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SUMMARY

The developmentof a potential-flow/boundary-layermethod for calculating
subsonicand transonicturbulentflow past airfoilswith trailing-edgesepara-
tion is reported. A moment-of-momentumintegralboundary-layermethod is used
which employs the law-of-the-wall/law-of-the-wakevelocityprofileand a two-
layer eddy-viscositymodel and ignoresthe laminarsublayer. All integrals
across the boundarylayer are obtained in closedform. Separationis assumed
to occur when the shearing-stressvelocityvanishes. A closed-formsolution
is derivedfor separated-flowregionswhere the shearingstress is negligible.
In the potential-flowmethod, the exact form of the airfoilboundarycondition
is used, but it is appliedat the chord line rather than at the airfoilsurface.
This allows the accurate computationof flow about airfoilsat large angles of
attack but permits the use of body-orientedCartesian computationalgrids. The
governingequationfor the perturbationvelocitypotentialcontainsseveral
terms in additionto the classicalsmall-disturbanceterms.

INTRODUCTION

This paper reportson the developmentof a potential-flow/boundary-layer
method for calculatingtwo-dimensionalsubsonicand transonicseparatedflow
past airfoils. The form of separationwhich is discussedis the turbulent
trailing-edgetype. Previous potential-flow/boundary-layertreatmentsof
the trailing-edgeseparationproblem (refs.] to 6, for example)have been
restrictedto low-speedflow. Previous treatmentsof the transonictrailing-
edge separationproblem (ref.7, for example)have used solutionsto the Navier-
Stokes equations,which are very expensiveto compute.

The presentmethod was developedto show that it is possible and feasible
to calculateseparatedflow past relativelythick, camberedairfoilswith angles
of attack near stall and fairly large subsonicfree-streamMach numbers up to
the drag-divergenceMach number. These are the conditionsunder which many
rotorcraftand aircraft airfoilsoperate. It is not the intent at this time
to discussleading-edgeseparationor shock-inducedseparation (separationat
the shock wave). The basic conclusionof the present report is that it is, in
fact, possible and feasible to calculatetransonicflow past airfoilshaving
trailing-edgeseparationwith a potential-flow/boundary-layermethod.

The boundary-layerand the potential-flowmethodswhich are used are
describedin the next two sections. The methods are coupledin that the
boundary-layermethod uses edge-velocitydistributionscomputedfrom the
potential-flowprogram,and the potential-flowprogramuses a displacement
thicknessand a separation-pointlocationdeterminedby t-heboundary-layer
method.



SYMBOLS

A,B,C coefficientsof potential-flowgoverningequation

a speed of sound

aij,bi,ci coefficientsof boundary-layerequations (i = ],2,3 and
j = ],2,3)

law-of-the-wallboundary-layercoefficient

CZ lift coefficient

Cp pressurecoefficient

Cp* sonic pressure coefficient

c airfoil chord

c3 ,c3 normalizedforms of c3 for u = 0

di coefficientsin equation for gradientof displacementthickness
(i = ],2,3,4)

I],...,I5 definite integrals

K coefficientin Clausermodel for eddy viscosity

M Mach number

p pressure

R@ transitionpoint Reynolds numberbased on momentum thickness

S Sutherlandtemperatureparameter

U,W transformedvelocitycomponents

u,w x and z velocitycomponents

*
u ,u8 law-of-the-walland law-of-the-wakevelocityparameters

v perturbationvelocityparameter

v_ free-streamspeed

x,z Cartesiancoordinatesfor chordwiseand normaldirectionsin
inviscidtreatmentand for tangentialand normaldirectionsin
boundary-layertreatment

angle of attack



8 edge-velocitygradientparameter

F circulation

y ratio of specificheats

y intermittencyfactor

Aa33 incrementadded to a33

Ac3 incrementadded to c3

Ax,dz mesh spacings in x and z directions

6 boundary-layerthicknessin transformplane (distancefrom
surfaceat which U = Ue)

_c boundary-layerthicknessparameterin physicalplane
*

boundary-layerdisplacementthickness

eddy viscosity

Ei eddy viscosityin inner layer

_o eddy viscosityin outer layer

,_ normal"andtangentialboundary-layercoordinatesin transformplane

_j value of _ where U = 0

@ boundary-layermomentum thickness

< law-of-the-wallboundary-layercoefficient

t turbulentviscosity

kinematicviscosity

coefficientused in startingsolutionto relate u* and u8

p density

Pw densityat wall

single-variablevelocitypotentialin transformedplane

single-variablevelocitypotentialin physicalplane

perturbation-velocitypotential



Subscripts:

e boundary-layeredge

i interfacebetween inner and outer layers of boundarylayer

s separationpoint

te trailingedge

free stream

± upper and lower surfacesof airfoil

INTEGRAL BOUNDARY-LAYER METHOD FOR TURBULENT FLOW

Derivationof Equations

The present boundary-layermethod is a simplifiedform of the turbulent-
flow integralmethod of Kuhn and Nielsen (ref.8), which is a refinementof the
method of Nash and Hicks (ref. 9). The equationswhich are solved are the
momentum equation,the moment-of-momentumequation,and a boundary-layeredge
condition. The presentmodel, like the model of reference9, does not include
the laminarsublayer. The wall is assumedto be adiabaticand the turbulent
Prandtl number to be ] so that the total enthalpyis constantacross the boundary
layer. The Reynolds stress is approximatedwith an eddy-viscositymodel which
is like the Cebeci-Smithmodel (ref.]0) but does not containlaminar-sublayer
terms. Ccmpressibilityis accountedfor with the Stewartsontransformation
(ref. ]]) as in reference8.

