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PREFACE

This report describes the development of a microprocessor controller which
provides multi-mode operational capability for the Electronic Switching
Spherical Array (ESSA) Antenna previously developed on NASA Contract NAS5-23518.
This work was conducted by Ball Aerospace Systems Division (BASD), Boulder,
Colorado, between Auqust 1977 and September 1978, for Goddard Space Flight
Center, Greenbelt, Maryland, under NASA Contract NAS5-24268.

The purpose of this work was first to determine the best set of operating
conditions and then to demonstrate the performance of an ESSA Antenna in the
following modes: 1) Omni, 2) Acquisition/Track, 3) Directive, and 4) Multi-
beam. The program was conducted in two phases. The control algorithms, soft-
ware flow diagrams and electronic circuitry were developed during an initial
study phase. The microprocessor and control electronics were then built and
interfaced with the antenna to carry out performance testing. Throughout,
emphasis was placed on the acquisition/track mode for Users in the Tracking
and Data Relay Satellite System (TDRSS).

The engineering model system consisting of the ESSA antenna and the micro-
processor controller developed on this contract performed exceptionally well
in all four modes of operation. Using a converging algorithm sequence in a
closed loop mode, the ESSA antenna system will independently perform the
TORSS acqusition and auto-track functions for either a 3-axis stabilized or
spinning User spacecraft. The system size, weight and power are compatible
with small scientific satellites. Typical ESSA antenna gains are 8-25 dB
with 90% spherical coverage. 1

Recommendations for future development work are priuarily related to ESSA
system checkout using the NASA standard TDRSS transponder. Specific areas
which need to be investigated irclude the following: 1) specify and design
the AGC or equivalent analog feedback signal interface, 2) specify and design
the command detector digital interface, 3) determine the effect of acquisition
sequence phase errors on transponder lock, 4) verify total system perfoimance
with antenna range tests,
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1.0 INTRODUCTION

With the advent of the Tracking and Data Relay Satellite System {TDRSS), user
satellite antennas must provide directed gain in order to transmit even
moderate data rates through the multiple access return link. Omnidirectional
and low gain antennas are inadequate for data rates over 500 b/s, hence the
need for high gain.

This new requirement for higher gain over large coverage angles prompted the

development of the Electronic Switching Spherical Array (ESSA) Antenna, which
is expected to be the forerunner of a standard integrated antenna system for
scientific satellites. This antenna will satisfy gain requirements between

8 and 25 dB with 90% spherical coverage depending on tyre and size.

The initial engineering model developed on NASA Contract NAS5-23518 was a 76 cm
diameter hemisphericai configuration with a measured coverage gain of 13 dB.

A manual contro] box provided a directive mode only capability since all 551
beam positions were preprogrammed in memory.

The objective of this follow-on work was to extend the capabilities of the ESSA
antenna and make it a comprehensive system solution to the TDRSS user spacecraft
antenna problem. To do so, a dedicated microprocessor controller was selected
to take advantage of the electronic beam steering agility inherent with the

ESSA antenna,

An initial six week analysis phase determined the optimum set of operating
conditions for the omni, multi-beam and acquisition/track modes. The functional
software required to implement each of these modes was specified by flow charts.
The microprocessor and control electronics were defined to the schematic level
and test procedures designed to verify performance in each mode were outlined.
The remainder of the program was dedicated to hardware implementation, software
programming, system debugging and antenna range performance verification tests.

The following sections of this report describe the software, hardware and test
results for a multimode ESSA antenna system, A technical summary is provided
in Section 2.0. Section 3.0 describes the control logic, algorithms and software
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for each mode, while Section 4.0 is a description of {he microprocessor
and antenna interface control circuitry. Section 5.0 contains a summary
of the test data with typical examples.

2.0 SUMMARY AND RECOMMENDAT'ONS
2.1 Summary

A software study and system design wereconducted to determine the best set

of operating conditions for a GFE ESSA antenna in the following modes of
operation: 1) Directive, 2) Omni, 3) Multi-beam, 4) Acquisition/Track. At
the conclusion of this effort the microprocessor controller was fabricated

and programmed to operate the antenna in all four modes. A series of tests
were carried out to characterize the operational performance in each mode.

