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A new technique was developed which permits simultaneous extfraction of
complete |ift, drag, and thrust power curves from time histories of a single

aircraft maneuver such as a pullup (from V to V ) and pushover (to V

max stall max
for level flight.) The technique is an extension to non-linear equations of
motion of the parameter identification methods of Iliff and Taylor and includes

provisions for internal data compatibility improvement as well. The technique
was shown to be capable of correcting random errors in the most sensitive data
channe! and yielding highly accurate results. Flow charts, |istings, sample
inputs and outputs for the relevent routines are provided as appendices. This
technique was applied to flight data taken on the ATLIT aircraft. Lack of
adequate knowledge of the correct full-throttle thrust horsepower-true air-
speed variation and considerable internal data inconsistency made it impossible
to apply the trajectory matching features of the technique. The drag and
power values obtained from the initial least squares estimate are about 15%
less than the "true" values. Compared with predicted values developed using
previous work at N. C. State, the extracted drag is generally higher. [f one
takes into account the rather "dirty" wing and fuselage existing at the time
of the tests, however, the predictions are reasonably accurate. The steady
state |ift measurements agree well with the extracted values only for small
values of a. The predicted value of the lift at a = 0 is about 33% below that
found in steady state tests while the predicted lift slope is 13% below the
steady state value. Because the data processing procedure was unable to
proceed beyond this initial extraction, detailed performance and stability
comparisions with predictions were not attempted.
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A Note on the Units Used in This Work

The results presented in the first 24 figures were all obtained
using computer programs written prior to 1974. At that time U. S.
customary units were the units most commonly used in this country by
engineers and scientists in the General Aviation field. The programs
reflect that usage. Because of the expense of converting a large number
of old programs to S.}. units and the continuing usage of U. S. customary
units by a majority of the professionals in the field, subsequent cal-
culations ‘were done using U. S. customary units. The computer programs
newly written for the present work were, however, provided with alternate
output and plot routines which give the results in S.!l. units. These
alternate output forms can be selected in lieu of U.S. customary units
by specifying a particular parameter value at the time the data are
read in. Figure 44 is an example of the S.l. output.
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INTRODUCTION

The value of any predictive procedure depends rather fundamentally upon
its success in forecasting the behavior of the item with which it's associated
under actual use conditions. Thus, a technique for predicting the |ift, drag,
and pitching moment of a proposed aircraft is useful to the extent that it
foretells the forces and moments which will be experienced by the flight
hardware. It is usually in the nature of things that the better the job the
technique does, the more difficult and expensive it is to use. Fortunately,
the introduction of increasingly sophisticated digital computers has made it
possible to increase the rigor of |ift, drag, and moment predictive techniques
without significant increases in the cost of employing them. This process can
be expected to continue as computer capabilities improve.

Even a supposedly rigorous technique, however, may not be useful if it
does not do a good job of predicting what actually occurs. The analytical
model, for example, may be too crude or important effects may not have been
treated at all. It is therefore important that new predictive techniques be
evaluated critically under actual use conditions before they are employed
extensively for preliminary design activity.

I+ was intended that this procedure be followed in the case of the
predictive techniques developed in Reference 1. The vehicle to which they
were applied was a modified Piper Seneca (ATLIT). The predictions of lift,
drag, and pitching moment to be encountered during cruise flight were
developed using the computer program described in Reference 1 and the
vehicle's geometry as obtained from Piper shop drawings. Performance
predictions and stability predictions were also made using in these instances
the programs described in References 2 and 3. The aircraft itself was then
flight tested to determine the parameter values actually experienced. This
report outlines the methods by which the parameter predictions were obtained,
presents their results, describes the methods by which the parameter values
were obtained from flight data, and gives these results.






LIFT AND DRAG PREDICTION

Wing

The ATLIT airplane employs a straight, tapered wing with a GA(W)-1 airfoil
section 17% thick. The computational technique distributes 65 regions of
constant vorticity on the surface of the airfoil, calculates from this an
inviscid flow field and pressure distribution, then determines the boundary
layer growth corresponding to this pressure distribution, and recomputes the
inviscid flow field of a pseudo airfoil whose ordinates are now the physical
airfoil ordinates plus the local values of 6% with a modification so as to
locate the trailing edge stagnation point downstream in the wake. This process
goes through four iterations so that the computed pressure distribution
obtained after the last potential (inviscid) solution is essentially the same
as that used to generate the boundary layer solution which formed the basis
for that potential solution. The program gives section lift, drag, and
moment. The drag includes both skin friction drag and form drag. However,
because of the flow model used, extensive regions of flow separation cannot
be treated. For this reason, the data are unreliable above CL = 0.8.

The outputs (lift, drag, and moment vs. a for a given Reynolds number)
from the airfoil program are fed into a curve fitting routine which provides
polynomial representations of the results for use by the wing program. This
program uses |ifting line theory to modify the local angle of attack which
the airfoil data "sees" according to spanwise changes in twist, camber,
thickness, and chord length. Spanwise variations in Reynolds number are
handled by providing as input tip and root data at the correct Reynolds
number with the program interpolating to obtain the data for other spanwise
stations. Inviscid wing-fuselage interference is treated by transforming the
fuselage mathematically into a vertical slit and distributing its effects along
the span. The output of the program is the three-dimensional 1iff, drag, and
pitching moment of the wing. Note that the drag includes both profile and
induced drags.

The same procedure is employed to find the contributions of the tail
surfaces to the overall aircraft lift, drag, and moment. The vertical tail
was considered to be half of a symmetric surface unaffected by the presence
of the horizontal tail. The horizontal tail was assumed to be unaffected by
the presence of the vertical tail, propeller slip-stream, or the downwash of
the wing.

The input data and results of the various computations are shown in
figures 1 through 7.
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0.104000E 00
0.859900E-01
Oe 398800E-01

0+ 7S0000E-01
04 330000€ 00
0.630000€ 00
0. 850000€ 00

-0.9300005-02-0.ISBOOOE-OI—O.2050005-0!-0;2690005-01-0.319000E°Ol-0.3580005-0l'OoQZIOOOE—Ol

-0.38‘OOOE-OI-O.JCOOOOE-O1-0-29Q000E-0l—o.2‘90005’0l-0o206000€-ol—0-1600005-01-0-IZOOOOE—OI
-0.5809005—02-0.JOOOOOEOOZ—O.2500COE°°2-0.ZGOODDE*OZ-O.QOOOOOE—O2—0-6000OOE-OZ

ANGLES DOF ATTACK WeReTe REFERENCE LINE (IALPHA=0) OR WeRoeTe LONGEST CHOROLINE (TALPHA=1)

=0e400000€ O
0.800000E ©

0O00E Ot SF

LTRAN

o
J

1
1

~0420000
0.10000

FSMACH

0100000
XTRAN

0.0
0.0

OE 0t
OE 02

0.0
0.2

= (o130

€ 01

70 =
ZTRAN

0.0
0.0

0,200000€ O1

0000E 02

000t 00

0.518690€ 03

0« 140000E 02

WHITCOMB/A==4+-2¢002+4¢6:8s10,12418/RN=5,74FREE TRANSITION/ M=o 1S

FSMACH =

G«15000

0.570000E 01

0.400000E Ot

PR

ﬂ..“".‘t.“t..l.O."t.‘tt..‘tt‘t....‘0“‘.“.““‘.“.‘t...‘tt..‘t‘...t‘.‘.

ALPHA

—4.0000
=20000
0.0
240000
4.0000
600000
8,0000
10,0000
12.0000

.
-
.
x
*
*
*
*
*
*
*
* 14,0000
*

a.

00 ~0e 023224
00 0.213498

0.4381848
00 0e 666128
00 0.094763
00 1120211
00 1338393
00 1548673
00 1748252
oo 1.928573

o

04006249
0005605
0.006357
0.007707
0,009055
0.010642
0.012475
04015151
0.017997
0.021817

CM{NOSE)

=0 086099
-0 150842
-0e212167
~0e274192
=0.335486
-0.395287
-0.451681
-~0.504635
-0.552386
=0.59145S5

CM{1/4~-CHORD }

~0.092000
-0.097549
=0102620
-0.10769S
~0e112182
~0.116490
=0¢119905
-0e 122691
-0.123939
=0.122314

LK 2K 2R 2K BC AN IS Y W )

‘“.tttt..'ttt‘..‘Ot“.......tt‘l..i“.‘..‘.0.0..‘......".“.........tt...t

0+600000E Ot

0.770000E 00

KF

1-0.645000E-01-0,652000E~01
1-0+469000E=-01~0,428000E-01
=0.860000E-02

0.100000€ 01

FIGURE 1



NXU NXL T
19 19
NA = 10
NN = 1
CREF = 0.t00

UPPER SURFACE
LOWER SURFACE

WRITE

3 o

Xy =
v

XL

148

TALPHA

*588 %

CASE 1INPUY

*see e

0009/A=~6+=44-240+2¢4¢6+8010e12/FREE TRANSITION/M=, 1S /RN=3+0/SF=CREF=1,0

IPUNCH
1

0.0
0.200000€ 0O
0.900000E 00
0.0
0.430300E-01
0. 108600E-01
0.0
0.200000E 0O
0. 900000E 00
0.0

ANGLES OF ATTACK WeR.T.

=0660000G0€E
04600000E

000E 01

LTRAN

]
0o -

SF

o1
o1

~0+40000
0.80000

FSMACH
= 06100000
XTRAN

0.0
0.0

0+ S000CCE~02
0.250000€ 00
0.950000E 00
0+ 100000€-01
04445600E-0t
0.60S5000CE-02
0.500000E-02
04250000E 00
0.95000CE 00

04125000€-08
04300000 00
0.100000E 01
0.142000E-01
0.450100E-01
0.950000E-03
0.125000E-01
0.300000€ 00
0.100000E 01

0+250000€E-01
0.400000E OO

0e.196300€-01
0435200E-01

04 250000E-01
0.400000€ 00

0.500000E~01
0.500000E 00

0.266500E-01
0e397100E-01

0.500000E-01
0. 500000E 00

0.750000€-01
0+.600000E 00

0+315000E~-01
Oe 3423 00E-01

0.,750000€-01
0.600000E 00

04100000E 00
0.700000E 00O

04351200€-01
0 274800E-01

0.100000E 0O
0 700000E 00

0. 150000E QO
0.8C0000E QO

0. 400900€E-01
0e196700E-01

0+.150000€ 00
0+800000E 0O

=04100000E~01-04142000€E-01-0,196100E-01-0,266600€-01-0.315000E-01-0.351200E-01-0,400900E-01
=0+430300E~01-0¢445600E~01-0450100E-01-0+435200E~01~-00397100E-01-0s342300E~01-0.274800E-01-0.196700E~01
~0.108600E-01-0+4605000€~02-0¢9500C0E~-03

REFERENCE LINE (IALPHA=0) OR WeReTe LONGEST CHORDLINE (IALPHA=1)

0E o1
0€ o1

-0.20
0410

= Qe150

€ 01t 10
2ZTRAN

00
0.0

0000E 01
0000E 02

00O0E 00

0.518690€ 03

0.0
04120000€ 02

RN

0009/A==69-40-2¢02244¢6+8:10412/FREE TRANSITION/M=o15/RN=3,0/SF=CREF=1,0

FSMACH =

Oel15000

0. 300000€ Ot

0.200000E O

PR

FEIERSEEERE SRR EERNBREEEEREERETERESESRTREDNNNRNESRIIRO ISR SCEISESAREEEEEEIES

ALPHA

-6.0000
~4.0900
-2.0000
0.0
240000
44,0000
6,0000
80000
10,0000

*
*
*
*
*
*
*
*
*
*
*®
* 12.0000
*

cL

00 -0.639027
00 =0+430504
00 ~0e216409

0.000019
00 0e216441
00 0e430541
00 0.639190
00 0853717
oo 1.060093
00 1.251046

<D

0007929
0.0C7073
0.006283
0.005804
0,006282
0007070
0.007936
00009510
0.011856
0015075

CM{NOSE)

0.161376

0.110331

0.05576S
-0.000008
-0.055780
-0e110348
~0e161459
-0.215147
~0e265412
-04309520

CM(1/4~CHORD)

0.002287

0.002844

0.001641
~<0.000004
=0.001647
~04002852
~0002330
-00003464
=0.003900
~0.002810

CESESENEREERERBIRERREEREREE R L LSRR AERI RN R EL RN SRR RS RN BIONEEEERSESREREEREREE

-
*
*
*
®
*
*
L4
*
*
*
*
*

1 0.400000E O1

0.77T0000€ 00

KF

FIGURE 2

0.100000E 01



k¥

..l“‘.t.‘.‘.....l“‘.“C“..‘.Q.........O.'......‘...‘.tt‘.t.“'.‘......‘....t..t....

AIRFOIL DATA INPUTV

THE NUMBER OF DATA POINTS IS = 10

*

* THO DIMENSIONAL

*®

*

* WHITCOMB/A=—4¢=200v204260810¢ 124 14/RN=5<7,FREE TRANSITION/MN=015
L

*

* ALPHA cL

. ~4,000000 -0.023224
* ~2,000000 0.213500
* 0.0 0.428190
. 2.000000 04666130
* 4.000000 04894760
* 64000000 1.120199
* 8.000000 1338400
* 10,000000 14548699
* 12,000000 1.748300
* 14.000000 1928499
*

*

0*“0*““‘*t“““‘.t.‘O“‘O““‘.‘l““.“t‘...t.".t....t"t.t.t't‘.ttt.“t“tt.t

co
0006249
0005605
00006357
04007707
0009055
0.,010642
0012473
0.01515¢
04017997
0.021817

*

(]
-0e 092000
=-0.097549
-0.102620
=0.107690
-0.102180
=-0.116490
~0s119910
~0.122690
-0+ 123940
-0.122310

‘t.tt...“‘tt.#.ltittttt.tt.'.‘t..‘.t#..‘ttO....‘..‘.O...“.."i‘.""t‘.‘t.“....

TWO DIMENSIONAL CURVE FIT FUNCTION DATA
OF THE FORM Y=C(Q)#C(1)SXIC(2)EX*E2¢40 00

WHITCOMB/A==8¢~2¢002¢40608¢ 109124 14/RN=547+FREE TRANSITION/M=.15

c(o) ctn c(2) c(3) C(a)
CL. VERSUS ALPHA 0.43993 0.11427 =0,00019 0.00002 =0,00000
CD VERSUS CL 000608 =0,00466 0401623 ~0.01096 0.00311
CM VERSUS CL ~0609253 =0,0262S 0.01076 =000997 0.00377
ALPHA VERSUS CL —3.81031 B8.41611 0487390 -—0.86891 0432962

DOMALN=
DOMA IN=
DOMAIN=
DOMAIN=

tt‘.#.‘t‘tt‘““'tt'tt‘t‘t‘“‘000‘1.*‘1“‘.#“.0“"t.t““‘t‘l.t““.""t““t‘t..t"‘t't*“tt‘...

FIGURE 3

-
L ]
*
*
L
*

&
]
]
*
&
L
*
*
L
-
*
*
*
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l.'l..t.‘t.t..ttt.ttt.‘....t....tt.t..'.'..“.0.“&0..‘#'#..‘.“....‘t“t‘.lt.t.‘.‘.'.

*

t

*

*

*

*

*

* ALPHA
* =-6.000000
* ~-4,000000
* —2000000
* 0.0

* 24,000000
* 4.000000
* 6.000000
* 8000000
* 10.000000
. 12.,000000
*

*

‘Ot‘.#‘ttt.tltttt.t't't“.‘.t.‘..t..t........‘...‘tt“‘tt‘ttt'.'.‘t‘.““.‘l...“.‘.

THC DINENSIONAL

L
~0639030
-0.430500
=0.216410

0.000019
0.216440
0«430540
0.639190
0.853720
1060100
14250999

cD
0.007929
0.007073
0.006283
0.005804
0.006282
0.007070
0.007936
00009509
0.011856
0.015075

AIRFOIL DATA INPUT

0009/A=-6o-4-—2-0.2-4.6.8.!0.12{FR€E TRANSITION/M=<15/RN=3,.0/SF=CREF=],0
THE NUMNMBER OF DATA POINTS IS = (O

cn
0.002287
0. 002844
0.001641
-0.000004
~0.001647
-0.002852
=0.002330
=00 003464
=0+003900
-0, 002810

E
®
®
*
*
-
*
*
*
*
*
L
*®
]
]
*
*
*
L ]

ttt#“.t"t...‘t‘.‘l‘t‘.t‘ttt‘t.#“l.ttll.tt.‘.‘t.‘.‘tt."....‘..0“.".“".“‘.‘...Ut.‘.‘t.t..l.t.“‘..t..t.ttl“‘

*

* TwO DIMENSIONAL CURVE FIT FUNCTION DATA

* OF THE FORM Y=C(0)#C{ 1)%X+C(2)8X*82¢, 00

*

*

* 0009/A==69~49-250+2e4¢6¢85104 1 2/FREE TRANSITION/M=, 15/RN=3¢ 0/SF=CREF =140
*

* c(o) c(1) ct2) <3 C(a)

* CL VERSUS ALPHA -~0,00109 0010769 0.,00012 -0.00002 =-0,00000

* CD VERSUS CL 0., 00608 0000006 0.00407 -0.00036 0.00131

& CM VERSUS CL 0.,0001t -0,00721 0.00001 0.00685 =-0.00310

* ALPHA VERSUS CL 0.01138 9.28779 -0.11110 014828 009731

L ]
‘ttttttttttkt#‘tl‘ttt...lt‘..‘tt‘...t.tttt‘*.t‘."..9#‘0‘0"“0“t‘.‘.t““““‘t‘t‘““‘#‘t““.ttt‘ttt“t‘ttt‘t‘.

DOMATN= =6+ 0000
DOMA IN= =~0.6390
DOMAIN= ~0.6390
OONA IN= =0.6390

FIGURE 4

TO0
T0
Y0
TO

*®

*

*

&=

*

*

*

*

120000 =
12510 =
12510 =
1le2510 =
*

*



.0.................‘.’..0..‘....‘O......'......‘...........................“‘..‘.C..‘.......‘.‘...‘.“...O...‘.....

.

. THC DINENSICNAL CURVE FIT FUNCTION DATA

. OF THE FORM Y=C(0)¢C(L)OX4C(2)8XO020 0,

.

*

. WHITCONB/A=-4¢-2¢052080608:10412¢14/RN=S.TFREE TRANSIT [ON/ M=ol S

. THICKNESS RATIO= 0417

. cto) ct1) ct2y N ctay

® Q. VERSUS ALPHA 0443993  0.11427 =C.00019 0,00002 <=-0.00000 DONA tN=
* CD VERSUS CL 0400608 <-0,00466 0.01623 <-0,01096 0400311 DOMALN=
¢ CM VERSUS CL =~0409253 -0.0262% 0.0107% ~0.00997 0.00377 DOMATN=
® ALPHA VERSUS CL ~3,81030 B8.41610 0.87383 -0,86887 0.32961 OOMAIN=
*

. WHEITCOMB/A®=40=24002e8+508010¢12,14/RN=S. T4 FREE TRANSIT [ON/M=o13

. THICKNESS RATIO= 0.17

. cto) c(1) c2) ct3) ctey

¢ QL VERSUS ALPHA 0043993  0.11427 -0.00019 0,00002 =-0.00000 OOMAIN=
* CD VERSUS CL 0.00608 -0,00466 0.01623 =-0.,01096 0.00311 DOMAIN=
® CM VERSUS CL =04092%53 =0.02625 0.01075 =0.,00997 0.00377 DOMA IN=
® ALPHA VERSUS CL. =3.81030 0.41610 0,87385 -0.86887 0.32961 DOMAIN=
*

*

LY §]

~4,0000 TO
-0.0232 1O
-0.0232 TO
=0.0232 TO
—-4,0000 TO
-0,0232 TO
~0.0232 YO
=0.,0232 ¥YO

WHITCOMS AIRFOIL/RN=S.7 MILLION/17 PERCENT THICK NEW NASA WING

*

.

*

L

*

.

.
18,0000 =
19283 =
1.9288 o
1.9285 «
*

.

.

L

*

*

*

]

-

14.0000
1.9283
1.9285
te9285

........."...........'........‘..‘.‘.‘.‘."..0....‘.‘....‘..............’.....‘..‘.‘."..........‘.‘.....“....“

.Ioo/-.I--I.ol.-/ool.-l..lo-I.-I--I--I--l-ol.-loo/-ulo-/o-l..Ioo/oo/../-o/../.o/c-l../ocla-I-clo-l-.l-clo.l<-loolo-l.-/o

BOOY HEIGHT 7/ SPAN o o o o
ASPECT RATIO o ¢ o o o o o
WING BODY INCIDENCEs DEG o
ROOY THICKNESS CHORD ¢ o o
NUMBER OF SPANWISE STATIONS.
TAPER RATIOe o «

Oett
10.18
0.0
Oet?
20,00
0450

COORDINATES OF MOMENT REFERENCE POINT

VALUE OF DISCRIMINANT .

0.,001000

BOOY WIDTH'/ SPANe o
WING HEIGHT / SPAN

TIP THICKNESS CHOROD.
GEOMETRIC TWIST,e DEG o
AERODOYNAMIC TWIST, DEG

REYNOLDS NUMBER: ¢ o« o
X= Ce0

2=

0.10
004
Oel?
-~3.00
=300
S.T0

-/../o./q-/..’-.l.o/no’o.’c./.-/ool../../oc’-.’.o’-o".I..’c./.0’.-I.o[.-’../.oln.In-’../../o./-o/--/.-/-.l..,..,o./../o

A4 R AR R 2 TR T T I TSRS PR 2 YT Y S840 ¢
- L
* THREE DIMENSIONAL LIFT, ORAG. AND MOMENT DATA -
- -
L *
- ALPHA a cop col <0 (] .
. =4.000000 —~0e134572 0.006471 0.000845 0,007316 -0,088299 &
* —2+000000 0.063437 0Q,005717 0.000328 0.00604% -0.093561 &
* 0.0 04259755 0,005686 0.002663 0,008349 -0,098313 »
* 20000000 04454469 0.006348 0,007784 04018132 -04102669 ¢
L4 4.000000 0.648288 0.007393 0.015658 0.02305%t ~0.t06861 *
bd 64000000 0.841228 0.008643 0,026248 0,034890 -0,110939 =
* 8.000000 14032696 0.010037 0.039469 0,049506 —0.114788
* 104000000 14221716 0.011624 0,055164 0.066788 -0.118148 »
* 12,000000 1.,405899 0,013535 0,072973 0086508 ~0.120638
* 14.000000 1582717 04015940 0.092385 0.108323 -0,121863 »
» *
BREEREIEBLCIS0EESESEBORORIN020OEOSELISOSISSEEISEREEENLSERSSEEDER

FIGURE 5



..l.......‘...’..’.'..‘“‘...‘.....‘....C“‘.‘.‘..."......‘.."....l...‘.“.......".....l..'..‘........‘.....‘....

*
.
L
*

*
*
*
.
L ]
*
-
*
*
*
 d
*
&
.
.
.
]
*

. ATLIT HOREZONTAL TAIL SECTION-=0009/A=~G6e=8¢=24002¢4¢6, 8,105 12/RN=3s /M=o 1S
THICKNESS RATI0= 0.09
cto) cty c2) ct3) ce)
CL VERSUS ALPHA =-0.00109 0e10769 0400012 =0.00002 <~0.00000 DOMALIN= ~6.0000
CD VERSUS CL 0+00608 0. 00006 000407 =-0.00036 0.0013¢ DOMA IN= =0e6390
CM VERSUS QL 0.,000t1 =-0.0072¢t 000001 0.00885 -0,00310 DOMAIN= —=0.6190
ALPHA VERSUS CL Oe0Ol138 9.28780 =-0.11110 G.14829 0.,09729 DOMAIN= =0 6390

ATLIT HORIZONTAL TAIL SECTION——0009/A%—63-84¢4—2:002¢8¢608¢10,12/RN=x3¢/Mxol5

c(a)
CL VERSUS ALPHA =0.00109
CD VERSUS CL 0+00608
CM VERSUS QU 000011

ALPHA VERSUS CL 0.011t38

TWO DIMENSIONAL CURVE FIT FUNCTION DATA
OF THE FORM YaC(O)4CL 1ISXICI2)OXE82000e

cn

0410769 0.00012
000006 0.00407
=0e.00721 0.0000t
9.28780 =-0,11110

THICKNESS RATIO= 0.09

ct(2) c3) Cla)}
=-0,00002 ~-0,00000
~0400036 0.00131
000685 -0,00310
Oe14829 0.09729

SELERCELLEEFTICERLLISECECESEEEER PG EAEENEERESE OSSR

DOMAIN= =640000
OOMAIN= =0. 6390
DOMAIN= =0.6390
DOMAEN= =0+ 6390

*
*
[ ]
*
*
-
*
™ 12,0000 ¢
T0 1.2510 =
TO 142510 »
T0 142510 ¢
*
.
*
-
TO 120000 =
To 12510 =
YO 1.2510 =
Ta 12510 =
*
*

CEEEEEEREPROENOCEES SRR SRUELACEEESERESSLRESSER0CH

ATLIT HORIZUNTAL TAIL USING NACA 0009 AIRFOIL/RN23,0 NILLION MACHS=.15

./.o/.ol-o/oolooloo/oo/oo/../oola./ccloclocloolqclool¢o/o-loolool.-l.-lc-I.-/--I..I-olo-l.oloo/ool.o/oo/.o/.ol../-o/.o/o

BOOY HEIGHYT / SPAN o« o«

ASPECT RATIO o »

WING BOOY ENCIDENCE, DEG
ROOT THICKNESS CHORD o o o
NUMBER OF SPANNISE STATIONS.

TAPER RATIO. « o

0.16
.75
0.0
0409
20,00
1.00

COORDINATES OF MOMENY REFERENCE POINT
VALUE OF OISCRIMINANTe o« ¢ & =

04001000

BOOY WIDTH /7 SPANe o

WING HEIGHT / SPAN o
TIP THICKNESS CHORD.
GEOMETRIC TWIST, DEG

AERQODYNAMIC TWIST, DEG
REYNOLOS NUMBERe ¢ ¢ o o

X= 0.0

s 000
R )
LI R O ]

2=

o
.
o

OelS
0.0
0.09
0.0
0.0
3.00

n/c.,../c./oc’l./ao/o.’-a’.n/..’../--/.-/oo,o./../t./o-/../..’..’.o/c./.o/.c,.c/t./-.’o./o.’../..’-',.Q’-./..IO.’.-’../‘

.....‘.‘.‘..“l.‘.OO."......‘.'....‘.........‘..‘..‘...‘..‘....‘.

.

*

.

-

* ALPHA

* =~6+000000
L ~4,000000
] =2.000000
* 0.0

* 24000000
. 4,000000
. 64000000
* 8.000000
- 10.000000
. 12.000000
*

*

a
~0e449000
~0300239
=0e1350733
~0.000492

0«14976S
0.300t87
0e450217
0599307
0.7468SS
0.892116

THREE DIMENSIONAL LIFT,

cop
0.006908
04006339
00006026
0.005933
0. 006041
0.0063%2
0006890
0.007694
0.008821
0010332

col
0.017090
0.00764%
040019293
~0e 000000
0.001901
0007636
0.017182
0,030841
0047263
04067807

0
0023998
0. 013980
0,007931
0.005933
0.007942
0.0139a88
04024072
0.038136
0. 0560084
0,077739

DRAGe AND MOMENT DATA

(]
0. 002427
0.002019
0.,001169
0000115
~0+000943
-0,001863
~-0.002552
~0+002976
~0.0031%2
=0.003152

FEESAIE000000000000000000000000RERENCREREEOEORSCEEINISREINERANENS

*
*
*
.
L]
.
L
*
L]
-
L
-
-
®
L
-
*

FIGURE 6



0l

FE 2K A 2K B B 3K BN B AR BN BF BN R 2K K B Y N N ¥ W )

THICKNESS RATIO= 0.09

ceo) ctt) ct2) c(3) cts)
CL VERSUS ALPHA =0.00109 0.10769 0.00012 -0.00002 =-0.00000
CD VERSUS CL 0.00608 000006 0400407 -0.00036 0.00131¢
CM VERSUS CL 0.00011 -0,00721 0.00001 000685 -0,00310
ALPHA VERSUS CL 0.01138 928780 -0.i1110 0414829 0409729

THICKNESS RATIO= 0.09

<o) cn c2) (4&)) cts)
CL VERSUS ALPHA <-0.00102 0410769 0,00012 -=0,Q0002 -0,00000
€D VERSUS CL 0. 00608 0.00006 0.00407 =~04+00036 000131
CM VERSUS CL C.00011 =0,00721 0,00001 0.0068% -0,00310
ALPHA VERSUS CL O.0L138 9.28780 -0.11110 0e14829 009729

TWO DIMENSIONAL CURVE FIT FUNCTION DATA
OF THE FORM Y=C(O)eCE L) EX4CI2)8X00 20,4,

ATLEIT VERT[CAL TAIL SECTICN==0009/A==6,-44=20002¢4¢648:10¢12/RNa3. /M= 1S

DOMATN= -6e 0000
DOMA IN= -06390
DOMAIN= -0.6390
DOMA IN= =00 6390

ATLIT VERTICAL TAIL SECTION—0009/A»~6s~8¢9-2600¢2¢40648,10,12/RNa3o/MualS

DOMAIN= -6.,0000
DONAIN= =0.6390
DOMATIN= ~0.68390
DOMAIN= =~06390

To
TO
T0
Tao

T0
TO
T0
T0

ATLET VERTICAL TAIL USING NACA 0009 AIRFOIL/RN=3,0 MILLION/MACHS=,.1S

......’.O.“.‘...‘.‘“....‘.‘..‘......'......‘...‘..'..‘.‘...'.......................‘....‘.......l..............

.
L]
*
*
*
*
*
.
12,0000 ¢
12510 »
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.

 d

L d

.

.

.

*

*

*

*

12.0000
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.....O'...tt......t...‘.....O.‘O..O.."t‘.‘...'.‘t..0‘.....‘........‘..0.‘..........O“O.......t‘.....0.‘.'.‘.....

©/ee/se/ee/es/veleelee/ 0o/ 00l as/ 00/ 0e/ 00l 00l/00/0el 00l 00l 00l 0s/ 00/ 00l 0al00l0e/leol/0eleol0sl 00/ 0sl00le0/0nl 00l 00l 0l 0sl 0l o

BOOY HEIGHY / SPAN « o o
ASPECT RATIO o « o o » o
WING BODY INCIDENCEe. DEG
ROOT THICKNESS CHORD o o
NUNBER OF SPANWISE STATIONS
TAPER RATIOe ¢ ¢ ¢« o @ ¢ o o =

005
3.60
0.0
Q.09
20.00
0«40

COORDINATES OF MOMENT REFERENCE POINT

VALUE OF DISCRIMINANTS o o o =

0.,001000

800Y WIOTH /7 SPANe «
- WING MEIGHT 7/ SPAN o
TIP THICKNESS CHORD.
GEOMETRIC TWIST, DEG

AERODYNAMIC TwisST,
REYNOLDS NUMBERe ¢ « o

* o e o=
® o 0 o =
©e o o a =
* o 0 o
DEG o ¢ o =
- o o =
I= 0.0

0.08

0«09

3.00

0/e0/0e/ee/eel 00l eal/eelee/ 0ol 0e/vel00l 0000/ 00/ 00l 00 l/00l00/00l0cl 00l aese0l/ 00 00l00/0al 0ol 00/ 0ol 0ol 00l 00/ 0sl 0ol 0el 0ol 0ol

SEESSSEBDIBIPSR00R0PE LS CLSOERESOESIELRNSCESRESER0SEOS0E300000

-

L]

*

*

. ALPHA

* =6.000000
L —4.000000
. ~2.000000
= 0.0

* 24000000
. 4.000000
* 64000000
» 84000000
- 10.000000
L] 12,000000
*

*

ESEISVERVE00 4005000 C 2000026400

cL
=-0+378216
~0e252761
~04126036
~0000549
0. 125829
0.252360
0378752
0.504801
04630221
0754719

THREE DIMENSIONAL LIFT,

cop
04006636
0.006277
0.00607S
0006013
0. 006088
0.,006293
04006643
0.007149
0.007833
0.,008724

L ]

ORAGs AND MOMENTY DATA .
*

*

cot (o] (<] ]
0012877 0,019513 04002436 ¢
0008731 0012028 0.,001343
0001449 0,007524 0.001033 ¢
0000000 0.006015 0.,000119 &
0001425 0,0073514 ~0.000797 o
04003733 0.012028 -0.001638 o
0012913 0.019556 ~0.,002344
04022939 0.030087 -0.002878
064035735 0,043387 -0.003226 ¢
0.051280 0.060004 ~0,003398 ¢
*

(11 L] ses00 %S
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Fuselage and Nacelles

The program to compute the forces and moments on isolated, quasi-stream-
lined bodies having a plane of symmetry represents the half-surface by 560
flat panels of more or less equal area. On each panel is distributed a
uniform source whose strength is such that the flow due to all sources is
everywhere parallel to the surface. Then, a streamline which goes through
the centroid of a particular panel is traced upstream to its inception point.
Along this streamline Is calculated the boundary layer displacement thickness
and skin friction by a momentum integral method. This is done for all 560
panels. At the downstream end of the body the wake is arbitrarily assumed fo
begin at the upstream end of the last two sets of panels. The angle of the
wake leaving the body is determined by the history of the boundary layer
displacement up to that point. This wake is then paneled to a stagnation
point downstream in the physical wake and the inviscid pressure distribution
on the body plus wake body recomputed. The calculated skin friction is
Integrated over the body to find the skin friction drag and the recomputed
pressure distribution is integrated in the normal and axial directions to
find the lift and form drag. The same data are also used in computing the
pitching moment.

Because the boundary layer routine used is two-dimensional it is not
valid when the flow is expanding or contracting rapidly, i.e., near the nose
or tail of a body, or when there is a significant cross flow, i.e., at angle
of attack. For this reason the aircraft drag computation is reasonable only
in the cruise configuration. In the context of an overall drag computation
this is not unduly limiting because the wing drag calculation fails for high
angles of attack as well. Several attempts were made fo extend the angle of
attack range of the computation at least for axisymmetric bodies, by using an
axisymmetric finite difference boundary layer routine in the plane of symmetry
in order to locate the lee-side separation point and then applying the Allen-
Perkins (Ref. 4) technique to determine the normal force. However, the com-
puted separation point was not regularly located sufficiently close to physical
separation point (as found experimentally) to make this approach viable.

Modeling fuselages and nacelles for the purposes of drag computation as
Isolated bodies of course ignores interference effects. While it is con-
ceivable that the inviscid aspects of interference could be treated adequately
(and in fact have been in many cases), it will require a general three-
dimensional boundary layer solution to freat the viscous aspects adequately.
Since such solution techniques will be some time in coming, it continues to
be necessary to treat these effects empirically. Because other approximations
in the model can be expected to yield uncertainties of the same order of
magnitude, no attempt was made to account for these effects.

Figures 8 through 11 show the input data and calculated results for the
ATLIT fuselage and nacelles.
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ATLIT WITH M=21 AND N=29 VIELDINQ S60 PANELS —- FUSELAGE ONLY

1 1 21 29
Oe TeS 16.5 2%5.5 35.0 45.0 5Se0 650 750 86.5
975 108. Ul8e5 129.5 140.5 151.0 1620 172.5 184,0 195,5
2075 2205 232,00 244.5 2%6.5 27340 293.0 312.6 339.0

040000 040000 0.0000 0e0000 0.0000 00000 0,0000 0,0000 0.,0000 0.0000
000000 0,0000 0.0000 0.,0000 0.0000 0.0000 0,0000 0.0000 0.,0000 0.0000

040000
03.250043-250063-250043.250003.250003.250043.250043.250003.250043.2500
43.250043.250043.250043.250043.250043.250043.250043.250003.250043.2500
43.2500

020000 009000 1.8000 2,7750 3,737S 47375 Se7875 647500 7.5750 8.1250

843250 841750 7.6625 648750 5.8500 48375 348000 27750 1.8000 0.9000

0. 0000
38.0!2538.025038.llZSSGo275038-512538¢675039.4250‘0.16250101500‘2.3125
43.6000‘4.862546.100047.1000‘7.9000Q804625480850059-1250490275009.3500
49, 4000

040000 143875 2.6375 4.162%5 5.8813 Te 6500 9 525011.225012.125012,5625
12¢700012.525011875010.6875 91500 TeAB7S 5.7875 4.2250 2.7750 1.3875

00000
35-700035.7!8735-762535.875036.087536o475037.262538.712540.075042.‘375
44.‘12566.400048.287549.90005l.!0005!.913052.‘50052.775052-950053-0500
53.0750

000000 1.6750 3.4375 5,4500 7.6750[0.187512.775014-21301501250!5.0875
15.5880154500014.825013.475011.5130 93875 T+2500 S5+2250 343750 1.6500

0.0000
34.‘62534.462530o462534.462534.5[2534.900036.150037.887500.500042.9125
45.0375‘7.087549.87505!.925053.‘75054.425055.000055.338055.538055.6250
55.6630

00000 145250 3,4750 S.1750 8.5130[!.3630!0.375016.‘50017.275017.6000
17.675017-6500!7.088015.675013-5000!0-8380 82500 5.9250 3.68130 1.8250

0.0000
33.425033.425033-425033.025033.425033-575034.575037.087539.900002-7250
44.875048.25005!-000053.462555.225056.313056.900057.225057.388057.4750
57.5000 -

00000 2.1000 442375 6.,637S 9.362512.75001602750!8.225019.0630!9.3750
l9.§680!9.500019-1750180025015.6880!2.6750 947000 647000 4.,7880 2,1375

0.0000
32.262532.262532.262532.262532.262532.3!2533-250035-675038.8375‘!.9625
65.025048.06255!.262554.l00056.350057.625058.263058.625058.763058.8250
58.8750

0.0000 2.2500 4.6090 7.109010069001‘.656018.590020.04002[.030021.2500
2l.34002!.33002!.047019.7800!7.1900!3.690010.3750 743100 4.7000 2,3100
0,0000
31187 31.187 31,187 31.187 31.187 31187 31422 35.281 39.375 42,344
45.797 49,156 52,563 55,875 S8.188 59.422 60.0 6025 60042 60.44
60 .44

0.0000 2,5780 S5.2500 8.!8751I.656016.063020.406022-270022.688022-8600
22.906022.950022.73002!.6[0018.7800!4.970011.2500 80000 S.1250 22,5000
0.0000
30.585030.585030.585030-585030.585030-585031¢395035-022038.660042.6320
0603190‘9.945053.585057.365059.89806!.25706!.77;06!.960062.085062.l160
6241160

000000 2.5750 5.25%500 8.2000!l.6750!6.075020-950022.825023.225023.5750
23.850023.975023.875022.875019-950016.000012-0500 Be6375 B5.4500 2.6750
0.0000 ,
29025 29425 29,25 29,25 29.2S 2925 304225 34.05 38.275042.0750
45.925049-775053.650057.688060.5380610925062-063062.650062.800062.8130
62.8380

0.,0020 3,0000 6.7500!0.7500!4.5000!9.25002!o250022.500023.50002‘.0000
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24,500024,750024,750023.5000206500016, 50001247500 9,0000 S+ 7500 2,87S0

0,0000
27e750027e750027750027: 750027750027, 750030,000034.000037,875041.7500
45 ,500049,500053.625057.500060.500062¢250063¢000063250063,250063.2500
63. 2500

000000 3.5000 Te750011e8750164125019875022,75002467500254500025.8750
26¢000025.500024,875023,625021750018¢750015.0000110000 70000 345000

0e 0000
27.000027,000027¢0000274000027¢000027000030¢ 7500360 000040,375044,6250
480750052¢8750564500060875064,500067¢5000694500070¢375070.500070.5000
7005000

00000 3,7500 7¢500011500015,250020025002442500254375025087502642500
264500026.000025¢500025¢000024,0000216625017«750013.0000 843750 4.1250

000000
26e585026¢585026458502658502605850264585031585037.835042,335046,7100
50e835055.085059¢335063,460067835071,835074,085074+960075.085075.0850
750850

060000 4,125010,00001%5.00002065000234250025.125025.7500264125026+2500
260 2500266000025¢500025.000024,000021.625017750012,8750 843750 4.1250

00000
25¢6500250650025.65002%650025.6500286025033.0250384 150042,900047.1500
S51e 8000556 650059¢900064015006809000736275075¢9000766900077150077.1500
771500

060000 5¢1250102500156000021,625024,000025.500026¢ 0000264200026+ 3000
2665000264 30002602500266250025¢500022875018¢750013,5000 86250 4.2500

040000
2502500250250025.2500254250025¢250027750033,0000384 250043,000047.3750
51¢ 7500560 0000604375058,750070125074.500077250078.125078.250078.2500
78.2500

060000 5¢0000104000018,750022¢500023¢750025.00002547500264250026.5000
26¢500026¢500026¢250026000002501250226500018375013.3750 85000 4.2500

040000
24.750024,7500247500244750024750027e370032.620037.620042+250046.,6250
5lo°00055.25q059.50006‘.250069.t25073.500076.000077.000077.250077.2500
77.2500 -

000000 461250 9.875014.875020750023.250025.000025.625026412502643750
2645000264 250026,00002%5,25002401250214500017500013,0000 8.2500 4.0000
* 040000
24.330024,330024¢330024.330024.330026580031.580036.705041.,330045.5800
49,830053,955058,330062,830067.580071,705 74.58 7558 7583 75.83
7583

060000 447500 9,750014,5000206750022,875024,750025.625026¢25002643750
26¢5000264250025.87502%5.250024,000021,500017.500012,8750 8.3750 4,0000

00000
23,750023,7500236 750023¢ 750023750026+ 370031.250036,000040,500044.8750
894250053,500057.625062,1250664.5000700625073.250074,375074,750074,7500
74. 7500

00000 4.6250 9+4500014.00002002500226500024.500025.250025750025.8750
264000025,750025,125024,375023,000020,500017,875012.5000 81250 4,0000

040000
23.600023.600023.600023.,600023,6000250,8500304600035+350039.850044,1000
486350052,350056.475060.850064,975068,850071350072.850073.100073,1000
73.1000

040000 3.8750 9.250014,000019,500021,750023,625024.250024.375024.5000
24.500024,3750244250023,625022.250019.7500160000124 0000 78750 3.7500

0. 0000
23.000023.000023.000023,000023.000025, 250029750034, 62%5039,000043.1250
47000050.750055,000059.000063.000 67.0 695 71«0 71.5 715
715

040000 3.7500 94250013,24 19,00 2125 22,50 2325 23625 23.75
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24 00 2375 23450 22,75 2175 19.2S 15«75 1200 Te?S5 375

0« 0000
220600022460002246000224,600022,600024,850029¢350034.100038,975042,2250
460350050010005442250586350062.225065¢850068¢350069,600070+100070.1000
70. 1000

040000 3.6250 8.750013.00001865000206 250021,250021+625021 4750021 .8750
224000021875021625021000019e750017e62501447500112500 72500 3,5000
00000
23025 23425 23625 23625 23025 25450 30,37 34.87 38.875 42,5
460.0000849¢50005341250560750060.250063¢75006645000684000068,500068.5000
6845000

00000 4.,5000 8,375012.500017.750018+500019¢250019,625019.,875020, 0000
200000019 75001962501 9¢37501866250176000014250010.7500 7,0000 3.3750
0,0000
24,000024,000024,000024+000024,000027.000031+500035.500039,000042,375
45, 5000484625052+ 000055¢375059¢000062¢500065012506604625067000067.0000
67

0¢0000 4,0000 84000012630001647000173500184.0000184250018,40001844500
18.500018¢400018.100017e600017100015900013,500010.1500 6,6000 33,2000
00000
25¢500025¢500025¢500025¢500025¢5000280100032.400036.150039,500042,5500
45.50004804000510 4000540 500057.900061c400064,100065.400065,500065.5000
6545000

000000 4,0000 8¢000010000015¢550016.000016.400016,600016.610016,6200
1666250166600016.400016,050015,4000144150012,0000 9,1000 6.0000 2,9000
0.0000

2725 27425 27e25 2725 2725 29.5 33.55 37. 40. 42,85
4545 48.1 5009 53e7 5667 5965 62.05 63.4 637 63.72
63475

00 0000 403750 7¢625011125013,875014.375014,688014,813014,875014,9380
15.000014.875014.813014.375014,000012.875010,9380 B8.3750 S5.,4375 2,6875
00000
284 420028442002804200284420029¢400031e775034.400037650040,275042,7750
45,212547,525049.962552,5250554275057. 900060, 025061 275061 o 713061.9000
619630
000000 244000 48000 7.600011.400012.150012.500012,650012,800012.9000
13.000012,800012,500012,100011,500010,6000 942000 7.1000 48000 2,4000
000000 t
3040000300 000030+ 000030, 000030,000032,900035,900038,500040,800042.,9000
45,000047,000049,100051.200053,400055.600057,600059.000059.600059.9000
6040000
00000 18125 3.812% 600000 748750 91250 9,5000 94,6875 98125 98750
98750 98125 947500 95000 92500 85625 7e3750 57500 3.8125 1.8750

0. 0000
334101 33,101 334101 33,187 34.125 35.875 38. 404125 41,875 43.5
45.063 460625 48,25 49,875 S14813 53,563 S55.188 564375 57,0 57.188
57.25

040000 1.6000 3.2500 4.8500 6.3000 6.9500 73500 7.4000 7.4500 7.S000
725000 7.4000 7.2000 7.0000 6.6000 641000 5.4000 43000 3.1000 1.6000
0. 0000
35.500035.500035.5000364 000037+ 300038.550040.200041.700043,000044.3000
4545000464700047.900049.1000504300051.600052¢900053+950054+ 750055+ 3000
5545000 '
0.0000 0.0000 0,0000 0,0000 040000 0,0000 0,0000 0.0000 0.0000 0.0000
040000 040000 0+0000 00000 0+0000 00000 0.0000 00000 00000 0,0000
0.0000
£3.250043,250043.250043,250043.250083+250043+250043. 250043+ 250043, 2500
43, 250043, 250043,250043.250043.250043.250043.250043.250043.250043.2500
43,2500
X Z OUT 45¢ 10. 304 14, ORY
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ATLIT NACELLE WITH N=21 AND M=21 YIELDING 400 PANELS ON THE BOOY

1 1 21 21
0.0 1e5 375 675 11.25 15.0 200 24 .5 3040 34.5
40.0 45.75 51.0 56.5 6245 6805 T4. 795 8600 94.5

116.,0

040000 000000 040000 000000 00,0000 0,0000 0.0000 0.0000 0.0000 0.0000
0«0000 0.0000 0.,0000 0,0000 0.0000 00000 0,0000 0,0000 00000 0.0000
0. 0000
26.500026.500026.500026.500026.500026-500026.500026.500026,500026.5000
26.500026.500026-500026.500026.500026.500026-500026-500026.500026-5000
2645000

000000 145000 2.9500 4,5000 6.5000 8e8750114875015,3200164875017.3750
176250176750017420014750011.5000 8,6250 6,3750 4.5000 249200 13750

0. 0000
18.0000lB-OOOOlB.OOOOlBoOOOOIB.OBOOI8.125018-300019.12502l-50002‘.2500
27.000029.800032-625034.500035.375035.625035.750035.875035.900035.9500
3640000

040000 1.5000 33750 S5.2500 721250104125013,500016+500017¢750018.0000
18.1250184250018012501640000128750 948750 7+3750 So1250 343750 1.6250
0.0000
16.0000l6.0000l6¢000016.0000!6.000016.120016-375017.750020.375023.3750
26.250029.125032.250034.375035.625036.125036-250036.375036.500036.5000
36.5000

Oe LeT03 34453 Se375 74719 10.438 13.5 16425 17.813 18,438
18675 184719 18234 16,578 13.719 10.672 8. S5e594 3.625 1.7813
O

14,688 14.719 14.813 14,908 15.03 15,28 15,875 17.438 19.922 22.78
254813 280625 31,688 34,125 35,438 36,078 360406 36.62S 364703 36.75
3678

0.0000 17813 3.6250 5.6563 820000104750013.875016.688018.125018.7190
18¢938019+00001846250174 000014,156011.0000 82500 5.8750 35635 18750
0.0000

14,6 14,6 14,631 14,694 14.819 15.069 15,788 17.406 20. 22,938
264063 284969 32,025 34.744 364275 37.025 37337 37.525 37588 37.619
37.619

000000 17813 346250 5.6563 8.000010.750013.875016,.688018,125018, 7190
18.938019.000018,625017,000014.156011,0000 8.,2500 58750 345635 1.8750
0.0000 i
14.7500140750010.7812!0-843714.9687!5.2!8715.9375I7.656220.250023.1875
26-3!2529-2[8832.375035.0900360625037-375037.687037.875037.938037.9690
379690

0« 0000 18750 3.7810 5.9060 Be375011.187014.313016¢812018,250018.7190
18.939019.000018.718017.250014,250011,0620 8.6880 5.9380 37500 18750
0.0000
l4.8440|4.8‘6014-8750!4-9070!5.0000!5.3!2016-157018.000020.625023.6880
26-625029.8!2032.750035.406037.l25037.812038-l56038.312038'364038‘3440
3843750

00000 148750 3.7810 5.9060 8¢375011.187014.3130156.8120184.250018,7190
18.938019,000018.718017.250014.250011.0620 8.6880 S.9380 307500 1.8750
0.0000
15009Q015009Q0l5-125015.157015.250015.5620!6-4070!8.250020-875023.9380
260875030.062033.000035.656037.375038.062038.406038.562038-59‘038.59‘0
38,6250

00000 147500 3,7188 S,8438 8e312511¢240014.281016.688018,000018.6250
18¢9065019.000018.813017.438014.50001141560 8.2813 5,8750 3.7188 le 7500
0« 0000 .
15.5000lSoSOOOlS.SOOOl5.5000!5.500015.7l90!6-5620|8.53I02|.250020.3120
27.!25030.250033.3!2536.l56037.7l9035-375038.625038.7l9038.750038.7800
38.8750

0¢0000 147500 3,7188 5.8438 8+312511.,240014.281016.688018.000018.6250
l8-9060l9.0000l8.8130|7.4380lﬂ-5000l1-1560 802813 5,8750 3.7188 1,.7500
Qe 0000
15.625015.625015.625015.6250!5-6250!5.80‘0]6.6870!8.65602!.375024.6370
27.250030-375033.637536.281037.804038.500038.750038.BAQOJS.875038.9050
39. 0000

FIGURE 9

XFUS10
XFUs20

Y1
Y1

zZ10

XFUs21

15



16

00000 1.7188 3.7188 61250 8,312%511,468014,406016,656017.750018,.4380
18.813019.000018,8130176375014.125010s7190 7.9375 56563 3,5938 17500
0. 0000
160125016612501601250166125016¢1250164125016.7190184,937021.719024.,5000
27e5000306562533.750036e313037.875038.375038¢563038.656038.688038.6880
3847190

000000 147188 3.7188 641250 84312511,468014,4060164656017.750018.4380
18¢813019¢000018¢813017¢375014.1250107190 79375 546563 345938 1.7500
0.0000
164000016,000016,0000164000016000016.000016,594018,812021,594024,3750
27e¢3750306437533.625036¢188037.750038.2500384.4380384.531038.563038.5630
38.5940

040000 147188 347188 601250 8¢312511.4680144406016.656017,750018.,4380
18¢813019.000018¢8130176¢3750144125010647190 79375 5.6563 35938 1.7500
0.0000

160406 160406 164406 164406 160406 1640406 16,95 190156 21.9 24,63
275 300494 33,63 364144 37.656 38,156 384344 38.438 38.469 38.469
3845

00000 146250 342500 S+1250 7.250010.000013.50001760 18.5 19,0000
196 0000194000019+700017e5 136250100000 742500 51250 34250014625
00000
17¢500017e570017¢62001T7e62001T7<670017750017830018+625021.500024,5625
27¢750030e750033.875036e875037700037750037.830037875037.730038,0000
38.0000

00000 146250 302500 468750 Te1250 94625013.000016755018.625018,7500
184800018875019.C00016485 1361250 946250 T+0000 5.0000 3,1250 162590
00000
18.000018.000018,000012,.,000018,000018,0750184125018,875021¢625024,7500
27e750030,750034,000036.5000372500376350037¢375037¢400037.450037,35000
37.5000

0e 0000 103750 30000 4.,5000 6,5000 B4875012,0000163735018.625018.7500
18+8000106875019¢000016000011e8750 8.7500 603750 4.5000 2,3750 t,.,5000
000920
18¢500018,500018.500018¢580018.600018625018.750019.000021 ,375024,5000
27e¢500030¢500033,750035.6250366125036,250036,3000360375036,420036.4500
3645000 :

0e 0000 163750 27500 41250 6+0000 8.1250114125015.125018.,500018,6250
187520 18¢875018,5000148,8750110000 861250 6,0000 44,1250 2,6250 13750
0.0000
19¢250019¢250019:250019s250019:2500194300019e375019625021 37502445000
27e5000304500033,5000354,000035.375035,500035.62%5035.6500354700035.7500
3547500

040000 11250 23750 3.6250 542500 71250 9.625013.250017.750018.5000
18¢500018¢500018¢000013.5000 9.6250 71250 T¢1250 36270 22500 te 1250
0.0020 |

2003 20.3 20.3 20.3 204375 204375 205 20.75 21,68 24,5
275 304375 33,32 34,375 3a.,.5 34,56 34.625 34,64 34,7 34,75
34,75 :

040000 11,0000 2.0000 3.0000 4+2500 5S¢ 7500 8.000011,125015.875017.7500
1775001 7750015750011 .3750 8,0000 %8750 4.2500 3.0000 1.8750 0.8750

0. 0000
21 2105 21405 2105 2105 21125 2142 2125 2175 24.12S
27. 2975 32.12% 32.75 32.8 32485 32875 32.9 32495 33,
33.

