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ABSTRACT

Effective mechanical properties for large repetitive frame-
like structures are derived using straight forward combinations
of strength of materiai and orthogonal transformation techniques.
Once the actual structure is identified symmetry considerations
are used in order to identify its independent property constants.
The actual values of these constants are constructed according to
a building block format witich is carried out in the three consec-
utive steps: (a) All basic planar lattices are identifed (b)
effective continuum properties are derived for each of these
olanar basic grids using matrix structural analysis methods and
(c) orthogonal transformations are finally used to determine the
contribution of each basic set to the overall effective continuum

properties of the structure.
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I. Introductinn

In r=cent two papers [l1,2] we introduced a straightforward
construction rnrocedure in order to deriée continuum equivalence
of discrete pin jointed repetitive structures. Broadly speaking
we outlinad the method as follows: Once the actual structure
was specified symmetry considerations were used in order to
identify its independent property constants. The actual values
of these constants were constructed in accordance with a build-
ing block approach consisting of “he following three consecutive
steps: (a) all sets of parallel members were identified,

(b) unidirectional "effective continuum" properties were de-
rived for each of these sets and (c) orthogonal transformations
were finally used to determine the contribution of each set to
the overall effective continuum properties of the structure.
Here the term properties is general and includes mechanical
~tiffnesses), thermal (coefficients of thermal expansions) and
material densities. The method was then applied to a variety
of structures.

In the present paper we extend the analysis of [(1l,2) in ozder
to derive the effective properties of rigid-jointed (fraume-like)
repetitive structures. This differs substantially from the
truss-like structures in that we here include the influence of
inplane bending rigidities to the structure. The construction pro-
cedure will differ in that the rod's unidirectional properties
will no longer be adequate to derive the overall prorerties.

The fact that the individual rod in a rigid-jointed array can



resist in plane bending dictates that the smallest sub-cell of
the structure which will be used for the building block
approach will no longer be unidirectional and thus have %o be
two-dimensional substructures. Here the mecst identifiable basic
two dimensional frame structures are the (0°, 90°) and

(0°, + 60°) lay ups. Effective properties for the sub-cells
will be constructed using the direct analysis method which is
also known by the matrix structural analysis method (see, for
exawvle (3-5]). This method, which uses simple and straight-
forward strength of material technique<s, constituties two-
dimensional generalization of the one-dimensional area weighted
properties approach of [1,2]). The derived effective properties
for such substructures will then be used in a bt 1lding block
format in order to derive the effective properties of more
complicated two and three dimensional structures. This last
step will be done by employing the orthogonal transformation.
In summary we thus outline the procedure of constructing
effective properties for frame-like repetitive structures as
follows. Once the actual structure is identified symmetry
considerations are used in order to identify its independent
property constants. The actual values of these constants are
constructed according to a building block format which is
carried out in the three consecutive steps: (a) All basic
planar lattices are identified (b) effective continuum
properties are derived for each of these planar basic grids.

Here a representative repeating cell is isolated and studied



by the direct method noting that the effect of the joints'
rigidity is taken into consideration and (c) orthogonal trans-
formations are finally used to determine the contribution of
each basic set to the overall eifective contipuum properties
of the structure.

Since the inclusion of bending rigidities do not influence
the thecmal expansion of the structur2, the thermal expansiocn
properties derived in (1,2]) for the truss are identical to those
of corresponding frame. Accordingly in what follows we con-

centrate on deriving the elastic Lroperties of the frame structure.



II. Orthogonal Transformations

As was pointed out earlier the actual values of the total
structure's effective continuun propértigs are determined from
the individual contribution of each two-dimensional subsct. The
individual subsets contribution is obtained by u three-dimensional
coordinate transformation. Before we proceed to describe the
transformation, however, we shall first state the velevant stress-
strain relations of elastic bodies.

The stress-strain relations for a general linear elastic

body are written in the compact f(rm
Jij = CiijEkl , i,j,k,t =1,2,3 ' (1)

where Cij and €. are tnhe components of the stress and strain
tensors, respectively and cijkl are the stiffness tensor of the

solid.

For future format references we shall rewrite equation (1)

in its expanded form
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Since Cijki is a fourth-order tensor it obevs the transformation
(1,06,7]

Cijki = Cpqrs bpi qu 5k le . (3)

where .
X,
i
8i3 ® 7%, (4)

are components of the orthugonal transformation tensor which
transforms the unprimed to the primed coordinates. Accordingly,
eij is the cosine of the angle between the x; and the xj axis,
The relation (3) hold equally well for either ccontinuous or
discrete stiructures. The numerical values of the apuvropriate

C entries will depend, however, upon the specific structure

ijk?
under consideration. Since we are interested in analvzing frame-
type structures that are constructed from smaller subsets, it is
expected that each subset will contribute to its overall properties.

