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A. SPECTROMET CROP DEVELOPMENT STAGE ESTIMATION
FOR CORN AND 30YBEARS

C.S.T. Daughtrye

1. Introduction

Phonology is the study of periodic biological events in their
relation to seasonal climatic changes with emphasis placed on dates of
various occurrences. Crop phonology or crop development merges
meteorological and biological sciences and will be used here to refer to
the entire life cycle of corn and soybeans from soil preparation and
planting to maturation and harvest.

During the Large Area Crop Inventory Experiment (LACIE)
identification of crops by an analyst required that he integrate all
knowledge available to him concerning the spectral appearance of crops,
farming practices, and natural events which can change that appearance.
One analyst tool was the crop calendar thich described the phonology or
progression of each crop in a region through detectable or agronomically
significant events in its life cycle (Whitehead et al., 1978). Crop
development stage information is also an important input to crop growth
and yield models.

2. Review of Crop Develenment Stage Models

Three basic approaches to estimate crop development stage are
normal crop phonology, meteorologically-based models and spectrally-
based models. Some of the attributes of each approach will be discussed

in the following sections.

2.1 Normal Crop Phonology

Normal or average crop phonology is based on the accumulation of
days between specific events in a crop's life cycle. Although this
method does not account for year-to-year variations in crop development
due to weather differences, it does provide a first approximation of
when specific events are likely to occur.

e The contributions of L. Grant, V.J. Pollara, and J.P. Ward to this
task are gratefully acknowledged. Without their work and support this
research would not have been possible.
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2.2 Meteorological Methods

Crop development involves complex physiological and biochemical
processes which are influenced by the crop's environment and are still
inadequately understood. Temperature, day length, and the plants'
genetic composition are the principal variables influencing crop
development.	 Available moisture and nutrients may affect crop
development in some situations.

Thermal Models.	 During the past century numerous models to
describe crop development as a function of environmental variables,
particularly temperature, have been proposed. 	 A complete review of
literature on the thermal unit concept as it relates to corn and
soybeans would comprise a voluminous bibliography. Summaries and
conclu3ion3 of the research papers on this topic are sufficiently
similar that a discussion of several key papers will adequately describe
the subject.

There are many different methods of calculating accumulated thermal
units, for example Cross and Zuber (1972) report on 22 methods for corn
and Major et al., (1975a) report on 11 methods for soybeans. The
simplest and most broadly researched method is Growing Degree Days
(GDD). A base temperature for growth of 10°C (50°F) is subtracted from
the average of the daily maximum and minimum temperatures to give the
daily GDD. Most modifications of this simple method impose some upper
and lower limits on the daily temperature inputs, while other methods
consider day and night temperatures separately. The most common of
these limits are 30°C (86°F) for the maximum temperature and 10°C (50°F)
for the minimum temperature. A GDD indexis obtained by summing the
daily GDD from planting to the stage of crop development desired,
usually silking or maturity in most studies.

Considerable effort has been directed at trying to predict
flowering and maturity dates of various crops on the basis of
„emperature data. Andrew et al., (1956) used cumulative thermal units
to compare development maturation of two corn hybrids at two different
locations. They observed that cumulative thermal units above a base of
10°C (50°F) were equally effective in both locations for predicting
maturity. They concluded that maturity of corn could be measured
successfully by thermal unit accumulations regardless of differences in
climate.

Gilmore and Rogers (1958) studied the development of 10 hybrids and
10 inbred lines of corn using 15 different methods of calculating
thermal units. Thermal units calculated using temperatures taken at
3-hour intervals did not estimate Bilking significantly better than
those calculated using daily maximum and minimum temperatures. Daily
data were as descriptive of the growing conditions for 24-hour period as
the data taken at 3-hour intervals. Differences among hybrids in the
rate of development based on accumulated thermal units to silking were
noted.	 Stauber et al.,	 (1968) also showed differences in rate of
development among hybrids.



Aapiazu and Shaw (1972), Cross and Zuber (1972) and Mederski et al.
(1973) compared numerous methods of thermal unit calculations for
estimating the Bilking and Maturity stages of corn. Although
differences among the methods to estimate a phenological stage were
generally small, all methods of accumulating thermal units were better
indicators of maturity than calendar days.

Neild and Seeley (1977) using a detailed series of corn development
stages showed that development stages could be estimated very well for
hybrids of different maturity classes using the simple GDD system with a
base temperature of 10°C. Frequent and detailed crop development stage
data result in a better measure of the relationship between crop
development and GDD than was indicated by previous studies using only
one or two development stages.

While thermal units are generally recognized to be superior to
calendar days in predicting flowering or maturity dates, there is less
than universal agreement as to which method of computing thermal units
is best. Thus several methods to predict development stages should be
tested and the "best" one for a particular application selected.

Photothermal Models. The thermal unit accumulation concept assumes
that photoperiod does not influence the rate of crop development.
Thermal models have generally proved to be adequate in predicting
development of crops, such as corn. Temperature and photoperiod
interact to influence corn development., particularly tassel initiation
(Coligado and Brown,	 1975).	 Coligado (1974)	 developed a model
incorporating temperature, photoperiod, and genetic factors to predict
tassel initiation of corn. Although Coligado's model appears sound
theoretically, it needs further research to extend it to all other
stages of development.

Development of soybeans is markedly influenced by photoperiod and
cannot be adequately predicted using thermal models alone (Major et al.,
1975a). Long daylengths increase the time from flowering to pod set
(Johnson et al.,	 1960)	 and from flowering to the termination of
flowering (Lawn and Byth, 	 1973).	 The response of soybeans to
photoperiod differs in each development stage.

Obtaining the information necessary to develop mathematical models
for predicting soybean development is difficult. Controlled environment
studies are nearly impractical when entire life cycles of several
cultivars at a number of daylengths and temperatures must be included.
Date of planting studies in the field can be used to study numerous
cultivars but the parallelism of seasonal daylength and temperature
patterns pose problems in analyzing the data.

Major et al., (1975b) modified an iterative regression analysis
method (Robertson, 1968) for deriving a mathematical expression relating
several stages of development of soybeans to both temperature and
daylength. In a comparative study the photothermal model predicted
development more accurately than calendar days or various thermal models
in several locations (Major et al., 1975b).
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3. Ob ectives

The overall objective of this multiyear task is to develop methods
to estimate crop development stages using spectral and meteorological
data. The specific objectives are:

1. Define, test and deliver first generation (meteorological)
methods to estimate crop development stages for corn and
soybeans in the U.S.

2. Identify and begin initial research and development of
second generation (spectral-meteorological) crop
development models.

3. Define data requirements and approaches for developing and
testing crop development models in foreign areas.

The goals of this task are first to aid analyst-interpreters, who
will be labeling pixels for classification, and second to provide inputs
to crop growth and yield models so that they may be implemented for
large geographic areas. Given these two goals, no one method to
estimate crop development seemed adequate. A combination of features
from the normal, meteorological, and spectral methods was proposed.

Normal crop development models provide preliminary, preseason
predictions of when specific crop stages are likely to occur based on
previous experience. Meteorological models provide the next increment
of information on crop development for crop reporting districts and
segments within districts. Meteorological data provides a high degree
of temporal resolution (e.g.	 daily),	 but relatively poor spatial
resolution or sampling. On the other hand, while having relatively low
temporal sampling (9 or 18 days with Landsat data), spectral data
provides high spatial resolution allowing determinations to be made for
individual fields.

This hierarchy of crop development models uses as much information
as is available at any given point in the season and allows the user to
select the level of detail that he requires. The greater the level of
detail required, the greater will be tiie costs in both time and money.
For example, a researcher in the early stages of planning a data
acquisition program may need only general information about the crops in
a region and when their development stages occur. An analyst-
interpreter needs specific information about the crops in a region, in
particular he needs to know the probable development stages for each
crop on any given date.



4. Description of Data Bases

Initial development and testing of crop development models was
conducted in the U.S. Corn Belt, the major corn and soybean producing
region of the U.S. Together Indiana, Illinois, and Iowa produced about
92 million metric tons of corn and 21 million metric tons of soybeana in
1979 which represented approximately 47 and 37 percent of the total U.3.
production of corn and soybeans, respectively.

Local climatological data for 1969 to 1978 were acquired and
reorganized for Indiana, Illinois, and Iowa. These data consLst of
daily maximum and minimum air temperatures and daily precipitation
amounts for more than 100 stations per state representing nearly every
county in each state.

Crop development stage data used in this task were acquired
primarily from three sources (Table A-1). The most detailed data
consisting of observations of approximately 200 plots at irregular
intervals (about 7 to 14 days) representing all stages from planting to
harvest was acquired at the Purdue Agronomy Farm (Bauer et. al., 1979).

The second data set (Table A-1) consisted of periodic observations
of selected fields in Landsat MSS segments throughout the Corn Belt in
1978. Unfortunately there are no data prior to late June or early July
and planting dates were not recorded for these fields. Similar data for
1979 were not available for analysis by this year.

The third data set (Table A-1) representing all crop reporting
districts in Indiana, Illinois, and Iowa was acquired from annual crop
summaries published by the USDA Economics, Statistics, and Cooperative
Service (ESCS) in each state. These data were obtained by ESCS from
mail surveys of each crop reporting district at weekly intervals and
were summarized to represent average crop development for an entire crop
reporting district. Dates on which 25, 50, and 75% of the fields in
each crop reporting district reached each stage of development were
interpolated from the published data (USDA - ESCS, 1970 to 1978).

5. Selection and Evaluation of Meteorclogical Models

Based on a review of the literature I -our thermal models and one
photothermal model were selected and evaluated. The number of calendar
days since planting Mays) was included for comparison. These "state-
of-the-art" models described briefly in Table A-2 had been developed
using observations of individual plants and fields but had not been
tested over large areas using statistical data from ESCS. The relative
numbers of thermal units accumulated per day for each of these thermal
models are illustrated in Figure A-1.

A base temperature of 50°F (10%) was used for the Growing Degree
Day (GDD),	 Modified Growing Degree Day (MGDD), and Heat Stress (HS)
models.	 The MGDD model sets an upper limit of 86° F (30°C)	 on the
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Table A-2. Summary of thermal and photothermal models evaluated.

THERMAL MODELS

1. Growing Degree Days, GDD

n
EGDD -iE1 C(Tmax + Tmin)/2J - 

50
_

Tmax - maximum air temperature for day i in'F

T
min = minimum air temperature for day i in`F

i - date of planting

n - date of silking or maturity

For daily mean temperatures less than 50, GDD - 0.

2. Modified Growina Degree Days. MGDD

n
EMGDD -iEl tT	 + T )/] - 50

max	 min

Tmax = Tmax 
if Tmax < 86;

Tmin min 
if T

min > 0;

3. Heat Stress Units, HS

T	 - 86 if T	 > 86
max	 max

Tmin - 50 if min < 50

(Cross and Zuber, 1972)

n
EHS =El C(Tmax + Tmin )/2] - 50i
- 

T
max	 tmx	 max	 max	 max	 max

= T	 if T	 < 86; T	 - 86 - (T	 - 86) if T	 > 86

Tmin = min 
if T

min > 
50; 

Tmin = 50 if 
T
min < 50

----4



1.0

0.8

0.6

0.4

0.2

0.0

Temp	 FT

43 0.000
70 0.405
82 1.000
90 1.000
111 0.000

8

Table A-2. (Continued).

4. Temperature Function, FT

n
EFT - E (FT	 + FT )/2

i-1	
max	 min

(Coelho and Dale, 1980)

50	 60	 70	 80	 90	 100	 110

Air Temperature, F

F max - FT for maximum temperature in F

FT min
= FT for minimum temperature in F

PHOTOTHERMAL MODEL

	

Iterative Regression Analysis	 (Major et al., 1975)

s2

M w s 
[Al

(L - a8) + a2
 (L-a0) 21 * [b, (T -b0) + b2 (T - 

b0 )2J}}

	

1	
J

L - day length in hours

T - mean daily temperature

s i p s2 a development stages

a0 , a i
, a2 regression coefficients (values given in Table 1 of Major

	

b0, big-b2r	
et al., 1975) 3
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maximum temperature and the HS model decreases thermal unit
accumulations for temperatures greater than 86F. No upper threshold was
used by the basic GDD model. Daily values of the Temperature Function
(FT) by Dale and Coelho (1980) were computed as the mean of the relative
growth rates for the maximum and minimum temperatures.

The initial evaluation of these models was a two step process aping
data from the Purdue Agronomy Farm and then data from crop reporting
districts in Indiana and Iowa (Table A-1). Illinois was not included at

this stage because only two years of data were readily available for
analysis during this task. One meteorological station in each crop
reporting district (Table A-3) was used for these initial analyses.

The average thermal unit accumulation for each model from planting
to each development stage was computed and used to predict the
development stages for the same data series to compare precision and
accuracy among the models. Five years (1974-78) and three planting
dates per year (25, 50 and 75% of the crop planted) provided 15 planting
date-years. The coefficient of variation was computed for each model to
compare its relative precision. Low variability in predicting each
development stage signified high precision. Accuracy was defined by the
mean of the absolute errors in days, that is the predicted date of stage
(i) minus the actual date of stage (i). 	 In these initial evaluations

actual planting dates were used to start the models. In the subsequent
analyses predicted planting date from a planting model will be used to
start the models.

The photothermal model developed by Major et al. (1975b) predicted
development stages of soybeans directly, thus no preliminary
calibrations similar to these of the thermal models were necessary.
However, the development stages predicted by the photothermal model do
not coincide with those reported by USDA-ESCS.	 Comparisons of soybean
development stages are shown in Table A-4. The Fehr et al. (1971) index
provides the most complete and	 precise description of soybean
development.	 The other two methods, particularly USDA -ESCS's, are more
ambiguous in their descriptions of soybean development stages.