00000 1.2500 3,0000 84,7500 67500 9¢375011+625014,125015.0 15,3750
15e375015e375015e375014:125011¢6250 9¢3750 647500 447500 3.0000 1.2500
0.0000 .
224750022, 7600224770022.790022.810022,850022.8 750224 950023.500025.2500
264750028425003000000300550030e62503046500304690030.710030.7300304 7400
3047500
0.0000 0,0000 0,0000 0.0000 00000 020000 00000 0.0000 0.0000 0,0000
000000 00000 0.0000 00000 0.0000 0.0000 0.000C 0.0000 00000 0.0000
0.0000
26¢5000264500026.500026.5000264500026.500026.5000264500026,500026.5000
26¢5000264500026.500026.5000264500026¢500026¢500026+500026.500026,5000
2645000
X Z OUT 45, 10. 30, 12. ORT

FIGURE 9 CONT'D

Yit
vit
Y11
z11
z1t
z11
Yi2
Y12
Y12
z12
z12
212
Y13
v13
Y13
z13
z13
213
Yia
vYia
Yia
z14
Z1a
Z14
Yis
Y1s
Y1S
215
15
z15
Yt6
Y16
Y16
z16
z16
z16
Yty
Y17
L2 %4
z17
217
z17
vis
Y18
via
z18
z18
zZ1s
Y19
Y19
Y19
19
z19
z19
Y20
v20
v20
z20
z20
z20
v21
Y21
Y21
221
z21
z21



POTENTIAL FLOW PROGRAM SECTION 1

POTENTIAL FLOW PROGRAM SECTION 1

ATLIT WITH M=2] AND N=29 YIELDING 560 PANELS —-- FUSELAGE ONLY ATLIT NACELLE WwITH N=21 AND M=21 YIELDING 400 PANELS ON THE BDOY
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Protuberances

No accounting for the drag due to protuberances was deemed necessary in
the drag buildup since the probablie magnitude of these effects is within the
uncertainty bounds of the nacelle, fuselage, and interference drag computations.

Calculated and Estimated Lift-Drag Polar

As shown in Table I, summing the results of the previous calculations
yields a drag polar represented by the equation

Co = .035832 + .040561 cL1'_94 . (1)

This polar, as indicated previously, does not include the effects of flow
separations at the higher |ift coefficients. In an effort to develop a more
accurate polar upon which fto base performance estimates, full scale wind tunnel
test data on a similar aircraft (Ref. 5) were examined and fitted by the
equation

2 13.42

C, = 0.035 + 0.051 C,” + 0.00138 CL (2)

D L

Plots of these equations are shown in figure 12. Note that the two curves
differ little for C, < 0.8. Above C, = 0.8 it is to be expected that equation
(2) will more nearly represent the béhavior of the ATLIT than equation (1).
Despite the fact that equation (2) describes the drag of an unpowered air-
plane and that drag under some conditions of powered flight may exceed the
drag in unpowered flight, equations (1) and (2) were treated as the probable
boundaries for the actual ATLIT drag polar. Because of the relatively smaller
ATLIT wing area (compared with the aircraft tested in Ref. 5) it is not
expected that the ATLIT drag will rise as rapidly with increasing C, as It
does for the aircraft of Ref. 5. Thus, even if the ATLIT drag in powered
flight is somewhat greater than in unpowered flight, the drag should be below
the boundary given by equation (2).

18




TABLE |  ATLIT DRAG .BUILDUP

61

C.G. @ 26.5% MAC
TRIM
%y ing CLwing O s, %, S5 %, %0 oraL C
-4 -.134569 -.003474 .001879 .007316 .038473 -.138043
-2 .063437 .001638 .001852 .006045 .037175 .065075
0 .259752 .006707 .0019772 .008349 .039604 266459
2 . 454464 .011736 .00200 .014132 .04541 . 4662
4 648280 .016741 .00210 .023051 .054429 66502
6 .841217 .021724 .002184 .034891 066353 .86294
8 1.032682 .02666 002265 .049506 .081049 1.05934
10 1.221700 .031549 .002346 066789 .098413 1.25324
12 .405880 .036306 .002424 .086509 .118211 1.442
14 1.582697 .040872 .002618 .108327 .140223 1.6235
“DrotaL %, " o, /s, " o, Vo “Orye © % Duncerre
= Cy *+Cp, Strs * .0018487 + .01299 + 2(.00722)
= 0y * Cp Siss, * .0292787
C, = O, T O Sws,
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PERFORMANCE PREDICTIONS

The drag polars given by equations (1) and (2) were submitted to the
point performance program described in Ref. 2 along with the thrust horse-
power data given In figure 13. The latter were derived from engine test cell
data and propeller performance charts. They do not include any installation-
dependent effects. The data given in Table Il represent the output of this
program. |t will be noted that, compared with the original Seneca, only
smal| improvements in rate-of-climb and cruise speed are expected. This can
be explained by the fact that although the airfoil itself offers about a.

10% improvement in L/D at C, = 0.8 (the nominal CL for climb) the wing is

L
responsible for only about 40% of the total drag. Overall aircraft drag is,

as a result, only about 4% lower.
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TABLE Il COMPARISON OF PREDICTED ATLIT PERFORMANCE USING THRUST HORSEPOWER DATA SHOWN IN FIG.
13 WITH PIPER SENECA
Predicted using Predicted
light-twin polar Piper using NCSU
Performancé characteristics from wind tunnel Seneca parabolic
tests (TND-6238) polar
4200 Ibs 4200 lbs

Max. level flight speed (ft/sec) ' 300.00 286.0 298.9
Min. level flight speed (ft/sec) 123.7 101.2 47.23
Max. rate of climb (ft/sec) 27.1 22.67 28.35
Single engine rate of climb (ft/sec)* 6.06 3.167 7.81
Best rate of climb speed (ft/sec) 168.2 154.0 162.76
Best single engine rate of climb speed (ft/sec)¥ 155.8 154.0 144.07
Maximum climb angle (degrees) 10.17 12.34°
Maximum climb anglé speed (ft/sec) 144.5 132.0 105.42
Best range speed (ft/sec) 167.0 160.0 153.48
Service ceiling (ft) 19,681 18,000 22,525
Absolute ceiling (ft) 21,077 19,400 24,157
Single engine service ceiling (ft) 5,623 3,650 8,852
Single engine absolute ceiling (ft) 7,791 5,000 11,353
* Single engine characteristics were computed using a CD = 1.050D to account for the vertical

tail drag and half the estimated power.



STABILITY PREDICTIONS

The stability predictions for the ATLIT were developed using the air-
craft's geometric and inertial parameters and the computer programs described

in Ref. 3. The Input data and results are shown in figures 14 through 17 and
18 through 21.
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PERTINENT AIRPLANE CHARACTERISTICS
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= 1.00000

182.73000
39.70000
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LATERAL STABILITY DERIVATIVES
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0324597 CLR = 0099626 CNR =
06226060 CLOR = 0.015322

NATURAL FREQ
DAMPED
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ROOT(1)
ROQT(2)
ROOT(3)
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ROOT(5)
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MEASURING DRAG AND THRUST IN FLIGHT

The Concept

Most techniques for the determination of aircraft drag in flight rely on
the fact that when the aircraft is in unaccelerated flight, the forces along
its x-axis, principally the thrust and drag, are in balance. Then, if one
knows the propulsive thrust for a particular flight condition, he automatically
knows the aircraft drag at that condition. Thus, to apply these techniques
one must know that V = 0 as well as the propulsive thrust as a function of
flight speed, altitude, and power setting.

This, unfortunately, is not determined easily. Although engine output
can be measured accurately on a fest stand as a function of altitude and power
setting and propeller characteristics can be determined in a test cell as a
function of RPM and flight velocity, the flow disturbances caused by putting
a cowled engine behind a propeller and mounting the whole on an airplane are
not readily determined a priori. Hence, efforts have been made from time to
time to measure inflight thrust using such techniques as the torque reaction
produced by the engine or the vehicle acceleration at constant altitude
produced by varying power levels.

The reader will readily appreciate the difficulties which such techniques
entail. In the case of the ATLIT aircraft, insftrumentation fo measure reaction
torques was not available and the longitudinal accelerometer provided in the
instrument package was not considered a primary test instrument, at least
initially. Further, the establishment of really unaccelerated flight at many
different speeds is very consuming of flight test time. 1+ is for these
reasons that an effort was made to develop an alternate technique to measure
thrust and drag simultaneously in accelerated flight.

The origin of the concept is quite simple. Recent workers attempting to
extract the values of stability derivatives from flight data have all faced
the problem of fitting an analytical model containing thirteen or more
undetermined coefficients to a set of four or five simultaneous time histories.
That is, the number of unknowns greatly exceeds the number of independent
equations one can write fo describe the motion. The problem is usually
attacked (see Ref. 6 for example) by fitting the equations fo the time
histories at a number of different times. Theoretically, one need only fit
the equation the same number of times as one desires to find coefficient
values. In practice, it is fit many, many times and the values which best
satisfy the time history in some statistical sense are chosen. If the Initial
estimates of the parameter values are reasonably accurate, the procedure
usually converges on the correct values. However, since the system is not
determinant, wonvergence is not guaranteed.

The probiem in-deTermining both drag and thrust simultaneously in flight
is that there is one more unknown than there is equation. Mathematically
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this means that for any flight condition there are an infinite number of sets
of T and D which satisfy the equation. For any T there is only one D, but one
can find the corresponding D for any arbitrary choice of T whether it has any
physical meaning or not.

Following the fairly successful approach used in stability derivative
extraction, it was reasoned that if one would write the equation of motion
substituting flight data for different times in the flight, he could create
a system of equations equal to the number of unknowns. Formally, the equation
of motion of the vehicle along its trajectory in the X-Z terrestrial plane is

T-0D
W

Q [<<e

+ sin Y = (3)

In order to apply the technique, we wish to express the thrust and drag in a
polynomial expansion of some easily-measured flight variable with the coeffi-
cients to be undetermined constants. Now, the thrust is known to depend
primarily upon flight speed for a given power setting so that we choose the
representation

_ Cos a 2
T= T [%0 + P1V + sz ] . (4)

In other words, we assume that the power-speed relationship is a parabola.
Given the characteristics of most propellers, P, and P, will be positive and
P, negative. We insert the cos a term because we assume that the propeller
f%rusf is always applied along the x-body axis rather than along the flight
path. Drag, on the other hand, is always defined with respect to the flight
path. We can represent the drag by the equation

D=1/2psv? |c. +cC. o2 +cC. o], (5)
Do D b,

where a is measured from zero |ift and the sixth power for the third term was
chosen on the basis of curve fits to some actual data. Note, however, that we
may alter the model to represent a particular situation more accurately with-
out affecting the validity of the procedure.

Substituting these relationships into the equation of motion yields

W\;' N COS a 2 1 2 2 6
= - 2 2 - —— + + .
+ Wsin vy v IPO + P1V + P2V | 5 pSV ICD CD] o CD o l (6)
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This equation has six unknown but constant coefficients. By determining the
flight values of v, W, V, V, p, and a at six different times we create a
system of six linear equations in six unknowns. This can then be solved for

the values of PO’ P1, PZ’ CDO, CDI’ and CDZ.

Difficulties in Concept Execution

Unfortunately, this system of equations is what mathematicians call ill-
conditioned; that is, very small changes in any of the measured values (a, W,
V, V, v, p) can cause the coefficient values (P,, P., etc.) to change radically.
Further, the solution guarantees to pass ThrougR Thé six selected points only.
For any other speed, acceleration, angle of attack, weight, flight path angle,
or altitude, the thrust or drag computed with these six coefficients may be
quite wrong. |In addition, the coefficient values themselves may be ridiculous
(for example, a negative CD‘ value), yet the ftotal drag as determined from
CD + CD a2 + CD a6 may bé very reasonable.

0 1 2

These problems are to some extent traceable to the adequacy of the
analytical model used. A model which does not well represent what actually
occurs will, when fit to the data using this procedure, produce nonsense
numbers for some of the coefficients, i.e., nonsense numbers in the physical
sense but absolutely correct numbers in the mathematical sense. For example,
if the speed-power relation should in fact be a constant, then an attempt to

fit it with a parabola will usually yield non-zero values for P and P
While for the speeds, etc. at which the data are submitted to The SOIU%IOH
routine the sum of the three terms will be correct, individually the values

make |ittle physical sense. Thus, a successful soluTion routine must have a
provision for examining the results (at least manually) for reasonableness
and for changing the analytical model if the results are not reasonable.

There is also a problem concerned with the selection of the six data
sets submitted to the solution routine. The reader will recognize that if
one selects six points very close together in speed, the data must be extremely
accurate because all significance can be lost in taking the differences between
adjacent numbers as one does in solving a system of six equations.

Amel ioration of Solution Difficulties

One means of selecting the six points to be submitted to the solution
routine so that i+ will yield reasonable fresults is to select those points
where the velocities are given by
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V1 = vmin for the maneuver

<
it

" x for the maneuver

2 ma
V3=V1 '\'/T
- - (7)
V2 1/5
V4=V3 VT
[, 711/5
vo=v, |2
57 "4 V1
_
-
V6=V5 W

This procedure spaces the points over all the available data giving emphasis

to the portion of the drag curve when changes with speed are most rapid. Where
applied to theoretically-generated data, the original coefficients can be
recovered to within 1%.

For a variety of reasons, flight measurements will never be as accurate
or as noise-free as theoretically-generated data. One then asks the question,
"How can | use the remainder of the data (the sets of a, p, ¥, V, V, W beyond
the six sets mentioned above) taken during a 30-second maneuver to improve the
accuracy of the coefficient extraction procedure?" The classical answer is fo
fit the assumed form of the curve (equation 6) to the data by a least-squares
technique. What this does is to determine those values of the coefficients

(PO, P‘, PZ’ CD ’ CD , CD ) which make the sum of the squares of the distances

from the curve Qo eaéh ofthe data points a minimum. The procedure is the
following:

Let S be defined by the equafion
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N |w.V, ' cos o,

i'i
= —_— - - =
S 12_1 g Wi sin (6i ai) Vi P0 cos o, P1
pisv? "isvf 2 piSV? 6 ?
- Vi cos o P2 + > CDO + > ai CD] + > o CDz , (8)

where the subscript i refers to the value of the variable at the i+h time.
This equation is a measure of the precision with which the theoretical model

with six unknown consTanfs(PO, Pl’ P2, CD ’ CD , CD ) satisfies the experi-

mental data. The closer S is to zero, Th(e) beTJrer 'Hzne fit. We wish to minimize
the error with respect to all six unknowns. Thus, we set

N
S _ _ q = _ cos o - - -
o, 0=-2 ; [ V. ] [31 aPo ~ azfy - aPy + ascoo * 36001 + a7002]

N
3S _ - _ _ _ -
3P1 =0=~2 2% [33] [a1 a2Po a3P1 a4P2 + aSCDO + BGCD] + a7CDz ]
55 g
5po = 0=-2 2; [34] [a1 - aZPO - a3P1 - a4P2 + aSCD + a6CD + a7CD ]
2 =1 0 1 2
3S N i i
e =0=2 2 [agd a; - a,Py - a;P) - 3P, + a0y + 3y +a,Cpy |
D0 i= - 0 1 2
3s N i ’
e =0=2 Zj [a6] 2, - a Py - a;Py - a,P, + asCy + 3,y + alp |
D1 i=1 0 1 2
35 N '
o 0=2 Z: I:a./.] [a1 - a2P0 - a3P1 - a,P, + a5CD + a6CD + a7CD ] (9)
02 =1 0 1 2
where
WiVi cos o,
a, = —_— Wi sin (ei - o,) a, = 7y
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a, = cos o, 2
3
! - P13V 2
6 2 i
a, = Vi cos a;
2
AT
piSV? 7 2 i
9 T T2
In expanded form these equations may be written
N cos o, WIVF gE cos2 o, N c052 a;
: + W, sin(6, - a,)| = —s—P_  + —P
=1 Y g ' Lo (=1 v? 0 =1 Y 1
N 2 N p.SV?
+ E: cos a, P, - 2: L cos a, C
“— i 2 & 2 i D
=1 i=1 0
N oSV 5 N, o SV]
-_Z > aicosaiCD+g: 5— o] cos a; Cp . (10)
i=1 1 i=1 2
o
L
[ ]
[ ]
[ ]
[
N cos2 o, cosz o
The term 2: -——Er——-mulfiplying Po represents a sum of fTerms v’ for each
i=1 Vv

of the N data polnTs in the set. Once this and the similar sums are formed,
one has simply a system of six first order algebraic equations in six unknowns
which can be solved with some labor for the values of the six unknown coeffi-
cients. These coefficient values provide the "best" fit, using the model
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chosen, to the set encompassing all the data points. The coefficient values
may change, of course, if data are added to or deleted from the set. Needless
to say, the coefficient values may be in error if the data contains spurious
signals or if the model chosen does not represent the physical situation
adequately. Also if the data points are not well-distributed over the entire
speed range, the coefficients which are the principal contributors to the
function value in an underrepresented speed region may be in error. As a
result of these factors it is necessary to approach the extraction process
with some care.

Despite these difficulties, the following example is illustrative of what
can be done using this method. Figure 22 shows the assumed drag variation
with angle of attack and figure 23 the assumed power variation with speed.
These data were then inserted in the NCSU path performance program described
in Ref. 2 to obtain time histories of p, &, V, W, V, and y. These and related
time histories are shown in figure 24. The path performance program is a
forward integration scheme which varies the integration step size according
to an error criterion. Thus the time histories will all contain very small
errors which cause the time histories to differ very slightly from the true
values of the functions at any particular time. One cannot, therefore,
expect to recover the exact values of the drag and power expressions by
proceeding in this fashion. The values of the time histories shown in
figure 24 at each 0.1 seconds were then submitted to the least squares
routine. The coefficients developed by the program match the first six
significant digits of the coefficients in the power and drag functions which
were used to generate the time histories. The recovered coefficients, when
inserted in the equation with the values of the parameters from PATH at each
of almost 300 points, satisfy the equation to within 10=19 or better for the
sum of all points.
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Data Filtering

All records of the flight of actual aircraft will contain spurious con-
tributions to the data signals arising from electrical noise, instrument
errors, structural vibrations, and atmospheric turbulence. Since the model
we have chosen to represent the aircraft does not include such effects, it is
desirable to remove them, in so far as possible, before submitting the data
to the coefficient extraction routine. Not doing so may cause the extraction
routine to produce physically-meaningless results.

All filtering schemes proceed from the idea that continuous data signals
are composites, each signal made up of sine waves of all frequencies. Each
of these sine waves in the composite has a definite amplitude and phase
relationship to the other sine waves making up the signal. By suppressing
those frequencies which, on the basis of analysis or experience, cannot arise
from the aircraft behavior of interest, one can remove most of the spurious
contributions to the signal. Traditionally, filtering was done on continuous
signals using frequency sensitive passive networks. ~In the present case,
however, the flight data were received in digital form so that the filtering
was accomplished mathematically using a computer¥,

I+ is first necessary to represent the data set by its contributing sine
waves. Let f(‘ri)i_1 2.3 vuuN represent the points in the data set, i.e., the
N I R )

value of a particular signal at discrete points of time. Let T = the total
time over which we choose to make the analysis. Then over the interval + = 0
to t = T we obtain a set of N values of the signal which, for reasons of

simplicity, we choose to separate by a fixed time interval, At = N I T

In order to reduce the numerical problems encountered with a Fourier

series representation of a function, we will let
_f(fi) = fa(+i) + fb(Ti) +1 < +i < TN (11)
where
. f(TN) - f(+1)
fb(fi) = f(+1) + T Ti , (12)
and
fa(fi) = f(+i) - fb(Ti) . (13)

¥ The data are, nevertheless, just digitized samples of continuous functions.
For this reason we have chosen to employ mathematical techniques more
appropriate to such functions than the more commonly used digital filtering
techniques which seem more appropriate to the analysis of data which are
“Inherently trains of impulses.
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We will also add to these data the set

f‘fi) = fc(Ti) + fd(fi) TN < Ti < TZN (14)
where
f(+,,,) - f(+))
_ _ 2N N -
fd(fi) = f(TN) T (Ti T ‘ (15)
and
fc(fi) = fa(2T - Ti) . (16)

By this device, the set described by fy (T ), fd(fi) can always be represented
analytically by

f(+,) - f(+,) o f(+,) - f(+,) nmt,
f0E) = f(+) + —D L o4 N I cos —+ .
1770 1 2 2 =135 N2 T
N=1r23s950e (7
The set represented by fa(fi), fc(fi) can be expressed by
fi nmt, .
f(+.) = a + a_ cos , (18)
21 ° n=1,2,3,... " T
where ‘
2T
-1 1
a = ZTff <+ )dt + ZT/ fc(+i)d1L , : (19)
o T
and
T 2T.
-1 nut 1 nmt
a, = T/fa(fi)cos dt + 7 f(t)cos = dat . (20)
o} T
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To carry out the integrations of (19) and (20), we will assume that fa(T)

and f_(t) are really continuous functions over the interval of interest. The
expregsion f (Ti) represents just the value of this function at time +i’

+i - +N’ rather'than being an impulse at +i with an amplitude equal to fa(fi).
Since the analytical form of f_(1) is unknown, we must choose some means to
represent it. |f an original analog record of the data is available, then
the functional form used to represent f_(t) from t, to t,,, should be chosen
such that it does not vary from the original record by more than some small

amount anywhere between Ti and +i+1‘ Two forms are commonly employed for this

purpose: a straight line between two adjacent points and a parabola connecting
three adjacent points. The unknown function is therefore represented piece-
wise by a series of elementary functions of the same form. This provides a
function which is everywhere continuous but which has discontinuous slopes at
the points where the pieces join. The error criterion chosen determines the
maximum value of At. Usually, the parabolic form will permit a larger At for
the same error. Note that by approximating the unknown function in this
fashion one is in effect already applying some smoothing in the interval (Ti,
+i+1) since the regenerated function can never do more than match the

approximate form.

The maximum frequency component Tgaf can be defined adequately by these
representations is one for which o = EZ—-radians, that is, one described by
five samples. [Its linear segment repfesentation has a maximum error of 29%
and its parabolic segment representation a maximum error of 6%. For a
sampling rate of 10/second we should certainly limit our consideration to

frequencies of less than 2.5 Hz.

From the foregoing we conclude that, in the absence of the original
analog record, we must assume that the sampling rate represented by the data
set was at least four times the highest frequency of interest. We experience
no difficulty in evaluating a_ for any n we choose, however; this is in sharp
contrast to the usual treatments of sampled data where the highest value of n
which may be used without obtaining spurious results is half the sampling
rate. We come to this result because the integrations of (19) and (20) are
carried out analytically although piecewise - in effect providing an infinite
sampling rate. To employ the parabolic representation, we take

f(t) =At2+B+t +C, (21)
a | | |
fF (.. )=A+2 _ +B+. . +C (22)
a i+ i+1 i+1 ’

2
flh,) = ATS + Bt +C. (23)
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Then

[fawi) - f R L) f (o)
N TS Tivt = Tia2
A 7> > > (24)
+5 - + +
[ i i+1 i+1 i+2:,
T T i+1 i+2
2 .2
5 - fa(r) = f ) 1T - Ty
= - - 5= A (25)
i 1+1 i P+1
c=fa<+i)-A+"f-B+ (26)
and
i+ 2 i+2
. 2 - 1l_s ALt , Bt
ao“szi:. [A+ +BT+C]d1‘—2TiZ[3 + 5 +c+]i 27
i-
P+2
_1 2 nrt
an—T;/ [A'l" +BT+C]cos T dt
: i
2 2 3
1 T nrt . Tt nwt 2T . nnt
_TZ[A<2+ 272 s Tt T 33 Sin T)
| naT nmw
) i+2
T not , Tt . onrt) L CT _.  nat
+B<22cos T +mrsm T) +mTS| T]. (28)
nw |
When
£ () - ¥ - 1,
a i i i
2 -5
f ot ) S tiegl <107, (29)
2
fo(t ) Lo - T
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the curvature of the data record is insufficient to require the use of a

parabolic approximation and a linear approximation to f(+) will provide the
same result. In this case

f(+t,) =M+, +D (30)

a i i

fa(+i+1) =M +i+1 +D, (31)
tThen

f ot ) = ()
M= 2 (32)
i+ 7T

o
I}

f (+.) - M+, (33)
a i i

and

i+1

[o}]
1

i+1 '
2
1 T ntt T+ . nwt DT _. nmt
N T; [M<n2 7 COs T + o7 Sin —T) + oy sin —T ]i . (34)

The complete function is then represented by

f(+i) = f](fi) + f2(+i) +1 < +i < +N . (35)

An alternate form of (35) which invoives fewer computations is

flH) = f(t) i (n“‘ri)
f(+,) = f(+,) + ., +a_ + a_ cos
i 1 T i o n=1.2,3,. n T
tyst sty (36)
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Note that through the use of this procedure only deviations from a type of mean
function value must be treated numerically. Fewer data points are therefore
necessary to fit the function adequately and fewer harmonics must be calculated
to regenerate the deviation portion of the function with acceptablie accuracy.
The reasons for adding the mirror image of the function from +, to t, as a
"tail" to the original function are that (a) it makes the func%ion eUen,
possibly reducing the number of coefficients which must be calculated, (b) it
improves the coefficient definition because more data are now included in the
integration, and (c) it offers the opportunity to calculate f'(t.) since the

coefficients of its series representation will usually decrease In value with
increasing numbers of harmonics. This may not be the case if the "tail" is
not added.

For those cases better represented by an odd function, i.e., using only
sine terms, one-has merely to change the sign of f (t.) to make the function
odd. If, however, one is willing to calculate botf sine and cosine coefficient
and perform the regeneration using both sine and cosine terms, then the "tail"
can be dispensed with. Generally, one can obtain a better definition of the
function for a given value of n by using both sine and cosine terms. Never-
theless, in some cases an equally good representation can be secured using a
sine or a cosine series with less than 2n terms. This practice then results
in a savings in computational time. The choice as to which procedure to follow
is, until more experience with each is obtained, somewhat arbitrary.

The accuracy with which a parabolic fit represents the data over two time
intervals depends of course on the size of At. The smallest value of AT is
fixed by the data sampling rate. If a smaller time interval is needed fo
obtain a satisfactory fit, it is necessary to interpolate points between the
sampled values. |t has been found that a fifth-order Newtonian interpolation
formula generally provides a sufficiently accurate representation to generate
the required intermediate points. This formula, for even time increments, is

Y, -y Y, = 2y, *y
BH) =y = (h - )+ B2 - (- )
17T 20+, = 1)
O
Y5 = 3V, * 3y, -y
#2—2 L0t -4yt - -1y
6(t, - ) _
(@)
Y, = 4yg + 6y, - 4y, +y
e N G RGP IC R R )
24+, - 1)

Ye - 5y, + 10y, = 10y, + 5y, -y
§ 24 3 e ST RO I S IC I SIS
12004, - t.)

(37)
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Y .»e+.,Ye represent six values of the function one wishes to interpolate between.
These y Values correspond to times + ,...,T.. ¢(1+) can be found using this
formula for any t between t_ and . and it may also be used to extrapolate ¢ ()
to a short time before To and a short time after +5. Note that ¢(+o) = yo, etc.

Now if the slope of the parabolic representation of the function at t
approaching from the left is different by more than € from the slope of the
parabolic representation of the function at t., approaching from the right, we
calculate ¢(+1/2) and ¢(+3/2) and fit a parabola first through Yoo ¢(+1/2), and

Yy and then through Y1 ¢ (F , and Yoo etc. We can continue to divide the

3/2)

intervals in half until the slope difference at t, is less than e. As a

2
practical matter, however, more than three such divisions will result in’
excessively long data sets since we begin with as many as 450 points. Three
divisions will result in a set of 3593 points. |If e is set to a desirable

value, say 10'10, one will usually find that with actual noisy data it will be
necessary to interpolate as many points as permissable in order for e to approach
this value. With smooth data, multiple interpolations will not be necessary.

Since the procedure described above permits one to describe a signal time
history in terms of its harmonic content, it is therefore possible to reduce
the amplitudes of or eliminate certain constituent frequencies from the set
before regenerating the signal - in essence filtering out the unwanted con-
tributions to any desired degree - without any disruption of the phase
relationships among the remaining contributions. This represents a level of
filter performance far above that possible with passive elements in analog
circuits. The choice of which frequencies to suppress and fo what extent can
generally be made on the following grounds:

1. |If the aircraft itself is fairly rigid, frequencies above the
principal stability modes should decline in amplitude at about
12 db per octave. This means that generally there should be
little contribution to the vehicle's response to control sur-
face deflections or changes in power level at frequencies above
1 Yo 2 Hz. If the data show significant harmonic content above
these frequencies, it can usually be traced to engine-or-
turbulence-induced structural vibrations or to electrical noise
in the signal transducer, encorder, or recorder.

2. Spurious signals at lower frequencies can.be separated from
the data, provided their magnitudes are known a priori.

Following these guidelines we may now proceed to perform the attenuation
of the higher frequency harmonics in a more rigorous fashion. [t will be
observed that attempts to regenerate functions having substantial high
frequency content with a truncated series always lead to a function having
considerable "ripple". For example, attempts to represent a square wave with
a truncated series will always show a ripple or oscillation about the correct
value at the leading edge and the trailing edge of the square wave. This
phenomenon is not observed when square waves are passed through [ow-pass
filter networks so that there is obviously some difference between the action
of a low-pass filter and mere truncation of the generating series.
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It has been demonstrated mathematically (Ref. 7) that to avoid these
ripples the variation of a_ with n for (28), for example, must be continuous.
Truncating the series representation of a function means that an(n) is dis-

continuous at the last value of n (unless of course the value of a_ for this
and all higher values of n is already zero). A desirable low-pass digital
filter design is, therefore, one which suppresses the anp's sharply above a cut-
off value for n, one which leaves the values of an for n < nc unattenuated,

and one which does this in a continuous fashion. One means discussed in the
literature (Ref. 7) is to multiply the an's in the series representation by
the function H(n), where H is defined by

1 for n <n
- 'c
of NN
H(n) = | cos (% c forn <n < (3/2)n_ . (38)
- N c c
0 for n > (3/2)nC
H(n), it will be noted, is everywhere continuous and has a continuous first

derivative.

The cutoff harmonic can be obtained from the following expression:

= 2L
ne = 7
This is equivalent to saying that we will accept all the sine waves required
to represent the function without attenuation up to a frequency of 10
radians/sec at which point we begin the "rolloff". We accept no energy in

the signal beyond a frequency of 15 radians per second. Of course, n_ can be
adjusted to match the response characteristics of the airplane under Test.
With flight records usually running 30-40 seconds n_ will be about 50 and the
maximum value of n needed is about 75. With this constraint (36) becomes

f(+.) - f(+.) n=75 nrt,
T = £(+,) + —D t +a + > & Hin)cos i
i 1 T i o} _ n T
n=1,2,3,...
toct < (39)

Usual ly, n. can be adjusted downward if the flight maneuver is carried out

with less than maximum aircraft response.
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One of the more common types of noise in flight test data is caused by the
failure of the digital encoding or conversion device to register the higher
order bits. When this happens there is a sudden small jump in the indicated
value. These jumps are generally in the same direction and do not occur in a
completely random fashion. As a result, they cannot be treated as gaussian
noise; further, they introduce a bias error into data filtered by our fourier
routine. One means of dealing with this problem is to recognize that the air-
craft states are dynamically capable of only finite rates of change. The change
in altitude pressure with time,for example, is limited by the airspeed, altitude,
and flight path angle. Any pressure change in excess of this value is obviously
spurious. In place of the spurious value we can take the value determined from
the vehicle dynamics through the following process:

Assume altitude temperature is equal to standard sea level value. Then

P = 4.26P_(1 - 6.86 X 107326~ 6.86 x 1070
But ﬁ = Vsiny = Vsin (6 - a).
3.26
So P = 4.26Po(g—)4'26 (- 6.86 x 10 2)Vsin (8 - a).

(o]

6 and a come from instrument readings. To allow for errors in these values we
take as the maximum value

B = - 2.922 x 10-5 P0.2347 P0.76526
max o

vsin [1.2(6 - a)]. (40)

Thus the next pressure value cannot change more than PAt from the previous value.

If it does, we are justified in replacing the indication by PPrevious + PAT.
Although this procedure will not eliminate the effects of "bit dropout," it
will reduce materially the bias and low frequency errors which normally result

therefrom. The Fourier procedure is then much more likely to yield the accurate
data needed for effective parameter extraction.

Computation of Derivatives

The drag and power extraction scheme presented above requires that at
least one parameter (&) which is not commonly measured be supplied as an input
time history. We are therefore forced to differentiate a(t) in some fashion in
order to obtain a(t). Because of the fourier series representation used in (39),
we may easily compute the derivative of this function analytically:
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f(TN) - f(fi) T n=75 (nnfi
! - - - N
£10t,) = T ) a  n Hmsin|—

<t <t . (41)

This process may be applied fto any data set for which a derivative is needed
and for which it is otherwise unavailable.

Some examples of the application of this procedure are shown in figures
25-26. In figure 25 an angle-of-attack time history as read from a "quick
look" record is reproduced. Note the high degree of irregularity. This data
was read every 1/4 second. When submitted to the fourijer analysis routine
with n_ = 10, the smooth curve shown in figure 25 is obtained. The angle of
attackSrate is shown in figure 26. The data are quite smooth and appear to
be a reliable smoothing of the original. The maneuver for which these data
were obtained was a pushover-pullup. The "humps" in the data at roughly 6-
second intervalsare believed to be a consequence of the excitation of the
aircraft's longitudinal short period mode by the maneuver. Calculations
indicate the short period mode can be expected to have this period for the
test configuration.
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Comparison of Computed Acceleration Along the Flight Path
with that Determined from Accelerometer Indications

The scheme to extract drag and thrust simultaneously from flight data
has been found to require accurate indications of the acceleration along the
vehicle's flight path in order to yield acceptable results. Usually it is
not possible to locate the measuring instrument (accelerometer) precisely at
the vehicle's center of gravity, so that it is necessary to correct the
instrument's indication for this fact and then to relate the acceleration
along the vehicle's x-body axis to the longitudinal acceleration along the
flight path.

Accelerometers are generally masses constrained to move along the axis
of a tube and centered by springs at either end. The position of the mass
relative tfo the center of a tube is proportional to the acceleration and is
measured electrically. When the aircraft accelerates along the flight path,
the mass moves aft of the center of the tube. Now, the same effect is produced
when the acceleromefer is tilted nose up even though there is no acceleration.
Thus, it is necessary to subtract a term g sin 6 from the accelerometer
indication to account for this effect.

If the accelerometer is located x feet in front of the c.g., its mass is
caused to movg forward as a result of the angular rotation of the aircraft by
an amount x q " One must therefore add this term to the accelerometer
indication. Slmllarly, if the accelerometer axis is located z feet below the
x-body axis then the accelerometer mass is displaced rearward by an amount
proportional to z q.

The linear acceleration along the x-body axis in terms of the acceler-
ometer indication location, and angular velocity is therefore

a_ = a - g sin 6 + x q2 -z a . (42)
X,
ind

We desire the acceleration not along the x-body axis but rather along
the flight path. We know that for motion in the x-z terrestrial plane

a,=utqw (43)
and

u =V cos a (44)

w =+ sina, (45)
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where V is the velocity of the aircraft along its flight path and u and w are
components of this velocity along the principal axes of the aircraft. In
terms of (44) and (45)

a, =Vcosa=-Vasina+ qVsina

=V cos a - Vlia - q) sin o . (46)

Equating (42) and (46) yields

a, - gsin @+ x q2 -z a =V cos a - V(a - qQ) sin a . (47)
ind
Then solving for V, one has
. 2 .
ax - gsindt+xq -2zg
y = —ind + V(& - q) tan a . (48)
cos o

The value given by (48) should now be the same as that obtained by differen-
tiating the variation of true airspeed with time. The differences between a
raw accelerometer indication and the derivative of the true airspeed with
‘time for an actual flight record are shown in figure 27.

Of course one does not measure true airspeed directly. An airspeed
sensor measures only a pressure difference. This difference is affected by
the sensitivity of the pitot and static pressure sources to angle of attack,
the disturbance to the free stream pressure at the static pressure source
resulting from the presence of the aircraft, the compressibility of the air,
and the difference in pneumatic lags of the pitot and static pressure lines.
The pneumatic lag also introduces a time delay in the airspeed indication.
Since the airspeed indicator is calibrated for standard sea level conditions,
any variation in atmospheric temperature will affect the airspeed at a given
pressure difference.

The theory of the pitot-static tube assumes that the air is brought to
rest at the pitot pressure source adiabatically and that the static source
senses the pressure in the free stream (i.e., away from the airplane). With
these assumptions, it is easy to show that the true flow velocity is related
to the measured pressures by

Y-i
q
V="21RT - R (49)
(y=1) P
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where P is the altitude pressure, q_ is the difference between the pitot and
static pressures, T is the local frée stream absolute temperature, R is the
gas constant for air and vy is the ratio of specific heats of air (1.4 for
diatomic gases at normal temperatures). The P indication for use in this
equation comes from the static pressure source of the pitot-static tube and
the T indication from a temperature measuring device. Since one cannot
measure the local free stream temperature readily while the vehicle is in
motion, temperature sensing devices most often measure the stagnation temper-
ature, Ts’ which is related to the free stream temperature by

T
T= -2 (50)

-1 °
de o7y
P

In terms of the stagnation temperature, the true airspeed is given by

‘/2yRTS 9. —‘T‘(l
V= W 1 - 'P—+ 1 . (51)

Unfortunately, it is usually not possible to locate the static pressure
source on an airplane in a region where the static pressure is the same as
the free stream value. Hence, the static pressure indication is in error by
an amount AP. This "position error" so called is felt in both the altitude
and q_ indications. If we call P! the measured altitude pressure and qc' the
measured pressure difference then because

qc' + P! = q. *P =P, (52)

and
P=P'-AP,
one can write
. P!
g *P q'+pP T FQ] |
c = € = c (53)
P P'-2p P _ 4P "
qc' qc’

in tferms of the measured values and the static source position error wgﬁch is
usual ly determined by flight calibration and is expressed in terms of a

as a function of q_.' or indicated airspeed. With this effect included $he
expression for true airspeed becomes
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]
= e 1 I (54)
D) Y
1] 1]
C qC

Fortunately, modern pitot-static tubes are relatively insensitive to
changes in angle of attack so that the q.' and P' indications do not depend
on the tube's inclination to the airstream over the useful range of aircraft
angles of attack. The position error, however, does depend upon angle of
attack and aircraft configuration. At steady speed and constant weight the
position error can be related, as it commonly is, to q.' or indicated air-
speed, but during maneuvers it may be necessary to emp?oy a correlation with
angle of attack instead. Whether this is necessary must be determined by
calibration. If it is, one must then determine true airspeed and true angle
of attack iteratively.

The compressibility correction mentioned earlier is already included in
(54). Conventional airspeed indicators, it may be noted, are simply
mechanizations of the equation

V, =4 =5, (55)

where R is the mass density of the air at standard sea level conditions. |If
the airspeed indicator calibration includes compressibility effects, equation
(49) with standard sea level pressure and temperature is mechanized.

I'f pneumatic signals fransmitted through the pitot and static lines
travel at different speeds* then the q ' and P' values will be in error. In
most aircraft with pressure sensors lodated in the cabin area the pneumatic lines
are long enough that their response characteristics can be considered analogous
to those of resistance-capacitance electrical circuits. The "resistance" is
proportional to length/(diameter)® while the "capacitance" is proportional to
system volume. Since the static system includes more instruments than the
pitot system and, frequently, larger volumes, the static line diameter must
be larger than the pitot or a restriction must be placed in the pitot line in
order to keep the response times equal. Even if the line responses are equal,
V(t) will lag the correct value by a time which is proportional to h and V.

A procedure by which equation (54) may be modified to account for lag Is
the following: We begin by recalling that the equation describing the axial
motion of a compressible fluid in a tube is

* Speed is used here in the sense of the time or rate at which the transducer
indication responds to changes in the aircraft's pressure field. I+ does
not refer to the speed at which acoustic signals are propagated through
pneumatic lines.
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ox  _ ax | ax M ox roar ar (56)

Here u is the fluid velocity, u the coefficient of viscosity, x the axial
distance and r the radial distance. In conjunction with the foregoing, one
may also write the equation describing the conservation of matter

%, B, B
81’+p3X+u3X 0. (57)

Examination of the first equation reveals it to be a mixed parabolic and
elliptic-type non-linear partial differential equation. As such there are at
least two characteristic propagational velocities by which the fluid adjusts
itself to changing boundary conditions. One is infinite. The other, as we
may discover by temporarily ignoring the effects of fluid viscosity, is
approximately what we understand as the speed of sound. This characteristic
information transfer mechanism is always present. The importance of the
infinite propagational velocity in determining the gross behavior of the fluid
motion depends,of course,on the relative importance of the viscous stress
terms in the equation.

The reason for relating the foregoing bit of mathematical wisdom is that
we cannot solve the equation for typical boundary conditions without prodigious
effort and must therefore resort to some gross approximations. Under these
conditions it Is desirable to extract as much information as possible about
the character of the solution of the general equation in order fo ascertain
the reasonableness of the approximate solutions.

Suppose we model the aircraft static or total pressure systems as a very
long straight tube terminated on the instrument end by a finite volume. Let
us assume that the flow through this tube is always isothermal, i.e., it is
slow enough that heat can be transferred to and from the tube walls as a fluid
particle traverses the length of the tube. The pressure in the volume at the
instrument end of the tube is then directly proportional to the mass flux
through the tube to the volume. Depending upon the ratio of the pressures
across the tube and the tube length,

m ~ P for short tubes and P_/P, . . . >?2 (58)
mn~ VP - P, for short-to-intermediate length tubes and
© instrument
Pw/PinsTrumenT < (59
m~ (P - Pinsfrumenf) for very long tubes. (60)
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These resultfs can all be obtained from the foregoing equations and the equation
of state, P = pRT, after some manipulation. The first two results are obtained
assuming ¥ = 0. The second assumes in addition that the velocity is slow
enough that p = constant. The third result is obtained by assuming that the
viscous stresses are sufficiently important that the terms on the left side of
the equation are small by comparison. This of course is only true in very

long tubes (L/D > 100). The instantaneous rate of change of pressure in the
instrument volume is then '

P

- - 1
Pinsfrumen? = (P, Pins+rumen+) T ‘61)

where T is a proportionality constant having the units of time. Note that in

general both P_ and Pins+rumen+ may change with time. From this expression

it is easy to show that in terms of the instrument reading

P =P :

) instrument tr PinsTrumenT : . (62)

T is determined empirically by allowing P_ to change instantaneously
from one value to another. For this case we may easily write

dPinsfrumenT _ dt (63)
(P -P ) ¢
© instrument
whose solution is
- (P - PinsfrumenT) = +t/1 + c . (64)

the boundary conditions are

when t =0, Pins‘rrumenf - Pins+rumen+o

Pe

en + o, P, >
wh T > " instrument ®

thus

-t/

TP (1 - 7T,

PinsTrumenT - Pinsfrumenfo (65)

By measuring P_, P + and time, T is readily determined.
o

. P.
instrument’ ' instrumen
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The above analysis assumes that a change in P_ is instantly communicated
to the gas in the instrument volume. Because acoustic waves are the dominant
communication mechanism when the fluid is essentially at rest, changes in P,
are felt in the instrument volume some A seconds later with the arrival of the
acoustic wave generated by the change in P, X can also be measured experi-
mentally. With this effect included the air pressures at the pitot-static
opening in terms of the instrument readings are represented by

P =P (++21) +1B (++2) (66)
instrument instrument

Note that P_ at t seconds is given in terms of the instrument reading and its
instantaneous rate of change at (+ + A) seconds. '
If now qc" is the lag-free value of the impact pressure,

P" is the lag-free value of the static pressure,
Ps" is the lag-free value of the stagnation pressure,

1],A1 are, re;pecfively, The measured time constants of the
TZ’AZ stagnation and static systems,
then
G = PPN (A T BU(H 42 P (4 2
-1, PTGE 4. (67)
PUCE) = PT (A0 + 1, P (4 4+ 2,) (68)

These values of q " and P" should be substituted for qc' and P' in equation
(54) to obtain a ?ag-free value of V(1).

Typical values for the ATLIT flight test system are

2 = 0.040 seconds
A1 = 0.025 seconds
T, = 0.150 seconds
AZ = 0.033 seconds
V. =18 ft/sec’ @ 120 ft/sec

max
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P, = 2133 psf @ S.L. and 120 ft/sec
P  =2116 psf @ S.L.
h = 35 ft/sec

With these numbers

qc" = 2133 - .040 (2.358976) - 2116 + 0.15 (2.1635)
= 2133 - .094359 - 2116 - .324525 = 17.23 psf while qc‘ = 17 psf.
the error in q_' is therefore 0.23 psf or 1.35% while the error in P is

0.0153%. Thus®i+ appears that if one seeks to minimize data errors a lag
correction in the airspeed is required.

When all necessary corrections have been made to the pressure indications,
one can create V(t) by use of equation (54). These data can then be submitted
to the Fourier analysis procedure to smooth V(+) and to find V(1). As noted
above, this value should agree closely with that determined from equation (48)
if the totality of the data are self-consistent. Observe,however,that the
latter computation requires that one input five separate measurements plus
the derivatives of two,while the former only requires three measurements plus
some calibration data. Thus, it is to be expected that V computed from pres-
sure and temperature data will generally be the more reliable value.

Correction of Angle of Attack Indications

In addition to factors such as transducer linearity, gain, and bias, the
angle of attack indication is affected by the presence of the carrying aircraft
and by its rotation. It will be recognized that for an angle of attack vane
located x feet ahead of the c.g. an incremental angle,

Ao = 1‘an_1 (%9) , (69)

must be subtracted from the transducer indication to account for vehicle
rotation. In addition, there is usually a relationship of the tfype

C, , (70)

%rue = C1 %indicated T ©2

between the angle of attack measured in the neighborhood of the aircraft and
the true (i.e., at infinity) angle of attack. The values of C1 and C2 depend
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upon the location of the vane relative to the aircraft and the geometry of the
aircraft. They are therefore almost always found from flight calibration
tests since the flow fieid about complex shapes such as complete aircraft is
almost impossible to determine analytically. Assuming that these coefficients
are known, one may write the expression for true angle of attack as

- - +an~ 1 [Xxa
Ytrue T C1 ®indicated Tan (V > + CZ : (71

Note that the value of V used in (71) should be that obtained from (54). One
may then smooth a+rue(+) and compute the derivative, a(t), by the Fourier
analysis procedure.

Determination of p(t)

Equation (6) requires as an input p(t). This is readily determined from

pt y-1
L
_ (P! = AP) c
b= RT_ P _ AP (72)
1
qC qC

If the altitude pressure transducer is calibrated in feet, then the appropriate
pressure versus altitude function must be employed to convert the indications
to pressure values.

The density values may also require smoothing before the data can be
inserted into (10).

Conditioning of Other Data Inputs to the Drag
and Power Extraction Method

In addition to the velocity, angle of attack, and atmospheric density,
equations (10) require W(+) and 6(t) as inputs. Fortunately, for the maneuvers
of interest W changes so little that it can be taken to be constant or at most
varying linearly during a maneuver. Usually 6 requires no corrections beyond
the instrument calibration if the erection mechanism is disabled during the
maneuver. Since the indication is sampled and since there may be electrical,
airframe, and turbulence-induced noise, smoothing may still be necessary.

This is also true for the pitch rate indication, q, which is used in the CL
computation and the a and a, corrections. )

74




More General Power and Drag Models

In a normal ly-aspirated engine the manifold pressure and hence the power
output for a given throttle setting will usually vary directly with the
atmospheric density. Thus, if the maneuver to provide data for the power and
drag extraction process involves a change in altitude, there will be a change
in power at a given speed corresponding to the change in p even if the pitot
does not change his throttle setting or RPM. To account for this we need to
multiply the expression for power by (Ref. 8)

p/pO - 0.165 '’

(73)

where p is the standard sea-level value of p and Prot is the value of p at
the beg?nning of the maneuver.

The parabolic form of the speed-power relation used in equation (6) is
obviously satisfactory over small differences in speed and should represent
the thrust horsepower of fixed-pitch propellers reasonably well over most of
the aircraft's speed envelope. The higher efficiency levels provided by a
constant speed propeller at the lower speeds, however, makes it necessary to
employ a higher order polynomial or other function having additional degrees
of freedom (coefficlents) to represent the thrust horsepower adequately over
a wide speed range. Variants of one such function were chosen for further
study: :

P
- 2 2 3
P=P + ——V1/2 + PV 4+ P,V + PV (74)
These are shown in Table Illa.
One will note also that the drag expression is really satisfactory only

if a is measured from zero lift. Since the angle reference for flight data

is often quite arbitrary, it is difficult to establish the angle for zero

l'ift a priori. To accommodate an arbitrary reference, i.e., to replace a by

@ - o in equation (5), requires that the representation for C. contain all
powers of o through 6. We choose, however, to investigate only three variants
of the following form which are shown in Table Illa:

Cp = Cp *+Cp a+Cp a2+CD a3+CD o2 (75)
0 ’ 2 3 4
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

POWER AND DRAG

Py/VZ

P,V

P1/VE + PV

P,V + P3V2

P{/VZ + PV + P3V2
PRV + P3VZ + Pyv>

P1/VE + PoV + PzV2 + Pyv3

COEFFICIENT

(1

(2)

(3)

MODELS

(@]
lw)
!