The fact that the laminarsublayer can be ignoredin the presentintegral
treatmentof separatedflow may appear unusualto researchersacquaintedwith
finite-differencesolutions to the boundary-layerand Navier-Stokesequations.
The influenceof the sublayeron the physicalsolution diminishesas separation
is approachedbecausethe sublayerthicknessdecreaseswhereasthe boundary-
layer, displacement,and momentum thicknessesincreaserapidly. As a result,
the physical error incurredby neglectingthe laminarsublayerat separation
is actuallyless than that incurred in the attached-flowregion. However,for
finite-differencetreatmentsof the separationproblem, the influenceof the
sublayeron the numericalsolution increasesdrasticallybecausesome minimum
number of grid pointsmust be maintainedwithin the shrinkingsublayer at the
same time that the boundarylayer as a whole is increasingrapidly in thick-
ness. Thus, in finite-differencesolutionsof the separationproblem, resolu-
tionmust be increasedin a region of diminishingphysical importanceat the
same time that higher resolutionis needed for physical reasonsin other parts
of the solution domain.

The continuity,momentum,and energy equationswhich govern the turbulent
compressibleflow under considerationare



(pu) B(pw)
+ = 0 (I)Bx Bz

pu- + pw.... + t (2)@x @z @x

and

y p i y p_ ]
+ -(u2 + w2) = _ +

(y - l) p 2 (y - 1) p_ 2 v°°2 (3)

where x and z are the tangentialand normal coordinates, u and w are
the respectivevelocitycomponents, p, p, and y are the pressure,the
density, and the ratio of specificheats,and _t is the turbulentviscosity.
The pressure,density,and speed in the free streamare designatedas p_, p_,
and v_.

The transformedcoordinatesfor the presentversionof the Stewartson
transformationare _

ae= -- dx (4)a
oo

and

aesp=- -- dz (5)
a_ p_

where a is the speed of sound and the subscript e designatesboundary-layer
edge conditions. The transformedvelocitycomponents U and W are

a
co

U =- u (6)
ae

and
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2 aq p a
W = -- -- u + -- --w (7)

ae2 8x P_ ae

The governingpartialdifferentialequationsare writtenin transformvariables
as

au aw
-- +- : o (8)

and

U aT + w -- = ue + -- _ aq/ (9)aT1 dE arl\p_o2

where

_t
= -- (10)

P

is the eddy viscosity.

Coles' law-of-the-wall/law-of-the-wakevelocityprofile (ref.12), which is
used in the presentmethod, can be written as

U = u* In -- + + u8 sin2 (ll)

where _ is the boundary-layerthickness(distancefrom the wall at which

U = Ue), u* and u8 are the wall and wake velocityparameters, v_ is the
free-streamkinematicviscosity,and < and B are constantswhich are
given the values 0.41 and 5.00, respectively,in this report. Note that at the
boundary-layeredge, equation (ll)has the form

Ue = u*[ _ in I_U*I + B1 +us\_)oo/ (]2)



and that the derivativeof equation (12)with respectto _ can be writtenas

du* du8 d_ dUe

a11 d_- + a12 _- + a13 _ = bl _-- (13)

where

all = _ e - u8 + (14)

a12 = bI = u*_ (15)

u.2
a13 =- (16)

Note also that the boundary-layerdisplacementthickness 6" and momentum
thickness 8 can be writtenas

6* __Z=_c < pu > p a _[u* u e][1 1= l P_e dz =- _ + + (7- l)Me2
z=0 Peae L[KUe

[2u.2 3u82 (1+ I1)(u*us)]_

y- I Me2[- +- + (17)2 <2Ue2 SUe2 <Ue2 JJ

and

_Z=6c Pu 11 u_> p_a_ u_<u__e u8

8= - dz=-- _ +--
z=0 PeUe\ Peae 2Ue

<2Ue2 8Us2 _Ue2 JJ (18)

where _c is the transformedvalue of _ in the physicalplane, M is the
Mach number, and the definite integral Il is



] S o--_ sin oI] =- -- do = 0.58949 (191
•n ,J 0 J

The factor p_a_/Peae can be evaluatedwith the equation

(y+l)/2 (3"-1)

Pc°a°°= (20)

Peae +(_) M°°2

A two-layereddy-viscositymodel is used which is similarto the Cebeci-
Smith model (ref. 10) but which does not have viscoussublayerterms. In the
inner layer a Prandtlmixing-lengthmodel of the form

= = ~ K2q2 -- (21)
an

is used. In the outer layer the Clauser model, which can be written as

aI_) ~
€ = eo = KUe6*_ = K Ue6*'_ 1221

is employed,where K is a constantwhich, in the presentmethod, is given the
usual value of 0.016,and _ is the intermittencyfactor.

