lJ

Bradshaw, P., and N. Gregory, (1961) "The Determination of Local
Turbulent Skin Friction from Oba?rvations in the Viscous Sub-:.ayer,"

ARC R & M 3203.

Bradshaw, P., D. H. Ferriss, and N. P. Atwell, (1967) "Calculation of
Boundary-Layer Development Using the Turbulent Energy Equation,"

Journal of Fluid Mechanics, Vol. 28, pp. 593-616.

Brown, G. L., (1967) "Theory and Applicatio ►, of Heated Films for Skin
Friction Measurement," Proceedings of the 1967 Heat Transfer and Fluid

Mechanics Institute, Stanford University Press, Stanford, California,

pp. 361-381.

Brown, K. C., and P. N. Joubert, (1969) "The Measurement of Skin

Friction In Turbulent Boundary Layers with Adverse Pressure Gradients,"
Journal of Fluid Mechanics, Vol. 35, Part 4, pp. 732-757,

Burr, I. W., (1974) Applied Statistical Methods, Academic Press, New

York.

Chandrashekhar, N., (1974) "Some Studies on Three-Dimensional 'turbulent
Boundary Layers," Ph.D. Dissertation, Department of :applied Mechanics,

Indian Institute of Technology, Madras, India.

Chandrashekhar, N., and N. V. C. Swamy, (1976) "Wall Shear Stress

Inference for Three-Dimensional Turbulent Boundary Layer Velocity
Profiles," Journal of Applied Mechanics, Vol. 43, pp. 20-27.

Clauser, F., (1954) "Turbulent Boundary Layers in Adverse Pressure

Gradients," Journal of Aeronautical Science, Vol. 21, No. 2, pp. 91-108.

Clauser, F. H., (1956) "The Turbulent Boundary Layer," Advances in
Applied Mechanics, Vol. 4, pp. 1-51.

Coles, D., (1955) "The Law of the Wall in Turbulent Shear Flow," 50

Jahre Grenzschichtforschung, (ed.) H. Gortler and W. Tollmien, Friedr,
Vieweg and Sohn, Braunschweig, pp. 153-163.

224



L

I
L,

L

Coles, D., (1956) "The Law of the Wake in the Turbulent Boundary

Layer," Journal of Fluid Mechanics, Vol. 1, pp. 191-227.

Coles, D., (1957) "Remarks on the Equilibrium Turbulent Boundary
Layer," Journal of Aeronautical Science, Vol. 24, No. 7, pp. 495-506.

Coles, D., (1962) "The Turbulent Boundary Layer in a Compressible
Fluid," USAF Project Rind R-403-PR, The Rand Corporation, Sant<< Monica.

Coles, D., (1968) "The Young Person's Guide to the Data," Proceedings
Computation of Turbulent Boundary Layers - 1968, AFOSR-IFP-Stanford
Conference Vol. II, pp. 1-45.

Cooke, J. C., and M. G. Hall, (1960) "Boundary Layers on Three-

Dimensions," Royal Aircraft Establishment Report Aero. 2635.

Davies, P. 0. A. L., (1958) "The Behavior of a Pitot Tube in Transverse

Shear," Journal of Fluid Mechanics, Vol. 3, pp. 441-456.

Dean, R. B., (1976) "A Single Formula for the Complete Velocity Profile

in a Turbulent Boundary Layer," Trans. ASME, Journal of Fluid Engineering,
pp. 723-727.

Dean, R. C., Jr., 1 1958) Aerodynamics Measurements, Gas Turbine Labora-
tory, Massachusetts Institute of Technology, Eagle Enterprise.

de Bray, B. G., (1965) "Sor; ,! Investigations into the Spanwise Non-
Uniformity of :Nominally Two-Dimensional Incompressible Boundary Layers

Dovrnstream of Gauze Screens," Aeronautical Research Council, A.R.C.
29 271.

Dechow, R., (1976) "Mittlera Geschwindigkeir_ and Reynoldsscher Span-
nungstensor in der dreidimensionalen turbulenten Wandgrenzschicht vor

einen stehenden Zylinder," dissertation, Universitat (TH) Karlsruhe.

