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aerodynamic matrix due to motion 
aerodynamic matrix due to motion in 

rth mode; r = 0, 1, 2 .. . N-1 
aerodynamic matrix due to wake 

induced flow 
aerodynamic matrix due to wake 

induced flow in the rth mode, 
r = 0, 1, 2, ... N-1 

el~stic axis location, non-
dimensional 

semi chord 
chord 
matrices defined in Eq. (6); 

s = 0, 1, 2 ... N-l 
matrix defined in Eq. (3) 
defined in Eq. (3) 
base for natural logarithm 
matrices defined in Eq. (6); 

s = 0, 1, 2 .. . N-l 
quantities defined in Eq. (6) 
bending deflection of sth blade 
bending deflection of blade in rth 

mode of tuned cascade 
unit matrix 
mass moment of inertia of sth blade 

about elastic axis per unit span; 
(=ms r2 b2) V-r as 

bending and torsional stiffness 
respectively, of sth blade 

reduced frequency, wb/V 
acoustic resonance reduced frequency 
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reduced flutter frequency 
lift due to motion of sth blade per 

unit span, positive up 
lift due to wakes of sth blade per 

unit span, positive up 
nondimensional lift coefficients due 

to bending and torsional motions, 
respectively, in rth rnode 

nondimensional moment coefficients 
due to bending and torsional 
motions, respectively, in rth mode 

nondimensional lift and moment co-
efficients, respectively, due to 
wake in rth mode 

moment about the elastic axis due to 
motion of sth blade per unit span, 
positive nose up 

moment of sth blade per unit span 
about the elastic axis due to 
wake, positive nose up 

Mach number 
mass per unit span of sth blade 
number of blades in cascade 
matrix defined in Eq. (6) 
integer specifying the mode of tuned 

rotor; r = 0, 1, 2 ... N-l 
radius of gyration of sth blade, 

nondimensionalized with respect 
to b 

integer specifying blade, s = 0, 1, 
2 ••• N-l; also blade spacing 
(Fi g. 1) 
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V 

static mass moment of sth blade per 
unit span about elastic axis, 
positive when center of gravity is 
aft of elastic axis 

time 
freestream velocity relative to the fAdjunct Professor, Dept. of Mechanical Engineer

ing, The University of Toledo, Toledo, Ohio. blade 
flutter speed 
velocity induced by wakes 
column matrix, defined in Eq. (3) 
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rectangular coordinate axes 
dimensionless static unbalance of 

sth blade (=Sa /msb) 
column matrix, defined in Eq. (3) 
amplitude of torsional motion of sth 

blade, positive clockwise 
torsional amplitude of each blade of 

tuned cascade 
amplitude of torsional deflection of 

a blade in rth mode of a tuned 
cascade 

interblade phase angle, 2wr/N 
interblade phase ang le s at acoustic 

resonance 
nondimensional eigenvalue, (wQ/w)2 
nondimensional uncoupled bend l ng 

frequency of sth blade 
nondimensional uncoupled torsional 

frequency of sth blade 
logarithmic decrements of sth blade 

in bending and torsion, respec
tively 

damping ratios of sth blade in bend
ing and torsion, respectively 

location of elastic axis measured 
from leading edge, (a + 1)/2 

mass ratio of sth blade, ~s = ms/wpb2 
real part of eigenvalue, defined in 

Eq. (8) 
imaginary part of eigenvalue , 

defined in Eq. (8) 
nondimensional flutter frequency 
stagger angle, Fig . 1 
fluid density 
frequency 
reference frequency 
V Kh s /rns 
y k(l/Ias 

matrices 
differentiation with time 
inv erse of a matrix 
indicate summation over r 0, 1, 

2 ... N-1 

The prediction of aeroelastic stability and re
sponse of bladed-disk assemblies used in aircraft 
turbofan engines has been receiving considerable 
at t ent ion in the literature. While in most of the 
re searc h in this area all the blades are assumed 
identical, a li mited amount of work l - 7 considering 
e ither pure bending or torsional motion of the blades 
has also included small differences between individ
ual blades, known as mistuning . The results in these 
references have shown a beneficial effect on blade 
flutter and an adverse effect on forced response. In 
spite of these find ings, the lack of complete under
standing of the phenomena has prevented its in
corporation in current design analysis systems. 
Furthermore, the importance of the effects of inher
ent random mistuning due to manufacturing tolerances 
and of controlled mistuning upon the aeroe last ic 
characteristics of bladed-disk assemblies have been 
demonstrated by actual engine experince. 5,8,9. 