The system concisting of the engineering model ESSA antenna and microprocessor
controller during test is shown in Figure 2-1. A close-up of the controller
with its display dome is shown in Figure 2-2.

The directive mode was implemented by means of a beam forming algorithm which
selects the twelve subarray elements as a function of pointing direction.

The algorithm was designed and programmed for minimum execution time since it
is a major component in the Acquisition/Track function. Test results indi-
cated that the mean pointing error was 3.6° which is comparable to the 130
beam nointing granularity. The peak gain was typically 13.74 dBi which
corresponds to a 13.04 dBi coverage gain.

In the omni mode the goal was -7 dBi gain throughout the upper hemisphere.
Since analysis and experiments showed that this was not possible with a single
twelve element configuration, toggling between two arrays was required. The
controller samples the received signal level for each array and selects the
optimum beam. The interval between samples is a software variable. By
employing this toggling technique hemispherical coverage at -7 dBi gain level
was improved from 82% (for either beam separately) to 98%.
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The multi-beam mode is merely a special case of the directive mode. The same
algorithm is used but the number of elements per subarray is either 6, 4 or 3
for 2, 3 and 4 beams respectively. The peak gain for each beam is approximately
10 leg 1/n below the directive mode gain, where n is the number of beams. The
test results verified that the gain, beamwidths and pointing directions are

very close to the nominal values as long as the solid angle separation between
pointing directions is greater than the half power beamwidth. When this con-
dition is not met an interferometer effect distorts the radiation pattern and
substantially degrac>s performance.

The Acquisition/Track mode was implemented for both 3-axis stabilized and
spinning spacecraft, although emphasis was on the former., A closed-loop converg-
ing algorithm sequence is used to determine the real time direction of arrival

of the received signal. For a 3-axis stahiliz~d spacecraft, once this is
accompliched, a 40-minute open-loop track function begins immediately. In the
case of a spinning spacecraft, however, an additional data collection period

and spin rate calculation is required prior to the 40-minute open-loop track
function.

Mean pointing error for the stabilized case was 5.2°. Although this value
exceeds the 33° beam steering increment, it is acceptable because the coverage
gain is unaffected. Beam to beam phase variations were below the 20o specifi-
cation limit throughout the acquisition phase. Performance testing for the
spinning case was limited to determining spin rate accuracy as a function of the
data collection period. Based on this limited data, acquisition periods of

108 and 80 seconds are required for 5 and 10 rpm spin rates respectively in
order to despin the beam accurately for 40 minutes.

The control theory, algorithms and logic for each operational mode are pre-
sented in detail in Section 3.0. An analysis and description of the per-
formance test data is included in Section 5.0.

An important feature of the overall system design is the use of standard,
off-the-shelf electronic components in {u: microprocessor controller. The
operational versatility is strictly a function of the software proyramming.
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As a result a basic operational format can be included as part of the system
design with mission unique parameters incorporated on an as required basis.
Size, weight and prime powar consumption estimates for a flight qualified
controller compatible with 150 - 200 element ESSA antenna are given below:

Controller Size: 18 cmx 11l cm x 5 cm
Weight: 0.8 kg
Power: 11.5 watts

A more detailed description of the controller hardware is contained in Section
4.0,

The contract also included several related study efforts in the following special
interest areas: 1) low gain ESSA configurations for spinning spacecraft appli-
cations, 2) thermal model descriptions and analysis resuits, and 3) ga‘n im-
provement feasibility study and test results. Although this subject material
is outside the scope of this report, the objective and conclusion for each of
these efforts is summarized i1 Section 6.0. Separate study reports were
delivered as contract items.

2.2 Future Development Recommendations

Although performance in each of the operational modes was successfully demon-
strated, additional development work must be performed before the ESSA antenna
system becomes a standard for scientific spacecraft. The primary development

items are described in the following paragraphs.

