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1. Introduction

In this semi-annual status report, the work previously - irritiated (1)

dealing with the joint pdf which is a modification of the bivariate Gaussian

pdf is discussed in detail and results are presented for a global reaction

model using this joint pdf (Section 2). An alternative joint pdf, the "most-

likely" pdf, suggested by Pope (2) , is discussed in Section 3. A criterion

is developed in Section 4 ,which permits the selection of temperature pdf"s

in different regions of turbulent, reacting flow fields. Section 5 sets forth

two principal approaches to the determination of reaction rates in computer

programs containing detailed chemical kinetics. These models are set forth

in the context of current research 4n this field and, it is argued, represent

a practical solution to the modeling of species reaction rates in turbulent,

reacting flows.



2. The Modified Bivariate Gaussian PDF

Numerous experimental studies awe available which describe pdf's for

temperature in both non-reacting and reacting turbulent flows. A number

of these (eg, "clipped" Gaussian, beta, ramp) have been discussed pre-

viously. However, no experimental studies are available describing joint

pdf 's of temperature and species in any flow. The bivariate, or two di-

mensional, Gaussian pdf has been chosen as a joint pdf which has at least

a conceptual basis in physical reality. This conclusion is drawn by ima

gining the behavior of the marginal pdf's of temperature and species, each

a one-dimensional Gaussian pdf, during the course of a reaction. The mar-

ginal pdf's show that the mean temperature can be low while the mean con-

centration of fuel, for example, is high. This could correspond to an

iinitial stage of a reaction. As the reaction proceeds, this mean temperature

increases ac the mean concentration of fuel decreases. The marginal pdf's

can exhibit this behavior. Based on this p lresumed physical behavior, it

is assumed that the bivariate Gaussian pdf serves as a reasonable approxi-

mation to the actual joint pdf of temperature and species in a turbulent

reacting flow. This is intended as an initial step in the formulation of

such pdf's.

The form of the bivariate Gaussian pdf is (1)

p 
C t , x ^ _ 2. Ir Ct	 PTV. I - z

^ p C{ -fit 1 t

for	 -,<x<OO,

t and x.

P	 -Z ^, _ Pl)	 T

(1)

4- C ^L
x

and where p is the correlation coefficient between
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v = ^ 1
0 0

p (t,X) it A%
(2)

The bivariate Gaussian pdf is valid on the interval of minus to plus in-

finity for both variables and as such, cannot be utilized in its present

form. To remeey this situation, the pdf is modified as follows. Let

It follows that,

O `- t ` 1
f ct , x^ _ ^ p Ct , Xl

O' x 1

which is the fonn of the modified bivariate Gaussain pdf". This pdf is a valid

one, as it satisfies the condition required of a pdf.

Equation (5) below is a general expression for the reaction rate of

fuel for any particular one-step, irreversible reaction of the form:

F" + 0 O	 P

from which

h

WF 
= K fit) ^XF `F 1Xo col

where

CL — C4 0 M ► o-A	 C

CC i ) MAil ^ C ^ ^M1N

for the fuel and the oxidizer.

(3)

(a)

(5)

2



That is, x F and xp are dimensionless concentrations that are bounded by zero

and one. The terms C° Ca represent the initial concentrations of fuel and

oxidizer, respectively ► and n and m are constants. By assuming that n and m

are both equal to unity, it is possible to rewrite (5) as

W ►̀  W - V (t) x CF
r r, [) CF ^Xl'  	 Co	 t6)

Therefore, w. is a function of two variables, t and x F , Equation (6)

can be used along with the modifliGA bivariate Gaussian pdf to determine the

mean turbulent reaction rate. That is,
1 1

	

g
	 --r,/ (K, 

t} K 1
L

00	
\	 (	 1

F c F J GF (X F ' ^) + C:I' Ct, %F J 8t a x F	 (^)

/ f	 ^ dt aXF

where.

p(t,% F) is 91've.n by ea (1).

For a given or calculated mean turbulent reaction rate, the correspond-

ing laminar term can be determined by inserting the proper values of t and

xF, the mean dimensionless temperature and mean dimensionless concentration

of fuel, respectively, into eq (6). The reaction rate amplification ratio

is then:

Z	
W I.
	 (8)

W
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This reaction rate amplification ratio considers the combined effects of

temperature and species fluctuations on the reaction rate. As described in

ref 1, Section 3(a), the assumption of statistical independence between tem-

perature and species fluctuations leads to

KtZ__^^ s ZK¢

Amplification ratios calculated with both eqs (8) and (9) can be compared to

determine the effect c f the inclusion of species fluctuations on the reaction

rate, in addition to the temperature effect. For purposes of a parameter study,

the following one-step, irreversible reaction is considered:

H Z z. O -^ H Z. 0

The data of ref 3 are utilized to determine an approximate relationship between

the dimensionless mean temperature and the dimensionless mean concentration of

hydrogen in a turbulent diffusion flame. Shown in figure 1 are curve fits of

data from ref 3, (fig 2, 7/U e = 8). The mean temperature is non-dimension-

alize,d by use of the values of Tmax = 2160K and 'r min - 300K. The range of

data for which the temperature is decreasing is ignored as it is assumed to

be the result of heat transfer. In a hypothetical adiabatic system, this

heat transfer would not occur. From the figure, it is readily determined

that an approximate relationship between t and xHZ is:

xH2 = 1 - L	 (10)

This is deemed adequate for purposes of this parameter study.

(4)
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Assume that in tale radial direction of a confined axisymmetric turbulent

diffusion flame, the Prandtl mixing length hypothesis is valid. Thus:

at

t 7 -& _ L
^' y

where L = mixing length and y = radial coordinate.

Then_	
t"^	 (dtl^yl

u

	

► 	 j
The following data are extracted from ref 3 0 (UJ /Ue = 10, X/D = 40):

r/a At	 r/a I [ r/o r/a

1-2 0.08 0.05

2-3 0.17 0.07

3-4 0.24 0.11

4-5 0.22 0.21

5-6 0.21 0.23

6-6.1 0.30 0.30

Note: r/a ti y
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Averaging yields

px .>

i^Y1	
R 0.20 and	

Ay
= 0.16

Then

t 	 = (0.20)2- 1.56

X'H 2
2

Thus, t'2 - 3,'? —A.".7
 
has been chosen for 'Oe purposes of this parameter study,

L

r gure 1 can also be utilized for the determination of the correlation co-

efficient, p, between temperature and species. The Statistics I Pac for the

Hewlett Packard 41C programmable calculator was employed. This pac utilizes

an approxima lClc expression for the correlation coeffecient.

Pairs of data points for t and xH 2 , at corresponding values of X/0 up

to approximately 130 were chosen. It was found that p 	 -0.99 is the value

consistently calculated. It is assumed that this result is the same for in-

stantaneous values of temperature and concentration. A similar procedure

is followed with the use of data from ref 3, and identical results obtained.

The results obtained using the modified bivariate Gaussian pdf, eqs (7) and'(8)

are compared with the reaction rate amplification ratio of eq (9), determined

by use of the beta pdf, in which only the effect of temperature fluctuations on

the reaction rate is considered. This amplification ratio is equivalent to

the reaction rate constant amplification ratio utilizing the beta pdf presented

in refs I and 4. A comparison of these two reaction rate amplification ratios

allows the combined effects of temperature and species {Fluctuations to be compared

6



with the temperature fluctuation-only effect, The cases considered are those

which involve the variation of the following: mean dimensionless temperature

and mean species concentration, dimensionless temperature and species concen-

tration fluctuations, the correlation coefficient, the relationship between

XH2 and trT, and the maximum temperature.

All numerical integrations were performed with the use of a Monte Carlo

(random variable) technique. The number of random variables utilized is twenty-

thousand (2 x 10 4 ). This number ensures that essentially no truncation error

is incurred. There is a limit on the modified bivariate Gaussian's range of

applicability, generally in the region of low temperature and species concen-

tration fluctuations, as well as nigh mean temperature and correspondingly low

mean species concentration. This is due both to the mathematical behavior of

the function and the formulation of the model. These limitations are reflected

in the results which follow.

Shown in Table 1, are the defining values and relationships for the cases

considered. The initial values of concentration are taken from Test Case 1 of

ref 5, All other constants are taken from ref 5 and are considered typical.

Throughout this discussion, the use of the terms "temperature" and "concen-

tration" denote mean dimensionless temperature and mean dimensionless species

concentration, respectively.

Shown in figs	 2 through 6 are the results of the

7



:he amplification ratio of the combined case at first increases, reaches

Table 1 Case Data

Nose

B TA
(OK) Tmoax

K)

vs, trz
^.

1 0 10116 2500 -0.9
2	

2/3:

4 0 10116 3000 -0.9 x	 = 2/3 trz

5 0 10116 2500 -0.8 x 7 - 2/3 t"7

6 0 10116 2500 -0.9 AH2 : 1/2'7'

Note:	 A - 8.4 x 10". 1min r 500 oK, CA 2 a 2.405 x 10'5gMUl/cm3,

CO2 = 1.5 x 10`69mol/cm a , H2 : 1 - t, for all cases

variation of the reaction rate amplification ratio with combined temperature

and concentration fluctuations, at various constant values of temperature and

concentration. Selected results of the temperature-only case (beta pdf) are

shown for purposes of comparison.