A research program in turbofan engine aero
elastic i ty is being conducted in the NASA-Lewis 
Resea rch Center. As a part of this general program, 
an effort is in progress to improve the basic under
stand ing of turbofan engine aeroelastic character is
tics including mistuning effects . The effects of 
blade mistuning on coupled bending- torsion flutter 
and aeroelastic respon se due to wakes in incompressi -
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ble flow have been studied in Ref. 10. The purpose 
of this paper is to continue and to extend the work 
of Ref . 10 into the subsonic and supersonic flow 
regimes. To the best of the authors' knowledge, the 
aeroelastic characteristics of mistuned cascades in 
subsonic and supersonic flows using a multi-degree of 
freedom model for the blades have not been studied in 
the published literature. 

Except for the unsteady aerodynamic models, 
the mathematical model considered is the same as 
that used in Ref. 10. In the present paper, the 
unsteady aerodynamic loads are calculated by using 
Smith'sll theory in subsonic flow and Adamczyk and 
Goldstein's12 theory in supersonic flow with a 
subsonic leading edge. A brief discussion is pre
sented on three regimes of flutter, which are based 
on the decaying or propagating nature of an acoustic 
pressure disturbance in both subsonic and supersonic 
flows. 

II. THEORY 

A. Structural Model 
As in Ref. 10, the disk is assumed to be rigid 

and the rotor i s modeled as an infinite, two
dimensional cascade of airfoils capable of plunging 
and pitching motions . The geometry of a tuned cas
cade is shown in Fig. 1. As illustrated in Fig. 2, 
each airfoil is suspended by bending and torsional 
springs, Kh s and Kas respectively. The 
blade is assumed to be rigid in the chordwise direc
tion, and, consequently, this motion is neglected. 
The coupling between bending and torsion due to 
effects such as pretwist, shrouds, and rotation of 
the rotor is modeled through the offset distance (b 
xa ) between the center of gravity and elastic 
axls positions. The centrifugal stiffening effects 
due to rotation are included in the bending and tor
sional spring constants. The properties of the 
blades are represented by their respective values at 
75 percent span. 

In the case of a cascade with identical blades 
(tuned), it is usually assumed that the motion of the 
blades is simple harmonic and that they vibrate in 
each mode of the cascade with a constant amplitude 
and with a constant phase angle between adjacent 
blades. The phase angle is restricted to N 
discrete values, ar = 2wr/N, where r = D, 1, 
2 ... N-1, and thus the total number of allowed 
interblade phase angle modes of the cascade is also 
N. This restriction is known as Lane ' s13 assump
tion . In the case of a mistuned cascade considered 
herein, the general motion of a blade can be ex
pressed as a sum of its motions in all possible 
interblade phase angle modes. Then, the motion of 
the sth blade is 

( 1) 

For a cascade with N mistuned blades Eq. (1) can be 
generalized as 

[EJ{Y} e iwt (2) 

where 
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B. Aerodynamic Model 
As mentioned earlier, the unsteady aerodynamic 