If a structure has n different subsets then eguation (3)

can be written tor ecch suvsset m, m, m = 1,2,...,n as

8 8 ) (5)

(C ) = (Coars 8o Boy Brx s

13ka
Once the direction cosines of each subset are identified

the sum over all of these subsets yield the final properties



I1I1. Basic Planar Grids

We shall usce the 'direct method" to find the properties of
the equivalent continuum of two basic planar garids. This
approach is the reverse of that used by McCormick (8],

McHenry, (9) and Hrennikoff [10]), who describe a procedure
for modeling nroblems 1in plane stress analysis with one dimensional
elements,

The main idea behind the direct method 1is to equate the
displacements »f the nodes of the model to the displacements of
the corners of the continuum plate element under the same loading
conditions. The sian convention for the displacement and stress
resultants used in the present study are shown in sketch la,b.

(e} Qo

a) (0, 907) lavup

We consider a plane network which is formed from a large
number of orthouona.ly intersectina beams riaidly jointed at
their intersections az shownrn in figure 1. The beams are assumed
to be identical, each havinag the length L, the cross-sectional

area A, the Younqs modulas E and the moments of intertia Iy~and

Iz around the Y and Z axis (principal axes), respectively.
The deformation of each joint is described by the displacements

u, v and w in the X X, and X3 directions, respectivelv and by

1’ 2
] A x
<1’ exz and 9x3 around the axis Xl, Yz and 3

respectively. Here the rotations are considered to be positive

the rotations 2

in the counterclockwise direction.

Using syvmmetry arguements reveal that this model is orthotropic
and that a 90° rotation in its plane will not alter its behavior
f11)]. These conditions reduce its general stress-strain relations

(1) to
-6
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which has the four independent constants Cllll' C1122' C1313

ard C1212.

The actual values of these constants are derived

using the direct method of analysis. This consists of isolatina the
representative repeating cell, figure 2a, loading it at its
nodes and equating the displacements of these nodes to the
displacements c¢f the edges of the equivalent continum:m plate under
the same loading conditions. The appropriate loading conditions
for calculatinag Cllll and C1122 are shown in figures 2b and 2c,
those pertaining to calculating C1212 are shown in figure 24 and
2e and finally those used in calculating C1313 are shown in
figures 2f, 29, 2h. In the first and second loading conditions,
we are dealing only with the "in-plane" displacements of the
lattice; while in the third loading condition we are calculating
the "off-plane" displacement.

Since each memberr is shared by two neighboring cells,
its effective cross sectional area an! moments of inertia must
be half of the corresponding values in the original lattice.

Under the present loading conditions, matrix structural methods (3] are

utilized to solve for the displacements and rcotations of each



individual node. Specifically for figure 2b, we obtain

U, = U, =u_ =y, = 0 (8.a)

PL
\718\’,)--\’3-'-\’4 -m (€.b)
and from figure 2d, we get
ul -u2 =0 , vl -v2 = 0 |, v3 =V, (9.a)
3
- = PL a
u, u, EET; (9.b)

Similarly, the displacement in figure zh is found to be

= T - 3 o}
W, w3 PL /(3EIy/.) (1n)

Figures 2.c, 2.e and 2.f display the equivalent sqauare continuum
element of side length L and thickness h subjected to normal

stresses, Py in-plane shearing stresses, and off-plane

f12°
shearing stresses, 113, respectively. The displacements of the

plate element due to the normal stress -, are

£

J.L azL vp
" ——— (11)
e e

—
m
N
O
L]
tm

and the one due to the in-plane shearing stress Ty is

T L
I (12)
12
while the displacement due the off-plane shearirg stress 13 is
given as
T L
£ = - é3 (13)
13



where Ee is the effective modulus of elasticit' of the equivalent
orthotropic continuum in thel(l and thei<2 direction, e is the
effactive Poisson's ratio of the continugm between the xl and x2
direction, 612 is the in-plane shear modulus and ﬂ13 is the off-

plane shear modulus. The relations betweea C. of equation (7)

ijki
and Ee' ve, Glz and Gl3 are
C
2 1122
E =C (1-v7) ’ Yy o= (l14.a)
e 1111 e e C1111
Gia ® €212 ¢ Si3 " “1313 (14.Db)

By egquating the displacements of the plate element with the
corresponding displacements of the representative unit cell while
insuring that the total foite on the unit cell eauals the total

force on the plate element for each loading condition yields

AE -
Cllll = ‘EE ’ C1122 = ( (15.a)