Dechow, R. and K. 0. Felsch, (1977) "Neasurc:ments ­i the Mean Velocity
and the Reynolds Stress Fenon in a Three-Dimensional Turbulent Boundary

Layer Inclosed by a Cylinder Standing in a Flat Wall," Symposium on
Turbulent Shear Flows, Pennsylvania State University, University Park,

Pennsylvania, pp. 9.11-9.20.

Deissler, R. G., (1955) "Analysis of Turbulent Heat Transfer, Mass
Transfer, and Friction in Smooth Tubes at High Prandtl and Schmidt

Number's" NACA TR 1210.

Depooter, K., Brundrett, E. and A. B. Strong, (1977) "Direct Measure-
ment of Wall Shear Stress With Mass Transfer in a Low Speed Boundary
Layer," Journal of Fluids Enigineerir., Vol. 99, pp. 580-584.

Depooter, K., Brundrett, E., and A. B. Strong, (1918) "The Calibration

of Preston Tubes in Transpired Turbulent Boundary Layers," Journal of
Fluids Engineering, Vol. 100, pp. 10-16.

225



I^
Dershin,	 H., Leonard, "DirectC. A.,	 and W.	 H.	 Gallaher,	 (1967) `-'

Measurement of Skin Friction on a Porous Flat Plate with Mass Injection,"
A Journal, Vol.	 5, No.	 11,	 pp.	 1934-1939. L

Dhawan,	 .., (1952)	 "Direct Measurements of Skin Friction," NACA
TN 2567. rl

Dickinson, ,	 and V. Ozarapoglu,	 (1969) "The Determination of Tur-
bulent Skin Fr-;.ction," Progress Report DRB 9550-23 Universite Laval,
Canada.

Doench, r. . k'142') "Divergente and Konvergente turbulei, 2 Stroemungen
mit kleineii Oeffnungswinkeln," Forch.-Arb. Geb. Ing.-Wes., Heft 282.

Drinkuth, R. H., and F. J. Pierce, (1966) "Directional Heat Meter for
Wall Shear Stress Measurements in Turbulent Boundary Layers," Review
of Scientific Instruments, Vol. 37, pp. 740-741.

East, L. F., (1968) "Measurement of Skin Friction at Low Subsonic
Speeds by the Razor-Blade Technique," Aeronautical Research Council 	 1

R & M 3525.

.ast, L. F., (1972) "A Prediction of the Law of the Wall in Compressible
Thr^_e-Dimensional Turbulent Boundary Layers," Royal Aircraft Establish-

ment Technical Report 72178.

East, L. F., and R. P. Hoxey, (1969) "Low-Speed Three-Dimensional
Turbulent Boundary Layer Data," Parts 1 and 2, Aeronautical Research
Council R & M 3653.

Elrod, h. G., Jr., (1957) "Note on the Turbulent Shear Stress Near a
Wall," J. of the Aero. Scierces, Vol. 24, pp. 468-469.

Everett, H. U., (1958) "Calibration. of Skin Fricti ,.)n Balance Discs for
Pressure Gradient," Defense Research Laboratory, DRL-426, CF-2708.

czekwe, C. I., (1974) "Turbulent Stress Tenons in a Three-Dimensional
Boundary Layer," Dissertation, Virginia Polytechnic Institute and
State University, Blacksburg, Virgina.

Fage, A., and V. M. Falkner, (1931) "On the Relation Between Heat
Transfer and Surfac= Friction for Laminar Flo g ," Aeronautical Research
Council R & M No. 1408.

Ferriss, D. H., (1965) "Preston Tube Measurements in Turbulent Boundary
Layers and Fully Developed Pipe Flow," ARC-CP-811.

Finley, P. J., Phoe, and Poh, (1966) "Velocity Measurements in a Thin
Turbulent Water Layer," La Houille Blanche, Vol. 21, pp. 713-721.

226



0

R	 Fowke, J. G., (1969) "Development of a Skin-Friction Balance to
Investigate Sources of Error in Direct Skin-Friction Measurements,"
M.S. Thesis, University of Virginia.

Franklin, R. E., (1960 "A Force-Displacement Indicator for a Drag
Balance," Ministry of Aviation, Aeronautical REsearch Council, C.P.
No. 549, London.

