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SUMMARY

The development of a potential-flow/boundary-layer method for calculating
subsonic and transonic turbulent flow past airfoils with trailing-edge separa-
tion is reported. A moment-of-momentum integral boundary-layer method is used
which employs the law-of-the-wall/law-of-the-wake velocity profile and a two-
layer eddy-viscosity model and ignores the laminar sublayer. All integrals
across the boundary layer are obtained in closed form. Separation is assumed
to occur when the shearing-stress velocity vanishes. A closed-form solution
is derived for separated-flow regions where the shearing stress is negligible.
In the potential-flow method, the exact form of the airfoil boundary condition
is used, but it is applied at the chord line rather than at the airfoil surface.
This allows the accurate computation of flow about airfoils at large angles of
attack but permits the use of body-oriented Cartesian computational grids. The
governing equation for the perturbation velocity potential contains several
terms in addition to the classical small-disturbance terms.

INTRODUCTION

This paper reports on the development of a potential-flow/boundary-layer
method for calculating two-dimensional subsonic and transonic separated flow
past airfoils. The form of separation which is discussed is the turbulent
trailing-edge type. Previous potential-flow/boundary-layer treatments of
the trailing-edge separation problem (refs. 1 to 6, for example) have been
restricted to low-speed flow. Previous treatments of the transonic trailing-
edge separation problem (ref. 7, for example) have used solutions to the Navier-
Stokes equations, which are very expensive to campute,

The present method was developed to show that it is possible and feasible
to calculate separated flow past relatively thick, cambered airfoils with angles
of attack near stall and fairly large subsonic free-stream Mach numbers up to
the drag-divergence Mach number. These are the conditions under which many
rotorcraft and aircraft airfoils operate. It is not the intent at this time
to discuss leading-edge separation or shock-induced separation (separation at
the shock wave). The basic conclusion of the present report is that it is, in
fact, possible and feasible to calculate transonic flow past airfoils having
trailing—-edge separation with a potential-flow/boundary-layer method.

The boundary-layer and the potential-flow methods which are used are
described in the next two sections. The methods are coupled in that the
boundary-layer method uses edge-velocity distributions computed fram the
potential-flow program, and the potential-flow program uses a displacement
thickness and a separation-point location determined by the boundary-layer
method.



SYMBOLS

A,B,C coefficients of potential-flow governing equation

a speed of sound

aij,bi,ci coefficients of boundary-layer equations (i = 1,2,3 and
j =1,2,3)

B law-of-the-wall boundary-layer coefficient

C; lift coefficient

Cp pressure coefficient

Cp* sonic pressure coefficient

c airfoil chord

C3*,E3 normalized forms of c3 for uw* =0

di coefficients in equation for gradient of displacement thickness

(i =1,2,3,4)

I1/e00/1I5 definite integrals

K coefficient in Clauser model for eddy viscosity

M Mach number

P pressure

Rg transition point Reynolds number based on momentum thickness
S Sutherland temperature parameter

u,w transformed velocity components

u,w x and z velocity components

u*,us law-of-the-wall and law-of-the-wake velocity parameters

v perturbation velocity parameter

Vg free-stream speed

X,z Cartesian coordinates for chordwise and normal directions in

inviscid treatment and for tangential and normal directions in
boundary-layer treatment

a angle of attack



edge-velocity gradient parameter
circulation

ratio of specific heats
intermittency factor

increment added to aj3
increment added to c3

mesh spacings in x and z directions

boundary-layer thickness in transform plane (distance from

surface at which U = U,)
boundary-layer thickness parameter in physical plane
boundary-layer displacement thickness
eddy viscosity
eddy viscosity in inner layer

eddy viscosity in outer layer

normal and tangential boundary-layer coordinates in transform plane

value of n where U =0

boundary~layer momentum thickness
law-of-the-wall boundary-layer coefficient
turbulent viscosity

kinematic viscosity

coefficient used in starting solution to relate u* and w

density

density at wall

single-variable velocity potential in transformed plane
single-variable velocity potential in physical plane