2.2.1 Develop Integrated Coimmunications Subsystem

In the Omni and Acquisition/Track modes, logic decisions are based on amplitude
comparisons between pre-programmed beam positions. During the performance
tests a dc signal level proportional to the received signal strength was de-
rived from the antenna range receiver. However, in an actual spacecraft appli-
cation this detection function can be performed by the TDRSS transponder. It
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is logical, therefore, to interface these two systems to create an integrated
communication subsystem compatible with scientific spacecraft. This task
would include an interface requirement analysis, hardware and/or software
modification, physical interconnections and performance demonstration tests.

2.2.2 Verify Subsystem Performance

An extensive test prngram is required to demonstrate performance of this
commur.ication subsystem in each of the operational modes. The purpose of

these tes*s is to ensure operational compatibility with the Tracking and Data
Relay Satel'!ite System requirements. A complete simulation of the return link
including a bit error rate measurement capability is preferred for final testing.

3.0 CONTROL LOGIC, ALGORITHMS AND SOFTWARE

This section describes the control logic and specific algorithms developed for
the ESSA antenna system for each mode of operation. Software descriptions are
limited to a general flow chart sequence, however, supplementary detailed flow
charts are provided in Appendix A.

3.1 OMNI Mode

The design goal for omni mode performance was -7 dBi gain throughout a hemis-
pher This gain level is significant since it represents the minimum antenna
gain for normal TDRSS transponder operation.

In order to maintain the proper input and output impedance levels for the
switching power divider, only 12-element combinations were considered for

omi coverage.(z) The three configurations evaluated during the study phase
are shown in Figure 3-1. The beit antenna (Figure 3-1A) provided 74% hemis-
pherical coverage at the -7 dB gain level. The four clusters of three elements
each (Figure 3-1B) and the double belt (Figure 3-1C) had 727 and 65% coverage
respectively at -7 dB. This information was ob.ained from computer analysis
of measured radiation distribution patterns (RDPs).

I T IS ———
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Since hemispherical coverage at the specified level did not appear possible
for a single 12-element array, a second array was used to fill in the nulls
of the cloverleaf pattern and to improve coverage. Computer analysis indi-
cated that two arrays identical to Figure 3-1B offset by 45% in azimuth would
provide 93% coverage at the -7 dB level. This combination was realized by
toggling between the two 12-element arrays.

The control sequence developed for this mode is intended to provide a gain of
-7 dB or greater for receive applications. Initially each array is turned on
and the transponder AGC (which provides an analog signal level proportional
to the received signal strength) is sampled to determine relative amplitudes.
The beam with the highest received signal level is selected and maintained
until the AGC drops below a pre-set minimum which indicates that the received
signal is entering an antenna pattern null. When this occurs the alternate
beam is turned on. If the AGC from this beam exceeds the threshold, it is
selected and maintained until the AGC again reaches the threshold level at
which time the cycle is repeated. The total beam interrogation and selection
process is less than 1 millisecond.

For a 3-axis stabilized spacecraft the beams may only switch several times per
orbit. However, tor a spin stabilized spacecraft the toggling rate will be
proportional to the spin rate. For example, at a spin rate of 3 rpmor 1
revolution per 20 seconds, beam switching will occur at least every 2.5 seconds
at each of the eight crossover points illustrated in Figure 3-2. This beam
switching is apparent when the control box is operated in the simulator mode
(without an external AGC input). As the simulated target rotates, beam selec-
tion will alternate between the two candidates.

The measured gain and coverage data using this control sequence is presented
in Section 5.1.

3.2 Directive Mode

In the GFE manual control box the element groups for each of the 551 beam
positions were defined and stored in pre-programmed PROMs. During the study

]
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a beam forming algorithm was developed to replace this stored information for
two reasons. First, microprocessor implementation of the directive mode was

an essential step in the development of an effective Acquisition/Track function,
and second, the amount of hardware is substantially reduced which results in
decreased dc power consumption, weight and volume.