Figs 2 and 3 show that at high temperatures and low concentrations, the

amplification ratio of the combined case is greater than that of the temperature

only case. Fig 4 indicates that at moderate values of temperature and concentra-

tion, there are values of the fluctuations that cause the amplification ratio

of the combined case to become less than that of the temperature-only case.

This trend is continued in fig 5, where the amplification ratio of the former

i always less than that of the latter. In all these figures, both cases show

an increasing amplification ratio with increasing fluctuations. In fig 6 for

8



a relative maximum, then decreases as the fluctuations increase . with

't * 0,7, the amplification ratio of the combined case is less than unity

and decreases with increasing fluctuations. The amplification ratio of the

temperature-only case is greater than that of the combined case for both values

of T and increases with increasing 'fluctuations. Inspection of all these fi-

gures shows that the amplification ratios of both cases decrease with increa-

sing temperature and a corresponding decrease in concentration, at constant

values of fluctuations. The following is a postulated explanation for the

behavior of the combined case amplification ratio.

As previously shown (refs X and 4), the effect of temperature fluctuations

is to amplify the Arrhenius reaction rate constant. The consideration of the

effects of concentration fluctuations on the reaction rite involves 'two fac-

tors- which are in addition to this temperature effect. These factors are the

probability of collision between molecules of fuel and oxidizer and the time

available for two adJacent molecules of these types to react. A proper com-

bination of,these two factors allows thi reaction to occur.

At low values of temperature and correspondingly high values of concentra-

tion, the fluctuations of concentration provide an amplification effect that

is in addition to the amplification effect of the temperature fluctuations. This

effect increases as the fluctuations increase (fig 2). This may be interpreted

in terms of a higher effective concentration. While the molecules of fuel and

oxidizer are spending less time, on the average, in individual collision vol-

umes, there is a high enough concentration of them so that the probability of

collision is very high, on the average, and leads to a resultant high overall

probability of reaction. Thus, as a result of the increasing concentration

fluctuations, the probability of collision increases more than the probability

of molecules spending enough time in their collision volumes decreases. As

the temperature increases and the concentration decreases, this effect is re-

9



duced (fig 3). That is, the probability of collision is not as large as at

higher concentrations. Up to this point, the amplification effect of the con-

,	 centration fluctuations is still in addition to that of the temperature fluctu-

ations, Hence, the amplification ratio of the combined case is greater than

that of the temperature-only case, The amplification ratios of both cases in-

crease with increasing fluctuations. At some point, the value of concentration

is not high enough, and an increase in the fluctuations caubes the amplification

ratio of the combined case to become less than that, of the temperature-only case

(fig 4). This is because the effect of the concentration fluctuations at this

value of concentration is to cause a very low probability of two molecules spend-

ing enough time in the required collision volumes. This is not sufficiently

countered by the increased probability of collision caused by the concentration

fluctuations and temperature amplification effect. However, the temperature am-

plification effect is still strong enough to cause the amplification ratio to

increase with increasing fluctuations. This is further demonstrated in fig S.

Eventually, the concentration and probability of collision become small enough

r	 so that at some value of the fluctuations, the amplification ratio decreases

with increasing fluctuations (fig 6). Thus, at this point, the effect of the

temperature fluctuations is not large enough to cause an increase in the ampli-

fication ratio with increasing fluctuations. Finally, the concentration is so

small, the effect of the concentration fluctuations is to cause the mean turbu-

lent reaction rate to become less than the corresponding laminar value. Bence,

an amplification ratio less than unity results (fig 6). Therefore, in a given

region of a flow, there are so few molecules of fuel and oxidizer, the probabi-

lity of any two of them spending enough time in their collision volumes is very

small, as is the probability of collision. This combines, despite the tempera-

ture amplification effect, to give an overall probability of reaction which is

lower than the corresponding laminar value.

Z^
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The situation of a mean turbulent reaction rate which is less than the

corresponding laminar valuh has been observed through a combination of analysis

and experiment in a turbulent premixed flame. This is reported in ref 6. In

that case, calculation of the mean turbulent reaction rate through the solution

of the fuel species probability transport equation results in much better agree-

ment with experiment than the calculated average -temperature laminar reaction

rate. The actual mean turbulent reaction rate is less than the corresponding

laminar value and the use of the probability transport equation predicts this

to be so.

Shown in fig 7 is the variation of the amplification ratio with the maxi-

mum temperature, for the case of combined temperature and species fluctuations.