perturbation-velocity potential



Subscripts:

e boundary-layer edge

i interface between inner and outer layers of boundary layer
s separation point

te trailing edge

© free stream

I+

upper and lower surfaces of airfoil

INTEGRAL BOUNDARY-LAYER METHOD FOR TURBULENT FLOW
Derivation of Equations

The present boundary-layer method is a simplified form of the turbulent-
flow integral method of Kuhn and Nielsen (ref. 8), which is a refinement of the
method of Nash and Hicks (ref. 9). The equations which are solved are the
momentum equation, the moment-of-momentum equation, and a boundary-layer edge
condition. The present model, like the model of reference 9, does not include
the laminar sublayer. The wall is assumed to be adiabatic and the turbulent
Prandtl number to be 1 so that the total enthalpy is constant across the boundary
layer. The Reynolds stress is approximated with an eddy-viscosity model which
is like the Cebeci-Smith model (ref. 10) but does not contain laminar-sublayer
terms. Compressibility is accounted for with the Stewartson transformation
(ref. 11) as in reference 8.

The fact that the laminar sublayer can be ignored in the present integral
treatment of separated flow may appear unusual to researchers acquainted with
finite-difference solutions to the boundary-layer and Navier-Stokes equations.
The influence of the sublayer on the physical solution diminishes as separation
is approached because the sublayer thickness decreases whereas the boundary-
layer, displacement, and momentum thicknesses increase rapidly. As a result,
the physical error incurred by neglecting the laminar sublayer at separation
is actually less than that incurred in the attached-flow region. However, for
finite-difference treatments of the separation problem, the influence of the
sublayer on the numerical solution increases drastically because some minimum
number of grid points must be maintained within the shrinking sublayer at the
same time that the boundary layer as a whole is increasing rapidly in thick-
ness. Thus, in finite-difference solutions of the separation problem, resolu-
tion must be increased in a region of diminishing physical importance at the
same time that higher resolution is needed for physical reasons in other parts
of the solution domain.

The continuity, momentum, and energy equations which govern the turbulent
compressible flow under consideration are
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where x and 2z are the tangential and normal coordinates, u and w are

the respective velocity components,

density, and the

The pressure, density, and speed in the free stream are designated as Py P

and Ve

Pr P, and Yy are the pressure, the
ratio of specific heats, and Ut is the turbulent viscosity.

!

The transformed coordinates for the present version of the Stewartson

transformation are -
Qe
g = — dx (4)
aCD
and
N == 5’ 2 az (5)
aco poo
where a is the speed of sound and the subscript e designates boundary-layer

edge conditions.

and

The transformed velocity components U and W are

u (6)
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is the eddy viscosity.

Coles' law-of-the-wall/law-of-the-wake velocity profile (ref. 12), which is
used in the present method, can be written as

1 u* ~ b
U=u*—ln<L>+B +uBsin2<-2-g> (11)

K \)co

where § 1is the boundary-layer thickness (distance from the wall at which

U =1Ueg), u* and ug are the wall and wake velocity parameters, veo is the
free~stream kinematic viscosity, and k and B are constants which are

given the values 0.41 and 5.00, respectively, in this report. Note that at the
boundary-layer edge, equation (11) has the form

o1 su* -
Uas=u}-1In{— |+ B| + ug (12)

K Ve



and that the derivative of equation (12) with respect to £ can be written as
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where
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Note also that the boundary-layer displacement thickness 6* and momentum
thickness 6 can be written as
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where 6, is the transformed value of § in the physical plane, M is the
Mach number, and the definite integral Iy is
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The factor p_a_/Pede can be evaluated with the equation
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A two-layer eddy-viscosity model is used which is similar to the Cebeci-
Ssmith model (ref. 10) but which does not have viscous sublayer terms. In the
inner layer a Prandtl mixing-length model of the form

au ~ poo au
€ = g5 = k2z22[—| = «2n?[—)|— (21)
0z p an

is used. In the outer layer the Clauser model, which can be written as

Q0

.~ ae -
€ = €5 = Rug8™y = K[ — |U 8"y (22)

is employed, where K is a constant which, in the present method, is given the
usual value of 0.016, and Y 1is the intermittency factor.