The algorithm selects the appropriate element group or subarray when given a

0, ¢ direction. Since this algorithm is a critical subroutine in ary beam
control program, it was programmed and evaluated for accuracy and executicn
time. The initial evaluation was done in Fortran on a Xerox 530. Accuracy was
evaluated by comparing 30 beams selected at random to the same beams from

the manual control box. The agrrement was excellent,

A flow diagram for the beam forming algorithm is shown in Appendix A. The

basic theory of operation is as follows: A range of 0 and ¢ are established
with respect to the input values. All element locations are examined and those
that fall within the range of ¢ {(first) and ¢ (second) become potential
elements. The subarray is made up of the twelve elements closest to the input
g, ¢ location. Both the logic and programming techniques used in this algorithm
were selected for minimum execution time. The measured execution time for

this subroutine as progranmed in the TI990 microprocessor is 850 microseconds.

With respect to the software structure, the beam forming algorithm called "beams"
is a subroutine used by the acquisition/track program., To implement the
directive mode the entry point into the acquisition/track program is alcared

by the panel switch. The coordinates for the directive beam are manually
inserted into the appropriate memory locations and the beam is formed by
executing "beams".

3.3 Multi-Beam Mode
The objective of the multi-beam mode is to form n independent beams with 1-n-4,
The gain of each beam will decrease from the directive mode gain by approximately

10 log 1/n, The objective gain is, therefore, 10.7, 8.9 and 7.7 dB for 2, 3 and
4 beams respectively.

11
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Implementation of the multi-beam mode is a simple modification of the directive
mode algorithm. When the panel switch is set the "beams" subroutine is modified
to check specific memory locations for the number of beams to be formed and
their coordinates. Since the total number of active elements is fixed at twelve
due to the switching power divider design, the number of elements per beam is
12/n. This limitation is one modification to the algorithm. A second, related
change reduces the range of 0, ¢ in proportion to the number of elements per
beam. The result is a fewer number of candidate elements and improved process-
ing efficiency.

Although this approach is easy to implement, it imposes certain constraints on
the proximity of adjacent beams. The pointing directions must differ by at
least one beam steering increment or seven solid angle degrees to aveid sharing
of elements between beams. Since the element set for each beam is determined
independently by the modified algorithm, the total number of active elements
will be less than twelve if elements are shared. That is, the same element may
be turned on more than once. To avoid this problem a specialized multi-beam
algorithm must be developed to handle the general case.

3.4 Acquisition/Track Mode

The objective of this mode was to develop a sequence of control algorithms

to determine the direction of arrival for a received signal and to maintain a
directive mode beam on the source. Although emphasis was placed on the 3-axis
stabilized spacecraft, additional algorithms were developed to provide the
same capability for a spin stabilized spacecraft.

The control sequence is comprised of four distinct functions; a search routine,
data collection, data processing and a tracking routine. This sequence was
specifically developed for a User in the Tracking and Data Relay Satellite
System and uses several assumptions as ground rules to demonstrate ESSA per-
formance. The assumptions which were made to simulate this practical applica-
tion are listed below:

® A S-band forward link c(ransmission is available from a
TDRS during the acquisition phase.

ic
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o The NASA standard TODRSS transponder will provide a
suitable AGC or analog signal proportional to the
received signal strength.

Additional assumptions related to spinning spacecraft are:

o The antenna is spinning about its axis of symmetry.

e Spin rates are on the order of 10 rpm or less.
NOTE: Total ESSA capability is not limited to the above ground rules.
Control of the antenna in this mode uses a specific combination of software
and hardware. The software contains the algorithms for each function in the
sequence while the hardware provides a real-time feedback loop by sampling
the AGC and returning the data in digital form to the microprocessor con-
troller. This real-time adaptive approach enables the ESSA antenna to acquire

and track a desired target independent of any ground or spacecraft inputs.