As seen from the figure, a change in the maximum temperature call cause a very

substantial change in the amplification ratio. An increased maximum tempera-

ture causes a decrease in the amplification ratio. This behavior is similar

at various values of t and xN.

In fig 8 is the variation of the amplification ratio with the correlation

coefficient, for the case of combined temperature and species fluctuations. As

shown, an approximate increase of twelve percent (-0.9 to -0.8) causes only a

very small char,wge in the amplification ratio. The change which does occur is a

decrease in the amplification ratio. This behavior is similar at various values

of t and3 H2 . Figs 9 and 10, comparing p = -0.9 and p = -0.5, further illustrate

the relative lack of sensitivity of V to the correlation coefficient.

Fig 11 shows the variation in the amplification ratio with a change in the

relationship between h2 and Vfor the case of combined temperature and species

fluctuations. As demonstrated, an approximate change of thirty percent (2/3 to 1/2)

causes only a slight change in the amplification ratio. In general, the reduced

concentration fluctuations result in a smaller amplification ratio. This be-
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havior is similar at various values of L and 7H2.

The results represented by Figs 2 through 11 may be summarized by the

following conclusions:

1. The reaction rate amplification ratio of the combined, case

may be greater than, equal to or less than, that of the

temperature-only case.

2. The amplification ratio of the combined case increases with

increasing temperature and species concentration fluctuations,

at low values of temperature and correspondingly high values

of concentration. At high values of temperature and corre-

spondingly low values of concentration, it decreases with

increasing fluctuations. Thus, the model employing the mo-

dified bivariate Gaussian pdf predicts that at an initial

stage of a reaction (low temperature and high concentration)

the combined case mean turbulent reaction rate will be great-

er than the corresponding laminae value. As a reaction pro-

ceeds, this mean turbulent reaction rate will become less

than the corresponding laminar value.

3. The amplification ratio of the combined case shows some sen-

sivity to changes in the value of maximum temperature. Hence,

this value must be carefully selected.

4. The amplification ratio of the combined case is relatively in-

sensitive to : (a) small changes in the correlation coefficient,

(b) moderate changes in the relationship between temperature and

species fluctuations.

12



3, The "Most-Likely" POF

A joint pdf alternative to the modified bivariate Gaussian discussed in

Section 2 is that suggested by Pope (15) and is termed the "most-likely" pdf.

The single-variable form of this pdf is

^t^=r.x 	 ,, o +l.,t +^,, t"I^	 ^C

where the X's are obtained from the following constraint equations:

tI ^ Ct) J t
c	

(1^)

t: t	 W it	 (13)

0
1

t' 
z 

=	 (t 	 (t) d t	 (14)
0 p

F_

(11)

Hence, knowledge of, say, the mean dimensionless

temperature fluctuations permits a determination

(13) and (14). Currently, this one-variable fors

parison with the results obtained using the beta

Multi-variable forms of the most-likely pdf

temperature and the mean square

of an , X, and X 2 using eqs (12),

P is under investigation for com-

and ramp pdf's.

are:

Two-variable r

p ( X I ) xI,= t. exp L ^o f	 x, + ^ i X,f- 3X^X.1
(15)

Three-variable

p^ x i, X I) %3J=7- exp r^^ i- 'NIxi + ^A'zX,7.+	 X3+

X t X i 4- S X i k 3 + ^ 4 x''X3
(16)
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In eq '15), l, o thru X3 are determined from the constraint equations

^ 1

1	 (^ ^
X i > X 	 ^ X ^ +^Xz	 ,	 (17)

0 0

^ 1

dX ^X

1	 ^

X ^	 Xz ' p ^ X i, X z^ d X^ d X L
z

c o	
(19)

1

I
c o	 (20)

In eq (16), X  thru X6 are determined from equations equivalent to eqs (17)

thru (20) for x . , x-, 7Xx'x', 	 x'X', and
1	 2	 3	 1 2	 1 3	 2 3

7	 1 1

J	 !	 X	 X7 X	 a3
v 0 0

The term 1i n  eqs (15) and (16) is an "a priori" probability whose two-

variable form is

—1

CL (x^ X 	 ^1+x}

(21)
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where X is the ratio of the time scale of the turbulence to the time scale

of the reaction; ie,

X - ;^
T

(22)

where 'fT = Kl e, where K is the turbulence kinetic energy and c its dissipation

rate. A determination of the reaction time scale. TR is less clear-cut. In

ref 20, Pope's selection is arbitrary and unexplained. One way of formulating

this term at a particular point in a turbulent flow field might be to construct

an "effective half-life time" at that point from

T  = 1

kc
	

(23)

where k is the rate constant obtained by averaging the rate constants previously

obtained at neighboring points in the flow and a is an average molar concentra-

tion obtained at those neighboring points. For example, for the bimolecular

elementary reaction A + B = C + D, c = (TA cB )^, where TA and TB are turbulent

mean values obtained at neighboring points.