LFuruya, Y. and h. Osaka, (1975) "The Spanwise Non-Uniformity of
Nominally Two-Dimensional Turbulent Boundary Laver I-- Characteristics

f	 of Spanwise Velocity Distribution," JSME Bulletin. Vol. 18, No. 121,
pp. 664-672.

Furuya, Y., I. Nakamura, 11. Osaka, and H. Honda, (1975) "The Spanwise
Non-Uniformity of Nominally Two-Dimensional Turbulent Boundary Laver
II--Wall S;,-ar Stress and Flow Field," JSME Bulletin, Vol. 18, pp. 673-
680.

Gold, D. S., (1974) "Near-Wall Velocity Measurements in Two-Dimensioral
Turbulent Boundary Layers," M.S. Thesis, Va. Polytechnic Inst. and

I
	 State Univ., Blacksburg, Virginia.

L_	 Granville, P. S., (1975) "A Modified Law of the Wake for Turbulent
Shear Layers," Naval Ship Research and Development Center - 4369,
Bethesda, Maryland.

Gruschwitz, E., (1935) "Turb-lente Reibungsschichten Mit Secundarstromung,"
Ingenieur-Aichiv., Vol. 6.

Gupta, R. P., (1975) "New Device for Skin-Friction Measurement in
Three-Dimensional Flows," A IAA Journal, Vol. 13, No. 2, pp. 236-238.

Hakkinen, R. J., (1955) "Measurements of Turbulent Skin Friction on a
Flat Plate at Transonic Speeds," NACA TN 3486.

Head, M. R. and V. V. Ram, (1971) "Simplified Presentatlin of Preston
Tube Calibration," Aeronautical Quarterly, Vol. 22, Part 3, pp. 295-
300.

Head, It. R. and I. Rechenberg, (1962) "The Preston Tube as a Means of
Measuring Skin Friction," Journal of Fluid Mechanics, Vol. 14, pp. 1-17.

Headley, J. ;ti., (1966) "A Simple Calibration Technique for Skin Fric-
tion Balances," AIAA Journal, Vol. 4, p. 1862.

Hebbar, K. S., and W. L. Melnik, (1976) "Measurements in the Near-Wall
Region of a Relaxing Three-Dimensional Low Speed Turbulent Air Bound-
ary Layer," University of Maryland, T. R. No. AF-76-1.

Higuchi, ll., and D. J. Peake, (1978) "Bi-Directional Buried-Wire Skin-
Friction Gage," r.ASA TM 78531, Ames Research Center.

227



1-77

Hinze, J. 0., (1975) Turbulence, 2 ed., McGraw Hill, New York.

Hornung, H. G., and P. N. Joubert, (1963) "The Mean Velocity in
Three-Dimensional Turbulent Boundary Layers," Journal of Fluid
Mecnanics, Vol. 15, Part 3, pp. 368-384.	 L
Huffman, G. D. and P. Bradshaw, (1972) "A Note on von Karman's
Constant in Low Reynolds Number Turbulent Flows," Journal of Fluid
:iechanics, Vol. 53, Part 1, pp. 45-60.

Johnston, J. P.,	 (1960) "On Three-Dimensional Turbulent Boundary Laver
Generated by Secondary Flow," Trans. ASME, Journal of Basic Engineer- ^JU

ing,	 Vol. 82, pp.	 233-248.

Johnston, J. P.,	 (1976) "Experimental Studies in Three-Dimensional

Turbulent Boundary Layers," Report MD- 34, Department of Mechanical
Engineering, Stanford University,	 Stanford, California.

Kashinskiy, 0. N., S. S. Kutateladze, and V. A. Mukhin, (1974) "Skin

Friction in a Turbulent Boundary Layer with a Positive Pressure
Gradient," NASA Translation from Z. H. Prikl. Mekh. Tekh. Fiz. (USSR),
No. 6, pp. 92-96.

Kempf, G., (1929) "Neue Ergebnisse der Widerstands forschung," Werft
Reederei Hafen, Vol. 10, pp. 234-239.

Klebanoff, P. S., and F. W. Diehl, (1951) "Some Features of Artifically

Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure
Gradient," NACA TN 2475.