In this report the intermittency factor is approximated with two line
segments as

Y =1 (n

A
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<

(23)
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This simple approximation is compared with the experimental data of Klebanoff
(ref. 13) and with the more elaborate empirical expressions of Klebanoff and
of Cebeci-Smith (ref. 10) in figure 1.

As in most two-layer models, the switch from the inner to the outer-layer
form is made at the point where the values of two forms are equal, that is,

€i = €° (24)

In general, this point is located in the interior of the boundary layer where
the intermittency factor is 1 and the density is approximately equal to the edge
value. With equations (11), (21), and (22), equation (24) can be written as

TTUB ni>2 ("ni> u*ni peae Kd*
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where Ty is the outer limit of the inner layer.

In the present method the differential equations which are solved are the
integral forms of the momentum equation and the moment-of-momentum equation.
With equations (8) and (11) the integral form of equation (9), the momentum
equation, can be written as
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where p, is the density at the wall. The ratio py/p, is given by the

equation
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Similarly, the moment-of-momentum equation can be written as
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The treatment of the shearing-stress integral in the term c3 is one of
the distinguishing features between the present method and the preceding methods
of Kuhn and Nielsen (ref. 8) and Nash and Hicks (ref. 9). In reference 9 the
term was approximated as a perturbation about the value for equilibrium flow.
In reference 8 the integrals across the boundary layer were evaluated numerically
because of the complexity caused by the inclusion of the laminar sublayer terms.
In the present method the shearing-stress integral is integrated in closed form.

An additional approximation is made in order to evaluate the integrals in
equation (38). The ratio p/p, is

o) Pe/Py .
_— = (40)
Peo (y - 1M 2
1+ U2 - U2>
2v°°2
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In the present method it is assumed that for subsonic and transonic Mach numbers

the ratios p/p, and o /p can be approximated as
o Pe (y - )M 2
— = =1 - — % (y 2 - y2) (41)
P P 2v_2

and
— 3 = -y - N—=(2 - u2) (42)
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With equations (11), (23), (41), and (42), the term c3 in equation (38) is
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where Uj is the value of U at the point n = Nj. In regions where the flow

is separated the term
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must be added to equation (43) to account
term on the right side of equation (38).
designated nj. It has been assumed that

The quantities § and U, are more
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for purposes of numerical integration.
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If ajj|« the determinagt of the coefficient matrix for equations (45),
vanishes, the derivatives du"/dx, duB/dx, and d5/dx become unbounded. This
type of behavior is expected for a direct boundary-layer solution at a separa-
tion point, but it is not expected before separation occurs. However, because
of the approximate nature of the present treatment, the determinant for the
present method vanishes at a point just upstream of separation as well as at
the separation point. In order to improve the behavior of the numerical solu-
tion, the moment-of-momentum equation is manipulated so that the resulting coef-
ficient matrix does not vanish until the separation point is reached. The
manipulation consists of adding the quantities

1/1 1 3/1 4 /1 a2
== =+ |=[- -1y + 1]+ —|~+ 14
2\8 11'2 4\4 m2\4 Kan
Aazz = - ug 2 (50)
aj2
1 = 4I4

Kall

and

das
Ac3 = Aajzj P (51)

to equations (36) and (43). The effect of this manipulation is to lag the
solution for the derivative d§/dx.
Starting Solution
In order to start the numerical integration of the boundary-layer equations
it is necessary to obtain the initial solution for u*, ug and § at the

transition point. This solution is determined by iterative solution of equa-
tions (12), (18), and the equation

2 *
ug = - Tu (52)

14




for a specified value of the transition-point Reynolds number based on momentum
thickness Rg. An expression for the quantity I is obtained from reference 14

as
4 1 3/4
I=-(8+- (53)
5 2
where
PeusS” dug
B = - > 5—— (54)
pu*s
The momentum thickness is related to the Reynolds number based on momentum
thickness by the equation
0 = VeRg/ug (55)
where
T + S
[oe]
\Y)
“\Te + S
Vo = (56)
Te \(5-3Y)/2(¥-1)
Tco

where T and T, are the free-stream and boundary-layer-edge temperatures,
V, 1is the free-stream kinematic viscosity, and S 1is the Southerland temper-
ature parameter. The transition-point Reynolds number based on momentum thick-

ness is generally given a value of 320.

