The major effort during the reporting period involved the continued evaluation of our existing knowledge of the tectonic history and lithospheric structure of South America. As was expected, most studies have been conducted in the region of the Andes. This is particularly true of lithospheric and crustal structure studies, and our knowledge of the deep structure of the eastern portion of South America is very limited. Thus a surface wave dispersion study of this area has been initiated. Long-period seismograms have been obtained for a tripartite analysis of dispersion. A flow chart of the analyses to be undertaken is shown in Figure 1.

A preliminary geologic/tectonic map has also been prepared and is shown as Figure 2 with accompanying explanation. Efforts to characterize the provinces identified in terms of their geological and geophysical parameters will continue. The only funds expended have been $2,472.50 (plus overhead and fringe benefits) for the salary of a Research Assistant.
SIMULTANEOUS INVERSION
QRCU* AMD PHASE VELOCITIES
'0 3QTA1N CAP.TM MODEL

SELECT EARTHQUAKES THAT LIE ALONG GREAT CIRCLE PATH

STATION 1

DETERMINE GREAT CIRCLE AZIMUTH AND DISTANCE

DIGITIZE EARTHQUAKE

DETERMINE GROUP VELOCITY TO STATION 1 FOR PHASE VELOCITY INPUT

CROSS-CORRELATION TO ISOLATE DISPERSION ALONG TWO STATION PATH
STATION 1 - STATION 2
STATION 1 - STATION 3

TIME-VARIABLE BAND-PASS FILTER IF NEEDED

MOVING WINDOW ANALYSIS TO OBTAIN GROUP VELOCITY ALONG LESS OF TRIPARTITE

TRIPARTITE SOLUTION FOR GROUP VELOCITIES

LEAST SQUARES FIT OF GROUP VELOCITIES

DETERMINE PHASE VELOCITY ALONG LESS OF TRIPARTITE
STATION 1 - STATION 3

TRIPARTITE SOLUTION FOR PHASE VELOCITIES

LEAST SQUARES FIT OF PHASE VELOCITIES

SIMULTANEOUS INVERSION OF GROUP AND PHASE VELOCITIES TO OBTAIN EARTH MODEL

Figure 1
PRELIMINARY GEOLOGIC/TECTONIC MAP OF SOUTH AMERICA

Figure 2
Explanation of Preliminary Geologic/Tectonic
Map of South America

March, 1981

1. Puna-Alteplano (intramontane basin; molasse basin):
 Ordovician volcanic sequence; Upper Paleozoic pelite-psammite sequence;
 Pliocene rhyolite; Tertiary and Quaternary deposits.

1A. Cordillera Central of Colombia and Ecuador:
 Sierra Nevada de Santa Marita granulite (300-752 m.y.)
 Paleozoic structure; Upper Triassic and Cenozoic volcanism

2. Eastern Cordillera (Cordillera Oriental)
 Ordovician Devonian Flysch trench, pelite-psammite sequence and
 limestone, dolomite. Permian terrigenous and glacial deposits.

2A. Cordillera oriental of Colombia:
 Precambrian Santander Massif (680 - 945 m.y.), Paleozoic metamorphic
 and intrusives; Mesozoic miogeosynclinal sediments; partly covering
 of continental Upper Triassic.

3. Sub-Andean zone:
 Jurassic and Cretaceous Oriente sediments with granite and Tertiary
 sediments.

4. Pampean Sierras:
 Late Precambrian; patchy covering of Paleozoic sediments; Pre-Mesozoic
 intrusive; Upper Triassic on Western part; continental Upper Miocene
 and Pliocene in intermountain valleys.

5. Trans-Pampean Sierras:
 Paleozoic eruptives; Triassic and Neogene to Quaternary deposits.

6. Pre-Cordillera:
 Scarcie Precambrian; Camr-rain to Devonian flysch; Pre-Mesozoic intrusive
 Tertiary to Quaternary volcanic formation (rhyolite).

7. Cordillera Frontal:
 Jurassic sediments; Upper Cretaceous volcanics; Tertiary sediments:
 and Cenozoic volcanics.

8. Cordillera Principal:
 $\delta_1 =$ Eugeosynclinal Mesozoic-Tertiary belt
 $\delta_2 =$ Miogeosynclinal

8A. Cordillera Occidental of Colombia and Ecuador:
 Jurassic to Cretaceous sediments (siliceous schist), Cretaceous
 intrusives; and Paleogene volcanics (diatase).