Kleinstei;i, G., (1967) "Generalized Law of the Wall and Eddy-Viscosity
:Model for Wall Boundary Lavers," AIAA Journal, Vol. 5, No. 8, pp. 1402-
1407.

Kline, S. J. and F. A. '.McClintock, (1953) "Describing Uncertainties
in Single-Sample Experiments," Mechanical Engineering, p. 3.

Kline, S. J., and F. Schraub, (1965) "A Study of the Structure of the

Turbulent Boundary Layer With and without Longitudinal Pressure
Gradients," Thermosciences DiviFiun, Stanford University Report MD-12.

Klinksiek, W. F., and F. J. Pierce, (1970) "Simultaneous Lateral
Skewing in a Three-Dimensional Turbulent Boundary Layer," Trans. ASME,
Journal of Basic Engineering, Vol. 92, pp. 83J)".

Klinksiek, W. F. and F. J. Pierce, (1973) "A Finite Difference Solu-
tion of the Two- and Three-Dimensional Incompressible Turbulent
Boundary Layer Equations," Journal of Fluids Engineering, Vol. 95,

pp. 445-458.

228



Konstantinov, N. I., and G. L. Dragnysh, (1960) "The Measurement of

L
Friction Stress on a Surface," English Translation, DSIR RTS 1499.

Kuethe, A., P. McKee, and W. Curry, (1949) "Measurements in the

Boundary Layer with Zero Pressure Gradient," NACA TN 1946.

L_
Landweber, L., (1960) "Reanalysis of Boundary-Layer Data on a Flat
Plate," written discussion of Ninth International Toning Tank Con-

L ference, Paris, 1960. Iowa Institute of Hydraulic Research, State
University of Iowa.

L	 Landweber, L., and T. T. Siao, (1958) "Comparison of Two Anal yses of
Boundary Layer Data on a Flat Plate," Journal of Ship Research, Vol.

1.

`	 Laufer, J., (1950) "Investigation o" Turbulent Flow in a Two-Dimen-
sional Channel," NACA TN 2123.

L
i

	

	 Laufer, J., (1953) "The Structure of Turbulence in Fully Developed

Pipe Flow," NACA Tech. Note 2954.

Laufer, J., (1954) "The Structure of Turbulence in Fully
Pipe Flow. NACA TR 1174.

Liepmann, H. W., and G. T. Skinner, (1954)Shearing-Stress Measure-

ments by Use of a Heated Element," NACA Tt;c`inical Note 3268..

Lindgren, E. P., and J. Chao, (1909) "Average Velocity Distribution

of Turbulent Pipe Flow with Emphasis on the Viscous Sublayer," Physics

of Fluids, Vol. 12, pp. 1364-1371.

Livesey, J. L., (1956) "The Behavior of Transverse Cylinderical and

Forward Facing Total Pressure Probes in Transverse Total Pressure
Gradients," Journal of Aeronautical Science, Vol. 23.

Ludwieg, H., (1950) "Instrument for Meas,.ring the Wall Shearing Stress
of Turbulent Boundary Layers," NACA Technical Memorandum 1284, (trans-

lated from Ingenier Arch., Vol. 17, 1949), pp. 207-218.

Ludwieg, H., and W. Tillmann, (1950) "Investigations of the Wall-

Shearing Stress in Turbulent Boundary Layers," NACA TM 1285.

MacMillan, F. A., (1954) "Viscous Effects on Pitot Tubes at Low
Speeds," Journal of the Royal Aeronautical Society, Vol. 58, pp. 570-572.

MacMillan, F., (1956) "Experiments on Pitot-Tubes in Shear Flow,"

ARC R & M No. 3028.

II

229



I

1

Mager, A., (1951) "Generalization of Boundary Laver Momentum Integral

Equations to Three-Dimensional Flows, Including Those of a Rotating

Disk," NACA TN 2310.

McAllister, J. E., (1979) "Near-Wall Similarity in Two- and Three-

Dimensional Turbulent Boundary Lavers," Dissertation, Virginia Poly-
technic Institute and State University, Blacksburg, Virginia.