loads were calculated by using Smith'sll theory in 
subsonic flow, and Adamczyk and Goldstein's12 the
ory in supersonic flow with a subsonic leading edge. 
In these theories, the effect of airfoil thickness, 
camber, and steady state angle of attack are neg
lected, and the flow is assumed to be isentropic and 
irrotational. In the calculation of subsonic aero
dynamic loads some numerical convergence problems 
have been encountered when Sr = 0 or 2n. Since 
the Sr = a or 2n mode is of little interest in 
practice and since a numerical study of this problem 
is beyond the scope of the present paper, this 
numerical problem has been resolved by setting 
Sr = 0.001 whenever its value should be 0 or 2n. 
The effect of wakes shed from upstream periodic 
obstructions are included. The wakes considered are 
limited to sinusoidal distortions represented by 
vorticity perturbations so that they are con vected 
downstream at the flow velocity V. It should be 
noted that Ref. 12 does not include the effect of 
wakes from upstream periodic obstructions. However, 
the inclusion of this effect in the formulation and 
the details of the computer program in the supersonic 
flow have been obtained from Adamczyk .14 

C. Equations of Motion 
The equatlons of motion for the cascade were 

developed in Ref. 10. For completeness, those equa
tions are summarized below without the derivation de
tails. The equations of motion for the sth blade are 

2i~h )m w~ a ] s s s 

(l+2i~)I w2 
as as as 

_LM _ LW 3 2 
s s npb w 

MM + MW 4 2 
s s npb w 

The aerodynamic coefficients ihhr, i 'har, ... i war 
are functions of the cascade parameters, k, M, sic, 
~ , a, and Sr. By nondimensionalizing Eq . (4), 
extending the resultant equation to all the bl ades, 
and using Eq. (2), the equations for all the blades 
of an arb i trarily mistuned cascade can be written as 
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D. Possible Regimes of Flutter 
It is obvious that in incompressible flow there 

are no acoustic (pressure) waves s i nce the governing 
equation for the perturbation pressure or velocity 
potential is a Laplace equation . However , in com
pres s ible flow acoustic waves are possible since the 
equation for the perturbation pressure is a ' wave ' 
equation. The possibility of a wave type solution 
depends on the f l ow parameters. Different regimes of 
flutt er fo r subsonic flow were categorized in Ref . 15 
based on whether an acoustic disturbance decays or 
propagates . The marginal condition between these two 
cases is called the 'acoustic resonance ' or 'cut
off , 16 condition. For more details see discussions 
in Refs. 11 and 15. A discussion was presented in 
Ref . 17 on different regimes of flutter for super
sonic flow. To facilitate later discussion of re
sults, a brief description of the possible regimes of 
flutter in both subsonic and supersonic flow follows . 

Subsonic flow. The decaying or propagating 
nature of an acoustic disturbance can be described by 
the equation 

~BC ,;/,0)' • M,4~' A . (Bc ,;, ,.0) ,;0 ,]~ 0 (7) 

which i s derived from Eq . (11) of Ref. 11. If the 
left hand side of Eq . (7) is greater than zero, the 
disturbances decay exponentially with distance from 
the cascade and wave type solution for the equation 
for perturbation pressure is not possible . If flut
ter occurs when this condition is met , it is called 
'subscritical flutter.' If the left hand side of 
Eq . (7) i s l ess than zero , a wave type solution for 
the equati on for perturbation pressure is possible 
and at least one pair of acoustic waves can propa
gate. If flutter occurs when this condition is met , 
it is cal led ' supercritical f lutter .' If the left 
hand side of Eq . (7) is zero, a pair of acoustic 
waves is just on the verge of being able t o propa-

4 

gate. This marginal condition is called 'acoustic 
resonance' condition. If fl utter occurs very c l ose 
to acoustic resonance condition, it is ca lled 
' acoustic resonance flutter .' The distinct ion be
tween t hese regimes of flutter is not always clear 
cut because they may merge, depending on the system 
parameters . Also, i t should be remarked that this 
categorization of different regimes of flutter is 
mainly for descriptive purposes. The value of the 
integer n in Eq. (7) for the given values of M, k, 
sIc, and ~ should be determined such that t he roots 
of the quadratic equation (obtained with equality 
sign in Eq . (7)), Il r1 and Il r2, satisfy the con
dition, 0 < Il r l 2 < 2". Alternatively, sub-
critical and supercritical regimes of flutter can 
also be categorized based on the values for Ilr1 
and Ilr2. Flutter is called supercritical if the 
flutter interblade phase angle lies between Ilrl 
and Ilr2 and is called subcritical otherwise . 