This photothermal model consists of a series of regression

coefficients for temperature and daylength which were derived for two
cultivars from each of five maturity groups of soybeans. To implement
the model for large areas with many different cultivars we assumed that
the cultivars selected by Major and co-worker.-, sufficiently represented
all soybean cultivars in maturity groups I to V. Using data acquired by
USDA-ESCS in Indiana,	 Illinois, and Missouri on the proportion of
specific soybean cultivars planted in each CRD,	 we computed the
proportion of the total soybean acreage in each maturity group (Table
A-5). Two maturity groups generally comprised more than 90% of the
total soybean acreage in any CRD and a p imple ratio of the two dominant
maturity groups adequately char- • erized the composition of soybeans
planted in the CRD (Table A-5). The mean development stage predicted
for a CRD is weighted by the proportion of each maturity group of
soybeans historically planted in the CRD.

•
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Table A-3. Meteorological stations used in computing thermal and
photothermal indexes.

State	 CRD Station County Latitude Longitude

IN	 1 Wanatah	 2NW Porter 41.43 86.93

2 Rochester Fulton 41.07 86.22

3 Columbia City	 1S Whitley 41.13 85.48

4 Crawfordsville Montgomery 40.05 86.90

5 Greenfield Hancock 39.78 85.75

6 Farmland	 5NNW Randolph 40.25 85.15

7 Dubois SIPAC Dubois 38.45 86.70

8 Oolitic Purdue Farm Lawrence 38.88 86.55

9 Versailles Ripley 39.07 85.25

IA	 1 Primghar O'Brien 43.08 95.63

2 Mason City	 FAA Cerro Gordo 43.15 93.12

3 Feyatte Fayette 42.83 91.80

4 Castana Exp Farm Monona 42.07 95.82

5 Ames	 8WSW Boone 42.03 93.80

6 Cedar Rapids	 1 Linn 42.03 91.58

7 Shenandoah	 1NE Page 40.78 95.35

8 Osceola Clarke 41.02 93.10

9 Mount Pleasant Henry 40.95 91.33
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Table A-5. Percent of total soybean acreage in maturity groups
II, III, IV, and V for each crop reporting district (CRD) in
Indiana, Illinois, and Missouri.

MATURITY GROUP+

STAPE CRD LAT	 II	 III IV	 V	 RATIOS

IN 1 41.17 67.0 32.1 .8 2.32
IN 2 41.15 58.6 40.2 1.1 2.41
IN 3 41.13 50.2 45.1 4.6 2.47
IN 4 39.88 27.6 65.4 7.0 2.70
IN 5 39.90 27.6 63.8 8.9 2.70
IN 6 40.13 12.6 80.8 6.8 2.87
IN 7 38.50 8.3 67.3 24.4 3.27
IN 8 38.65 1.8 71.8 26.7 3.27
IN 9 38.97 4.7 66.3 29.0 3.30

IL 1 41.83 90.0 10.0 0.0 2.10
IL 2 41.75 95.6 4.4 0.0 2.04
IL 3 40.47 20.2 73.6 6.0 2.79
IL 4 40.53 45.9 27.4 0.0 2.54
IL 5 40.47 65.9 34.1 0.0 2.34
IL 6 39.28 5.6 87.6 6.7 2.94
IL 7 39.13 13.0 79.4 7.6 2.86
IL 8 37.90 0.0 73. 4 26.6 3.27
IL 9 38.03 C.6 78.5 20.8 3.21

MO 1 39.95 80.0 19.8 0.1 3.20
MO 2 40.00 68.9 31.1 0.0 3.31
MO 3 39.95 71.5 28.4 0.0 3.28
MO 4 38.60 51.6 34.3 14.1 3.40
MO 5 38.40 59.2 39.3 1.5 3.40
MO 6 38.50 65.8 31.3 3.0 3.32
MO 7 37.00 11.5 8.5 80.0 4.90
MO 8 37.10 3.5 22.1 74.5 4.77
MO 9 36.60 .8 1.3 97.9 4.99

+ Data from USDA-ESCS annual summaries for each state. Data are
means for 1976 to 1979 in Indiana; 1976 and 1978 in Illinois;
and 1976 to 1980 in Missouri.

* Maturity group ratio assumes only two maturity groups in
each CRD.
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6. Performance of Meteorological Models

The second phase of this task was to evaluate the ability of the
models to predict stages of development on a continuous (daily, weekly,
etc.) basis. The information most needed by analysts is not on which
date flowering occurred but what is the development stage on any given
date in the season. To produce this information an overall concept of
crop development was required. Ultimately we expect meteorological data
will be used by a planting date model to predict starting dates for the
crop development stage models which will use meteorological and spectral
data to provide information to the analysts and input data for growth

and yield models.

6.1 Development Stage Models for Corn

The means, standard derivations, and coefficients of variation (CV)
of the four thermal models and 7Days from planting to Bilking for three
planting dates in 1979 at the Purdue Agronomy Farm are shown in Table
A-6. The EFT (Temperature Function) provided the smallest CV and rDays
had the largest. When the means for each model from Table A-6 were used
to predict date of Bilking, the absolute error in number of days for
each model was also loweSt for EFT. Predicting silking as 72 days after
planting represented the largest errors. Because dates of physiological
maturity were not observed for all planting dates in 1979, comparisons
of these models for predicting maturity were not possible with this data

set.

Means for the four thermal models and tDays from planting to
Bilking (Table A-7) and from planting to maturity (Table A-8) for 15
planting date-years (5 years with 3 planting dates per year) were

calculated for each crop reporting district (CRD) in Indiana and Iowa.
Coefficients of variation (CV) for each CRD are presented in Tables A -9
and A-10. In Indiana thermal models generally had lower CV's than °Days
from planting to Bilking but higher CV's from planting to maturity.
However, in Iowa `Days had lower CV's than the thermal models which is
inconsistent with the theory of thermal unit models (Cross and Zuber,
1972). Comparisons of thermal models and Mays by Aspiazu and Shaw

(1972) using data from experimental plots in Iowa, showed thermal models
to have lower CV's than "mays.

To develop methods capable of predicting corn development on a
continuous or daily bpgis, two key assumptions are necessary. First,

the development of -:01c1 must be linear between specific Stages (i.e.,
planting, Bilking, :nd maturity). The relationships of accumulated
thermal units and development stages ire strongly linear for all
planting dates (Figure A-2) and have R"s greater than 0.98. Thus,
intermediate development stages can be estimated using thermal models.
Comparisons of the ratio of thermal units at Bilking (Table A -7) divided
by thermal units at maturity (Table A-8) indicate that Bilking
consistently occurs at a relatively constant proportion of the total
thermal units.
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Table A-6. Accumulated thermal units and Maya from planting to silking
for 3 planting dates in 1979 at Purdue Agronomy Farm.

Thermal Units

Planting Date ECDD IMGDD FHS EFT EDAYS

May 2 1651 1658 1648 40.9 80

May 16 1556 1553 1543 39.6 71

May 30 1408 1397 1386 37.1 65

: 1538 1536 1526 39.2 72

ax 123 131 132 1.93 7.55

CV, % 7.9 8.5 8.6 4.9 10.5

lerrorl,days 4.1 4.3 4.0 1.7 5.3
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Table A-7. Mean accumulated values for thermal models and Mays from
planting to date of silking of corn for 15 planting date-years in
each crop reporting district (CRD) of Iowa and Indiana.

State CRD EGDD

THERMAL MODELS

EMGDD	 EHS EFT Mays

IA 1 1431 1395 1287 37.2 72.5
IA 2 1345 1334 1244 35.5 72.7
IA 3 1329 1342 1251 36.7 71.9
IA 4 1378 1351 1255 36.2 71.0
IA 5 1404 1378 1301 37.1 70.9
IA 6 1465 1438 1367 36.8 71.1
IA 7 1552 1501 1397 39.2 70.2
IA 8 1;89 1344 1239 35.6 67.4
IA 9 1453 1421 1361 37.7 68.3

IN 1 1276 1268 1196 34.1 68.6
IN 2 1321 1308 1237 35.3 68.1
IN 3 1294 1292 1230 35.4 69.7
IN 4 1360 1346 1261 36.3 67.9
IN 5 1388 1360 1294 36.6 68.7
IN 6 1315 1315 1259 35.8 69.1
IN 7 1389 1381 1328 37.2 67.1
IN 8 1369 1362 1301 36.9 68.4
IN 9 1522 1474 1390 39.1 67.6
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Table A-8. Mean accumulated values for thermal models and Mays from
planting to date of maturity of corn for 15 planting dale-years in
each crop reporting district (CRD) in Iowa and Indiana.

THERMAL MODELS

State CRD EGDD	 EMGDD	 EHS	 EFT	 LDays

IA 1 2463 2393 2230 64.2 120.5
IA 2 2290 2270 2130 60.9 122.2
IA 3 2277 2299 2153 63.2 122.2
IA 4 2453 2388 2226 64.0 121.0
IA 5 2475 2421 2293 65.3 121.7
IA 6 2532 2484 2368 67.1 121.3
IA 7 2795 2680 2497 69.7 121.0
IA 8 2548 2453 2263 65.0 120.3
IA 9 2641 2578 2473 68.6 121.2

IN 1 2334 2336 2220 63.5 125.5
IN 2 2388 2367 2252 64.7 123.5
IN 3 2334 2343 2239 64.9 127.3
IN 4 2525 2502 2363 67.8 125.3
IN 5 2640 2596 2485 69.8 127.3
IN 6 2424 2436 2333 66.6 127.5
IN 7 2598 2581 2496 69.5 123.1
IN 8 2504 2492 2392 67.7 122.7
IN 9 2762 2675 2526 70.9 122.1
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Table A-9. Coefficients of variation (CV) for
four thermal models and Days from planting
to date of silking of corn for 15 planting date-
years in each crop reporting district (CRD) of
Iowa and Indiana.

Thermal Models

STATE CRD EGDD	 EMGDD	 W	 EFT	 FRAYS

IA 1 8.1 6.3 6.6 4.9 4.6
IA 2 8.1 7.1 8.6 6.9 4.7
IA 3 7.5 6.1 7.9 5.7 5.6
IA 4 8.9 6.9 7.4 6.3 4.5
IA 5 10.3 8.0 7.8 6.3 3.9
IA 6 6.5 5.6 6.4 5.1 5.5
IA 7 12.1 9.8 9.7 8.1 7.4
IA 8 16.6 13.2 12.6 10.4 8.6
IA 9 8.9 7.8 7.5 6.7 7.7

IN 1 5.5 4.7 5.9 5.0 7.8
IN 2 7.5 6.2 7.2 5.9 8.6
IN 3 7.2 5.9 7.1 6.0 7.3
IN 4 8.4 6.4 7.0 5.5 10.7
IN 5 9.7 8.1 9.2 6.5 9.8
IN 6 8.4 6.4 7.1 6.6 10.3
IN 7 7.2 5.2 6.3 5.1 9.9
IN 8 6.6 5.5 6.0 5.4 11.5
IN 9 7.0 6.2 6.1 5.9 11.0

1

0
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Table A-10. Coefficients of variation (CV) for

four thermal	 models and EDays from planting to
date of maturity of corn for 15 planting date-years
in each crop reporting district (CRD) of Iowa and
Indiana.

Thermal Models

State CRD EGDD	 EMGDD EHS	 EFT	 EDays

IA 1 5.3 5.3 6.0 5.7 5.3
IA 2 6.1 5.1 6.4 5.1 4.9
IA 3 7.6 5.3 7.1 5.2 4.9
IA 4 4.8 4.4 5.4 5.3 5.9
IA 5 9.3 7.9 8.1 6.9 5.3
IA 6 6.9 5.9 6.6 5.6 5.4
IA 7 4.9 4.5 5.4 4.9 6.1
IA 8 10.3 8.9 8.8 7.9 8.6
IA 9 8.1 7.0 6.4 5.9 6.4

IN 1 6.9 5.9 7.0 5.8 4.3
IN 2 5.1 y.3 5.1 3.7 5.8
IN 3 4.8 3.7 4.5 3.3 4.8
IN 4 8.3 6.5 7.2 6.3 6.7
IN 5 9.0 7.11 7.5 5.8 6.3
IN 6 6.9 5.2 6.0 4.5 5.0
IN 7 6.8 5.2 6.0 4.8 7.0
IN 8 5.5 4.4 4.9 4.3 9.0
IN 9 7.0 5.1 5.2 4.2 6.7
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The second key assumption is that the average maturity classes of
corn planted in a crop reporting district can be estimated as a function
of latitude. To test this assumption mean values of thermal units
accumulated from planting to maturity in 15 planting date-years were
plotted versus the median latitude of each CRD in Indiana and Iowa
(Figurl A-3). Although the R-squares for these linear regressions were
low (R = 0.52 to 0.56), a first approximation of an adjustment for
gross differences in average maturity classes of corn seems possible.

Given that the two assumptions are valid, an approach to estimate
corn development stages for segments on a daily basis is proposed. This
approach was developed using data for CRD's reported by USDA-ESCS, but
should be applicable to segments as well.

The first step is to determine planting dates. Normal planting
dates may be used as an initial approximation, but because planting
dates are variable depending on weather conditions normal planting dates
can induce considerable errors. Planting date models which utilize
meteorological data provide a second approximation. These models should
be %ble to depict the progress of corn planting for CRD or county-sized
areas and are discussed in a separate section. Spectral models proposed
by Badhwar and Henderson (1980) potentially can provide planting dates
for specific fields.

The second step in a corn development stage model is to determine
the average maturity classes of corn grown in the segment based on
latitude (Figure A-4). From the previous discussion of the second key
assumption, an estimate of corn maturity classes in a segment is
possible. The actual maturity classes of corn planted in a segment may
differ due to topography or other local conditions.