= 2

(@)
o}
1

= CDO + CD2a2 + CD4a6

Cp

Cpy * Cpye + CDz"‘Z + CD3a3 + Cp,

0

TABLE III-a

6
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RECOVERED RESULTS WITH VARIOUS MODELS

NOISE-FREE

~ Model | CD(-)‘ Cp, - Cp, CD3‘ | Co,

1-1 0.025010125 4.189265490

1-2 0.027715936 1.840217248 2218.55390095
1-3 0.193206335 -5.536545497 55.990804759 ~-190.595121623 6365.50170689
2-1 0.041300870 3.314574182

2-2 0.041723838 A 1.369905822 1934.85508995
2-3 0.032149511 0.256910853 1.083170012 -6.930257732 2636.82627991
3-1 0.052512561 3.397605844 '

32 0.053437421 1.223230343 2098.00447603
3-3 0.104358253 -1.981087659 19.854161098 -61.409698497 3230.30712823
4-1 -0.007815849 3.258242555

4-2 0.047922733 1.291498595 2019.91892771
4-3 0.043314322 0.136168241 0.321188551 2.111106052 2052.79056339
5-1 -0.140402432 3.358351516

5-2 0.035099999 1.289155014 2030.80086563
5-3 0.035099999 9.0 x 10°10 1.289155007 1.9 x 1078 2030.80086599
6-1 0.851148482 2.718117586

6-2 0.019408889 1.334792323 1977.60389095
6-3 0.035100000 -1.8 x 10°° 1.289155029 ~4.1 x 1078 2030.80086584
7-1 7.097803213 ~2.479854764

7-2 0.035099997 1.289155018 2030.80086585
7-3 0.035099849 3.35 x 1077 1.289152488 6.77 x 107¢ 2030.80087789
8-1 -6.419749124 8.756565254

8-2 0.035099983 1.289155030 2030.80086168
8-3 0.035100002 -9.7 x 1078 . 1.289155975 -3.4 x 107% 2030.80094408

TABLE III-b
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RECOVERED RESULTS WITH VARIOUS MODELS

NOISE- FREE

Model Po Py Pa P3 Pq

-1 172998.85079

1-2 157655. 47027

1-3 127308.04933

2-1 371192.98528  -2517765.9562

2-2  334247.89394  -2218423.0065

2-3 357004.45551  -2438740.6304

3-1 69229.86429 701.819787

3-2 60885. 13175 660. 124537

3-3 84876.34799 410.940847

21 1497321.54687  -11640184.7950 ~2759.609819

4-2 190924.27594  ~1057400. 1205 347.238354

4-3 208960.25776  -1218458.9820 321.099439

5-1  -272355.27164 5603220066 ~22.8622086

5-2 28735.71416 1126.607146 ~2.1696429

5-3 28735.71414 1126.607143 ~2.1696428

6-1  11652672.75547  -77120339.5902  -52677.486678 142.0135471

6-2 18.26865  ~1.35 x 10-1° 1536.512079 ~4.0512608

6-3 28735.71427  ~1.71 x 103 1126.607143 ~2.1696429

7-1  -1038549.98441 20472.763195  -119.6962928  1.496383665
7-2 28735.71431 1126.607142 ~2.1696429  ~5.35 x 10710
7-3 28735.71429 1126.607056 -2.1696417  -2.80 x 1078
8-1 2553361698900  ~1.6 x 108 ~133353.421168 433.4378086  -1.726554460
§-2 28735.71427 4.5 x 1077 1126.607134 2201696427  -3.2 x 1077
8-3 268735.71633 3.2 x 107 1126.607117 ~2.1696428  -2.2 x 10710

TABLE III-c



The three drag expressions and the eight power expressions give us a
total of 24 analytical models with which we can attempt to fit experimental
data. It will probably be necessary to employ all of the models or at least
this number of models until experience with data for a particular aircraft
permits one to discard those models which do not apply. The results obtained
by fitting all these models to the theoretical data of figure 24 are shown in
Table !llb. |f one compares the results for case 5-2 with figures 22 and 23,
one will see immediately the very good agreement which the extraction method
can provide.

One may also ask why should one also employ a model which is simply a
reduced form of a more general model? The answer lies in the extreme
sensitivity of the coefficient solutions to small errors in the data.
Generally, the more general models are more sensitive to these errors so that
under these circumstances a simpler form may yield reasonable results whereas
the more general form may yield nonsense numbers. I+ should be recalled that
since any power, if accompanied by a suitable drag, will solve the equation
of motion, these physically absurd numbers are legitimate mathematical
solutions. How then does one determine whether the solutions obtained are
reasonable?

The first means of assessing the reasonableness of the solution set is
to use them along with the experimental data in the proper form of equation
(8). For 300 data points a value of S < 10-13 generally indicates coefficient
values within 1% or so of the correct values. (For the exact coefficient
values, S < 10-21,) Coefficient values in error by 5%, for example, may
still be of interest, but with errors of this size it may become difficult to
identify the best model and coefficient set merely by checking to see whic

model gives the smallest value of S. Smin Will now be on the order of ‘10~

for 300 points, but the coefficient set for Smin may give absurd powers and

drags. For this reason it is desirable to add a second constraint which an
acceptable model and coefficient set mus+ satisfy: The horsepower for any
speed must be positive and less than Y (Y = 400 for ATLIT); C, must be
positive and less than Z (Z = 0.12 for ATLIT) for any a. One frequently finds
that with noisy data very few of the 24 coefficient sets satisfy this second
constraint.
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Effect of Data Errors on Coefficient Extractions

We have noted above that by operating on exact data it is possible for
the coefficient extraction procedure to recover the values of the coefficients
in the power and drag polynomials to six significant figures. We have also
noted that this procedure is quite sensitive to data inaccuracies. |In order
to place some quantitative bound on this sensitivity, the exact input data
were artificially degraded and resubmitted to the coefficient extraction
procedure to determine how the coefficient values were altered. Two types
of degradation were employed: random noise and constant bias. For the random
noise a random number generator was employed at each 0.1 seconds of each trace
and the output scaled so as to be 1% of the maximum value of the function,
e.g., 1% of the maximum value of V(1) during the maneuver. These scaled noise
values were then added to the exact function values to obtain the degraded
data. For this experiment, all data which would normally be measured in
flight were degraded. This was too noisy. No coefficient set would satisfy
the reasonableness criterion.

The data were then filtered with n. = 10. For comparison, the filtered
and unfiltered data are shown in figure 28. Note that the filtering routine
does a very good job of removing the high frequency noise. Note also that
employing a random number generator in the manner indicated means that the
random noise usually has a non-zero mean (bias error). Despite the filter-
ing, the coefficient extraction routine would not yield reasonable resul+ts.
It also failed for n_ = 6 and n_ = 4. The magnitude of the random contri-
butions was then reduced from 7% of maximum signal to 0.1%. With no filter-
ing the exftraction procedure again failed. However, with filtering (nC = 6),
two models gave reasonable results. These were

P = 371959.0785 - 27925812.22
172
Cp = 00676 + 1.52053a - 18.77305a2 + 87.89150> - 1295.7649a°
and
P = 16594.89367 + 1308.3421V - 3.024425V2
Cy = 027766 + 1.34560802 + 1985. 156505,

The second of these (see also Table 1V) is the correct functional form.
Although the coefficient values for this form individually are in error by as
much as 73%, the recovered power, for example, is only in error by 6.3% at 200
ft/sec. The errors in drag are even smaller.
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RECOVERED RESULTS WITH RESIDUAL NOISE

1/10 of 1% Random Noise

N = 6
Model 2-3

Po = 371959.0785
P1 = -2702612.2226
CDO = 0.006761
CD] = 1.520529
CD2 = -18.773051
CD3 = 87.891504
CD4 = -1295.764876
Model 5-2

Po = 16594.89367

P, = 1308.34213
P3 =  -3.02442
Cpg =  0.02777
Cp, =  1.34561
Cp, = 1985.15652

TABLE IV
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A second experiment degraded the data traces individually by a constant
bias error. Reproduced as figures 29 through 38 are the recovered speed-power
and drag-alpha characteristics for various bias errors compared with the
undegraded characteristics used to generate the data traces. Generally, the
characteristics for the largest bias error which can yield reasonable results
are shown along with the characteristics for smaller bias errors so that the
reader may assess the linearity of the change in characteristics with the
change in bias error. Note that weight and altitude bias errors of the magni-
tfude shown are not particularly serious. As might be expected, bias errors in
alrspeed affect the power determination primarily and have little influence
on drag. The same is true with regard to bias errors in V. Bias errors in 8
and o, however, are extremely destructive. Even a 0.7° error in 6 results in
about a 10% error in CD while a = 1.9° error in 6 results in an error of

about 37% in CD . The gase for a bias error of + 1.9° failed (i.e., gave a

power exceedingOThe limit of 400 H.P.). An angle of attack bias error of as
little as 0.1° is noticeable in the final result while an a bias error of
1.6° results in drag and power errors in the neighborhood of 30-40%. In
addition, the shapes of the curves are altered drastically.

These results demonstrate the extreme sensitivity of the coefficient.
extraction procedure to typical noise and instrument errors encountered in
flight test work. This is true even after the data have been filtered to
remove the noise components which occur at frequencies above the usual air-
craft responses to control deflections. Thus, to obtain accurate drag and
power data using, this procedure some means must be employed to reduce the
noise components in the data at what might be termed signal frequencies.

91



POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

92

220000

200000 —

140000 —
120000 |—
100000 |—
80000 |—
60000 —
40000 —

20000 —

EFFECT OF BIASING ON

180000 | BIASED
160000 |— _/
%SUHED

POWER AVAILABLE

BIAS: WEIGHT + 100.0 LBF

FIGURE 329-a

0
140.0

160.0 180.0  200.0

RIRSPEED(FT/SEC)

220.0

2%40.0

260.0

280.0

300.0

20.0

18.0—

16.0—

14.0}—

12.0f—

10.0f—

EFFECT OF BIASING ON
DRAG COEFFICIENT

BIAS: WEIGHT + 100.0 LBF

l | I

ASSUMED

FIGURE 28-b

1.0

2.0 3.0 4.0
ANGLE OF ATTACK(DEG)

10.0



POWER AVAILABLE (FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000
200000 —

180000 —

160000 /

140000 —
120000 |—
100000 —
80000 —
60000 —

40000 —

20000 —

EFFECT OF BIASING ON
POWER AVAILABLE

BIAS: ALTITUDE + S00.0 FT

| | |

I

FIGURE 30-a

] l

0

130.0

160.0 - 180.0 200.0
AIRSPEED(FT/SEC)

220.0

240.0

260.0

280.0

300.0

20.0

18.0—

16.0—

1.0

12.0—

10.0—

1 | |

|

EFFECT OF BIASING ON

DRAG COEFFICIENT

BIAS: ALTITUDE + S00.0 FT

] ] ] |

ASSUMED

FIGURE 30-b

|

1.0 2.0 3.0 %.0
ANGLE OF ATTACK(DEG)

5.0

6.0

7.0

8.0

9.0

10.0



POWER AVAILABLE(FT-LBF/SEC)

ORAG COEFFICIENT(CD) X 100

94

220000

| ! | I | | 1
200000 | ]
180000 |- BI“SED\ __ -
160000/ - \ -
ASSUMED
140000 = _
120000 — -
100000 — ]
80000 — EFFECT OF BIASING ON _
60000 |— POWER AVAILABLE _
%0000 BIAS: AIRSPEED + 0.59209 FPS |
20000 L FIGURE 31-a ]
0 ! ! | l | 1 |
140.0  160.0 180.0 200.0 220.0 2%0.0 260.0 280.0  300.
AIRSPEED (FT/SEC)
20.0 T T T T T T T
18.0— —
EFFECT OF BIASING ON
16.0|— |
DRAG COEFFICIENT
1.0 BIAS: AIRSPEED + 0.59209 FPS —
12.0f-
10.0
8.0
6.0 amsso-\
4.0 ASSUMED _
2 0l FIGURE 31-b |
0 Y R RN NN N S B B
0 1.0 2.0 8.0 40 50 60 7.0 8.0 9.0 10.

ANGLE OF ATTACK(DEG)




POWER AVRILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000

200000+

180000 —

160000::"’—’,_,,.—,_,_—————————-—"——>‘\\Lnssuneo -

140000 (—
120000 —
100000 —
80000 —
60000 —
40000 |-

20000 |—

BIASED

EFFECT OF BIASING ON -

POWER AVAILABLE -

BIAS: AIRSPEED + 3.0 FPS

FIGURE 33-a

| | | | | | I

0
140.0

160.0 180.0 200.0 220.0 2%0.0 260.0 280.0
AIRSPEED(FT/SEC)

20.0

18.0

16.0—

14.0—

12.0—

10.0—

EFFECT OF BIASING ON
DRAG COEFFICIENT

BIAS: AIRSPEED + 3.0 FPS

ASSUMED

FIGURE 33-b

] ] l l I ] | l 1

1.0 2.0 3.0 %.0 S.0 6.0 7.0 8.0
ANGLE OF ATTACK(DEG)

9.0 10.

300.0

95



POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

96

220000
200000 —
180000 —
160000 —
140000 —
120000 —
100000 —

80000 —

60000 —

40000 —

20000 —

BIASED

ASSUMED

EFFECT OF BIASING ON
POWER AVAILABLE

BIAS: ACCELERATION + 0.1 FT/SECe#2
FIGURE 33-a

| | | | I | I

—
—
—
—
—
—

0
140.0

160.0 180.0 200.0 220.0 2%0.0 260.0 280.0
AIRSPEED(FT/SEC)

300.0

20.0
18.0—
16.0—
14.0—
12.0—

10.0—

EFFECT OF BIASING ON
DRAG COEFFICIENT

BIAS: ACCELERATION + 0.1 FT/SECes2

FIGURE 33-b

] | | 1 I l | | |

1.

0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
ANGLE OF ATTACK(DEG)

10.0




POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000

200000 —

180000

160000 = ASSUMED /

140000 —
120000 (—
100000 {—
80000 |-
60000 (—
40000 |-
20000 |—

0

EFFECT OF BIASING ON
POWER AVAILABLE

BIAS: ACCELERATION + 1.0 FT/SECes2
‘ FIGURE 34-a

] l ] | ] | I

140.0

20.0

160.0  180.0 200.0 220.0 2%40.0 260.0 280.0
AIRSPEED(FT/SEC)

300.0

18.0—

16.0—

1.0

12.0—

10.0}

I | | | | I i | I

EFFECT OF BIASING ON
DRAG COEFFICIENT

BIAS: ACCELERATION + 1.0 FT/SECes2

/B IASED

\ ASSUMED

FIGURE 34-b

l ] I I | | ] I l

1.0 2.0 3.0 4.0 S.0 6.0 7.0 8.0 8.0
ANGLE OF ATTACK(DEG)

10.




98

POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000
200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

0

140.0

20.0

18.0

16.0

14.0

12.0

10.0

|

BIASED

!

ASSUMED

EFFECT OF BIASING ON
POWER AVAILABLE

BIAS: PITCH ANGLE + 0.7 DEGREE

| 1 |

|

FIGURE 35-a

]

|

|

I

160.0 180.0  200.0
AIRSPEED(FT/SEC)

220.0

2%0.0

260.0

280.0

300.0

| L | I

EFFECT OF BIASING ON

DRAG COEFFICIENT

BIAS: PITCH ANGLE + 0.7 DEGREE

| | 1 1

BIASED

FIGURE

as-b

1.0 2.0 3.0 4.0
ANGLE OF ATTACK(DEG)

9.0

10.0




POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000

T T T I l I l
200000 p— -
180000 ASSUMED ‘4,___,,—————""“"—~::
160000 /// |
1400001 BIASED -
120000 +— -
100000 }— —
80000 — EFFECT OF BIARSING ON ]
60000 — POWER AVAILABLE _
vo000 BIAS: PITCH ANGLE - 1.9 DEGREES .
20000 — FIGURE 36-a ]
0 | | | | | | |
180.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0
AIRSPEED(FT/SEC)
20.0 I I T | I [ l I I
18.0}— _
6.0l EFFECT OF BIASING ON |
o DRAG COEFFICIENT
' BIAS: PITCH ANGLE - 1.9 DEGREES
12.0
10.0}-
8.0}~
6.0}
4.0 ASSUMED
2.0 FIGURE 36-b _
0 | | 1 | I l | 1 1
0 1.0 2.0 3.0 4.0 S0 6.0 7.0 8.0 9.0 10.0

ANGLE OF ATTACK(DEG)

99



220000 T I I I I I I

200000 — —_

BIASED
180000 f— | \ -

S 160000 \ —
& ASSUMED

L 1890000 —
7

. 120000 — _ -
rt

@ 100000 -
£ 0000 EFFECT OF BIASING ON —
(s =4

& 60000 POWER AVAILABLE -
= 3 .

& 30000 BIAS: ANGLE OF ATTACK + 0.1 DEGREE _

FIGURE 37-a

20000} - —
0 | | | 1 1 | 1
140.0 160.0 180.0 200.0 220.0 2%40.0 260.0 280.0 300.0
AIRSPEED(FT/SEC)
20.0 I I I | | T | T I
18.0}— _
6o EFFECT OF BIRASING ON
SO —
o DRAG COEFFICIENT
e 14.0— —
< BIAS: ANGLE OF ATTACK + 0.1 DEGREE
a 12.0}—
e
£ 10.0+
s
(&)
= 8.0
&5
8 6.0
» BIASED
a
S N
2.0k \ ASSUMED FIGURE 37-b ]
0 1 1 1 1 1 1 1 1 1
0 1.0 2.0 3.0 40 5.0 6.0 7.0 80 9.0 10.0

ANGLE OF ATTACK(DEG)
100




POWER AVAILABLE(FT-LBF/SEC)

DRAG COEFFICIENT(CD) X 100

220000

200000 —
180000

160000

\\—HSSUMED

140000 —
120000 — —
100000 t— —
ool EFFECT OF BIASING ON _
ol POWER AVATILABLE j
BIAS: ANGLE OF ATTACK + 1.6 DEGREES
40000 |— —
20000 = FIGURE 38-a ]
) | | l | | l |
140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0
' AIRSPEED(FT/SEC)
20.0 T T T T T T 1 I
18.0— —
6o EFFECT OF BIASING ON
DRAG COEFFICIENT
14.0— —
BIAS: ANGLE OF ATTACK + 1.6 DEGREES
12.0f—
10.0p—
8.0—
4. 0— R —
,\ﬂssurﬁo FIGURE 38-b
2.0— —
0 AN N N RN N SO N |
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.

ANGLE OF ATTACK(DEG)

101



Reduction of Noise at Signal Freguencies

The filtering technique discussed previously has been shown to be highiy
effective at suppressing noise components in the data at frequencies above
the principal components of the aircraft response. There may, however, still
be spurious contributions to the filtered signal from instrument biases,
changes in instrument gains, and atmospheric turbulence at frequencies below
this cutoff value. These contributions cannot be removed without employing
additional information about the system. Since we do not know precisely the

nature of these contributions, we will make some assumptions, based on our
knowledge of the physics of the situation, to provide the required additional
information. |f we do this properly, we should be able to improve on the

results produced by error-reduction techniques which assume the "noise" in
each data channel to be "white" with a zero mean.

For reasons which will become evident later, we will assume that the
filtered altitude and velocjty data are correct as they stand. The other
channels (a, 6, W, a_, and 8), we can be reasonably confident, contain bias,
gain, and various types of frequency-dependent errors to some degree.

In order to extract the coefficients of the power and drag models
successfully, we have shown that we must have self-consistent data on which
to operate. If any data channel contains spurious information, this severely
limits our ability to extract the correct model with reasonable coefficient
values. Thus, it is important that we take steps to assure, at the least,
that our data set is self-consistent. We will therefore adopt a policy of
modifying the filtered measured @, 6, and W data so that they form a con-
sistent set with V and h. So long as these modifications are not excessive,
say greater than 1% of the maximum data values, we can Jjustify our changes
by saying that the altered values still lie within the normal error bounds
of the data®.

1. Reduction of Bias Error in o

We seek to modify a initially in order to remove significant bias
errors. To this end we write equation (6) in the form

*
This is a somewhat different approach from those usually used to counter

the extreme sensitivity of the least squares estimator to noisy data. Most
investigators employ different, less sensitive identifiers (e.g., Newton-
Raphson Maximum Likelihood, Gram, Kalman Filter, etc.) which may include
provisions for treating certain types of random noise, but they do not
modify the input data as such. According to a private communication from
Dr. G. J. Dobeck of the Naval Coastal Systems Laboratory, Panama City,
Florida, the best estimator for a particular problem depends upon the prob-
lem. Since the present problem is rather different from those usually
described in the literature, it is not surprising that the more common pro-
cedures are not readily adapted to it. For the reader with a good mathe-
matical background interested in a comparison of the characteristics of
several of these identifiers,Dr. Dobeck's Ph.D. -thesis at the University of
South Florida, "System Identification and Application to Undersea Vehicles",
is recommended.
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N | wV P
s= ) —é—l-+ Wi sin(ei - ai) - Wi Aa cos(ei - ai) -2+ P]

Po piSV? 2
+ P2V1 cos a; + Ao sin a; V?'+ P1 + P2Vi + > CDo + CD1 o

A 5 2
+C, a, ]+ 20, Aa, C, *+ 60 Aa, C (76)
D, i 2 | i D i i D
2 } 1 2
where it has been assumed6for he purposes of this analysis that cos Aa =1,
sin Aa = Aa, and (a + Aa)” = a” + 6(Aa)a®. We then minimize S with respect
to Aa to yield
N
.21 BoB1 .
Ao = - N 77
2
L B
i=1
Here,
Po
BO = - Wi cos(ei - ai) + sin o VT-+ P1 + P2Vi
0 5V} 5 |
+ 2 Zai CD + 6ai CD (78)
1. 2
and
wi\'/i P
= — 4 1 - - | —
B] g Wi sm(ei ai) Vi + P1 + P2V1 cos a;
pisvf 2 6
+
> CD + CD o + CD ay | - (79)
o} 1 2
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(This form will be the same for each of the 23 other models used to represent
the data, only the values of B, and B, will be different.) The result of
this computation is then the amount which must be added to @ in order fo
minimize the fit error for the particular model employed. Since we are not
certain that the model with the lowest fit error using degraded data is the
best model when the data have been "treated", we will add only 2/3 of Aa to
o, before we repeat the extraction process. The result, we then assume, is
the smallest fit error which can be obtained by removing a blas from the a
data.

2. Establishing the Probable Values of a and the Coefficients of the
Lift+ Equation

Since the equation has been shown to be most sensitive to errors in a,
we will endeavor to employ a procedure for establishing the proper range of
o values which is not heavily dependent upon the value of a. We begin by
choosing to fit the data in a least squares sense with the model

p=p v!/3
O

C.=C. +C. a+C. o°+C. o +0 ot. (80)

This power model was selected on the basis of early full-scale wind tunnel
test results as being a reasonably good representation of the actual power
into the airstream. We recognize in addition that the equation relating
forces and motions normal to the flight path can be written

v =2V ¢ o(a) pth) -9 €oS Y, 9P sina : (81)

W CL v 2
where p(h) = po(1 - 6.86 x 107°m*20 | (82)
y = sin (h/V) (83)

‘/1-(ﬁ/v>2 v

h is available as a consequence of the filtering operation and h or, alter-
nately, Y can be obtained by sptine fitting the i data or the computed values
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of Y. Note that these equations involve only velocity and altitude (which
we have already assumed to be noise-free) and their derivatives. In the

interests of data consistency we have chosen to ignore the fact for the time
being that vy is also 8 - a.

Now (81) can be rearranged to represent CL in the form
C. = 2W > ; + 9 css Yy _gP sgn o . (85)
gp SV WV

We know also that a reaéonably accurate representation of the drag
coefficient is

c.=C, +¢, C, +C, C/ . (86)

D Do D1 L D2 L
With this representation we will write equation (6) as
Vst =FV]/3cosa--&\-{-2-(C +C. C +C. ¢ (87)
9 i WV 20 o, T o, LT Yo, U

With the power values obtained from (80) we solve for C, (1) from (85). Given
these values, we find PO’ CD ’ CD , and CD from (87) in a least squares
. :

sense. Using the value of P, found in this fashion, we reenter (85) and find
a new value of C (5). This is then used to extract new values of PO’ CD ’
(o]

CD , and CD from (87). The process is repeated until the change in the four
2
coefficients from one iteration to the next is less than 0.001%
As a result of TBe foregoing, we now have a reasonably reliable picture
of C (t). This we then fit to the bias-free a-data by a least-squares-

distance routine (described in detail in NASA TN D-6374 and also in a later
section of this report) using the following model:

{CL - CLQ[éi]} = CLAO + CLA[ai] + CLAX[aI]x . (88)
i :
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Initially we assume X = 2.0 in order to solve for CLQ by a linear least
squares method. With CLQ determined, we subtract the term CLQ*éi from CL

before we apply the least squares distance method to determine new values |
for the remaining coefficients*. We will assume that CLQ has this same value
for the remainder of the data reduction procedures applied to a particular
data set. The LSD routine determines the values of coefficients CLAO, CLA,
CLAX, and X in this model which minimize the perpendicular distance from the
curve represented by (88) to the data points.

We then adjust the values of o at every time point so that they satisfy
(88) exactly. We employ for this purpose a second order Newton-Raphson
procedure: |f we call '

f(a, ) = (CLAX) o} + (CLA) o, + CLAO - {C, - CLQ[6]} (89a)
i i i L.
k k k i
f1(a, ) = (- (CLAX) o} ' + CLA (89b)
k k
" - X=2
f (ai ) = (X)e (X=1)+ (CLAX) a , (89¢c)
k k
where a; is the bias-free value of the a-data at time point i, then the
value ofka. closest to a; which will make f(ai ) » 0 is given by
k+1 k k+1

*
We recognize that the values found for CLAO, CLA, CLAX, and X will vary

somewhat as the center of gravity location - and to some extent the weight
and altitude - is changed because they include a lift contribution arising
from the elevator deflection required to attain trimmed flight. This Iift
contribution varies only with speed - hence @, if the weight and altitude
are relatively constant. |n maneuvering flight an additional elevator
deflection (and thus an additional |ift component) is necessary to induce
rotation; this can be accounted for by a term proportional to 6 so that the
a contribution found by the LSD method will then be virtually independent of
rotational velocity. At a given c.g. location, initial weight, nominal
altitude, and throttle position, the CLAO, CLA, CLAX, and X found by this
approach should be the same whether the aircraft performs a level flight
acceleration - deceleration or a pullup - pushover. The values of CLAO,
CLA, CLAX, and X, however, may also depend upon throttle position because
(a) the thrust axis may not intersect the c.g., (b) the lift distribution
over the wing may be affected by the application of power, and (c) the flow
field approaching the horizontal tall may be altered. For this reason the
coefficient values should be determined at several different power settings,
different altitudes, and different weights. One would also expect the drag
coefficient values to be somewhat dependent upon power level.

106




f1la, ) fre 05 [ )
) « £ 1" 2 - 2|7y 2

f (ai ) f (ai e f (ai )

k k k

(90)

The choice of signs on the radical is made according to the following
rationale:

I f f'(ai )°f"(ai ) < 0 use the negative sign on the radical.
k k

I f'(ai )-f"(ai ) > 0 use the positive sign on the radical.
k k

Occasional ly,

1o, ) 2 o, )

S I S
g, ) (e, )
K k

<0

because the radius of curvature of f(ai ) at a. no longer intersects the

abscissa. When this happens, the compu¥er canngf perform the operation.
In such a circumstance the following procedure is suggested:

1. Choose as an initial estimate for a,.
k+1

f'(ai )

k (91)

2. If |f<ai )| < |f(ai )|, then try (90) again.

k+1 k

3. If the radicand is again negative, try

f'(a, )

|
= R s
% % (. )

i i (92)
k+2 k+1 |k+1
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and see if If(ai o< [f(oci ~)]. As long as

k+2 k+1
[fea; ] < [f(a, )|, use either (90) or (91) as indicated.
k+n k+n-1
4. Continue until either |fa. )| < 10777 or [f'(a,. )| <1077 .
| i
k+n k+n

In the former case the new root is found with sufficient accuracy. In the
latter, a real root does not exist close to the starting point and we select
the value of a for which f(a) approaches zero most closely. Note that the
use of a |least squares procedure does not guarantee that the coefficients
chosen Eor any particular data point yield a root; only that the sum of
[f(x,)]J* is a minimum for the particular model used. Thus, an individual
f(ai may be non-zero with no crossing of the abscissa for any o close to .

With the revised set of a values given by the foregoing procedure, we
now reenter the coefficient extraction routine, i.e., equation (6) or some
alternate version thereof, with vy = & - a to find "updated" values of the P
and C, coefficients. We look, of course, for the model giving the lowest fit
error. |ts coefficients, along with the data, form the basis of our next
step.

3. Modification of a-data to yield a more Consistent Data Set

In this step we seek to modify a slightly at each point in fime by a
different amount so as to (a) more nearly satisfy equation (81) at all times
and (b) reduce the fit error obtained with equation (6). We begin by using
the latest power data in (81) and solving for C, (). With the least-squares-
distance procedures we then update the values for CLAO, CLA, CLAX, and X.

If we now substitute for @; an "improved" value which is given by

ai + F A @,

where F is a factor permitting us to apply all or part of the correction
during any particular iteration, and where Aai is defined* by

*Aai is the value by which a, must be changed to satisfy (81) exactly. We
could of course employ our Newton- Raphson procedure to determine it. We
have chosen, however, to assume that Aa. is-very small and can be represented
with satisfactory accuracy by one term in a binomial expansion.
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. g Sp. V, . N g P,
vt -3— cos y,~ zwl ' CLQ(ei)+CLAO+CLA(ai)+CLAX(ui) - ;_ sin a,
P i W, V*
= [
Aai g Spi v, g P, cos a,
57— X + CLAX + a, + CLA + —1 >
i : W, Vv (93)

Then the sum of the squares of the amount by which we fail to satisfy equa-
tion (81) at each time point (a quantity which we call 82) should decrease.

We will usually take F = 0.3 on the first two iterations and 1.0 on sub-
sequent iterations. Before we substitute o + F A @ for @, in equation

(6), however, we will update the 6-data so that it is more consistent with
both y and the revised a values. We assume for the present purpose that 8
contains a gain error and a bias error which we will determine by fitting

the 6-data with

sin | [%]+ai+FAai=A6i+B (94)

in order to determine A and B in a least squares sense. The new ei is

simply A ei + B. This value of 6 plus the revised a value are then sub-
old
stituted into the appropriate version of equation (6) to extract the coef-
ficient values. With new power coefficients from this extraction the cycle
is repeated until the fit error, S, reaches a minimum, usually in two or
three more iterations. This minimum is determined by comparing the fit
error after each iteration with the fit error obtained for the previous
iteration.

It will be observed that the power, computed using the coefficients
obtained from the last extraction, is the principal mechanism by which Aai
is modified in (93). It will also be observed that Aai is relatively
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insensitive to very small changes in power. As a result, when the fit error
for 300 points is less than about 107 0, the Ao, are generally 2 x 10=4 or
less. These small modifications in a result in total power values which

are very little different from those of the previous iteration. Hence, the
reduction in fit error during the next iteration becomes miniscule. Some
other means must therefore be employed to speed the reduction of the fit
error to the desired range of 10=13 or less.

4, Modification of a-data by Trajectory Comparison

What we have as a result of the previous procedures is a set of lifft,
drag, and power coefficients obtained in a least squares manner from input
V, h, and W data and modified o and & data. We will now use the coefficient
set and some assumptions regarding the accuracy of the input data to calcu-
late the trajectory of the vehicle during the time in question. As the
vehicle moves along its trajectory in the terrestrial X-Z plane, its
position in space and its orientation may be described by a set of time
histories. These time histories are the solutions of the system of equa-
tions (6), (81), (82), and (83) plus the relationship

W=-cP (95)

where ¢ is the specific fuel consumption. Examination of the system will
show that ftwo of the 5 time histories must be specified a priori in order

to obtain a unique solution. As we have indicated, we choose to assume that
V and h and their derivatives may be considered to be accurate and noise-
free. As a result we may readily develop the following time histories:

V(1) h(+) o (1)
Vi) h(+) v(t) (96)
Vi) h(+) Y.

|f we now combine equations (6) and (81) to yield

Qi cos v, piSVi tan o, Vi piSV$
R R T A R ST CDi (o7

i i i ]

we observe that as a consequence of (96) only a(t) and W(+) are unknown in
(97). But (95) can be written
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2
=W, - 29 4t - o A7 e :
Wi+1 = Wi CEPO + P1Vi + P2Vi] At c'(2 ) [P1Vi + 2P2ViVi]

At

- & [P1Vi + 2p <\'/f + vii/'i>] i (98)

2

This permits us to determine W(+) given its initial value. With the results
of (98) substituted into (97), we may solve (97) at each time point for a,
using the second order Newton-Raphson scheme. Thus, we can determine the

a(t) which is compatible with any particular set of CL’ CD, and P coefficients
and the time histories given by (96).

a(t) found in this manner will not be the same as that found from step
3 above. We desire to modify the-a-data resulting from step 3 so that it
will be somewhat closer to that given by the trajectory computation. At the

same time we wish to modify the C,, C., and P coefficients so that they will
yield an a-trajectory closer to The a??) resulting from step 3. We begin as

follows. |f we call @ the value of a; resulting from step 3 and ey the

result of the Trajecfor§ calculation, then the result we seek is to minimize

-N 2
i=1 | !
) ) 5J 3J 3J N -
This will occur when 9C. * 3C. ’ 3C_ ’ ""°’ 3CLAX _ 0.
% Py D

In order to minimize J with respect to all eight C. and C, coefficients
simultaneously, we observe that a first order Taylor series expansion for

gé in terms of the eight coefficients may be written

Do
3J _lad 3 |aJ _ I EX .

[acD ] [acD aC, [BCD ](CDO CDO ) 3C, [aoD ](001 CDl )
0 0 ot o k+1 k 1L "o k+1 k

k+1 k

3 3J

+ 3G, [aCD ](CDZ - CD2 ) + ...
2 2 k1 k

8
aJ N 3 |ad -
or =l + ) = (c -C, ) (100)
[acD ] [acD ] g=q 3C, [acD ] Serr
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where C, =C., , C,=C., C,=C., ...,

0 1 2
]ed
9oy § (@ - a )] (101)
BCD i=1 m T, BCD ’
0 ! 0
2
3 a aa oa
e o (3] = 2 g @~ ) 3¢ :é - ac+i] acfi] (102)
2 [°*D =1 ™ i ““D "7 D 2
0 0 0
32aT
. i, .
We will assume that we can neglect (am. - aT')-EE—TiS— in comparison to the
i i DO A
other term in (102). Such a step will not affect the ginal answer, only the

O
! must be evaluated

rate of convergence. |In this particular tnstance the 5C
L

numerically although, where possible, it is desirable to do this analytically.

The value of the derivative at a particular time point is found by determin-

ing the change in.a, produced by small changes (1%) to either side of the

T,
i
original value of CL in (97). All other Cz's are held constant during the
process.
When Cz have the proper values, all the %%r- = 0. This fact
k+1 L) k+1

permits us to write a system of eight linear equations,

8

3J 3 3J
= + )| == ¢ -C, ){=0,
acDO aoql2C, aCDO %yt %

K K

(103)

3J ] 3 (aJ ]
=] + — === <« -Cc )| =0,
[BCLAX K ab] 3, \CLAX), “Ce, 2

which we must solve for the eight new values of C Although we may not

1

actually wish to obtain the solutions in this fashion, we can find them from
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- *
Cy =C, + {A}  {B} , (104)

k1 K
N aa1_i Ba_‘_i N E)()L_t_i 8a+i
2 i§1 3C, aC, 7 i§1 3C,_ 3CLAX
o P 0
where {A} = : ' (105)
N 9% day N 9%y day
2 ) sarv e eeee 2 ) e
L 3CLAX 3C L 3CLAX 3CLAX
i=1 DO i=1
N 3°‘+i
2 |§1 (o ' - a+i) 3CD
0
{B} = . . ) (106)
N 3°‘+i
2 i§1 “m, ~ %’ SCIax
. -

(104) is in effect a generalized first order Newton-Raphson procedure.

With the Cl values substituted into (97) we determine a new trajec-
k+1 _
tory. We call the o values for this new trajectory a, . We then define
i
@ =ao +0.5(a, -a ) (107)
m. m. T, m

e
The A matrix in this formulation may, for some sets of physical data, be
rather ill-conditioned. As a result, the values of Cz obtained by

k+1
various solution techniques may all be substantially in error as well as
different. The user should therefore employ the actual technique presented
in subsequent sections of this report with care until the reasonab|eness
of the solutions is apparent.
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and 6 =, + am . With these values plus the measured values of V Vi,

o., y s and w,, *e enter the coefficient extraction routine and The C, vs.
a curve fit procedure to obtain new power, drag, and |ift coefftcnenf% and
to check the resulting fit error.

Prior to beginning another iteration of this process with the latest
C, and C, coefficients, we update our value for the specific fuel consump-
tTon, c, in the following fashion:

1 N-1 W.+1 - W,
C=N- ) —‘JT—‘L (108)

Here, W. are the lnpuT values of the weight and P, are the values of the
power cémpufed using the latest power coefflcten+

_ By repeating the foregoing trajectory comparison with the updated value
of @ two or three times,we arrive at a situation where both the a values

and the fit errors have improved. By this time, however, (a m; - ET ) >0,
so that no further improvement is possible with this approach '

I+ will be evident after a short reflection that if a negative CD is

obtained during a coefficient extraction, the implication is that a fo} zero
lift is positive. This is a condition the designer of the aircraft will
usually avoid if he is aware of it because it leads inherently to high cruise
drag with conventional quasi-symmetric fuselages. Thus, if the minimum fit

error model contains a CD which, as a result of the least squares curve fit

procedure, yields a negaT]ve value, one would appear to be justified on physical
grounds in using as the basis for further operations the most similar model

having CD and CD = 0. This is a procedure we wnII usually follow in applying

the foregélng trajectory comparison to reduce the noise in the a-channel.

It is neceasary topoint out, however, that light aircraft fuselages tend
to be very non-symmetric about their x-y planes. It is possible, because of
this asymmetry, that the minimum fuselage drag does not occur when the relative

wind is parallel to the x-body axis. |f the existence of this condition is
suspected for the aircraft under test, the negative value for C must be
accepted. l

The benefit obtained from the a-trajectory comparison described in this
section and the preceding three noise-reduction steps has been to reduce the
noise in the o and 6 channels and improve the overall data consistency to the
point that the extracted coefficients are usually sufficiently close to the
"correct" values that they can form a useful starting set for the application
of a Newton-Raphson identifier.

Application of Newton-Raphson ldentifier

The Newton-Raphson ldentifier as employed by Taylor and [liff (Ref. 15)
and others is a means of finding the values of unknown coefficients in the
equations of motion which tend to minimize the squares of differences
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between the measured time histories:of--aircraft state parameters and computed
solutions fo the equations of motion involving the same parametérs: I+ is
assumed that the solutions change linearly with a change in coefficient
value. Furthermore, since the equations of motion used by I'liff and Taylor
are linear first-order differential equations, the solutions are readily
determined and the "cost function" minimization procedure can be joined with
the solution procedure without undue difficulty. When forming the cost
function it is desirable to include as many independent differences between
measurement and computation as possible, since the more closely the number

of differences approaches the number of unknowns in the problem, the more
determinant it is, i.e., the more Iikely the procedure is to give reasonable
coefficient values.

The present problem differs from that of Iliff and Taylor in that the
equations of motion are non-linear. The solution procedure is therefore
quite different, much more complex, and must be carried out independently
of the minimization. The minimization yields a linearized approximation to
the change in the coefficient values needed to minimize the difference be-
tween the flight time histories and the computed values of the same states.
In the Iimit as the differences approach zero, the linearized approximations
approach the exact values. Another significant difference from the |1.iff
and Taylor approach is that the present equations of motion have no specific
forcing function(s). As noted above, any two states which are known a priori
may serve this purpose. We have chosen to use the true airspeed along the
flight path as the principle forcing function. Since the power into the
airstream is specified as a function of true airspeed in our formulation of
the problem, the power at any time is known if the coefficients in the
power-velocity model are given. We use as initial coefficient values for
this model those obtained from the previous noise-reduction procedure.t
With the power and velocity specified as fUncTions of time, it is then

possible to determine a unique trajectory. The procedure is as follows:

1. Determine the weight at +J+1 from

2 A"—Z . 3
= - + + - c=— .+ V.V,
Wj+1 WJ cAT(PO P1VJ PZVJ) ¢ (P1VJ 2P2VJVJ)
3
A_t_ (1] .2 ..
- ¢c = + .+ V.,
¢ 5 (P]VJ 2P2\/J 2P2VJ J)
A .
-co>— PV, +6P V.V, + 2P V.V) (109)
g (PyVy + 6PV, 25
Wj=1 = weight at beginning of maneuver (from test data)
Vj is specified
VJ’VJ’V} are computed by the method of splines from VJ, VJ, and VJ

+l+ Is well known that the rate of convergence of the Newton-Raphson procedure
decreases as the error in the estimated values of the coefficients increases.
Thus it is desirable to begin the procedure with values as close to the
""correct" values as one can reasonably manage.
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2. ¥._, is determined from sin_1(ﬁ /V,) since h, and 51 are available

flom the measured data. pJ.=1 ié défermined }rom :

- _ -6 4,26
Pjag = Po(1-6:86 x 1077 hy_p) : (110)
37 aJ is found from
. ' 2 2
' (P AP V.+P_V?) cos a; p.SVS
—L + sin Y. = 0 1 JW 5 J d_ %W J. [CD + CD a? + CD a6]
g J iy j 0 2 J 4

by the second-order Newton-Raphson technique.

4. YJ is given by

2
.SV, . + o+ i) sin a; j
(PGt | S RV Y siney geosyy o
j 2WJ W2 VJ
JJ

Y

5. YJ+1 is determined by forward integration of (112) using the

following scheme:

a. With the Runge-Kutta method, determine vy for the first 8
points of the data set.

b. WiTh Y, &, w, and p known at these points,one can then find
y at the eight points through (112).

c. Represent ?(T) over the last six points of the interval by a
fifth-order polynomial using Newton's interpolation formula:

(1) (t -+, )

a, + a1(+ - TJ_5) + a2(+ - TJ—B) (+ - TJ—4) + a3 j-5
. (T‘—-+J_4)(T - +j?3) + a4(+ - Tj_é)(+ - +jl4)(+ - fj~3)(+ - fJ-Z)
+ a5(+ - TJ—S)(+ - +J_4)(+ - +J_3)(+ - TJ_Z)(+ - Tj-l) ,: (113a)
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where a
o

=¥

Y4tV

B +J_4 - +j_5

= [§J_3 T g ey Uy =t I - 0 - 1 0]

= EQJ_Z - (s talt -t 8yt = Tjog) )y = ¥y
d E(+J_2 - +J_5>(+J_2 St - +J_3>]

0¥y - (g * oyl -'fj_sl LI IR TC R N%
taglt, g - tig) (g - Tty - +J._3))]/[(+J._1 - 1)

. (+J_1 - TJ_4)(+J_1 - +J._3)(+J_1 - +J_2)]

= E&d " lag t Al - ) Ayt -t 0 -t )

+a gt =t I, =t ), = F. ) +alt. - . . -+, )
a3t J=5 (TJ J-4 ‘ J J-3 ALK J=5 ( J J-4

s (F, -t M, -t O NT/LGE, -, (. - . (. - . L)
J J=3""J J=2 e J J=5" "] J=4"J J=3

C(t. -t ), -1, )
J J=2" "] J=1 3.

Extrapolate the formula to +.+ This is done simply by letting

Jt’
T TJ+]'
Integrate the extrapolated formula term-by-term analytically and
evaluate the result between the limits +, _ and t.,,:
J=5 J+1
h Ty
= +
YJ+1 YJ—S j+ y dt
J=5
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O Y™V jos Y s T s T

P+

118

25417155015 (715
(113b)

AT each step we Then subtract T._5 from all time values In order to
extend the formula's range.

P
) -J-fL——LJi[l(+2 2 -t

Estimate pJ+] from

=p, + 4.26p (1 - 6.86 x 10°° h )% (= 6.86 x 107°)v, sin y, At
J J J (114a)
and aJ.+1 initially from
R o - o '
Gigq = @)+ 0.25 TR At §114b>

with corrections which are defermineg by comparing the value of
Y4 from (113b) using the 6J+1 and &4 with the value of ¥y from

j+1
(111) using the same p and a values. Then

A vy.,.,)
J+1 K

a.,.) = (a,,,) + ) (115a)
Jj+1 K1 g+ K _gl .
®/5+1) k

2
_ . oA _ psv ~ ~5
(P sin a/wv) o l;a CD f 6C a}
(115b)

where & _
a R 2 -\ 2
vi_ﬁcosa_osvc_y_
wv 2w D g
-13

These k iterations are continued until ij+1 < 10 . As a result,
computed by the predictor equator (113b) is compatible with

Y.
J¥1
the other variable values to a high degree.

~

Determine §J+1 from (112) using the latest predicted values of §J+1’

pj+1, and aj+1’ Calculate a corrected value for YJ+1 from



T,

JH o, ‘
YJ+1 = YJ—S + JT vy dt (116a)
J-5
where now
Y=-Ply -y, ) tA+BH -t )0+ -t %+ Dt -t )7
j-5" j=5 j=5 j-5
FEG -t OV R -t 7 (116b)
J-5 J-5 :
if P> 10_2. In this equation, an extension of the procedure described

by Smith in Ref. 2,

- [ ] . + [ ] . _ L ] . + . . _ . . + * . - L] .
o TS 6Yl 15yL_1 ZOYJ-Z 15YJf3 6Yl-4 Yl-5
- + - - -
Y1 6YJ ‘ 15yJ._1 + 20yJ._2 15yJ._3 + 6YJ_4 Y
A= YJ-S
T2y, - 75y, , + 200y, , - 300y. , + 300y, , - 137y,
8 = ( i -1 . Y-z T 30074 = 137Y; o)
60(t,_, = 1, 5) ]

12y, = 75y,_, + 200y, , - 300y. . + 300y, , - 137y,
. P( A TS A LY. Vi3 394 YJ-5>

60t _, =t

- 10y, + 61y, . — 156y, . + 214y, . - 154y. , + 45y,
( Oyl 61Y]_1 156yJ_2 214yl_3 154&_4 YJ-%)

C = 5
280t 4 = t;5)
- 10y, + 61y, , - 156y. . + 214y. _ - 154y. , + 45y,
+ P< i w|-1 56Y1-2 : 4%-3 0 Yi-4 Y1-5)
240t 4 = 15
Ty, - 41y, . + 98y, . - 118y, _ +. 71y, . - 17y.
D = ( N Yi-1 Yi-2 YJ'33 Yi-4 YJ'5\
24t 4 = 1, 5)

.- + 98y. , - N A I b
\ P<7yl My, g + 98y, , = 118y, o+ Tly, , y]_%)

3
20+, - t. )
j-4  J-5 119



120

_ ..+ l. _ .. + .. _ 0. + L]
c . ( 2 "y, 247 . _, 261, _5 145 4 3Wj-)
4
240t 4 = *,25)
=2y, v Wy, - 24y, + 26y, , - 14y,  + 3y,
+P< 2v Yioq T 28t 267, 5 - M4y, 3YJ_2>
4
280t;_5 = 1;_5)
.'- .. + .' _ .. + l. -.. )
.. (IJ Vi POV, = TOY g+ 5T, - Y )
5
1200t - t55)
Y. -5y, +10Y. _-10Y, _ 4+ 57 -
+ P(i = =2 =3 -4 "%) (116c)
1200+, , = +. ;)

J-4 J=5

for the case in which the time intervals are even. For uneven time
intervals, the expressions are much more complex.

If P < 10—2, we represent % in (116a) by (113a) plus the term

ag(t = 10 = ) - R PV FIPIC A o (116d)
where ag = [§J+1 - (a + a.l{’rJ.+1 - TJ_S} taylty -t - 1)
taglt m )y Py - ) 8,50y = 15)
Ty T T (g - Ty - ) gy, - t5)
Py TG Tl (- L)
AT IR D (NS PV P T (g - 1l
BT R LS LRI +J>] . (116e)



The §J+1 In (116c) or (116e) is obtained from the predictor equation

(113b). Its use in the corrector equation (116a) gives us the final,
updated value of YJ+1' Despite the attention to accuracy evidenced

by the use of this procedure, the very "stiff" nature of (112), the
fact that the Taylor expansion for h(see below) is truncated at four
terms, and the fact that with any forward integration scheme the
errors accumulate as one marches along, require that the step size
be kept relatively small (0.01 sec. or less) if the desired accuracy
(errors no larger than 1 part in 106 for a 30 second trajectory) is
to be maintained. As a result, run times per iteration will be on
the order of 4 minutes on an IBM 370/165.

6. hj+1 is found from
. T . At
hj+1 = hj + (VJ snnAYJ)AT + (VJ sin Yj + vV Yj cos Yj) >
Ve : 2 . at>
+ (VJ_SIn YJ + VJYJ cos Yj + Vv VJ cos YJ -V Yj sin YJ) 5
4%
+ [('\'/'.—2\'/ Y2-3V 3§ dsin y 2V 5 42V § 4V ¥ -V 1) cos y.] at.
gy TN VAR R RN A B R N AN Jj 24
(117)
and P st from hj+1' ¥ and ¥ are found by differentiating

(113a) and (116d) analytically. (118)

7. With pJ+1 and YJ+1 known, o, ,, is determined by the Newton-Raphson

J+t
technique from (111).

All of the variable values at +j+1 have now been determined. The process is

then repeated to find the variable values at +J+2 and so on to TN’

*A four term expansion is used because to employ additional terms would
require data which are not readily available. High accuracy in the
representation of the altitude can therefore be maintained only by using
a relatively small step size.
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The determination of h(+), a(t), p(+), y(1), ?(T), and W(t+) by this inte-
gration procedure provides the raw material from which one can form and evalu-
ate a cost function. [t will be recalled that we have assumed the measured
values of V and h and their derivatives 1o be correc+ We can, as a result,
form the following "measured" variables:

h
m.
]
ﬁm
Y = Sin 1 i ’
m v
| m.
I
h AoV .
Yy = ! SR (119)
my Y "mi vm2
mi |
1 - v
m.
]
v 2
m;
and Em. = hm 25’

all of which may be compared with values computed along the trajectory. Fur-
thermore, the variation of each of these variables with egch of the power,
lift, and drag coefficients can be evaluated analytically” for each time
point.

We can also develop two additional comparisons if we are willing to make
some assumptions regarding the quality and character of the flight data. We:
will develop a "measured" weight time history by fitting a fourth-order poly-
nomial to the computed values of Wi. At W1 and WN’ however, the experimental

values weighted by N3 are used in the least squares curve fit routine. The
partial derivatives of W+_ with respect to the power coefficients can, of

i
course, be readily evaluated analytically.

If we now assume that the filtered value of 6 has an accuracy roughly
comparable to that of V and h, then we can take as the "measured" value of a

*
An analytical evaluation is both faster and more accurate than a numerical
one.
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t, h

l L]
o = j 0 dt + 6
m, m

- sin (120)

1

i m.
Tiq i

In this case the partial derivatives of o, with respect to the lift and drag

t,
coefficients must be evaluated numerically'by the Newton-Raphson procedure.
The partials of oL with respect to the power coefficients are taken to be

zero. Alferna+elyi the measured values of a may be used in place of those
computed by (120) if a is known to be accurate. These procedures permit us
to form the following cost function:

N
= - 2 _ 2 . )
J2 iz][é1(hmi h+i> + DZ(Ymi YTI) + DB(Ymi YTi) + D4(wmi W*;)

2 2
+ DS(Em -E )"+ D6(ami - aTi) ] , (121)

where the D's are weights which may be applied to the various differences.
If, for example, a_is not regarded highly, its weight, D6’ may be taken to
be very small compgred with the other weights. We may then proceed as before
to determine the changes in the 13 (possible) coefficients which tend o

minimize J by minimizing (h - h+ ),etc.®* With the new coefficient values

we then proceed to calculate é new +raJecfory, find a new value for the cost
function, develop new coefficient values, and so on, until J < 1013 or is
as small as it will get.