Supers on ic flo w. The propagati ng nature of an 
acoustic disturbance in supersonic flow is also 
governed by Eq . (7) . The acoustic resonance condi
tion obtained from Eq. (7) is the same as the 
Eq . (48) of Ref . 18. Also , the same resonance condi 
tion can be derived from Eq . (1) of Ref . 17 . In con
trast to the subsonic case, in su personic flow when 
the left hand side of Eq. (7) is greater than zero, 
the acoustic disturbances propagate through the en
tire flow but remain bounded in the far field . If 
the flutter occurs when this condition is met, it is 
called subcritical flutter . If the right side of 
Eq . (7) is less than zero, the disturbances attenuate 
in the far fie ld. The flutter , if occurring in this 
region , is called supercritical . 

I II . SOLUTION 

The aeroelastic stabil ity of the cascade is 
determi ned by the eigenvalues, y'S , of the matrix [PJ 
in Eq . (6) . The relation between the frequency w 
and y is 

iwlwo = i/vY = ; ± i"V (8) 

Flutter occurs when ~ > O. For the given values of 
the number of blades, and hence the allowable 
Ilr ' S, the gap to chord ratio, the stagger angle , 
the elastic axis position, and the structural para
meters, the e igen va lues of the matrix [P] are cal 
culated for a range of values of k. Denoting the 
values of k and v at which ~ = 0 as kF and 
vF, respectively, the nondimensional flutter speed 
can be written as 

The aeroelastic response of the blades induced by 
wakes is calculated from Eq . (5) and is 

( 9) 

{v} = - [ [P] - [Ih]-I[E]-I[G][E]{AD} (10) 

IV . RESULTS AND DISCUSSION 

A. Computer Program and Verification 
To calculate the flutter boundaries and the 

blade aeroelastic response of an arbitrarily mistu ned 
cascade, a digital computer program was written based 
on the present formulation. In this program, it is 
poss ible to consider any type of mistuning such as 

-- ---- ---------> 



blade to blade variations of the blade uncoupled 
bending and torsional frequencies, damping ratios, 
mass ratios, elastic axis and center of gravity posi
tions, and so on. This program is operational on the 
NASA-Lewis Research Center IBM 370/3033. Both the 
tuned and mistuned uncoupled bending and uncoupled 
torsion cases, in addition to the tuned coupled 
bending-torsion case, can be treated as special cases 
of this program. This program was checked for the 
following special cases: 

1. The subsonic aerodynamic coeffic ients were 
checked by comparison of the present results to the 
published results in Refs. 6 and 11. The supersonic 
aerodynamic coefficients were checked ~ comparison 
of the present results to the published results in 
Refs. 12 and 18. 

2. To check the correctness of the program in 
predicing uncoupled torsional flutter of a tuned cas
cade in subsonic flow, a 12-bladed rotor described in 
Ref. 1, was analyzed. A comparison was made of the 
present results obtained as a special case of the 
program to those presented in Ref. 15 for the 
12-bladed rotor. 

3. The correctness of the program in predicting 
the coupled bending-torsion flutter speed of a tuned 
cascade in supersonic flow was checked by comparing 
the present results for a few selected cases to the 
corresponding ones in Ref. 19. 

4. The correctness of the program in calculating 
coupled bending-to~sion flutter and response of a 
mistuned cascade for M = 0 was checked by comparing 
the present results with the corresponding ones in 
Ref. 10. 

In all of these cases good agreement was 
obtained. 