The third step is to accumulate the daily increments of thermal
units for each planting date. EFT and EHS (heat stress) models were
selected as the best thermal models for predicting corn development
stages.

The fourth step is to convert the accumulated thermal units into a
widely recognized crop development index, 	 such as Hanway's development
stages (Hanway, 1963). 	 Ratios of accumulated thermal units to total
accumulated thermal units at maturity can be related to Hanway's
development stages for corn. 	 Intermediate stages can be linearly
interpolated from the values given in Figure A-2.

6.2 Development Stage Models for Soybeans

The soybean development stage models were evaluated on their
ability to predict dates of specific development	 stages (e.g.,
flowering, pod set, and maturity). Errors in days for each model were
calculated as predicted dates minus actual dates for each stage in 20
planting date-years (5 years and 4 planting dates per year). The best
method of prediction was the one where mean error, mean absolute error,
and standard deviation were closest to zero.
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Preliminary comparisons of thermal, photothermal, and Maya models
for selected CRD's in Indiana and Iowa indicated that the photothermal
model was a better predictor of soybean development than the thermal and
Mays models, especially for post- flowering stages (Table A-11). The
photothermal model accounted for daily changes in both daylength and
temperature and thus more r..arly predicted soybean development than the
"Days and thermal models.

The photothermal model consistently had absolute errors as low or
lower than the average number of days (EDays) models for predicting
flowering (Table A-12) and physiological maturity (Table A-13) in each
. ,op reporting district of Indiara and Iowa. The negative errors for
flowering indicated that the modsl consistently predicted that flowering
occurred earlier than reported oy USDA-ESCZ. Some of this negative bias
may be due to differences in definition of flowering and physiological
maturity. Flowering for the photothermal model occurs when at least 10%
of the plants have one flower and physiological maturity occurs when 75%
of the leaves have senesced (Major et al., 1975). USDA-ESCS is somewhat
less specific in their definitions of soybean development stages.
"Bloom" is probably defined as when at least halal of the plants in a
field have flowers. The USDA-ESCS does not report physiological
maturity but does report "leaves turning", "leaves shedding", and in
some cases "maturity". Physiological maturity, which is probably
analogous to "leaves shedding", was predicted more accurately and
consistently than flowering by the photothermal model.

Two key assumptions are necessary to implement this photothermal
model for predicting development stage on a continuous basis for large
areas. First, the progression of soybean development is assumed to be
linear between specified Qtages (i.e., planting, emergence, flowering,
end of flowering, and physiological maturity). The relationships of
accumulated photothermal units and development stages of soybeans
observed at the Agronomy Farm are illustrated in Figure A-4 for two
cultivars and four planting dates. A four segmented line with
inflections at emergence (VE), flowering (R1), beginning seed (R5), and
physiological maturity (R7.5) was fitted to the data.

The photothermal model as developed by Major et al.,	 (1975b)
predicts emergence, flowering, pod fill, termination of flowering and
physiological maturity. A simplified version using only equations for
"planting to emergence", "emergence to flowering" and "flowering to
physiological maturity" appears to adequately describe soybean
development (Figure A-4). The inflection point at R5 corresponds to
"termination of flowering" and can be estimated as 2.4 photothermal
units. Intermediate stages of development may be predicted using linear
interpolation between the inflection points in Figure A-4.

The second key assumption is that the portion of the dominant
maturity groups of soybeans in a crop reporting district can be
estimated as a function of latitude. Because two maturity groups of
soybeans comprised more than 90% of the soybean acreage in any crop
reporting district,	 a ratio of the two dominant maturity groups
characterized the maturity group distribution (Table A-5). For example,
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Table A-12. Soybean flowering predicted by a photother>mal model and
TDays model minus actual dates for each crop reporting district (CRD)
in Indiana and Iowa. Twenty planting date-years are represented.

INDIANA IOWA

CRD Photothermal sD%ys Photothermal EDays

1 -2 5 11 1 4 9
2 -6 6 11 2 3 11
3 -5 6 10 -2 3 11
4 -7 7 11 0 2 10
5 -7 7 12 2 3 12

6 -7 8 11 -2 2 11

7 -12 12 12 -3 3 10

8 -11 12 11 -1 3 12

9 -12 12 11 -2 2 11

X -7.7 8.3 11.2 -0.6 2.8 10.8

S 3.4 2.9 0.6 1.9 0.7 1.0

+ E Mean error in days for predicted date minus actual date.

- Mean absolute error in days.
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Table A-13. Physiological maturity (leaves shedding) of soybeans
predicted by a photothermal model and Mays minus actual dates for
each crop reporting district (CRD) in Indiana and Iowa. Twenty
planting date-years are represented.

CRD

INDIANA

Photothermal EDays

IOWA

Photothermal Mays

E	 IEI R1 E	 IEI lil

1 6	 6 8 -4	 4 6

2 2	 7 8 4	 7 6

3 1	 7 7 3	 8 6

4 1	 7 8 -6	 7 5

5 -4	 9 7 -3	 6 5

6 -1	 6 8 -9	 9 6

7 -4	 10 10 -5	 5 6

8 -7	 9 9 -6	 8 7

9 -6	 7 9 -10	 10 6

X -1.3 7.6 8.3 -4.0 7.1 5.9

SX 4.2 1.4 1.0 4.8 1.9 0.6

+ E Mean error in days for predicted date minus actual date.

(Ej - Mean absolute error in days.
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a ratio of 2.6 indicates that 40% of the soybeans are maturity group II
and 60% are maturity group III. Cleans of these maturity group ratios
were plotted versus the median latitude of each CRD in Indiana,
Illinoio, and Missouri (Figure A-5). A linear relationship appears to
adequately describe the mean maturity group distribution. No data were
available for Iowa and other northern soybean growing states and caution
should be exercised in predicting maturity groups for latitudes greater
than about 44 degrees.

If these two assumptions are valid, an approach with five steps to
estimate development stages of soybeans on a daily basis is proposed.
Although this approach was developed using data reported by USDA-ESCS,
it should be applicable to segments.

The first step, which is the same as the corn development stage
model, is to determine planting dates. Normal planting date is the
initial approximation of planting date, meteorologically-based models
provide a second approximation and finally spectral-meteorological
models provide planting dates for 4 ,ecifie fields.

The second step in this soybean development stage model is to
determine the two dominant maturity groups of soybeans in the segment
based on latitude of the segment using Figure A-5. Actual proportions
of each maturity group planted in a segment may vary slightly due to
topography, local preference for particular cultivars, and local
climatology.

In the third step the coefficients (Table 1 in Mayor et al., 1975b)
of the four cultivars which represent the two dominant maturity groups
in a segment are selected and the daily increments in developmert stages
are computed for each planting date. The regression coefficients were
derived for two representative cultivars in maturity groups I to Y.

Fourth, the weighted mean development stage which is the average of
both maturity groups weighted by their proportion in the segment are
computed for each planting date. Alternatively, the predicted
development stage for each maturity group may be reported separately.

Finally, the photothermal development units are converted to a
standard soybean development stage index, such as reported by Fehr et
al. (1971) and illustrated in Figure A-4.

7. Summary ant Conclusions

In summary this task reviewed several "state-of-the-art"
development stage models for corn and soybeans. One photothermal model
and four thermal models were selected and evaluated using data from
plots at the Purdue Agronomy Farm and statistical data for crop
reporting districts in Indiana and Iowa.

For corn the heat stress and temperature function models performed
better than growing degree days, modified growing degree days, and sum
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of calendar days for predicting silking and maturity. For soybeans the
photothermal model provided better predictions of flowering and
physiological maturity than any of the thermal models or calendar days.
These models were then modified t., predict development stages on a
continuous or daily basis for crop reporting districts and segments
within crop reporting districts.

During the coming year further tests of the meteorological models
will be conduced, a planting date model will be implemented and
evaluated as a means to "start" the development stage models, and
spectral models (Badhwar and Henderson, 1980) and spectral-
meteorological models (Ranson et al., 1980) will be evaluated. Finally,
these concepts and models will be extended to Argentina and Brazil for
initial develops-nt and testing.
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B. DETERMINATION OF THE VALUE OF SPECTRAL INFORMATION IN ESTIMATION
OF AGRONOMIC VARIABLES ASSOCIATED WITH YIELDS OF CORN AND SOYBEANS

C.S.T. Daughtry and N.C. Fuhs*

1. Introduction

In recent years the world food situation has emphasized the need
for accurate and timely information on world-wide crop production. This
information is vitally important for efficient planning of production
and distribution of grains. Tests of the feasibility of utilizing
multispectral satellite data to identify and measure crop area have been
successfully completed (MacDonald and Hall, 1980). However, relatively
little research and development has rver: _onducted on the potential
capability of similar data to provide ini':.rmation on crop condition.

Weather accounts for most of the year-to-year fluctuations in food
production and remains the most important uncontrolled variable
affecting crop production (Decker et al., 1976). Considerable attention
is being focused on studying and understanding the relationships between
weather and crop production. Other more static factors such as soil
characteristics, management practices, and economic conditions also
significantly affect crop production. Continued research into all
aspects of crop production and the development of orerational crop yield
assessment methods are urgently needed and some steps to expand national
and international agrometeorological research activities have begun
(Baier, 1977).

1.1 Incorporating Weather Variables in Crop Yield Models

During the last several decades numerous studies developed crop
yield models. In general, there are three basic types of crop models:
statistical; physiological; and "hybrid" models. The statistical models
which incorporate weekly or monthly mean weather and crop performance
into prediction equations require extensive historical data, typically
20 to 30 years, to derive the equations. Because crop yields and
production have increased dramatically over the past 30 to 40 years with
the introduction of new technology, statistical models must include
terms describing those trends in technology and farming practices. Such
equations tend to be specific to certain areas of the country which
necessitates a rederivation of the equation when applied to new areas.
The corn models of Thompson (1969) and the wheat models of Strommen and

*The contributions of D.A. Holt, C.E. Seubert, A.A. Weismiller, and L.The
 to this task are gratefully acknowledged.
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coworkers (1979) are examples of statistical models. Baier (1977)
reviewed and discussed the uses and limitations of several statistical
models for assessing the impact of weather on crop production and found
them useful for assessing large scale weather and crop production.

The physiological models describe crop performance as a series of
functions of hourly or daily weather conditions (Holt et al., 1975).
These models are designed to simulate responses of basic physiological
or biological plant processes to the crop's environment and, ultimately,
to predict crop yields. While some simulation models may be too
specific to apply to large areas, these models tend to require less
detailed historical data for calibration and validation (Holt et al.,
1979) than the true statistical models.

In an effort to combine the best features of the statistical and
physiological models, "hybrid" models were developed. The Energy Crop
Growth model (Dale & Hodges, 1975; Coelho and Dale, 1980) and later the
Purdue Soybean Simulator (Holt et al., 1979) condensed the effects of
weather on crops into one or two computed variables which were related
to yield. These "hybrid" models are less complex than the physiological
models because a single weather index is used.

Light, water, nutrients, carbon dioxide, and reasonable
temperatures are essential for plant survival and growth. Even though
light is the energy source for photosynthesis which converts carbon
dioxide and water into photosynthate and ultimately crop yields, other
factors may be limiting and thus more important in determining the final
outcome of a growing season.	 Light is only one of many important
variables affecting crop yields and must be considered as interacting
with other variables, not in isolation. 	 Consequently, single factor
crop models have had only limited success in predicting crop yields.

1.2 Incorporating Soil Productivity in Crop Yield Models

In addition to the effects of technology and weather on biological
processes related to yield, soil productivity is an important variable
in determining crop yields. Soils, though continuous entities, when
divided into classes exhibit a range of properties which complicate
their inclusion in yield models. Very few yield models directly account
for limitations imposed by soil characteristics on crop production.

The classification system is divided into two basic systems (1) the
natural soil classification system, grouping soils by properties and
characteristics as they exist in nature, and (2) the technical soil
classification system, grouping soils by factors which affect use and
management. Soil productivity rating systems assess soil features which
affect crop production and assign crop production potentials. Proper
management in some cases can compensate for limitations imposed by
native soil productivity and must be included in crop yield models.
Inclusion of soil productivity variables into crop yield models is being
investigated.
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1.3 Incorporating Remotely Sensed Variables in Crop Yield Models

In general there are many types of information available to improve
yield forecasts that potentially can be obtained from remotely sensed
data.	 These include:	 environmental information such as soil
characteristics, meteorological conditions, and episodic events;
management variables encompassing technological or trend factors and
economic conditions; and plant characteristics including biomass
accumulations, stress effects, and development stage information.
Remotely sensed data has the most potential for interfacing with
physiological and "hybrid" models bith in influencing the models'
predictions directly and in verifying and updating the models'
estimates.

Soil drainage classes,	 which are related to soil texture and
organic matter content, are identifiable from Landsat MSS data (Hinzel
et al., 1960). Thus Landsat MSS data may be used to evaluate soil
productivity based on soil drainage over large areas. Further research
into methods of directly assessing soil productivity with remotely
sensed data is in progress.

2. Objectives

The overall objective of this task is to evaluate spectral data as
a source of information for use in crop yield models. Specifically this
task will:

- Identify important factors in determining yield that can be
estimated from spectral data.

- Evaluate those selected factors utilizing spectral and
agronomic data acquired in controlled experiments at an
agricultural experiment station.

- Extend the factors that best estimate crop yield at the
agricultural experiment station level to large areas using
Landsat MSS data.

- Compare the results of estimating yield with and without
spectral information.