In this report the intermittencyfactor is approximatedwith two line
segments as

y:l n <- 5
(23)

->-5



This simple approximationis comparedwith the experimentaldata of Klebanoff
(ref.]3) and with the more elaborateempiricalexpressionsof Klebanoffand
of Cebeci-Smith(ref. ]0) in figure ].

As in most two-layermodels, the switchfrom the inner to the outer-layer
form is made at the point where the values of two forms are equal, that is,

Ei = Eo (24)

In general, this point is locatedin the interiorof the boundary layer where
the intermittencyfactor is ] and the densityis approximatelyequal to the edge
value. With equations (]]), (2]),and (22),equation (24)can be writtenas

_us/qih2 <___i)u*q i PeaeK_*
--i--i sin +- = (25)
2Ue\_ / KUe_ O==aooK_

where Di is the outer limit of the inner layer.

In the present method the differentialequationswhich are solvedare the
integralforms of the momentumequationand the moment-of-momentumequation.
With equations (8) and (]]) the integralform of equation (9),the momentum
equation,can be written as

_ e

an

du* du8 d6 dUe

= a2] _- + a22 _ + a23 _- b2 c2 = 0 (26)

where

_iu[ 4 u* - (]+ l])usl] (27)a2] = _ e -L J

_Iu (]+ z]) 3 B1
a22 =2 e- 2 -- u*< - 2 U (28)



a23 = Ue + - u + < u uB + 8 uB2 (29)

b2 = -2_ + (30)

Pw

c2=- ulu*l (31)
P_

where Pw is the densityat the wall. The ratio Pw/P_ isgiven by the
equation

211/(7_])
i + (Y- 1) M

Pw 2 (32)

P_ [1 (Y - 1) 2]Y/(Y-])+2 Me

Similarly,the moment-of-momentumequation can be written as

du* dub d_ dUe

= a31 d_ + a32 d_ + a33 d_ b3 d_ c3 0 (33)

where

__[Ue u* (_ 2 32) I
= + -- + I u8 (34)

a31 < _4 < IT2 2
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a32 --_ -/ e + -- + u (35)
IT2 2 /< 2

a33 = #2/2UeU8+ 2< --4<2 K + _2--+ I u*u8 16 U82 (36)

<2 n=ni n2 p @u 8u _*ae 13=_ 02 Y _ dD (38)C3 = _-" =0 _ _ _ dq + KUe-_--_ _=qi 0o02

and where the definite integral 12 is

S O=_T] - COS12 = - dO = -0.16701 (39)
(_=0 0

The treatmentof the shearing-stressintegralin the term c3 is one of
the distinguishingfeaturesbetweenthe presentmethod and the precedingmethods
of Kuhn and Nielsen (ref.8) and Nash and Hicks (ref.9). In reference9 the
term was approximatedas a perturbationabout the value for equilibriumflow.
In reference8 the integralsacross the boundarylayer were evaluatednumerically
becauseof the complexitycaused by the inclusionof the laminarsublayerterms.
In the presentmethod the shearing-stressintegralis integratedin closed form.

An additionalapproximationis made in order to evaluatethe integralsin
equation (38). The ratio P/P_ is

P Pe/P_
-- = (40)

P_ (y - l)MJ \
+ - ._ u2j

l 2v_2 (Ue2-
i
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In the presentmethod it is assumedthat for subsonicand transonicMach numbers
the ratios p/poo and p2/poo2can be approximatedas

(Y - ])MOO2 )I
~ Pe ] _ _-_, (Ue2 _ U2

p

poopooL 2v_ (41)

and

0!o/°e/ fp2 \_/ -(¥- ,)_(.e_- u2) (4__)

With equations (11), (23), (41),and (42), the term c3 in equation (38)is

"c3 = \ _- +- sin - _ cos u u8
Poo _

<2L24\ _ I - _"-_\_-/ sin - _ COS

[<u) ]}
. 2 ,2

l (y - I)M 2hi .2 u
+- sin u82 + u + -- - Ue2
32n 2v36 i <2

aePe2 _*__ (_) u*

+ KUe in - I - in
a_02 _- K

+ cos + --4_sin [ u8 + (y - I)_-_(Ue2Uivoo\ - -3ui3 - -3ue3

(43)

where Ui is the value of U at the point n = Hi. In regionswhere the flow
is separatedthe term

12



= Me _- U +- sin cos u*u8
p_LL 2 _ _ .