3.4.1 3-Axis Stabilized Spacecraft

A typical scenario which may be repeated thousands of times during the life of
a mission will proceed as follows: As a TDRS comes into view of the User
spacecraft. a forward link transmission begins. Concurrently the ESSA Antenna
on the User leaves the quiesent omnidirectional mode and initiates the acqui-
sition sequence. The objective is to determine the correct pointing direction
toward the TDRS.

Upon entering the sequence the ESSA antenna has no knowledge of the TDRS loca-
tion. The search subroutine which has three phases is designed to educate

the antenna so it knows the direction of arrival of the received signal in
real-time. Phase | provides a coarse 0, ¢ location by determining the general
area with maximum received signal. The microprocessor activates each of the
120-elements one at a time and samples the AGC voltage from the transponder.
Since the switching power divider was designed to feed 12-element subarrays,

a single active element creates a significant mismatch which reduces the

13
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element gain from 7 dB to 1 dB. (It should be noted, however, that alternate
Phase I techniques with higher gain levels are practical and that this single
element approach was selected for demonstration purposes). Since small
variations in system losses between elements and a 60° element beamwidth make
it impractical to select a single element, the five elements with the highest
AGC values are stored in memory. The coarse direction of arrival for the
received sianal is then the mean 6, ¢ location from these five elements. More
precise information is needed however, so the microprocessor continues to
Phase II.

The objective of Phase II is to determine the most probable direction in which

to continue the search for the received signal starting from the 6, ¢ coordinates
of Phase I. A substantial amount of information can be obtained by forming

three directive (12-element subarray) beams around the point 0, ¢ as shown in
Figure 3-3. The beams are formed one at a time so that the HPBWs intersect at

6, ¢. By comparing the AGC levels for these three beams, the great circle direc-
tion to the received signal relative to the point 0, ¢ can be resolved to

within f15°. For example, designate the AGC values for beams 1, 2 and 3 as Al,
A2, A3 respectively. Then, if Al > A2 > A3 the received signal has a high pro-
ability of coming from a point on or near the 30° great circle direction.
Similarly if A2 = A3, and both A2 and A3 are greater than Al, the received signal
is probably coming from a point on or near the 180° great circle direction.

In the Study Report (3) a digital filter was specified as the process by which
the microprocessor compares Al, A2 and A3 and selects one of the twelve great

circle directions. This procedure. however, was replaced with a less complex
and more accurate method involving the equations given below,

For A2 = A3 use:
(A1-Am) f_ﬁ(A?-Am%ﬂf 9§A3-Am) (1)
-Am) ¥ (A2- + 3-Am
For A2 < A3 use:

12(A1-An) + 5(A2-Am) + 9(A3-Am) (2)
(A1-Am) + (AZ-Am) + (A3-Am)

14
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In a spacecraft aoplication the controller and antenna driver electronics

will be connected in parallel to achieve a 75% reduction in acquisition time.
The effect of this improvement is probably negligible for the 3-axis stabilized
spacecraft, but it is quite significant for a spinner. A typical acquisition
time for Phases I, Il and III will be 99 msec.

A general case track mode for a 3-axis stabilized spacecraft was not attempted
due its dependence on mission unique parameters.

The acquisition phase provides an accurate pointing direction to the TDRS for

a particular instant of time. As time progresses, however, the orbital dynamics
tend to alter this initial vector. The direction and rate of change are mission
unique parameters which must be included in the track mode software.

In general, pointing corrections will be small, requiring only a few beam
changes per TODRS view period. They can be determined prior to launch and in-

corporated as time dependent software functions.

3.4.2 Spinning Spacecraft

Phases I, Il and I!i described in the previous paragraph also provide initial,
real-time acquisition information for the spin stabilized spacecraft. Acquisi-
tion time is much more important, however, since the antenna must appear
stationary during the computational process. This condition is met even with

the serial data transmission from the microprocessor and antenna driver board.
During the present 396 msec acquisition time, an antenna rotating at 10 rpm will
only traverse 24 degrees of arc. With the projected acquisition time of 99 msec,
spin rates up to 30 rpm will present no problem.