Integration of Equations in Attached-Flow Region

The solution for the quantities u*, ug, and § is advanced downstream
in the attached-flow region by numerical integration of equations (45). A
second-order predictor-corrector technique is used in the integration process.
The edge velocity u, and the gradient of the edge velocity are obtained from
the current inviscid solution. The numerical integration is terminated at the
separation point, where u* vanishes.

It it interesting to note that the differential equations do not depend
explicitly on the kinematic viscosity. Therefore, the Reynolds number influ-
ences only the starting solution explicitly. This result is a consequence of
ignoring the laminar sublayer.

15



In the present method there are two options for evaluating the law~of-the-
wake velocity parameter ug. The most obvious procedure is to use the value
obtained from the integration of equations (45). The second procedure is to
use equation (12), which is the integrated form of the first of equations (45).
The second procedure reduces errors incurred in numerical integration which tend
to be disruptive as the separation point is approached and the determinant of
the coefficient matrix ai-l approaches zero. Another advantage to the use
of equation (12) is that it makes the solution explicitly dependent on the kine-
matic viscosity and hence the Reynolds number.

In regions where the inviscid flow is expanding, the parameter ug
approaches zero but should not become negative. If the numerical procedure
discussed previously predicts a negative value for ug, the quantities ug and
dug/dx in the second and third of equations (45) are given values of zero, and
these equations are solved for du*/dx and da6/dx and hence for u* and 8.

Integration of Equations in Separated-Flow Region

It has been pointed out in references 8 and 9 that numerical solutions to
boundary-layer equations posed in the form of equations (45) are not stable in
regions of separated flow. However, stable solutions can be obtained if the
law-of-the-wall velocity parameter u* 1is prescribed and equations (45) are
solved for the quantities ug, §, and ug (or Ug).

The present method is intended for use in treating flow about airfoils with
trailing-edge separation. It is well-known empirically that the reverse-flow
speed is small relative to free-stream speed in most trailing-edge separated
flows. Therefore, it is assumed in the present method that u* is zero in
separated-flow regions. It follows from the first of equations (45) that du*/dx
is also zero in these regions. It is also assumed in the present method that the
entire region from the first separation point detected to the trailing edge is
separated.

When u* and du*/dx are zero, the quantities ug and duB/dx are equal
to Ug and dUg/dx, and the second and third of equations (45) can be written
as

- —— 4 o —— = (57)
§ dx Ug dx

and
3 1\1 a8 1 1\1 dUe c3 .
_____ + 20 - =\ — = = (58)
16 -n'Z(SdX 4 HZUedx 6

where
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C3 = — — (59)

The quantity 53 depends only weakly on U, and is considered constant in the
present treatment.

There is a simultaneous closed-form solution to equatlons (57) and (58)
which can be written as follows:

§ =850 + c3%(x - xg)) (60)
and

Ue,s
Ug = (61)
1+ C3*(x - xs)]]/6

where Gs' Ue’s, and xg are separation-point values and where

. 4812 €3
c3* = ————— = (62)
(512 - 32) Ss

The quantities {§g and xg are determined from the boundary-layer solution.
However, the quantity Ug,s 1is determined from the inviscid solution in order
to couple the viscous and inviscid solutions and to facilitate convergence.

In order to derive an expression for Ue gr a single-variable velocity-
potential function ¢ is introduced which is related to the edge velocity in
the transformed plane U, by the following equation:

Up = — (63)

With equation (61), equation (63) can be integrated to determine the function 6.
The following equation for Ue,s 1is obtained from this function evaluated at
the trailing edge:

5 c3* (bte = 2g)
Up g = = = (64)
T8 [1 4+ 3t (xpe - %5)]5/6 - 1
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where &g is the separation-point value and Pre and xpe are trailing-edge
values. The value given by equation (64) and the value of U, at the separa-
tion point converge as the inviscid solution converges.