The covariance, eq (20), may be obtained either from a transport equation or,

more simply, from the relationship

1 2	 1	 2

	 (24)

where p is, as in Section 2, the correlation coefficient. Since the results ob-

tained using the modified bivariate Gaussian were relatively insensitive to the

value of p, a value of p = 0.1, is recommended as an initial estimate.

15
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The formulation discussed above requires, therefore, a knowledge of first

and second moments; that is, x^ W 7r7* and 77, along with an estimate of the

parameter X in eq (21). The manner in which this analysis would be incorporated

into a large-scale computer program describing turbulent reacting flowis is dis-

cussed in Section 5. The three-variable formulation closely parallels the two-

variable prubl^:m outlined above and will be discussed in detail in the next Status

Report.

4. A Criterion for Selecting a Temperature PDF in Turbulent Flows

On the basis of comparitive studies which represented turbulent temperature

fluctuations by "clipped" Gaussian, beta-and temperature-ramp pdf's (refs. 1 and

4), it was concluded that amplification ratios are substantially higher in regions

exhibiting ramp-like behavior.

It is anticipated that in cowplex turbulent flow fields, regions will frequent-

ly exist in which ramp-like temperature fluctuations will be present. Outside

these regions, temperature fluctuations may be best represented by, for example,

the beta pdf. Hence, a criterion is required for selecting an appropriate tempera-

ture pdf when making calculations describing turbulent reacting flows. Such a

criterion is developed in this Section.

Temperature fluctuations which exhibit a ramp-like structure have been ob-

served experimentally under various flow conditions. Fiedler (7) studied a

heated two-dimensional mixing layer, i.e., the higher velocity stream was heated

while the external stream had zero velocity and was at ambient temperature. A

turbulent heated jet with a coaxial flowing'stream was investigated^by Antonia,

Prabbu, and Stephenson. ($) La Rue and Libby (9) , and Gibson, Chen and Lin (10)

independently studied the turbulent flow behind a heated cylinder. Ramp-like

temperature fluctuations were observed in all four investigations. Despite the

fact that all these experiments were performed in non-reacting flows, it is assum-

ed that these results can be generalized to reacting flows since ramp-like fluct-
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uations were observed under a wide variety of conditions likely to be encountered

in reacting flows. Gibson et al. believed these types of fluctuations are due

to sharp thermal gradients, with the poiiit of highest temperature of the ramp

occuring at either the downstream or upstream end of the turbulent/irretational

interface depending on the sign of the vorticity of the main flow.

Experimentally obtained temperature signals are shown in fig 12 (7), (8)01(10)

Note the similarity of the ramp-like structure of the signals even though they

were obtained under different flow situations,

Fig 13 shows data obtained by Fiedler (7) . The ordinate is the flatness

factor F (also called Kurtosis) and the abscissa is a normalized distance. Note

that there is a horizontal line through f=3 labeled "Gaussian distribution,"

since the Gaussian pdf has the singular value of 3 for the flatness factor. It

possesses a singular value since there are no adjustable constants, as there are

in the ramp pdf. .

The general trend of the flatness factor in fig 13, is that it has a value

of approximately 3 at the centerline 	 0), decreases to a value near 2, then

sharply increases in the outer edge of the flow field. The same trend was ob-

tained by Antonia et al. (8) , as shown in fig 14. The distance parameter is not

the same as Fiedler's due to the use of different normalizing constants. Note

the similarity between the figs 13 and 14. This trend of the flatness factor

was observed at different axial distances and for different velocity ratios.

This general behavior led Fiedler to hypothesize that the value of 2 was charac-

teristic of the "sawtooth" appearance of the temperature signals. His criterion

was supported by the appearance of ramp-like temperature signals at values of

n near the centerline. For positive values of n (n = 0,0.5), the signals exhibit

a definite ramp-like structure. For these values of n, the value of the flatness

factor lies between 2 and 3. Antonia et al. (8) observed the same phenomenon.

17



Clearly then the flatness factor F can serve as the criterion for specify-

ing when the temperature-ramp pdf should be used in a given region of a tur-

bulent flow field, In order to specify a range of F (around F = 2.0) in which

ramp-like temperature fluctuations will be present, an analysis will be developed

to determine the moments of the ramp pdf.