McCloskey, W. J., and E. J. Durbin, (1972) "Flow Angle and Shear
Stress Measurements Using Heated Films and Wires," Trans. ASME,

Journal of Basic Engineering, Vol. 94, pp. 46-52.

McDonald, H., (1969) "The Effect of Pressure Gradient on the Law of the
Wa li in Turbulent Flow," Journal of Fluid Mechanics, Vol. 35, Part 2,

pp. 311-336.

`Mellor, G. L., (1966) "The Effects of Pressure Gradients on Turbulent
Flow %ear a Smooth Wall," Journal of Fluid Mechanics, Vol. 24, Part 2,

pp. 255-274.

Mellor, G. L., (1968) "Review of the Empirical Content of Some Turbulent
Boundary Laver Prediction Methods," Prcc. Symp. Fluidics and Internal

Flows, Vol., Penn State Univ., pp. 151-175.

Miller, B. L. P., (1972) "The Measurement of hall Shearing Stress in
Turbulent Boundary Layers," Ph.D. Dissertation, University of Leicester,
Great Britain.

Millikan, C. B., (1938) "A Critical Discussion of Turbulent Flows in

Channels and Circular Tubes," Proc. 5th Int. Congr. Appl. `tech.,
Cambridge, `Sass., pp. 386-392.

*Mitchell, J. E., and T. J. Hanratty, (1966) "A Study of Turbulence at a

Wall Using an Electrochemical Wall Shear Stressmeter," Journal of Fluid
Mechanics, Vol. 26, Part 1, pp. 199-221.

Moffat, R. J., (1980) "Contributions to the Theory of Uncertainty Analysis

for Single-Sample Experiments," in The 1980-81 AFJSR-HTTM-Stanford Con-

ference on Comp lex Turbulent Flows: Comparison of Comoutation and Ex peri-

ment, 1980 Meeting, Stanford Universit y , Stanford, California. To be

published.

Morsy, M. G., (1974) "An Instrument for the Direct Measurement of the
Local Shear Stress on Circular Cylinders," Journal of Physics, Part E -
Scientific Instruments, Vol. 7, pp. 83-86.

Musker, A. J., (1979) "Explicit Expression for the Smooth Wall Velo-
city Distribution in a Turbulent Boundary Layer," AIAA Journal, Vol.

17, No. 6, pp. 655 -657.

Nash, J. F., and V. C. Patel, (1972) Three-Dimensional Turbulent_

Boundary layers, SBC Technical Books.

1
q

230



L

Nash-Weber, J. L. and G. C. Oates, (1971) "An Instrument for Shin
Friction Measurements in Thin Boundary Layers, ASME Paper 71-FE-27.

Nelson, D. J., (1979) "Pressure and Velocity Fields in a Relaxing

Three-Dimensional Turbulent Boundary Layer," M.S. Thesis, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia.

NPL Staff, (1955) "On the Measurement of Local Surface Friction on a

Flat Plate by Means of Preston Tubes," ARC R b M 3185.

O'Donnell, F. B., Jr., (1964) "A Study of the Effect of Floating-Element
Misalignment on Skin-Friction-Balance Accuracy," Defense Research

Laboratory, DRL-515, CR-10.

Owen, F. K., (1970) "Transition Experiments on a Flat Plate at Subsonic

and Supersonic Speeds," AIAA Journal, Vol. 8, pp. 518-523.

Pai, B. R., and J. H. Whitelaw, (1969) "Simplification of the Razor-
Blade Technique and its Application to the Measurement of Wall-Shear

Stress in Wall-Jet Flows," Afro. Quarterly, Vol. 20, pp. 355-364.

Pdros, -1 . M., (1970) "Application of the Force-Balance Principle to
Pressure --nd skin Friction Sensors," 16th Annual Technical Meeting
Proceedings, Institute of Environmental Science, pp. 363-368.

Patel, V. C., ;1965) "Calibration of the Preston Tube and Limitations
an Its Use in Pressure Gradients," Journal Fluid Mechanics, Vol. 23,

fart 1, pp. 185-208.

Patel, V. C., (1973) "A Unified View of the Law of the Wall Using
Mixing-Length Theory," Aeronautical Quarterly, Vol. 24, pp. 55-70.