In order to obtain the solution for the edge velocity in the physical plane
ue, this quantity is associated with a single-variable velocity-potential func-
tion @, and it is noted that Uy (and hence ug) does not vary a great deal
in separated-flow regions. It follows that

Pte = Ps
ue=dip=d—¢ue2——0e (65)
dx  ad Bre - O
or
*
5 c3” (Pre = Ps)
Up = g (66)

(1 + c3*(%Xpe - X 11576 - N[1 + ¢ *(x - x )]]/6
3 te s 3 s

The evaluation of the velocity potentials ¢te and ¢g is discussed in the
section of the paper entitled "Approximate Potential-Flow Method." Equa-
tion (66) is used to evaluate the quantity ug in equation (97) for the
Dirichlet boundary conditions for the inviscid solution in the separated-flow
region.

It has been found that equation (66) tends to overpredict the variation of
ue for incompressible and low-speed conditions for which it is well-known
empirically that u, is almost constant. Therefore, the present method con-
tains an option to evaluate ug in the limit as C3* vanishes. This value is

Pte — Ps
Ue = (67)

Evaluation of Displacement-Thickness Gradient

In the attached-flow region the inviscid solution is influenced by the
boundary-layer solution through the quantity as*/dx, the gradient of the
displacemnt thickness. It is common practlce to determine &* from the
boundary-layer solution and then obtain as* /dx by numerlcal differentiation.
In general, this procedure produces eratic variations of as* /dx  which must
be smoothed.

In the present method the gradient a8*/dx is calculated directly from

the gradients of u* r g, §, and Ugs. The expression for this gradient,
which is the derivative of equation (17) with respect to x, is

18
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It is not necessary to smooth the values obtained from equatlon (68) with respect
to =x. However, it is necessary to relax the values of as* /dx with respect to
the inviscid-solution iteration varlable near the trailing edge. Equation (68)
is used to evaluate the gradient as* /dx in equations (95) and (96) for the
Neumann boundary conditions for the inviscid solution in the attached-flow
region.

Alternate Form of Third Equation
In the present treatment, as in that of Kuhn and Nielsen (ref. 8) and of
Nash and Hicks (ref. 9), the third equation is the moment-of-momentum equation.

An alternate approach involves the use of the integral mean kinetic-energy
equation, which can be written as

19
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- m2n4 {1 - +=—(==mn; + —|[1 + cos | =
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The definite integrals I3, 1I4, and Ig are given in the following equations:

1 =T
I3 =1+ -‘Jq 1n2 (0/m) cos 0 40 = 1.16713 (79)
2T Y529
3 ) O0=T gin (20)
Ig ==~ +I7 +— ————— 30 = 1.39592 : (80)
4 811' 0‘=0 g
, 3 0=T sin sin (30/5)
Ig = M4 |- 11 - — do| = 7.23979 (81)
2m og=0
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In the regions where the flow is reversed, the following quantity is added to
equation (78):

pe u*3 3 'n'2nj2 -n'4nj4 u*zuB
Acz = -x2 —|1n (nj)=— + = n2n52[1 + +
oy 3 4 12 360 / «
3 s 2 , 2>u uB2 116nj6 5 u*2
+ — WIN3%(1 - - TNy + ug® + (Ug - ug)—
16 - ( 9 3/ « Y e ™ U8
- Pe u*2 u*u , u*2
- (Y - MM k4 — —|1In (n4) (ug —- 2Ue¢) + 1In“ (n4) (Ug - ug)—
Poo 2 K K2
*3
1 3 u 1 2 2
* 3 1n (nj)—s- - E(Ue - ug) (202 + 2ugUe - ug?) (82)
K

In order to improve the behavior of the numerical solution near separation
points, the quantities