3. Data Bases

Two sources of spectral data were used to assess the value of
spectral information for predicting the yield of corn. Data acquired
using the Exotech Model 100 radiometer at the Purdue Agronomy Farm in
1979 were used in initial testing and evaluation of the intercepted
solar radiation (SRI) variable. These data provided detailed spectral
and agronomic observations of approxima^ely 50 plots. The observations
were collected at irregular intervals although all crop development
stages are represented. 	 Different cultural practices were represented
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where treatments included three plant populations (25,000; 50,000; and
75,000 plants/ha), three planting dates (May 2; May 16; and May 30), and
two soil types (light and dark). Crop development stages (Hanway, 1963)
were noted throughout the growing season and grain yields were measured
at harvest.

The other set of spectral data included La, .,dsat MS: data acquired
in 1978 over commercial corn fields in eleven 5 x 6 nautical mile
segments located in five states (Figure B-1). Within each of the
segments up to 10 corn fields were identified and means and standard
deviations were computed for each field in each spectral band for each
date of a Landsat overpass. Crop development stages were observed at
18-day intervals from late June until harvest. 	 Grain yield was
estimated by each grower (farmer) after harvest.

Meteorological data ordered from NOAA National Climate Center
contained data for all cooperative weather stations in Indiana,
Illinois, and Iowa. More than 100 stations per state were available
with 10 year (1969-1978) historical data ranging from daily maximum and
minimum air temperatures and daily precipitation records for all
stations to daily evaporation data collected for selected stations.

The soils productivity data base available at Purdue/LABS includes
digital data for soil series/soil associations for 11 counties. At
least 26 additional counties have soil productivity information
available at the state offices and more than 60 counties have digital
soils data available although this data is not in-house at Purdue/LABS.
To complete the soils data base detailed soil surveys, soil productivity
ratings for Indiana, Illinois, Ohio, and Nebraska, .-,nd soil water
holding capacity information for soils for each county in Indiana are
currently being assembled.

4. Results and Discussion

4.1 Intercepted Solar Radiation

Solar radiation as an energy source for plants is available only
when it interacts with leaves. Considerable effort has been expended to
estimate and measure the attenuation of light in crop canopie (Norman,
1980; Hatfield and Carlson, 1977). The ratio of total solar radiation
intercepted by a corn canopy has been described as a function of LAI
(Linvill et al., 1976) and is shown in Figure B-2. This is an
application of Beer's law using LAI of corn canopies and extinction
coefficient of 0.79 determined by Stevenson and Tanner (1970). When LAI
is 0, no energy is intercepted. When LAI is 2.8 about 90% of the
visible solar radiation is intercepted by the canopy and is potentially
useful to the crop.

In their work, Dale and coworkers (Linvill et al., 1976; Dale,
1977) measured LAI to calculate intercepted solar radiation (SRI) but
suggested a method to estimate an average LAI for corn canopies based on
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date of silking and plant populations.	 However, LAIs for corn may vary
greatly over large areas due to different planting dates, 	 hybrids,
stresses, and row spacings. Remotely sensed data can provide estimates
of LAI and percent soil cover (Walburg et al., 1980; Nash et al., 1980).
Thus estimates of intercepted solar radiation based on spectrally-
derived estimates of LAI should more accurately depict conditions in
each field.

Intercepted solar radiation (SRI) values were calculated for each
day on which spectral data was acquired and was linearly interpolated
for intermediate days throughout the growing season for each field in
the data set acquired at the Agronomy Farm. Figure B -3 illustrates
three examples of computed SRI over the growing season for fields having
the same planting date, May 2, but three plant population densities.
These SRI values were derived using an LAI value that was a function of
the Greenness Transformation (Malila and Gleason, 1977)	 adjusted for
soil background (Figure B-4). This Greenness function estimated LAI
and permitted the results of the Agronomy Farm research to be extended
to Landsat MSS data where only spectral response was available.

Although plant populations determine the maximum LAI that maize
canopies can achieve, including population as a term in a multiple
regression contributed little additional information. More than 79
percent of the variation in LAI was associated with the spectral
variables alone i.e., greenness as shown in Figure B-4. Spectral
variables plus plant population accounted for only 2 percent more
variation. Other cultural practices used in this experiment contributed
even less information than plant population to estimating LAI.

The SRI values calculated in this experiment are based solely on
spectral data. The SRI values are the accumulated daily SRI's from 6
weeks prior to silking to 6 weeks after silking. SRI values calculated
using spectrally-derived LAI and field measured LAI were very similar
and did not cii'fer significantly.

One problex in crop response to light research is the confounding
of solar radiation and plant moisture stress effects on plant growth and
yields. Dale (1977) assumed that the reduction in crop growth was
proportional to the reduction in evapotranspiration (ET) from potential
evapotranspiration (PET). By combining both intercepted solar radiation
and moisture stress functions, Dale computed an Energy-Crop-Growth (ECG)
variable which he used to identify weather effects on corn growth and
yields.	 Daily ralues of ECG were accumulated for a period from 6 weeks
prior to silking to 6 weeks after silking.

Three separate spectral variables were examined to determine their
relationship to corn yields. First, maximum greenness which occurred at
silking was used to represent the maximum LAI and vigor of the canopy.
Second, SRI represented the integrated value of intercepted solar
radiation dur_rg the critical period from 6 weeks before silking to 6
weeks after silking. Third, ECG combined both intercepted solar
radiation and moisture stress for the 12 week period centered about
silking. Each additional piece of information increased the correlation
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with yields (Figure B-5) and indicated that together spectral and
meteorological data can provide more information than either can alone.

These preliminary analyses of spectral data acquired at the Purdue
Agronomy Farm indicated that (1) SRI for fields can be estimated from
spectral data, (2) SRI and ECG may be more useful in predicting grain
yields than a single acquisition of spectral data, and (3) ECG which
combines both spectral and meteorological data may provide the most
information about crop yield. Since one of the goals of this task is to
evaluate spectral variables associated with yields, the next step was to
extend these analyses to large areas using Landsat MSS data.

Eleven segments throughout the Corn Belt states were identified
(Figure B-1). Based on the Greenness value calculated for each of the
10 selected corn fields within each segment, SRI values for each day of
the growing season were computed (Figure B-6). However, when the SRI
summed over a period of six weeks before silking and six weeks after
Bilking were correlated with yield (Figures B-7, B-8, B-9), the results
were disappointing. Even in segment 854 which was spatially adjacent to
the Purdue Agronomy Farm, SRI was not correlated (r=0.05) with yield
(Table B-1). The only segments which produced high correlations, Deuel
(.77) and Clark (.88), were segments where there was a large range in
yields in the 10 fields.

When all fields produced similar yields, 	 there was littla or no
correlation between yield and SRI.	 Figure B-10 illustrates the
relationship between SRI and yield for all Landsat MSS segments. The
lower correlation (r=0.47) of SRI and yields for fields in these
segments compared to the correlation (r:0.62) of SRI and yields for
plots may indicate differences in the accuracy of measuring grain yields
over large areas compared to small plots. The meteorological data
needed to calculate ECG are being assembled and further analyses
including adding a temperature response function to the ECG model are
planned when the data are available. Because the number and timing of
Landsat acquisitions differs from segment to segment a curve-fitting
technique, such as employed by Badhwar and Henderson (1980), will be
investigated to standardize the estimate of SRI.

In summary, the concepts and analysis techniques developed using
Field Research data from the Agronomy Farm were successfully implemented
and tested using Landsat MSS data. The accumulated intercepted solar
radiation (SMI) variable was not highly correlated to corn yields in
these fields. Based on previous research at the Agronomy Farm, higher
correlations with corn yields can be expected with the inclusion of
meteorological data (e.g. ET/PET and temperature) in the accumulated
Energy-Crop-Growth (ECG) variable. Further refinement of these and
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other spectral-meteorological crop yield models are expected.

4.2 Soil Productivity

As the review of current literature on crop yield models indicated,
most models use only crop and weather data inputs. Since crop yield is
dependent upon a dynamic relationship between crop, soil, weather, and
management, incorporation of a soil productivity index into the yield
model should improve the estimates of yield. Soil potential
productivity ratings are based upon significant physical properties of
soils.	 This measurement is used because definite relationships exist
between spectral characteristics of soils and many principal physical
properties of soils. This aspect of correlating spectral
characteristics of soils using Landsat MSS data to soil properties
becomes n:)re important in areas where there is limited historical data
and in areas where soil surveys are not available.

Before one approach could be developed for using soil information
in crop yield models, the soil properties which affect crop yield and at
the same time could be estimated using spectral data had to be
identified.	 The first priority was to develop the ability to stratify
soils into soil productivity classes using Landsat data.	 In order to
ccomplish this, data biases containing: 	 soil survey maps Pnd profile
characteristics; meteorological data; area, yield, and production data;
and spectral data were acquired and assembled. 	 Much of this year was
spent developing approaches and acquiring data bases.

The second phase consists of evaluating the level of detail
required using existing soil productivity ratings for providing soil
information to yield models. Three approaches are proposed: (1) the
soil series approach using detailed soils survey information, (2) the
soil association approach utilizing generalized soil information, and
(3) the clustering approach to determine alternative groupings of those
properties which are related to soil productivity.

Additional research is in progress to examine classifications of
Landsat MSS data which had been used by the Soil Conservation Service to
map soils.	 The spectral data will be correlated with soil properties
known to be related to soil productivity.	 The spectral classes derived
through machine classification will be compared to informational classes
derived from conventional	 productivity classes based on a soil
productivity rating system (Walker, 1976).

In a series of preliminary sensitivity analyses using the Purdue
Soybean Simulator (Holt et al., 1979) and the soil moisture model,
SIMBAL, (Stuff and Dale, 1978) soil texture and soil drainage class
significantly influenced relative yields of soybeans (Figure B-11). As
the amount of rainfall diminished, relative yields of soybeans on
coarse-textured soils (e.g., sand) declined more rapidly than yields on
fine-textured soils (e.g., silty loam). Capillary movement of water
upward from the water table in poorly drained soils supplied enough
water for nearly consistent yields over a wide range of rainfall levels.
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The crop model together with the soil moisture model appear to I

reality and offer vehicles to evaluate other soil factors assn______
with yields of both corn and soybeans. The preliminary findings
indicate the necessity of further research in this area.

In addition to completing the analysis to determine the potential
utility of soil productivity information in crop yield models, other
recommendations include: conducting evaluations to determine the level
of detail of soil information needed to be effective, extending
evaluation of delineating soil productivity classes to areas analogous
to Argentina, and evaluating the contribution of soil productivity
ratings.
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C. APPLICATION AND EVALUATION OF LANDSAT TRAINING, CLASSIFICATION, AND
AREA ESTIMATION PROCEDURES FOR CROP INVENTORY

Marilyn M. Nixsont

1. Introduction

Accurate and timely crop production information is a critical need
in today's economy. During the past decade, satellite remote sensing
has been increasingly recognized as a means for crop identification and
estimation of crop areas.

An extensive experiment, the Large Area Crop Inventory Experiment
(LACIE), Was conducted by NASA, the USDA, and NOAA from 1974 through
1977 (1). Its data analysis objective was to distinguish small grains
from nonsmall grains using Landsat multispectral scanner (MSS) data.
Several other investigations have shown that the potential also exists
for identification and area estimation of corn and soybeans (2,3,4,5).

This task is the third year of a specific LARS task which resulted
initially from a proposal in response to the Applications Notice. As a
study of area estimation technology for corn and soybeans, this task is
supportive of the AgRISTARS program.

During the first year of the study, 1978, activities were conducted
in three areas:

1. Developwent of the experiment design and definition
of data requirements for the major part of the study.
As an extension of this objective, a stratification
and sampling plan for the NASA/JSC 1978 corn/soybeans
data acquisition program was defined and carried out
by LARS.

2. Recommendations for reference data acquisition. Data
to be acquired as inventory and periodic observations
were recommended. Flightlines and dates for aerial
photography acquisition were recommended.

*Data analyses were conducted by D.K. Scholz, M.E. Swenson, S.M. Davis,
and G.T. Batista. Dr. M.E. Bauer and Dr. V.A. Anderson acted as
consultants and advisors to the project.

i
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3. Evaluation of the training and classification
procedures used in LACIE Procedure 1 for a
corn/soybeans/other crop identification program and
investigation of changes to improve the performance
of Procedure 1 on corn and soybeans.

Several additional topics were studied during the second year
using a 1478 data set:

1. Feature selection in training and classification.
Results using channels two (.6-.7 pm) and far ( 8-1.1
pm) from each of four Landsat acquisitions were not
significantly different from those obtained using all
channels. Use of fewer than eight bane caused a
decrease in performance.

2. Clabsify, elassifypoints, minimum distance, layered,
and ECHO classifiers were evaluated. No significant
differences in performance were found among
classifiers when the same training method was used,
except that the sum-of-densities classifier
(classify) showed significantly higher small grain
classification accuracies. A modified supervised
training approach provided a consistent improvement
over the ISOCLS training method.

3. In the Corn Belt, the accuracy of classification into
corn and soybeans was not high until after the corn
had tasseled. No combination of acquisitions which
did not include the post-tassel, pre-harvest time
period w.i able to yield high classification per-
formanc, , Acquisitions from a date around emergence
and a date after tasseling of the corn seem to
provide a minimal data set for accurate
identification of corn and soybeans.

4. Minimum distance, maximum likeliho,^d, and sum-of-
densities classifiers compared on additional band and
date combinations. Differences in overall
classification accuracies were significant, with the
sum-of-densities classifier having the highest
accuracies and the minimum distance classifier having
the lowest.	 Most of the performances were within
1-2x for all classifiers, 	 ao classification costs
(which increased in the same order performances
Increased',	 should probably be considered in the
choice of a classifier.
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2. Objectives

Previous work has shown that t1le accuracy and precision of area
estimates obtained from Landsat data are affected by choices of
training, classification, and area estimation procedures. The specific
technical ,ujectives of this task in 1980 were to:

- Evaluate the accuracy of early season estimates.