9. Cordillera Petagonia:
 Precambrian and Paleozoic metamorphic and volcanics; Cretaceous and
 Eocene volcanics in the north; Mesozoic sediments in the south.
10. Coastal Cordillera:
 Precambrian metamorphics and volcanics; Paleozoic metamorphics;
 Jurassic intrusive; patchy covering of marine Upper Cretaceous and
 lower Oligocene along western border.

11. Longitudinal valley fault (Graben Fault) and Pampa del Tramaugal:
 Quaternary sediments.

12. Schist Belt:
 Precambrian to Mesozoic metamorphics; Cretaceous marine sandstone;
 Cenozoic volcanics.

13. Bolivian Geosyncline (Coastal Cordillera of Colombia and Ecuador):
 Cretaceous diabase group and eugeosynclinal sediments; Marine Eocene
to Middle Miocene.

14. Lower Magadalena (Cesar Depression):
 Marine Upper Triassic and volcanics; Marine Jurassic (?); marine
to brackish-water Eocene to Pliocene.

15. Maracarbo Basin:
 Marine Eocene; continental Oligocene to Pliocene

16. Falcon Area:
 Marine Eocene to Miocene; Marine and continental Pliocene

17. Llanos-Ace Plains:
 Continental Upper Triassic (?); Marine Cretaceous and Tertiary thinning
down and becoming continental toward Guayana shield.

18. Oriente of Peru:
 Cretaceous; Continental Paleocene; continental Eocene to Miocene.

19. Beni lowland plain:
 Marine and continental Miocene and Pliocene; covered by continental
 Quaternary sediments.
 Elbol line: It separates the Cordillera Oriental together with
 the Cordillera Real in the north from the mountainous region of eastern
 Bolivia in the south. The northern section, according to Ahlfield
 (1970) is uplifted compared with the southern section and is presumably
 offset to the west.

20. Gran Chaco lowland plain (Beni-Choco Pampos plain):
 Scarce continental upper Triassic in the east; Marine and continental
 Miocene and Pliocene; covered by continental Quaternary.

21. Guayana Shield:
 Precambrian metamorphics and volcanics; covering of continental Upper
 Triassic and Tertiary in central part; Cenozoic and Quaternary along
 coast.

22. Central Brazilian shield:
 Precambrian; covering of continental Upper Cretaceous along eastern
 and Southern borders; Tertiary in central part.
23. Coastal Brazilian shield:
 Precambrian; patchy covering of continental Upper Triassic in the
 north; Tertiary and Quaternary along coast.

24. Amazon Basin:
 Tertiary and Quaternary deposits.

25. Parnaiba Basin:
 Devonian along east and southeast; Carboniferous in eastern borders;
 Triassic intrusive in the south; Cretaceous in the central and north
 part; Marien lower Miocene and Pliocene along coast.

26. San Francisco Basin:
 Lower Silurian; Cretaceous in the central and north.

27. Salitre Basin:
 Scarce Precambrian; Lower Silurian; Devonian; continental Quaternary.

28. Baia-Seijibe Basin:
 Lower Silurian (?); Marine Upper Cretaceous; Marine Paleocene;
 Continental Pliocene.

29. Panama Basin:
 Scarce Precambrian metamorphics and volcanics (granite, gneiss, and
 schist). Continental Carboniferous and Permian in the east;

30. Chiquitos Grabea:
 late Precambrian; Lower Silurian; Lower Devonian and Tertiary.

31. Southern hills of Buenos Aires:
 Scarce late Precambrian; Paleozoic; partly covering of continental
 upper Miocene and Pliocene in the valleys.

32. Northern hills of Buenos Aires:
 Scarce late Precambrian; Marine Pennsylvanian; continental Pliocene
 in the valleys.

33. Rio Negro Basin:
 Cretaceous in the west; Marine Paleocene; continental Pocene to lower
 Oligocene in the west; Marine Upper Miocene and Pliocene in the east.

34. Chubut Basin:
 Jurassic volcanic; Cretaceous and Paleogene deposits along east
 coast; Neogene to Quaternary sediments.

35. Santa Cruz Basin:
 Marine and continental Upper Cretaceous; Paleogene in the north
 and northeast; Neogene and Cenozoic to Quaternary volcanics.

36. Northern Patagonian Massif:
 Late Precambrian; Jurassic volcanics in the north and northeast;
 Cenozoic basalt in the central to north and south part; Cretaceous
 in the central part.
37. Southern Patagonian Massif:
 Jurassic volcanics; Cretaceous basalts; continental Eocene

38. Falkland Island:
 Scarce Precambrian; Paleozoic (Lower Devonian; continental Permain) deposits.

Cainozoic graben faults and intra-Andean depressions.