1 3( ) 177212
— + {=(I7 - 1 - —
64 8 1 4 16| Ka1l 2
Aa33 = - 212 UB (83)
1 - 417 —
Kajj

and AC3 given in equation (51) are added to equations (76) and (78). The
. * . . .
quantity c¢3 in the separated-flow solution is

* - Ei_ 2e 3 (84)

€3

No other changes to the formulation are required.
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APPROXIMATE POTENTIAL-FLOW METHOD

The transonic potential-flow method is the type presented by Murman and
Cole in reference 15. The potential function is determined by solving finite-
difference approximations to the governing equation at the grid points by
successive line-overrelaxation techniques. In the present method a body-
oriented, nonuniform Cartesian grid is used. A schematic representation of
this computational grid is given in figure 2. The present method is unusual
in that the exact nonlinear form of the airfoil boundary condition is used, but
the boundary condition is applied on the airfoil chord line rather than the
actual airfoil surface. This approximate nonlinear boundary condition has the
advantage of the linear boundary condition of small-disturbance theory in that
elaborate mappings of the airfoil are not required in order to apply the boundary
condition at the surface, and yet it does not erroneously force the stagnation
point to always be located at the airfoil leading edge. It should be noted that
the stagnation point needs to be free to move back from the leading edge at the
relatively large angles of attack at which trailing-edge separation occurs. The
Separation point is modeled in the potential-flow method as a free-streamline
separation. Neumann boundary conditions are used on the attached-flow part of
the airfoil and Dirchlet boundary conditions are used where the flow is sepa-
rated. At present, the Dirchlet boundary conditions are constructed using
either an approximate closed-form, separation-region solution or the well-founded
empirical assumption that the pressure in the separation region is constant for
nearly incompressible flows.

In the present potential-flow method various forms of the governing equa-
tion ranging from the full potential equation to the small-disturbance equation
can be treated. 1In general, the governing equation can be written in the form

32¢ 324 32¢
A— +B +C — =0 (85)
9x2 9x 9z 922

where x and z are the coordinates in the chordwise and normal directions

and ¢ 1is the perturbation velocity potential function. Very simple finite-
difference expressions are used in the present method. The derivatives

32¢/3x dz and 82¢/322 are always approximated with central-difference
expressions. The derivative 092¢/0x2 is approximated with a central-difference
expression if the coefficient A is positive and a backward-difference expres-
sion if A 1is negative. Shock waves can be treated either conservatively or
nonconservatively. When the conservative approach is used, the derivative
32¢/8x2 is approximated with the shock operator developed by Murman (ref. 16)
and simplified by Barnwell (ref. 17).

It is well-known that the classical small-disturbance form of the govern-—
ing equations lacks accuracy and that the full-potential equation is difficult
to stabilize when the flow past the airfoil is critical and the procedure
described in the previous paragraph is used. The difficulty with stabilization
is due to the fact that the boundary conditions are not applied at the surface
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and the fact that rotated differencing (ref. 18) is not used. However, a stable
intermediate form has been found during the present investigation which yields
the same results as the full-potential-equation form at nearly critical Mach
numbers. This intermediate form is written with the following coefficients:

Y+ 1 u u?
A=1-M2|cos? o+ 2 — cos o+ — (86)
2 Ve Va?
2 u W
B = -2M “(cos O + — sin a + — (87)
vcn Vco
c=1-m2sin? o (88)

where M_, 0, and Y are the free-stream Mach number, angle of attack, and
ratio of specific heats and where u and w are the velocity components in
the x and 2z directions. For comparison, the coefficients A, B, and C
for the classical small-disturbance equation are

u.
A=1-M2+ (v+ )M 2 — (89)
@
B=0 (90)
c=1 (91)

For the full potential equation the coefficients are

2 Y + 1\/2u u? v - 1\/2w w2
A=1-M2lcos? o+ — cos O +— | + — sin o + — (92)
2 Vo Vel 2 - v 2
(o)
u w
B = -2M_2[cos o + — |(sin a + — (93)
voo v(D
y -1\ /2u u2 v+ 1\ /2w w2
C=1-M°°2sin2a+ - cOos O + — | + — 38in o + — (94)
2 Vo, v 2 2 Ve v 2
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Note that in the present method (eqgs. (86) to (88)), the dependence of A on w
and the dependence of C on u and w have been ignored, and A, B, and C
are correct as infinity is approached. A comparison between results of the
present approximate potential method and those of the full potential method
(ref. 18) is given in figure 3(a). Also shown are results calculated with the
approximate method but with B = 0 (fig. 3(b)). It is clear from the results
that the mixed derivative is an important contributor and should not be ignored.