+ <2 4\_ / - _\_-/ sin ]66 cos

+- sin u (44)
327

must be added to equation (43)to account for the absolutevalue in the first
term on the right side of equation (38). The point at which U vanishes is
designated _j. It has been assumedthat nj is less than _i-

The quantities _ and Ue are more difficultto deal with than x and
ue. Therefore,equations (]3), (26),and (33)are transformedinto

du* dub d_ dUe dUe ae
+ ai2 _ + ai3 -- = bI + _ ci (i = ],2,3) (45)

ai] dx dx dx due dx a_

for purposesof numericalintegration. The quantities Ue, Me, dUe/dUe, and
ae/a_ are given by the followingequations:

ue

Ue = (46)

I (y - 1)] + M 2(1 _ Ue2/V 2)
2

U e

Me = -- M_ (47)
voo

(y- i)
1 + M_2

dUe 2
__ = (48)

due ]+ (y- 1)M=2(I-Ue21V_2



and

1+(¥-1)

ae -- 2 -- M_2

....
a ] + 7 Me2 (49)

If laijl,the determinantof the coefficientmatrix for equations (45),
vanishes,lthelderivativesdu*/dx, du_/dx,and d_/dx become unbounded. This
type of behavioris expectedfor a direct boundary-layersolutionat a separa-
tion point, but it is not expectedbefore separationoccurs. However,because
of the approximatenature of the presenttreatment,the determinantfor the
presentmethod vanishesat a point just upstreamof separationas well as at
the separationpoint. In order to improvethe behaviorof the numericalsolu-
tion, the moment-of-momentumequation is manipulatedso that the resultingcoef-
ficientmatrix does not vanish until the separationpoint is reached. The
manipulationconsistsof adding the quantities

_<i 1 I [4<i > _<i II]a12
+ - 11 + 12 + + I

_2 <all
u_2 (50)

Aa33 =- al2
l - 4Il

<all

and

d_
-- (51)

Ac3 = Aa33 dx

to equations (36) and (43). The effectof this manipulationis to lag the
solutionfor the derivative d_/dx.

StartingSolution

In order to start the numericalintegrationof the boundary-layerequations

it is necessaryto obtain the initialsolutionfor u*, u8, and 6 at the
transitionpoint. This solution is determinedby iterativesolutionof equa-
tions (12), (18),and the equation

2
u8 = - IIu* (52)<

14



for a specifiedvalue of the transition-pointReynolds numberbased on momentum
thickness Ro. An expressionfor the quantity _ is obtained from reference]4
as

= - + (53)
5

where

PeUe_* due
B = (54)

PwU,2 dx

The momentum thicknessis relatedto the Reynolds numberbased on momentum
thicknessby the equation

@ = _eR@/Ue (55)

where

e +

_e = (56)

where Tm and Te are the free-streamand boundary-layer-edgetemperatures,
9m is the free-streamkinematicviscosity,and S is the Southerlandtemper-
ature parameter. The transition-pointReynoldsnumber based on momentum thick-
ness is generallygiven a value of 320.

Integrationof Equationsin Attached-FlowRegion

The solutionfor the quantities u*, uB, and _ is advanceddownstream
in the attached-flowregion by numericalintegrationof equations (45). A
second-orderpredictor-correctortechniqueis used in the integrationprocess.
The edge velocity ue and the gradientof the edge velocityare obtained from
the current inviscidsolution. The numericalintegrationis terminatedat the
separationpoint, where u* vanishes.

It it interestingto note that the differentialequationsdo not depend
explicitlyon the kinematicviscosity. Therefore,the Reynoldsnumber influ-
ences only the starting solutionexplicitly. This result is a consequenceof
ignoringthe laminarsublayer.
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In the presentmethod there are two optionsfor evaluatingthe law-of-the-
wake velocityparameter u8. The most obviousprocedureis to use the value
obtained from the integrationof equations (45). The second procedureis to
use equation (12),which is the integratedform of the first of equations(45).
The second procedurereduces errors incurredin numericalintegrationwhich tend
to be disruptiveas the separationpoint is approachedand the determinantof
the coefficientmatrix ]aijI approacheszero. Another advantageto the use
of equation (12) is that'it_makesthe solutionexplicitlydependenton the kine-
matic viscosityand hence the Reynolds number.

In regionswhere the inviscid flow is expanding,the parameter u8
approacheszero but should not become negative. If the numericalprocedure
discussedpreviouslypredictsa negativevalue for us, the quantities u_ and
dus/dx in the second and third of equations (45)are given valuesof zero, and,
these equationsare solvedfor du*/dx and d6/dx and hence for u and 6.

Integrationof Equationsin Separated-FlowRegion

It has been pointed out in references8 and 9 that numericalsolutionsto
boundary-layerequationsposed in the form of equations (45)are not stable in
regionsof separatedflow. However,stable solutionscan be obtained if the
law-of-the-wallvelocityparameter u* is prescribedand equations (45)are
solved for the quantities u8, 6, and ue (or Ue).

The presentmethod is intendedfor use in treatingflow about airfoilswith
trailing-edgeseparation. It is well-knownempiricallythat the reverse-flow
speed is small relativeto free-streamspeed in most trailing-edgeseparated
flows. Therefore,it is assumed in the presentmethod that u is zero in
separated-flowregions. It followsfrom the first of equations (45)that du*/dx
is also zero in these regions. It is also assumedin the presentmethod that the
entire region from the first separationpoint detectedto the trailingedge is
separated.