It will be recalled, refs 1 and 4, that the temperature-ramp pdf is

^j	 1	
r 

b
1-^+^ ^t ^l	 i R tr ^ T	 \^^ r ^ dr*	 (25)

_^	 N

where an asterisked quantity is one which has been normalized by dividing by a

temperature-related

ue of the function. The

( r*):

1 ^
(z6)

constant A*, an upper-case quantity is a dimensioniesc.

function, and a lower-case quantity is a particular val

ramp portion of the fluctuations is represented by PR*

C. R -1

^ 1 
_ + $ c

C^	 ^
R*	 ^ ► ^^ _ r ,^}	 ^	 ac

and the Gaussian portion is:

\	 1	 x L~^
pN ^ Ct^ - r ^` 1 ^ ---^	 ^, e

where c, s and -1 are constants. The moments are given by

.o

n
tt h =

^70 '

Substituting eqs (25), ( 26) and (27) into ( 28) leads to

L C ,^ ")
	 '^ " --;	 e r

c R ^^	 n	 1	 1	 dr+c d t*

18
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From ref 11,
OW	

h	 Q"• J _t t* 111 t	 ^^ ^,,^ e.	 ur
(3©)

Z
(n-x) + (h r -0 

r* (h ^s.) T*^ 
+ 3 r* "-^^ 1-*4

which is valid for n - 1, 29 3 and A. The gamma function in eq (30) can be re-

placed by (11):

-L C (	 i )k I W ^o

(31)
x

where a = 1 -	 and

E^

1	 1	 p

As a result of eqs (30) and (31), eq (29) now becomes

^' ^, 't	 ^ '	
oc' ^,1 - r ^ ^	

C r 
^e
	

^ r #	 32v (	 )

r n }' (^„- ^.1 + ^^ -1, r s tn	 * + 3 r * ^^_ ^* 4 
d r

where the integration limits have been changed to reflect the range of r*.

A Monte Carlo random variable integration technique was employed to carry

out the required integrations. Results for the flatness factor, F, are shown

in figs 15 through 18 for the following ranges of the constants:

^.7

0,75	 < < I, z_S
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The values recommended by Antonia and Atkinson 
(11) 

are 0 . 1.8, o* R 0.25,

c x 1.0 and S v 1.25. Arbitrarily selecting values around these of ±5% 0 the

recommended range for the flatness factor is:

2.0 < F < 2.4

That is, within this range of F, temperature fluctuations should be represented

by the temperature-ramp pdf. Outside this range of F, the beta pdf or some

other appropriate pdf should be used to represent the tomperature fluctuations.

The manner in which this criterion might be incorporated into a large-scale

computer program testing reacting turbulent flows is detailed in Section 5 herein.

5. Discussion of Alternative Models for the Determination of Reaction Rates in

Turbulent Reacting Flows

In order to place into context the models proposed in this Section, the five

principal approaches of current interest will initially be discussed. The approach-

es deferred to deal with the determination of species reaction rates in a turbu-

lent reacting flow.

The first approach involves an expansion of the governing conservation equa..

tions of overall mass, momentum, species and energy in terms of limiting values

of certain parameters. This is described in ref 12. The status of this method

has advanced rapidly in recent years, but the resultant expansions are often found

to be perturbations of laminar flows and thus may only apply to limited cases of

turbulent flows.

The second approach simply utilizes the mean temperature (average, static or

laminar) for the calculation of the Arrhenius reaction rate constant of the parti-

cular reaction under consideration. This is coupled with a modeled effect of the

"unmixedness" on the reaction rate. The term "unmixedness" refers to the situa-

tion in which the turbulent fluctuations of fuel and oxidizer species are so great

that reaction ceases at various points in a flow. This determination of a turbu-
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lent reaction rate is utilized with existing turbulence modeling and is describ-

ed in ref 5. While not entirely neglecting the effects of the species fluctua-

tions, this approach does neglect the effect of the temperature fluctuations and

other possible effects of the species fluctuations on the reaction rate. It has

been shown in ref 13 by means of kinetic theory that the effective activation

energy of any reaction in a turbulent flow is lower than that of the same reac-

tion in an equivalent laminar flow (same mean temperature). This implies that

the effect of the turbulent temperature fluctuations is to present to the flow

a higher effective temperature and amplified Arrhenius reaction rate constant.

The third approach models the turbulent reaction rate based on observed

physical phenomena in a flow. The result of the application of this method is

termed the "eddy break up" model and is described in ref 14. This method lacks

rigor and may be limited by an incomplete understanding of the physical pheno-

i,.ena involved.