B. Aeroelastic Stability 
Both the aeroelastic stability and response 

analyses presented in this paper are for NASA Test 
Rotor 12 (shown in Fig. 3). This special test rotor 
is similar to a forward stage of an advanced axial 
flow compressor. The required parameters of this 
rotor are listed in Table I. It should be mentioned 
that this rotor was analyzed for incompressible flow 
in Ref. 10. The blade bending-to-torsion frequency 
ratio for the tuned rotor is 0.357, and the elastic 
axis and c.g. position are at 50 percent chord . As a 
result, the coupling between bending and torsion is 
very weak and the flutter mode is dominated by tor
sional motion. Hence the results for the pre
dominantly bending modes for some cases will not be 
presented. However, to conduct parametric studies 
the bending-to-torsion frequency ratio and elastic 
axis position are varied. For this case the results 
for the predominantly bending mode will also be pre
sented. Furthermore, no attempt is made to match the 
flutter Mach number with the assumed Mach number in 
the parametric study results presented. 

As discussed earlier, three different regimes of 
flutter were found in both subsonic and supersonic 
flows. It is useful to illustrate them separately. 
Figures 4 to 6, show the variation of the real part 
of the eigenvalue, ~ (which is a measure of stability 
and is defined in Eq. (8)1, with the reduced fre
quency, k, at different Mach numbers for a tuned cas
cade. The flutter mode in these figures is dominated 
by torsional motion of the blades. In Fig. 4 for 
M = 0.85, the regions of subcritical and acoustic 
resonance flutter and the acoustic resonance reduced 
frequency, kar , are shown for Sr = 83 . 57°, which 
is the critical interblade phase angle for sub
critical flutter. Also indicated are the acoustic 
resonance flutter regions for a few other Sr's. 
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No supercritical flutter was found when M < 0.85. 
In Fig. 5 for M = 0.9, the regions of supercritical, 
acoustic resonance and subcritical flutter, and 
kar are shown for Sr = 51.45° which is the 
critical interblade phase angle for supercritical 
flutter. The intervals in which acoustic resonance 
flutter occurs for a few other values of Sr are 
shown. For a fixed Sr the subcr itical flutter 
reduced frequency kF is less than the acoustic 
resonance flutter kF , which is less than the 
supercritical flutter kF. The appropriate value 
of n in determining the regimes of flutter in 
Figs. 4 and 5 is zero. By comparing Figs. 4 and 5 it 
can be seen that as M increases toward unity, the 
regions of acoustic resonance occur at decreasing 
values of k. The frequency separation of these re
gions also decrease. A similar behavior was observed 
in Ref. 15 in which only uncoupled torsional motion 
is considered. In Fig. 6 for M = 1.1, the regions 
of supercritical, acoustic resonance, and subcritical 
flutter are shown. For each Sr there is a range 
(a band) in which the supercritical flutter occurs. 
The width of the band depends on Sr; and the bands 
for some Sr's overlap . The appropriate value of 
n is negative one. No supercritical flutter is 
found when the Mach number is greater than 1.15. 
Thus it is hypothesized that supercritical flutter 
only occurs when the Mach number is near unity 
(e.g., 0.85 < M < 1.15). 

A comparison of the system eigenvalues of both 
tuned and mistuned cascades is useful to understand 
the effects of mistuning on flutter and response. 
Figure 7 provides such a comparison for M = o. As 
mentioned earlier, for the parameters considered in 
this figure the flutter mode is dominated by tor
sion . As a result, the eigenvalues corresponding to 
predominantly bending motion are of li tt le interest 
and are not shown. The type of mistuning considered 
is the one in which the odd and even numbered blades 
have different uncoupled torsional frequencies. This 
is known as alternate blade mistuning. For example, 
in the case of 1 percent mistuning, the frequency 
ratio, Wa /wo, is 1.005 for all the even blades 
and is 0.§95 for all the odd blades . The reference 
frequency Wo is equal to the arithmetic mean of 
the uncoupled torsional frequencies of all blades. 
Because of the symmetry of this type of mistuning 
the Sr mode couples with the (Sr * n) mode 
only . It should be pointed out that the value of the 
reduced frequency in this figure is chosen such that 
the cascade is neutrally stable for 2 percent alter
nate mistuning. Two interesting observations follow 
from Fig. 7. First, for M = 0 the 2 percent mis
tuning significantly affected the system eigenvalues 
and stabilized the unstable tuned cascade. As the 
level of mistuning is increased, the spread of the 
real part of the eigenvalue is decreased. This ob
servation implies that the effective damping of some 
modes is increased while that of other modes is de
creased with an increase in the level of mistuning. 
This behavior will be reca lled in the discussion of 
forced response which will be addressed later. 
Second, as mistuning increases the modes separate 
into high and low frequency groups . The degree of 
separation increases with the level of mistuning. 
These findings are in agreement with the similar ones 
in Ref. 10. 