In order to add the various constituent items of the cost function (121)
properly, it is desirable that each item be dimensionless, else one is placed
in the position of adding feet to pounds, a situation whose result is some-
what difficult to interpret. We choose, therefore, to expand our concept of
weights in (121) and write

Again, some care must be exercised in solving the system of 13 equations

for the 13 new coefficient values because the state space, being nearly flat,
leads inevitably to a relatively ill-conditioned matrix. The technique
described with the program user Instructions later in this report was found,
after some experimentation, to be effective with a limited number of test
cases. |t may not be as effective in all cases, however.
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= 1 =4
s 2 Dy 2
h W
max max
D. = —dz D_ = —-—d5
2 2 5 g2
Ymax max
d d
. 3 __6
Dy = Dg 7 (122)
Y o
max max

where the lower case d's are now dimensionless numbers which can serve the
purpose of altering the importance of the variables with respect to one
another. Normally, we take the d's = 1.0.

Additional ly, we note the importance of updating, by (108), the specific
fuel consumption, c, after each iteration. Given a set of power coefficients
and the velocity time history, c uniquely determines W.. The weight at each
point has a relatively important effect on the values of a, Y, and p which
are determined by the integration procedure.

One way to restrict the range of the individual coefficient values
produced by the Newton-Raphson identifier to physically realizable values is
to include a priori values of the coefficients in the cost function. These
values, obtained from previous flight or wind tunnel tests, can be used to
influence the values extracted from the current flight test data. Inclusion
of these values is simply another way, as Iliff and Taylor (Ref. 15) point
out, of "making use of all the information available to obtain the estimates
and insuring that no change is made in the (coefficient value) unless there
is sufficient information in the flight data." To effect this step, we add
the terms

d
7 532
> (Pom Py)
0
m
d
& p, -p)? (123)
2 1 ’
P m
:
m
d
————19e§-<CLAxm - CLAX)Z
(CLAX )
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to those inside. the brackets of JZ Here, the subscript "m" refers to the
a priori values. Then the additional partial derivatives are given by

2d7
;5— (Pom - PO)

0

m

. ’ (124)
2d19
5 (CLAXm -~ CLAX)

(CLAXm)

and the additional second partial derivatives by

2d7
2
PO‘

. ’ (125)

2d19

2
(CLAXm)

The revised matrix equation for the coefficients is then obtained by adding
(124) to the appropriate elements of the existing B matrix and (125) to the
appropriate diagonal elements of The A matrix. As an initial estimate we
take each lower case d, d. ... , as ten times the coefficient value
squared if we have a reasonable e%?lmafe of the correct coefficient values,
and 0 if we do not.

Finally, for convenience of reference, the complete form of the matrix
equation developed from (121), (124),and (125) is given below:
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9zl

1 %2 %3 %14 %5 % 17 %18 %19 P10 Y1 A2 a1;;-m-1 -b1.
921 %22 %23 P24 5 %6 %27 %8 %29 10 a211 9212 %213 b,
31 %2 %33 %34 35 %6 %s7 %8 T3 %310 31 2512 313 by
941 %42 %43 a4 %45 a6 P47 P48 %40 Pa10 a1 Pa12 413 by
%1 %52 33 354 355 355 57 g Fsg 5y Fsqy Fsqp g3 by
%1 %2 %3 %4 %5 %6 %67 %68 %69 10 611 %12 613 b6
(126)
%71 %72 %73 %94 %5 76 %77 %8 %79 %710 3711 %712 iz | 0 P2
%1 %2 %3 %84 %5 %6 %87 P88 %89 %810 811 %812 813 bg
991 %2 %93 %94 %5 %96 %97 98 99 910 %911 %912 913 by
2101 2102 2105 %104 2105 2106 2107 2108 2109 21010 21011 21012 21013 b10
2111 2112 2113 %114 2115 2116 2117 2118 2119 1110 21111 21112 21113 P11
121 2122 2123 2124 2125 2126 2127 128 2129 1210 21211 21212 21213 b2
2131 %132 T133 2134 T135 2136 2137 2138 T139 21310 21311 21312 31213. :)ti




where

11

12

24, ? 8hy 2d, ? A ani 24, g ory Ay
2 L. 9P P 2 L 9P P 2 Lo 3P 9P
hmax i=1 0 Ymax i=1 0 0 Ymax i=1 0
2d, g oW, oW 24, g ok, aE+i' 24, ? a“fi 9 24,
2 L 3P 9P 2 L 3P, P 2 L oGP P 2
Woax 1= 0 E oy 17170 0 a o =1 570 Pom
2 2
2d, N T
2 izl(ym‘ BRES aP2 Y, .Z] (Ym. - YTi) P2
Ymax 0 Ymax 0
2
24, N 3 hfi
R T i
max 0]
is a typical diagonal element and
2d, N dhy 3h, 2d, N ary 3Y+i 2d, N 3Y+i e
H2 i§1 3P, 9P, 2 iZ1 3P, 9P, .2 '21 3P, 9P
max Ymax Ymax
2d, g aw+. aw+. 2d5 % 3E+' a!;ri st § 8a+i day
2 L B3P 9P 2 L 3P %P 2 L3P 9P
wmax i=1 1 Emax i=1 0 1 amax i=1 0
2 2.
2d. N 9Y+ 24, N Oy
~ T -y e G A=
Ymax Ymax .
. 2
2d, N 3 hfi
;E——-I§1 th = h T (128)
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is a typical off-diagonal element of the A matrix;

2, N ahfl 2d, N Byfi
177 |£1 P, Nt 5P T2 I_Z__1(Ym BRI T
max max ' :
2d, N, o ;o2d, N awfi
IR ek P AU e (129)
max max ! '
24, N 3E+i 24, N 3°‘+i 24,
— - —l s O - —_ —L C -
* 2 i£1 R R PR i§1 “m "% oz Po PO
max max : Om

is a typical element of the B matrix. Note that the number of elements
depends upon the number of unknown coefficients. " For example, for 9 unknown

coefficients, the A matrix has 81 elements and the B matrix has 9 elements.

Note also that some of the partials do not exist, i.e., %%3 %%[3 etc. Some

of the second partial derivatives, e.g. those involving E and W, also do not
exist. Second partial derivatives involving o are omitted; since the first
partials must be evaluated numerically, there is no straightforward way to
obtain the second partials at the same time. In addition, in an effort to
speed convergence, tolerances are set on all differences, (am -oy ) etc.
i i
When this difference is less than the established tolerance, the difference
is set to zero. Since @ for the test cases was known to contain some
i
error, the tolerance for (o« - ay ) was set at 6 x 10 2 radians. At this
i i
value the a-differences at each value of i became zero. No second partial
derivative values are then necessary.

APPLICATION OF CONSTRAINTS TO MINIMIZATION OF COST FUNCTION

The parameter space described by these equations is nearly flat and
has many local minima. As a result, repeated application of (126) usually
leads to one of these local minima rather than to the global minimum. To
find the global minimum two additional procedures are applied. The first
is to constrain the recovered parameter values to lie between certain limits.
For example, one would not expect an aircraft with a relatively low power
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loading like the ATLIT to have a C, flaps up of more than 6.3. Similarly,

L
a
the CLAX term, if it has a value,is not likely to be positive. The CLAO
term will usually lie between -0.5 and +0.5. One can usually assign reason-
able upper and lower limits to the other parameter values on the basis of
wind tunnel tests, analysis, or previous experience. The parameter values
can be constrained to lie within these limits by comparing the parameter
values obtained after performing the operation described in (126) with the
limits and adding a term

WGTL(PO -P ) (130)
lower limit

"to the b1 element and the term

WGTL (131)
to the a, element in (126) if PO < P0 . Similarly if
lower limit
P0 > PO : one adds :
upper |imit
WGTU(P0 - P ) (132)
upper limit
to the b1 element and
WeTU (133)

to the a,, element. The matrix manipulation is again carried out and the
new parameter values are compared with the imposed limits. If any of the
paramefer values still does not lie within the limiting values, WGTU or
WGTL, whichever is appropriate, is increased by a factor of 10 for that
parameter and the matrix operation repeated.

While this operation will prevent parameter values from being grossly
ridiculous in the physical sense, it does not insure convergence to a
global minimum. There are two reasons:

1. The limits will almost always be chosen independently of one
another and may in fact lie on different slopes of a local minima. Thus,
the parameter values may not readily move off these limits if the weights,
WGTL and WGTU, are reduced on subsequent iterations.
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2. A number of the diagonal elements of the A matrix are much smaller
than the off-diagonal elements in the same column or row. Such ill-condition-
ing can lead to relatively large excursions in some of the parameter values
from. iteration to iteration. These excursions may actually be large enough
to cause the parameter value to move from one limit to the other in one
iteration. Since the trajectory is very sensitive to the parameter values
used to compute it, large changes in parameter values cannot be used to find
the global minimum because the computed trajectory will cross the input
trajectory on each iteration; the cost function increases very rapidly in
these circumstances.

Two means have been found useful for conditioning the A matrix to
alleviate this problem. The first method sets the off-diagonal elements,
v a]z, a13, ceee a113, a21, a31, e a131, +o_zero and retains only a11.

This is equivalent to saying that any changes in P, do not depend upon the
values of the other parameters nor do the other parameters depend upon P_;
changes in P, depend only on the agreement between the computed and measured
trajectories. This is not as preposterous as it may at first appear. Con-
sider the physical situation: All of the data on which the procedure
operates is at a speed considerably above V = 0, the speed at which the power
equals Pg. Py, for the example cases at least, is much smaller (about a
factor of 10) than the other terms in the power expression which also con-
tributes to the ill-conditioning. Note, however, that the system can still
converge to the global minimum when the off-diagonal elements are set to
zero because b1 + 0 as the global minimum is approached.

The second method for improving the conditioning of the A matrix starts
by extracting the power coefficients from both the drag and the |ift equa-
tions. [|f the system has not converged to a global minimum and produced
compatible data trajectories, the power coefficients extracted by fitting
the two equations to the same data will be different. Then by imposing
a priori power coefficients of the type

G Pg
DRAG

(G-1)Po + P
DRAG

(134)

OLiFT

and supplying these with moderate weights, one can condition the system to
converge reasonably rapidly fo a new minimum. This will usually be much
closer to the global minimum than the previous one. Then, by relaxing the
weights on the a priori values somewhat, the system may adjust itself even
closer to the global minimum. In (134) P "~ is the P, coefficient

- OprAG 0
extracted from the drag or v equation, PO is the PO coefficient extracted

LIFT

from the lift or y equation, and G is an arbitrarily-selected constant. G
should be about 10 for the higher order coefficients and about 100 for PO.
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This is to account for the fact that because power is a small term in the
Y equation, the parameter values from this equation will be more in error
‘than those from the V equation. The correct a priori values should there-
fore lie closer to the parameter values derived from the V equation. The
reason this procedure is effective is that when power is specified the
system is actually determinant* at every speed; thus, specifying a priori

values for the power coefficients will cause the system to converge fairly
rapidly to some minimum. |If the a priori values are exact, the lift and
drag parameter values will be recovered with good accuracy but not exactly.

The trick then is fto choose G properly, use the first method, or develop
some combination technique. Unfortunately, experience in working with the
system is necessary in order to select the best approach. This situation,.
it may be mentioned, is not uncommon in parameter identification work at the
present time.

If the a priori technique represented by equation (134) and its sub-
sequent relaxations is permitted to go through a number of iterations one
finds, not surprisingly, that the changes in the coefficlent values get
smaller and smaller each iteration. To permit this situation to continue
beyond a certain point is (a) not cost-effective and (b) does not guarantee
convergence of the coefficients to exact values. To aid computationally
In the convergence to at least a local minimum those coefficients which do
not change at least 1.5 x 10~6 +imes their value are "frozen" and the system
reduced accordingly. CLA, however, is treated differently. When
ACLA/CLA < 1.5 x 10=6 but still positive, CLA is increased by 1.0 x 10-3,
This is done because it was found that CLA is the key parameter in determin-
ing which local mjnimum the system converges to. Near the correct value of

CLA the state space must be very flat because the system will converge** to
a very small cost function for any value of CLA. This value of the cost
function will be very slightly greater than the global minimum so that the

prospects for reaching the global minimum without some "nudging" of this
kind are quite remote. '

That is to say the total lift or total drag are determinate. The
individual coefficients in the polynomial expansions for lift and drag
must still be found as before.

¥% By converge we mean reach a value from which it will not differ
significantly despite numerous additional iterations.
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EXAMPLE APPLICATION OF NOISE REDUCTION
AND NEWTON-RAPHSON PROCEDURE |

The efficacy of the foregoing procedures is indicated by the following
example: ~ If only the a-channel of the theoretical data set is degraded by
1% L random noise and then filtered with Ne = 10, errors remaining in o

are still on the order of 2 x 10 > radians. When this computed data set is
submitted to the least squares coefficient extraction procedure, the fit
error obtained for the correct model is 0.294823 x 10”4 and the six
coefficients are:

P_ = 49398.169 C, = .0440371829
0 D,

P, = 857.520129 C. = 1.390709638
2 . D,

P, = - 1.005276788 C. = 1947.263799
S D,

The a-bias error found (-.111455 x 10-8) is too small to justify a correction.

When the data are fit with a power model of F’OVV3 and a five term drag

model the fit error is 0.11828259 x 10-3. When the drag model is changed to

CD = CD + CD CE the fit error becomes 0.30286167 x 10~3 and the coefficients

0 1
are
Po = 31825.6829
!
C. = .036226989
D
O.
Cp = -0932119

1

The program then uses a least-square distance routine to fit the a-data
to the CL values found from the y-equation with the following resul+t:

CL = - 0.002163327 + 6.35788976a - 0.3823769a2

" The individual o points are then moved to satisfy this equation.

When the cdéfficienf extraction Is repeaféd, the fit error for the
correct model is now reduced to 0.1846867 x 10~® and the coefficients are

P. = 25354.595 C. = .03342

0 D0

P, = 1173.542 C.. = 1.29939516
2 02 :
P, = 2.377407 C., = 2005.55596
3 D4
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The C, coefficients are then updated with the result that

L
C_ = - 0.0017838557 + 6.34847a - 0.310849a 2+ 0304627

After 4 iterations of the a-modification procedure discussed in section
3 above, the minimum fit error for the correct model is 0.33751 x 10~/ and
the coefficients are

P. = 26881.7756 C = ,033792832
0 DO
P2 = 1156.25239 ’ C = 1.2885474567
D,
P3 = ~2.3179596 C = 2017.21169779
Dy
The |ift coefficient equation has then become
C, = - .001782573568 + 6.34888117a - 0.3160536a2" 04793

L

The trajectory comparison procedure yields a fit error of 0.15515 x 10
with the following coeffjcienfs:

8

P, = 28740.475 C, = .03503665
0 DO

P, = 1127.26152 C., = 1.3017466
2 , D2

P, = =2.17339 C, = 1991.91279
3 D4

It is at this point that the Newton-Raphson ldentifier is first applied.
Using the foregoing coefficients and the latest value for the specific fuel
consumption, we compute differences between the "measured" values and the
latest calculated values of the variables along the flight trajectory as well
as the values of the partial derivatives at each point. When these are
properly summed and placed in the appropriate A and B matrices, we solve the
system of equations to find the quantities by which the coefficients should
be changed fo reduce the difference between the "measured" trajectory and
the computed trajectory. The new coefficients found by eight iterations of
this procedure are then

PO = 28735.87794 CD = .03510029979 CLAO = .254462293 x 10—7
. 0
PZ = 1126.60939679 CD = 1.28590 CLA = 6.29327993
2
P3 = -2.1696485666 CD = 2016.338978 CLAX = -,301975855 x 10—8
4
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When these, along with a revised specific fuel consumption, are used in the
subsequent trajectory computation, the fit error is less than 6 x 10-12,
Tables V and VI show the results achieved after 29 iterations. The fit

error at this point is 1.3336 x 10~13 and the residual error in o averages
about 1.2 x 1072 radians, Additional iterations may be used until the final
fit error of 6.553 x 10~14 — +he value obtained with time histories computed
from the correct theoretical coefficients — is approached. Note that in
these circumstances the average residual error in o is less than 0.6928 x 10~2
radians, or about one part in 100,000. There is evidence to suggest, however,
that most of this error is a result of the use of only 16 decimal digits in
the integration routine. In that event, users with an extended precision
capability should find the ultimate fit error to be somewhat lower (v 10'22).

The example cited here shows that with flight data that are not exces-
sively noisy or otherwise erroneous, the simple least squares procedure
described earlier in this report can be extended and modified to accommodate
such errors successfully and still produce reliable coefficient values. In
the present case the reduction in fit error was more than eight orders of
magnitude.

When this more powerful procedure was first applied to actual flight
data, however, the initial fit error was about 10~! (about 1000 times as
large as for the test case) and no reduction could be obtained. Examination
of the input data revealed that the @, 6, and sin~1(h/V) data were very
incompatible. I+ was immediately obvious that it would be necessary to
reduce this incompatibility in some rational fashion before the procedure
described above could begin to function effectively.
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TABLE V. EFFECT OF NOISE REDUCTION EFFORTS ON RANDOM NOISE-CORRUPTED o-DATA
(OTHER CHANNELS NOISE FREE)

a-values after a-values after

Pt. smoothing by low- application of noise- Tgfsg?zégal
pass filter reduction program

1 . 1648561 . 162610 . 1625865
6 . 1646336 v . 162650 . 1626264
11 . 1642220 . 162726 . 1627021
16 . 1635306 . 162858 . 1628342
21 . 1627125 . 163017 . 1629993
26 . 1622586 . 163060 . 1630357
31 . 1621283 . 162896 . 1628721
36 .1620319 - . 162473 . 1624490
41 .1617028 .161753 .1617295-
46 .1609460 . 160710 . 1606867
51 - .1596614 . 159317 . 1592940
56 .1578413 . 157549 . 1572621
61 . 1555447 . 155404 . 1553815
66 . 1528620 . 152898 . 1528759
71 . 1498808 . 150048 . 1500260
76 . 1466639 . 146872 . 1468503
81 . 1432434 . 143406 . 1433850
86 . 1396289 . 139697 . 1396771
91 . 1358230 .135794 . 1357737
96 . 1318381 131741 1317222
101 . 1277057 . 127589 . 1275701
106 . 1234775 .123383 . 1233655
111 .1192182 119174 . 1191564
116 . 1149943 . 115007 . 1149901
121 . 1108633 . 110919 . 1109024
126 . 1068668 . 106936 . 1069206
131 . 1030291 . 103087 . 1030717
136 .0993605 .0993959 .0993814
141 .0958635 .0958769 .0958629
146 .0925384 .0925358 .0925223
151 .0896943 .0896856 .0896724
156 .0867033 .0866978 .0866851
161 .0838952 .0838976 .0838853
166 .0812729 .0812796 .0812676
171 .0788341 .0788380 .0788264
176 .0765706 .0765671 .0765559
181 .0744685 .0744597 .0744487
186 .0725120 .0725069 .0724962
191 .0706878 .0707004 .0706899
196 .0689884 .0690313 .0690211
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TABLE V. (Continued)

a-values after a-values after Theoréfical

Pt. smoothing by low- application of noise-

pass filter reduction program a-values
201 .0674143 .0674917 .0674817
206 .0659714 .0660735 . 0660637
211 . 0646669 .0647690 . 0647594
216 .0635016 .0635702 .0635607
221 . 0624647 .0624701 .0624609
226 .0615312 . 0614627 .0614536
231 . 0606668 .0605417 .0605327
236 .0598368 .0597010 . 0596921
241 .0590192 .0589354 .0589267
246 .0582159 .0582405 .0582318
251 .0574569 .0576115 .0576030
256 .0567929 .0570441 .0570357
261 .0562780 .0565344 .0565260
266 - .0559444 .0560788 .0560705
271 .0557777 .0556742 : .0556659
276 .0557012 .0553170 .0553088
281 .0555776 .0550045 .0549963
286 .0552280 .0547339 .0547258
291 .0544669 .0545027 .0544945
296 .0531435 .0543080 .0543000
298 .0524357 .0542399 .0542318

13

Fit error = 1.3336 x 10
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TABLE VI. COEFFICIENT VALUES OBTAINED WITH NOISE REDUCTION PROCEDURE

Theoretical values used to "~ Values retrieved from

generate data time histories noise reduction procedure
PO 28,735.71427 28,738.72144
P, 1,126.60714 | 1,126.5699
P2 - 2.169642857 - 2.1694849
CD 0.035100000 0.03510121
0
C 0
Dy
CD 1.289155014 1.2887796
2
C 0
05
CD 2,030.800865 2,028.977898
4 :
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A PRIORI IMPROVEMENT OF DATA
~ COMPATIBILITY

A diligent investigation into the sources of @, 6, and Y incompatibility
in the flight data revealed the possibility of at least the following sources
of error in the individual data channels which had not been treated earlier:

1. alignment errors in the installation of the o and 6 transducers
2. a bias error in the pitch rate gyro indication

3. adrift in the pitch angle indication

4. excessive lag or other dynamic effects in the pneumatic altitude
and airspeed indications

5. gain and bias errors in the pressure |ns+rumen+ calibrations and
in the position error calibrations

6. a phase lead in the 6 and temperature indications relative to the
other channels

It will be appreciéTed that many of these effects are not readily quantified
in the usual calibration procedures. To make the flight data sufficiently
self-compatible to be usable in the |ift, drag, and power extraction routine,
the filtered input measurements were altered as follows:

1. A bias, calculated from

Ax
= o U ONY L
eb = sin <;§_) eN , (135)

was added to the input 6 data. The subscript N refers to the last data
value in the set.

2. A bilas, calculated from

6, = : <, (136)

was'added to the Tnput 6 data. As a result of these steps the Ax, 6, and
® traces were found to be quite self-consistent. If the time integral of
8 did not then match 6(%),

3. The phase lead of 8 with respect to the other data channels was
found by determining the value of T which maximizes

N i
I {e.* U 8Ci - 1) di + e1] : (137)
i=1 1

The phase lead was eliminated by dropping t data points from the beginning
of each data trace except 6 and temperature.
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The opportunity to determine the compatibility of the pneumatic data
(V and h) with the inertial data and the angle of attack follows from +he
kinematic equation for the longitudinal body axis acceleration and the
definition of rate of climb:

Ax = V cos a + V(8 - a)sin o + g sin 6 - Xax 62 (138)
i A
hi = J Vsin (6 - a) dt + h1 . (139)
1
Examination of the first equation will show that if one assumes that

as a result of 1, 2, and 3 above Ax, 6, and 8 are now correct and compatible
among themselves, a compatible value for either V or o can be found by
solving a differential equation assuming the other variable to be correct.
If one assumes that o is correct then a compatible value of V(t) is the
solution of the equation

.2
. Ax. - g sin 6, + X__ 67 . .

v, =|—d J_Tax Il oy -4 tana. (140)
J cos GJ J J J J

with the initial condition V1 = V1 from pneumatic data at the first data
point.

This solution is obtained quite readily by the technique described
earlier to integrate the trajectory equations (112).

If, on the other hand, V is assumed to be the error-free variable,

o can be determined by a slight variation of the same solution procedure.
To obtain the proper form one first makes the substitution

U= cos a (141)

whence (138) can be written
2 .

. Ax: - g sin 8, + X__ 87 v, .
G, = |—1 Joax It ol fy -8 s 4ft - u? (142)
J VJ VJ J J J J

Here S, has the value * 1.0. The correct value is determined by the fol low-
ing logic:

a. choose as S, the value corresponding to the measured o, This value
of a is also used to begin the integration.
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b. 1£5;> 0, u; > 0.9999, and {—uJ/ESJ(/1-u§ +10°"% <0,

then the sign of SJ Is changed for the next value of j.
c. The same is true if Sj < 0, uJ > 0.9999, and
. 2 -12
{-u./[s,(V1-uT + 10 "Y1} > 0 .
J ] J J ]

The computed value of a at any point is then
« = sin”! (s, /1-u§} . (143)

An effort was made to calculate @ in this manner but the solutions
had ridiculously large magnitudes. Efforts were also made to apply gain
and bias corrections to the velocity in an effort to improve the result.
This too failed to produce physically reasonable results. The various lag
constants were then varied over large ranges with the same end result. |+
was therefore concluded that the velocity and altitude data contained
substantial errors, probably resulting from a combination of excessive
lags, dynamic effects, and perhaps incorrect gains and biases. |t was
therefore necessary fo assume that o was correct in order to solve for V.

The initial results were quite encouraging in that they were quali-
tatively similar.to the input data but displayed quantitative differences
_of up to 20 ft/sec at certain times. It was found that this difference
could be reduced significantly by assuming a drift in the pitch gyro
indication of 8 x 1074 rad/sec. Subtracting this "drift" from the input
pitch angle indication led to a calculated velocity that usually differed
from the input by less than 1.5 ft/sec. As a consequence of these findings

4. The input velocity was overwritten by the solution of (140) and

5. The input altitude was overwritten by

+ ‘
h(+) = f V sin (6 - a) df + h1 _ (144)
1

where V is the result of the previous step. Comparisons of the calculated
velocity and altitude with the input V and H data are shown for a typical
pul I-up-pushover in figure 39. Note that differences of this magnitude
would make it impossible for the coefficient extraction procedure to operate
successful ly.

While the foregoing actions produce a reasonably compatible data set,
they do not guarantee its accuracy. The reader is cautioned that while
these data, when processed by the coefficient extraction program, will yield
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physically reasonable numbers if the proper model is available, such results
may not be the correct values for the particular aircraft under investigation.
This could easily happen if errors in the a-channel, for example, are masked
by the compatibility improvement scheme. Note also that the solution of

(140) is not very sensitive to the exact value of gain and bias used for the
o position error. Compare, for example, figure 39 with figure 40.

In an effort to fine-tune the data for improved compatibility before
its submission to the coefficient extraction program, a number of other
procedures were applied. The first represents vy by 6 - a and calculates v
from this by the method of splines. This value of y is substituted into
(138) now written as

Ax =V cos o+ V ysina+gsing-X_ 82 . (145)

Assuming that V, V, 9, é, Q, and Ax are known, o is determined at each point
by the second-order Newton-Raphson technique. The resulting a values are
fit to the input o values using a second order polynomial:

a, = K 2

j 1 aDATAJ + K Ky - (146)

2 0‘DATAJ. + Ky

SaATA is then replaced by values computed from this equation. K K2, and

])
K3 aré found by the method of least squares. Since a may now be slightly
different, new values of y are computed and fit to the previous values by

2
.= Koy, + K.y, + K (147)
" Yo T S o 6
with K4, K5, and K6 determined in a least squares sense. The new values of
Y are replaced by those computed from the equation.
A new ?, defined as 2K4 Y. ?. + K5 }. , is used to find new
Jop Jorp JoLo

and K, =+ 0 and

a's. The cycle is repeated a number of times until K1 3

K2 + 1.0 as closely as possible.
The final "tuning" assumes that bias errors may still be present in o
and 8 and that there may be a small residual acceleration sensitivity in
the static pressure indication. The latter is important primarily in those
cases where V is assumed to be correct and a compatible o must be calculated.
I+ serves principally as a check when o is taken to be correct and a com-
patible V is calculated. For this final tuning we construct the cost
function :
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N | d d d
= 1B -p 0P 2k - ax 0%+ B2 (A= M7
j=1 Pm1 J J Axmax J J Am
d d d d
+—§é(8m-8)2+—?'-(0—0)2+%(D D) + 35(9-6)2 ,
Bm Cm Dm Gm (148)
PO TJ
where P = ‘T—‘T. 1 - 6.8 x ]0 . sin(e, - o.)dt.
; o Y J J g
i
+ G j VJ cos(eJ - a )dT + h + Ae + BAxJ + Cgsin eJ (149)
1
AxCJ =‘VJ cos aj + Vj(éJ - a )sin a + Xax + D(V [6 - &J]cos aj
+gcos B, -V, sina)+ 6V, sina, -V.(8, -a,) D, (150
g ] ] ] j n aJ 5485 aJ cos aJ (150)
D= ebias ’
G = Ybia_s or (ebias B c‘bias) 3 abias =b-6, (131)

and minimize Jz with respect to A, B, C, D, and G, using the Newton-Raphson
procedure. With these values we apply bias corrections to 6 and a and an
"acceleration correction" to Pm . We then return to the beginning of the

J
data processing activity, calculate new velocities, altitudes, and angles of
attack, and again minimize J3 with respect to A, B, C. D, and G. This
procedure may be repeated until J, has in fact reached a minimum. A priori
values may be included for the pa?amefers if known. Even approximate a
priori parameter values may be used to advantage during the processing of
the first few data runs to insure reasonable results and easier detection
of "bugs". Typical results for the ATLIT obtained by applying the entire
calibration-filtering-compatibility improvement procedure (called FDR1) are
shown in Appendix A,
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EXPERIENCE WITH FLIGHT DATA
AFTER APPLICATION OF DATA
COMPATIBILITY IMPROVEMENT PROCEDURE

Most of the problems encountered attempting to use actual flight data
have been enumerated previously. As methods were developed to circumvent
the gross inconsistencies present in the data, not surprisingly some smaller
problems to the planned utilization of the data began to become apparent.
These were of two types. The first is illustrated in figure 43. This shows
8 corrected for bias error and drift plotted against the integral of 6
corrected for bias error for a pullup-pushover maneuver. Note that the
functions begin and end near zero and the peaks lie on the 45° perfect
correlation line. In between, however, there is a significant difference
between the two measurements. Discussions with the flight crew revealed
that it was extremely difficult to maintain a wing-level, yaw-rate-free
attitude during the pullup-pushover maneuver. Since in three dimensions

.f.
B(t) = J (g cos ¢ = r sin ¢)dt+ + 61 ,
0

it is quite apparent that a yaw rate (r) combined with a small bank angle

(¢) can produce a significant departure in the integral of 9, i.e., q from
that measured by a free gyro. Similarly, a reasonable bank angle alone can
result in the integral of the rate trace being below the attltude gyro
indication during pullups and above it during pushovers. This follows
simply from the fact that the cos ¢ term decreases the effective piTch rate.
Note also that the effect is most pronounced when the pitch rate is greatest.
Finally, there is a possibility that one of the gyros is mounted at a slight
cant relative to the other, which would produce the same net effect.

The difference shown in figure 43 is sufficient to produce a rather
significant djfference in the extracted power and drag coefficients if one
substitutes f8dt for & in the data submitted to the extraction procedure.
For example, at maximum level flight speed the extracted thrust horsepower
is about 22% greater if J8dt is used than if 6 is used. The lower figure
is more consistent with that expected, given engine and propeller test data.
The fit error with f6dt is also about a factor of 2 greater than with 6.
For these reasons it seems advisable to employ 6 in place of f8dt.

The second type of problem which became apparent after some experience
with the results of the data compatibility procedure ‘is the extent to which
one could specify a priori the correct form of the lift and drag models.

It had been assumed initially that the maneuvers were sufficiently slow

that contributions from terms such as CL.» Cyor Cp,» @nd CL. could be safely
o 0 )

ignored. Inclusion of such terms in the model extractions lowered the fit
errors by a factor of two or more. Further, the values of CL°’ CL~’ etc,
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extracted indicated these therms could contribute as much as 10% to the

overal l CL or CD. Thus, it seems desirable 1o include these terms in the

procedure whenever possible. That these terms would be important for the
ATLIT airplane was not appreciated until the development work on the Noise
Reduction -- Newton-Raphson procedure was almost complete and the end of

the grant period was near at hand. Because of the very considerable time
necessary to expand the computer program to accommodate these additional
parameters, it was not possible fto undertake this task for the present report.
Instead, an expanded version of the initial least squares parameter
extraction procedure was prepared. (MDLCK. See Appendix B for description).
Most of the ATLIT results discussed in the next section were obtained using
this limited procedure. An assessment of the validity of the parameter
values obtained by this procedure can be obtained by comparing the fit+ error
obtained with that found at various stages in the test case (random com-
putation of the a-channel).
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OTHER APPROACHES TO THE PROBLEM

Gerlach's Method

While the method described in the present report to find both the drag
and the power from accelerated flight data was developed specifically for the
ATLIT test program, it is similar in some respects to the scheme outlined by
Gerlach (Ref. 9) in a 1970 SAE Business Aircraft Meeting paper. Subsequent
results are discussed in Ref. 10. Gerlach assumes, for example, that while
the engine brake horsepower is known a priori (as a function of manifold pres-
sure and RPM), the actual power into the airstream is a quadratic function of
this brake horsepower. His procedure is intended to yield the values of the
three coefficients in +his quadratic function. Similarly, he assumes a simple
parabolic drag polar and a linear 1ift curve and +he procedure is intended to
yield values of CD » span efficiency factor, CL , and CL

min a a=0

The data time histories used in the extraction process are obtained as
fol lows:

I t
f 2
Ah - j J (Ax sin 8 - Az cos 6 - g)dt
P o
o =0 - s’rn“1 $+

.I.
j (AX sin 8 - Az cos 6 - g)dt
+ =2 (152)

1—
6= tant 2 L [ 5 4 (153)

Here V is determined by the usual pressure and temperature instrumentation.
Ahy is the total change in altitude represented by the maneuver according to
static pressure instrumentation, At is the total time of +the maneuver, t¢ the
time at the end of the maneuver and Ax and Az are accelerometer indications
along the body axes.

Gerlach indicates that the @, 6, and y values obtained this way are
inadequate because of slight inaccuracies in the determination of initial
values and small zero shifts in Ax, Az, and 8. He then proceeds to find
corrections for these errors by writing:
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ABR(t) = Abh,. + AB. K, (1) + Ah. K_(+) + AAx Kg (1) + Az

0 0o &4 0o 0 Kyt

0

+ 86, Ko(t) + g, (154)

where the AAh(+) is the difference in the altitude obtained from pressure
data and integration of the accelerometers; ABg, BAAXG, AAzg, 464, Aﬁo are
initial bias errors, g, is the noise component of AAh, and AAh, is a
remaining constant which should turn out to be zero. The variables K]....K5
are said to be known functions of time but the method by which they are
obtained Is not given in the paper. Gerlach performs the same operation with
regard to the difference in airspeed obtained from pressure data and acceler-
ometer integrations. Using regression analysis, Gerlach finds corrections to
his data. The corrected a, 68, h, and V data are then used in a system of
equations

AP 2 oc

C =C_ +¢C +C o+ C a” + C , o (155)

X xo XAP+ %QVZ Xy xa2 X3, v

C.=C. +¢C Lidic arc, e s (156)

Z %y Zppt oV 2y 28 25

C =Cc +¢ %Eii +C a+C o’ 4C %9-+ c s (157)

m mO mAPT EpV M ma me m6
APt P p |2
il5n MY [ R (158)
12 T3 T3
Vi Vi 2P

Here P is the brake horsepower at a given manifold pressure and RPM, AP; is
the change in total pressure at some point in the slipstream, §, is the
elevator deflection, and a, b, and ¢ are undetermined constants. This gives
a total of 19 constants fto be determined from four equations. Gerlach does
not provide sufficient detail in the paper to identify the procedure by which
he extracts these coefficient values but one could employ the least squares
procedure by setting

w(Ax + g sin 6)

Cx = T3 s (159)
gﬁpV S
c = w(Az - g cos 6) and (160)
z 1.2 ’
ngV S
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C =0 . (161)
C5pSV
2
The reader will recognize several of these constant coefficients as

familiar stability derivatives. Gerlach indicates further that by correcting
the data to steady flight conditions by means of the chosen aerodynamic model,
one can find the rate of climb as a function of speed, the elevator angle as

a function of speed, and the drag polar. The details of the method are not
supplied in the paper or the subsequent reference.

How does Gerlach's method compare with the method described in the
present report? The latter does not include the pitching degree of freedom
so that one cannot use it to extract longitudinal short period stability
information as Gerlach does. On the other hand the flight maneuvers used in
the present work are chosen so as to experience a large part of the aircraft's
angle of attack and speed range rather than "small" perturbations about an
equi librium state from which one would normally extract short period infor-
mation. Gerlach follows the latter approach. Gerlach apparently chooses
integration of accelerations as his method of data smoothing, rather than
filtering, and uses regression techniques for the removal of bias errors.

A similar approach is followed in the present method to remove bias errors.
The application of bias corrections is apparently the only device Gerlach uses
to improve interparameter data consistency. He seems to have settled on a
single, relatively simple aerodynamic model. The form of the equations 1o
which the regression analysis is applied is also quite different from that
employed herein since the equations\serve a different purpose. The identi-
fication of thrust horsepower as a function of speed is not as evident in
Gerlach's approach as in the present method. Finally, the philosophy adopted
here is that by limiting one's consideration to motions of the center of
gravity in the vertical plane and thus to performance probiems alone, the
consequent reduction in mathematical complexity should permit one to do a
better job sorting out errors in the flight data and extracting thrust horse-
power and drag.

lliff's Method

I1iff (Ref. 12) employed a very interesting variant of his stability
analysis procedure to determine |ift and drag from pushover-pul lup maneuver
data. He did not attempt to determine thrust at the same time because "...
an independent estimate of thrust is necessary". He assumes the following
aerodynamic model

C =¢C + C o+ C 6 +C o + C of + C S (162)
X e X2
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Cz =C + C o+ C § +C 5 © + C of + C 2 6 (163)
z, z, zs e z ub e Zs e
e e e
CL = - CZ cos a + Cx sin o (164)
C,=-C cosa~-C_sina (165)
D X z
and writes the six equations
é =MV+Mg+Ma+M a2 + M. 8§ +M 62 +M a8 +M (166)
\% q a a2 § e §2% ad e o
e e e
& =ZV+Za+Z 02 +72, 68 +226°+7 .06 +7Z +q+Lcose -Lg sine
v a a2 Ge e Ge e aée e o v o v o
(167)
V = XV+Xa+X 'a2 + X, 8§ + X 62 + X + I-g - gsin®_ -g86 cos 8 (168)
v a a? 5 e Gé e "o w o o
6 =gq
A== XZV+Za+Z00°+2, 6 +Z.582+7 . a5 +2) (169)
z g v a a2 § "e “62°e T “as e %o
e e e -
AL = SXV + X o+ X ogo? + X, 6+ Xeob2 4 X . as_ + X +Lq) (170)
X g’V o a? 5 e Sg e "ad e To W

§ ,V,q, a, 0, é, A_, and A_ are available as measured functions of time and
T? the net thrust, W, and 6 "are taken as constants which are assumed known
during a given maneuver. |If one calls az, adgy, and 6 separate variables
distinct from o and 6§, then by specifying §_ as a function of time, one has a
system of six equations with constant coefficients which can be solved for

q(t)
a(t)
V(1)
g(t)
aZ(+)
adg (1),
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provided values of the constant coefficients are supplied. Since the equations
are linear, the general form of the solution may be written down immediately
and the partial derivatives for the Newton-Raphson equations evaluated by sub-
stitution of these solutions in the analytical expressions or evaluated numer-
ically by finite differences. The cost function to be minimized is constructed
of differences squared between the measured and computed values of g, a, V, 6,
é, A_, and Ax' The minimization is achieved when the constant coefficients,
Mq, ﬁv' My, etc., assume those values which produce solutions to the system of
six equations most nearly matching the measured data in a least squares sense.

In the form presented in the paper, |liff solves for the values of 22
constants and 7 measurement biases. These include the 12 constants necessary

to evaluate Cx = x/(%pSVz) and CZ = Z/(%pSVZ). Note that the thrust must be
known a priori in order to separate XO from the constant é«xo + %-g). Xo’ of
0. I1iff also assumes that the thrust
o

axis Is coincident with the x-body axis and his formulation is in terms of a
body axis system rather then a wind axis system as used here.

course, is the major contributor to C

The acceleration equations as written are for true accelerations; hence,
the gravitational contributions to the usual instrument indications must first
be removed before they are used in the minimization.

I1iff's model includes three non-linear terms which he is able to accom-
modate by writing three additional equations and calling these non-linear terms
additional linear variables. Obviously, this process cannot be continued to
a significant degree so that he must content himself with fairly simple lift
and drag models if he is to avoid the non-linear solution techniques followed
in the present work. This means that he must limit himself to maneuvers
sufficiently restricted that the changes in all the variables are l|inear.

He cannot evaluate the entire |ift and drag curves in a single maneuver if the
non-linearities of the complete curves extend beyond the form chosen. In the
present work somewhat more complex models are investigated. |In Iliff's for-
mulation only small excusions in pitch angle about the initial value are
permitted. That restriction does not exist in the present formulation. Iiff's
as well as the present models do not include rate terms. One final difference
is the inclusion of C>< , C , and C>< 2 terms in the drag expression; those

$ o6 §
e e e

terms are not included explicitly in the present formulation. It was pointed
out earlier, however, that for a given weight and c.g. location these effects
would be included implicitly by the nature of the extraction process in the
coefficients of the drag expression. The values of these coefficients in the
present formulation would, therefore, be expected to change with changes in
c.g. location or weight.
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The [1iff paper illustrates very clearly the trade offs involved in
activities of this type. |f one is content with restricted aerodynamic models,
evaluation over a limited speed range, and no thrust determination, then the
trajectory computation is very much simpler. Since trajectory evaluation
consumes at least 75% of the computational time and is responsible for much
of the error in the present procedure, the time and accuracy advantage of the
simpler procedure cannot be dismissed easily.

Some of Iliff's more recent studies in parameter estimation applied to

stability and control problems are reported in references 13, 14, and 15.
Other minimization algorithms are described in reference 16.
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DISCUSSION OF RESULTS

Figure 44 presents the two data sets from which the lift, drag,and power
data shown in figures 45, 46, and 47 were obtained. The drift value shown for
the pul lup-pushover maneuver was chosen after several trials to produce a good
match between the measured velocity and the computed value. The a-gain and
a-bias values used are those found by the flight calibration of the a-vane for
the position error. The rough a-curve is the measured a values as modified
by this calibration. The smooth a-curve is the filtered o data modified by
+he compatibility improvement scheme. The modification is responsible for the
difference one sees between the peak measured values and the smooth values.
The smooth curve on the 6 plot is that produced from the input data by the
filtering procedure. The h curve is obtained by differentiation of the
fourier series representations of h.

To obtain the velocity match shown for the level flight acceleration it
was necessary to employ a non-linear 6 drift, one for which almost all the
effect occurs in the last half of the maneuver. Note also that this drift
has the opposite sign from that required with the pullup-pushover, an indication
perhaps, of the random nature of the "drift". It would appear from the figure,
however, that some further refinement of the non-linear drift function is
necessary in order to achieve a really acceptable match.

Figure 46a shows the extracted drag coefficient values obtained with
three different models for the pullup-pushover manuever. Only the steady
state components are plotted to facilitate comparison with the results of
Holmes (Ref. 11) and the predictions. However, the complete drag coefficient
expression obtained, including the rate terms, is shown on the figure. The
power expressions associated with each of the extracted drag results are shown
in figure 47a. It will be observed that the model giving the lowest fit error
obviously is not an accurate representation of the aircraft's thrust horse-
power. |f one assumes that the drag found by Holmes is approximately correct,
+hen it is seen that result (a) provides the best fit by best straddling the
actual drag. The most reasonable power expression, (c), lies below both the
expected power and the steady-state drag for all values and hence has the
largest fit error. We may remark here that the fit error obtained by includ-
ing the rate terms in the drag and power expressions is almost an order of
magnitude smaller than the fit error for the same expressions without any of
the rate terms.

A number of other power models, for example

P=P 2&nV
o 1
P=pP +PV+PV, and
o' "2 30 2 @n
P=P +PVS
o 1
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where x has various values from 0.2 to 0.6, were investigated with no apparent
improvement in the results.

The estimated power shown in figure 47a for 256 fps would appear to be
consistent with the drag coefficient near @ = 0 shown in figure 46a, because
the extracted power and drag values for model (c) -- which are related by an
equation -- are both approximately the same as these values. At the low speed
end of the data the estimated power is either a little low or the drag value
derived from Ref. 11 is a |ittie high or both. A power value of 103,000
ft-1bs/sec at 167 ft/sec is consistent with a drag coefficient value of about
0.98 at an a = 0.104.

One explanation for the failure of the extracted values to agree better
with what are probably reasonable power and drag is a possible error in the
o position error calibration. The extraction process is, of course, more
sensitive to the value of a than to the value of any other variable. As an
experiment an extraction was performed on a data set with a larger value of
o gain along with a negative bias value. The resulting o values were there-
fore centered about those used for the present extraction. Interestingly,
the extracted power curve using model (c) had a considerably shal lower slope
than the result shown in figure 47a. Since the calculated flight velocity is
not particularly sensitive fo the values of a used in integrating the kinematic
equation, it seems possible that an adjustment to a sufficient to bring the
extracted results into much better agreement with the "accepted" values can
be achieved while preserving the congruence between the calculated velocity
and the measured value.

We may note in passing that the aircraft was flown in a rather "dirty"
condition. This fact is no doubt primarily responsible for the measured drag
being much greater (v 25%) than the predicted value. When the aircraft was
"cleaned up" for the full-scale wind tunnel tests the measured drag was found
to be about 15% less¥* than the predicted value.

Figure 46b shows the extracted drag coefficients obtained from the level
flight acceleration at 4000' depicted in figure 44. To obtain this result it
was necessary to omit the rate terms from the drag model but retain them for
the power expression. Note that the speed range and angle of attack range
covered by the two data sets are approximately the same. The rates at which
the variables change, of course, are much lower in the level flight acceler-
ation. |+ would appear that the rates are below whatever threshold value is
needed to give meaningful extractions. Also the fit error -- extrapolated to
the same number of data points -- is about three times as large for the level
flight acceleration as for the pullup-pushover. This would seem fo indicate
that maneuvers featuring more rapid parameter changes or larger parameter
changes make possible more accurate coefficient extractions. They also aid
in masking data measuring and acquisition defects. The ideal maneuvers, how-
ever, should not be so rapid as to excite more unsteady aerodynamic effects
or so large as to uncover even more non-linearities.

*
Private communication.
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The value of CD found from the level flight acceleration is 7.5% lower

than that recovered “from the pul lup-pushover. Considering the fact that fit
errors for both data sets are still excessive, this agreement is quite good.
This value (0.0468) is about 13% below that given by Holmes. The uncharac-
teristic variation in the drag coefficient with angle of attack is indicative
of a problem in the data submitted to the extraction routine. Note that in
figure 44 the match between the measured and computed values of velocity is
much poorer than for the pullup-pushover. In addition a much more unusual
"drift" correction to 6 was required to achieve even this level of congruence.
One might suggest that perhaps a relatively low frequency gust to which the
a vane responded more complefely than did the aircraft (hence 6 and 6) as a
whole was responsible for spurious contributions to the computed aircraft:
velocity. Analysis of several more maneuvers would be required fto determine
the validity of this contention. In any event, the extracted variation of C
with o for the level flight acceleration must, for the present, be regarded
as having the correct order of magnitude and little more.

D

The failure of the extracted power values shown in figure 47b to agree
more closely with those extrapolated from sea level full scale wind tunnel
results is another indication of the higher level of error present in the
level flight acceleration data set. Qualitatively, however, the power results
are similar to those for the pullup-pushover, a favorable indication. There
is some evidence also that the estimated power value for 4000' is perhaps just
a little larger than is actually the case. Note the relatively good agreement
obtained for a = 0 during the pul lup-pushover. |f the power and drag are in
approximate equilibrium at o = 0.01 and if the Cp_ value here is about 0.053,
then one would expect a power into the airstream of about 149,000 ft-lbs/sec
while the extimated value is about 153,000 ft+-Ibs/sec.

The differences between the extracted values and those determined from
speed power measurements are about what one would expect, given the magnitude
of the fit error. 11 was noted during the discussion of the computed theo-
retical case that a fit error of about 4 x 10~2 for 300 points (30 seconds of
data) would be eﬂuivalenT to an error of about 5% in drag or power. The fit
error of 4 x 104 for 300 points in the pullup-pushover indicates a power or
drag error of about 15%, which is about that found. A fit error of 2 x 1073
for 450 points in the level flight acceleration indicates an error of about
304. The extracted power values appear to differ by about 20% from the
extimated values while the drag coefficient values are on the average about
40% below the values of Ref. 11.

Some 30 different aerodynamic models were investigated in an effort to
reduce the fit error. None showed a significantly lower error while also
yielding a reasonable CD value. On the basis of these results one must con-

clude that the reason fo? the high fit error is more |likely to be found in the
lack of internal consistency in the data for this particular maneuver than it
is in the failure to identify an appropriate aerodynamic model.
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The importance of ChOOSlng a satisfactory model is illustrated by the
results of an experiment using theoretical +raJec+ory data. (Figure 22). The
last term in the 5 term drag model was changed from a® 1o a4. This single
change caused the fit error to increase fifteen orders of magnitude. The
coefficients to the other terms in both the drag and power models also changed
significantly. Cp_, for example, almost doubled. This extreme sensitivity
to small changes in the model is a consequence of the ill-conditioned nature
of the "A" matrix in the least squares procedure.

The extracted values of |ift coefficient vs. o are shown in figure 45
along with the predicted values and the results of Holmes (Ref. 11). The
extraction models used did not include rate terms. The values of CL

a=0

extracted from the pullup-pushover is about 7% higher than Holmes' result
while that obtained from the level flight acceleration is about 10% high.
Except for the upward curvature in the result extracted from the level flight
acceleration the two maneuvers gave essentially the same |ift result.

The curvature in the level flight result is thought to be due to the failure
of the "drift" model used to produce a better match between the measured and
the computed flight velocities. (See figure 44).

The agreement between the extracted result and the steady state results
of Holmes is good for o < 0.02 radians, the highest speeds of the data sets.
Elsewhere, the present results exhibit a lower lift slope. The extracted

value of CL is even smaller than predicted. The reason for this is uncertain

but severalapossibilifies come to mind: (a) the |ift model does not account
for the excess power available at the lower speeds in the form rate terms.

(b) the excess power available may reduce the span efficiency by moving the
load inboard. (c) the down thrust due to offset of the thrust axis may be
greater than thought. Which, if any, of these is correct can be determined
only after further study. Both the pullup-pushover maneuver and the steady
speed-power data of Holmes indicate that the |ift curve is essentially linear
for a < 0.1. This is fortunate since significant reductions in the complexity
of subsequenT calculations can be obtained by employing a linear |ift curve
model .

L is in error. This would seem to indicate
=0

that (a) the wing incidence angle is different from that assumed in developing
the prediction, (b) the airfoil trailing edge shape is different from nominal,
(c) the instrument reference line is different from that assumed to be the
reference in developing the prediction, or (d) some combination of the above.
Because, of the large difference which manifested itself in this case, CL

Obviously, the prediction for C

is a factor which should be checked closely when developing predictions. =0

The 13.5% increase in CL over the predicted value would appear to be due
a

the higher than nominal dynamic pressures over those areas of the wing swept

by the propeller slipstream, an effect not included in the prediction. The

area affected and the magnitude of the increase in dynamic pressure can probably
be determined adequately by propellier momentum theory. These effects should

be included in future predictions. 187



80.0 T
70.0
60.0
50.0
40.0
30.0
20.0
10.0

| O I

L1111 1 |

\ MEASURED

-10.0
-20.0
-30.0
-40.0
-50.0
-60.0

-70.0
-80.0 l 1 | | | |
0 5.0 10.0 15.¢0 20.0 25.0 30.0
TIME(SECS)

PITCH ANGLE(RADIAN) X 100

I N
=
2
=
g

I Y T I

w
(3}
(-3

100.0 I I I I I I
95.0+ ]
90.0— _

MEASURED
85.0— f _
80.0 }— ¢ —

75.0
70.0
65.0
60.0

SS.0H

CALCULATED

50.0
45.0
40.0
35.0
30.0

25.0 [ [ | | | |
0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

TIME(SECS)

AIRSPEED (M/SEC)

Fig 44b m

I

|

PULLUP-PUSHOVER MANEUVER ANALYZED FOR
LIFT, DRAG, AND POWER.