The fourth approach utilizes the concept of the probability of temperature

and species as being transportable quantities in a flow. The transport processes

are those of molecular diffusion, turbulent mixing, etc. Thus, a transport equa-

tion, utilizing existing turbulence modeling, can be written in a general form

and solved for specific flows. The resulting probability distribution can then

be used in conjunction with the tools of applied probability theory "o calculate

the properties of a turbulent reacting flow. The modeling process is described

in ref 15 and a transport equation solution procedure is described for example

in ref 16. This method is a tractive from a fundamental paint of view but un-

fortunately, can require large amounts of computer time and storage. This pro-

blem ari,es when it is necessary to consider multistep reaction mechanisms, as

is often the case. This is seen in refs 17 and 18, in which predictions of

nitric oxide formation in the turbulent exhaust from gas turbine combustors are
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made and in ref 5, where it is necessary to consider a twenty-five elementary

reaction mechanism for the supersonic combustion of hydrogen with oxygen.

The fifth approach is similar in principle to that Just described and

has been the sub3ect of the present study. However, instead of solving a

transport equation for probability, a specific probability density function

(pdf) is assumed in particular regions of a turbulent, reacting flow field and

the mean turbulent reaction rate is then determined. This method is attractive

as a solution to the problem of turbulent reacting flow prediction because of its

basis in a fundamental physical concept and its relative computational simplicity,

Within the framework of this "presumed pdf method" (I1) , three models (at

least) may be formulated for the reaction rate:

I. A model which assumes statistical independence between temperature and

species fluctuations, in which temperature fluctuations are represented by appro-

priate pdf's in the various regions of the flow and the effects of species fluct-

uations, are treated using "unmixedness" criteria (5) or some other equivalent

formulation.

I1. A three-variable model which assumes statistical independence between

temperature and species fluctuations, but in which the latter are treated using

a Joint pdf. Thus, for example, for a reaction rate term of the form:

wl	
k(t) 

cA i cAz

this model yields a mean turbulent reaction rate given by:

K(t) p W cl't	 c A^ ^ M ^►x ' C ^► , ^ r+^+l

o	 ^ ^	 (33)

!	 x A l xA 1 1 `xA'1 ' h^^ d 
Al * ^L

0
where it has been assumed that c A	 = 0.

j, min
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III, A three-variable model using a Joint pdf for the temperature and

species concentrations. The form of the reaction rate tem ps in this case is

w
A^ ^..,► +► t	 fK W '.&I	 . p (t	 > X A1^	 (34)

00 
°
	 (it d x0,1 4 IL A.,

The latter two models mentioned above will now be discussed in detail,

In model II, the effect of the temperature fluctuations on the rate constant

is treated using the methods discussed herein and in previous Status Reports (1),

(4)	
In most regions of the flow, the beta pdf, for example, would be used. In

regions wherein the flatness factor is in the range from 2.0 to 2.4 0 the ramp
pdf should be used. By analogy with the temperature fluctuations, (18), (19)

the flatness factor may be determined from a transport equation of the form (18);

x a^ y ay ^A ^ y ay

	

a O 17-
	 p K,/ ^	 (35)

C 3 t	 C4 /

where 0 5 L/('±). Assuming local equilibrium exists, the generation and dissi-

pation terms on the right-hand-side may be set equal, leading to

	

C3	 % ^0
r %
	

(36)y
where the equality u = pKh t has been used. It will be recalled (19) that Tm

can be obtained from a similar relationship:

C,
t= Ci

L a t ^'
(37)
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The constants L 9 c
1
, c z , c

3 
and c . must be determined empirically.

The ,point pdf for the species in eq (33), p (xAl , xA2 )
0 
might be taken to

be of the modified bivariate Gaussian form (Section 2) or of the "most-likely"

Of form (Section 3). That is,

where q, ?, , % I , X2o and X; are obtained using the methods described in Section

llerei:ii.. Clearly, for a chemical system of some complexity, these methods would

require inordinate quantities of computer time. A preferable procedure would be

to obtain in advance a tabular art-ay or polynomial curve fits from which value of

the coefficients of p can be obtained by inputing XA1 , 'xA2 , `xti , xA and X (the
ratio of turbulent-to-reaction time scales). Then, using data from adjacent modes,

estimates of the input parameters can be used to enter the table or to use the

curve fits to obtain q, XO X10 X2 and %a. The reaction rate terms are next cal-

culated using eq (33) for each term; then the reaction rate itself is determined

from the summation of the individual terms. That is, for a set of bimolecular
elementary reactions of the general form

K, aak3 +04A4.
-1

the laminar reaction rate of, say, species A l is

w	 = -k l c c	 + i^._ c c -..
A l	Al A2	 1 A3 Aa

and the °turbulent reaction rate is

w 
1= -w"Al + w_i,"A1
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f.