- Compare several methods for obtaining training statistics-

- Relate classification performance to scene characteristics.

- Assess the effect of separating the functions of sampling

for training and sampling for area estimation.

3. General Approach

The data set used to address the first three objectives was drawn
from the data set acquired in 1978 over the U.S. corn and soybean sites.
The primary data were selected from Al sample segments located in four
test areas in the U.S. Corn Belt (Figure C-1). A secondary data set
3ar"11 4̀ segments in the Corn Belt fringe areas, using segments in
Kentucky, Missouri, Minnesota, Wisconsin, and Michigan. Multitemporally
registered MSS data on segments were used. Training and test data were
labeled using ground observations.

The final objective was addressed using Landsat full-frame data
covering a region where segment data were also acquired. A
stratification of the frame was performed, anJ each stratum was
classified using training statistics derived from ground data over the
segments contained within it. Results evaluation was based on ground
observations and eompar°son with USDAIESCS county estimates.

The specific apprc9ch uses in addressing each of the objectives
will be discussed in the section of the report, dealing with that
objective.

4. Experimental Results

4.1 Early Season Estimation Accuracy

The objective of this study was to assess the accuracy of early
season estimates. The data set analyzed consisted of eight sample
segments, selected to represent a broad range of conditions found in the
Corn Belt. The segments were 843 and 860 in eastern Indiana, 837 and
954 in western Indiana, 862 and 883 in north central Iowa, and 886 and
892 in west central Iowa.
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A modified supervised training approach was used. After refinement
of the statistics was complete, the entire segment was classified using
a minimum distance classifier. One acquisition was used from each of
four time periods based on corn development stage: (1) preplant to
eight leaves, (2) 10 leaves to tassel, (3) tassel to beginning dent, and
(4) dent to mature.	 One visible (0.6-0.7 pm) and one near infrared
(0.8-1.1 pm) band were used in the multidate analyses.

Accuracy of early season estimates is illustrated in Figure C-2.
During the first time period, corn and soybeans were not spectrally
separable as indicated by the low overall classification accuracy
(60.0%). In the Corn Belt, however, relatively accurate differentiation
of corn and soybeans from other cover types can be made at that time.
Over the same set of segments, it was found that overall identification
into two classes (corn and soybeans, else) was 92.0% correct, while the
three-class classification (corn, soybeans, else) was only 60.0%
correct. The area estimates for total corn and soybeans were generally
close to ground inventory estimates (Figure C-3).

Consistently high classification accuracies were not obtained until
an acquisition after the corn had tasseled (growth stage three) was
included in the analysis. The classification accuracy did not improve
by using later season information when the crops of interest had reached
maturity.

4.2 Comparison of Training Procedures

Previous work has shown that the method used for obtaining training
statistics has a greater influence on accuracy than the classification
algorithm utilized (5). This result prompted this study to compare two
alternative methods of obtaining training data.

The primary training method used in this investigation was a
modified supervised training approach.	 A systematic grid was placed
over the segment of interest.	 The field containing each of the grid
intersections was selected for training and labeled using ground
inventory information.	 Field center pixels of each of the major cover
types (corn, soybeans, other) were clustered within cover type.

This training procedure was demonstrated as capable of producing
classification results of high accuracy (5). There is, however, a
potential bias in the use of this method since variable sized fields are
used as sampling units in training.	 A bias in the statistics may be
introduced if certain cover types appear consistently in large or small
fields.	 A potential solution to th's problem is to select a fixed
training sample unit size (e.g., 3 x pixels) rather than permitting a
variable size. A shortcoming of the ,ixed size method may be that small
fields are missed entirely.
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The objective of this study was to compare two methods for
obtaining classifier training data. The comparison dealt with the size
of the training sample units: a fixed size (3 x 3 pixels) compared with
a variable size (field center pixels). Evaluation was made by comparing
classification accuracies and resulting proportion estimates of corn and
soybeans.

Approach. Three test areas in Indiana were selected for study.
Each of the test areas was 5 x 6 nautical miles in size. The three
segments used were 837 in Benton County, 843 in Henry County, and 860 in
Wells County. The locations of the segments are shown in Figure C-4.
The segments represent some variability in field sizes observed in the
U.S. Corn Belt. Benton County is an area of fairly large, rectangular
fields. The other two counties are located in eastern Indiana where
smaller field sizes prevail.

Multi.temporally registered Landsat-2 and -3 MSS data acquired
during the summer of 1978 were analyzed. Aerial photography was
acquired over the test areas, and a wall-to-wall inventory of crop types
in each site was subsequently conducted. 	 Four data acquisition windows
were defined based )n the corn growth stage, and high quality Landsat
data had to be available in each of the time periods. 	 The four time
periods were:	 (1) i;.oplant to eight leaves, (2) 10 leaves to tassel,
(3) tassel to beginning dent, and (4)	 dent to mature.	 The dates of
Landsat acquisitions used are given in Table C-1.

A systematic sample of the inventory data was used for training and
testing the classifier. The pixel at every tenth line and column of the
Landsat data was examined.	 If that pixel fell into a field, the cover
type in the field was identified from the ground inventory. 	 For
variable size training data, a rectangular area containing only field
center pixels in that field was defined as a training field. 	 For fixed
cell sizes, a 3 x 3 pixel field was defined if that field contained only
field center pixels.	 Otherwise, the next grid intersection was
considered.

The fields selected by this procedur •- were randomly assigned for
either training the classifier or testing classification accuracy. From
those fields selected for training, three sets of c!ata were clustered:
all fields of corn, all fields of soybeans, and all fields of other
cover types. This procedure insures "pure" cluster classes (i.e.,
clusters containing pixels from only one cover type).

After refinement of the statistics was complete, the entire segment

was classified using the Gaussian maximum likelihood per point
classifier. One visible (0.6-0.7 pm) and one near infrared (0.8-1.1 pm)
band from each acquisition were used in the multidate analyses.

Several measures of performance were evaluated. 	 Percent correct
classification of corn, soybeans, "other" cover types,	 and overall

,T
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Figure C-4.	 Locations of the three test areas used in a
comparison of training sample unit sizes.
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Table C-1. Dates of Landsat acquisitions used for study of
training methods.

Segment
Time Period

Number _

1 2	 3 4

837 6/29 7/17	 8/22 9/27

843 6/9 7/16	 8/20 9/26

860 6/1 7/16	 8/21 9/25
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performance were computed based on the test fields. Proportion
estimates were computed from the classifications using the stratified
area estimate technique (6) and were compared with ground inventory
proportions. Analysis of variance was used to determine differences.

Results and Discussion. 	 Table C-2 shows the percent correct
classification for corn, soybeans, "other," and overall for the two
training methods described. Tukey one degree of freedom for
nonadditivity found interactions nonsignificant at the 25% level, so
that the interaction term was pooled with the error term. Analysis of
variance showed that the percent correct classification of "other" cover
types was significant at the 10% level, and the two methods differed in
overall accuracy at the 15% level. The variable size training fields
resulted in a higher performance for "other" cover types and overall
accuracy in each case.

It was noted, however, that there was a discrepancy between the two
methods in the total number of pixels used in training the classifier.
For one segment, 2200 points were used in the variable method while only
1400 points were used in the fixed training size method. The use of
more training data can increase performance, so a second analysis was
run keeping nearly constant the total number of training points used by
the two methods.

The results of the second analysis are shown in Table C-3. Again,
the interaction between segment and method was not significant.
Analysis of variance showed that the percent correct classification of
"other" cover types was significantly different at the 13 level. For
"other" cover types, the variable size training field method had higher
accuracies in all three segments.

The evaluation of the two methods should not be based on the
classification accuracies alone, but should also consider the accuracy
of proportion estimates. 	 The estimates of corn and soybean proportions
are compared with inventory proportions in Table C-4. The analysis of
variance showed that the proportion estimates for corn and soybeans did
not differ significantly for any of the training methods.

4.3 Relationship of Classification Performance
and Scene Characteristics

In the analyses previously conducted in this investigation,
segment-to-segment variability was found to have a significant effect on
classification performance. Information about the relationship of
classification performance to characteristics of the scene would be
valuable in the design of a crop inventory system. For example, in
areas where classification performance was high, sampling could occur
with a lower frequency than in areas having characteristics known to
lead to poorer classification performances.
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An analysis procedure was selected to apply to all of the teat
segments analyzed. The selected procedure was the Gaussian maximum
likelihood classification rule trained in a modified supervised approach
using ground observations. The specific procedure wns that described in
the training methods study using fields (Section 4.2). The amount of
training data was kept relatively constant among segments. Acquisitions
from around emergence of the summer crops (development stages 0-2 for
corn) and after tasseling of the corn (development stages 4.5-8) were
used for all analyses.

The segments classified were selected from the 1978 data set over
the U.S. Corn Belt and the Corn Belt fringe areas. The selected
segments had acquisitions during the two time periods selected for
analysis, and digital ground truth tapes were available for all
segments. A total of 24 segments in eight states were analyzed (Figure
C-5).

A data base of the classification results was constructed, and this
was merged with a data base of scene characteristics. The variables
contained in the data base are listed in Table C-5.

A general description of some characteristics of the segments
analyzed is given in Table C-6. The segments analyzed sampled a wide
variety of conditions present in the U.S. Corn Belt and its fringe
areas. Several of the areas had relatively large rectangular fields of
primarily corn and soybeans. Corn and soybeans in small fields were
also sampled, as were scenes containing various confusion crops. One
segment contained a lot of sunflowers, one segment was 40% spring wheat,
and a third contained orchards. Several of the segments had a
substantial amount of pasture and trees (Table C-7).

The accuracies of the segment classifications were as varied as the
scenes (Table C-8). The overall accuracy for test fields ranged from 59
to 93%. Wall-to-wall accuracies (including mixed pixels) were about ten
percent lower on the average. All except one of the segmen t - in the
fringe areas had accuracies less than 85x• A few of the segments in the
central Corn Belt had low accuracies. The most notable of these is
segment 860 which contains a large area owned by the U.S. Army Corps of
Engineers which appeared to be agricultural and was confused with corn
and soybean fieids. Two other notable exceptions are segments 135 and
144. Segment 13 has small fields, including a few strip fields.
Segment 144 is a very complex scene including a variety of field sizes
and shapes with a substantial amount of trees and pasture. Table C-9
compares the resulting proportion estimates.

Quantitative analysis of the relationship of scene characteristics
to classification performance is well underway at this time. These
results will be described in a later technical report.
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Figure C-5. Locations of 3e6m6nts analyzed for a study of the
relationship of scene characteristics to classification
performance.
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Table C-5. Variables included in data base for study of
relationship of scene characteristics and classification

performance.

Segment Number

Dates of Landsat Acquisitions

Ground Truth Proportions

Corn Hay Sugar Beets
Soybeans Pasture Spring Wheat

Sorghum Trees Sunflowers
Winter Wheat Vegetables Barley
Oats Idle Flax
Clover Nonagricultural Orchards
Alfalfa No ground truth Beans
Grass Rve Potatoes

Classification Accuracv of Test Fields
Wall-to-Wall Classification Accuracy
Analyst Labeling Accuracy*

Corn
Soybeans
"Other"
overall

Raw Proportion Estimates
Stratified Area Estimates
Variance P.eduction Factors

Corn
Soybeans

For a subset of segments. Anal yst .ubels obtained

from NASAJJSC.

r



72

r4

J

' .	 m w aJ	 r.1
m	 4) a	 m

w
^ ^: N	 ^3 a .-aW	 1. •p w .G a)	 ^4O

L ^
tq

014! p m	 .0 m m	 m E ^
a ty	 c uv	 m ..	 m	 cdbro -W

-,4
	

; t- C G u w E	 d	 -+ -1	 4	 d co

C	 ? ...4	 w	 cn O u	 .-+ oc	 H	 u W W	 .^ m a
O S.

ON O	 00 O m	 E E w	 c .^
+r in	 C	 .i a)	 w m y	 C a a	 W u m
^ u m E	 w ri	 m	 rI •.1	 oD	 •-a ^
¢) '	 aJ	 cC	 v cn m !b r m '+ r1	 v v at	 O 14	 al1	 1 W G rl y r w W a)	 -1	 w 7!