POSITION ERROR CORRECTION: GAIN=0.8667,
BIAS=0.0l. 6., -0.028 RAD.

DRIFT
188



ALTITUDE(M)/100

ALTITUDE RATE(M/SEC)

48.
46.
44.
§2.
40.
38.
36.
34,
32.
30.
28,
26.

22,
20.
18.
16.
14,
12.

—
(=N S -Ne Ne o)

0
[ ) o 1
0 ]
1 CALCULATED .
o _\ —
o Moo . u
0 —
[ = =]
0 _
ol- MEASURED ]
o -
O ]
00— 1
0 -
oF .
0 ]
(V] = ]
1] = ]
0 —
o Fighe
0 |
— _
0 | i | 1 | |
0 5.0 10.0 15.0 20.0 25.0 30.0 35.
TIME(SECS)
-0 I | I l T |
O —
.0 ]
.0 |
.0 ]
.0 1
.0 —
.0 ]
.0 ]
.0 1
.0 ]
.0 —
.0 —
.0 -
.0 - .
b Figdad
0 —
0 —
0 | 1 1 l | |
0 S.0 10.0 15.0 20,0 25.0 30.0 35.
TIME(SECS)

PULLUP-PUSHOVER MANEUVER ANALYZED FOR
LIFT, DRAG, AND POWER.

POSITION ERROR CORRECTION: GAIN =0.8667,

BIAS=0.0l.

0

DRIFT

= -0.028 RAD.

189



190

ANGLE OF ATTACK(RAD) X 100

ACCELERATION(M/SECe#2)

40.

35.

30.

25.

20.

TIME(SECS)

0 I I I I I I
(1] = _
ol Fig 44e  _
(1] = =]
o CALCULATED —
/—MEASURED 5
0 | | | | 1 L
0 5.0 10.0 15.0 20.0 25.0 30.0 35.
TIME(SECS)
o ! | T l | I ]
g— INPUT LONGITUDINAL ACCELERATION —
0} -
8— CALCULATED LONGITUDINAL ACCELERATION —
0 — / -
0 -]
[o]] SN —
O ]
L0t— —
ol ARSPEED  DERIVATIVE _
OB _
Lo —
0 —
0 . -
O Fig 441 _
C | | 1 | | | .
0 5.0 10.0 15.0 20.0 25.0 30.0 35.

PULLUP-PUSHOVER MANEUVER ANALYZED FOR

LIFT, DRAG, AND POWER.
POSITION ERROR CORRECTION: GAIN = 0.8667,
BIAS:0.01. 8, -0.028 RAD,




PITCH ANGLE(RADIAN) X 100

ATRSPEEDCFT/SEC)

80.
70.
60.
50.
40,
30.
20.
10.

-10.
-20.

-40.
-50.
-60.

-80,

300.
280.
260.
240,
220.
200.
180.
160.
140,
120.
100.

80.

©Co0oO O 0o oo o oo o

I ] I I | | I |

0 T | I I I T I I
0} —
0 .
0t —
1] = ]
o MEASURED |
o /— -
1} —
o \-CALCULATED _

5.0 10.0  1S.0 20.0 25.0 30.0 35.0 40.0
TIME(SECS)

Fig 44h

] | l ] | ] | |

oo

5.0 10,0 15.0 20.0 25.0 30.0 35.0 40.0
TIME(SECS)

LEVEL-FLIGHT-ACCELERATION MANEUVER
ANALYZED FOR LIFT, DRAG, AND POWER.
POSITION ERROR CORRECTION: GAIN=0.8667,
BIAS-0.0l, 6y, ~.10 RAD. (sEE TEXT)

45.0

191



ALTITUDE(FT) /1000

ALTITUDE RATECFT/SEC)

192

N W e N @ O
OOOOOOQOQAOOQOOOO

100.
90.
80.
70.
60.
50.
40.
30.
20.
10.

CoOoOO0OOCCODOOLCOOO

-10.
-20.
-30.
-40.
-50.
-60.
-170.
-80.
-90.
~100.0

OO0 o0DO0ODoOCDOLOOOO

] T | I | | T T
| Fig44i
— MEASURED —\ -
"""" ‘_‘/‘ ==
— CALCULATED —
| | | | . | | |
5.0 10.0 . 15.0 20.0 25.0 30.0 35.0 40,0 45.0
TIME(SECS)
NP N L Nt
— [ﬂ] N
o g —
— | | | | | | | | ]
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

TIME(SECS)

LEVEL-FLIGHT-ACCELERATION MANEUVER
ANALYZED FOR LIFT, DRAG, AND POWER.
POSITION ERROR CORRECTION: GAIN = 0.8667,
BIAS-0.0l, 6,,;" ~.10 RAD.  (SEE TEXT)




ANGLE OF ATTACK(RAD) X 100

ACCELERATION(FT/SECwe2)

40.

35.

30.

25.

20.

15.

10.

s e e e v e e e
O O O O 0O 0o o0 o

00O O 0O 00O oo o

(=N =]

Fig 44k

\

| CALCULATED -
1 1 | 1 | | | |
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.
TIME(SECS)
I I I I I I T I
_ INPUT LONGITUDINAL  ACCELERATION _
:\\_ﬁ\z/—_—\cl\LCULATED LONGITUDINAL ACCELERATION
/\_
- AIRSPEED  DERIVATIVE -
B Fig4al |
1 | | 1 | | | L]
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45,
TIME(SECS)

LEVEL-FLIGHT-ACCELERATION MANEUVER
ANALYZED FOR LIFT, DRAG, AND POWER.
POSITION ERROR CORRECTION: GAIN=0.8667,
BIAS-0.0l, €, ~.I0 RAD.  (SEE TEXT)

193



STEADY STATE LIFT COEFFICIENT EXTRACTED
FROM MANEUVERING FLIGHT

1.2 ¢

o
(o o)
T

o (b) 7 (a) PULLUP-PUSHOVER

LIFT COEFFICIENT
O
o
!

5 ”’

0.4 PR (b) LEVEL FLIGHT ACCELERATION
7
#“ X~ preDICTION
’
,
0.2
o 1 1 1 1 |

0 .02 .04 .06 .08 10
ANGLE OF ATTACK, RADIANS

FIG 45

194



DRAG COEFFICIENT

10

09

.08

.07

.06

.05

.04

.03

.02

0l

STEADY STATE DRAG COEFFICIENT EXTRACTED
FROM PULLUP - PUSHOVER AT 11000’

REF 11

="

| (a) Cp=.0623-.18198a+13.702-141.703-557a"-.0324-.096786

(b) Cp=.05878-.2a+14.4902-151.9a3+600.7a"~.05854-.08646
C (c) cD=.o5o3-.2378a+16.89a2-184.76a3+750a4-.05686a-.06976é
1 | | 1 ]
o] .02 .04 .06 .08 .10

ANGLE OF ATTACK, RADIANS
FIG 46a

195



196

DRAG COEFFICIENT

.09

.08

07

.06

.05

04

.03

.02

.0l

STEADY STATE DRAG COEFFICIENT EXTRACTED
FROM LEVEL FLIGHT ACCELERATION AT 4000’

I REF n/]/ v
- 7

7
-~

~ PREDICTED 3 _ o
~ -
» / - -

g e EXTRACTED
-
o o = - - - /\/

2
= Cp=0.04686 - 0.0873769 & +1.83896

| | 1 1 1

o 02 .04 .06 .08 .10
ANGLE OF ATTACK, RADIANS

FIG 46D



10°3

POWER INTO AIRSTREAM, FT-LBF/SEC X

150

140

130

120

1o

100

90

80

70

STEADY STATE POWER INTO AIRSTREAM
EXTRACTED FROM PULLUP PUSHOVER

AT 11,000’
-
(a) P=-224041+57872v0-33-1.437V+503050-1011796
(b) p=-]726h7+48333vo'33+20.3160-762026
(c) p=-9859+13007V0'4+62.7780-38493& ‘
(d) Estimated from sea level .'.
full-scale wind tunnel .
tests o
- (a)..o /
i YA
I / (d)
/ ‘?MAX|MUM
(o) SPEED IN
’ / DATA SET
//' FIT ERRORS
i / (a) 3.409 X 10°%
S' (b) 3.485 X 1074
MINIMUM
SPEED IN (c) 3.947 X 1074
DATA SET
FIG 47a
1 1 | ] 1 1 1 - }
120 160 200 240 280

TRUE AIRSPEED, FT/SEC

197



- STEADY STATE POWER INTO AIRSTREAM EXTRACTED
FROM LEVEL FLIGHT ACCELERATION AT 4000’

160 ~
/
/
~ -
’ A
© 150 | - ESTIMATED
o //
x 7
o /
Ll /
O 140
2 /
-
! EXTRACTED
- /
w
2* 130 - /
2 /
= / 4
o / MAXIMUM
& SPEED OF
< 120 [/ DATA SET
o
-
=
@
2 1ok P = 13830 + 12782 v %+ 2350V
Q - 191645 &
FIT ERROR = 2.124 X 102
100 -
MINIMUM
SPEED OF
DATA SET FiG 47b
90

00 120 140 160 180 200 220 240 260 280

198 TRUE AIRSPEED, FT/SEC



A NOTE ON STABILITY AND
PERFORMANCE EVALUATION

It had been planned to use the |ift, drag, and power data extracted from
typical maneuvers such as pullup-pushovers to evaluate the aircraft perfor-
mance parameters. This procedure is analogous to that followed during pre-
diction of the aircraft's performance except that one now substitutes the
extracted or measured values of the lift, drag, and power for the estimated
values. |f extractions are carried out for several altitudes, several power
settings, and several configurations, a rather complete picture of the air-
craft's performance potential can be developed. However, because of the
limited accuracy obtained thus far for the lift, drag, and power in flight as
well as the limited number of maneuvers analyzed, this plan was not pursued.

It had also been planned to use the Iliff-Taylor program (Ref. 6) to
extract stability derivative values from flight records. Some short stabilator,
aileron, and rudder pulse maneuvers suitable for this purpose were flown.

It was intended that at least the stabilator pulse records be processed through
both FDR1 and FDR2 so as to make them as internally self-consistent as possible.
FDRZ is, in fact, provided with a means of arranging the final version of the
data in a form suitable for additional processing (punched cards or tape).
Because of difficulties .in defining adequate |ift, drag, and power models and

in lowering the fit errors, this plan was also aborted.

The reader interested in comparing the predicted with the measured per-
formance and stability should be aware that full scale wind tunnel tests of
the aircraft have been run at the Langley Research Center. Publication of
the test results is expected in the near future. Researchers at the Langley
Research Center have also been attempting to extract stability derivative
values from the flight data by several techniques. It is understood they have
also been stymied thus far by the problem of internally inconsistent data.

The steady flight test results are available in Holmes (Ref. 11).
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CONCLUSIONS

1. A.technique has been developed which has demonstrated the ability to
extract complete |ift, drag, and thrust horsepower curves simultaneously from
simulated time histories of a single aircraft maneuver covering the entire
speed range.

2. The technique presently does not include rate terms in the model of
the aircraft and these may be necessary in real world situations.

3. The technique requires rather accurate input data in order to yield
acceptable results.

4. Some success has been achieved in developing an input data
compatibility improvement routine.

5. The extraction technique is apparently quite sensitive to small
computational errors and should therefore be run with the maximum precision
avai lable.

6. Preliminary results indicate reasonable agreement with other flight
test techniques and extrapolations of full scale wind tunnel tests even
though the trajectory matching features of the technique could not be used
because these do not include rate terms in the model of the aircraft at the
present time.
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SUGGESTIONS FOR FUTURE WORK

I will be apparent to the careful reader that a proper understanding of
the correct or best power model for this airplane has not yet been achieved.
Until it is, FDR2 cannot hope to yield results with low fit errors. |n this
connection it would be desirable to employ a non-linear least squares technique
== one which calculates its own exponent values for at least the velocity
dependence of the thrust horsepower -- to determine how the data can be fit
more effectively. Note that an initial fit error about 10 times lower than
that currently obtained will be necessary before FDR2 can proceed satisfac-
tory.

If, as now seems |ikely, the rate terms are sufficiently important as to
require inclusion in the aircraft model, FDR2 will require substantial revision
to provide for these terms in the various routines. Because of the complexity
they will introduce in HPATH if included as variables it may be desirable to
assume that the coefficients for the rate terms are "frozen" so far as HPATH
(see Appendix C) is concerned.

Much of the difficulty encountered in obtaining convergence of the tra-
Jjectory match procedure is thought to be related to the precision with which
(a) the equations of motion can be integrated and (b) the "A" matrix in the
Newton-Raphson coefficient modification equations can be inverted. It is
highly desirable that the efficacy of doubling the number of decimal digits
employed in these calculations be investigated. Currently 16 decimal digits
are the maximum which can be used at the local computing facility.

Despite the fact that some success was achieved in improving the self-
compatibility of the flight data this is really no substitute for flight data
which is inherently more self-consistent. Accordingly, it would be desirable
to try the entire procedure with data whose internal consistency is known to
be superior to that used here.
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User Instructions — FDRI

The program is written in FORTRAN IV and is designed to execute in
double precision on an |BM 370/165 computer with an average execution time
of 8 minutes 12 seconds for each maneuver data set. Execution requires
approximately 724,000 bytes of core storage. The program is infended tfo
handle data from only one flight during a given run. It is divided into
two sections. The first section

(a)
(b)

(c)
(d)
(e)
(f)
(g)
(h)

(i

adjusts the input data, if desired, for an assumed phase shift,
converts time, weight, pitch angle, pitch rate, airspeed, static
pressure, angle of attack, total temperature, fongitudinal
acceleration, vertical acceleration, and elevator or stabi lator
deflection to compatible computational units,

calculates the lag corrections to the static and dynamic pressures,
applies the position-error correction ratio Ap/qc’,

applies the acceleration-dependent corrections to the static
pressure,

converts total temperature to static temperature, static pressure
to density, density to altitude, and indicated airspeed to frue
airspeed,

corrects the pitch angle indication for a known initial bias,
corrects the angle-of-attack indication for the instrument
location, and

calibrates the angle-of-attack indication for a known or assumed
bias and gain.

The second section

(a)

(b)

(c)

performs Fourier-series analysis and filfering on the weight,
pitch angle, pitch rate, airspeed, density, angle of attack,
static temperature, longitudinal acceleration, altitude, vertical
acceleration, and elevator or stabilator time histories,
integrates the pitch rate indication to obtain the pitch angle
indication,

calculates (1) the acceleration from the airspeed,

(2) the angle-of-attack rate-of-change from the Fourier-
series-and-filter modification of the angle of
attack or from the differentiation of a cubic-
spline fit of the input angles of attack,

(3) the density from altitude,

(4) the altitude's rate of change and acceleration
from the Fourier-series-and-filter modification of
t+he altitude or from the differentiations of a
cubic-spline fit of the "input" altitude time
history, .

(5) the compatible angle-of-attack values from other
time histories,
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(d)

(e)
(f)
(g)

(6) the compatible altitude and its rate-of-change
values from the integration of the flight-path
rate of change, and

(7) the inertial-compatible airspeed, :

performs a minimization technique with or without a priori values
to make the data more consistent,

plots the time histories,

writes the results in English or S| units, and

produces punched output for the FLIGHT DATA REDUCTION #2 program,

The program requires the specification of the following input:

CARD 1:

(a)

(b)

CARD 2:

FDR1 Section 1

The number of maneuvers NSETS in a single flight to be analyzed:
NSETS is a right-adjusted integer number less than or equal to
10 and occupying columns 1-5. [f NSETS is not an integer number
between 0 and 10, the program will terminate permaturely.
The desired type of output units METRIC for all data sets
(maneuvers): _
I'f METRIC = 0, the output will be in English units. If
METRIC = 1, the output will be in Sl units. METRIC is a
right-adjusted integer number occupying columns 6-10. The
specification of METRIC only affects the output listings.
The punched output is in English units.

The weight-time-history code ICODE for each of the NSETS maneuvers:

CARD 3:

(a)

[f [CODE = 0, a continuous weight time history is produced from
the first or preceding weight time history, assuming no elapsed
time between the maneuvers. |If ICODE = 1, a continuous weight
time history is produced from the first or preceding weight time
history with elapsed time considered between the maneuvers. The
weight-time-history codes for the NSETS maneuvers are right-
adjusted integer numbers with each maneuver's |CODE occupying 5
columns. (The ICODE parameter is used in conjunction with the
ELAP parameter below.)

The maximum number of minimization-improvement iterations NUMBER
to be used for the maneuver:
NUMBER is a right-adjusted integer number less than or equal
to 10 and occupying columns 1-5. |f NUMBER is less than
zero, NUMBER will be set to zero. [f NUMBER is greater than
10, logic errors will result beyond 10 iterations.




(b) The elapsed time ELAP to the maneuver in seconds:
For the first maneuver, ELAP should be the elapsed time from
takeoff or engine-start to the beginning of the first maneu-
ver. For the successive maneuvers, ELAP should be the elapsed
time from the end of the previous maneuver to the beginning
of the next maneuver. ELAP may be set equal to zero for any
of the successive maneuvers. ELAP is a floating-point number
occupying columns 6-15. (The ELAP parameter is used in con-
Junction with the ICODE parameter above.)

(c) The data set file number JFILE:
JFILE is a right-adjusted integer number occupying columns
16-20 and specifying that the data is to be read from cards,
magnetic tape, disk, etc. The user must supply the suitable
Job control cards for the tape and/or disk reads. The JFILE
parameter controls only the reading of CARDS (12 + MPTS + 1),
«e., (12 + MPTS + 2K). All other data is expected 1o be in
card form.

(d) The variable location numbers IVL(I), | = 1-9:
The variable location number "names" the variable occupying
a particular data field on the records containing the time
histories. [IVL(l) are right-adjusted integer numbers each
occupying 5 columns beginning at column 21. The program
assumes that for each recorded time point there are 10 vari-
ables: +time, pitch angle, pitch rate, airspeed, static
pressure, angle of attack, stagnation temperature, longi-
tudinal acceleration, vertical acceleration, and elevator or
stabilator deflection. The program also assumes that "time"
will always occupy the first data field. For the variables
in the second through the tenth data fields, the following
IVL's must correspond to the variable name:

Variable Name IvL
Pitch angle 2
Pitch rate 3
Alrspeed 4
Static pressure 5
Angle of attack 6
Stagnation temperature 7
Longitudinal acceleration 8
Vertical acceleration 10
Elevator (Stabilator) deflection 11
For example: [|f the time history variables were ordered as

"time", "longitudinal acceleration", "pitch angle", "alrspeed",
"pitch rate", "static pressure", "angle of attack", "vertical
acceleration", "stagnation temperature", and "elevator deflec-
tion", the [VL's would correspondingly be IVL(1)=8, IVL(2)=2,
IVL(3)=4, 1VL(4)=3, IVL(5)=5, [VL(6)=6, IVL(7)=10, IVL(8)=7,
and 1VL(9)=11.



CARD 4:

The 80 characters of the array TITLE which are used as a header for
identifying the output:
Since the program allows more than one flight maneuver to be
analyzed in a given run, TITLE is used as a control variable to
end execution. Termination of execution is achieved by following
the last maneuver's data set to be analyzed by a title card having
only the word END in the first three columns.

CARD 5:

(a) The Fourier-series filter-cutoff harmonic NCH(1) for the lag
corrections in the airspeed's static pressure system,

(b) The Fourier-series filter-cutoff harmonic NCH(2) for the lag
corrections in the altitude's static pressure system, '

(c) The Fourier-series filter-cutoff harmonic NCH(3) for the lag
corrections in the altitude's and airspeed's stagnation pressure
system,

(d) The Fourier-series filter-cutoff harmonic NCH(4) for the lag
corrections in the stagnation temperature system:

NCH(1), NCH(2), NCH(3), and NCH(4) must be right-adjusted
integer numbers greater than 0 but less than 66. Each
NCH(|) occupies 5 columns with NCH(1) beginning at column 1.

(e) The lag time interval XLM(1)* in seconds for the stagnation
pressure system,

(f) The lag time interval XLM(2)* in seconds for the altitude's static
pressure system,

(g) The lag time interval XLM(3)* in seconds for the airspeed's static
pressure system,

(h) The lag time constant TAU(1)* in seconds for the stagnation
pressure system,

(i) The lag time constant TAU(2)¥ in seconds for the altitude's static
pressure system,

(j) The lag time constant TAU(3)* in seconds for the airspeed's static
pressure system,

XLM(1), XLM(2), XLM(3), TAU(1), TAU(2), and TAU(3) are
floating-point numbers each occupying 10 columns beginning
at column 21.

CARD 6:

(a) The assumed number of data points NSPTS to be indicative of a
required phase shift:
1f NSPTS is tess than zero, NSPTS will be set to its absolute
value. The value of (NSPTS x sampling rate) should not exceed

¥
These parameters are defined in the discussion accompanying equations.

212



(b)

CARD 7:

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

CARD 8:
(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)

unity; however, this suggestion is not mandatory. NSPTS is
a right-adjusted integer number less than the total number
of data points occupying columns 1-5,

The pitch angle linear drift DRIFT:
DRIFT is used by the equation:

(p|+ch,angle)new = (pitch angle)o + DRIFT

Id

x (point number/total number of points)

If DRIFT = 0.0, the application is bypassed. DRIFT is a

floating-point number in radians/second occupying 15 columns

beginning at column 6.

The phase
the phase
the phase
the phase
The phase
the phase
the phase
the phase
the phase

shift
shift
shift
shift
shift
shift
shift
shift
shift

deflection:
-If LSP(l) = 0, no phase shift is desired on variable "I"

(or variable "I" was recorded by commutation).

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

LSP(1)
LSP(2)
LSP(3)
LSP(4)
LSP(5)
LSP(6)
LSP(7)
LSP(8)
LSP(9)

for
for
for
for
for
for
for
for
for

-pitch angle,

pitch rate,

airspeed,

static pressure,

angle of attack,
stagnation femperature,
longitudinal acceleration,
vertical acceleration, and
the elevator or stabilator

a phase shift is desired on variable "I" (or variable "|"
was recorded by frequency modulation). LSP(l) are right-
adjusted integer numbers each occupying 5 columns beginning
at column 1.

The aircraft's wing area S in square feet,

the aircraft's gross takeoff weight GWT in pounds force,

the fuel consumption rate FCR! in pounds force per second from
takeoff or engine-start to the first maneuver,

the fuel consumption rate FCR2 in pounds force per second during

the maneuvers,

the angle~of-attack-instrument location XACG in feet from the

aircraft's center of gravity,

the pitch-angle-instrument-bias cerrection PCCG in radians,

the calibration factor CALP1 to the angle of attack, and

the calibration term CALP2 in radians fto the angle of attack:
It should be noted that the program assumes FCR1 for the
fuel consumption rate between maneuvers where the elapsed

XACG is a positive quantity if the

instrument is ahead of the cg and negative if it is behind

+ime ELAP is nonzero.

[f LSP(H) =1
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the cg. S, GWT, FCR1, FCR2, XACG, PCCG, CALP1, and CALP2
are floating-point numbers each occupying 10 columns
beginning at column 1.

CARDS 9, 10, 11:

CARD

CARD

(a) The conversion factor CF(1) of time to seconds,
(b) the conversion factor CF(2) of weight to pounds force,
(c) the conversion factor CF(3) of pitch angle to radians,
(d) the conversion factor CF(4) of pitch rate to radian per second,
(e) the conversion factor CF(5) of airspeed to feet per second,
(f) the conversion factor CF(6) of static pressure to pounds force
per square foot,
(g) the conversion factor CF(7) of angle of attack to radians,
(h) the conversion factor CF(8) of stagnation temperature in the
equation T(°R)=CF(8)xT(°X)+CF(9) for degrees Rankine,
(i) the conversion term CF(9) of stagnation temperature in the
equation T(°R)=CF(8)xT(°X)+CF(9) for degrees Rankine,
(j) the conversion factor CF(10) of longitudinal acceleration to feet
per squared second,
(k) the conversion factor CF(11) of vertical acceleration to feet per
squared second, and
(1) the conversion factor CF(12) of elevator or stabilator deflection
to radians:
If CF(8) = 0.0, CF(8) is set equal to 1.0. CF(1) through
CF(12) are double~precision floating-point numbers occupying
20 card-columns each. CF(1) through CF(4) are contained on
the ninth input-data card beginning with column 1, CF(5)
through CF(8) are contained on the tenth input-data card,
and CF(9) through CF(12) are contained on the eleventh input-
data card beginning with column 1.

12:

The number of points MPTS on the (ratio-of-the-pressure-difference-to-
the-dynamic-pressure versus the-indicated-airspeed) curve for the
position-error pressure corrections:
MPTS must be greater than zero and no larger than 20. MPTS is a
right-adjusted integer number occupying columns 1-2. :

13,...,(12 + MPTS):

The measured values of the ratio of the pressure difference to the
dynamic pressure DPQCP, and the measured values of the |nd:ca+ed
airspeed VE in feet per second:
I+ is suggested that the values of DPQCP and VE span a, sufficiently
large region to include the input data's speed range. DPQCP and
VE are floating-point numbers occupying columns 1-20 and columns
21-40, respectively, for each of the MPTS cards.



CARDS (12 + MPTS + 1), ..., (12 + MPTS + 2K):

The time histories of time TIME(K), pitch angle D(K,IVL=2), pitch rate
D(K, IVL=3), airspeed D(K,|VL=4), static pressure D(K,IVL=5), angle of
attack D(K, IVL=6), stagnation temperature D(K,|VL=7), longitudinal
acceleration D(K,1VL=8), vertical acceleration D(K,!VL=10), and elevator
or stabilator deflection D(K, IVL=11) for K=1 through K=450(maximum).
It should be noted that IVL parameters in D(K,IVL) correspond to
the variable location numbers IVL(l) described on page 21!. The
duration of a maneuver is determined either by a maximum count of
450 data points and the perception of two(2) user-supplied blank
or zero cards within the next 1000 counts or by the perception of
two(2) user-supplied blank or zero cards.* TIME(K) and the
D(K,IVL)'s are double-precision floating-point numbers. Two(2)
cards describe a single data point with TIME(K) always occupying
columns 1-15 on the first card. Each card contains five variables
each occupying 15 columns beginning at column 1.

FDR1 Section 2

CARD (12 + MPTS + 2K + 1):

(a) The Fourier-series analysis code IFS(1) for weight,

(b) +the Fourier-series analysis code IFS(2) for pitch angle,

(c) the Fourier-series analysis code IFS(3) for pitch rate,

(d) the Fourier-series analysis code IFS(4) for airspeed,

(e) the Fourier-series analysis code IFS(5) for density,

(f) +the Fourier-series analysis code IFS(6) for angle of attack,

(g) the Fourier-series analysis code |FS(7) for static temperature,

(h) the Fourier-series analysis code |FS(8) for acceleration,

(i) +the Fourier-series analysis code |FS(9) for altitude,

(j) the Fourier-series analysis code IFS(10) for vertical acceleration,
and : .

(k) +the Fourier-series analysis code [FS(11) for elevator or stabilator
deflection:

If IFS(1) = 0, analysis is performed on the "I"th time history.
IF 1FS(1) = 1, no analysis is performed on the "I"th time
history.

IFS(1) are right-adjusted integer numbers each occupying 1
column beginning at column 1.

*In generdl, data sets will consist of more than 450 points. [n order that
the parameters of successive data sets are properly entered, all "extra"
time-history data of the present maneuver must be ignored. The extra
1000-count specification "implies" that within 1000 data points beyond the
maximum 450 data p0|n+s the two(2) user-supplied blank or zero cards will
be encountered.
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CARD (12 + MPTS + 2K + 2):

(a) The acceleration-determination code |IPRC(1):

If IPRC(1) = 0, the acceleration is calculated by the
differentiation of the airspeed time history. |f IPRC(1) = 1,
the longitudinal acceleration is transformed into the rate-
of-change of airspeed by the kinematic relationship between
the aircraft's body axis and its flight path.

(b) The degree of computation on the longitudinal acceleration IPRC(2):
If IPRC(2) = 0, the longitudinal acceleration is transformed
intfo the rate-of-change of airspeed by the kinematic relation-
ship between the aircraft's body axis and its flight path and
is smoothed by Fourier series and filtering. |f IPRC(2) = 1,
the longitudinal acceleration is only transformed :into the
rate-of-change of airspeed by the kinematic relationship
between the aircraft's body axis and its flight path. If
IPRC(2) = 2, the input values of longitudinal acceleration
are retained. The following chart should be consulted in
specifying IFS(4), IPRC(1), and IPRC(2) so that the program
produces desired results:

Parameter Combinations™ Results
}FS(4)=0, IPRC(1)=0, IPRC(2)=0 Result #1
IFS(4)=0, IPRC(1)=0, IPRC(2)=1 Result #1
[FS(4)=0, [PRC(1)=0, IPRC(2)=2 Result #1
1FS(4)=0, IPRC(1)=1, IPRC(2)=0 Result #2
IFS(4)=0, [PRC(1)=1, IPRC(2)=1 Result #3
IFS(4)=0, [PRC(1)=1, IPRC(2)=2 . lllegal combination
IFS(4)=1, IPRC(1)=0, IPRC(2)=0 Result #4
IFS(4)=1, IPRC(1)=0, IPRC(2)=] Result #4
IFS(4)=1, IPRC(1)=0, IPRC(2)=2 Illegal combination
I[FS(4)=1, {PRC(1)=1, IPRC(2)=0 Result #4
[FS(4)=1, IPRC(1)=1, IPRC(2)=1 _ Result #4
IFS(4)=1, IPRC(1)=1, IPRC(2)=2 [llegal combination
Result #1: Airspeed will be the smoothed input airspeed.
Acceleration will be the differentiation of the

smoothed airspeed.

Result #2: Airspeed will be the smoothed input airspeed.
Acceleration will be the Fourier-series-smoothed
rate-of-change of airspeed transformation of the
longitudinal acceleration.

Result #3: Airspeed will be the smoothed input airspeed.
Acceleration will be the unsmoothed rate-of--
change of airspeed transformation of the
longitudinal acceleration.

Result #4: vAirspeed will be the input airspeed. Acceler-
ation will be the Fourier-series-smoothed
rate~of-change of airspeed transformation of

216 longitudinal acceleration.




(c)

(d)

(e)

(f)

(g)

(h)

(i)

The method of angle-of-attack rate computation IPRC(3):
|f IPRC(3) = 0, the angle-of-attack rate will be calculated
by the differentiation of the angle-of-attack's Fourier
series. |f IPRC(3) = 1, the angle~of-attack rate will be
the differentiation of a cubic-spline fit of the angle of
attack. |t should be noted that if IFS(6) = 1 and [PRC(3) =
0, the program will set IPRC(3) = 1. [IPRC(3) is a right-
adjusted integer number occupying ! column beginning at

column 3.

The overall Fourier-series analysis code IPRC(4):
If IPRC(4) = 0, Fourier-series analysis will be performed on
the time histories whose IFS(Il) are zero. |f IPRC(4) =1,
no Fourier~series analysis will be performed even if

IFS(1) = 0. The specification of IPRC(4) = 1 provides a
means to analyze "raw" data. |PRC(4) is a right-adjusted
integer number occupying one column beginning at column 4.

The overall plotting code IPRC(5):
|f IPRC(5) = 0, plots are requested. If IPRC(5) =1, no
plots are requested. |IPRC(5) is a right-adjusted integer
number occupying one column beginning at column 5.

The punch code IPRC(6):
If IPRC(6) = 0, punched output is requested. I|f IPRC(6) =1,
no punched output is requested. IPRC(6) is a right-adjusted
integer number occupying one column beginning at column 6.

The pitch-angle determination code IPRC(7):
[f IPRC(7) = 0, the pitch-angle time history will be the
"modified" input pitch-angle time history. |If IPRC(7) =1,
‘the pitch-angle time history will be the integrated pitch-
rate time history. [|PRC(7) is a right-adjusted integer
number occupying one column beginning at column 7.

The compatibility check IPRC(8):
If IPRC(8) = 0, the compatibility check is bypassed. |If
IPRC(8) = 1, an angle-of-attack time history will be computed
to be compatible with other time histories. If IPRC(8) = 2,
an altitude time history will be computed to be pneumatically
compatible with other time histories. It should be noted
that the compatible altitude time history will exist only on
the altitude-time-history plot whereas the compatible angle-~
of-attack time history will replace the existing angle-of-
attack time history. Generally, IPRC(8) should be zero.
IPRC(8) is a right-adjusted integer number occupying one
column beginning at column 8.

The calculation code of the inertial-compatible altitude and

airspeed IPRC(9):
If IPRC(9) = 0, the calculation of the inertial-compatible
altitude and airspeed will be bypassed. |f IPRC(9) = 1,
the inertial-compatible altitude and airspeed will be
computed. (If only the inertial-compatible airspeed is

desired, see the discussion of FAC! and FAC2 below.)
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CARD

CARD

(Jj)

(k)

(n

The distance XAX in feet of the longitudinal accelerometer from
the aircraft's cg:
XAX is a positive quantity if the accelerometer is ahead of
the cg and a negative quantity if the accelerometer is
behind the cg. Parameter XAX is a double-precision floating-
point number occupying 15 columns beginning at column 11.
The fraction of the pneumatic-compatible altitude FAC1 and the
fraction of the inertial-compatible altitude FAC2:
The sum of FAC1 and FAC2 should be equal to 1.0; that is,
FAC1 + FAC2 = 1.0. If only the inertial-compatible airspeed
is desired, the user must specify IPRC(9) = 1, FAC1 = 1.0,
and FAC2 = 0.0. Parameters FAC! and FAC2 are double-precision
floating-point numbers each occupying 15 columns beginning
at column 26.
The data sampling rate DSPS per second: '
Parameter DSPS is a double-precision floating-point number
occupying 15 columns beginning at column 56.

(12 + MPTS + 2K + 3):

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(n
(m)
(n)

The plot code IP(1) for weight,

the plot code [P(2) for pitch angle,

the plot code IP(3) for pitch rate,

the plot code IP(4) for airspeed,

the plot code IP(5) for density,

the plot code IP(6) for angle of attack,

the plot code IP(7) for static temperature,

the plot code IP(8) for acceleration,

the plot code IP(9) for angle-of-attack rate,

the plot code IP(10) for altitude,

the plot code IP(11) for altitude rate of change,

the plot code IP(12) for altitude acceleration,

the plot code IP(13) for vertical acceleration, and

the plot code IP(14) for the elevator or stabilator deflection.
If IP(1)=0, a plot is produced for the "I"th time history.
If IP(1)=1, no plot is produced for the "I"th time history.
IP(1) are right-adjusted integer numbers each occupying one
column beginning at column 1.

(12 + MPTS + 2K + 4):

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

The filter cutoff harmonic NC(1) for weight, -
the filter cutoff harmonic NC(2) for pitch angle,
the filter cutoff harmonic NC(3) for pitch rate,
the filter cutoff harmonic NC(4) for airspeed,
the filter cutoff harmonic NC(5) for density,

-the filter cutoff harmonic NC(6) for angle of attack,

the filter cutoff harmonic NC(7) for static temperature,
the filter cutoff harmonic NC(8) for acceleration,
the filter cutoff harmonic NC(9) for altitude,




(Jj)
(k)

CARDS (12
(a)
(b)
(c)
(d)
(e)
(f)

CARDS (12
(a)
(b)
'(c)
(d)

(e)
(f)

For a given run consisting of one or more data sets (maneuvers), cards 1 and

2 need to

the filter cutoff harmonic NC(10) for vertical, and
the filter cutoff harmonic NC(11) for the elevator or stabilator
deflection.
All NC(1) are right-adjusted integer numbers each occupying
5 columns beginning at column 1. It is mandatory that
0 < NC(l) < 66.

+ MPTS + 2K + 5), ..., (12 + MPTS + 2K + 10):

The a priori value AP(1) in feet per second squared and its
weight W(1) for the first linear acceleration dependency,
the a priori value AP(2) in feet per second squared and its
weight W(2) for the second linear acceleration dependency,
the a priori value AP(3) in feet per second squared and its
weight W(3) for the third linear acceleration dependency,
the a priori value AP(4) in radians and its weight W(4) for
the pitch angle bias,
the a priori value AP(5) and its weight W(5) for the phase
shift, and
the a priori value AP(6) in radians and its weight W(6) for
the flight-path-angle bias:
AP(1) and W(!) are double-precision floating-point numbers
each occupying 20 columns beginning at column 1. Each of
the six(6) input cards contains the AP(l) and W(l) that
correspond to the dependency or bias under consideration.

+ MPTS + 2K + 11), ...., (12 + MPTS + 2K + 10 + NUMBER!/(NUMBER-1)!):

The code IR(1) for the calculation of the first Iineér acceleration

dependency, .
the code IR(2) for the calculation of the second linear acceler-
ation dependency,

the code IR(3) for the calculation of the third l|inear acceleration

dependency,

the code IR(4) for the calculation of the pitch-angle bias,

the code IR(5) for the calculation of the phase shift, and

the code IR(6) for the calculation of the flight-path~angle bias.
If IR(1) = 0, the calculation for the "I"th variable is
excluded. If IR(l) = 1, the calculation for the "I"th vari-
able is included. The calculation of at least one variable,
preferably two, must be included. Fallure to specify at
least one variable will terminate the program prematurely.
Parameters IR(l) are right-adjusted integer numbers each
occupying one column beginning at column 1. |t is necessary
to provide [ (NUMBER!)/(NUMBER-1)!] input cards containing
the IR(I) codes.

be specified only once. Cards 3 through (12 + MPTS + 2K + 10 +

NUMBER!/(NUMBER-1)!) need to be specified for each maneuver.
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Program Listing — FDRI

PROGEAA: PLIGHT DATA RECUCIION #1 (FPDRY) F.O. SHETANA/ S.R. POX

0001000808 00080000880800505800s008
. .
¢ DATA FELUCTION SECTION ¥0. 1 *
. .
000000000 0000000800038300006030000

GIVEN VALUES OF THE AIRCRAPT CHARACTERISTICS AND THE AIRCRAFT'S

PLIGAY IIAE RISTORIES OF PITCH ANGLE, PITCh RATE, AIASPEED, STATIC

PRESSURE, ANGLE OF ATTACK, ICTIAL TLMPERATUKE, LONGITUDINAL ACCEL-
ERATICK, VERTICAL ACCELEZRATICN, AXD ELEVATOR (Ox STABILATOR)
DEFLECTION, THIS SECTION PERPORNS THE FOLLOWING:

1
2)
3

L]

-

S

-~

6)
7
e

- -

10)
1)
12)

1)
1)
1s)

16)
IR

18
19)
20)

ADJUSTS DATA, IF CESIRED, POR AE ASSUMED PHASE SRIPT
CCYVERIS TIRE TO SICOWDS

CCKPUTZS TOTAL MANEUVER EIECUTION TINE

CCHPOIZS AIRCRAFI'S WEIGHT TINE HISTORY

CCUYEETS VEIGHT TO POUNDS PORCE

CCNYBEIS PITCE ANGLZ T0 RADIAXS

CCHNYESTS PITCH EATE TO RADIANS PER SECOND

CCEYERTS ALRSEZED TC FEET PER SECOND

CCHYEFTS STATIC PRESSURE TO POUIDS;POICE PER SQUARE rooT
CCEVERTS ANGLE OF ATTACK TO RADIANS

CCNYESTS ICTAL TEAPERATURE TO DEGREES RAMNKINE

CCNYERTS LONGITUDINAL ACCELERATIOR TO FEET PER
SECOND SCUAREL

CCNYEETS VERTICAL ACCELEZRATION TO PEET PER SECOND SQUARED
CCRVERTS ELEYATOR (O STABILATOR) DEFLECTICN IO RADIANS

CALCULATZS LAG CORREZCTIONS TO STATIC PRESSURE A¥D DYNAAIC
PSESSURE

CALCULATES POSITIGN ERROR CORHECTION RATIO DP/QC’

CALCOLATES ACCELERATION-DEPENDENT CORRECTIONS TC STATIC
PEESSORE

CONVERTS TOTAL IEMPERATURE TO STATIC TEMPERATURE
CONVERTS STATIC PRESSORE 70 DENSITY
CONYEITS DENSITY 70 AITITUDE

VANV E WN =
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21) CCNVERIS INDICATED AIBSPERD TO TRUE AIRSPEED

22) COIRECTS FITCH ANGLE INDICATION FOR XNOWM INITIAL SIAS AED
ANGLE OF ATTACK IBDICATION FOR INSTRUAENT LOCATION

23) CALIBRATES AWGLE OF ATTACK INDICATION

28) PFEIPABES CATA FCR DATA BEDUCTION SECTION N0, 2

THE FOLIOWING CCNMENT CARDS DESCRIBE THE NECESSARY IWPUT FOR
DAT2 BELUCTICN SECTICN MC.1. PFOR A MORE PRECISE DESCRIPTIOK,
CCHNSULT THE USZES INSIRUCTICIS.

ISPUT ®%e CARD

BSETS

RETRIC

ISPUT ®¢» CIRD

1cope

ISPUT **e CARD
NUBBER
ELAE
JIILE

L (1)
1YL (2)
VL (3)
ITL(4)
171 (5)
1YL (6)
v
1YL (8)
1L (9)

1

->

->

2

->

3

->
->
->

->
->
->
-
->
->
->
->
->

WUMBER OF DATA SETS TO BE ANALYZED
( =1 ¢ ssSETS < 11)

TYPE OF OUTROT UNITS
METRIC=0 : ENGLISH UNIZS
METRIC=1 : SI UKITS

ICODE=0 : CONTIRUOUS VWEIGHT TIRE HISTORY
{(CONTINUOUS FROB FIRST OR PRECEDING
WEIGHT TINE HISTORY WITH ¥O ELAPSED
TIME COMSIDERATIONS BETIWEEN BANBUVERS)

ICODE=1 z DISCONTINUOUS WEIGHT TINE HISTORY
(CONTINUQOUS PRON PIRST OR PRECEDING
WPIGHT TINE HISTORY WITH ELAPSED TINE
CONSIDERATIONS BETWEEN AHAMEUVIRS)

NATIAUS NOUNBER OF INPROVEBENT ITERATIONS
ELAPSED TINE T0 BANEUYER IN SECONDS
CATA SET FILE NUXBER

LOCATION NUNBER OF VARIABLE IN 2¥D DATA TFIBLD
LOCATION RUABES OF VARIABLE IN J&D DATA PIELD
LOCATIOS NOBBER OF VARIABLE IM 4IH DATA PIRLD
LOCATION NUNBRR OF VARIABLE IN 5TH DATA FIELD
1CCATION FUNBRR OF VARIABLE IN 6TH DATA PIPZLD
LOCATION NURBER OF VARIABLE I¥ 7TH DATA PIRLD
LOCATICY XNUNBES OF VARIABLE IN 8TH DATA PIRLD
1CCATION NONBER OF YARIABLE IN 9TH DATA PIELD
LOCATION NUBBER OF VARIABLE IN 10TH DATA PIELD
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INPUT s9¢ °Capp* &
TITLE

INPUT %09 CARD 5

¥CR(1) ->
CR(2) -
¥CB(3) ->
xcH(8) ->
na(y) ->
ILR (2) =>
xLE(3) ->
non ->
0 2) ->
v 3) ->

INPUT #%¢ CARD 6
USPIS =>

DRIFTY ->

IBPOT ®9%¢ CiRD 7
LSP (1) ->

LSP(2) ->

(FROR DATA SET JPILE)

=> TITLE CARD FCR BABEUVER

FOURIES SERIPS CUTOFZ HARMONIC FOR AIRSPEED'S
SIATIC PRESSURZ AEASUREERNTS o<¥ct (1) <66

FOURIER SERIES CUTOFP HARMONIC FOR ALTITUDE'S
STATIC PRESSOREZ NEASURENENTS 0<NCH {21 <66

FOURJER SERIES CUTOPY HARMONIC POR AIRSPRED®S AND
ALTITUDE®S STAGNATION PRESSURE O<¥CH (31 <66

POURIZR SERIES CUTOFF HARMOMIC FOR STAGNATION
TENPERATURE NEASURENENTS O<¥CH{4) <66

LAG TIER IUTESVAL FOR STAGRATION PRESSURE SYSTEHS
IN SECONDS

LAG TINE INTERVAL POR ALTITUDE'S STATIC PRESSURE
SYISTENS 1IN SECONDS

LAG TINE INTERVAL FOR AIRSPEED®S STATIC PRESSURE
SISTEAS I¥ SECONDS

LAG TINE CONSTANT FOR STAGNATION PRESSURE SYSTENS
I¥ SECONLS

IAG TINE CONSTANT POR ALTITUDE®S STATIC PRESSURE
SYSTEAS IXN SECONDS

LAG TINE CONSTANT POR AIRSPEED'S STATIC PRESSURE
SYSTENS IN SECONDS

ASSOURED WUEBRR OF DATA POINTS TO BE INDICATIYE OF
A BEQUIRZD PBASE SHIPT

PITCH ARGLE DRIFT (RADIAN/SEC) USED BY:
PITCH ANGLE(NEVW)=PITCH ANGLE(OLD) ¢DRIFT® (POINT
NUHBER) /(TOTAL NUXBER OF POINTS)

PHASE SHIPT FARAMETER FOR PITCH ANGLE
LSP(1) =0 3 NO SHIPT (COMNUTATION)
LSP(1) =1 = SHIPT (FREQUENCY ROLULATION)

PEASE SHIPFT EFARAMETER FOR PITCH RATE
LSP{2)=0 : 10 SHIPFT (COERUTATION)

Ao aNaNNNNNNNANANAANNNN0NANNNN0NANANAABANNANANNANAOANNANRONNND

ISP(3)

LSP (8)

LSP (5)

LSP (6)

Lse(m

LSP (8)

1SP (9)

IWPCT s¢¢ CARD

s

GYT

FCR1

PCRZ

IACG

BCCG

CALE1
CALE2

IBPUT ®%e¢ CaARDS 9,10,11

cr(t)

->

->

-2

->

->

->

->

->

ISP{2)=1 : SHEFT (FREOUENCY RODUIATION)

PHASE SHIFT PARARETER FOR AIRSPEED

ISP(3)=0 : 3O SHIPT (COBAUTATIUN)

1SP(3)=1 : SBIFT (FREQUENCY RODUIATION)

PBASE SHIPT FARABETER FOR STATIC PRESSURE
ISP(#%) =0 = WO SHIFT (COMRUTATION)

LSP(8) =1 3 SHIFT (PREQUENCY NODULATION)

PAASE SHIFT FARANETER FOR ANGLE OF ATTACK
LSP(5)=0 : O SHIPT (COMMUTATION)

ISP(5) =1 : SHIFT (FREQUENCY MODULATION)

FHASE SHIFT PARAAETER FOR STAGMATION TESPERATURE
ISP(6)=0 : NO SHIFT (COABUTATION)

LSP(6) =1 z SHIPT (FREQUENCY MODULATION)

PHASE SHIFT FARAMETER FOR LONGITUDINAL ACCELERATION
LSP(7)=0 : RO SHIPT (COMAUTATION)

LSP(7)=1 : SHIFT (FREQUENCY BOUULATION)

PHASE SHIFT EARANZTER FPOR VERTICAL ACCELERATION
LSP(8)=0 : 3O SHIFT (COMRUTATION)

LSP(E)=1 : SHIPT (PREQUENCY HMODULATION)

PHASE SHIPT PARANETER POR ELEYATOR DEZLECTION
LSP(9)=0 : MO SHIFT (CORRUTATION)

LSP(9) =% 3 SHIPT (FREQUENCY BODULIATION)

SING AREA IN SQUARE PEET
GROSS TAKECYF WEIGHT IN POUNDS FORCE

FOEL CONSUMPIION RATE IN POUNDS FORCE PEZR SECOND
PBON TAKEOFP TGO PIRST HANEUVER

FOEL CONSUMPIION RATE IN POUNDS PORCE PER SECOND
LURING BANEUVEERS

ASGLE-OP-ATTACK INSTRUBENT LOCATION FROH CEETER OF
GRAVITY (POSITIVE IP XACG ABEAD CG, NEGATIVE IF
XACG BEHIND CG) IN PERT

KECUN PITCH-ANGLE IMSTRUMENT BIAS CORRECTION IN
RADIANS

CALIBRATION FACTOR TO ANGLE OF ATTACK
CALIERATION TPRM TO ANGLE OF ATTACK IN RADIARS

CCRYERSION PACTORS OR TERAS
TIBEZ TO SECOBLS
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cr(2)
CE(3)
cr.m
cr(S)
cr(é)
CE(Y)
cr(e)
cr(9)
cr(10)

CF{1Y)

cr(12)

INPCT ®se CARD

BPTS

->

->

->

->

->

->

->

->

WEIGHT TO POURDS PORCE
PITCH ANGLE IC RADIAXS
PITCH BATZ YO RADIANS PER SECOND
AIRSPEED YO PEET PER SECOND
STATIC PRESSURE TO POUNDS PORCE PER SQUARE P2OOT
ANGLE OF ATTACK TO RADIANS
TEAPIRATURE FACTCR POR DEGREES ZAMKINE
T = CE(8) *TERP ¢ CF(9)
TENFERATURE TERN FOB DEGREELS RAMKINE
T = CE(8) *1EAP ¢ CP(9)

LCNGITUDIWAL ACCELERATION TO FEET PeR
SQUAREL SECOXD 2

VERTICAL ACCEIERATICN TO PEET PER SQUARED SECOKDS

ELEVATCR DEFLECTION TO BRADIANS

KUNBER OF POINTS ON DPQCP ¥S. VE CURVE <21

IFPUT ®%e CARDS 13,...,(12¢8PTS)

ceoce

->

->

INPUT ®e¢» SCARDS®

BEASURED POSITION ERROR CORRECIIGN RATIO

MEASURED YALUES OF INDICKTED ALRSPEED IN PEET PER

SECO¥D

(12¢NETS*1) yeue, (12¢HPTSK)

IDENTIPICATION CP NECESSARY IMPUT TIEBZ HISTORIES

TIRE(I) -> TIKE

C(I,2) => PITCR MNGLE

8(1,3) => PITCH RATE

D{I,4) => AIRSPEZD

D(I,S) => STATIC PRESSURE

D{I,6) => ANGLE OF ATTACK

C(I,7) =~> STAGNATION TEMPERATURE
D(I,8) => LCNGITUDINAL ACCELEKATION
C{I,10} => VEBTICAL ACCELEBATION
C(I,11) => ELEVATOR DEPLECTION

0844008093093 0000898058238329¢¢00883%

{FROM DATA SET JFILE)
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THE PCLLOVING PRCGRAM CAFABILITIES ARE OPTIONAL.
SPECI?Y THEZ CESIBED OFTICES.

. .
® DATA REDUCTION SECTION NO. 2 ¢
. .

SSRGS 02 000900

520028300030 008

THE USER RUST
THE USER SHOULD CO¥SULT THE USIRS

INSTROCTIONS {°FCR1Y,SECTICN 2) POR *ILLEGAL® OPTION CONBINATIONS.