To illustrate the effect of Mach number in the 
presence of mistuning, the analyses presented in 
Fig. 7 are repeated in Figs. 8 to 10 at Mach numbers 
0.5, 1.15, and 1.4, respectively. Comparing the 
ranges of the real parts of the eigenvalues in these 
figures, several interesting conclusions follow. 



First, this type of mistuning always has a stabiliz
ing effect for the Mach numbers considered. However, 
the stabilizing effect is stronger in subsonic flow 
than that in the supersonic flow. Second, in sub
sonfc flow the range of the real parts of the eigen
values increases with increase in Mach number. But, 
in the supersonic flow the opposite is true. When 
M • 1.4, the effective aerodynamic damping in all the 
modes is relatively small. Third, the Mach number 
has a significant effect on the amount of mistuning 
required to separate the modes into high and low fre
quency groups. For example, 2 percent mistuning 
separated the modes in supersonic flow but did not in 
subsonic flow. 

Figure 11 shows how the reduced frequency kF 
depends upon Mach number, mistuning, and structural 
damping. Since the unsteady cascade aerodynamic 
theories used herein are not valid in the transonic 
region, no attempt is made to extrapolate the curves 
in this region. Also, the acoustic resonance flutter 
regimes are not shown. It is seen that as the Mach 
number increases from zero, the kF of the tuned 
cascade decreases until supercritical flutter 
occurs. This decrease in kF corresponds to 
either higher fluid velocities or lower blade stiff
ness. The effect of increasing M is, therefore. 
highly favorable on coupled bending-torsion flutter. 
In contrast, when M increases from 0.86 to 0.9. its 
effect is unfavorable, and the flutter is of super
critical type. When M increases from 1.1 to 1.15. 
its effect is again favorable and the flutter is of 
supercrit1cal type. This,·increase in kF corre
sponds to either lower fluid velocities or higher 
blade stiffness. Thus, the effect of increasing M 
on the kF of a tuned cascade depends on the range 
of M. Also, it is evident from Fig. 11. that the 
variation of kF with M in an alternately mis
tuned cascade depends on both the level of mistuning 
and the range of M. The effect of structural damp
ing of a tuned cascade also depends on the range of 
M. Stl'uctural damping is highly effective when M 
is less than 0.6 and less effective when M is 
greater than 0.6,. In subsonic flow all levels of 
mistuning considered have much stronger effect on 
the kF than does 0.2 percent structural damping. 
Whereas, in supersonic flow when M is between 1.15 
and 1.25, the 0.2 percent damping is more effective 
than 2 percent mistuning and is less effective than 
5 percent mistuning. When M is between 1.25 and 
1.5. the 0.2 percent damping is more effective than 
5 percent mistuning and less effective than 20 per
cent mistuning. When M > 1.3. the 0.2 percent damp
ing is more effective than 20 percent mistuning. 

It should be mentioned that predicted flutter 
Mach numbers for NASA Test Rotor 12 can be obtained 
by constructing an loperating line l in Fig. 11. This 
operating line was constructed by fixing the speed of 
sound and the blade uncoupled torsional frequency. 
The intersection of this line with the neutral sta
bility boundary curve determines the flutter Mach 
number. Although this line is not shown in Fig. 11, 
the resulting flutter Mach number is 1.376 for the 
tuned undamped case. Of course, this value changes 
if one includes structural damping and blade mistun
ing. The flutter Mach numbers are 1.396 for 2 per
cent alternating mistuning, 1.415 for 5 percent mis
tuning. 1.440 for 20 percent mistuning, and 1.459 for 
0.2 percent damped tuned case. All of these flutter 
Mach numbers are above the design value. 