I	 a) rl	 b w	 M	 m co •	 Ww	 +
v d on G 3 w w	 a .-c w^ _4 ++

O m w w m r) C wO	 m	 •	 •.	 •	 •	 a w	 C m
-v	 c v w co q .-+ w	 m m m (D	 m p 00 O	 O v v

'v	 i •--4—A-) -	 " G waro oc cc cc 	 • G CM G F ^aV., N	 O	 m W w u -4 G	 o0.-c	 M	 CO	 CO	 tC	 co	 m	 cC	 0 m	 U
-O .±	 m •.4	 ca	 w	 w O C 7 G w w w cu a	 T L to	 00

{ ,	 .-^ w T G w .-a	 ^:	 a.i m cC w O .0.a tCm
a	 u G	 m v u U G TTTTQ) T^+ a1 N	 m
«•+ w	 a) b w 0a T	 m u w	 O O O O	 O d w c	 al T a)1	
w c, vti c to	 aY . 1	 T () m (5 w w m m m m w m u	 0. ri a.O 1	

cC .^ w +^ G N 0. 1. •.1 E	 T T C	 to	 a+	 eDW )	
w	 C	 td 7 w T ro w O G	 O b b b v w v .a rf E	 C m t
c t", > m to r O 5 +> w o	 • V) G G G G CC m O m

d G .-i	 a) C	 E u c rt	 m c m co rt co .0 m T	 ^E: j(	 c	 cz	 a m	 w --c	 C	 a O R b •v 	 'vN ,	
W u	 - w u	 o c	 - M	 • C G c C c0 G	 E -H p ri	 rt

ZT C c U a L U	 a)	 N	 Q! O W E u' w w w ►.+ G w ca .0 a	 •	 a
r1 M cC	 a)	 G dr c o c L r+ c m "a 0 0 0 0 (t O O ^+	 +^	 en ++

I.,	 a)	 •--1 w	 (1) .-i	 a)	 C m aJ	 +-! u u U	 u i+ u	 a) w w W 'v W
c U C U c G U a) u c 7 U? w	 U	 cC N a+	 a)	 a	 .-1cC	 C a) O	 m -4 O	 m, 4	 tc O w m -1 •H T T T >. a) >, v •.•c G 4J 4J	 w	 W	 1•++ n w E c	 W w ,-4 .--) -4 -4 w	 w	 to p	 CC ca -4	 m
m L u ;	 7C	 G X	 k tC O	 x	 >	 •J ^-4 " •-1	 «-	 R1 .0 00 3 ri w	 4 i
+^	 C) C W	 C W E a) u (D -+ E w W w w	 L	 E 00 C	 G	 cc 0. a) I -1 .; -4 u .-i	 4	 o -4	 u — u	 c	 M	 m	 ttS	 ttt rt	 to	 ')	 C a •r+	 a)	 001-1	 00,-+.4	 G m .4	 0. rl	 G OL T 0. Cl •^ = E c E r+ E aC -.a O r+ 00 a) .a W
E G I CC	 (r	 E CC E b E t G	 E •--i	 _4 •,4 -4	 t0 -4	 w -0 W r-) w 1W c w i
00 G O E E O C E	 O a)	 O	 to O a a) w w w w E w ca v .0 O m w r= w CC
^u	 ! c: cnv c v rc^	 v :jwxCL A. CL. a.M0. .4	 v:H 3^	

O
M

^
(	 r4

w u 1
o

^
w

W 2t W w	 3 z 3: w m z ^4
co O

I	 tr±n (nmIt J O tn	 tn a0aoaoaC 0o 00J JJJJJ
u N Q N N ,--^ J N N N N N C^ NN N NN N N N N .-• N --^ -- 00

I
1	

Gu cC 1
m r+	 ! ^ I ^u

W i	 u

C
Md i	 ^-^	 C^ z 001-+d.^.azzzzd 6666 d !1 O

u co [n
Fy HI F-: -.4 t-I H h4 ^4 H H H H H E

!to n
w s .-^
t" I; aJI
U to	 ! 'i ..u.) ^.

m E 1.+	 .14 I y 0 1	 w
tC w

w a w
4r	 ^+ m C 0 -0	 w	 (1) m	 c	 c rc a)	 tti	 G CC	 wc u 7 w >, . 4	 O O x C	 v to 6 3 7 7 j	 v
L s^+ r

I
C I t? b >	 u aj C c	 Aj W a^ o o u-4 b10 7 v G	 O Rf c G c-+ O c C G 0. I-i .-i G .-4 u a o j	 •14

C O j	 a	 n7 C) w	 0 w	 w •.c	 CC .a	 w	 b	 J	 a •14	 a)	 ca O v O	 O >
'	 t% CJ v F_ 0.	 w F C	 .: p U	 aL CC ^ H 3 u ^ R 11. to 3 •14

t

Ci G

C

ai	 u	 I
c	

1-' i
i	 m

.a a) ^ i	 i'1 10 u"tMu1Z	 zr00	 c'1J t+1^ONUl )	 m
E c•'+ J J ^T OC O(> 00 00 O •-^ J O tJ N t+t J c!1 %a ^D w 00 00 O, C7% d
y O ^-+ -+	 .-. --•	 .-.	 .-.	 +-. .. rJ N CJ 00 w w 00 w w '7O v7 00 00 00 a0 00

E-'



73

^i
y
Gv
^o
v
y

a.1
to

y
a+

G
rl

co
CL
O
w
u
w
0
m
G
c
w
L
tN

c

r-
0
t3a
y
M
aJ

G

a

L

t^

t

V

03

p
rtf

000000000000000000000000
0 0 0 0 .n O O O O O O O O O O O O O O O O O O O

O O O 
99 

O M OD O O 
99 

O O O O O 
99 

G O O9 O
O O O O O O O N O O O O O O O O O O O O O C O O

000oo0ooa000000000aaao^oo
00000oo0,0000000000000000M

^ow0% C, mO fl- NLnOn000rnN.7 wt--.i .Zr %0.4N.7.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
e-i f^NONN

.
 UP OhN a7 NOO 00 O u'100^0 N.iNM M M r4N

	

r-i e-^ ^D M N ^D f^ (%I O% Ul C^ r M	 ^o %D M N f- %C %0 'n r^ .t
CT f^ 00 ^D O^ O 9 N L` v4 D M	 MN9 NN Oc0^

	

N	 •-t	 M 14	 e 4	 N. 4 s-4	 1-1

I N I r" N -1 -1 Q\ O N E 00 f^ L 1 M N -7 N M D ^D M 0^
.-i M Vt C N M un N . •i M-1 M O O -4 M-4 %D 1.0 M d l ) C` r--1.^ H	 .-1	 .1	 1-1

V') N M 1: 1 Ln -1 -4 ON w N N It Q, CYS n S O J 0%	 O %0
u'1 O^ e-1 .1 O ? n OD N Q'. N 00 ^7 ^f1 n e--1 .--1 .7 .7 [^ ^D ^D V1 ^ ^
N ri N 7 M	 Nr! N-.7M M C?-1MM M N.-1

G	 Q tl1.D000 NO.^DO IM^D ^7t11N00 V r--4 %C r` r10^7'-
O	 Ord O.T^ 00N10O%14C LA r- 1̂  ^7N OnON -d M C^M1D
U	 M N N .-1 *4 11 EV	 N cn 'n Ln Ln I M d M ^7 ^7 M '7 LMtf.

y 

^i
d	 Lf)	 -,7 V1 O1 Ln%0 O --7 co f, M -Z O N-4 M z N VN.
E	 M t .7 "7 00 00 00 00 0 r4 0 N N M '7 in ^o ^o 00 00 co ,, a,OQ	 r-i —4 - 4 -4 .-4 .4 —4 r-i N N N 00 00 00 00 00 W 00 00 00 00 00 00 OC
O!
V: ,

b
>r

u
0

m

a
w

^ y
^ R!

t~ y

O1
d
t~

F

W

L
fA

R1

a

.7

U

cR4

c
V



	

I
r-1	 %D r4 -4M^* -I In 	 NOMM ON 14 LnW ­4%0P4 f^M

	

$4	 nn p .--I%0%Q ON r- 	 I nv1%OM W1 00 V1tg a00000 N r^M

	

y	 ^On nnn^D^Dtnn%lD%Dnnrnn F` r- 0%0r-%D ►, r'+n
O

	

w	 Uri .-r IT 0 0 %C 0 0 V1 0 0 ? V1 t- V1 c^ c•1 in ON 0 00 N 00 00
W

	

1-4	 ??u100a-4?.-iN O. 00 V1? Cl, ?1C r-iN V1 n 0 n N?n

	

1-4 ` ♦+	 1--00 Co V1000 n O0 rn%O %O Vn M n%00000 n 00 ON V1 rn 04110
r0 i O
`; I

I	 'O

i
-4

	

.a I b	 V1^7(1000 INt^ONrl^Ora.-iN O,NOAn 0 ^"0 4 M n %0.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

	

p	 r--40 1.inenF-C -4 0%r4 ? r-I0MOn%On-a0^O%ON
7+ I %Cn?OOn%C 11CM.D V1?000 r, 00 V1? V1n-0%CQt
O
V j

	

i O	 'DsnC: n M V10? V1r-1 00 rINM0000000.400M%OM

	

0	 r-1 Vl n ?000 .CMNO.NO VINOMO^O V1O\.4;V11CNU I %C %C V1 %.0Ln^0%D.D V1 V1n00n0000 nn?n%Cnr n n00
i

i

N O1 O--? M00%D%D0% 00 uIM M%C%0 M r4-4 N0%000 M n

	

t }+	 O.-4nClmtrlt ON r, O%0,.7 	 00N Nn

	

0)	 nOlI`x WnO0W n .Cr,MWWMWWul0000OOONON00
>

	

1	 j

i

	

1 W ! %0 M	 .-400 O. t0 V1 MVl.CJr--4r-4 n -4 V1 %D 0 V'i%0 ^?
W

	

.	 .

	

C	 ? V1 ^. r-+ ^? 0O	 00 0' ^^ O, O1; n N 14 10 00 c1? n10 00 V1 10
tr? 

I u ; 00UN ON fl- 00 V10000O+n r- r-- -rnn 00 CYNONONO.nO+ONco

	

y+	 i

	

m	 tV 	 -,T o Co '? rl 00  L1u1 ?.-+ O .C? s .-400.1 Vt 0000 %D VIN O%i

F ' V^ ^ rv rn t^ ^ s.700 r^cnr pC4%K V100 p 0; r^

T
O i 00 W	 .7	 .D--Y O+ %c r- 00	 CO	 co cD 00 r-- Oh ON 00 V	 n (7,V1) %D	 ^ 00 a%
o t

i
f

I

	

C	 MN'-i n CO N 00.D .7 M? n C M n ^V -4N O1 CO MOO N%D
OO r"" C\V1 Nl .D C N n M V1	 ? ^' C^ 1 '-I C V1 .D Vl O, M O. N

	

L	 n00 nt-nn00n —.t+nO.00000.00O^V1O,C0O.O+00C\

u I

C

	

(D	 v,r+?.D0In T V) ON L̂ 1wC T 00n M?0C4-4 M\0 N V1

	

F_	 m??? 00000000 o-4 ' 'CNNM? Lf)%C^OOD 00 00 as as
y j
	 .--1 -4 .-r --i 1 -4 -4 ^4 N N CJ 00 00 00 00 00 00 00 CC 00 00 00 00 00

^ I

d .0
a] a.^

CS ^

R• ^
+» 7
a> O

E ^bo r-r
a

0 coo
.d

s
X

0'1 C
N O
•-r in

U +4

cV L
G. lV

±a
U ^
C-1 O

C >,

O .0

y a
ro

w m

a^ a^
m^

rv^
a^
v^
4?

00
r 0^

CJ [

(1) N

.-+ a

t`-



Table C-9. Comparison of stratified area estimates and ground
truth proportions of corn and soybeans.

Corn	 Soybeans

Landsat Ground Landsat Ground
Segment Classification Truth Classification Truth

135 39.9 51.2 25.5 26.3
141 24.5 25.8 19.2 17.3
144 20.6 21.7 21.3 21.3
146 19.8 17.0 44.7 50.9
180 14.9 8.7 0.2 0.2
183 48.2 57.3 34.5 29.0
184 22.9 29.1 7.1 9.9
185 6.6 13.5 8.1 6.5
209 9.0 12.3 22.9 27.1
215 23.1 28.2 19.8 22.7
246 38.3 46.4 2.2 1.9
800 55.6 60.0 28.2 22.6
824 51.4 47.2 44.+ 49.4
828 51.5 49.4 35.9 33.1
837 44.2 44.5 37.9 40.1
843 32.8 34.3 51.7 31.5
854 49.5 51.3 41.4 39.5
860 30.7 28.5 34.0 57.7
862 42.1 35.0 34.4 24.1
881 44.6 44.8 7.9 5.8
883 33.7 33.2 36.2 32.2
886 49.1 50.7 26.7 26.9
892 53.0 50.0 15.0 14.2
895 56.4 60.6 9.6 9.2
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4.4 Full-Frame Sampling

The objective of this study is to assess the effect of separating

the functions of sampling for training and sampling for area estimation.
The frame selected for analysis was acquired over north central Iowa on
August 9, 1978. This is during the best time period for detecting corn
and soybeans with unitemporal data.

The data analysis procedure consisted of first defining a
stratification of the full-frame. The stratification selected was the
refined/split strata (defined by NASANSC and further refined for the
yield modeling activity). Only those counties which fell completely in
the frame were analyzed. Figure C-6 shows those counties which fell
into each of the two strata within the frame.

Eight sample segments having digital ground truth data were located
in the frame and were used to provide training and test data (Figure
C-71.	 Using a modified supervised training approach, statistics were
developed for each of the segments. The statistics for all segments
within a stratum were pooled to provide a set of sta"isties describing
that stratum.

Three classification and estimation procedures were carried out for
comparison. The first method was the method used in the LACIE project:
the statistics developed on one segment were used to classify that
segment. All segments were classified and an estimate was computed for
the region.

The second method also based the estimation procedure on the sample
segments, but training was conducted differently. The pooled statistics
for a stratum were used to classify all the segments within that
stratum. Then an estimate was computed for the region.

The third and final method was to use the pooled statistics from
the sample segments in the stratum to classify a systematic sample of
pixels in that stratum. The systematic sample was used to provide an
area estimate.

The results of this comparison are shown in Table C-10. 	 Using the
segment approach, estimates for counties without samples were made using
ratios with the 1974 estimates.	 Comparisons were made to USDA/ESCS
estimates by computing root mean square errors. 	 In both strata, the
full-frame approach performed better than the standard segment approach
for soybeans (Table C-11). Corn in stratum 2 was not as well estimated
using the full-frame approach. This may be due to the fact that the
training data in this stratum were not well distributed and sampled a
very small portion of the total land area. The viability of using one
set of statistics for a stratum is illustrated by the generally good
performance of the pooled segment approach.
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Figure C-b.	 Counties in the two strata used in the full-frame

classification study. 	 The upper map shows those counties in
APU 14 and the lower map shows those counties in APU 24.
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5. Summary and Conclusions

The results of this task during the past year have addressed many
issues in the machine classification of remotely sensed data for crop
area estimation. In particular, early season estimation, training
procedures, the relationship of scene characteristics to classification
performance, and full-frame classification methods have been studied.