The approximate Neumann boundary conditions for the attached-flow region of

the airfoil surface for the present method and the full-potential-equation method
are

3¢ dzy g¢&*
- = ]l{vycos 0+ u) — t — -~ V,8in o (95)
9z dx dx

z2=%0 z=%0

where 2z = z,(x) are the equations for the upper and lower airfoil surfaces.
As indicated, these equations are exact in form but are evaluated along the
airfoil chord line. For comparison, the boundary conditions for the classical
small-disturbance equation are

30 dzy g¢&*
—_ =V | % — (96)
oz 2=40 *°\dx dx /.=40

It should be noted that the present method and the full-potential-equation
method both exhibit small-disturbance-like leading-edge singularity problems
when grid points are located too near the leading edge. These problems occur
because the boundary conditions are not applied at the airfoil surface.

In regions where the flow is separated, Dirchlet boundary conditions are
used. One of the forms which is used in the present method is

s=x
b= g + LY (ug - v, cos a) ds (97)
S=Xg

where ¢g and xg are'separation—point values and. ug 1is the boundary-layer
edge velocity. The present boundary-layer method has a closed-form expression
for u,. Therefore, the integration in equation (97) is performed analytically.

The circulation on the airfoil is evaluated with a Kutta condition regard-
less of whether the flow at the trailing edge is attached or separated. This
condition is applied in the form

U, te = U-,te (98)
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which can be written as

¢+(xte + AX) = ¢+(xte = AX) ¢-— (xte + AX) - ¢— (xte = AX)

(99)
2 Ax 2 Ax

where the subscript te denotes trailing-edge values. Equation (99) can be
rewritten as

T = dp(xpe = Bx) = ¢ (Xge — Ax) (100)

where I is the circulation. For attached flow the values of the perturbation
velocity potential function in equation (100) are obtained by linear extrap-
olation, and for separated flow the values are obtained from equation (97).

The surface pressure coefficients are calculated from the following
equation:

1 1
Cp=v+-M2u2 4+ — M43 (101)
P 4 24 @
where
u u w W
v=-—{2cosd +—)|~ —|2sina + — (102)
VCD vw v(!) V(D

This form is accurate at transonic speeds and is a determinate form for incom-
pressible flow.

In the present method, the values of the perturbation velocity potential
at the airfoil surfaces which are used to calculate the surface pressure coef-
ficients are obtained with the following equation: '

ad
¢i(x) = ¢(x,2Az) t Az a_'(xlio) (103)
¥4

where the derivatives 0d¢/0z are evaluated with equations (95). This form of
extrapolation is also used for the full-potential-equation method. However,
for the small-disturbance form the surface perturbation velocity potentials are
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evaluated with linear extrapolation. (It is interesting to note that neither
extrapolation procedure seems to work for the other form of the governing
equation.)

The single-variable velocity-potential function ¢, which is defined in
equation (65) is related to the surface perturbation velocity potential func-
tion ¢ by the equation

¢ =V xcosa + ¢ (104)

This equation is used to determine the separation-point value ¢g and the
trailing-edge value @ which appear in equations (66) and (67). At the
separation point ¢ is evaluated with equation (103) for both the present
method and the full-potential-equation method and with linear extrapolation
for the small-disturbance method. At the trailing edge ¢ is evaluated with
linear extrapolation for all methods.

It should be noted that the incompressible limit of the present
perturbation-velocity-potential method for separated flows was presented in
reference 19. The advantages of the present method are its accuracy and the
ease with which boundary conditions can be applied. The present method should
be useful for accurately calculating flow past three-dimensional configura-
tions, for which it is extremely difficult to enforce boundary conditions at
wing surfaces.