Patel, V. C. and M. R. Head, (1968) "Reversion of furbulent to Laminar
Flow," Journal of Fluid Mechanics, Vol. 34, Part 2, pp. 371-392.

Patel, V. C. and M. R. dead, (1969) "Some Observations on Skin Friction

and Velocity Profiles in rully Developed Pipe and Channel Flows,"
Journal of Fluid Mechanics, Vol. 38, Part 1, pp. 181-201.

Perry, A. E., (1966) "Turbulent Boundary Layers in Decreasing Adverse
Pressure Gradients," Journal of Fluid Mechanics, Vol. 26, Part 3,

pp. 481-506.

Perry, A. E., and P. N. Joubert, (1965) "A Three-Dimensional Turbulent

Boundary Layers," Journal of Fluid Mechanics, Vol. 22, Part 2, pp.

285-304.

Pierce, F. J., and J. L. East, (1972) "Near-Wall Collateral Flow in

Three-Dimensional Turbulent Boundary Layers," AIAA Journal, Vol. 10,

No. 3, pp. 334-336.

Pierce, F. J. and D. S. Gold, (1977) "Near-Wall Velocity Measurements
for Wall Shear i nference in Turbulent Flows," Flow Measurement in

Open Channels an.: Closed Conduits, NBS Special Publication 484, Vol. 2,

pp. 621-648.

i

A

231



Pierce, F. J., and D. 1i. Krommenhoek, (,1968) "Wall Shear Stress

Diagnostics in Three-Dimensional Turbulent Boundary Layers," Interim

Technical Report No. 2, ARO-D Project 6858E, Virginia Polytechnic

Institute and State University. 	 U
Pierce, F. J., M. F. Tennant, and J. A. Rule, (1976) "Near--Wall

Similarity in Three-Dimensional Turbulent Flows-Experimental Systems,"
Int. Fpt. NSF Grant ENG 73-03737-A01, (VPI b SU Rpt. VPI-E-76-16,

available NTIS).

Pierce, F. J., Tennant, M. H. and J. E. McAllister, (1980) "An

Omnidirectional Wall Shear Meter," Trans. ASME, Journal of Fluids

Engineering, Vol. 102, pp. 21-25.

Pierce, F. J. and B. B. Zimmerman, (1973) "Wall Shear Stress Inference
from Two- and Three-Dimensional Turbulent Boundary Layer Velocity Pro-

files," Journal of Fluids Engineering, Vol. 95, pp. 61-67.

Pilkey, W. D., (1969) "Manual for the Response of Structural Members,"

IIT Research Institute, Vols_ I and II.

Power, J. L., (1973) "Wall Shear Stress and 'lean-Velocity Measurements
in a Three-Dimensional Turbulent Boundary Layer," Naval Ship and

Development Center Report 4056.

Prahlad, T. S., (1968) "Wall Similarity in Three-Dimensional Turbulent
Boundary Layers," AI,1A Journal, Vol. 6, No. 9, pp. 1772-1774.

Prahlad, T. S., (1972) "Yaw Characteristics of '.'reston Tubes," AIAA

Journal, Vol. 10, No. 3, pp. 357-359.

Prahlad, T. S., (1973) "Mean Velocity Profiles in Three-Dimensional
Incompressible Turbulent Boundary Layers," AIAA Journal, Vol. 11,

No. 3, pp. 359-365.

Prandtl, L., (1933) "Neuere Ergebnisse der Turbulenzforschung," Z. Ver.

Dtsch. Ing., Vol. 77, pp. 105-114, (translation `:ACA I :h. Mem. 720).

Preston, J. H., (1954) "The Determination of Turbulent Skin Friction
by *leans of Pitot Tubes," J. Roy. Aer. Soc., Vol. 38, pp. 109-121.

Quarmby, A. ana H. K. Das, (1969) "Measurement of Skin Friction Using
a Rectangular Mouthed Preston Tube," Journal of the Royal Aeronautical

Society, Vol. 73, pp. 218-230.

Rasmussen, M. L., (1975) "On Compressible Turbulent Boundary Layer in

the Presence of Favourable Pressure Gradients," ASME Paper 75-WA/HT-53.