GIVEN VALOES C? THE AIBCRAPT CHARACTERISTICS AXD TIRE HISTORIES OF

WEIGHT, PITCH ANGLE, PITCH RATE, AIRSPEED, DENSITY, ANGLE-OF-
ATTACK, STATIC TEMPERATURE, LONGITUDINAL ACCELERATION, ALTITUDE,
VERTICAL ACCELEBATION, ANC P1EVATOR (OR STABLLATOR) DEPLECTION,
THIS SECTION PERFORMS THE FOLLOWING:

n

2

3

6

-

N

€)

9

1c

-

11

12

13

~

1"

1%)

PERPORNS FCURIER ANALYSIS AND PILTERING ON WEIGHT TINEZ
HISTORY

PERFCERS FCURIER AWALYSIS AND FILTERING ON PITCH AXGLE TIAEZ
HISTORY

PERFORMS FOURIER ABALISIS AND PILTERING ON PITCH RATE TINR
RISTORY

INTEGBATES PITCH RATE T0 OBTAIN PITCH ANGLE, IF DESIRED

PEBFORMS FOURIEZR ANALYSIS AND PILTERING ON AIRSPRED TINE
HISTOFY

CALCULATES ACCELEBATION PROM AIRSPZED

PERFORMES FOURIER ANALYSIS AND FILTERING OM DENSITY TINE
HISIOFY

PERFORES, FCURIER AMALYSIS AND PILTERING ON ANGLE-OFP-ATTACK
TIAE BISTORY

CALCOLATES ANGLE-OP-ATTACK RATE FROS THE FOURIER-PILTER
HCDIPICATICN CP ANGLE CF ATTACK OR FROS DIPFERENTIATION OF
SELINED=-INPUT ANGLE OF ATTACK

PERFOEMS FOURIER ANALISIS AXD FPILTERING OF STATIC
TEMPERATURE TIME HISTCRY

CCWVYEETS LONGITUDINAL ACCELERATION INTO ACCELERATION
CONEATIBLE WITH AIRSPIED

PERPORNS FOURIER ANALYSIS AND PILTERING OF LONGITUDINAL
ACCELERATION TINE BISICRY

PERFORMS FOURIER ANALYSIS AND PILTERING OF ALTITUDE TINE
RISTORY

CALCULATES DENSITY PRCS ALTITUDE
CALCULATES ALTITUDE RATE OF CHANGE ANKD ACCELERATION PRON

DIPPERENTIATICNS CP THE POURIER-FILTER MODIFICATION OP
ALTITUDE OR SPLINED-IKFUT ALTITUDE
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%)

1)

18)

19)

2¢

21)
22)
23)

CALCUIATES CONPATIDLE AMGLE-OP-ATTACK VALUES FRON OTHER
TINEZ HISTORIES

CALCUIAIES CONPATIBLE ALTITUDRE A¥D ALTITUDR RATE PRONM
INTEGRAL OF DERIVATIVE OF FPLIGHT-PATH ANGLE

PZRFORNS FOURIER ANALYSIS AND PILTERING ON YERTICAL
ACCRLERATICN TINE HISTCRY

PERPORAS YOOURIZR ANALYSIS AND FILTERING ON ZLEVATOR (OR
STARILATOR) DEPLECTION TIBE HISTORY

PERFORNS BIXINIZATION WITH OR WITHOUT A PRIORI VALUES PFOR
DATA COBPATIBILITY

PLOTS TINE EISTORIES
URITES RESULTS IN ENGLISH OR SI UNILS
PUBCHES CARDS FOR OSE IN PROGRAN °*FDR2°

THE FOLLOVING COABERT CARDS DESCRIBE THE NECESSARY INPUT POR

DATA RELUCTIOR SECTIOR NO.2.

POR A HORE PRECISE DESCRIPTION,

CCNSULYT THE USEES INSTRUCTIONS.

TJPUT ¢o¢ CARD (12¢APTSeK+1)

IPS (1) => TFOURIER ANALYSIS OM WEIGHT TIME HISTORY

IPS(2) -> PFOURIER ANALYSIS ON PITCH ANGLE TISE HISTORY
. I¥S(2)=0 -> IES
IPS(2)=1 -> X0
1IPS(3) -> FOURIER ANALYSIS O PITCE RATE TINE HISTORY
IFS()=0 -> 1ES
Irs(3)=t -> ¥
IPS{8) -> FOURIER ANALYSIS ON AIRSPEED TINE HISTORY
IZS(4)=0 -> IBS.
IPS(8) =1 => WO
IFS(S) => FOURIZR ANALYISIS ON DENSITY TIME HISTORY
IPS(5)=0 -> YES
IrS(5) =1 -> w0
IFS(6) ~> POURIER ANALYSIS ON ANGLE OF ATTACK TINE HISTORY
IPS(6)=0 -> YES
125(6)=1 -> X0
IPS(7) -> PCURIER ANALYSIS OF STATIC TENPERATURE TINE RISTORY
IPS(7)=0 -> YES
IPS(7) =1 -> ¥o
IPS(8) -> FOURIER ANALYSIS ON *ACCELEKATION® TINE HISTORY

IFrS(1}=0 -=> IES
IFS(1)=1 => No

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

rs(9) ->

I?S (10)=>

Irs(1y->

-> 128
-> "o

IFS (&) =0
Irs(8)=1

IOURIER ANALYSIS ON ALTITUDE TIME HISTORY
IPS(9) =0 => IES
IES(9)=1 => %0

FCUBIER ANALISIS ON VERTICAL ACCELERATION AISTORY
IrS(10)=Q¢ -> IES
IFS{10)=1 => ¥O

YCURIER AWALYSIS O (ELEVATOR/STABILATOR) HISTORY
IPS(11)=0 -> YES
IPS{11)=1 => ¥0

INPUT #o¢ CARD (1248PTS+K¢2)

IPRC(1) =>

IPRC(2) ->

1PRC(3)~>

IPRC (%) =>

IPRC (S) =>

IPRC(6) ~>

IPRC(N) =>

IPRC(8)->

IPRC(9)->

RETHCD OF ACCELERATION DETERMINATION
IPRC(1)=0 => DERIVATIYE OF ALRSPEED TINE HISTORY
IPRC{1)=1 => CONVERTED LONGITUDINAL ACCELEBATION

CEGREE OF COBFUTATION OF LONGITUDINAL ACCELERATION

IPRC{2)=0 => LONGITUDIMAL ACCELERATION CONVERTED TO

RATE~OP-CHAMG: OF ALBSPELD BY TRANS~-
FORMATION AND SHOOTHED BY PILTERING

IPRC(2)=1 ~> LONGITUDINAL ACCELEXATIOM COMVERTED TO

RATE-OF~CHAMGE OF ALRSPEED BY TRANS~
FORMATION
IPRC(2)>1 => ORIGINAL LONGITUDINAL ACCELERATION

RETHCD OF ABGLE-OF-~ATTACK EATE CORPUTATION
IPRC{3)=C ~> DERIVATIVE OF AKGLE-CF-ATTACK HISTORY
IPRC(3)=1 => DERIVATIYE OF SPLIMEC ANGLE OF ATTACK

CYERALL FCURIER ANALYSIS CODE
IPRC{4) =0 =-> BEQUEST POURIER AMALYSIS
IPRC (8)=1 => DECLINE FOURIZBR ANALYSIS

CVERALL FLOTTING CODE
IPRC (5)=C -> REQUEST PLOTS
IPRC(S)=1 => LCECLLME PLOTS

fURCR COLE
IFRC(6)=0 ~> EEQUEST PUNCHED CARDS
IPRC(6)=1 ~> DECLINE PUNCHED CARDS

BETRCD OF PITCH ANGLE DETZRNINATION
IPRC(7)=0 -> CRIGINAL PITCH-aNGLE TISE HISTORY

IPRC(7)=1 -> INTEGRATION OF PITCH~RATE TINE HISTORY

CONPATIBILITY CHECK

IPRC(8) =0 =-> BYPASS COMPATIBILITY CHECK
IFEC(8)=1 ~> COMPUTE COMPATIBLE ANGLE OF ATTACK
IPRC(8)=2 =~> COBPUTE COBPATIBLE ALTITUDE

CALCULATION CP INERTIAL-COMPATIBLE ALTITUDE
IERC(9)=0 ~> BYPASS ANALYSIS
IPRC(9) =1 ~> PERFORE AMALISIS
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‘nc1
rnc2

£SPS

IRPUT ®os CARD

1e(1)
IF(2)
'1r(n
1P(8)
10(5)
1E(6)
TRLT)
1P (8)
19(9)
19 (10)
IP(11)

19{12)

->

->

->

LOCATION OP ACCELEROAZTER FROA CG IN PEET
(PCSITIVE IP JHEAD, MEGATIVE 12 BEMIND)

FRACTICN OF FVRUEATIC-COMPATIBLE ALTITUDE SUCH THAT
FACI1eFACZ=1.0
PRACIICN OF INERTIAL-COMPATIBLE ALTITUDE SUCH THAT
FACT1e¢FAC2=1,.0

DATA SABPLING RATE (PER SECOKD)

(124BPTS+Ke3)

->

->

->

->

->

->

->

->

PLOT CCDE FOE WEIGHT TIAE HISTORY
IP(1)=0 ~> BEQUESTED
IP(1)=1 => UCT REQUESTED

PLOT CCDE FOB PITCH ANGLE TI2EZ HISTORY
IP(2)=C ~-> BEQUESTED
IP(2)=t => ¥CT REQUESTED

PLOT CCDE POR PITCH RATE TINE HISTORY
IP(3)=0 =~> RIQUESTED
IP(3)=1 => NCT REOUBSTED

PLOT CODEZ POS AIRSPEED TIME HISTORY
IP(4)=0 => KEQUESTED
IP(4)=1 => NGT REQUESTED

PLOT CODE FPOB DENSITY TINE HISTORY
IP(5)=C =-> BPQUESTED
IP(S)=1 => NOT REQUESTED

F1OT CCDE POS ANGLE OF ATTACK TINE HISTORY
IP{(6)=0 ~> BEQUESTED
IP(6)=t <~> BOT REQUBSTED

PLOT CODE POR STATIC TZMPERATURE TINE HISTORY
1P(7)=0 =~> BEQUESTED
IP(7)=1 <=> ¥OT REQUESTED

PLOT CODE POR ACCELERATION TINE HISTORY
IP(8)=0 <=> PEQUESTED
IP(8)=1 => NCT REQUESTED

PLOT CODE FOR ANGLE-OP-ATTACK RATE TINE BISTORY
IP(9)=0 <> KEQUESTED
IP(9)=1 => ROT REQUESTED

PLOT CODE POE ALTITUDE TINE HISTORY
IP(10) =0 => SEQUESTED
IP(10)=1 => ROT REQUEZSTED

PLOT CCDE FCE ALTITUDE RATE TIME HISTORY
IP(t1) =0 ~> REZQUESTED
IP{11)=1 ~> WOT REQUESTED

PLOT CODE POR ALTITODE ACCELERATION TINE HISTORY
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IP(13)

IP(1N)

IRPUT #¢¢ CARD

Hc(n

NC (2}

nc()

xc(a)

2C (5)

nc{6)

| [}

BC {€)

nc{9)

¥C (10)

xC(11)

IP(12) =0 => REQUESTED
IP(12)=9 => BOT REQUESTED

=> PLOT CODE PO VERTICAL ACCELERATION TINE HISTORY
IP(13) =0 -> BREQUESTED
IP(13)=1 => BOT REQUESTED

-> PLOT CODE FOR (BLEVATOR/STABILATOR) TINE HISTORY
IP(14) =0 -> BREQUESTED
IP{1%) =1 => BOT REQUESTED

(12¢BFTSeK*N)

=> PILTER COTOPF HARAOMRIC FOR ¥BIGHT
16 < HC(1) < 66 )

<> TPILTER COTOFP? HARNONIC POR PITCH ANGLE
(0 < HC(2) < 66 )

=> FILTER CUTOPF HARMONIC POR PITCH RATE
(0 < NC(I) < 66 )

«> FILTIR CUTOPP HARRONIC FOR AIRSPEED
(0 < NC(%) < 66 )

=> FILTIR CUTOF? HARMONIC POR DEXSITY
(0 < RC(5) < 66 )

«> PILTER CUTOYY HARNONIC FOR ANGLE OF ATTACK
(0 < NC(E) < 66 )

=> TPFILTER CUTORF HARHOMIC FOR STATIC TERPERATURE
(0 < uC(7) < 66)

=> FILTER COTOYF HARMONIC POR ACCELERATION
{0 < ¥CEB) < 66 )

=> TPILTER CUTOFF EARNONIC FOR ALTITUDE
{0 < NC(9) < 66 )

=> PILTEIR CUTOFF HARNONIC POR VERTICAL ACCELERATIOR
{0 < NC{10) < 66 )

->

FILTER CUTOFF HARNOXNIC FOR ELEYATOR/STABILATOR
CEFLECTION (0 < ¥C(11) < 68)

INPUT #%¢ CARDS (12¢HPTS¢K#5), oo , (12¢8PTS¢K#10)

AR(Y), B(1)

AP (2), W (2)

AP(I), N{I)

=> A PRIORY VALUE AND ITS WEIGHT POR THE PIRS?
LINEAR ACCELERATION DEPENDENCY

U
v

A PRIOSI VALUE A¥D ITS WEIGHT FOR THE SECOXD
LINEAR ACCELERATION DEPENDEMCY

=> A PRIOBI VALUE AND ITS WEIGHT FOR THE THIRD
LINZAR ACCELERATION DEPENDENCY
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b2 IR))

IR{2)

1m(3)

18(8)

12(5)

1R(6)
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AR(N) ., B(8)
AP(%), W(S)

AR(6), ¥(6)

->

->

->

->

->

=> A PRYIONX VALOR AXD ITS WEIGHY FOR TRE PITCH
ANGLE EIAS

=> A PRIORI VALUE AND ITS WEIGHT POR THE PHASE
SBIIFT

«> 1 PRIOSI VALUE A¥D IP?S WEIGHT POR THE FLIGHT

PATE ANCLE BIAS

INPUT 0% CIRDS (1248PTS+Ke11), ooo, (120HPTSeKe10¢ NURBERT /(NUNBER-1) 1)

CODE FOR THE CALCULATION OF THE PIRST LINEAR
ACCELERATION DEPEXDENCY

I2{1)=0 <> EXICLUDE

12(1)=1 => ISCLUDE

CODE POR THE CALCOLATION OF THE SECOND LINEAR
ACCELERATION DEPEMDENCY

13(2)=0 <=> EXCLUDE

I2(2)=% => INCLUDE

CODE POR THE CALCULATION OF THE THIRD LINEAR
ACCELERATION LEPENDINCY

I12(3)=0 =-> EICLUDE

I8(3)=1 => IBCLUDE

CODE FCR THZ CALCULATION OF THE PITCH ANGLE BIAS
In{8)=0 =-> EXCLUDE
IR(4)=1 => IBCLUDE

CCDE FOR THEZ CALCULATION OF THE PHASE SHIPT
I2(5)=0 -> EXCLUDE
IR(5)=1 => INCLUDE

CODE FOR THEZ CALCULATION OF THE PLIGHT PATH ANGLE
BIAS

IR(6)=0 ~-> EXICLUDE

IR(6)=Y => INCLUDE

IBPLICIT REAL*8{A-H,0-Z)
EXTERNAL PHIDER

DINEXSIOR WAXN (10),CPQCP(20),VE(20) ,A4 (%,20) ,XCODE(11) ,XN(850,1) ,C
1% (450,8) ,1SP(9) ,NCH (8) ,XLA(3) ,TAU (3) ,CF(12),PA (450) ,SYPC(10) ,WVPC(

110) ,1IVL (9)

CONBOR TITLE(20),D(850,11),TIAB(450) ,A(100),B(100),21(430),72(850)
1,P3(450) ,ASPD (850) , P(450) ,PD(450) , PS (450) ,PSD(450) , TT,RHO0,PL,G,IPL

107, 82TRIC,IREAD,JNRITE, JPUNCH,IERR
CCREON /TEAPT/ST(4S0,8) ,PAR(6),PSL,TSL,IPAR
DATA IEND/NBEWD /

Cees SPICIFY CARRIAGEZ CONTROL POB INSTALLATION

JREAL=1
JNRITE=)
JPUNCH=2

Ccone

[z X1 ]

[:X3]

on

Cc

-

own

Cess

coes

[
c

7

INITIALIZE PARANETERS
G=32.20C

GANBA=1,4D0

B=1716. 161200
REC=0.0C237€L0
151=518.7200
PSL=14,7D0* 184.0D0
PI=3,181592€5358979300
JELOT=0

K3=1

BEAL (JEEZAD,1) ESETS,HBIRIC
FOREAT (215)

I? (RSETS.LZ.0.CR.¥SE15.67.10) GO TO 121

REAL (JREAD,2) (ICODE(I),I=1,NSEIS)
ECEBEAT (10I5)

ICOLCE (ASETS¢1) =0

READ (JNEAD,W) WUMBER,ELAP,JPILX, (IVL(I),I=1,9)
FCRRAT (I5,210.0,10I5)

RPAD (JFILE,6) (TITLE(I),I=1,20)
FCEMAT (20A4)

CHECK FCR EIECUTIION TERBINATION
IF (TITLE(1).EQ.XEND) GO TO 123
INITIALIZE PRROR COLES

IERR=0

I5C=0

READ (JREAD,7) ACH(1) ,BCH(2),NCH(3),NCH (%), XLE {1),XLE (2),XLB(3),Th

10 (1) ,TAD(Z) ,TAT(I)
PORBAT (NIS5,6710.0)

BEAD (JREAD,8) NSPTS,DRIFY
rOSEAT (IS,F15.C)
FORCE ¥SPTS TO BE POSITIVE
¥SPIS=IABS (NSPTS)

BEAD (JREAD,S) (LSP(I),I=1,9)
PORRAT (915)

READ (JB2AD,10) 3,GuT,rFCR1,FCR2,XACG,PCCG,CALRY, CALP2

rOREAT (8210.0)

READ (JREAD,11) CP(1),CP(2),CZ(3),CP(¥4),CP(5),CF(6).CP(T),CP(8),CF

1¢9) ,CF (10),CP (11) ,CF(12)



92¢

no

11 rosEAT (3020.0,84020.0/8020.0)

REAL (JREMD,12) &PTS
12 PORREAT (12)

REAC {JBEAD,13) (VE(I),DPCCE(I),I=1,A8PTS)
13 FORAEAT {2720.0)
K=1
14 BEAD {JPILEZ,15) TINE(K),D(K,IVL{1)),D(K,IVL{2)),D(K, IVL(3)) ,D(X, IV

1L (%)) D (R, I¥YL(5)) ,DUX,IVL(6})},D(K,I¥VL(7)),i(K,IVL(8)) ,D(K, IYL(9))
1S FOBMAT (SD15.8/%5D15.8)

Cée¢ CHECFK PCR DATA SET END CF PILE

Ceose

If {K.GE.850) GO TO 21
IF (D(X,5).20.0.0D0) GO TO 20
I? (K.GE.2) GO 10 16
GO 10 17
CHECK PCR ECUAL OR DECREASING TINE
16 I? (TINE(X) .LE.TIAE{K-1)) GO TO 18
17 K=Ke1
GO T0O 14
18 WBITZ (JWBITE,19) K

19 FORNAT (1H1,///,11X,54Hees ECUAL OR DECREASING TIME EXCOUNTERED ON
1 DATA CABD(,13,828). PBOCEEDING WITH MEXT DATA SET, IP ANY.)
IEBE=1

2C K=K-1
IFr (IEZRBE.BE.Q) GO TC 22
GG 10 234

Cee® SAPETY CRECK POR ARRAY OVERPION

21 17 (D{X,5).2C.0.0D0) GO TO 20
K=K=-1

22 Jx=1000

Ce®s THIS READ STATEAENT READS CARDS RENAIRING APTER BAXINUS CARD

Cese

CCUST IKTIC CUENY YABIABLES
00 23 Jp=1,J3K

READ (JPFILE,1S) ©1,C2,D3,D8,DS,D6,D7,08,D9,016
I? (DS.EQ.0.CDC) GO TO 24

23 CONTINUE

Cese CHICX O TOTAL NONBER OF POXIIS

Cone

Cees

i% I? (K.LT.13) GO TO 25
17 (1ZR3.¥2.0) GO 2C $17
6o 10 27

25 WRITE (JVRITE,26)

26 PCREAT (1X,///,10X,79HNURBER OF DATA POINTS IS LESS THAX 13 . PRO

1CEEDING WITH NEXT DATA ST, 17 ANY.)

IPRB=1

CBECK FOR A NEW DATA SIT

GC 10 117

CHECK POR IBCCMSISTENCIES IN POURIER SERIES SPECIFICATIONS

27 IP ((RCH(1) .12.0.O0R.NCH (2).12.0).OR. (NCH (3).LE.0.OR.KCH (4) .LE.0))I
=1
I? (INC.NE,0) ¥BITE (JVRITE,28)

28 YOREAT (1H1,///,1X,*SCH(1), NCH(2), MCH(3), AND/OR MCH(4) HAVE(HAS
1) BPEX SPECIFIEC IICOBRECTLY AS BEING LESS THAN OR EQUAL TO ZERO,*
n
I? (INC.¥E.C)IERR=1

Cose

Coss

Ceee

IF (IEZRB.NE.0) GO T0 117

CCMEUTE TOTAL TINE ANC TINE FOINTS LN CORRECT UNIIS

IF {CE(1).20.0.0D0) GC TC 29

TT=(TINE{K) -TIRE (1)) *CP (1)

TPTV=TIRE(1)

Gc 10 3¢

29 TT=TIAE(K)-TIAE(Y)

TPTI=TIREZ (1)

30 DO 22 I=1,K
TP (CF(1).2C.0.0L0) GO TO 31
rxn:(x)=(rzuz(x)-1911)-cr(1)

GC 10

k1) 1!HL(X)-TIH!(1)-!P11

32 CeNTINUE

WRITE TITLZ, WING ARER, REFERENCE DENSITY, G, AND TOTAL TEST TIAZ

VRITE (JVRITE,33) (TITLE(I),I=1,20)

33 PORMAT (1H1,////,23X,84 (%9%),/,23X,9%¢,82X,98% ,/,23X,%%,2018,21,"

189,/,233,°0°,822,°%%,/,23X,84("**))

WBITZ INPUT PARANETERS

VERITE (JVRITE,3Q) NSETS

I8 FCRMAT (1X,///,292,71(%=*),/,29K,%1% ,69X,%(%,/,29%,%}*, 39X, 6ANSETS
1=,13,212,%|%,/,29%,%]°,4X,26HSECTION 1 INPUT PARASETERS,23X,SBICOD
TE, 11K, %)

WRITE (JWRITE,3S) (ICCb:(I).x-i.lszrsp
35S POREAT (29%,%]°,56X,I1,12X,°|%)
WRITE (JURITE, 36)

36 PORMAT (29X,°)%,691,%)%)

WRITE (JVBITE,37) METRIC,XILA(1),PCR1,CP(1),%CH(1),XLN(2),PCR2,CP (2
1) LUCH (2) ,XLA{3) ,XACG,C¥ (3) ,ACH (3) ,TAU (1) ,PCCG, CF (4) , KCH (8) ,TAD (2),
1CALP,C¥(S) ,S,TAU(),CALP2,CE (6) ,RPTS,GHT, NSPTS,CP{7) ,LSP(1),LSP (2
1) ,LSE(I) ,LSP(4) ,CP(8) ,LSP (5) ,LSP(6) ,LSP(7),LSP (8),CF(9) ,LSP(9),2LA
1P, DEIFT,CE(10) ,CF (11) 4CF (12)

37 PORMAT (29X,°)%,3X, *NETRIC= °,13,2%,°XLA(1)= *,P7.4,21,9PCR1= ¢, P9
1.6,2X,°CP{1)= *,D10.3,21,%4°%,/,29X,°|*,3X, ' NCH (1)= *,13,2X,°XLA(2)
1= ¢ ,F7.8,2X,0PCB2% *,79.6,2X,°CP(2)= *,D10.3,2X,%)%,/,29K,%)%,3X,?
1MCH(2)= *,13,2X,°XLA(I)= *,P7.4,2X,9XACG= *,F9.6,2K,°CP{3)= ¢,D10.
13,2Y,41°,/,292,°1¢,3X,°9CH ()= 4,13,21,°TAU(1)= *,F7.8,21,* PCCG= *
1,79.6,2%,°CF(4)= *,D10.3,21,%1%,/,29X,°|*, 3%, *NCH(4) = *,13,2X,°TA0
1(2)= *,¥7.4,2X,°CALPt= *,P8.4,2X,°CP(S)= *,010.3,2X,%]°,/,29%,°| ¢,
131,'S= *,78.4,21,°TAD(3)= *,F7.4,2X,°CALP2= %, P8.4,2X,'CP{6)= *,D1
10.3,2%,°1,/,291,%1°,3X,°8PTS= *,13,8%,%GNT= *,P10.5,2X, NSPTS= *,
113,71,°CP(T)= *,D10.3,2X,%1%,/,29K,%*,3X,°LSP (1)= *,11,2Z,°LSP(2)
1= 9,11,28,°LSP(3)= *,I1,2X,°1SP(4)= 211,55, 'CE(3 = *,010.3,21,°)¢
1,/029,%1%, 3K, 'LSP(5) = *,11,2X,°LSP(6)= ¢,I1,2X, 'LSP(7)= *,I1,2X,°
1LSP(8)= *,I1,51,°CP(9)= *,010.3,2X,'|*,/,29X,%]* ,3X,°LSP(9)= *,I1,
12X, °FLARP= *,r9.6,3X,°ORIPT= ¢,F9.2,21,°C2(10)=2,D10.3, zx.-l-./.zox
1,009,501, 9CE(11) =9, D10.3, 2X,%1%,/.29%,% (50K, *CF(12) =4 ,D10. 3,21,
Il'./.29x,'|',69!,']',/,29!,'Q',201,"l',9x,'DPQCP',ij,'|l,/,2sx,
H*,69x5,°1°)

YRITE (JVRITZ,38) (VE(I),DPGCP(I),I=1,HPTS)

38 FORAAT {29X,%)*,17X,P9.4,3X,F9.6,31X,°)")
URITE (JVRITE,39)

39 FORMBT (29X,°1*,69(°_%),*|")

Ir (BETEIC.NE.0) GO TO 41
URITE (JWBITE,Q0) S,RHO,G,TT

40 FPORBAT (1X,//,38X,51(%%%),/,38X,%89 49,49, /,38X,%%*,138 RING ABE
12 = ,P10.5,6R PT#*2,20X,%%%,/,38X,%0%,210 BZPERENCE DENSITY = ,P10
1.8,11H SLUG/PT#%3,7X,%¢¢,/,38Y,9%¢ 314 ACCELCLRATIOR DUE TO GRAVITY
1= ,F7.8,108 PI/SEC**2,1X,%%%,/,38X,*%¢, 194 TOTAL TEST TIAE = ,P10
1.4,8H SECONDS,12X,94',/,38X,°%%,491,%89,/,38X,51 (**7))




Lez

GO 10 &3
81 SIAsS*(0.3042D0) ¢s2
BHCIA=RR0*515.3800
GIN=G*0,3088D0
WEITE (JURITE,82) SIN,RHCX2,GXN,TT
42 POSNAT (1X,//,38%,5
1 o= ,F11.5,58 mee
18,88 KG/N#e),8X,
18.4,98 B/SECe®2,1X, 81,
1ECOBDS, 121,70%,/,38%,°9,491,°%¢,/, 381,51 (*¢¢) )
Cese CCNEDOTE AIRCRAFT WEZIGHT TINEZ HISTORY
A3 IF (ICOCE(XJ).2Q.0) IGNT=1
I?P (ICOCE (KJ).WE.0) IG¥T=0
IP (XJ.GT.1.AMD.IGET.EQ.1)} GC TO 47
I? (KJ.EQ.1)WAIA(KJ)=GRT-PCE1SELAP
I? (RJ.GT.1.A¥0.IGWT.2Q.0) GC TO &%
GC 10 &5
A% §EX8 (KJ)=WIIN (KI-1) ~-PCRISELAF
45 DO 46 I=1,X
46 D II,1)=NWAXHN (£J) -PCR2TIBE (I)
WRIH (KJ) =D (K, 1)
GC 1C &
47 UNXE (KJ)=REXE{KI~1)
GO 10 &5
Cese CCRVERY PLIGAT PARAREZTERS TC CONPATIBLE UMITS
48 DO S8 Is1,K
IP (CP(2).2C.0.0D0) GG TO &9
Ceees CONVERT NPIGHT TO LPP
D{I,1)=C(L,1)CF(2)
€9 IP (CP(3).2Q.0.0C0) GO TO SO
Cess CCONYVERT PITCH ANGLE TC BADIANS
D(1,2)=0{1,2)CF(3)
Csee APFLY PITCH ANGLE DRIET IP SFECIPIED
IP (DRIPT.NE.C)D(I,2)=D(I,2)+DRIFTSDILOAT (I)/K
S0 IF (CF{%).2Q.0.000) GO 10 S
Cese CONYERT PITCH RATE 10O BADIARS/SEC
D(I,3)=D{I,3)sCP(q)
S1 IP {CP(S5).EQ.0.0D0) GO TO S2
Ceee CONVERT AIRSPEEC TO P1/SIC
D(I,8)=D(I,&)sCF(S5)
$2 IF (CP(6).EQ.0.0L0) GO TO S3
Cese CCRYEAT STATIC PRESSURE TO LBF/FT®s2
D (X,5)=D(I, S) *CP (6)
€3 IP (CF(7).20.0.0L0) GC TO 54
C#s% CORVERT ANGLE OF ATIACK IO BADIANS
D (X,6)=D(I,6)CP(7)
S4 IP (CF(8).EQ.0.0D0.AND.CF(9).20.0.0D0) GO TO 55
Ceés CONVERT TENPEZRATUBE TC CEGREES RANKINE
D{1,7)=CF (8)9D(I,7) +CF(9)
SS IP (CP(10).EQ.C.0D0) GO TO S€
Céss CONVERT LCNGITUDINAL ACCELERATION TO PT/SEC**2
D(1,8)=0(I,8)eCP (10)
S6 IF (CP(11).20.0.0D0) GO TO 57
Ceee CONVERT VERTICAL ACCELESATICE TO FT/SECee2
D(I,10) =D(I,10) *CF(11)
57 IP (CP(12).20.0.000) GO TO 5@
Cees CONVERT ELEVATOR (OR STABILATOR) DEPLECTION TO RADIANS
D(I,11)=D(I,11)9CP(12)
58 CONTINOE
Ce#e 2ADJUST CATA POR AN ASSUEED EBASE SHIPT

38x,°9°,3

1{°8%) ,/7,38X,%¢8 49K ,%¢7,/,33X,%¢9,1349 ¥ING ARE
20X,°9%,/,38X,%%%,21H QEFERENCE DENSITY = ,P12,
4 ACCELERATION OUL TO GRAVITY =
*¢198 TOTAL TEST TINE = ,P10.4,8H 5
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64
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Cess
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65

o
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67
68
69
cees

Cose

Coee

1ALCOIATID PITCH ANGLIE BIAS
1TED PITCH RATE BIAS

IP (NSP1S.WE.0) CALL SEIPT(K,LSP,NSPTS)
CCEEGIE PITCH ANGLE BIAS
PAR=CARSIN(C {X,8) /G)~L (K,2)

ADD FITCH ANGLE BIAS 10 PITCH ANGLE

DC S9 I=1,K

D(I,2)=C(I,2) +PAR

INTEGRATEZ PITCH RATR

PRI=Q.0L0

KE1=K-1

D0 €C I=1,KM1
PRI=PRI+0.5D0® (TIME (L+1)-TXNE(I))® (D (I¢1,3)+D (X, 3))
CONEUTE PITCH RATE BIAS

PRB=- (PFI¢D (1,2)~D{K,2))/IT

ADD PITCH RATE BIAS TO PITCH RATE

Lo €1 I=1,K

D(I,3)=D{(I,3)+PBD

INITIALIZE PARAMETERS FOR PHASE SHIPT DETERAINATION
¥SP1S20

L=1

WPC=K-NEPTS

$1520.000

START SUNNATION PROCESS

DC €N I=1,NPC

INTEGRATE PITCH RATE

PRI=D {1,2)

DO 63 J=1,1

IF (3.2¢.1) GO 10 63
PRI=PRI+0,500% (TINE (J) ~TIAE(J-1))* (D (J, 3) ¢D(J=1, )
CONTINDE

SOA ERCLUCTS OF PITCH ANGLES
STS=STS*(PRI~D(K,2))* (D(I¢NSPTS,2)~D(K,2))
STOSE VALDES

SVPC (L) =S1S

NYPC(L) =NSPTS

1EST FOR BAXINUN PHASE SHIPT

IP (NSPIS.EQ.10) GO TO 65

TECSEASE PRASE SHIPT ANL CCORTER
NSEIS=NSPTS+1

L=L+t

GO 10 62

DETEGAINE NAXIROM PITCR-ANGLE PRODUCT
STS=SVEC (1)

DO 66 I=1,10

IF (SYFC(I).GT.STS) STS=SYIC(I)

DO 67 I=1,10

L=1

IP (SYPC({T).XQ.STS) GC TC 68

NSETS=MVPC(L)

WRITE (JWRITEZ,69) NSPTS,PAB,PRB

PORMAT (1X,//,351,31HCALCULATED PHASE SHIFT COUNT = ¢12,/.,35%,318C
= ,1PD19,12,74 RADIAN,/,35%,31HCALCULA

= ,1PD19.12,84 RAD/SEC)

ADJOST DATA PCINTS, IP NECESSARY, POR A CALCULATED PHASE SHIPT
IP (NSPTS.NE.0) CALL SHIPT(K,LSFK,NSPTS)

CCHEUTE PARAMETERS POR TOTAL TENPERATURE

HPI=(3¢NCH(4)) /2

APTF1=8FETeY

I1E£1=0

IBITIALIZE INPROYENENT COEPPICIENTS

DO 70 I=1,6
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72
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Ceee
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Ceee

T4
Ceee

s
Cose

PAB(I)=0.0D0
IPAR=0

IP (NORPER.LT.0) RUREER=(

BUOA=NUNEERe

BEGIN'IMPROVERENT ITERATION

DO 119 JJJI=1,RUn

TO=TIRE (K)-TINE (1)

DO 71 Is1,K

TI=TINE (I)-TIAL(T)

PU(I) =0T, 7)~(D{1,7)* (D{K,7)=D(1,7)) /TD*TX)
CCYTINOE

COMPUTE AND SAOOTH FOURIER COEFPICIENTS OF STAGNATION TEMPERATURE

CALL PASAP(P1,K,RPTP1,HCH(&))
RBEGENERATE SMOOTHED STAGNATICN TEMPERATURC
X1=a(1

DO 73 L=1,K

TI=TIAE(L)~TINE(Y)
X2=0(1,7) ¢ (D(K,7)~D(1,7})) /TDoTX

X3=0.0D0

DO 72 Nx2,8PTP1

IJ'!BO!(I)‘CCOS(2‘(!—1)‘PI'!IH!(L)/!T)OB(I)‘DSII(2‘(!-1)‘PI‘TIRE(L

1}/11)
(113411
PY(L)=X14X24X)
ccutrnge

DETEENINE PEASIBILITY OF STATIC PRESSURE BEMAVIOK AND MAKE ANY

WECESSARY CCRRECTIONS
KA1=K-1

DO T4 I=1,KN1
Su=1,000

CALCULATE AN ALTITUCE BY ASSUMING COMSTAMT TEMPLRATURE
H=(1.000-(D(X,5)/PS1)*%(1.000,/4.26D0)) /6.86D=6
CALCULATE A LIRITING ALTITUL? DERIVATIVE NAGNITUDE

BD=DAES {D (I,8) *CSIN (1.2DC® (D (I,2)-D(I,6))))

CALCOLATE A LIAITING STATIC PRESSURE DERIVATIVE MAGNITODE
PDPI‘CABS(-G.BSD-S.H.26E0’PSL'HD‘(I.ODO~6.86D-6‘H)“J.lGDO)
CALCULATE TWO-POINT STATIC FREZSSURE DERIVATIVE OF INPUT DATA

PPI={D(I¢1,%)~D{L,5))/(TINE(1+1)-TINE(L))
DETEFNIBZ DIRECTION OF CERIVATIVE
IF (CABS(PPI).NE.PPI)SN=-1.0D0

CHECR AAGWITODES OF STATIC FRESSURE DERIVATIVES AND APPLY SNALLESY

IF (CABS(PPI).LE.LAES (PDPA))ASLP=DABS (PPI)
IP (DABS(PPI) .GT.IABS(PTPA))ASLP=DABS (PDPA)
CCHEUTEZ *RER* SIATIC ERESSUPE
D{1¢1,5)=D(1,5) ¢SN*ASLP¢ (TINE(I+1)~TIAE(I))
CCN1IRUZ

DEFINE STATIC ARD STAGWATION PRESSURES

DO 75 I=1,K

ASPD (I} =D (L,8)

D(I,7)=r1(I)

P(1)=D(I,5)

PA(1)=D(I,5)
PS(I)=P(I)#0.5D0¢PSL/ (R*TSL) *D (L,4) #e2
CONTIRUE

CONPUTE LAG-CORRECTED STATIC PRESSURE AND QC
HP=(30NCH (1)) /2

HPA= (3*NCH{2)) /2

NPS=(3¢¥CH(I)) /2

HPP1=RAPe¢Y

HEAE1=HPAS1

Coee

76
Cess

77
Cesee
Ceee

Cese

79

80
Cess

a
Cess

-

83
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Cese

Cess

84

85
Ceee

NPSP1=XPS )
TD=TINE (K)-TINE(1)

COMEUTE DEVIATIONS CP STATIC PRESSURES AND STAGNATION PRESSURE
DO 76 I=1,K

TTX=TIAE (1) -TINE(T)

PUI)=P(I) = (P{1) *(P(K)~P (1)) /IDOTX)
P2(I)=PA(I)~(RA(1)+(PA(K)-PA(1))/TD?TX)

P3{I)=PS (I}~ (PS (1) # (PS (K)~PS (1)) /TD*1X)

SET TIAE CONSTANTS AND TINE INTERVALS TO 2E30 IF SPECIPIZD

IP (J33J.EQ.1) GC TC 78

DO 77 121,13

LR (I)=0.0D0

TAU {I)=0.0D0

CONPUTE AND SMOOTH POURIER CCEPFICIENTS OF AIRSPEED'S STATIC
PRESSUBE

CALL FARAP(FP1,K,MPP1,NCH(1))

BEGENERATE AIBSPEED'S SNOOTHED STATIC PRESSURE AT (TIKE-LANBDA)
I1=a (1)

DC €0 L=1,K

TI=T1INE (L)~TIRE (1) -XLN(3)

X2=P (1) +(P(K)=P(1)) /TD*1X

X3=0.0D0

DC 79 W=2,8MPP1

I3=X34A (N) #LCOS (29 (W=1) *PI# (TIBE (L) -XLR(3)) /TT)¢ B(N) ¢ DSIN (2% (E~1)e
1PI® (TINE(L) -XLA(3)) /TT)

CONTIINUE

PU(L)=X1¢X24X3

CCNTINDE

COBFUIE DERIVATIVE CF AIRSPEED®S STATIC PRESSURL AT (TINE-LAMBDA)
ID1=(E(K) =P {1)) /1D

DO €2 L=1,K

10220.0C0

DO 81 W=1,NP
ID2=XD2428NOPT/TT* (-A (Ne1) STSIN (24N ePI¢ (TIRR (L)~XLN (3))/TT) *B (N+ 1)
14LCOS (200¢P1# (TINE (1) ~XLR (3))/1T))

CCNIINDE

PD (1) =XCTeXL2

CORTINUE

CCNPUTE FULLY LAG-CORBECTED STATIC PRESSURE FOR AIRSPEED

DC €3 L=1,X

P(L)=P1 (L) *TAU{3)*PD(L)

IP (L.EC.K)P(L)=P(L-1)

CCRIINDE

CONPUTE AXD SNCOTH FOURIER COBFFICIENTS OF ALTITUDE'S STATIC
PRESSORE

CALL PAGAP(F2,K,NPAP1,NCH(2))

BEGERIRATE ALTITUDE'S SMOOTHED STATIC PRESSURE AT (TIAR-LARBDA)
It=a(1)

DO €5 L=1,K

TX=TINE (L) ~TINE{1)~ILN(2)

X2=PA{1) ¢ (PA(K)=PA(1))/TDeTX

¥3=0.000

DO 84 W=2,MPAP1

I3=X3¢k (N) $DCOS (2 (¥-1) *PT# (TIRE(L) ~XLN (2)) /TT) + B{N) *DSIN (2% (N-1)+
12X (TINR (L) ~XLB(2)) /TT)

CONTINUE

P2(L) =X 1422+X3

contIsue

COMPUTE DERIVATIVE OF ALTITUDES STATIC PRESSURE AT (TINE-LANBDA}
ID1=(PA(K)~FA (1)) /70D



62¢

DO 27 L=1,K AL 1081 J=BPTSA1 aL 11481

I02=0.0L0 aL 1082 §5 CI1=3A(1,J) BL 1182

DO €6 W=1,8P2 aL 1083 CX2=31(2,J) AL 1143
XD2=ID242%NOPI/TT* (-2 (N¢1) SDSIN (2¢¥¢PIe (TINE (L)~ XLA (2) ) /TT) +B(We1) HL 084 C13=A4(3,J) . AL tlase
19DCCS (2¢R8P1* (TINE (1) ~ILB(2)}/TT)) aL 1085 CIA=AA (8,J) BL 1145

86 CONTINDE aL 1086 Ces¢ CONEUTE INTERPOLAYEL CORRECTION BATIO BL 1146
PD(L)=ICT+XD2 8L 1087 DPQC= ((CX1#YIND4CX2) *VINDSC 1) SYIND+CIN aL 1147

87 CONTIBUL ML 1088 96 PP=F (I) AL 1148
Cése CONPUTE PULLY LAG-CORRICTED STATIC PRESSURE POR ALTITUDE aL 1089 IP (LPQC.R2Q.-2000.0C0) IZRR=1 AL 1149
DO €8 L=1,X aL 1090 IP (IZRE.EE.C) GO TO 117 AL 1150
PA{L)=F2(L) 4740 (2) *PD (L) L 1091 PE=PA (I) L 115%

I? (L.EC.K)PA{L)=PA(L~1) aL 1092 PP=PS(I)~P(I) XL 1152

' 88 CCNIINUE HL 1093 DE=CECCOPP AL 1153
Ce*s CCEPUTE AND SHOOTE POURIER COEPPICIENTS OF STAGNATION PRESSURE aL 1094 PL=EE¢DP NL 1154
CALL PARAF(F3,X,RPSP1,MCH{3)) 8L 1095 PLH=EFR+ [P sL 1155

Ce¢¢ RECINEIRATE SECOTHED STAGNATICN PRESSURE AT (TINE-LANBDA) 8L 1096 Cess COAFUTE STATIC TEAPERATURE PHOM STAGNATION TEMPERATURE, DENSITY AL 1156
X1=(1) . sL 1097 Cess FRCE STATIC PRESSURE, ALTITUDE FPRON DENSITY, AND TRUE AIRSPEED AL 1157

DO 50 L=1,x 4L 1098 Cess FROR INCICATED AIRSPEED AL 1158
TI=1IRE (L) -TINE (1)~-XLE(Y) 8L 1099 ST(I,1)*D(L,T) EL 1159
X2=ES(1) # (PS(K)-PS(1) ) /ID*2X uL 1100 D(1,7)=C(I,7)/({1.0D0¢PHR/PF)/ (PH/PReDPQC))** ((GANEA-1.0D0) /GANNA) ML 1160
X3=0.000 aL 1101 ST (1,2)=D(I,5) AL 1161

DO 89 N=2,APSP1 AL 1102 D{I,5)=RPT® (FLH/D(I,7)) aL 1162
X3=X3¢A (N) #DCOS (2® (X~ 1) SPI® (TIKE(L) -XLH (1)) /TT) +B(¥) *DSIN (2¢ (N¥-1)* AL 1103 D (1,9)=(1.0L0~{D(I,S5)/RHO) ** (1.0D0/&,26D0) ) /6. 86 D=6 L 1163

1PI# (TINE (L) ~XLA (1)) /TT) KL 1106 ST(1,3)=D(I,N) AL 1164

89 CONTIXOE AL 1105 ST (I,4)=D(I,8) aL 1165
PI(L)=X103241) ML 1106 D(I,4)=CSQRT(2.0D0OSGARNA®PL/ ((GANBA~1.0D0) ¢D(X,5)) ¢ (((V.0DO¢PP/P?) HL 1166

90 CONTINUY aL 1107 1/(PE/EP4DEQC) ) *¢ ((GANEA-1.0L0) /GANNA} ~1.0D0) ) 2L 1167
Cese CONFUTE DERIVATIVE CP STAGENATION PRESSURE AT (TIZE-LARNBDA) ML 1108 Cees CORFECT PITCR ANGLE AND ANGLE OF ATTACK POR INSTRUNENT LOCATION AL 1168
ID1=(PS (X)-BS{1))/TD aL 1109 IF (JJJJ.GT.1) GO TO 97 AL 3169

DO 92 L=1,K BL 1110 D(I,2)=C(I,2) +PCCG aL 31170
I02=0.000 BL 1111 D(1,6)=0(I,6)-DATAN (XACG®D (X,3)/D (L,4)) aL 1171

DO 91 Na=1,8PS aL Mn12 Ce#¢e CALIERATE ANGLE OF ATTACK 8L 1172
XD2=XD2 2% WSPT/TT® (~A (N¢1) ¢DSIN (2*N*PI® (TINE(L)-XLN (1)} /TT) B (N¢1) AL 1113 IF (CALP1.EQ.0.0D0)CALP1=1,000 aL 1173
1$DCCS (2¢N*PI* (TINE (L) -XLE(1})/1T)) aL 1114 D(1,6)=CALP1¢D {I,6) +CALP2 BL 11748

91 CONTINUE BL 1115 97 CONIINUR AL 1175
PSD(1)=1D14XD2 L 1116 C*$s CHICK FOR INITIAL PRINTOUT aL 1176

92 CCBTINUE AL 1117 IP (33J3.G1.1) GO TC 116 aL 1177
Cese CONFUTE PULLY LAG-CCRBECTED STAGNATION PRESSURE AL 1118 Ceses VURITE BISULTS I¥ COMPATIBLE UNITS AL 1178
PO 93 L=1,K aL 1119 IP (EETBIC.HE.0) GO TO 109 AL 1179
PS(1)=F3(1) +TA0 (1) *PSD(L) aL 1120 Ce*s YRITF RESOLTS IN ENGLISH ONITS 8L 1180

I? (L.EQ.K)PS(L)=PS (L-1) AL 1121 WBITE (JVUBITE,S8) 5L 1181

93 CONTINUE 5L 1122 98 POREAT (1X,//,311,68(°%¢) ,/,31X,%%% ,66X,%%%,/,31X,%¢¢ 6X,5IHCONYER AL 1182
RPI=REO*TSL/PSL AL 1123 1SION OF INITIAL PLIGHT DATA 70 COMPATIBLE UNITS,7X,*¢*,/,31X,%#%,6 ML 1183
DFQC=-2000.000 AL 1124 16X,°¢%,/,311,68("%%),/,6X,121(%%%),/,6X,%%%,19X,1%,191,°|°,19Z,% AL 118&
BPTSE1=EPIS-1 8L 1125 19 ,183,°0°,19X,%1%,19X,°%¢,/,6X,%%¢,4X, 10HDATA POINT,5K,*)°,7X,4HTI AL 1185

Css¢ SPLINE PIT POSITION ERROR CCBRECTION RATIO DP/QC® GITH BRESPECT TO AL 1126 18£,81,%}",61,6BWEIGET, 72, *,3X, 11HPITCE ANGLE,5X,°}%,4X,108PITCA AL 1186
Ce¢s INDICATED AIRSPEED AL 1127 1BATE,SX,*|*,5X,8HAIRSERED,61,°%%,/,6X,°%%,19X,%9,6X,68 (SECS),7X,* AL 1187
CALL SPLINE(RPTS,DPQCP,VE,2d) AL 1128 14°,7x,58(LBF),7X,°|*,%X,9H (RADIANS) ,6X,%]*,3X, 12H(RADIAN/SEC) ,8X,* &L 1188

Ces% CALCULATE INDICATED AIRSPEEL aL 1129 1 ,5X,88(PT/SEC) ,6X,%9%,/,6X,°0%,19X,¢|°,19X,°§* ,19X,%3°,19X,°)°*,1 AL 1189
DO 97 1=1,X AL 1130 19X, 1,191,980 ,/,6X,%0¢ ,119 (*=) ,ter) aL 1190

Ce¢s THE NEASURED INCICATED AIRSPEED IS USED IN CONJUNCTION WITH THE AL 1131 pC 10 I=1,X L 1191
Cees INDICATED PCSITION-ERROB-CORRECTION AIRSPRED TO PIND DPQC AL 1132 WRITE (JV¥RITE,99) I,TIAR(I),(D(L,J),J=1,¥] AL 1192
VINE=ASPD (1) aL 1133 99 FORBAT (6X,°%°,7X,I3,9X,°|°,6X,07.3,6X,°}°,5X,09.3,5X,%(",32,P11,7 AL 1193

C#*s% INTERPOLATE POR APPLICATICM CF CORRECTION BATIO BL 1134 1,52,°1°,842,210.7,5X,°) ¢ ,SK,F8.4,6X,0¢¢) 2L 1198
IF (VIND.LT.VE (1)) DPQC=DPQCE(1) L 1135 100 CONTIRUR L 1195

IF (VIND.GT.VEZ(BPTS)) DPQC=DPQCP (APTS) AL 1136 URITE (JVRITE,101) aL 1196

IF (DPCC.E2Q.DPCCP(1).0R.DPCC.EQ.DPQCP(APTS)) GO TO 96 8L 1137 101 PONEAT (6X,°%°,119X,°9¢,/,6K,121("®%),/,61,°%¢ ,19K,%}*,19%,°°,19% L 1197

G 94 J=1,APISKY AL 1138 1% 190,010, 197,01, 19X,9%9,/,6X,%®9 ,4X,104DATA POINT,SK,*0°,7X,8 HL ¢198

IF (VE(J) -LE.VIND.ABD.VE(J*+1).GT.YIND) GO TO 95 ML 1139 1HT18E,8X,%]°,5X, 7THDENSITY,7X,* ¢, 2X,15HANGLE OF ATTACK,2X,*[',8X,1 8L 1199

S84 CONTINUE aL 1140 1IHTEBFEFATURE,AX,® |*,3X,12H1CNG. ACCEL. ,8X,%%,/,6X,%*% ,19X,%)*,6X AL 1200




0¢e

1,68 (SECS) , 71, %1%, 3K, 120 (SLUG/PTe33) ,4X,* 4, 4X, 94 (RADIANS) ,6X,°1',6
11,78 (DEG-B) 46X,° |, X, VIH(PT/SECS€2) AL, ' 9%, /, 61,000 19X, 0]¢,191,*
10192, 900, 191,01, 19X, % 4%, 19K,99%,/,6X,°%°,119( =) ,**")

DG 103 I=1,X

WRITE (JWRITE,102) I,TIRE(I),(D{I,J),J=5,8)

102 POBNAT (6,067 ,78,13,9%,%1%,6K,F7.3,6X,%1%, 4L, F10.8,5%,%1°,8%, P11,
17,83, %, 8K, 29.2,6%,%1,4X,F9.5,6X,°¢*)

103 CONTIRDE
WRITE (JWERITE,108)

1CH POFRAT (6X,°9%,119X,°89,/,61,121(*%"))

WRITE (JWRITE,1CS)

305 PORBAT (6X,°¢%,19K,%1%,19,%01°,198,%%,19,°1°,19K,7¢*,/,6X,°¢7,0x
1, 10BCATM POINT,SY,*{*,73,4H1INE,8X,%]*,5K,8HALTITUDE,6K,41¢,3X, 124
AYERT. ACCEL.,4X,*{%,2X, 1NHELEV, DEFLECT.,3X,'#',/,0k,***,19K,*1*,6
1X,6H (SECS) ,71,%|*, 61,60 (FEET), 7K, | ¢, 4%, VIH{PT/SEC**2) ,4X, 1%, 4K,9
1H(RACIANS) ,6X,%8%,/,6,09¢, 190,17, 19K, 71,19, 1, 19L,°'1',19%,
Vo/7e€X,02°,99(0=%) 2%}

po 107 1=1,X
WRITE (JURITE,106) I,TINE(I),(D(I,J),d=9,11)