It is apparent from Fig. 11 that mistuning has a 
greater influence in subsonic than in supersonic 
flow. To determine if this trend shown by Rotor 12 
is also similar for a fan stage, a cascade represen-
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tative of an advanced un shrouded fan stage (aspect 
ratio 3.34) was analyzed. It was found that mistun
ing had a strong effect on stability at a tip rela
tive Mach number of 1.32. This effect was Similar to 
that shown by Rotor 12 at low subsonic Mach numbers. 
Additionally, it appears that the stabilizing effect 
is sufficient to utilize mistuning as a passive con
trol for un shrouded fan designs in supersonic flow. 
A detailed description of this analysis will be pre
sented in a future publication. 

The effect of the bending-to-torsion frequency 
ratio. whs/wo. and elastic axis position on 
flutter speed, VF, is of general interest. To 
explore these effects. the parameters of the rotor 
are varied. For example, Fig. 12 shows the depend
ence of VF of a tuned cascade (wa = Wo 
for all s) upon whs/wo for the e~astic axis 
at 25 percent chord with M as a parameter. When 0 
< Wh /wQ < 0.35, the Mach number has favorable 
effect In-both subsonic and supersonic flows; when 
0.35 < Wh two < 1.5, M has unfavorable effect 
in supers~nic Tlow and favorable effect' in subsonic 
flow; and when Wh two > 1.5. M has unfavor-
able effect in bot~ subsonic and supersonic flows. 

A very limited study was conducted to determine 
the effects of alternating structural damping mistun
ing on aeroelastic stability. The odd numbered 
blades were left undamped and 0.4 percent structural 
damping was added to the eVen numbered blades. For 
this case with M = 0.5. the reduced flutter fre
quency kF is 0.517. As can be seen from Fig. 11. 
this value is very close to the kF = 0.511 for the 
case where 0.2 percent damping was added to all the 
blades equally. Also from Fig. 11, the value of 
kF for the undamped tuned cascade is 0.625. 
Comparison of these three values of kF shows that 
the alternating structural damping does not have any 
additional benefit over adding damping to all blades 
equally. Comparison of the eigenvalues. which are 
not shown due to space limitations, further shows the 
alternating damping mistuning does not result in the 
Significant mode coupling as was noticed for alter
nating frequency mistuning. 

C. Aeroelastic Response 
In the present formulation, it is possible to 

consider an excitation conSisting of all harmonics of 
rotational speed of the rotor which range up to 
N-l. The coefficients, 'whr and 'war. in 
Eq. (4) represent the forCing functions in the bend
ing and torsional equations, respectively. in the rth 
mode. To understand the nature of the response, 
excitation in only one harmonic at a time will be 
considered. This results in no loss of generality 
since the principle of superposition holds. If the 
r = R harmonic is considered, then the column 
matrices {ADo}. {AD1}, •••• {ADN-1} are zero 
except ADR in Eq. (6). According to the travel
ing wave representation in Eq. (1). this corresponds 
to N-R symmetrically space obstructions located 
upstream from the blades and the circumferential wake 
distribution is perfectly sinusoidal. For practical 
applications, the forcing frequency is thus equal to 
(N-R) times the rotational speed. , 

The aeroelastic response is presented for two 
values of R. 11 (45 obstructions) and 39 (17 ob
structions), at a fixed reduced frequency which is 
chosen such that the cascade is aeroelastically 
stable in all modes. These values for R were 
picked because the aerodynamic damping of the tuned 
system in the r = 11 mode is relatively low, whereas 
that in the r = 39 mode is relatively high. The 
forcing frequency range investigated is limited to a 