where 
w3,AI 

is given by eq (33) and the remaining terms, w-1,A1, w2A1 , etc * are

given by expressionsequivalent to eq (33). Here again, the concept of using a

tabiolar array or curve fits will serve to eliminate the necessity for repeated

integrations of a	 33 . That is after selection of the appropriate 	 t usinr	 g	 4(	 )	 ^P( )	 9

the flatness factor criterion, a table will be entered with L T' 2 , KAi , icA2 0 xAl,

A and X to obtain:

K, W PWat	 X4 1 1% pCXA,, XA,I d y►^^^X„1
1	 W1 ) A 1	 o	 0 0

1. 1

1,A^ L

Since w	
= -k%&
	 is readily determined using existing procedures (5) , w

1.A1	 1 A l A 2	 19A1

and like terms can be calculated.

A major near-term task under this grant is the determination of values of

'(t 	 t'`,	 xAl,
xA2'

xA , xA2 , X).

The third model mentioned earlier is a three-variable model	 in which a joint

pdf is employed for both temperature and species fluctuations; ie, p(t, xAl , xA2).

In this case, the pdf will be assumed to be given by the following 1:^tree-variable

form of the "most-likely pdf":

(t x	 x	 _ q"' P- X p ^c + n, t +. ),. z XAi +

311 AZ ^- 
4
t X A ^ + ^ S C X AL+ ^t. 

XA l X A%	 (40)

where the method for obtaining q and the constraint equations for X o , al, ...9 X6

are similar to those detailed in Section 3 herein. As with model II above, the

amplification ratio -P1^A1= w1.A'/w1^A1 can be determined a priori as a function of

xx , T x7T TFUI T'' and X and set up in the form of a tabular array or
Al A2	 Al	 A2 Wk

curve fits for use in large-scale computer programs.



It will be noted that the models discussed above require values of the mean

square species fluctuations, x 2 as well as the mean square temperature fluctua-

tions. As is the care with the latter, transport equations for the species fluc-

tuations could, conceptually, be introduced for each species as was done in ref 5

for the fuel and oxidizer. The general form is

+^v a9`'
^X	 dy y

a ^ ^ aye
4^	 J

(41)

where the symbols are the same as in ref 5 and gj w- 	 I n actual practice,

computer time and space restrictions wil'i generally militate against the addition

Of these differential equations, particularly when detailed chemical kinetics are

involved. In light of the other uncertainties in the analysis, it is argued that

a local equilibruim assumption is in order, similar to that used to obtain eq (36),

its which case eq (41) reduces to

9^	 ^y	 ay	 (42)

Attention will be focussed during the forthcoming semi-annual per4p od on the

Model II problem discussed above. In addition, a one-dimensional, temperature-

only form of the "most-likely" pdf:

(t) ev. p X0* ^, 1 t 4- *XXtz )p 
will be investigated for comparison with the beta and ramp pdf models.
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LIST OF SYMBOLS

A	 pre-exponential factor, eq (7)

Aa	constant used in eq (25)

a duct radius

3 temperature exponent, eq (7)

G molar concentration; constant

C constant; molar concentration; constant in eq (26)

F flatness factor or Kurtosis

f (x,y) two-variable pdf

g

,a
rms species fluctuation

k (t) Arrehenius reaction rate constant
^i

k1 constants

L Prandtl mixing length

4 Prandtl mixing length

p (t) one-variable pdf

p (x,y) two-variable pdf

q "a priori" probability, eq 	 (21)

r radial coordinate
a

T temperature

TA "activation temperature" ratio of activation energy
to gas constant

t dimensionless temperature

U axial velocity

U, v two-dimensional or axisymmetric velocities

v defined in eq (2)

w reaction rate

X	 ratio of turbulences-to-reaction time scales, eq (22)
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x	 dimensionless molar concentration

X 0 y	 two-dimensional or axisymnetric space coordinates

rate constant "amplification ratio," eq (9)
i

reaction rate "amplification ratio," eq (8)

'	 constant in eq (26)

R	 constant in eq (26)

E	 dissipation rate of the turbulence kinetic energy

parameters in the "most-likely" pdf

►^	 turbulence kinetic energy

P	 correlation coefficient; mass density

u	 Gaussian mean

cr	 Gaussian rms fluctuation

e	 defined after eq (35)

T	 time

Subscripts

{3, species index

F fuel

k laminar value

max maximum value

min minimum value

0 oxidizer

R reaction

T turbulent

t dimensionless temperature; turbulent value

X dimensionless molar concentration

F_-
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0

Superscripts

initial value

quantity normalized by dividing by Aa
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