When u* and du*/dx are zero, the quantities u8 and dus/dx are equal
to Ue and dUe/dx, and the second and third of equations (45)can be written
as

] d6 6 due
- -- + = 0 (57)
6 dx Ue dx

and

(_ _2)_d6 Q4 12)I dUe c3

+ 2 ..... (58)
6 dx _ Ue dx 6

where
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ae c3
= ---- (59)
a Ue2 u*=0

The quantity c3 dependsonly weakly on Ue and is consideredconstant in the
present treatment.

There is a simultaneousclosed-formsolutionto equations (57)and (58)
which can be written as follows:

6 = 6s[] + c3*(x - Xs)] (60)

and

Uets
Oe = (6])

[] + C3*(x - Xs)]]/6

where 6s, Ue,s, and xs are separation-pointvalues and where

. 48n2 c3
c3 = -- (62)

(51T2 - 32) 6S

The quantities _s and xs are determinedfrom the boundary-layersolution.
However,the quantity Ue,s is determinedfrom the inviscidsolutionin order
to couple the viscous and inviscidsolutionsand to facilitateconvergence.

In order to derive an expressionfor Ue,s, a single-variablevelocity-
potentialfunction _ is introducedwhich is relatedto the edge velocityin
the transformedplane Ue by the followingequation:

d_
Ue =- (63)

dx

With equation (6]),equation (63)can be integratedto determinethe function _.
The followingequation for Ue,s is obtainedfrom this functionevaluatedat
the trailingedge:

5 c3 (#te- #s)
Ue,s =- (64)

6 [] + c3*(Xte_ Xs)]5/6_ ]
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where #s is the separation-pointvalue and #re and Xte are trailing-edge
values. The value given by equation (64)and the value of Ue at the separa-
tion point convergeas the inviscidsolutionconverges.

In order to obtain the solutionfor the edge velocity in the physicalplane

Ue, this quantityis associatedwith a single-variablevelocity-potentialfunc-
tion _, and it is noted that Ue (andhence Ue) does not vary a great deal
in separated-flowregions. It followsthat

d_ d_ _te- %°s
Ue .... Ue -_ Ue (65)

dx d_ @te - _s

or

5 c3 (_te- _s)
Ue = _ (66)

6 ([I + c3*(Xte- Xs)]516- ]>[I + c3*(x- Xs)]116

The evaluationof the velocitypotentials _te and _s is discussedin the
sectionof the paper entitled "ApproximatePotential-FlowMethod." Equa-
tion (66) is used to evaluate the quantity ue in equation (97) for the
Dirichletboundary conditionsfor the inviscidsolutionin the separated-flow
region.

It has been found that equation (66) tends to overpredictthe variationof
ue for incompressibleand low-speedconditionsfor which it is well-known
empiricallythat ue is almost constant. Therefore,the presentmethod con-
tains an option to evaluate ue in the limit as c3 vanishes. This value is

•te - _s
Ue - (67)

Xte - xs

Evaluationof Displacement-ThicknessGradient

In the attached-flowregion the inviscidsolutionis influencedby the
boundary-layersolutionthroughthe quantity d_*/dx,the gradientof the
displacemntthickness. It is common practiceto determine _* from the
boundary-layersolutionand then obtain d_*/dx by numericaldifferentiation.
In general, this procedureproduceseratic variationsof d_*/dx which must
be smoothed.

In the presentmethod the gradient d_*/dx is calculateddirectlyfrom
the gradientsof u*, u_, _, and ue. The expressionfor this gradient,
which is the derivativeof equation (17)with respect to x, is

18



d_* du* dub d_ dUe
= dl _ + d2 _ + d3 -- + d4 _ (68)

dx dx dx dx dx

where

aePe U6__e_ [1 2 u* (1 + II)US]_

d] =- + (Y- ])Me2 (69)
a_O < _ Ue 2Ue

aePe _e _ [] (] + If)u* 3u81_

d2 = -- + (Y - ])Me2 -- (70)

a_0 <Ue 4Ue]j

6"

d3 = _- (7])

I"

aUeI(¥+I) MJe 6"

a4--d-UUe_<-2 (y-I) vq] + Me22

aePe[]- (Y - ])M_2]L__ + (72)a_p_

It is not necessaryto smooth the values obtained from equation (68)with respect
to x. However, it is necessaryto relax the valuesof d6*/dx with respect to
the inviscid-solutioniterationvariablenear the trailingedge. Equation (68)
is used to evaluatethe gradient d_*/dx in equations (95)and (96)for the
Neumann boundary conditionsfor the inviscidsolutionin the attached-flow
region.