106 POREAT {6X,°%°,7X,I3,9X,%1%,6X,P7.3,6X,%§",4X, F10.3,5%,%1%,4X,F9.5
1,6X,° 1" 4%, F9.5,6X,°%¢)

1¢7 CON1INGE

VRITE (JUBITE,108)
108 PORNAT (6X,%%°,13%,901%, 19X, %1%, 19X,1¢, 19X, ) ,19%,%*",/,6X,101(**

Ceee WRITE RESULTS IN SI ONITS

19 ¥RITE (JVURITE,110)

110 PORPAT (1X,//,31X,68(°%°%),/,31X,'**,66X,%%,/,31L,***,6X,5IACONTER
1SICH CP INITIAL FLIGHT DATA 10 COMPATIBLE UNITS, 7X,°¢%,/,31X,°'%',¢
16!,'0',/,3|x,63("'),/,6!.121("'),/.61,"',191,'1'.!91,'|',191,']
19,191,917 ,191,017,191,84¢,/,6X,%#¢ UX, 10HDATA PUINT,5X,"{*, 7, 041T
1%E,8Y,¢|*,61, 6RNEIGHT,7X,%1%,3X, 11HPITCR ANGLE,SX,*{* ,4X,10HPITCH
1RATE, ST, |%,5X, BHATESFEED,6X,0%¢,/,6X, ¢, 19X, %1 *,6X,6H (SECS) ,7L,*
109,5%,98 (RERTCHS) 453, 1° 4K ,9H (BADIANS) ,64,° | " ,3X, 12H (RADIAN/SEC),
185,419, 6K, TH{B/SEC) 46X, %%, /,6X,0#1,19,91 4,19, %1, 19X, 1°,19K, %4
19,191,719,19,99%,/,6X,°%%, 119 (*~"),'¢)

Do 111 I=1,K

US=C(I, 1) #6.4482L0

¥s=L(I,4)*0.304800

SRITE (JIVBITEZ,99) I,TINE(I),N5,D(I,2),D(L,3),7S

111 CCNTINDE
UBITE (JUBITE,112)

112 PORRAT (6X,°4¢,119X,%%°,/,61,121(*#%),/,6K,*® ,195,%%,19L,°)%,19X
1,000,19%,00%,19%,94¢,19X,°#°%,/,6X,°%%,4X,108DATA POINT,5K,"|%, 71,4
1HTIBE,8,%|*,51, THDENSITY,72,%| %, 2X, 15HANGLE OF ATTACK,2K,*}%,41,1
11RTENPEEATORE,4X,*|°,3X,12B1CHG. ACCEL., 4K, **',/,6X,%%',19X,%]",6X
1,6B(SECS) o TX,*|*,0X, 98 (KG/H¢$3) ,6X,°|*, 5K, 94 (RADIANS) ,5%,1*,6X, 74
1(DEC-K) ,6X, %1 AT, 1CH(R/SEC*92) ,5K,"%%, /6, %%, 19K, %', 19K, 1", 19
A, 0 19X, 1%, 19K, 1, 19,045, /,6X, *, 119 (*=*), "**)

-0 113 I=1,K
DS=D(I,5) $515.38C0
AS=D{I,8)*0.3048D0
TE=C(1,7)*0.5555556D0
113 WBITE (J¥RITE,102) I,TIEE(I),DS,D(I,6),TK,AS
WRITE (JURITE,104)
WRITE (JWRITE,118)

114 PORMAT (63,°% ,19%,°1%, 19K, 1%, 19X,%1°,191,°1°,191,%¢*,/,61,°%", 8
1, 10BDATS POINT.SI,*|',7X,4HTIINE,BX," |*,51,8HALTITUDE,6X,"1*,3X, 124
1¥EBT. ACCEL.,58X,%|*,2X,1WHELFY. DEFLECT.,3X,**%, /,6K,***, 19,6

1201
1202
1203
1208
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1238
1235
1236
1237
1238
1239
1240
1241
1242
1243
1204
1245
1216
1207
1248
1249
1250
1251
1252
1253
1258
1255
1256
1257
1258
1259
1260

1X,6A({SECS), 7X,%])*,5%,8H (RETERS) ,6X,%|°,4X,10H (8/SECee2) ,51,%1°,31,
19H (BACIANS) ,6X,%99,/,6X,°0° 19K, 24, 19X,%}*, 19K, %f*,19X,%1*,19X,°*
10,/7,6X,0%1,99 (*=*),"*")
DC 115 I=1,K
HS=C (I,9)*0.3048D0
VAS=C(I,10)*0.3G48D0
WRITE (JWRITE,106) I,TIBE(I),HS,VAS,D(I,11)

115 CCETINUE
WRITE (JWRITE,108)

Cees ENACT POURIER ANALYSIS AND PFILTERING ROUTINE

116 CALL SEC2(X,JJJJ,NUH,LSP,ITEST,S)

117 IF (IERR.NE.O0) WRITE (JWRITE,118)

118 FORNAY {1X,////.15K,°0SER ERROR***CONSULT USER INSTRUCTIONS*$+TO ¥
1EXT CATA SET, IF ANY',////)
IFr {(IERE.XE.0.0B.ITEST.NE.O0) GG TO 120

119 COWIIROCE

120 KJ=K3e1

Csss CHECK PCR PBESENCE CP ADDITIONAL DATA SETS
IP ((K3-1) .EQ.ESETS) GO T0 5
IF (KJ.LE.NSETS) GO TO 3

Cess TEGEPINATE PROGBAM EXECUTION

121 WRITE (JWBRITE,122)
122 PORNAT (1X,////015X,S6HINPUT PARAMETER MS:ZTS IS PROBABLY SPECIPFILED
1 INCCERECILY.,////)

Ce*s TEBNINATE PLOT RODTINES
123 IP (JELCT.NE.Q) CALL FICS51Z2¢0.0,0.0)
STOP
ZXD

SOUBBOUTINE SEC2(X,JP,NUN,LSE,ITEST,S)

Cees
Cene

SUBSCUTINE SEC2 IS A SUBROUTINE THAT PERPORNS FUURIER ANALYSIS AND
ATTENPTS T2 BAKE THE CATA BCFE COMPATIBLE

IAPLICIT REAL®S {A-H,0-2)

DIMENSICN TEG(21) ,IR(6) ,DY (4SC),DX (450) ,AX (450),FX(450) ,DV{8S0),HD
1(850) ,H {859) , IFS(11),IPRC(9),LP{14) ,8C (11),55(450,11) ,LSP (9) ,TST (4
150, 16)

CCHNCN TITLE(20),D(450,11) ,TINE (450),4 (100),B(100),F1(350),F2 (850)
1,73 (350) P8 {850) , FS (450) , 6 (450) , P7 (450) ,E8 (450) ,TT,RHO,PL,G,IKS,N
1ETBIC,JB¥AD,JURITE, JPUNCH, TEER

CCNNCH /CABRY/¥11(850),F12(850)

CONBCM ,TESP1/ST {450,4) ,PAR (6) ,PSL,TSL, IPAR

CCHMON /TENP2/79(45C) ,F10(450) ,F13(450) ,F14 (450) ,AP (6} ,¥(6)

ccaEOx ,BCA/IRS (10,6)

DATS TRG/.9DC,5.0D0,10.000, 15.000,20.000,25.0D0,30,0D0,35.0D0,40.C
100,45.0£0,50.000,55.000,60.0L0,65,000,70.000, 75. 000, 82.0D0,85.000,
190.CL¢,95.900,1CC.0D0/, XS/ 15/,81/3/

sses CHECK OF BYPASS
IP (JP.GT.1) GC TO 10

on n0no

BEAC (JBFAD,1) (IFS{I),I=1,11)
1 POSEAT (1111)

n

AL
AL
AL
aL
AL
AL
AL
AL

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
127
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
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a
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Csso

0

Cees
10

Cors
Ceer
cres
Cese
Cees
Coee
Cees
Ccoes

Coee

Cess

REAL (JBEAD,2) (IPRC(X),I=1,9).XAX,FACY,PAC2,DSPS

POREAT (317,1X,3L15.0)

CHECE PCR INPUT ERRCR

IP (IERC(1) .WE.C.ANC.IPRC(2).2Q.2) GO TO b%

BEAC (JBEAD,I; (IR(I).I=1,14)
FOERAT (141I7)

REAC (JREAD,8) (EC(D),I=1,11)
POBXAT (1115)

REAC (JREAD,S) (AP(I),¥(I),I=1,6,
POENAT (2D20.0)

XUSX=UTN=1

IF(WURX,.2Q.0) NOUAX=1

DO € J=1,NUE3

BEAC (JREAD,6) (IR(I),I=1,6)
PORBAT (611)

D0 7 J3=1,6
IRS {J,39) =IR(JJ)
CONTINGE

CHECK PCR ZERO C3 NEAS-ZERO A PRIORI VALUZ

oCc § I=1,6

IP (CABS(AP{I)).L1T.1.CD-10)AF(I)=1,0D-10

CCNTINOE

ACJTST 70 OCC NOKBER CF PCINIS
IF (({K/2)%2).EC.K) F=K=1
K1=K

TT=TINE (K} -TINE()
DEFINE NEW ARRAYS

DC 11 I=1,K

DEFINE WEIGHT
P1(1)=D{I, 1}

DEFINE FITCH ANGLE
P2(I)=D (1,2)

DERINZ PITCR RATE
F3(I)=D1(I,3)

DEFINE AIRSPEEL

P8 (I)=D (I,Y%)

DEFINE CENSITY
P5(1)=D(1,5)

DEFINE ANGLE OF ATTACK
26 (1)=D(I,6)

DEFINE TEMPERATURE
F7{I)=D (1,7}

DEFISE IONGITUDINAL ACCELERATION
£8(1)=C{1,8)
AX(I)=D(I,8)

DEPINE ALTITUDZ

P1C (I)=D(L,9)

Cess
Coeo
Coee

1
Cees

12
Cere

13
(2133

Cers

Cess

1

*®

15
1€
1

-

[N}
w

Coee

INITIALIZE ALTITUDE RATE
£11{1)=€,0D0

DEFINZ VERTICAL ACCILERATION
713(I)=D(I, 10)

DEPINF ELEVATOR (OR STABILATICR) DEFLECTION

P18 (I)=C(I,11)
CONTINDE
STCFE INITIAL DATA ECR ELCTTING

IF (IERC({%) sNE.O.OR.JP.¥E.1) GO TO 13

DC 12 1=1,K
Do 12 J=1,11
$S(1,3)=D(I,J)

CHECKX PCR OVERALL FCURIER SERIES AMNALYSIS

Ir (IPRC(4).5E.0) GO 10 92
CONFUTE TEIMINATION HARNONICS
M= (ISNC(1)) /2

n2= (3*NC(2) ) /2

M= (3I*NC(I) ) /2

4= (30NC(4) ) /2
BS=(3I*NC(S)) /2

me= (3*NC(6)) /2

n7=(3¢NC (7)) /2

n8= (I*NC(8)) /2

MS= (39NC(9)) /2

M10= (3*NC (10)) /2

M= (I¢KC (1)) /2

CHECK YCR INCCRRECT INPUT

TF ((((IFS{1) .EQ. 0. ANC.H1,LE,0).O0B. ((IPS(2)+2Q.0.AND.82.LE.0).0RB. {
1TPS (3) o ECo 0 ANC. 3. LE.0))) . CFo ( ((LFS (4)-EQ.0.AND .24 .LE,0) .OR. (IPS(
15) o EC.O . AND.N5.LE.0)) s OH, { {IES (6) . EQ. 00 AND. M6, LE.U) «OR. (IPS(7) .2Q.
10.ASC.N7.LE.C)))) -OR. { ({ (LFS(H) «EQ.0.AND.88.LE.G) OB, {IFS{9).2Q.0.
IAND.BS.1E.0)) 4 CB. ({IPS(10). EQ.0. AND. 816, LE.O) « OB4 (LIPS (11) .EQ.O.AND

1.M11.LE.0))))) GO TC 126
CONEUTE DEVIATICNS FOR TINE HISTORIES

TD=TINE (K)=TINE(T)

pC 23 I=1,K
TX=1IBE(I)-TINE (1)

IF (IFS{1).NE.C) GO TO 14

FI1{I)=D{I,1)-(D(1, 1)0|D(K 1)-D(1,1))/TD*1&)

IF (1FS(2).8E.(0) GO TC

F2(1)=C(I,2)~(D{(1, Z)O(D(K 2)-D(1,2))/ID*TX)

I? (1FS(3).NE.0) GC TC

F3({I)=C({I,3)-(D(1. J)O(D(K 3)-D(1,3)) /TD*TX)

IF (IFS{4).NE.Q0) GC TC 17

ER (1)=D(I,4)- (D (1, n)o(n(n 4)-D (1,4)) /TD*TX)
10

IP (IFS(5).5E.0) GO

PS5 {I)=D(1,5)~(C(1, S)O(D(K,S) D(1,5)) /TD*1X)

IF (1FS(6).¥E.C) GO TO 19

F6(I)=D (1,6)=(D (1, 6)0(D(K,6) D(1,6))/TD*TX)
0 20

IP (IFS(7).NE.0) GO

FT(I)=D(1,7)-{L(Y, 7)0(D(l 7)-D(1,7))/TD*TX)

IF (IFS{9).ME.C) GO TC

210 (1) =D(1,9)~ (D (1, 9)o(n(x 9)-D(1,9)) /TD*1X)

IF (IFS(10) .NE.O0) GC TC 22

P13 (1)=D (I, 1C)-(D (1, 1c)o(n(x 10)-D (1, 10)) /TD*L Y

I? (IFS(11) .NE.C) GC TO

F14 (1) =C(1,31)=(D(1, 11)0(0(! 1N=D(1,11)} /TU*TA)

CCNTINUE
IP (LES(1).BE.0) GO TO 26

PERFCEM FOURIER AWNALYSIS ON WEIGHT TIMNE HISTORY



N
N

A1PI=AT+1
Ceee COAPUTE POUSIER SERIES CORFFICIENES
CALL EAFAP(F1,K,B1P1,8C(1))
Ceee REGENZRATE WEIGHT TIAE RISTCBY (SHMOOTHED)
X1=a(N)
DC 25 L=1,K
TI=TINE(L)~-TIRE(Y)
X2=C(1,1) ¢ (D (K, 1} ~D (1,1)) /TLOTX
13=(.000
oC 2% ¥a2,M1P1

E3=X3¢A (R)SLCOS (2% (N=1) SPISTIRE(L) /TT) ¢B (M) *DSIN (< (N-1) *PISTINE (L

n/11y
28 CCITINUE
45 P1(L)=X1eX2+13
é6 IP (IPS(2).9E.0) GO TC 29
PZRECEA FOURIER AWALYSIS OW PITCH ANGLE TINE HISTORY
H2E1=R2+1
CONEFUTE FOURIZR SERIES COEPFICIENTS
CALL FABAP(PZ,K,A2P1,¥C(2))
Ceee REIGEDERATE PITCH ANGLE TINE HISTORY (SAOOTHED)
T1=a ()
pC 28 L=1,K
TI=TINEZ(L)~-TINE(1)
X2=D(1,2) ¢ (D(K,2)=-D(1,2)) /TLOTX
x3=(.0D0
DO 27 w=2,M2E1
XI=X34A (N)SLCOS (2 (N=1) SPI*TINE (L) /TT) ¢B(N) *DSIN (2¢ (N~-1) sPI*TINS (L
1)/17)
27 COXTINDE
28 P2(L)=X1+X2013
29 I? {I7S(3).NE.0) GO TC 32
Cees PEIRFCRE POUBIER AWALYSIS OW PITCH RATE TIAE HISTORY
KIE1=83e1
Ce¢e COMEUTEZ POORIER SERIES COEFFICIBETS
CALL EARAP(F3,K,MIPY, NC(I))
Cése PREGENERATE PITCH BRATE TINE HISTORY (SHOOTHED)
X1=2(1)
DG 31 L=1,K
TI=TINE(L)-TINE(1)
X2=D(1,3) ¢(D(K,3)-D{1,3)) /TL*1X
X3=¢.0C0
DO 30 ¥=2,m3E1
XI3=X3¢A (A)*DCOS {2 (N-1) *PISTINE (L) /TT) ¢+B (N) *DSIN (2¢ (N~1) *PI*TIAE (L
0/t
30 CCNTIND2
31 PI(L)=X1eX2413
Cees [IETEGRATIEZ PITICH RATE TO OBTAIN PITCH ANGLE, IP DESIRED
PAI=FC(Y)
IF (IPRC(7).ME.0) CALL TRAP(K,TIME,P3,F2,PAl)
32 If (IFs (8).%E.0) GO TO 37
Cees PERICEA POURIER ANALYSIS OF AIRSPEED TIAEZ HISTORY
BAEV=RA 01
Cee¢e CCHNEUTE POURIZR SERIES COERPPICIENTS
CALL PARAP(PR,KX,B4P1,NC(4))
Csés QREGINEZRATE AIRSPEEZD TINE BISTIORY (SMOOTHED)
X1=a(1)
DO 34 L=1,K
TI=TIRE (L) -TINZ (1)
X2=C{1,4) ¢(D(K,%)=D(1,8)) /TD*IX
23:C.0D0

Cooe

35

36
Cees

37
Cese
Ceeo

Cese

38

39

&C
Cese

Coee

Cese

DO 33 §=2,84P1
I3=X3¢A (X) €DCOS (2# (2-1) SPTSTIME (L) /TT) ¢ B (¥) ®DSLN (2 (N=1)*PI*TINE (L

1)/11)
33 contInue
38 PA(L)=X1eX24X3

I? (IFRC(Y) .nE.C) GO TO 37

COSEUTE ACCELERATION (CERIVATIVE OF AIRSPEED) TIME HISTORY
ITV=(C(X,8)-D{1,4)) /TD

DC 36 L=1,K

10230.0C0

Do 35 X=1,Ma
ID2=XD2+2*N¢PI/TT* (~A (Ne1) *DSIK (20 N*PICTINE (L) /TT) +B (N +1) ¥DCOS (20X
1SPISTINY (L) /1T))

CONTINUE

¥8(L)=XL1exD2

CRECK FCR ACCELERATION-INPUI-OPTION COBPATIBILITY

IP (IFS{4).NE.0.AND.IPRC(1).2Q.0)IPRC(1)=1

IF (IFS({5).RE.0) GO TC &0

PERFCRN FOURIER ANALYSIS OW DENSITY TIEE HISTORY
BSP1=RS+1

CONEUTE POURIZR SERIES COEPPICIENTS

CALY EABAY(FS,K,MSP1,MC(5))

REGZNERATE CENSITY TINE HISTCRY (SMOOTHED)

X1=4 (1)

DC 35 Lst,K

TX=TIAE (L) -TINE(1)

X22D{1,%5) + (C(X,5) =D (1,5)) /TLeTX

23%0.CDC

DC 38 W=2,mS5p1t

X3=X3¢A (N)#LCOS (2% {N~1) *PISTINE (L) /TT) ¢B (¥) *DSIK (29 (¥~-1) $PI*TINE (L
N/11)

ccrTINn:

FS(L)=X1¢X20413

IP (IPS(6).¥E.0) GO TO &S

PERFCRA FOUBIER ANALYSIS ON ANGLE-OP~-ATTACK TINE BISTORY
HEP1=H6+1

CCHEUTE POURIER SERIES COEPPICIENTS

CALL EARAP(F6,K,H6P1,UC(6))

REGESZRATE ANGLE-OF-ATTACK TINE HISTORY (SMOOTHED)
X1=a(N)

DC &2 L=1,K

1

TI=TIAZ(L)-TIRE(1) .
X2=C{1,6)+(D(X,6)=D (1,6)) /TDeTX

x3=€.0D0

DO 41 W=2,86F1

X3=X341 (W) $LCOS (2 (W-1) *PISTINE (L) /TT) +B(N) $DSIN (2¢ (N~1) SPISTINE (L
) /1T

41 CONTINDE

82

Cese

1

F6(L)=X1¢X2+X3

I? (IPRC(3).NE.0) GC 10 &S

CCEEUTE ANGLI-OF-ATTACK RATE TIAR HISTORY

ID1=(D(K,6)~D{1,6))/TD

DO 48 L=1,K

XD2=0.000

DO 83 N=1,86

XD2=XD2 424X *PT/TT# (=1 (N+1) #DSIN (28 N#PISTINE (L) /TT) #B (Ne 1) $DCOS (2%X
SPIOIIRE(L) /1T))

43 CONTINUE
44 PO(L)=XD1eXD2

IF (IPS(56).2Q.0.AND.IPRC(3).20Q.0) GO TO &7



el

a5
L13

IPRC (N =1
IP (IPS(6).RE.0) WRITE (JWRITE,46)

FORMAT (1!,////,15!,9CHIIRIIIG <> ANGLE~OP-ATTACK RATE WAS CONPUTE

1D USING UNSECCTHEC B¥GLE-OF-ATTACK TIBE HISTORY,////)

.7
Cese

Cess

Cese

L 1]

LL]
Cose

€0

-

Coes

cees

Ceee

55

56

57

CALL FNI{K,F6,TINE,?9,DY,1,35,8I)

IF (IFS(7).KE.0) GO 7O SO

PERFCEN PCUSIER ANALYSIS CW TEEPERATURE TISZ HISTORI
BTP1=RT ¢1

COMEDIZ POURIER SERIES CORPFICLENTS

CALL PARAY(F7,K,X7P1,3C(7))

EEGENERATE TESFIRATURE TINE HISTORY (SEOOTHZD)
It=a(1)

DC &9 L=1,K

TX=TINE (L)-TIRE(])
X220(1,7) ¢ (D(X,7) =D {1,7)) /TD*IX

x3=0.000

pC 46 W=2,n7P1

IJ'IJOIll)'DCOS(Z‘(l-‘)'PI'!I!!(L]/TT)OB(I)‘DSII(2‘('-1)‘PI'TXH3(L

1) /11)
CONTINDE
F7({1)=X1eX2+13

PEIRFCRN FOURIZR ARALYSIS CW LOKGITODINAL ACCELEZATION TINE HISTORY

LLX=0

GC 1C 53

1ir (IPRC(?).II.0.0D.IPIC(Z).62.2) GO TO 60
IF lXElC(Z).IB.O.IID.!PIC(1).!2.0)XPRC(1)=O

CCEAVEST LONGITODINAL ACCELERATION INTO ¢COMPATIBLE® ACCELERATION

DO 52 JJ=1,K

D(JJ,B)-(I!(JJ)-G‘DSII(PZ(JJ))OXAX‘PJ(JJ)‘IJ(JJ)l/DCOS(PG(JJ))OPﬂ\
s

133) ¢ (29 (33) =23 (33) ) * {DSIN (¥ 6 (3J)) /DCOS(E6{33)) )
I? (IPRC(8).EC.0) GC TO S2

DY (JJ)=C(3J3,8)

D (33,8) =AX(3J)

CORTINOE

IF (IPRC(8) .NE.0) GC TO 53

I? (IERC(2).2Q.1) GO 10 60

CONEUTE DEVIATIONS FOR LONGITUDINAL ACCELERATION
D0 S& Is1,K

TI=TINE(I)-TINE(1)
'l(ll‘D(I.B)'(D(1c8)’(D(Kna)'nll.ﬂ)llfn‘fll
nBP1=n8 1

COMPOTE FOURIER SERIES COEFFICIENTS

CALL PABAP(FX,K,N8P1,3C(8))

SEGEZNERATE ACCELERATION TINE HISTORY (SBOOTHED)
21=2 (1)

DO $6 L=1,X

TX=1IKE (L) -TINZ(1)
x2=C(1,8)+ (0 (X,8) =D (1,8))/TDeIX

x3=C.CDC

DO S5 W=2,%8P1

lJ-!BQI(l)'BCDS(Z‘(I")’PI‘!!!!(L)/!T'OB(I)‘DSII(2'('-‘)'PX‘TIHE(L

H/1n

CONTINUE

DY (L) *X14X24X3

1P (L1X.2Q.0)ST(L,8)=DY{L)
CONTINOE

1P (11X.¥E.0) GO TO 57
LLx=1

G0 10 51

00 59 33=1,K

S8

Cees
60

€1

62
63

(1]
€5

€6
Cees

Ccose

Cese

67

Cess

68
Ceee

69

70
"

72

73

Cove

Ir (IPRC(8) .2Q.0) GO 10 S8

{JJ,8) =DY(JJ)

DY (3J) =DT (3)

GO 10 59

D (3J,8) =DY(3J)

CONTINTE

ARBANGE POR CORRECT LISTING

IP (IPRC(2) .EQ.0.ANE, IPEC (1}.¥E.0) GO TO 61
GC 10 63

DC 62 JJ=1,K

78 (JJ) =0 (3J,8)

D (33,8) =AX(JJ)

1?7 (IPRC(1).%E.O0.AND.IPBC(2).EQ.2) GO TO 64
GC 1C 66

VEITE (JWRITE,65)

PORNAT (1X,///.53,°THE VALUES OF IPRC(1) AND IPRC(2) ARE ¥OT CONPA

11IBLE. RETURNING TC NEXT DATA SET, IF ANI.',///)
IERE=1

RETOEN

IP (I2S{(9).NE.0) GO TC 71

PERPCER POURIER ANALYSIS ON ALTITUDE TINE HISTORY
n9P1=n9+1

CONPUTE FOURIER SPRIES COEFPICIENTS

CALL PARAP(P10,K,H9E1,3C(9))

EPGENZRATE ALTITODE TINE HISTORY (SHOOTEED)
T1=A(1)

DO 68 La1,K

TI=TIAE(L)-TINE(Y)
x2=011,9) ¢ (D {K,9) =D (1,9)) /TLeTX

23=0,0D0

DO 67 W=2,89F1

XJ=X3OI(l)‘ECOS(Z‘(I-1)'PI‘TX!B(L)/TT)OB(I)‘DSII(2‘(!-‘)‘?!‘1!!!(&

10/11)

CONTINDE

P10 (L)=X1¢X2¢X)

ADJUST CENSITY TC BE CONPATIBLE WITH ALTITUDE

1r (XIS(5).!!.0)!5(l)iBﬂO‘(1.0D0-6.86D-06‘F10(u )**4.26D0

CCN1INUE

CONPUTE DERIVATIVE OF ALTITUDE TIAR HISTORY
XD 1= (D (K, 9) =D {1,9)) /TD

pC 76 L=1,K

1D3=0.0L0

102=C.CD0

DG €9 ®=1,M9

AD2=XD2424N€PT/TT* (~A (Re1) €CSIN(2*M*PISTINE(L) /TT) +B (H+1) *DCOS (284

1¢FI+TINE (L) /1IT)

) s
!DJ‘XDJ-(Z‘I‘!I/TT)“2'(!(!01)‘DCOS(2‘I‘PI‘TIIE(L)/!T)OB(I‘I)‘DSII

1(2089PISTINE (L) /TT))
CCNTINUE

r12(1)=XD3

F11(L)=3D1eXD2

1P (IES(9).EC.0) GO TO 73
UR1TE (JVRITE,T2)

PORBAT (1X,////.15% ,86HUARNING => ALTITUDR DERIVATIVES

1U1EL USIKG UNSECOTHED ALTITULE TIAR HISTORY,////)
CALL FNI{K,F10,TINBE,F11,P12,2,¥5,¥1}

Ir (IPRC(8).ZQ.0) GC 10 83

1P (IPRC(8) .GE.2) GC TO 80

WERE conp

USING NESNION-BRAEASOMN METHCD, PIND COMPATIBLE ANGLE OF ATTACK

LCH1=0



vec

DG 78 L=1,K

1TR=C

ALP*P6 (1)

XPT=GOF 11 (L) /28 (L) ¢78 (L)

XP2=GODSQRT (1.0C0- (F11 (1) /2N (L)) #%2) ¢ (F& (L) #212(Ly-F11 (L) *28 (L)) /(

178 (1) *DSQRT {1,000~ (F11(1) /PN (L) )*e2))

"

s
%

n
18
79

Cone
&0

1 ANGLE CP AT1ACK, THE RCUTINE WISHED TO SZEX CONPLZX ROOTS,I3,7d
1 T18ES.,//)

GO 10 8)

TIND COEPATIELE DERIVATIVE OF PLIGHT-PATH ANGLE

Do 81 L=1,

€1 DY (L)=(AX(L)-GO®OSIN (P2(L)) *XAX®P3 (L) *23 (L) ~F8 (L) *DCOS (P6(L))) /(P& (
1I) SLSIN{P6{L)}))

Coee

cesse
€2

Cese

LK)
Cesse

w

€6
Cees

Cese

Cese

ITR=I1R+1
PE=AX(L)-IP1#DCCS (ALP) ~-XP2*LSIN (ALP) +XAX*F3 (L) *F3(L)
PUP=XF18DSIN (ALP)=XP2¢DCOS (ALP)
PEPE=XP19DCCS (ALE) +XP28CSIN (ALP)

RAC= (FNE/FNEP) ¢ (FUR/PUPP) -2.0D0¢ (FN/FUPP)

ALE1=1LP

I? (AD.11.0.0D0) GO TO 76

IF ((PNPSFNPP).L7.0.0C0) GO 10 75
AIE=ALP-FNP/PNPP4DSCRT (FAL)

G0 10 77

ALP=ALP-PEP/PNPE-DSCHT (RAL)

GO 10 77

ALP=ALP-FYP/FRPP

LCETsLCNT#1

GO 10 78

I? {(DADS{ALP1-AIP).1T.1.0D-15.08.ITR.EQ.20) GO IO 78
GO 10 78

6 (1)=A1P

IP (LCNT.NE.Q) WRITE (JURITE,79) LCNT

FCEEAT (13,//,181,108Hs** COUEING WEWTOM-RAPHSON TO FIND CORPATIBLE

GO=22(1)-76 (1)
INTEGRATE DERIVATIVY OF PLIGHT-PATH ANGLE

CALL 1RAP(K,TINE,DY,DX,CO)

COREUTE ALTITOCE BATE

DG £2 1s1,K

AD (L) =PA(L) *DSIN (DX (L))

HO=210(1)

INTEGRATE ALTITODE BATE

CALL TRAP(X,TINE,HD,H,HO)

Ir (IPRC(9).2Q.0) GC TO 86

FINE AW INEBTIAL-CONPATIBLE ALTITUDE AND DENSLITY
HO=F10(1)

DO €8 L=1,K

CALL SECM(L,X,XAX)

DE (L) =PN (L) *DSTN(F2(L)-P6 (L))

CALL IRAP(K,TINE,DX,DY,EO)

DO €5 L=1,K

P10 (L)=FACT1®F10 (L) +PAC2#DY (L)

#5 (L) =RBEO® (1.0LC-6, E6D-64F1C (L)) ##4,26D0

CALL PNI(X,P10,TINE,F11,212,2,35,0I)

IP (IP5(10).¥2.0) GC TO 89

PERFORR FOURIZR ANALYSIS ON VERTICAL ACCELERATION
S10E1=01001

COMEUTE POURIZR SERIES CORPFICIENTS

CALL FABAP(P13,K, N10P1,HC(10))

REGENIRATE VERTICAL ACCELERATION TIME HISTORY (SMOOTHED,
X1=4(1}

390
391
392
393
394
395
396
397
398
399

401
402
403
404.
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
20
421
422

424
425
426
427
428
429
430

432
433
434
435
436
437
438
439
440
441
842
443
Q44
445
4u6
447
“u8
4a9

DO €8 L=1,K
TI=1INE (L} -TINE (1)
X2=L{1,10) ¢ (D(K,10)-D (1,10) ) /TDeTX
13=0.CD0
DC €7 B=2,110P1
113::301(:)tnc05(20(|-1|opxt!xuz(n)/rr)on(l)-osxl(zc(l-l)-pxtrxnx(L
) 711}
87 COXTINUE
€8 P13(1)=11e12¢13
89 IF (IFS{11).32.0) GO 70 92

Cees PERFOEM POORIZR ANALYSIS OB ELEVATOR (OR STABILATOR) DEFPLECTIOR

R11E1=n114)

Cees CORFUTE POJRIER SERIES CORPFICIBATS

CALL EARAF(P14,K,811P1,NC(11))

Cess PREGENERATE (ELEVATOR/STABILATOR) DEFLECTION TINL HISTORY(SNOOTHED)

X1sa (1)
DO §1 L=1,K
TX=1INE (L) -TINE(Y)
X2=C {1,11)+{D{K,11)=D(1,11) ) /TD*TX
X3=0.000
D0 SO B=2,¥11P1
‘;J;;JOA(l)'tCOS(Z‘(I-!)‘P!‘TIHE(L)/TT)'B(I)ODSII(2‘(!-1)°PI‘TI!!(L
/1%)
90 COBIINOE
91 FIN{L)=X1sX24X]

Cese WBITE INPUT PABANETERS

92 IF (JE.NE.1) GO TO 96
WRITE (JVRITE,93) IFS(1),8C(1),IP(1),1P(13),1ES(2),HC(2),IP(2),IP(
114) ,TFS {3) ,NC {3) ,IP (3),IPRC (1) ,1FS (4) ,NC (4) ,LP (4} ,IPRC(2) ,IPS(5) , ¥
1€ {5) , 1P (5) ,1FRC(3) , IFS (6) ,NC (6) , P (6) ,IPRC (¥) » IPS(7) ,NC (7} ,IP (7} ,I
1PRC (5) , IPS (8) ,KC (8) ,1F (8) ,LEEC (6) ,I2S(9),NC(I) +LP(9) ,IPRC(T) ,IPS (1
10) ,8C(10) , 1P (10), IPRC (8) , TIPS (11) ,NC(11) ,IP (11) ,I PRC (9) ,XAX,IP (12)

§3 FCREAT (1H10////o028,481°_0) /7,020, %1% 864,71%,/,42X, %17, 10X, 26HSE
ICTION 2 INPUT PARANETERS,TOX,0 | %,/ 82K, ¢ |0 ubZ st (¢, / 42K, %) %) 2%, 01
18S (1) =* 12, 2X,°KC(1)=*,13,2X,°IP(1) =*,12,24, ' IP(13)=*,12,3X,*|%,/,
2K, 17 20, VTIPS (2) =4, 12,2K, 'NC (2) ="', 13, 2K, * 1P (2) = 4 12,21, ¢ T (18) =¢
1,12,3K,%1%, /7,428, 1*,2X,* IPS(3) =*,12,2X,%NC(3) = ,13,2X,°IP(3) =*, X2
1,2X,°IPRC (1) =°,12,2X,° (%, /,82X,% %, 2K, IFS (4) =*, 12,21, NC [3) =* I3,
12X, TP (8) =* ,12,2X,  IPRC(2) =*,12,4X,% |*,/, 42X, |* ,2X,* I#S(5) =4, 12,2
X, 0C(S)=*,13,2X,* IP(5)=*, 12,21,  IPRC (3) =*,12,2K,%4%,/,42%,°%%,2X,
1°IPS(6)=*,12,2X, NC (6)=",13,2X, *1P(6)*",12,2k, *IPRC (4) =*,12,2X,*|*
1,/042%,%1%,2X,T¢S{7)=*,12,2X,*NC(7) =*,13,2X,° IP (7) =4 ,12,2X,  IPRC(
15)=9,12,2%,%1%,/,425,71%,2X,*IFS (8) =* ,12,2X,% HC(B) =* ,13,2X, "IP (8) =
19,12,2X, IPRC(6)=4,12,2X,%*,/,42X,* 1%, 2X,* IFS (9)=*,102,2X, *NC (9) =*
1,13,2X,0IP {9) =% ,12,2X,*IPRC (1) =%, 12,2, 1*,/, 02K ,* | * , 2X, * IFS (10) =*
1,11,2X,°0C{10) =*,12,2X,*1P(10)=*,I1,2X,* IPRC(8)=*,12,2X,*|*,/,42X,
1900, 28, TIPS (11) =%, 11,2X,°NC (V1) =*,12,2X,*IP{13)=*, 11,21,  IPRC(9) =*
1,12,21,°0%,/,828,% 1%, 28,  SAX=0 , P12.48,6 X, 1P (12)=°,11,14X,%1%,/, 36X
166(°_%) ,%1,U6X,%1°,6(°_*),/.364,%14,58X,%|*)
VRITE (JWRITE,98) (I,AP(I},1,9(I),I=1,6)

9% PORNAT (36X,%0 AP(4,11,%)=%,12019.12,7X,°4 (% ,11,%) =", 1PD19.12,% |¢
1)
WRITE (JVRITZ,95)

95 FOREAT (36X,°1°%,58("_"),'1%,///)

Ce¢s TENECRABILY STORE VALUZS

$6 DO 97 I=1,K
TST(I,1)=D(1,1}
TST(1,2)=02(1)
TST(1,3)=0(1,2)
TST(I1,4)=23(I)



1%

7

Coes

Cose

98
59
Cens

Ceee

1¢0

Cesse
Cees
Ceee
Cose
Coes

101

102
Cosse

TST(1,5)=D(1,3)

TST (1,6)=ST(I,))

TST (I,7)=F8 {I)

TST (1,8)=ST(I,2)

1ST(I,9)=r6 (I)

TST (1,10) =D (1,6)

TST (I,11)=P9(I)

TST (X,12)=ST(L,1)

TST(I,13)=ST{I,8)

TST (I,10) =28 (I)

TST(L,15)=P13({])

TST (1,16) =P 18 (1)

CONIINUE

KS=X

ENACT NININIZATIOR TECHNICUE

CALL SEC3(K,XAX,LSP,ITEST,JE,N0H,DSPS)
IP (JERE.NE.0) RETURN

IF (ITEST.EQ.0) GO 10 99

REDEFINE PARANMITERS TO PREVIOUS ITERATIONS
K=KS$

DO 98 I=1,K

D(X,1)=IST(I,1)

P2({I)=TST(L,2)

D{(I,2)=151(1,3)

PI(I)=TST(I,4)

D(I,3)=1ST(I,5)

D(I,4)=1ST(I,6)

P4 (1) =TST(I,T)

D(X,5)=151(1,8)

P6(I)=T5T(1,9)

p(I,6)=1ST(I,10)

79 (X) *TST(I,11)

D(,8)=1ST(I,13)

¥8 (1) =TST(I,18)

P13(I)=2151T(1,15)

P18 (I)=1ST({1,16)

CONTINTE

IF (JP.ME.NUN.ARD.ITEST.EQ.0) GC TO 125
CHECK FCR OVERALL PLOT CPTICH

IF (IPRC(S).BE.C) GC TO 102

RESET WITH INITIAL DATA

DG 100 I=1,K

pe 1¢0 J=1,11

DL ,J}=5sS(1,J)

JKS=1

DEFINE FLOT CODES

WABNING~-- WARNING-- THE FOLLCWING PLOTTING ROUTINES KAY NOT BE
COAFATIELE FOR CTHER INSTALLATIONS. TdE USER SHOULD INQUIRE AT
HIS INSTALLATICN®'S ERCGHANNING SERVICES.
CONFUTE TINE SPACING FOR PLCITING
TORG=TIBE (K)

pc 101 1=2,21

IP (TORG.GT.TRG(I-1).AND.TORG.LB.TRG(I))TPTP=TRG (I)
IF (TICRG.EQ.TRG(I-1)) IPTP=TEG(I-1)
COMTINDE

CALI FLCTIT(K,1P1P,1P,IFS,IERC,H,HD,XAX)
I? (NETBIC.NE,0) GO TO 113

WRITE RESCLTS IN ENGLISH UXIIS

®RITE (JWBITE,10))

103 PORBAT (11,7//,31%,68("%%),/,31X,%®%,66X,%*%,/,31X,***,8X,48HPOURIE s2

1R SERIEZS ANALYSIS WITH SPECIFIED HARMOMICS,10X,**',/,31X,**',661,*
199, /,310,60 (%), /,6X,121(°®%) ,/,6X,%82 ,19X,%| *,19%,%|*,19X,*|1°*, 19
1X,71°,19%,%|°,19X,%%¢,/,6X,°%* 4, 104DATA POINT, 5K, *1°,7X,8HTINE,8
1x,%|*,6X,6BNPIGHT,7X,*1*,3X,11HPITCH ANGLE,5K,*}*,4X, 10HPITCH RATE
1,5%,%1%,5X, BEAIRSPRED,6X,°%%,/, 61,0 ¢ 19,9} ¢ ,6X,6H (SECS) ,7X,"1%,7
1X,5H (LBF) ,7X,°1°,4X,9H (EADIANS) ,6X,*§°, 3%, 12H (RALLAN/SEC) ,BX,*{*,5
1, 8H(PT/SEC) ,6X,°%%,/,6X,%¢%,19X,°)°,19X,94°,19X,%4°%,19X,°4°,191,*
10,19X,°%%,/,6,°%°,119(*="),% ")

DO 1C4 I=1,K

108 WRITE (Jintt! 105) I,TINE(X),PY(L),P2(L),P3(I),Pe(l)

1C5 FCREAT (6X,°%°,7X,I3,9X,%1%,6X,F7.3,6X,%1,5K, #9.3,5X,"1°,3X,Pt1.7
l.sx,'|~,ax,rlo.7,sx.'|',sx,re.l,sx,'tu
WRITE (JWRITE, 1C6)

106 POBEAT (6X,'*°,119X,°%%,/,6X,121(*%%),/,6X,°%° ,19X,°)*,19K,%¢°,19X
1,00, 19%,%1°,19%,%1°,19X,°%%,/,6X,°¢*,4X,106DATA POINT,5X,* 1%, 71,4
1ETIME,8%,°*,5%, 7THDENSITY, 7X,%|*,2X,15HANGLE OF ATTACK,2K,*)?,81,1
11HTENEEEATORE,9X,% | *,3X,12HACCELERATION, 4X,*®% ,/,0K,°*?,19X,°%)*,6X
1,68 (SECS) ,72,%1°,3X,120(SLUG/FT#*3) ,4X,*|*,4X, 9 (RADIANS) ,6X,°1°,6
1X,7H (DEG~R) ,6X,%|°, UX, 11H (FI/SEC**2) ,4X, e 64,0%%, 192,917,191,
119K, 1%, 19K, 1%, 19K, 1%, 19X, %%, /,6X,'%°,119(*~") ,'+%)

DC 17 1=1,X

107 WRITE (JWRITE,108) I,TIAZ(I),ES(I),P6(X),F7(i),.FB(I)

108 PORMAT (6X,°%%,7X,X3,5X,%1°,6X,P7.3,6X,%(",4X,F10.8,5%,%]°,8X,P11.,
17,8X,%19,7X,F6.2,6X,%1° ,4X,¥9.5,6X,%%)

WRITE {JWBITE,109)

1C9 PORNAT (6X,%*°,119X,°%%,/,61,121(%*%))
WRITE (JWRITE,110)

110 PORMAT (6I,%%%,12X,°1%,10X,°0°%,22X,°1°,10X,°|°,15X,%(°,13X,"|°%,18%
1,%)0,16X,%%%,/,6X,°¢% ,1X,10HLATA POINT, 1X,%|*, 3X MHTINE,3X,*|*,1X,
120HANGLE-OP-ATTACK BATE,1X,*)¢,1X,8HALTITUDE, 1X,*}*, 1X, 1IHALTITUDE
1 BATE,1X,%|%,1X, 11HALT, ACCEL.,1X,*]',1X,12dVERT. ACCEL.,1X,%}%,1X
1,14HEIEV. DEFLECT.,1X,%%%,/,6X,%*", 12X, |*,2X, 6H {SECS),2X,*}*,5X,1
128 (EADIAN/SEC) ,5X,° ¢, 3X,4H (PT) ,3X,% 1%, 4X,8H(FT/SEC) , Ik, * §*,1X,118
1(PT/SECO*2) 12,9, 2X, 1IH(P1/SEC**2) ,1X,%)* ,3X,9H(RADIANS) UK, %",
1/,6X,%%%,12X,% % ,10X,°09,22X,%1°,10K,° ) °,15K,° }* ,13X,% |, 14X, °,1
16X,°%9,/,6%,°0%,119(*=0) 08¢
WRITE (JWBITE,111) (I,TINE(X),F9(I),F10(I),PI1(I),P32(X),P13(1),T1
14 (1), 1=1,K1)

111 PORMAT (6X,°®°,8X,I4,8X,°|%,2X,P6.3,2X,°1°,5X,212.9,51,°(°,1X,P8.2
:,lx,'|',ux,r7.2,ux,'|',2x,ra.2,3x,'|',ux,r6.2.ux,'|-,ux,ra.s,tx,'-
9
WRITE (JYRITE,112)

112 POBBAT (6X,°%% ,12X,91¢,10X,4°,22X,%}¢,10X,%1°¢,15K,°}°,13x,°°,18%
1,010, 160,00%,/,6%,121(%%"))

GO 1C 120

Cess WRITE BESULIS IN ST UNIIS

113 WRITE (JWEITE,114)

114 PORRAT (1X,//,31X,68("*%) ,/,31X,%%3,661,°%%,/,31X,¢",6X,48EPOURIE
1R SEBIES ANALYSIS WITH SPECIFIED HARMONICS,1 "',/,er.'o',ssx,
150, ,,313,63(*%°) «/46L, 121000%) ,/, 60,098, 198,04 ¥, 19X, 71, 198,71 ¢,
12,999,191, 47,191, % ',4X,10DATA POINT,S5K,%4°,7X, nutxnx a
1%,04°,6X, snuzxcnt,1x, 19,31, 11HPITCH ANGLE,5X, %) *,4X, 10HPITCE RATE
1,5%,%]1% 5T, BHATESPEED,6X,°%%,/,6X,%¢¢,19K,%} ', 6X,0H (SECS) ,7K,"|*,5
1X,9B(NEWTONS) ,5%,% 1% ,4X,9H (RADIANS) ,6%,%1%,3X, 12H(RADIAN/SEC) ,8X,*
119, 6X,TH(B/SEC) ,6X,9%%,/,6X,°%0 19X,V *,19K,%} %, 19X,° [*,19K,]*,19
1X,901,151," 9%, /,6X,%¢%,119(*~*) ,*+*)

D0 115 I=1,K
WS=F1(I)*8.5888250
¥S=Fa (1)*0.3C48D0
115 VRI1E (JWRITE,105) I,TINE(I),¥S,F2(I),F3(I),VS




9¢e

16

117

118

119

Csse
120

AF3]
122

WRITE (JWRITE, 116)

PCREAT (6X,°¢° ,119X,%9°,/,6X,121(°®%),/,6X,%¢¢
1,%1%,191,° 19,1, 198,%0%,/,0X,°%%, 4X,104DAT4 POINT,51,%1%,7X,4
THTINE,B8X,°%|*,SX, THDENSITY 7Y, )%, 2X, VSHAKGLE UF ATTACK,2X,*§',8X,1
11HTEMBEEATYRE, ax #*19,3X, 12HACCELLBATION, M(.'O',/,al,"',|9l,'l' 6x
1,6H({SECS) , 7!,'|',ux 9H(lc/n'~3),ox.'|'.ul 95 (KAUIAXS) ,6X,°§*,6X,TH
T(DEG-I),6!,'[',ﬂX,10H(H/SEC'OZ).Sl."'./.bx,"',19‘,'l',19x,'|',19
1K, 10, 19,0 1%, 19K,0 1%, 15,200, /,0K,% 9%, 113(*="), te)

pC 117 I=21,K

DS=PS(I)*515,38L0

AS=EB (1)*0.3048C0

TEK=P7(I)*0.55555560C

WRITE (JWRITEZ,108) I,TINE(I),DS,P6(I),TK,AS

¥8ITZ (JVRITE,109)

WRITE (JVWRITE,119)

PCREAT (6X,°®¢,12X,°)*,10X,%1°,22%,%1*,10X,%|*,15X,°|°,13K,%1*, 14X
1,°0°,162,%¢%,/,6%,°0% ,1X, 10RCATA POINT,1X,*|%, 3%, 4HTINE,IX,*[*, 1],
120BANGLE-OP-ATTACK RATE,1X,%|%,1X,8HALTITUDE, VX, *|*,1X, 1IHALTITTIDE
1 RATE,1X,"|*, X, 11HALT. ACCEL.,14,*}°, 1X,12HVERT. ACCEL., 1K, %1%, X
1, T4HELEY, DEFLECT., 1X,*%%,/,6X,%¢¢,12X,*|?,2X, bl (SECS) ,2X,*|*,51,1
12H (FACIAR/SEC) , X, |*, 1X,8H (RETERS) ,1X,%|* , 44, 7H (B/SEC) ,4X,%|*,2X,
110H (#/SEC®*2) ,1X,*1°,2X,108 (8/SeC*®2) ,2X,%|*,3X, 9H(BADIANS) ,8K, " **
To/e6X, 8% J 12,0 |* o 1CK,*1%0220,%%,10X,%) %, 154, %, 134, |*,141,%)°,
116X,%90,/,61,00¢,3119(°-),%¢¢)

00 119 I=1,X

HS=2F10(I) *7.304€D0

HDS=F11(X)*0.3048D0

HDES=P12(I)*0.3C48DC

A2S=F13(I)*0.304800

YBITE (JVBITE,111) 1,TIRE(I),F9(I),HS,HDS,HDDS,A2S, P14 (T)

VRITE (JVRITE,112)

PUNCH RESOLTS

IP (IPRC(6) .NE.0} GO T0 125

WRITE (JPUNCH,121) (TITLE(I),I=1,20)

PORAAT (20AN4)

WRITE (JPUNCH,122) K,S,BHO,G,TT

FORNAT (I10,48D15.8)

DO 123 1=1,K

19K, 910, 19X, 090, 19x

123 WRITE (JPUNCH,128) TIBE(I), E1(I),P2(X),F3(X),Fu(I),P5(L),F6(I),F7(
1[),!8(1),!9(!),!10(1),!11(!).Pl)(Il,ll)(I),Pl“(I)
24

Ceese
125

Ceese
126
127

Cees

FORMAT ({3D25.16/3D25.16/3D2%.16/3D25.16/3D25.16)

TBASSPEF T0 BEAL NEW LATA CF TO CONTINUE LOUP

BETUSN

ERBRCR ICENTIPICATION EESSAGE

WBITE (JVRITE,127)

PCREAT (1X,///,20X,°THE SPECIFICATION OF IP3(?) TO NC(?) IS INCORR
12CT. PFOCREDING WITH MEXT CATA SET, IF ANY.!}

IERE=1

REIURN

END

SUBBCUTINZ PLOTIT (X,TPTX,IP,IFS,IPRC,H,HD,XAX)
SUBSCUTINE PLOTIT PIOIS TINE HISTORIES
IBPLICIT BEAL*S (A-H,0-2)

DINFWSION KD {S),IP(14),IPS(11),IPRC(9),H (450), HD (450)
COMBCN TITLE(20),D(45C,11) ,TINE (450) ,A (100),B (100) ,1 (450) ,P2(85C)

NOVMEWN -

Coes

Cens

Cess

Cess

1, F3(450), ¥4 (850), rs(!50),!61'50),r7(l50),r8(u50),rr REO,PL,G,JKS,H PL

12TRIC,JREAD,JWRITE, JPUNCH,IE
CCABCN /CARRY/P11(450), PIZ(ISO)

CCNACN /TEYP1/ST(850,4) (PAR(E),PSL,TSL,IPAR

CORNCN ,TENE2/P9(450) ,210 {850) , 213 (450) ,F14(850) ,AP (6) , ¥ (6)
BEAL®S IRD(4,85C),XD(%,450) ,Y8D (4,450) ,¥D(4,450) ,IPTP