Early in the season, at about the time of emergence of the summer
crops, corn and soybeans were not spectrally separable. In the Corn
Belt, however, relatively accurate differentiation of corn and soybeans
from other cover types can be made at that time. This result indicates
a potential method for providing early season estimates: estimate the
total corn and soybean area from Landsat MSS data and separate the crop
proportions using econometric models or historical ratios.

Variable size and fixed size training sample units were compared.
Use of the variable size generally resulted in selection of more pixels
for use in training.	 When the total sample size was constrained to be
relatively constant on each segment, 	 percent correct classification of
other cover types was significantly higher for the variable size method
than for the fixed size method.	 Other accuracy measures were not
significantly different. There was, in addition, no significant
difference in corn or soybean proportion estimates between the two
methods.

Segment-to-segment variability was found to have a significant
effect on classification performance.	 The overall accuracy of test
fields varied from 59 to 93 percent. 	 The variability is related to
proportion of corn and soybeans in the region, confusion crops present,
scene complexity,	 and field sizes.	 Quantitative analyses are being
conducted to further define these relationships.

A comparison of three methods for obtaining crop statistics over a
large region was carried out. A method of sampling pixels throughout
the region of interest provided the most accurate soybean estimates.
The viability of	 Inooled statistics for a stratum is illustrated by
the zenerally g ^rmance of the pooled segment approach. This
type of training ap,..-,,Qh used with a systematic sample of pixels seems
to merit further investigation due to the variance reduction benefits
which could be obtained. In particular, the potential shown for this
method should be more fully investigated using multitemporal data which
would obtain higher classification accuracies and more accurate area
estimates.
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D. DETERMINATION OF THE OPTIMAL LEVEL FOR COMBINING AREA

AND YIELD ESTIMATES

Marilyn M. Hixsont

1. Introduction

The eventual aim of crop inventory studies is production
estimation, not area or yield estimates alone. Production estimates can
be made only at a level where area and yield strata intersect. The
variance of the production estimates is dependent upon the means and
variances of both area and yield in the stratum. Thus, it is important
that the stratitications for area and yield estimation be coordinated,
and that the levels for aggregation be selected so that acceptable
variances are obtained.

2. ObJectives

The overall objective of this task is to determine the optimal
level for combining area and yield estimates of corn and soybeans.
Production estimates and their variances will be computed for several
levels of area and yield estimates. The estimates and their precisions
will be compared.

3. Approach

Iowa was selected to study the optimal level for combining area and
yield estimates of corn and soybeans. This state was selected for study
an it is included in the 1981 AgRISTARS pilot experiment.	 The year for
evaluation ("current year") was selected to be 1978, the most recent
year for which final USDAIESCS estimates were available when the study
was initiated.

# Data base development and statistical programs were carried out by
Maria Downton, Carol Jobusch, and Pamela Weeda. Carol Jobusch also
provided valuable assistance in data base handling and statistical
programing.	 Much appreciation is also due to Prof. K.C.S. Pillai,
Prof. V.A. Anderson, and Dr. M.E. 	 Bauer who served as consultants to
the project.
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Tho Tavel, at which aggregation of area and yield to obtain
production should occur is dependent upon the teehnol , ,gy being utilized
for estimation. if, for example, area or yield estimates made at a
given level are biased or not reliable, then aggregation at that level
would most likely be undesirable regardless of any potential gains in
precision. A change in the technology utilized for estimation, however,
might produce reliable estimates at the same level and be a viable
candidate for aggregation. This investigation will assess the optimal
level with respect to the current technology. Current technology
utilizes digital analysis of Landsat MSS data on sample segments to
provide Prea estimates; regression models are developed from historical
data and used with current weather data to provide yield estimates.
several levels of obtaining both area and yield estimates will be
considered: county, refined strata, crop reporting district, state, and
other levels.

The model form and variables considered for inclusion in the
regression used by CCEA for yield estimation of corn and soybeans in
Iowa were obtained.	 A weather data base with historical (at least 30
years)	 and "current year" weather data was needed for all the
cooperative meteorological stations in Iowa. Historical and "current
year" county area and yield estimates made by USDA/ESCS in Iowa were
acquired for the same time period.

Regression equations were deriv ,ad to predict yield using the
historical weather and yield data. A weather smoothing function was
utilized to provide estimates of meteorological variables for the
various strata studied. 	 Using the 1978 weather data, "current year"
yield estimates were made for corn and soybeans in Iowa.

The production estimate (P) and its variance M P)) were computed
for all the candidate aggregations. Evaluations will compare the
variances with one another and with the results of ^simulated
aggregations and TY aggregations. The production estimate P will be
compared with USDA/ESCS state estimates to assess any bias due to the
yield estimation methodology.

For those levels of aggregation which appear to be improvemel;ts
over the currently used method, a further investigation into the effects
of using the current area estimation methodoloa- , needs to be conducted.
Within county variances for the crops of interest will be obtained, aid
variances associated wit" candidate area strata will be computed.

Utilizing this methcd :r aree estimation and the yield estimates
computed previously, 0) will be computed for all the levels of
aggregation which appeared to be promising. The variances will be

	

compared with one 6nother anc with the TY and simulated aggregations.	 i

These results :+ill be ci.mpared wish the aggregations using USDA/ESCS
area estimates to assess the effect of utilizing t'.e segment approach to
area estimation.
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3.1 Data Set Utilized

For development of regression models for yield, a historical series
of yield estimates and meteorological data were required. This USDA/ESCS
county level statistics for yield of corn and soybeans were obtained
from the Iowa state office for 1932-78, USDA /ESCS county leve2.
estimates of corn and soybean areas for 1978 were acquired for results
comparison. Daily observations of temperature and precipitation for all
the cooperative meteorological stations in the state of Iowa were
purchased from the Iowa Geological Survey (1900-74) and some were
euppl .ed by another task (1975-78).

3.2 Levels of Aggregation

During the Large Area Crop Inventory Experiment	 ( LACIE),
aggregation of area and yield estimates to production was done at
approximately the state level.	 Thus, this would be one level for
investigation.

For the state of Iowa, yield estimates will be made at the state
level and one other level during the 1961 AgRISTARS pilot experiment.
NASA/JSC requested that this level be the refined strata in the state
(Figure D-1). The yield modeling group, however, thinking that these
strata were too broad, suggested a subdivision of them (Figure D-1).
Thi* subdivision will be referred to as the refined/split strata in this
report. Both of these levels are being considered for evaluation.

An additional level which see-3 to be natural to include is the
crop reporting district level (Figure D-2) as this has traditionally
been a standard unit for the reporting of agricultural statistics.
Also, the county level is included as the smallest possible unit using
current yield esti.nation technology, as this is the smallest level for
which historical yield estimates are available.

Finally, two other stratification systems were defint:^ 	 LARS for
comparative purposes. These strata were derived based on a `: a year
(1972-76) history of corn and soybean areas and yields. The purpose of
these stratification systems was to determine the extent to which
improvements in precision could be made if historical data were
available for carrying out a stratification in addition to image data.

The two LARS derived st.°atification systems are shown in Figure
D-3.	 The first, a set of contiguous strata, was developed by examining
the five year averages of corn and soybeans yield and area.	 The strata
were refined by evaluating them with respect to the coefficients of
variation of the four variaoles of interest. The second set of strata
was defined by using histograms of the four variables of interest to
define levels strata which were not necessarily geographically

a
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'U MED STRATA

REFINED/SPLIT STRATA

Figure D-1. Maps of the refined strata developed at NASANSC
(top) and the refined/split strata as subdivided for the yield
modeling effort (bottom).
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W REPORTIVa DISTRICTS

Figure D-2. Map of the crop reporting districts in Iowa.
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Figure D-3.	 Maps of two stratification systems developed at
LARS. A set of contiguous strata (top) and a set of levels
strata (bottom) were developed by examining coefficients of
variation of historical crop data.
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contiguous. Some characteristics of the strata are presented in Tables
D-1 to D-5. Means and variability between counties within the strata
are described.

3.3 Meteorological Data Estimation

In order to study the various levels of aggregation, yield
estimates were needed at each of the levels. To make yield estimates
using, current technology, meteorological data were needed for each
stratum. Not all counties contain weather stations, and perhaps
weighting by nearby weather stations may provide a better estimate of
the overall weather of a county than the use of one weather station
alone (Figure D-4).

For this reason, a weather smoothing routine was utilized. Wagner
(1) devised an objective analysis technique which incorporates a low
pass filter and provides a good analysis in sparse data areas or with
data containing significant noise. Furthermore, the characteristics of
the applied filter function are easily calculated and the analysis
technique is quite forgiving in terms of the sensitivity of choosing a
filter function for a given data set. This technique was initially
devised to remove high frequency fluctuations in the initial condition
fields used for numerical weather forecasting. However, the consistency
and speed of the technique make it a viable technique for our purposes.

Odell (2) compared ten techniques for interpolation for irregularly
spaced sparse data: composite average, nearest neighbor, least squares
linear regression, least squares convex hull, average linkage, average
linkage with directional correlation, Wagner's objective analysis,
modified linkage, and modified least squares. These techniques were
tested in terms of their ability to interpolate five years of wheat
yield data across the state of North Dakota (45 data points) based on
seven stations of wheat yield data. The weighted linear regression
technique appeared to be the best technique with the objective analysis,
least squares linear regression, and the modified average linkage coming
in close behind. However, the weighted linear regression is
computationally time consuming, the least squares linear regression is
not well behaved on the boundaries, and the modified linkage does not
reflect directional trends in the data. The objective analysis approach
provides a smooth well behaved surface and is computationally fast. Its
major deficiency is that the original data points are not fit exactly.
However, if noise exists in the input data, this can be advantageous.

Integration of data fields (raster form) produced by the objective
analysis routine is sometimes required in order to obtain averages of
meteorological (or other) data over some polygonal area. In order to
accomplish this, the subroutines of Rios (3) were utilized. A driver
program was written to enable averages, mean square errors, and
variances to be calculated for polygonal areas with 39 or fewer
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Table D-1. Some characteristics of the refined strata. Means
and variability are described for corn and soybeans
proportiuns and yields.

DESCRIPTION OF PROPORTIONS FOR REFINED STRATA

CORM SOYMANS CORM + SOMMS

STRATUM MEAN
TANOm
VIATION C.V, but

TAN1
DEVIATION C.V. NEAN

gTANWO
DEVIATION C.V,

I. OF
L. TIES

14 37.0 4.3 11.6 16.7 3.8 22.6 53.7 1.9 5.3 13

24 37.7 3.0 35.4 25.5 910 35.4 63.1 L'.9 23.4 45
25 25.7 8.7 33.7 13.3 5.0 37.3 39.0 12.3 31.5 41

DESCRIPTION OF YIELDS FOR REFINED STRATA

STRATUM MEAN

CORN

LVIATION C.V. MEAN

SOY4E^

iEVIAOTRON C.Y. GUNTIE*

14 85.1 23.4 27.5 32.3 3.9 12.1 13

24 49.6 15.7 15.8 32.6 4.0 12.3 45

25 94.7 18.2 19.2 31.0 4.6 14.8 41
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Table D-2. Soae characteristics of the refinedlaplit strata.
Means and variability are described for corn and soybeans
proportions and yields.

DESCRIPTION OF POWTIONNS FOR REFUND /SPLIT STRATA

mm 	 _	 f11R11 + SOYMANS 	

,
STRATUM	 N#AN	 DEVIATION C.V.	 MEAN DEV AT ON C.Y. 	 MEAN	 DEV ATION C.Y. LaNTIEE

14A 39.3 2.9 1.S 14.1 2.6 18.7 S3.4 3.5 6.6 6

142 3S•0 4.4 12.6 19.0 3.1 16.4 54.0 2.4 4.4 T

24A 39.7 2.0 5.1 29.7 6.6 22.1 69.4 6.6 9.6 13

242 39.7 3.2 8.1 29.3 S.4 18.4 69.0 7.4 10.7 23

24c 32.3 5.2 16.1 14.6 7.1 48.9 4.7 11.1 23.7 12

25A 21,3 8.8 41.1 12.4 3.5 20.4 33.7 11.9 35.4 18

2% 22,2 5.7 25.8 0.9 0.2 20.2 23.1 5.6 24.4 3

25c 30.2 6.7 22.2 16.3 2.9 18.9 46.2 8.1 17.6 23

DESCRIPTION OF YIELDS FOR AEFIHED /SPLIT STRATA

STRATUM MEAN

CORN

C.Y. MEAN

SOYBEA^LS

F
&.TIESLYÎATIp1

DUO
RVIA IT ON C.Y.

14A 81.7 22.9 18.0 32.2 4.8 14.9 6

142 80.3 23.7 20.9 32.4 3.1 9.6 7
T

24A 97.5 133 19.0 33.5 4.1 12.2 13

242 10.6 14.1 13.6 33.0 3.8 11.5 20

24c 95.4 13.2 13.8 30.8 3.9 12.7 12

25A 85.6 20.4 23.0 29.1 4.3 1418 18

252 102.4 12.5 12.2 32.9 4.2 12.5 20

25c 90.6 8.4 8.5 31.3 2.8 9.3 3
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Table D-3• Some characteristics of the crop reporting districts.
Means and variability are described for corn and soybeans
proportions and yields.