AlternateForm of Third Equation

In the present treatment,as in that of Kuhn and Nielsen (ref. 8) and of
Nash and Hicks (ref. 9), the third equation is the moment-of-momentumequation.
An alternateapproachinvolves the use of the integralmean kinetic-energy
equation,which can be writtenas

19



du* dub d_ dUe
= -- -- + a33 b3 -- - c3 = 0 (73)
a31 d_ + a32 d_ d_ d_

where

2 \ <2 < 4

a32 = - -_Ue (1+ I])-- + - u + 3 3 -- + 14 -- + -- u8 (75)
2 < 4 <2 < 16

= + (I + Ii)_ +- u8 + 3k_- +a33 2 L _2 < 8 2 K2

\

I4 u'u82 5 .,_

- + u_-_) (76)

36 .2 u*u_ 3 ,,1

= + (1 + ii)__ +_ usZj (77)b3 2- z2 K 8

2O



1 n6ni6 u*2]
_2qi2/u 2 + +

3 2

+ --16_4_i4 - -9 --48 u83 (Ue - uB)_

(y - 1) Pe u*2[ u*uB u.2

+ M_2K2 -- -- Lln (qi)(us- 2Ue)-- + In2 (T]i)(Ue- us)-T-_2 P_ <2 < <2

1 u.3 1 ]
+ - in3 (_i) (Ue - us)(2Ue2 + 2uBUe - u82)]3 <3 3

ae0e2 _* U Ill! 5 (51]u'2 [ I_>

+ K -- In + 15 - 5 sin2
a_0 2 _ e i 2 \3/J_

+ -- sin (2_ i uB (78)
2_

The definite integrals I3, 14, and 15 are given in the followingequations:

13 = 1 + -- In2 (o/_)cos q dq = 1.16713 (79)
2_ =0

3 1 (_0=_ sin (20)

14 = _ + I1 + -- J dq = 1.39592 (80)8_ 0=0 0

3 _o0=_ sin (30/5)
i5 = _2 I1 - -- = 7.23979 (81)

2_ =0 0
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In the regions where the flow is reversed, the following quantity is added to

equation (78):

I .3
u 3 IT2T]j2 _ U* U8

Ac3 = -2<2 in (_j) + _ _2qj2 + +
p_[ <_- 4 ]2 360/ _

3 I] 2 \u'u82 W6qj6 u*2]
_ _ _2q.2J__ +_ u83 + (Ue _ us)I

+ -- W4_J4 ] / < 48
]6 9 < 2 J

Pe u.2 u'u8 u.2

_ (__ ])S 2<2 __p_i<2 (nj)(u_ - 2Ue)--K + In2 (qj)(Ue - u8)<2--

] u ]
+_ in3 (qj)-- - -(U e - u8 )(2Ue2 + 2u_Ue - u_2 (82)
3 <3 3

In order to improvethe behaviorof the numericalsolutionnear separation
points, the quantities

-- + (I] - 14) -64

Aa33 = - u82 (83)
a]2

I - 4I]
<alI

and Ac3 given in equation (51) are added to equations (76) and (78). The,
quantity c3 in the separated-flow solution is

, feecjlc3 --_s';- (84)
U*=0

NO other changesto the formulationare required.
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APPROXIMATEPOTENTIAL-FLOWMETHOD

The transonicpotential-flowmethod is the type presentedby Murman and
Cole in reference]5. The potentialfunctionis determinedby solvingfinite-
differenceapproximationsto the governingequationat the grid points by
successiveline-overrelaxationtechniques. In the presentmethod a body-
oriented,nonuniformCartesiangrid is used. A schematicrepresentationof
this computationalgrid is given in figure2. The presentmethod is unusual
in that the exact nonlinearform of the airfoilboundaryconditionis used, but
the boundaryconditionis appliedon the airfoilchord line rather than the
actual airfoilsurface. This approximatenonlinearboundary conditionhas the
advantageof the linear boundaryconditionof small-disturbancetheory in that
elaboratemappingsof the airfoilare not requiredin order to apply the boundary
conditionat the surface,and yet it does not erroneouslyforce the stagnation
point to always be locatedat the airfoil leadingedge. It should be noted that
the stagnationpoint needs to be free to move back from the leadingedge at the
relativelylarge angles of attack at which trailing-edgeseparationoccurs. The
separationpoint is modeled in the potential-flowmethod as a free-streamline
separation. Neumannboundary conditionsare used on the attached-flowpart of
the airfoiland Dirchletboundaryconditionsare used where the flow is sepa-
rated. At present, the Dirchletboundaryconditionsare constructedusing
either an approximateclosed-form,separation-regionsolutionor the well-founded
empiricalassumptionthat the pressure in the separationregion is constantfor
nearly incompressibleflows.

In the presentpotential-flowmethod various forms of the governingequa-
tion rangingfrom the full potentialequation to the small-disturbanceequation
can be treated. In general, the governingequationcan be written in the form

a2_ a2_ a2_
A -- + B -- + C -- = 0 (85)
ax2 ax az az2

where x and z are the coordinatesin the chordwiseand normal directions
and _ is the perturbationvelocitypotentialfunction. Very simple finite-
differenceexpressionsare used in the presentmethod. The derivatives
a2_/ax az and a2@/az2 are always approximatedwith central-difference
expressions. The derivative a2@/ax2 is approximatedwith a central-difference
expressionif the coefficient A is positiveand a backward-differenceexpres-
sion if A is negative. Shock waves can be treatedeither conservativelyor
nonconservatively.When the conservativeapproach is used, the derivative
a2_/ax2 is approximatedwith the shock operatordevelopedby Murman (ref. ]6)
and simplifiedby Barnwell (ref. ]7).