Rechenberg, I . , (1903 ) ""1'he Measurement of 'turbulent k'_"

Zeitschrift fur Flugwissenschaften, Vol. 11, (A.R.A. 1.

tion No. 11).

232



t	 — —

Reichardt, P., (1951) "Vollstandige Darstelling der turbulenten Gesc-

hwindigkeitsverteilung in glatten Leitungen," Z. Angew. Math Mech. Vol.

31, No. 7, pp. 208-219.

Rogers, B. K., and M. R. Head, (1969) "Measurement of Three-Dimensional

Turbulent Boundary Layers," The Aero. Journal of the Royal Aero. Scoeity,

	

L	 Vol. 73, pp. 796-798.

Rotta, J., (1950) "Das in WandnBhe gUltige Geschwindigkeitsgesetz turbulenter

Strbmungen," Ing. Arch., Vol. 18, pp. 277-279.

Rubesin, M. W., Okuno, A. F., Mateer, G. G., and A. Brosh, (1975) "A Hot-
Wire Surface Gage for Skin Friction and Separation Detection Measurements,

	

L	 NASA TIM-62, 465, Ames Research Center.

Rules, ;. A., Jr., (1976) "!Year-Wall Similarity and Wall Shear Stress
Measurements in a Two-Dimensional Wind Tunnel," M.S. Thesis, Va. Polytechnic

	

`	

Inst. and State Univ., Blacksburg, Virginia.

L
Samuel, A. E., and P. N. ?oubert, (1974) "A B^undary Layer Developing in
an Increasing Adverse Pressure Gradient," Journal of Fluid Mechanics, Vol.

66, pp. 481-505.

Schraub, F. A., and S. J. Kline, (1965) "A Study of the Structure of the
Turbulent Boundar y Laver With and Without Longitudinal Pressure Gradients,"
Rpt. MD-12, Thermosciences Division, Mechanical Engineering, Stanford
University.

Schultz-Grunow, F. Von, (1940) "Neues Reibungswiderstands gesetz far
glatte Platten," Luftfahrtforschung, Band 7, 5.239, (translarion NACA TM

986).

:3hutts, W. H., Hartwig, H. H., and J. L. Weiler, (1955) "Turbulent Boundary
Layer and Skin-Friction Measurements on a Smooth, Thermally Insulated Flat

Plate at Supersonic Speeds," Defense Research Laboratory, DRL-364, Cm-823.

Sigalla, A., (1958) "Measurements of Skin Friction in a Plane Turbulent
Wall Jet," Journal of the Royal Aeronautical Scoeity, Vol. 62, pp. 873-

877.

	

I'	 Simpson, R. L., and D. G. Whitten, (1968) "Preston Tubes in the Transpired
Turbulent Boundary Layer," AIAA Journal, Vol. 6, No. 11, pp. 1776-1777.

Smith, D. W., and J. H. Walker, (1958) "Skin-Friction Measurements in

Incompressible Flow," NACA TN 4231.

t_
Smith, S. L., C. J. Lawn, and M. J. Hamlin, (1968) "The Direct Measurement
of Wall Shear Stress in an Annulus," C.E. G.B. RD/B/N 1232.

Spalding, D. B., (1961) "A Single Formula for the Law of the W,11," Trans.

ASME, Journal of Applied Mechanics, Vol. 83, pp. 455-!:58.

Stanton, T. E., D. Marshall, and C. N. Bryant, (1920) "On the Conditions
at the Boundary of a Fluid in Turbulent Motion," Proceedings Royal Society

London, Vol. 97.

233



ti

Tennant, M. H., (1977) "Near-Wall Similarity in Three-Dimensional Turbulent

Boundary Layers," Ph.D. Dissertation, Virginia Polytechnic Institute and
State University, Blacksburg, Va.

Tennekes, H., and J. L. Lumley, (1972) A First Course in Turbulence, MIT
Fress, Cambridge, Mass.

Townsend, A. A., (1956) The Structure of Turbulent Shear Flows, Cambridge
University Press.

Townsend, A. A., (1961) "Equilibrium Layers and Wall Turbulence," Journal

of Fluid Mechanics, Vol. 11, pp. 97-120.