DESCRIPTION OF PROPORTIONS FOR CROP REPORTING DISTRICTS

MR

STRATUM	 IIEAN 	RVI^ ATIIOON C.Y.	 r"MVIIATta1	 C.Y. PIEAm	 DIYI
A

 ATION C.V.	 LOUNT1E3

NORTH VtST	 39.5 2.3 5.7 26.8 8.5 31.7 66.3 8.1 12.2 12

Nall?" CENTRAL 393 2.1 5.2 30.7 5.4 11.5 70.6 6.8 9.7 11

NORTH EAST	 30.2 7.1 23.S 11.7 8.9 75.7 41.9 14.8 35.3 11

MEET CtmAL	 38.3 4.7 12.4 19.3 8.3 43.1 S7.6 13.7 18.5 12

CENTRAL	 37.5 4.9 13.1 25.1 6.5 25.9 62.8 19.4 16.6 12

EAST CENTRAL	 33.1 5.3 16.0 13.5 5.4 49.1 46.6 9.6 20.7 10

SOUTH WEST	 29.7 1.8 19.6 17.5 4.0 12.8 47.2 9.0 19.0 9

SOUTH CENTRAL 16.3 4.8 29.3 10.6 2.3 22.9 26.9 6.9 25.6 11

SOUTH EAST	 27.0 5.9 25.7 16.5 3.1 18.7 43.6 9.6 21.9 11

DESCRIPTIO11 OF YIELDS FOR CROP REPORTIN6 DISTRICTS

STRATUM

MIA

C.V. !LEAN

S ANS

C.V. LOIESMEAN kYAtATlON DEVIIATIIOON

"at" WEST 93.1 21.0 22.6 33.8 4.3 L.7 12

NORTH CENTRAL 99.8 14.1 14.1 32.2 3.5 10.3 11

NORTH EAST 919 12.7 13.2 29.8 3.5 11.7 11

VEST CENTRAL 89.9 21.3 23.4 31.8 3.9 12.3 12

CENTRAL 105.8 12.8 12.0 33.9 3.8 11.2 12

EAST CENTRAL 103.5 12.7 12.6 33.8 3.6 11.7 13

SOUTH WEST 83.7 25.1 29.3 31.2 3.4 10.9 9

SOUTH CENTRAL 86.0 10.7 21.7 28.2 4.7 16.7 11
SOUTH EAST 101.9 L.8 12.6 31.7 4.4 13.9 11

I=

i
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Table L-4. Swe characteristics of the contiguous strata. Means
and variability are described for corn and soybeans
proportions and yields.

DESCRIPTION OF 
PROPORTION 

INFOR CaITIQM STRATA

mm SOYMM MIN + SMANS

STRATUM MEAN VIVVIA IT ON C.V.. MEAN DEVIA IATION C.V. MEAN VIIAAT ON C.Y. 4Oi1NTIES

1 38.8 2.7 6.9 1S.7 2.9 18.2 S4.6 2.6 4.8 8

2 39.2 2.1 5.4 28.2 3.9 13.9 67.5 4.0 6.0 8

3 39.3 4.1 10.4 32.9 6.0 18.3 72.2 9.7 13.4 15

4 38.9 3.1 7.9 24.6 3.5 14.2 63.5 6.0 9.4 12

5 31.9 3.3 10.3 18.1 2.6 14.1 50.0 4.0 8.0 4

6 22.7 4.2 18.5 1.7 1.2 73.7 24.4 4.6 19.0 5

7 31.3 4.1 13.2 17.6 2.1 11.9 48.9 5.2 10.5 9

B 33.1 4.3 13.0 18.7 2.4 12.7 51.8 S.0 9.7 5

9 35.7 4.7 13.1 17.5 4.0 22.6 53.2 4.0 7.6 9

10 14.3 3.0 20.6 10.6 2.7 25.4 25.0 5.S 22.0 9

11 34.5 4.1 12.0 12.1 2.9 24.3 46.6 4.4 9.4 7

u 21.3 3.5 16.4 123 1.8 14.7 33.8 5.1 1S.0 8

DESCRIPTION OF YIELDS FOR CONTIUMS STRATA

STRATUM MEAM

tYltifl

C.V. MEAN

SMFANS

TAMOARD
VIATIOM

TAWARD
VIATI ON C.V,

0. OF
lA1NITIES

1 54.5 5.4 6.4 32.6 2.4 7.4 d

2 94.8 6.0 6.3 33.4 1.6 4.7 8

3 103.9 5.8 5.6 33.4 1.4 4.3 15

4 101.3 7.8 7.7 32.7 2.8 8.7 12

5 91.0 10.4 11.4 28.5 3.4 11.8 4

6 94.8 5.4 5.7 29.4 1.5 5.2 5

7 105.8 5.3 5.0 33.1 2.1 6.3 9

8 102.7 5.9 4.8 33.2 1.0 4.7 S

9 87.8 3.4 3.9 32.3 1.3 3.9 9

10 87.8 6.7 7.6 28.0 1.5 5.5 9

11 100.3 3.6 3.6 33.6 1.7 5.2 7

12 85.3 7.6 8.9 29.5 0.9 3.0 8
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Table D-5. Some characteristics of the levels strata. Means and
variability are described for corn and soybeans proportions
and yields.

DESCRIPTION OF PROPORTIONS FOR LEVELS STRATA

__ ^,^ rnaf . SO	 MS

STRATUM IiIAN

_I
S

O

LV"AOTION C.V. IRAN ^VÎA^ C.V. MEAN NVt^ATIION C.V.

SY.r. OF
&NTIEi

1 22.7 4.2 18.5 1.7 1.2 73.7 2.4 4.6 19.0 5
2 13.6 2.4 17.7 8.6 0.4 10.7 22.1 3.1 14.1

3 36.2 3.1 14.1 12.1 2.3 16.2 43.3 5.S 11.5 12
4 1j.3 1.4 16.1 11.3 0.9 7.7 25.3 3.1 11.4 5

5 31.9 6.2 18.8 16.3 1.1 7.2 49.0 6.6 13.6 18
6 3318 4.2 12.3 20.0 1.1 5.5 53.7 4.7 8.8 13

7 3u.2 4.2 11.5 23.1 1.1 4.7 39.3 4.5 7.6 6

8 39.5 2.7 6.9 28.2 1.2 4.4 67.8 2.7 4.0 10

9 40.6 1.1 2.7 31.8 1.6 5.1 72.4 1.7 214 6

10 433 1.7 4.1 36.4 1.4 3.3 75.9 2.1 2.7 1
11 21.3 1.4 6.4 12.8 1.0 7.S 34.1 1.0 2.9 4

DESCRIPTION OF YIELDS FOR LEVELS STRATA

CO'"	 SOY9EW

STRATUM	 MEAN	 &VIAT ON	 C.V.	 MEAN	 re VIA RATION	 C.V.	 t,OUNTO11S

I

L 1
2

3

4

S

6
=

7

8

9

10

11

o -

94.5 5.4 5.7 29.4 1.5 5.2	 5

92.7 1.9 2.3 27.R 1.2 4.3	 5

03.0 4.5 14.3 32.9 2.1 6.4	 12

AG.7 4.8 5.5 28.0 1.1 3.9	 5

Sri .1 9.1 3.6 32.2 1.9 5.8	 18
9815 9.5 9.8 32.6 2.0 8.7

94.3 6.1 6.5 31.1 1.7 5.4	 5

110.3 10.0 9.9 32.9 2.6 7.9	 14
103.6 3.7 315 34.2 1.n 2.9	 6
104.3 3.4 3.3 33.8 1.0 3.0	 9

84.9 8.6 1011 29.1 1.4 3.3	 t!
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Figure D-4. An example of a situation when weighting by weather
stations in adjacent counties may be beneficial in providing
good estimates of weather for county K. Each X represents a
meteorological station.
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vertices. The polygon may contain both convex and concave features.
This capability enables averages for a farmer's field, an entire
political subdivision or stratum to be calculated.

The general procedure utilized by the objective analysis technique
is illustrated by Figure D-5. 	 A grid of a user-selected density is
placed over the area of interest. Then the available met station data
are used to specify the valves at the nearest grid intersection points.
The objective analysis procedure then uses gradient and Laplacian
weights to specify the values at all grid intersections (1). Finally,
an estimate of the smoothed variable can be made over any polygon of
interest by averaging over the grid points within that polygon.

The objective analysis technique was found to perform well in
interpolating maximum temperature, minimum termperature, and
precipitation on both a monthly and a daily basis for a case study in
May 1977 in Oklahoma (4).

Based upon the favorable results obtained by other investigators,
the Fortran coded programs for objective analysis were obtained from Dr.
David E. Pitts of NASA/JSG.

A meteorological data smoothing experiment was conducted to
determine how the objective function should be utilized. One month of
daily date (June 1974) for all net stations in Iowa was used in the
study. There were several factors in the experiment: grid size (25 x
25, 32 x 32, 64 x 64), level of smoothing (daily vs. monthly), gradient
weight (1,10), and Laplacian weight (1,10). The results were evaluated
by examining the mean square error of fit to station data and the
maximum change in specified values.

The first obs, 3tion from this experiment was that using gradient
and Laplacian weie...s of 10 caused too much change in the specified
values. A difference of up to about one inch of precipitation was
observed. Thus, the remainder of the experiment was analyzed using
weights of one only.

The maximum absolute deviation from specified values was examined
for the three grid sizes (Table D-6). The 64 x 64 grid provided
estimates much closer to the specified values than the other two grid
sizes. The root mean square error was examined for daily vs. monthly
averaging tTable D-7). It was found that averaging mat data to monthly
values and then smoothing the monthly averages performed significantly
better than smoothing daily values and then averaging the smoothed
values to obtain a monthly estimate.

The parameters selected for use in our study were: grid size 64 x
64 over Iowa, gradient and Laplacian weights of 1.0, and smoothing of
monthly average values.
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Figure A-5. Schematic c`rkjraw of the steps in the meteorological
data smoothing routine used to obtain meteorological estisatis
for polygons of interest in Iowa.
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Table D-b. some results from the meteorological data smoothing
experiment. The table shows daily maxims absolute deviations
of smoothed values from the specified station values.

WEATHER	 GRtn SuE

VARIABLE	 25X25	 3202	 64X64

MAXIMUM TEMPERATURE	 2.93	 2.45	 0.77

MINIMUM TEMPERATURE	 2.08	 1.39	 0.63

PRECIPITATION	 0.06	 0.04	 0.01

Table D-7. Some results from the meteorological data smoothing
experiwent. The table shows the root wean ware error of
smoothed values from the specified station values.
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3.4 Yield Estimation

Estimates of yield at all the levels of aggregation are required
for this study. To do this, the variables used in the CCEA state level
model were utilized (Table D-8). Regression coefficients were developed
for each set of strata utilizing 1931-77 meteorological data and 1932-77
USDAIESCS estimates of county level yields. The meteorological data

£- inputs were daily reports of minimum temperature, maximum temperature,
and precipitation from all the cooperative meteorological stations in
the state of Iowa. The meteorological data were smoothed by the Wagner
variational analysis technique and were averaged to the polygons
describing the strata. Some examples of the resulting yield models are
shown in Figures D-6 to D-13.

4. Future Work

This task is eontinu l.ng into the next contract year. This study
will be completed early in that time period.- Production estimates and
their variances will be computed, and comparisons of the levels of
estimation will be made with one another and with the results of
simulated and TY aggregations. The production estimate will be compared
with the USDA/ESCS state estimates to assess any bias due to the yield
estimation methodology.

For those levels of aggregation which appear to be improvements
over the currently used me`-hod, a further investigation will be carried
out for wheat and barley using North Dakota as a test region.
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Table D-8. Model variables for the regressions predicting yield
of corn and soybeans in Iowa.

IOWA YIELD MODEL VARIABLES*

CORN	 SOYBEA:fS

LINEAR TREND 1941-60	 LINEAR TREND 1932-74

LINEAR TREND 1961-72	 CUMULATIVE PRECIPITATION

MAY TEMPERATURE X	 OCTOBER - APRIL DFN

PRECIPITATION 'NTERACTION	 MAY TEMPERATURE X

JUNE TEMPERATURE X

PRECIPITATION INTERACTION

.JUNE TEMPERATURE (DFN)2

.JULY PRECIPITATION DFN

.JULY TEMPERATURE DFT

JULY TEMPERATURE (DFT)2

AUGUST TEMPERATURE DFT

*DFN = DEPARTURE FROM NORMAL

DFT = DEPARTURE FROM TREND

PRECIPITATION INTERACTION

.JUNE TEMPERATURE DFN

.JULY PRECIPITATION DFN

.JULY TEMPERATURE DFT

AUGUST PRECIPITATION DFN

AUGUST PRECIPITATION (DFN)2

AUGUST TEMPERATURE DFT
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Figure D-6. Comparison of corn and soybean yields predicted by
the regression equations with USDA/ESCS estimates for Linr.
County, Iowa.
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Figure D-7. Comparison of corn and soybean yields predicted by
regression equations with USDAIESCS estimates for Lyon County,
Iowa.
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Figure D-8.	 Comparison of corn	 and soybean yields predicted by
!	 _ the regression equations	 with	 USDA/ESCS	 estimates for the

? North West Crop Reporting District in Iowa.
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Figure D-9. Comparison of corn and soybean yields predicted by
the regrersion equations with USDA/ESCS estimates for the East
Central Crop Reporting District in Iowa.
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Figure D-10. Coaparison of corn and soybean yields predicted by
the regression equations with the USDAIESCS estimates for
refined stratum 14 in Iowa.
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Figure D-11. Comparison of corn and soybean yields predicted by
the regression equations with the USDA /BSCS estimtes for
refined stratum 24 in Iowa.
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Figure D-12. Comparison of corn and soybean yields predicted by
the regression equations with the USDA/ESCS estimates for
refined stratum 25 in Iowa.
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Figure D-13. Comparison of corn and soybean yields predicted by
the regression equations with the USDA/ESC5 estimates for the
state of Iowa.
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