It is well-knownthat the classicalsmall-disturbanceform of the govern-
ing equationslacks accuracyand that the full-potentialequation is difficult
to stabilizewhen the flow past the airfoil is criticaland the procedure
describedin the previousparagraphis used. The difficultywith stabilization
is due to the fact that the boundaryconditionsare not appliedat the surface
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and the fact that rotateddifferencing(ref. ]8) is not used. However, a stable
intermediateform has been found during the present investigationwhich yields
the same resultsas the full-potential-equationform at nearly criticalMach
numbers. This intermediateform is writtenwith the followingcoefficients:

A = ] - M_2 _ + -- cos (86)
w

Voo

u C.w1B = -2M_2 _ + in e + (87)
v/\

C = ] - M_2 sin2 _ (88)

where M_, _, and y are the free-streamMach number,angle of attack, and
ratio of specificheats and where u and w are the velocitycomponentsin
the x and z directions. For comparison,the coefficients A, B, and C
for the classicalsmall-disturbanceequationare

U

A 1 M_ + (y + 1)M4"= - -- (89)
Voo

B = 0 (90)

c = i (91)

For the full potentialequation the coefficientsare

A=i-M_ os2_+\-q--j\Vcos_+ +\ _-/\vsin_+ c92)

C U W

-2M_2 os _ + -- e + -- (93)B
voo v

[ 'Iv.u>C = ] - M_2 in2 e + cos _ + + kT / sin _ + (94)
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Note that in the presentmethod (eqs. (86)to (88)),the dependenceof A on w
and the dependenceof C on u and w have been ignored,and A, B, and C
are correctas infinityis approached. A comparisonbetweenresultsof the
present approximatepotentialmethod and those of the full potentialmethod
(ref.18) is given in figure3(a). Also shown are resultscalculatedwith the
approximatemethod but with B = 0 (fig.3(b)). It is clear from the results
that the mixed derivative is an importantcontributorand should not be ignored.

The approximate Neumann boundary conditions for the attached-flow region of

the airfoil surface for the present method and the full-potential-equation method
are

--SZZ=+0 = (v°°COS _ + U)kd_--± _/jz=±0 - v°°sin _ (95)

where z = z±(x) are the equationsfor the upper and lower airfoil surfaces.
As indicated,these equationsare exact in form but are evaluatedalong the
airfoil chord line. For comparison,the boundaryconditionsfor the classical
small-disturbanceequationare

°L d1z--±o ±d"Vj .:±o (96)

It should be noted that the presentmethod and the full-potential-equation
method both exhibitsmall-disturbance-likeleading-edgesingularityproblems
when grid points are locatedtoo near the leadingedge. These problemsoccur
because the boundary conditionsare not appliedat the airfoil surface.

In regionswhere the flow is separated,Dirchletboundaryconditionsare
used. One of the forms which is used in the presentmethod is

f S=X
@ = @S + (Ue - v_ COS 5) ds (97)

S=X s

where _s and xs are separation-pointvalues and ue is the boundary-layer
edge velocity. The presentboundary-layermethod has a closed-formexpression
for ue. Therefore,the integrationin equation (97) is performedanalytically.

The circulationon the airfoil is evaluatedwith a Kutta conditionregard-
less of whether the flow at the trailingedge is attachedor separated. This
conditionis applied in the form

u+,te = u-,te (98)
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which can be writtenas

_+(Xte + Ax) - @+(Xte - Ax) @_(Xte + Ax) - #_(Xte- Ax)
= (99)

2Ax 2Ax

where the subscript te denotestrailing-edgevalues. Equation (99)can be
rewrittenas

F = @+(Xte- Ax) - @_(Xte- Ax) (]00)

where F is the circulation. For attachedflow the values of the perturbation
velocitypotentialfunctionin equation (]00)are obtainedby linear extrap-
olation, and for separatedflow the values are obtainedfrom equation (97).

The surfacepressurecoefficientsare calculatedfrom the following
equation:

] ]

Cp = v + 4 M_2v2+ --24M_4v3 (]0])

where

u( w)v = cos e + - sin e + m (]02)
v

This form is accurateat transonicspeeds and is a determinateform for incom-
pressibleflow.

In the presentmethod, the values of the perturbationvelocitypotential
at the airfoil surfaceswhich are used to calculatethe surfacepressure coef-
ficientsare obtained with the followingequation:

2¢
m (x,+_0) (]03)

¢_+(x)= ¢(x,_+Az)_+Az_z

where the derivatives 8#/8z are evaluatedwith equations (95). This form of
extrapolationis also used for the full-potential-equationmethod. However,
for the small-disturbanceform the surfaceperturbationvelocitypotentialsare
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evaluatedwith linear extrapolation. (It is interestingto note that neither
extrapolationprocedureseems to work for the other form of the governing
equation.)