TPTE=TPIX
DO 1 I=1,K
IF (I. 1: 5)!9(!)-o|
0o 13
1 IRD(J, x)sxxzz(n
PLOT WEIGHT TINE HISTCRY
IP (IP(1).NE.0) GO 10 @
W=t
IF (IFS({1).EQ.0)N=2
DG 2 I=1,K
YRD(1,1)=D(I,1)
IP (IPS({1).EQ.0) YRD(2,T)=P1(I)
I? (METEIC.NE.O0)YRD (1,I)=YRC(1,I)*4.4482D0,/100.00D0
2 IF (METRIC.NE.0.AND.IFS(1).EQ.0)YRD(2,I)=YRD (2,I)%4.4482D0/100,0D0
CALL EICSIZ(10.0,10.0)
IF (WETRIC.NE.0) GO TO 3
CALL GRAPP(8.0,0.0,TPTP,5.0,1,*TINE (SECS)_*,XRD,XD,5.5,3500.0,8500
1,0,25C.0,1,* NEIGHT (1BF) _*,YBE,YD,1,4,N,450,K, K,K,K,0,KD,1,* _*)
GO IC 4
3 CALL GRAPP(8.0,0,0,1P1P,S5.0,1, ¢ TINE (SECS) _*,XRD, ID, 5.5, 150.0,200.0
1,5.Co 1, *WEIGHT (NEKTCNS) /100 * o YED, YD, 1, 8,5, 450 K, KoK, Ky 0,KD, 150
ﬂ
PLCT PITCR ANGLE TINE HISTCEY
& IP (IP(2).NE.0) GO 10 6
N=1

IF (IFS{2).EQ.O0)N=2
pC S I=1,K
YRD (1,1)=D{I,2)*100.0D0
IF {IFS(2).2Q.0) YRD{2,1)=F2(1)*100.0D0
CALL EICSIZ(10.0,10.0)
CALL GEAPF(6.0,0.0,7P1P,5.0,1,*TINE (SECS)_*,X&D,XD,5.5,-80.0,80.0,
110.0,1, *PITCE AKGLE (RADIAX) X 100_°*,YaD,ID,1,4,¥,450,K,K,X,K,0,KD,
11,0 _v)
PLOT PITCH RATE TINE HISTORY
I¥ (IP(3).%E.0) GO 10 8
=
IP (IP5(3).EQ.0)N=2
pc 7 I=1,K
YRD (1,I)=D(I,3) #100.0D0
IF (IPS(3).EC.0)TRD {2,1)=F3 (I) *100.0D0
CALL PICSIZ{10.0,10.0)
CALL GRAFF(8.0,0.0,1P1P,5.0,9, TIRE(SECS) _*,XRD,XD,5.5,-80.0,80,0,
110.0,1,*PITCE RATE (RAD/SEC) X 100_°*,YRD,YD,1,4,¥,450,K,X,K,K,0,KD,
1,* -,
PLOTAIRSPEED TIME EISTCRY ’
8 IF (IP(R).NE.0) GO T0 11
-

w

-,

~

| ]
IF (IFS (8).2Q.0)N=2
DO 9 I=1,K
YRD (1,1)=D(I,8)
IF (IS (8) .EQ.C) YRD (2,X)=P4 (I)
17 (METRIC.BE.0)YBD (1,I)=YREC (1, I)%0.3048D0
9 IP (AYTRIC.NE.0.AND.IFS (4) +EQ.0) YRD (2,1) =TRD(2,I)*0.3088D0



Lez

CALL PICSIZ(10.0,10.0)
IF (METBIC.NE.0) GO TO 10

CALL GRIPP(B.O.U.O,TPlP,S-O.','TXHB(SICS)_',XRD,XD,S.S,B0.0,]OO.U,
120.0.l.'IXRSP!Er(PT/SEC)_',IRD,XD,I.“.I.MSO,K,K,K,K,O,Kb,l,' g |

GC 1IC 1%

10 ca1t GRAPF(8.0,0.0,7P1P,5.0,1, *TINE (SECS) _*, L&D, XD, 5.5,25.0,100.0,

15.0,l,'IIFSPE!E(H/S!C)_',YIB,XD,I,“.H.HSO,K.K,K,K,O,lD.I,' =Y
Cess PLCT DENSITY TIEEZ HISTORY
11 I? (IP{S).%E.0) GO T0 14
r=1

JF (IFS({S).EC.0)N=2
DO 12 I=1,X
YRD {1,I)=D{I,5)+10000.0C0
IF (IFS{5).EQ.C)YRD(2,I)=F5(1)*10000.6D0
1? (PETRIC,NE.O)YRD(Y,I)=0(I,5)*5153.800
12 17 (RETRIC. NE.Q.AND.I?S(S).EC.0)¥YRD(Z,I)=F5(I) *5153.8D0
CALL PICSIZ(10.(,10.0)
IPF (METEIC.NE.Q0) GO TO 13

CaLt GRIPI(B.0,0.0,TP!P,S.O,1.'TIHE(SECS)_',(BD,XD,5.5,1“.0,2l-0,2
1.0,1,'DENSITY(SIUG/ET#*3) X 1000C_*,YRD,YV,1,4,4,450,K,X,X,X,C,XD,

11,0 _9)
GO TIC 14

13 CaLL Gll!!IB.0,0.0.!?1?,5.0.1,’2!KS(S£CS)_‘,XRD,XD.S.S,G.O.lZ.O,‘.
10,1,°CENSITY(KG/Nsed) X 10_*,YBD,YD,1,4,¥,450,K, K, K,K,0,KD,1,* _*)

Ce#s PLOT ANGLE CF ATIACK TINE HISTORY

14 I? (IP(6).¥E.0) GO 10 16

¥=1 :

IF (IPS(6).2C.0)N=2
DO 15 I=1,K
YRD (1,1)=D(1,6)#100.000
IF (IFS{6).¥Q.0)YRD (2,T)=F6 (I} *100.0D0
CALL FICSIZ({10.0,10.C)

7]

CALL GRI!P(8.0,0.0,IPTP,S.C,1,‘TIBE(SECS)_',XRD,XD,S.5,-5.0,“0.0,5
1.0,1,*A¥GLE OF ATTACK(RAD) X 100_°,YRD,¥D,1,4, 4,450 ,K,X,K,X,0,KD,1

1,0 _¢

Cé¢s* PLOT TEMPERATURE TINE HISTORY
16 IP (IF(7).¥E.0) GO 10 19

=1

IF (175(7).EQ.0)W=2

DC 17 I=1,X

YBD(1,I)=D(I,7)

IF (IFS(7).EC.0)YRD{2,I)=P7(I) -

IF (METRIC.XE.0)YRD{1,I)=5,0/9.0%(D(I,7)-491.72D0) +271.18D0

17 17 (H!T!IC.I!.O.IID.IES(7).EQ.O)XBD(Z,I)=5.0/9.0.(!7(1)-ﬂ9|.72)027

13.18c0
CALL FICS1Z(10.(,10.0)
IF (RETRIC.NE.D) GO TC 18

CALL GRarr(8.0,0.0,TP1P,5.0,1, TINE(SECS)_*,XRD,XD,5.5,450.0,550.0
‘,25.6,1,'T!HP!RITUI!(D!G-B)_',YID,lD,l.G,l,“SG,K.K.K.K,O,KD,l,' -
L

GO TIC 19

18 CaALL GRAPF(8.C,0.0,7TP1P,5.C,1,*TINE (SECS)_*,XkD,XD,5.5,250.0,300.0
1,10.0,1,° TENFERATURE (CEG~K) _*,YRD,YD,1,4,¥,450 K ,K,K,K,0,KD,1,? -

)
Cés¢ PLOT ACCELERATICN TINE HISTCRY
19 IF (IP{€).XE.0) GO TO 22
w=2
I? (IPS(8).EQ.0)¥=)
DO 2C I=1,K
YRD (1,1)=D(I,8)

YHD(Z,I)*P!(I)'DCOS(PG(I))'ll(l)‘(!](!)-l9(l))‘DSII(PG(I))'XI!'PJ(
II)"ZOG‘DS!I(PZ(!))OPll(“)‘IG‘DCOS(Pl(!))0!“(1)‘(PJ(I)-P9(I))‘DCDS
1(!6(1))-PB(I)‘DSII(!G(I)))‘IPIB'G.DCOS(IZ(I))‘IJ(I)-PIR(S)'(P“(I)'

1(P3{I)-¥9(I)) *DCCS (F6 (X)) -FB (L) *DSIN(F6 (I}))
If (175(8).2G.C)YRE (3,I)=F8 (I)
1P (8ETBIC.EQ.C) GO TO 20
YROD (1,1)=YR0(1,1) #0.304800
YRL (2,1)=YRC(2,1)*0.3C4€D0
IF (I2S{8).EC.0) YRD(3,1)=YREL (3,1)*0.304800
20 CONTINUE
CALL PICSIZ(10.0,10.0)
I? (EETFIC.WE.0) GO TC 21
CALL GRAPF(8.0,0.0,1P1P,S.0,1,*TIAE (SECS)_*,X&D, XD,5.5,-32.0,32.0,
14.0,1,° ACCELERATICN (FT/SEC*#2) _*,YRD,YD, 1,4, 4,450,K,K,K,K,0,KD, 1,4
1_9
GC 10 232
21 CALL GRA?P(8.0,0.0,TP1P,5.0,1, TINE(SECS) _*,XED, XD, 5.5,~10.0, 10.0,
11.0,1,* ACCELERATION (H/SEC#%Z) _*,YRD,YD,1,5,¥,450,K,K,K,K,0,KD, 1, *
1 .

.')
Ce*¢ PLCT ANGLE-OP~ATTACK RATE TIEE HISTORY

22 IF {IP(S).¥E.0) GO TO 24
N=%

DO 23 I=1,K

23 YRD(1,I)=F9(I)*100,0D0
CALL FICSIZ(16.0,10.0)
CALL GRAPF(8.0,0.0,TP1P,5.0,1, *TINK (SECS)_*,XRD, X,5.5,~10.0,10.0,
11.0,1, ANGLE-CP~ATTACK EATE(BAD/SEC) X 100_¢,YRD,YD,1,4,5,450,K,K,
1K,K,C,KDB,1,° _v)

C#es PLOT ALIITUDE TINE BISTCRY

24 IF (IP(10).NE.C) GO TO 30
Nx1
IF ((IFS(9) NE.O.AND. ((IPRC (8) .GE.2.AND.IPEC(9).EQ.0) .OR. (IPRC (8).
JLT.2.ANE.IPRC(9) .NE.0))) .OB+ (IFS(9) o EQe 0.AND. (IPEC (3) - LT, 2. AND. IPR
1C (9) .EQ.0)) ) N=2
IF ({IF5(9) .NE.0.A¥D. {IPRC(8).GE.2.AND.IPRC(9) NE.0)) .OR. (IPS (9) oE
10.0.AKD, (IPEC(8) . GE.2. AND. IPFC(9) . EQ.0) } . OH. (LES (5) « £0.0.AND, (IPRC
1(8) L1T.2. ANL.IPRC(9) . NE.C)} ) N2]
IP (IPS(9).2Q.0.AND.(IPRC(8).GE.2.AND.IPRC (9).HE.0}) N=04
DC 28 Is1,K
Y8D ({1,1)=D(I,9)/100€. 000
IP (IPS{9).EC.0) GO TO 25
IF (IPRC(8) .GP.2) YRD(2,I) =H (I) /1000.0D0
IF (IERC(8).GE.2.ABC. IPRC(9).BE.0) YRD(3,I)=F10 (I},/1000.0D0
IP (IFRC(8).LT.2) YRD(2,I)=F10(I}/1000.0D0
GO 1C 26
25 YRD(2,T)=F10(1),/1000.000
IP (IPRC(8) .GE.2) YREC(3,I) =H (I) /10C0.0D0
1P (IPRC(8) .GE.2,AND.IPRC(9).NE.0)YRD(4,I)=F10 (I)/1000.0D0
IT (IPRC(E) .IT.2.ANC.IPRC(9).NE.0) YRD(3,1)=P10 (1) /1000.0D0
26 IF (METBIC.2Q.0) GO TC 28
DO 27 J=1,N
27 YBD(J,I)=YRD(J,I)*0.3C48D0% 10,000
28 CCNTINUE
CALL PICSIZ(10.C,10.0)
IP (RZTBIC.3E.0) GO TO 29
CALL GRAPP(8.0,0.0,TP1P,5.0,1, *TINE(SECS) _*,X2D, XU, 5.5,2.0, 16.0, 1.
10,1.'A§:xrucz(rt)/1coc_-.van.xn,1,n,l,uso,x,x,x,x.o.xn.t,- ")
GO 1C
29 CALL GRAPP(8.0,0.0,TPTP,5.0,1, *TINE (SECS) _*,X2D, XD,5.5,0.0,48.0, 2.
10,1, *ALTITUCE(N) /100 _*,YRD,¥D,1,4,H,450,K,K,& ,KoGy KD, 1, -9



8¢¢

Cees PLCT ALTITUDE BATE TIRE HISTORY

10 IF (IP(11).NE.C) GO TO I
N=2
IF (IPRC(8) .GE.2)N=2
DO ‘32 I21,%
TAD (1, 1)=211 (1)
YREC(Z,1)=-Pu (1) *E8(I) /G
IP (IPRC(8).GE.2) YRL(3,))=HD(I)
IF (RETFIC.EQ.0) GO TC 32
oo 31 J=1,1

31 TRD(J,1) =YRC (J, 1) #0.3048D0

32 CONTINUE
CALL PICSIZ{10.0,10.0)
IF (PETBIC.NE.Q) GO TO 33
CALL GBEAPF(8.0,0.0,1P1P,5.0,1, *TIAL (SECS) _*,X&D, XD,5.5,-100.0,10.
10, 10.0, 1, *ALTITULE RATE(FI/SEC) _*,YRD,YD,1,4,8,45 ,K,K,K,X,0,KD, 1,
1 _Y
GG 10 34

33 CALL GRAPZ(8.0,C.C,TPTP,5.C, 1, *TINE(SECS)_*,%&D, XD,5.5,-3+4.0,34.9,
14.0,1, ALTITODE BATE(M/SEC) _*,YBU, YD, 1,4, 8,450 ,K,8,K,K,9,KD,1," _*
1

Cese PLOT ALTITUDE ACCELERATION TINE HISTORY
38 P (IP(12).5E.0) GO TG 37
DO 35 Ia1,K
YROD (1,1)=F12(1)
25 1P (RETSFIC.HE.O)YRD (1,1)=F12(I)*0.3048D0
CALL PICSIZ(10.C,10.0)
IP (RETRIC.NE.0) GC TC 36
CALL GRAPF(8.0,0.0,TP1P,5.0,1, TINE (SECS)_*,X4D, XD,5.5,-100.0,100.
10,10.0,1, 'ALTITOCE ACCELERATICH (FT/SEC#®2) _* ,1Ku,Y0,1,3,1,850,K,K,
1K, K,0,KC,,' _*)
6C 10 37
36 CALL GRAFF(8.0,0.0,TPIP,5.0,9, *TLAE (SECS) _*,XRD, Xb,5.5,-34.0,34.0,
14.0,1, ALTITUCE ACCELERATION (B/SEC*#2) _*,¥RD,¥D, 1,4,1,450,K,K, K, K,
10,K0,1,° _*
Cees PLOT VERTICAL ACCELERATICN TIAE HISTORY
17 IF (IP(13).NE.0) GO TO 41
n=1
IF (IFS{10) LEQ.C)N=2
DC 39 I=1,X
TR (1, 1)=C(1,10)
IF (IFS(10) +EQ.C) YRD(2,1) =P 13(I)
IF (METRIC.EQ.0) GC TO 39
DO 18 J=1,H
38 YRD(J,I)=YRE (J,T) #0.3048DO
39 CONTINUE
CALL PICSIZ{10.0,10.0)
IP (NETFIC.NE.O) GO TC 40
CALL GRAFP(8.0,C.G,TP1P,5.0,1, TIAE (SECS) _*,XBD, XD,5.5,-32.0,32.0,
14.0,1,° VERTICAL ACCELERATICH (FT/SEC#92) _*,1RD, YD, 1,4,¥,850,K,K,K,K
1,0,KC,1,* _*)
GC 1C 41
40 CALL GRAPP(8.0,0.0,1P1P,5.0,1, TINE(SECS)_*,4RD, X0,5.5,-10.0,10.0,
12,0,1,° VESTICAL ACCELEBATION (H/SEC*$2) _%,YED, YD, 1,4,4,450,K,K,K, K,
10,KC,1,° _*)
Cese ELCT ELEVATOR CEFLECTION TIPEZ HISTORY
%1 IF (IP{14).NE.0) GO TO 43
x=1
IF (IPS{11) .EQ.C)W=2
DO 42 I=1,K

138
139
190
191
192
193
194
195
196
197
198
199
200
201
202
203
<204
295
206
207
203
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
2N
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

YRD (1,1)=D(I,11)*#10C.0D0

42 IF (IFS(11) .EC.C) YRD(2,1) =P 18(I)*100.CDO

CALL FICSIZ(10.0,10.C)

CALL GRAPP(8.0,C.0,1P1P,5.0,1,*TINE (SECS)_*,XRD,XD,5.5,-25.0,25.0,
15.0,1, ELEYATCE CEFIECTICN(FAD) X 100_°*,Y&D,¥D,1,4,¥,450,%,K,K,K,0
1,K0,%,* _*)

43 RETUBN

Core
Cess
Ceses

Coes

Csee

Cees

Ceee

-

2
3

&

END

SUBFCCTINE SEC3(K,XAX,LSP,I1EST,LL,NUN,DSPS)

SUBRCUTINE SEC3 CALCULATES EIASES, PHASE SHIFT, A¥D OTHER DATA-
CEPENCENT PARANETERS BY A NININIZATION TECHNIQUE AND ADJUSTS THE
DATA ACCORDINGLY

IAPLICIT REAL®8(A-H,0-2)

DINENSICN WK(2,6) ,DWK(2),P(3),X(3),TOL(2),TVK(21),T4I(6),TUKK(36),
RR{21),CC(6) ,C{6,6) ,Z(6,1),WE(100),LSP(9),RX(36) ,Dd (2),COST(10),5D
1V (1€, €) LACOST (10) ,SL(45C, 3) ,SE (450, 1) ,SWK (250) ,DEPA (450) , PPA1 (450)
1,PEA2(450) ,5A{450,2)

COMNCR TITLE(20),D(45C,11),TINE (450),4(100),B(100),F1(450),P2(450)
1,73 (45C), 74 (850) ,E5 (450) , 26 (850) ,F7 (450) ,F3 (450) ,IT,RHO,PL,G,JKS,"
1ETAIC,JREAD,INRITE, JPUBCH,IERR

COMNCN /CARRY/F11(450),712(u%0)

CCHNCN ,TENE1/ST(450,4) ,PAR (6) (PSL,TSL, IPAR

CCHNCM /TEMP2/F9 (45C) ,F10 (450) (P13 (450) ,F14(450) ,AR(6) ,4(6)
INTEGER LISEN(10),/0,1,1,1,1,1,1,1,1,1/

INITIALIZE PARARETEES

LCN1=C

LEAX=1C

I11ES1=0

e 19=1,6

I? (I1.GT.1) ¥ (J)=¥ (J)/2.0D0

PAR (J) =0.0D0

X1=PSI/1SL

X2=F10(1)

CCHEUTE FLIGHT PATH ANGLE AND ITS DERIVATIVE
00 2 1=1,K

PEA1(L) =DARSIN (F11(L) /PR (L))

PEA2 (L) =FPAT(L)

DFPA(L) x(F3 (L) #F12 (L) =F11(L) *P8(L) ) /(P4 (L) *DSQRT (1.0D0= (B11{L} /P4 (
1L)) 042) *P4 (1))

CCHTINUE

PINC COBPATIELE ANGLE OF ATIACK

aCN1=0

D0 9 L=1,K

SOLYE PCR ANGLE OF ATTACK BY NEWTON RAPHSON
1TB=C

ALP=E6 (1)

IP1=GSDSIN(FPA2(L)) +PB (1)
XE2=GODCOS(FEA2(L)) ¢DERA (L) 9F4 (L)

ITR=ITR+1

PN=ST (L,8) -XP14DCOS (ALP) ~XP2¢DSIN (ALP) ¢ XAX®F3 (L) *F3 (L)
£XP=XP1ODSIN (ALF) -XF20LCCS (ALF)

FHPE=XP 190COS (ALP) ¢ XP24DSTN (ALP)

BAD= (EKP/FNEE) ¢ (FNP/FHPP)~2.0D0% (PN/FHPP)
ALE1=ALE

248
249
250
251
252
253
254
255

VRN NE WN e



6¢C

IP (5AD.L%.0.0C0) GC 10 6
IP ((PUESPXFP).LT.0.0L0) GO TO S
ALF=ALP-PNP/FIPPODSCRT (RAC)

6o 1C 7

ALPsALP-FRP/FNPP-DSCRT (RAD)

60 10 7

ALE=ALP-PNP/FNPP

ACHT=ACHTS1

Go 10 8

IF (CABS{ALP1-ALP).LT.1.0D-15.08.ITR.EQ.20) GU TO 8
GO 10 &

Cees PORR COIFPICIZNTS POR LEASY SQUARES

SB(L,1) =A1P

SL(L,1)=1.0C0

SL{l,2) *P6(L)

SL(1,)) =P6 (L) *76 (1)

9 CCETINUE
IP (ACN1.WE.0) WRITE (JWRITE,10) ACNT

10 FORRAT (1X,//,18X,1088 DURING NEWTON-RAPHSON TO PIND CONPATIBLE
1 ABGLE CP ATTACK, TBE RCUTIME WISHED TO SEEK COMPLEX ROOTS,I3,7H
1 TIRES.,//)

Ceee¢ PRACT LZAST SQUARES TO DETZRNINE BIAS AND GAIN ESTINATES
CALl LLSQAR(SL,S®,K,3,1,850,850,15,S¥K, IER,JURITH
WRITE (JWRITE,11) (SR(L,1),I=1,3)

11 FORBAT (31X,°CORPATIBILITY ESTINATES OF THE §  BIAS = ', 1PD23.15,
/31X, EIAS AND GAINS BETWEEN INPUT  §-> PIKST-ORDER GAIN = ¢,1p
1023.15,/,312,°A0D CALCUIATEC ANGLE OF ATTACK | SECOND-ORDER GAIN
1= *,1P023.15,/)

Cees CORFUTE AN ANGLE-OP-ATTACK VARIAWCE INDICATION AND MEW VALUZS QP
Cee® ARGIE CF ATIACR
AYI=0.0D0
DO 12 1=1,K
SA(L, 1) *P6(1)
CLD=¥6 (1) .
Y6 (L) =SR{1, 1) ¢P6 (L) * (SR (2,1) +F6 (L) *SR(3, 1))
12 AYI=AVIo(F6{L)-OLD) *(P6(L)~C1D)
WRITE (J¥RITE,13) AVI
13 PORAAT {31X,°AIGLE-OF-ATTACK YARIANCE INDICATION = ¢,1PD13.6,//)
Ceee CHICK FOR INCREASING FIT ERACR
IP (1CE1.2Q.0)SAVI=AYI
IP (1C¥1.EQ.C) GO TO 16
IF (AVI.GT.SATI) GO TO 18
SAVI=AVI
GO T0 16
Cess JRESET ARGLE OF ATTACK AND FIIGHI PATH ANGLE
18 DO 15 Lat,x
P6(L)=Sa(L, 1)
IP (ICVI.EQ.1)SA(L,2)=7PAT(I)
15 PPAZ (L) =SA(L,2)
Cees BEGIE LOOP FOR SUCCESSIVE NININIZATIONS
16 CALL PNI(K,¥6,TIRE,F9,P14,1,15,3)
Cees TEST FOB MAXINIA ITIRATICYN CF INCREASING FIT ERROR
IF (LCNT.GEZ.10.0R.AVI.GI.SAVI) GO TO 19
ODETEFFINE CCRPATIBILIITY ESTIEATES FOR FPLIGHT PATH ANGLE
XGAN=F2 (1)-26 (1)
IP (LCET.NE.O) IGAN=FPA2(1)
Ceee FCRE THE COEPPICIENYS PCR LEAST SQUARES
SR{1,1) =1GAR
SL11,1)=1,0C0
SL(1,2) =PPA2(Y)

* w

-~

Ceose

Coss

Cees

Coes

Cees

Cese

Cose
19

20
21

22
Coes

23
Cese

i
Ceee
25

26
Ceoss

Ceoes

SL(1,3) sPPA2(1) ¢s2
DO 17 L=2,K

INTEGFATE RATES POR PLIGHT EATH ANGLE
XGAN=F2 (L) ~F6 (L)

SR(L,1) =XGAE

SL{L,1)=1.000

SL(L,2) =PPA2(L)

SL{L,3) =PPAZ (L) ®e2

ENACT LEAST SQUARES PCR BIAS AND GAINS

CALL LLSQAR(SL,SR,X,3,1,450,850,15,54K,IEx, JURITE)
CONPUTE THE FITTED SLIGET PAT# ANGLE

DO 18 L=1,K

IF (LCNT.GT.C)SA(L,2)=FFA2(I)

PPAZ (L) =SR(1,1) ¢SR(2, 1) *PPAZ (L) +SR(3,1) SPPA2 (L)#*2
OBTAIN I1S CERIVATIVE

CALL FBI(K,FPA2,TINE,OFPA,F18,1,15,3)

RECGNEUTE COMPATIBLE ANGLE CF ATTACK

LCNT=1CNT+1

60 10 3

CCBEUTE WEW ALTITUDE AND STATIC PRESSURE

AX=X2

DG 21 L=1,K

IF (L.EQ.1) GO 10 2¢
HI=RX+0,SDO®(TIME(L)~TINE (L~1)) % (P4 (L) ®DSIN(FPA2 (L)) +P¥ (L-1) *DSIN(
1PPA2 (1~ 1)))

ST(L,2) *X1977(L) *(1.0D0~-6.L€D~6oHX) ¢*8,26DC
CONTINOE

IPAF=0. 000

DC &6 L=1,LEAX

IF (LL.EQ.NOR) GC TC 25

WRITE (JVRITE,22) LL,L

PORNAT (31X,'ITERATION®,T2,3X,fSUBITERATION',12, )
STOBF DELTA YALUES

DC 23 I=1,6

SDY (1,X)=PAR(I)

INITIALIZE BATRICES

DC 2% Jxp=1,21

RE (JXP) =0,0CC

IP (JXP.GI.6) GC TO 28

CC (JXP) =0.0L0

CCNTINDE

CONEUTE NATINUM PRESSURE AND ACCELERATION
INAX=DAPS (ST (1,2))

TAAX=DABS (ST (1,8))

DO 26 JIP=2,K

IF (CABS(ST(JXP,2)) .GT.XNAX) XBAX=DABS (ST (JXP,2))
IF (DABS(ST (JXP,8)).GT.THAX) YAAX=DABS (ST (JXP,&))
coNTINgE

CORFUTE WEIGHT PACTCRS

DU (1) =1,000/ (XNAX®XNAX)

0 (Z)=1.0D0/(YRAT®YRAT)

X (1) =0, 000

X (2) =0.CDO

X (3)=0.0D0

TOL (1) =C. 000

70L (2) =0.000

BEGIN COMPUTING PARANETERS PCB PARTIAL DERIVATIVE EVALUATIONS
DC 35 I=t,K

IA=FI(I)-P9 (1)

X5=22 (1)~P6 (I)



ove

X6=FI(I)*P3(I)
Y7=GoDSIN (P2 (I))
X8=GeDCOS (P2(1))
X9=F8({I)*DCAS (26 (I))
X10=¥8(T) ¢DSIN (F6 (1))
X11=F& (1) STREDSIN (26 (1))
X12=F8 (I) $X4eDCOS(?6(I))
X13=112-110

Cese CRECK FOR INITIAL POINT CALCULATION

IF (I.¥E.1) GO 10 2
X (1) =x2
1320.000
27 IP (I.EC.1) GO TO 29
X3= (P7(I)-F7(I-1)) / (TINE(I) -TINE(I=1))

Cess PIND ECINT-I0-PCINT INTEGRALS

P(1) =P8 (I)*DSIN{1S) 424 (I~ 1) *DSIN(P2 (I-1)-P6(I-1))
P (2) =P8 (I)*LCOS (X5) +P4 (I-1) *CCOS (P2(I-1)~£6 (L=1))

P{3)=F3 (X)*28 (I)*DCCS (XS)+PI(I-1) P4 (I~1)*DCOS (F2(I-1) =16 (X-1))

DC 28 J=1,3

28 X (J)=X(J)+0.5D0® (TINE(I)-TIKE (I~-1)) ¢F(J)

29 X14=1,0D0-6.86D-6% (X (1) +PAR (6) *X(2) ~XPAR*X(3))
T15=118943,26D0
IF (11.EQ.NUK) GO TO 30

Cé¢ss COBRFUTE PARTIAL DERIVATIVES

UK (1,1)=X6

¥K (37, 1) =0.000
WK {1,2)=ST(1,8)
¥K(2,2) =0.050
¥K(1,3) =17

¥K (2,3} =0.0D0
WK (1,8)=0.000
WK (2,4) =18+X13

WK (1,5) =X16P7 (1) $X15¢ ({29.2236D-6% (X (3) * (1.0D0~XPAR*X3/FT(I)))~X3eX

114/271(1))
WK (2,5) =-P3(I)*18
WK (1,6)=-29.2236D-6*X1¢27 (I} * (1.0D0-XPAR®X3/F7 (1}) *X15%X(2)
UK (2,6) =-x13

Cee¢s COMFUTE STATIC PRESSURE AND LONGITUDINAL ACCELERATION
30 DK (1) =X10P7(1)*(1.0DC-XPARSXI/PT(I))*X15%X14+PAR(1) $X64PAR (2) ST {

1I,8) +PAE(3) *17

DVK (2)=X9¢X11-XAXSX64XT¢PAR (4) * (X8¢X13) ~XPAR*X6*PI (1) -PAR(6)*X1]
Ces® COMFUTE PRESSURE ANC 1ONGITUDINAL ACCELEEATION DIPPERENCES

DUK(1)=ST(I,2) -LUK(T)
DVWK (2)=ST(L,%)-DWK(2)
IF (I1.EQ.%UX) GO TC 33

C*ss SUR BATHICES OF PARTIALS

Jp=0

STRI=0.0DO

00 32 JJ=1,6

D0 31 J=1,2

JP=JFe1

THK (JP) =WK{J,JJ) *DSCRT (D¥ (J))
31 STRI=STHISTEK (IP) *DUK (J) *DSCRT (D¥ (J) ]
32 T3 (IJ) =STWI

8s=0

CALL MATA(TEX,19KK,2,6,BS)

CALL MALD(RR,TWEK,6,6,1)

CALL MALD(CC,T¥J,6,1,0)

Cess SUR DIFPERENCES SQUARED

33 £o 3& J=1,2

3
35
Cese

36
37

3e

39 PORANAT (31X,*CCST PONCTION (J) = ', 1PD23.16,/,31X,9WITH:?,/,371,°S
1TATIC PEESSURE TOLEZRANCE = 9,1PD23.16,/,37X,°LONGITUDINAL ACCELERA

Cess

Ceesn
40

-

42

Coss

Cese

Coes

Cese

&3 FORBAT (38X,°1ST LINEAR ACCELERATION DEPENDEMCY DELTA= *,D13.6,/,3
18X,°2¥D LINEAR ACCELERATION DEPEXDENCY DELTA= *,D13.6,/,38X,%3RD L
1INEAF ACCELEBATION CEFEXDEWCY DELTA= *,013.6,/,38X,*PITCH ANGLE BI
1AS DELTA = *,D13.6,/,38X,°PBASE SHIPT DELTA = °,D13.6,/,38X,°PLIGH

Cose

44

4S PORNAT (82X,*UPLATED 1ST LINEAR ACCELEBATION DEPENDENCY= *,D13.6,/
1,82, 0FDATED 2XD LINEAY ACCELERATIONM DEPENDENCY= *,D13.6,/,821,°0
1PCATEC 38D LINEAR ACCELERATION DEPEMDENCY= ¢,D13.6,/,42X,°UPDATED
1PITCH ANGLE BIAS= °,D13.6,/,82X,°UPDATED PHASs SHIPT= *,D13.6,/,482

TOL (J) =TOL (J) +LUK (J) *DUK(J)

CONTINDE
COSEUIE COST PUBCTICH AND TCLEBANCES
PCF=0,0L0

IP (LI.EQ.NUN) GC TO 37

Do 36 J=1,6
PCE=PCPeN(J) ® (PAR(J)-AP (J)) #92/ (AP (J) *AP (J))

COST (L) =DW (1) ¢TOL (1) ¢D¥ {2) *TCL {2) ¢PCP

D0 38 I=1,2

TCL (I)=10L(1) /K

WBITE (JWRITE,39) COST(L), (ICL(I),I=1,2)

1TICH TCIEBANCE = ¢, 1P023.16,///)
CHECK PCR IBCRZASE IN CCST FUNCTION

IF (LL.EC.NO#) GO TC 56

IP (1.11.3) GO 1C A0

I (CCST (L) .GE.COST(L-1)) GC TO 47

ADJOST FATRICES FOR LEAST SCUARES SOLOTION
CALL NSTR(RR,RX,6,1,0)

JP=0

DO 42 3J3=1,6

DO &1 J=1,6

XPAC=1,0DO

IP (JJ.EQ.3) XPAC=1,00005D0

Jp=Jpel

IC=RX (JP)

IP (J.EC.JJ) ICSXC+2.0D08 (JJ)/ (AP(JJ) *AP (vJ)}
€ (J,JJ) =XCPIEAC

CONTINDE

2(3J3,1) =CC (JJ) 42,000+ (3J) & (AP (JJ) ~PAR(JJ) ) / (AR (IJ) *AP (33))
CCNTINDE

n=6

BECUCE MATRIX ORDER AS SPECIFIED BY USER
CALL RELUCE(C,Z,M,LI}

IF (M,EC.0) I1EST=1

IF (ITEST.NE.0) GO 70 56

ENACT LEAST SQOARES SCIUTICH

CALL LLSQAR(C,Z,8,8,1,6,6,15,uR,1ER, JURITE)
TEST POS PRROR

I? (IEB.EC.129)1ERR=1

IF (IERP.BE.C) RETURN

CALL BESET(Z,N)

WRITE SCLUTION YALURS

¥BITE (JWRITE,83) (Z(I,1),I=1,6)

17 PATH ABGLE CELTA= *,D13.6,/)
SO8 CILIAS

DC 44 J=1,6

PAR (J)=$DV(1,J) +2(J,1)

WRIT? (JURITE,4S) (PAR(I),I=1,6)

1X,*UPCATED YLIGET PATH ANGLE BIAS= *,D13.6,///)
IPAB=PAR(S)



Ive

46 CCETINDE
ACOST (LI) =CCST (1)
G0 10 49
Cese ADJUST COST PUNCTIION AND DELIAS
47 ACCST(L1)=CCST{L=1)
DO 48 J=1,6
48 PAR(J)=SDV(L-1,J)
Cess TEST FOS IRCREASE IN COST FPUBCTION
49 IP {L1.EQ.1) GC 10 50
IP (ACOST(LL).GE.ACCST{LL-1)}ITEST=1
S0 IP (ITEST.EQ.1.CR.LI.EC.NUM) GO TO SU
Cess WRITE EEST BESULIS
WRITE (JWRITE,S1) I,ACCST(LL)
51 FORRAT (36%,13ACF TRE ABCYE ,I2,44H ITERATIONS,

THE BBST COST PUNC

1TICW HAS BEEN,/,)6X,22HCHOSEN TO BE EQUAL TO +De3.16,16H, AND THE
1VALUES,/,36X,6 1HASSCCIATED SITH THIS COST PUNCFION (PHASE SHIFT VA
1L0Z 1S SUB-,/,361,62HJECT TC A MAGNITUDE AND SIGN RESTRICTION) WIL

1L BE USED 10 HCC-,/,36X,9HIFY DATA.,//7/)
DETEIENINE PHASE SHIFT

I? (PAR(S).GT.1.0D0)PAR(S) =1.0D0

IF (EAR(5).11.0.0D0) IFAG=0

IP (IPAB.2Q.0) GO TO 52

PAR (S) *DSPS®PAR{(S)

LP=EAE (5)

LEXsLPe1

xLp=1P

XLPIsLPX

IF ({PAG(S)-YLP).LT.0.500) TEAR=LP
IP ((XLPX-PAR(5)).LE.0.5D0) IPAR=LPX
PAR (5)=PAR(5) /DSPS

Cove

Cees
§2 KH=K-IPAR

DO 53 I=1,KA

K=K8

D(I,1)=P1(1)

IP {LSP(1).NE.O) F2{1) =P2(I+1IPAR)

P2(I)=F2(I) +PAR(¥)

D{1,2)=¥2(I)

IP (LSP(2).K¥E.0) E3(I)=P3(I+1PAR)

D{1,3)=F3 (1)

I?7 {LSP(3).R2.0)ST(I,))=ST(I+IPAR,3)

D(L,4)=ST(I,))

IP (LSP {3).NE.C) F4 (1) =P& (I+1IPAR)

I? (1SP(8).N¥Z.0)ST(I,2) =ST(I*IPAR,2)

D(I,5)=ST(I,2)

IF (LSP(5).¥E.0) P6 (1) =P6 (I+IPAR)

26 (I)=P6(I) ¢PAB (4) ~FAR(6)

D(I,€)=E6 (1)

IP (LSP(5).NE.C) P9 (I} =29 (X+IEAR)

I (1SP(6).%2.0)ST(I,1)=ST (I+IPAR,1)

D(X,7)=ST(I,1)

IP (1SP(7).NE.0)ST(I,8)=ST(I¢IPAR,H)

D(1,8)=ST (I,4)

IP (I1SP(7).BE.0)PB(I) =P8 (I¢IPAR)

IP (LSP(8).¥2.0) P13 (I)=F13(I+IPAR)

1P (LSP(9) .NE.C) F18 (I) =F18 (1+IPAS)

CHECK PCR REDEPINING INPOT STATIC PRESSURE

I? (ILLSPA(LL).EG.0) GC TO 53

Coee

ADJTST DATA VITH RESPECT TO DETERMINED DATA-DEPZNDENT PARASETERS

51(1,2)'SI(I.2)‘(PI!(!)‘l3(1)‘.2091l(2)‘ST(I,U]'PAR(J)‘G‘DSII(P2(l

mn

€3 CGNTIWDE
S4 IF (ITEST.NE.C.AND.N.NE.0) WRITE (JURITE, 55)
5 PORPAT (36X,S8HNO CCST FUNCTION HAS BEEN DETERMINED TO BE BETTIR T

1AW 1RE,/,3€X,S6HPREVICUS BEST COST FUNCTLION.
1S EAVE,/,36X,15HBEEN CONCLODED.,//}

S6 RETOERN

coss
Ccese

Cose

Coees

Cses

Cess

Ceee

Ccoee

-

END

SUBEOUTINE RECUCE(C,Z,M,LL)

SUBSGUTIXE REDUCE DECREASES THE OBDER OF A SYNNETRIC HATRIX
PLININATION OF THE I-TH ROW AND coLuan

INPLICIT REAL®8(A-H,0-2)
DIBRERSION C(G,S),1(6,1),Il(ﬁ),i(G,S).S(6.1)
ccancu ,ROW/IRS (10,6)

INITIALIZE EARANETERS
ne=n

DO 1 I=1,6

1R (1) =IRS (LL,T)

1J=0

=0

1920

DETEENINE PIRST ROW/CCLUMN ¥CT ELIAINATED
bc 2 I=1,M

IP (IR(I).NE.0)IJ=I

IF (IR(I).NE.0) GO 10 3

2 CCNTINDE

&

IF 10=0, USER SEECIFIED A NG MATRIX COMDITION
GO 1C 8

DEFINE HEW ELENERTS IN TERRS OF OLD ELEMENTS
DC € I=1,H

IF (IR(I).EC.0) GO T0 5

nE=gN+l

IE=1P¢1

Je=0

Do & J=13,8

IP (IB(J).2C.0) GO 10 &

Jp=JF*1

B(IF,JP)=C(I,J)

coNTINDE

S{IE, 1) =Z(I, M)

S CONTINUE

- o

«©

DEPINE UPDATED PLEAPRTS BY THE NEW ELEMEWTS
B=NE

Do 7 I=1,1

DO 6 J=1,8

C(1,3)%B(1,3)

CCNTINDE

z (1, H=S(L, 1)

CCY1INUE

BRETURN

SET CODE POR NO-BATRIX SPECIFICATION
n=0

RETURN

ENTFY BRESET(Z,0)

THEREFORE, ITERATIO

BY TRE

350 -
351
352
353
354

356

CONONE WN =



e

[
Cess
Cese
[

EBTHY BESET ACJUSTS THE SOLUTIION TO BE COMPATIBLE WITH THE
ORIGINAL BATRIX

u=0

asng

DO 9 I=1,8

$(1,1)=0.000

Ir (IB{I).2C.0) GO 10 9
NR=ENe)

S(I,)=2(28,1)

9 CORTINODR

DG 10 I=1,R

10 Z(1,1)=3(I,1)

c
cess
Cc

RETOSR
1144

SOBRCUTINE SHIFT(X,LSP,NSPTS)
SUBSCUTINE SHIFT ADJUSTS DATA POR PHASE SHIPT

ISPLICIT REAL®B (A-H,0-2)
DIBEXSICH LSE(9)

CONNCE TL{20),D (850,11),T (350) ,A (100),B (100) , 7 1(450) , P2 (450) ,P3 (85
10) ,AS{850), P (85C) ,PD (NSO) , PS (450) , PSD (450) ,TT, RHC,PI,G,JIP,H,JR,J¥,
138

L=t
KE=X-ESETS

DO 2 1=1,9

IF (1.61.7)1=2

1P (LSP(I).2Q.0) GO TC 2
DO t J=1,KA

1 D(I,IeL)=D (J+NSPTS,IeL)
2 CONTIRUE

[+
Cose
Cese
C

Ceso
Cees
Cees
coee
Ceee

K=g8
RETURN
Z¥D

SOBNOUTINE PARAY (ZNT,K,EP1,1C)

SUBICUTINEZ PARA? USES PARABOLIC INTEGRATION TO PCRM FOUBIER
SEBDIES CORZFFICIENTS

INPLICIT BEAL#8 (A-H,0-~2)
DINENSICN PET(K),AA(100),B8(100),X(3593),P(3593) ,XX(3593),Y(3593)

COBBCN TL{20),D(450,11) ,TH (850) ,A (100) ,B (100) , P1 (45C) ,F2(450) ,P3 (4
150) ,ASPD (850) , P {450) , PO (450) ,BS (450) , PSD(450) , TT,RHO, PI,G,IP,NC, IR

1,3¥,J8
REAL*S Y

THE DINENSION CP THE LABGE ARRAYS ARE DZTERNINED BY:
(1) 124504 (350-1) ¢ (NIP=1)

(2) N2=N1s (N1-1) s (KIP=1)

(3) ¥3=2¢ (N2-1)® (NIE=1) =----> N3=DINEXSION
INITIALIZE PARANETESS

Coee

cese

Ceee

Cesse

Csse

-

& w

w

W0=2,0D0¢PI /11
TOL»1.0C-10
kK=

oc 1 I=1,X
X(I)=18(1)
P(1)=FRT ()
Ku=gK

BEIGIN IBPROVENENT SCHENE
DO § JJK=1,3
KCHT= (KB=1) /2
L=1

1P=0

CETESAINE SLOPE DIPFERYBCES

DC & J=1,KCXT
R=((P(L)=P(Le1))/(X(L)=X(Le1))~(F(LeY) -2 (Le2)) /{X(L+1)-X(L¢2))) /(X
(L) =X (1L +2))

S={F(L) =P{L¢1)) /(X (L) =X (Le1))~ (X (L) ¢X(Le1))*R

T=P (L) ~X{L) ® (R*X (L) +5)

S122,0D0®R*X (L) +S

S2+2.0D0%ReX (L42) ¢S

IF (J.G1.1) GO 10 2

GC 10 3

IP (J.EG.2) ARSD=DABS(S1-5X)

IF (CABS (S1-5X).GT.TOL) IP=IPe1

IP (CABS(S1-5SX) .GT.ANSD)ANSD=DABS (S1-SX)

Sx=52

L=L¢2

IP (IP.¥E.0) GO 70 5

GC 10 1¢

USE NEWTON®S INTERPCLATICS FCRAULA TO COBPUTE ADDITIONAL POINTS
wip=1

DP=1.00-12

n=0

L=1

J=6

XX=X (L)

XXH=X (K)

2¢=C.0D0

BNl

DETEERINE ARGUNENT VALUZS

XX=IX+XC

IP (DABS(XI-XXH) .LT.DP) IX=XJE

IF (IX.GT.X1H) GO TC 7

IP (DABS(XX-X(L¢1)) .LT.DF) X=X (L+1)

IP (XX EQ.X(L+1) ANC.XX.LT.XXH)L=Le1

IF (DABS(XX-X (J-2)).LT.DP) XX=X (J-2)

IP (XX EQ.X(J-2) JANE.J.LT.K)J=Je1

CCHMEUTEZ THE NERTONIAN CCEPEICIENTS

AO=E (J-5)

Al= (P (J-0)}~F (I-5)) /(X (I-8) X (J-5))

A2% (F(3=) = (R0¢R1# (X (J=3) =X (3-5))) )/ ((X (J-3) =X (3-5) ) & (X (I-3) ~X (I-&
nn

A= (F(3-2)= (RO ¢A1# (X (J~2) =X (J~5) ) +A2® (X (J-2) =X (J-5) ) * (X (J-2) -X (J-4
DI/ UX(I=2) =T (I=~5)) * (X (I=2) =X (J=4) ) * (X (I=2) =X (J=3)))

A= (F (J=1) - (R0+RA1# (X(I-1) =X {I-5) ) ¢A2% (X (J=1) -X (J=5) ) * (X (J-1) -X (J-&
1)) 4238 (X(I=1) =X {I=5)) * (X (I=1) =X (J~4) ) * (X (J=1) =X(3-3)))) /((X(I=1)-X
1{3=5)) *(X(I=1) =X (I=4) ) *(X (I=1) =X (J=3) ) * (X (I=1) =X (J=2)))

AS= (F(3)= (A0+A1# (X (J) =X (3-5)) ¢A2¢ (X (J) =X {J=5) ) $(X(J) =X (I-¥)) *A3® (X
1{I) =X (J~5)) # (X (J) =X ¢J-8)) ® (X (J) =X (J=3)) ¢A4® (X (J) ~X (J=5) ) * (X (J) -X (I
1-4) ) # (X (3) =X (3=3) ) * (X () ~X (3-2} )} ) / ({X (I) =X (J=5) }® (X (J) -X (I-4) ) * (X



eve

1(J) -X(3=3)) *{X (I} =X (J=2)) * (X (J) =X ({I=1)))
CCPFUTE ADDITICWAL FUNCTICN YALUZS
Y(N)=AO#A1® (XX=X(J=5)) ¢A2® (XA~X (J=5)) ® (XX=X (J-4) ) $A3® (XX=~X (I=5)) ¢
1AX~2(I=0)) ¢ (XX=X(3=3) ) ¢AS® (XX-X (J=5)) ¢ (XXX (J=4) )® (X=X (J=3))® (XX~
1X (J=2)) ¢AS* (XX=-X(J=5) ) * (XXX (J=4) ) ¢ (XX=X (J=3) ) ®(Xk~X (J-2) ) * (XX=X {J
-hH)
XY (®)=XX
2C=(X{L*1}~X(L)}/(RIP*1)
GO 10 6
7 Kn=p-1
K=KN
DO & I=1,KN
I(I)=XY (1)
8 r(Iy=1(n
9 CONTINOE
Cees DETERAINY NUNBER OF INTERVALS
1C KC= (k=1)/2
1=1
D0 17 J=1,KC

Cose

Cess SOLVE 3 BCUATICNS CVEF INTEFVAL
R= ((F{L)~=F(Le1))/(X(L)=X(L1))=(F(L*I)-F(Le2)) /(X(Le1)-X(Le2)))/ (X
1(L) =X (1+2))
S=(E(L}=F(Le1)) /(X (1) =X (LeV) )= (L (L) eXifo1))oR
T=P (L) =X (L) # (R*X(L) +5)
Cees CCHEUTE ZERCTH COEPEICIENTS FOR INTERVAL
AM(1)=(B® (X (L42)®+3-X(L)*¢3) /3.0D0¢S* (X (Le2) #&2-X(L) #62)/2.0D0+T*(
1IX(Le2) =X(1))) /{1T)
88 (1)=0.0L0
DG 11 N=2,nP1
AN=R=-1
Cees CCNEUTE PIRST AND UPPER COEFFICIENTS POR INTERVAL

AA(¥) =B (2,0D0*X(L¢2) 9DCOS (ANOWUSX (Le2) )/ (HN®*20u0¢02) ¢ (NS0 28U s
120X (L+2)#62-2,CC0)SLSIN (NNOECOX (L+2) )/ (HNSS 3040 83)) /(TT) ¢S* (DCIS(
1ENONOX (Le2)) / (AN*®ZOUO0992) oX (Lo2) *DSIN (KN*UO*X(Le2) ) / (NN®WO)}}/ (TT
1) ¢ (T*DSIN(AKSWOPX (L¢2)) / (ANONWO)) / (TT) - (R* (2. GLUS L (L) *DCOS (KNSHO* X (
1L) )/ (ANOS20G09%2) ¢ (ARS*28U0 @924 X (L) ##2-2,000) *DS IK (MN*UOSX (L)) / (MM
1603640843)) /(TT) +S* (DCOS (ANONOOX (L)) / (MN*€2 W ®® 2) ¢ X (L) *DSIN (KRNSO
19X (L))/ (BX®HC) ) / (TT) ¢ (TSDSI N (AN*UOSX (L) ) /(HN*UO) } /(TT))

AL (X) =2.0D0%AA(R)

BB(¥)=R¢ (2.0000X(L+2) *DSIN (ZNOVI®X (L¢2) ) /(HNE® ;4 U0 2) ~ (NS9O s e
129X (L+2) ®#2-2.GC0) *DCOS (AN UCHX (L+2) )/ (AN®*3940%#3) ) / (TT) +S¢ (DSIN{
TANSUCSX (142)) / (RR®920U0®42) ~X (L¢2) $DCOS (RN*4O® X (Le2)) / (NN®¥0)) / (TT
1) = (10CCCS (ANSWOSX (142) )/ (KN#W0) ) / (TT) = (R* (2. 0DUS X (L) *DSIN (AN®RO€X(
TL) )/ (BNO0 20082}~ (AN®S28U0S920X (L) #92-2.0DC) *DCOS (AN*UO*X (L) )/ (BN
199304Gs03)) /{TT)+S® (DSIN(ANORO®X (1) )/ (HN®*2#dGee2) X (L) *DCOS (AN® U0
18X (L)) / (ANOHC) )/ (TT)= (T*DCCS (NR®WOSX (L)) /(KN*UO) ) /(TT))

BB (¥) =2.0D0*8B ()

11 CONTINDE
IF (J.EC.1) GO 10 12
GC 10 14
Ce#s SUN FOUFIER SERIES COEFPICIENTS
12 DO 13 JJ=1,PF1
A(3J) =AM (I2)
B (3J) *BE(JJ)
13 contInoe
14 IF (J.GE.2) GO 10 15
GO 10 17
15 DO 16 JJ=1,8P1
B (JJ) =B (JJ) +BB (JJ)
16 A (JJ) =R (JJ) *AA (JJ)

17 L=Le2

Cese

Ceese

Cesse

Coes

Cees
Cese

C
Ceee

Cees

Cone

-

EFwn

-

FILTER FOURIEX SERIES CCEFFICIENTS TO REDUCE NOILSE
CALL FILTEI(A,B,NC,AP1)

K=KEK

BETURN

z¥D

SUBFCUTINE TRAF (¥D,I,LY,Y,10)
SUBROUTINE TRAP INTEGRATES A FUNCTIOM BY TRAPEZOIDAL RULE

INFLICIT REAL®B (A-H,0-Z)
DIMEXSICN X (ND) ,LY(ED),X(ND)

INTIALIZE PARANRTESS
52=1C

IF (ND-1)  4,3,1

INTEGEATE OVER INTEBYAL AND SUN

DC 2 I=1,ND

S1=s2