SEI
2

1212 L3h
3EI

Cl3l3 = ;3;1 (15.¢)



b) (0, + 60° layups)

For the (0, + 600) layup of figure 3, we shall assume that
all members are identical and have the same geometrical and
material properties L,A.Iy,Iz and E. The isotropic nature of
the (0, + 60°) configuration (see (2,11])) dictates additional
restrictiors on the stiffnesses coefficients of tlle equivalent

continuum. The appropriate property matrix is

l-21111 C1122 0 0 0 0
C1122 C1111 0 0 0 0
. 0 0 0 0 0 0 e
13ke 0 0 0 Cyy3 0 0
0 0 0 0 1313 0
0 0 0 0 0 3 (C13317C)p5)
-

which has the three independent constants Cllll’ Cll22 and Cl313'
The actual values of these constants are derived using the same
method outlined above.

The appropriate loading conditions for calculating Cllll and
C1122 are shown in figures 4a and 4b, and those used in calculating
C1313 are shown in figures 4e and 4f. The representative unit
cell for this layup is shown figure, 4.a. Since the diagonal
members are shared by two neighboring cells, their effective
cross sectional properties are half those of the chord member.

With these loading conditions, matrix structural methods are

utilized .again to solve for the displacements of each individual node.

Specifically, from figure dc we obtain

-10-



(3A + ———7=)
u, = Lk L (17.a)
3 2E 17 1 .
SA(A + —F)
L
12/3 1
A - z
V2 %
a. = ° 12 1_ (17.b)
3 IA + z
L
and from figure 4.f we get
3
PL

Figure 4.b and 4.f display the eguivalent rectangular continuum

element of side dimensions L x Lv3 and thickness h, subjected to

normal streses oy and off-plasne shearina stresses, Tyyr respectively.

The displacements of the plate element due to the normal stress

o, are given by
ol L

Ee

(19)

1

and the displacement due to the ~ff-plane shearing stress 113
is given as
Tl3 L3
§ 5 - i (20)
2613

Using the relationy between Cijkz and Ee’ Ve and G13 "as given in
(14) <quating Lhe displacements of the plate element with the
corresponding displacements of the representative unit cell and
insuring that the "total force on the unit cell equals the total

force on the plate element for each loading condition vields

-11-



3/3 EA
c = >¥3 EA (21.a)
1111 4 tn L h
- _ /3 EA 3/3 ET, )
1122 iLh Loy (21.B)
3/3 EI
Ll313 = T (21.C)
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IV. Applications

In this section we present applicatioas to our con .iruction
procedure as outlined in Sections II and III. The models which
we shall discuss constitute two-dimensional and three dimensional

lheam-like structures, respectively.

a) Two-Dimensional Structures: The (0°, 90°, + 45°) layup

The (Oo, 900, + 450) grid shown in figure 5 is constructed
from two basic square grids inclined at an angle of 45° and having
the geometrical properties L, E, A, Iy’ and I, and L2, Eqr Ags

I I respectively.

zd’
The four independent constants for the first (i.e., 0°, 90°)

yd’

basic square grid with respect to its local system of axis are
aiven in (15):; while those corresponding to the *+ 45° square grid

with respect to its own local system of axis are

E, A
. _da d -
3 E, I
d “2zd
(C ) 2 e {(22.1)
12127, ] L3 h
JE, I
d d
(Cl313) = (22.c)
2 2v2 L° h

The direction cosines of the local system of axis of the +45° grid
with respect to the fixed coordinate system of axis (xl, Xz,

are defined according to (4) as

-13-



hl Xz X3
) L i 0
2 2 2
&p) - i—i 13 0 (23)
0y 0 0 1

Substituting grom (15), (22), and (23) into (5) and summing the

results yield the final properties of the Oo, 90°, + 45° layup as

E.A 3JE.I
- EA + da'’d + d " zd (24.a)

C -
1111 LR 5,5 1h /3 L

E.A 3E,I
dd _ _dz2d (24.b)

C =
1122 © ;05 1n /3 L3h

E.A 6EI
Cla12 T Tt T (24-¢)
2/2 Lh L h
3ET LT 4
c - Y ., vd | (24.d)
1313 3y 2/37 1°n

-14-



b) Three-Dimensional Structures:

(Octetruss Structures)

The smallest generating (repexting)

structure 1i1s shown in figure 6.

unit cell of the octetruss

It is a diamond-like element with

each of its sides having thz length L and being shared by two

neighboring cells.
with respect to the coordinate system arrangement showr

For further details of the geometr:.c characteristics of

of structure the reader is referred to [1,2].