The single-variablevelocity-potentialfunction _, which is defined in
equation (65) is relatedto the surfaceperturbationvelocitypotentialfunc-
tion @ by the equation

= v x cose +@ (104)

This equation is used to determinethe separation-pointvalue _s and the
trailing-edgevalue _te which appear in equations (66)and (67). At the
separationpoint @ is evaluatedwith equation (103)for both the present
method and the full-potential-equationmethod and with linear extrapolation
for the small-disturbancemethod. At the trailingedge @ is evaluatedwith
linear extrapolationfor all methods.

It should be noted that the incompressiblelimit of the present
perturbation-velocity-potentialmethod for separatedflows was presentedin
reference19. The advantagesof the presentmethod are its accuracyand the
ease with which boundaryconditionscan be applied. The presentmethod should
be useful for accuratelycalculatingflow past three-dimensionalconfigura-
tions, for which it is extremelydifficultto enforceboundaryconditionsat
wing surfaces.

RESULTS

Results computedwith the presentmethod for the lift curves of the
NACA 0012 airfoilat free-streamMach numbersof 0.15, 0.30, and 0.50 and
Reynolds numbersof 2.0 × 106 and 6.0 × 106 are comparedwith experimental
results in figure 4. Experimentalresultsfor free-streamMach numbers of
0.15 and 0.30 were obtained in the LangleyLow-TurbulencePressureTunnel (LTPT)
by CharlesL. Ladson (unpublished),and results for free-streamMach numbers
of 0.30 and 0.50 were obtained in the Langley 8-FootTransonicPressureTunnel
(8-FtTPT) by CharlesD. Harris (unpublished).

The resultsfor the variationof the lift coefficient CZ with angle of
attack at the lowestMach number are essentiallythe same as resultsfor incom-
pressibleflow. In the experiment,the boundarylayer was trippedat points on
the upper and lower surfaces 0.05c downstreamof the leadingedge. In the com-
putation,the lower-surfaceboundary layer was trippedat 0.20c to avoid the
numericaldifficultiescaused by startingthe boundarylayer ahead of the stag-
nation point, and the upper-surfaceboundary layer was again trippedat 0.05c.

The first computationsat a free-streamMach numberof 0.30 were made with
the boundary layer trippedat the same points discussedpreviously. These
results,which were in sharp contrastto the experimentalresultsat this Mach
number and which are not shown in the figure,were almost the same as the incom-
pressibleresults. An examinationof the pressure distributionsrevealeda

27



shock wave at 0.025c behind the leadingedge on the upper surfacefor large
angles of attack. Because this shock wave was locatedahead of the upper-
surfacetransitionpoint, no shock-wave/boundary-layerinteractioncould occur.
When the upper-surfacetransitionpoint was moved to the leadingedge, the
resultsindicatedby circularsymbols,which are in excellentagreementwith
experimentalresults,were obtained. These resultsdemonstratethat the decrease
in maximum lift coefficientwith increasingfree-streamMach number is due to
a shock-wave/boundary-layerinteraction. The computationalresultscalculated
with a linear form of the presentmethod are representedby squaresymbols in
figure 4. These resultsshow that linearmethods will not predictaccurately
the effectof Mach number on the maximum lift coefficient.

The resultsfor a free-streamMach numberof 0.50 were calculatedwith the

upper-surfacetransitionpoint 0.05c behind the leadingedge. These computa-
tions,which are in good agreementwith experiment,were successfulbecause the
shock wave was locateddownstreamof the transitionpoint.

The pressure distributionfor an NACA 0012 airfoil travelingat transonic
speed is shown in figure 5. These resultsshow a shock wave on the upper sur-
face near the leadingedge and separationat the trailingedge.

Sample calculationshave been made with the alternateform of the present
method, in which the mean kinetic-energyintegralrather than the moment-of-
momentum integralis used as the third equation. These calculationsshow there
is no appreciabledifferencein the resultsof the two formulations.

CONCLUDINGREMARKS

It has been demonstratedthat potential-flow/boundary-layermethods can
be used to calculatetransonicflow past airfoilswhich are experiencing
trailing-edgeflow separation. Such methods can be used to determinethe
maximum lift coefficientand perhaps the effect of flap deflectionon airfoil
characteristics.Also, a transonicpotential-flowmethod with easy-to-apply
nonlinearboundary conditionshas been developed. This method may be useful
in calculatingflow about winged configurations. Finally,a simple integral
boundary-layermethod for compressibleturbulentflow with a two-leveleddy
viscositymodel has been developed.

LangleyResearchCenter
NationalAeronauticsand Space Administration
Hampton,VA 23665
April 23, ]98]
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_ Experimental data (Klebanoff, ref. 13)
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Figure ].- Intermittencyfactor.
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Figure 2.- Coordinatesystem and computationalgrid.
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(a) Present solution.

Figure 3.- Comparisonof inviscidsolutionswith full potential
solutionfor NACA 0012 airfoil. M = 0.50; e = ].00°.
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Figure 3.- Concluded.
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Theory Experiment
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Figure 4.- Prediction of compressible trailing-edge separation effects for NACA 0012 airfoil.
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Figure 5.- Pressure distribution for transonic flow past NACA 0012 with

trailing-edge separation. M_ = 0.50; e = 7.80 °.
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