RESULTS

Results computed with the present method for the lift curves of the
NACA 0012 airfoil at free-stream Mach numbers of 0.15, 0.30, and 0.50 and
Reynolds numbers of 2.0 x 106 and 6.0 x 106 are compared with experimental
results in figure 4. Experimental results for free-stream Mach numbers of
0.15 and 0.30 were obtained in the Langley Low-Turbulence Pressure Tunnel (LTPT)
by Charles L. Ladson (unpublished), and results for free-stream Mach numbers
of 0.30 and 0.50 were obtained in the Langley 8-Foot Transonic Pressure Tunnel
(8-Ft TPT) by Charles D. Harris (unpublished).

The results for the variation of the lift coefficient C; with angle of
attack at the lowest Mach number are essentially the same as results for incom-
pressible flow. In the experiment, the boundary layer was tripped at points on
the upper and lower surfaces 0.05c downstream of the leading edge. 1In the com-
putation, the lower-surface boundary layer was tripped at 0.20c to avoid the
numerical difficulties caused by starting the boundary layer ahead of the stag-
nation point, and the upper-surface boundary layer was again tripped at 0.05c.

The first computations at a free-stream Mach number of 0.30 were made with
the boundary layer tripped at the same points discussed previously. These
results, which were in sharp contrast to the experimental results at this Mach
number and which are not shown in the figure, were almost the same as the incom-
pressible results. An examination of the pressure distributions revealed a

27



shock wave at 0.025c behind the leading edge on the upper surface for large
angles of attack. Because this shock wave was located ahead of the upper-
surface transition point, no shock-wave/boundary-layer interaction could occur.
When the upper-surface transition point was moved to the leading edge, the
results indicated by circular symbols, which are in excellent agreement with
experimental results, were obtained. These results demonstrate that the decrease
in maximum lift coefficient with increasing free-stream Mach number is due to
a shock-wave/boundary-layer interaction. The computational results calculated
with a linear form of the present method are represented by square symbols in
figure 4. These results show that linear methods will not predict accurately
the effect of Mach number on the maximum 1ift coefficient.

The results for a free-stream Mach number of 0.50 were calculated with the
upper—-surface transition point 0.05c behind the leading edge. These computa-
tions, which are in good agreement with experiment, were successful because the
shock wave was located downstream of the transition point.

The pressure distribution for an NACA 0012 airfoil traveling at transonic
speed is shown in figure 5. These results show a shock wave on the upper sur-
face near the leading edge and separation at the trailing edge.

Sample calculations have been made with the alternate form of the present
method, in which the mean kinetic-energy integral rather than the moment-of-
momentum integral is used as the third equation. These calculations show there
is no appreciable difference in the results of the two formulations.

CONCLUDING REMARKS

It has been demonstrated that potential-flow/boundary-layer methods can
be used to calculate transonic flow past airfoils which are experiencing
trailing-edge flow separation. Such methods can be used to determine the
maximum lift coefficient and perhaps the effect of flap deflection on airfoil
characteristics. Also, a transonic potential-flow method with easy-to-apply
nonlinear boundary conditions has been developed. This method may be useful
in calculating flow about winged configurations. Finally, a simple integral
boundary-layer method for compressible turbulent flow with a two-level eddy
viscosity model has been developed.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 23, 1981
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Figure 2.- Coordinate system and computational grid.




Q
D> Present solution

Full-potential solution (Jameson, ref. 18)

x/c

(a) Present solution,

Figure 3.- Comparison of inviscid solutions with full potential
solution for NACA 0012 airfoil. M_ = 0.50; o = 1.00°.
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8} Present solution obtained without mixed derivative

-.8 - —— Full-potential solution (Jameson, ref. 18)
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(b) Present solution obtained without mixed derivative.

Figure 3.- Concluded.
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Figure 5.- Pressure distribution for transonic flow past NACA 0012 with
trailing-edge separation. M_ = 0.50; a = 7.80°.
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