The octetruss structure is shown in figure 7

in figure 8.

this kind

In the present

analysis, the octetruss structure is considered to be composed of

"beam elements.'

be constructa2d from the superposition of different planes.

ally, it can be constructed from the three repeating sets of (0~, 90

Examination of this structure reveals

~hat it can

Specific-

o] e}

basic planar grids having different orientation in space, as shown

in figure 9.

The stiffness coefficients for each of the (0

© 90°)

basic grid with respect to its local system of axis are given in

(15) where h now stands for the distance between the parallel

lavers; its value is thus given by

(25)

The direction cosines ot the local system of axis of the three

basic (Oo, 90°) planes with respect to the global system of the axis

of figure 8 are defined according to equation 4 as (Sijm)’ m=1,2,3
by
—_ _ =
1/2 1/2+3 v2/3
= | -1/2 v3/2 0 (26a)
(Sij)l 1/
-I/V§ 1/6 VT7§
= i

-15-
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Substituting from

™ =
1 0 0
= | o V173 -273
0 273 173,
— 1 -
1/2 T 273 -v273
=1 1/2 ig:— 0
/172 -/176 /173
(26) into (5), using

(26b)

{cbc)

(15) and summing according

to (6) yields the final properties of the octetruss structure

with respect to coordinates of figure 8 as
Pty

[C5xe!

where:

i
C1122
C1133
C1123

C3333

i

Ciirr C1122 C1133 C1123
C1122 1111 C1133 ~C1123
Ci133 C1133 C3333 0
Ci123 ~C1123 0 Cy323
0 0 0 0
0 0 0 0
E ET
ééz §§ v 6V 2L + 3/7 2
L L p
5.7 EA 22 EI - EI,
5= BB - 3T 42
1 EI L4 L
EI
R
L L
EI EI
1 EA Y z
= + 4 - 6
6 2 L L
4_2 EA . 8V2 EI\'
3 ;? L4

0
0

C2323

Ci1123

0

Ci123

C1212

=

(27)

(28,a)

(28.h)

(28.¢c)

(28.e)




c TE, 57 iy 35z (28.f)
" = o =+ 202 + 6, €.
2323 T 7 7 o %

_ 5+2 EA - El ~ B,
“1212 7 17 7% %7 —xxL MR (28.9)

Notice that (27) constitutes a modification of our previously
reported result in (1] which are reflected in the appearance of
the bending rigidties of the members. Notice alsc that there is
no change in the number of the independent constants which can
also be deduced from symmetry (1,2). Examination of the results
(28) indicates that C1212 = (C1111 - C1122)/2 and hence the octetruss
is transversely isotropic, as is expected.
Remark
By reexamining figure 7 we can see that the same structure can

also be constructed from four different repeating sets of (Oo, + 60

)

basic planar grids. In this case of construction, each member will
be shared by two different basic grids. Since Iy and Iz are the
moments of inertia of the cross section of the beam around two
principal axes and since each beam is shared by two different basic
grids, we must have two sets of principal axis for each cross
section; this can only sense for circular cross-sections. Thus,
constructing the propertics of the octetruss from those pertaining

to four (OO

;o 60°) layup 1s restrictive in that only beams with
circular cross-section can be treated. This was actually done and
its results were found identical to (27) and (28) when the later

are also specialized to Iy = Iz.

-17-
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Sketch 1. Sign Convention for the Displacements in

the Equivalent Continuum Plate Model.



Figure 1. The (0°,90°)

Lattice
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Figure 2. The Loading Conditions of the Representative Repeating

Cell for the (0°,90°) Layup used to determine the

Stiffnesses Coefficients of the Equivalent Continuum.



 Figure 2 (cont.) The Loading Conditions of the Representative
Repaating Cell for the (0°,90°) Layup used to
determine the Stiffnesses Coefficients of the

Equivalent Continuum .
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Figure 4. The Loading Conditions of the Representative

Repeating Cell for the (0°,+60°) Llayup used

to determine the Stiffnesses Coefficients of

the Equitralent Continuum,



Figure 4 (cont.) The Loadiny Conditions of the Representative
Repeating Cell for the .(O‘,:GO‘) Layup used to
determine the Stiffnesses Coefficients of the
Equivalent Continuum .
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The (0°,45°, + 90°) Lattice .




Figure 6. Smallest Repeating Element of the

Octetruss Structure v
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Figure 7. Three-Dimensional Octetruss Structure viewed with

respect to the Coordinate System of Figure 8.



Figure 8 . Direction Cosines of the Octetruss .



First Grid

Second Grid

Third Grid

Figure 9. The Octetruss Structure constructed from
Three Basic Planar (0°,90°) Grids viewed

in the Coordinate System of Figure 8.
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