Townsend, A. A., (1976) The Structure of Turbulent Shear Flow, 2 ed.,
Cambridge University Press, Cambridge.

Vagt, J. D., and H. Fernholz, (1973) "Use of Surface Fences to Measure
Wall Shear Stress in Three-Dimensional Boundary Layers," The Aeronautical
Quarterly, Vol. 24, pp. 87-91.

van den Berg, B., (1973) "The Law of the Wall in Two- and Three-Dimensional
Turbulent Boundary Layers," National Aerospace Laboratory, TR 72111 U,
Netherlands.

van den Berg, B., (1975) "A Three-Dimensional Law of the Wall for Turbulent
Shear Flows," Journal of Fluid Mechanics, Vol. 70, Part 1, pp. 149-160.

van den Berg, B., (1976) "Investigations of Three-Dimensional Incompressible
Turbulent Boundary Layers," ;rational Aerospace Laboratory, TR 76001 U,
Netherlands.

van den Berg, B., and A. Elsenaar, (1972) "Measurements in a Three-Dimensional
Incompressible Turbulent Boundary Layer in an Adverse Pressure Gradient

under Infinite Swept Wing Conditions," National Aerospace Laboratory

TR 72072 U, Netherlands.

van Driest, E. R., (1956) "On Turbulent Flow Near a Wall," J. of Aero. Sci.,
Vol. 23, pp. 1007-1011.

Vermeulen, A., (1971) "Measurements of Three-Dimensional Turbulent Boundary

Layers," Ph.D. Thesis, Cambridge University.

Vinh, M. N. D., (1973) "Sur less erreurs concernant less measures de
frottement parietal A 1'aide d'une balance A eldment flottant dans un
ecoulement turbulent avec gradient de pression adverse mod6r6," C.R.
Acad. Sc. Paris, t. 277, S6rie A. pp. 1115-1117.

Von Karmin, T., (1930) "Mechanische Ahnlichkeit and Turbulenz," Proceedings

Third International Congress for Applied Mechanics, Stockholm.

Waltrup, P. J., (1971) "An Experimental Investigation of a Compressible
Turbulent Boundary Layer Subjected to a Systematic Variation of Adverse
Pressure Gradients," Ph.D. Thesis, Virginia Polytechnic Institute and
State University.

L'

U'

U

u

u

u

L

234



LL

^L

l

L

Wanschkuhn, P., and V. 1. Vasanta Ram, (1975) "Turbulent Boundary Layer
Behind a Separation 'Lone," Zeitschrift fUr Flugwissenchaften, Vol. 23, pp.
1-9.

Nash-Weber, J. L., and G. C. Oates, (1971) "An Instrument for Skin-Friction
Measurements in Thin Boundary Layers," ASME Paper No. 71-EF-27.

White, F. M., (1974) Viscous Fluid Flow, McGraw Hill, New York.

White, F. M. and G. H. Christoph, (1972) "A Simple Theory for the Two-
Dimensional Compressible Turbulent Boundary Layer," ASME Paper No. 72-EF-
15.

White, F. M., R. C. Lessmann, and G. H. Christoph, (1975) "A Three-Dimension
Integral Method for Calculating Incompressible Skin Friction," Trans.
ASME, Journal of Fluids Engineering, Vol. 97, pp. 550-557.

White, J. K., and R. E. Franklin, (1964) "Measurements of Skin-Friction in
an Annulus by the Floating Element Technique," A.R.C. 25 661, F.M. 3419.

Wills, J. A. B., (1963) "Note on a Method of Measuring Skin Friction,"
A.R.C. 24, No. 655.

Winter, K. G., (1977) "An Outline of the Techniques Available .or the
Measurement of Skin Friction in Turbulent Boundary Layers, Progress in
Aeronatuics Sciences, Vol. 18, pp. 1-57.

Wyatt, L. A., and L. F. East, (1968) "Lo ra Speed Measurements of Skin
Fricf.lon on a Slender Ring," A.R.C. R & M 3499.

You.ig. A. B., and J. N. Maas, (1936) "The Behavior of a Pitot-Tube in a
Transverse Pressure Gradient," ARC R & M No. 1770.

235


	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