small range around the uncoupled torsional fre
quency. If the blades are tuned, the response will 
be entirely in the r ~ R mode, and all the blades 
have equal amplitudes. The amplitude of response is 
a function of w/wo. If the blades are now arb i
trarily mistuned, there will be response in all the 
modes (enumerated by r) and the response of the sth 
blade can be obtained from Eq. (1) . Figure 13(a) 
for R ~ 11 and Fig. 13(b) for R ~ 39 show the 
variati on of as/as id fo r both tuned and the 
two percent alternating blade mistuned cascades in 
subsonic flow. The quantity as,id is the ampli
tude of the -torsional motion of each blade at reso
nance in the tuned rotor and it depends upon R. 
Figures 14(a) for R ~ 11 and 14(b) for R = 39 are 
repetitions of Figs. 13(a) and (b), respect ively, in 
supersoni c flow. The bending amplitudes are not 
shown because they are very small in t he range of the 
excitation frequency shown herein. For alternating 
mistuning, only the Sr and (Sr ± w) modes are 
coupled. Therefore , in all three cases the si ngle 
resonance peak of the tuned cascade is replaced by 
twin resonance peaks. It is seen from the figures 
th at the effect of mistuning on forced response de
pends upon the engine order of the forcing function 
and upon the Mach number. For example, in subsonic 
flow t he mistuning has a beneficial effect on tor
s ional response (Fig . 13(a)) for R = 11, but has an 
adverse effect (Fig. 13(b)) for R = 39. This be
havior is similar to that noticed in the incompressi
ble flow in Ref. 10. But, this behavior is in con
trast to the common belief that mistuning always has 
an adverse effect on forced response . Therefore, 
this observation provides an added incentive for 
pur suing the use of mistuning as a passive control. 
The decrease in the maximum amplitude of any blade 
with mistuning for R = 11 is approximately 51 per
cent (Fig. 13(a)) and the increase in the maximum 
amplitude for any blade with mistuning for R = 39 is 
approximately 60 percent (Fig. 13( b)). In supersonic 
flow for M = 1.1, the alternating mistuning has an 
unfavorable effect for both the values of R = 11 and 
39. One of the reasons for this behavior is that the 
tuned modes R = 11 and R = 39 do not have relative
ly low and high aerodynamic dampings as in the sub
sonic flow. 

V. CONCLUSIONS 

The analyses of the effects of mistuning on the 
coupled bending- torsion flutter and response for in
compressible flow which were developed in Ref. 10 
have been extended into the subsonic and supersonic 
flows. The following conclusions are reached based 
on the limited parametric studies presented in this 
paper. 

1. All three regimes of flutter (subcritical, 
acoustic resonance, and supercritical) were found to 
exist in both subsonic and supersonic flow for cer
tain parametric combinations. However , supercritical 
flutter was found only when the Mach number is near 
unity for the rotor considered herein. 

2. It was found that mistuning can have a sig
nificant effect on flutter speed depending on the 
cascade parameters. For Rotor 12 the potential was 
found to be greater in subsonic than in supersonic 
fl ow. For a supersonic fan the effect appears to be 
sufficient to utilize mistuning as a passive flutter 
control. 

3. The use of alternating structural damping was 
not found to have any additional benefit over adding 
dampi ng to all blades equally. 
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4. The addition of a small amount of structural 
damping was found to have a much st ronger effect for 
low subsonic Mach numbers than for high subsonic or 
for all supersonic Mach numbers. 
• 5. As reported by the authors for incompressible 

flow, the use of uncoupled torsional flutter analys iS 
to deduce the effect of elastic axis position was 
found to be unreliable. Coupling between bending and 
~ors10n , structural damping, and mistuning can change 
the results significantly in both subsonic and super
sonic flows. 

6. In general an increase in Mach number was found 
to have a favorable effect on subcritical flutter in 
subsonic flow and have an unfavorable effect on 
supercritica l flutter in supersonic flow . Its effect 
also depends on the bending-to-torsion frequency ratio 
when the elastic axis is off mid-chord . 

7. Mistuning may have either a beneficial or an 
adverse effect on forced response, depend ing upon the 
eng ine order of the excitation and upon the Mach 
number. 
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