From Phase 111, the direction of the received signal has been resolved to the
nearest directive beam at a particular instant in time. The microprocessor now
has sufficient information tn anticipate the approximate direction for the
received signal as time progresses, and begins to collect data which will lead
to an accurate spin rate computation.

18

o o S e et S



F79-08

In phase IV the microprocessor anticipates the direction of the received signal
for future time. It jumps ahead of the received signal and forms three beams
on i constant ¢ line. It loops through these beams testing the AGC values and
waits for the antenna to rotate through the direction of arrival.

A typical three beam set formed in Phase IV is shown in Figure 3-5. The loca-
tion of beam #2 is adjacent to the nearest directive beam found in Phase III.
The 6 position is the same but ¢ is advanced one beam steering increment or
approximately 6° in the direction of -otation. Beams #1 and #3 are one beam
steering increment above and below Beam #2 respectively. The microprocessor
forms the beam and samples the AGC value. This cycle is repeated until the AGC
value for one of the new beams is within 0.5 dB of the AGC value from Phase III.
AGC values are considered eq:al when they are within 0.5 dB of each other since
non-uniform system losses ma‘ cause the subarray gains to vary slightly. Since
the software processing tim: is extremely short compared to the rotational rate
of the antenna, the three beams are formed and the AGC values are tested many
times before this AGC equality condition is met. However, as time progresses
the peak of the heam is rotating toward the true direction of arrival for the
received sic.al and the AGC value is increasing. When the equality condition
is met, the 6, ¢ location of the beam is stored in a table. Having found a valid
data point, the microprocessor continues by advancing ¢ one beam steering
increment in the direction of rotation and repeats the same steps. The three
beams are again formed on a new constant ¢ line with the same values. When

an AGC value for one of the three beams comes within 0.5 dB of the AGC value from
Phase 111, the location is stored as the second entry in the table. This
process continues for 90° of rotation and then the average ¢ value from these
15 beams is computed. This ¢ direction remains constant since the antenna is
spinning about its axis of symmetry.

The basic data collection process of Phase IV is repeated in Phase V with two
changes. First, a single beam is formed ahead of the target at the average
valus from Phase IV. The AGC is continuously sampled until the equality con-
dition is met. Second, when the equality condition is met, both the location
and a relative time are logged. Time is provided by a 32-bit counter which is
set to zero at the beginning of thase V.

19
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4&E 2 ¢ value from Phase [IOI

Figure 3-5 Three Beam Set - Phase IV
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This single beam data collection process continues for three revelutions
(i.e. ¢ is advanced 1080° from its initial Phase IV value).

The data table has approximately 180 entries at the completion of Phase V.
The data is correlated because the AGC equality condition is generally satis-
fied on the "leading edge" of the beam or before the peak of the beam is
coincident with the direction of arrival for the received signzl.

The data collected in Phase V provides adequate information to compute the
spin rate ¢ (d¢/dt).

& is the change in angle ¢ divided by the time it takes to traverse this angle.
This computation is performed between adjacent entries in the data table. The
average of all these values is taken to reduce systematic errors.

Since the beam steering increment is a known constant, the time between beam
changes is also a constant inversely proportional to &. The inverse of $ is
the beam switching time between adjacent beams and is a function of the actual
spin rate.

During the 400 msec it takes to perform these calculations the ESSA antenra

has rotated a small amount and the exact direction of the received signal is

no longer known. The final task in the acquisition sequence then is to re-
establish this direction in real-time before the track mode is initiated. This
is a straightforward procedure using the equation below since all the data is.
known :

+ (T

¢ sy )

now ~ Vinitial now = Tinitial
The initial values of ¢ and T can refer to any entry in the data table. The
time Tnaw can be read from the internal counter which is still keeping time
relative to the start of Phase V. (This is the same counter which provided

the time for each data entry). The spin rate . is known from an earlier
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calculation. The microprocessor controller will form a beam at the predicted
location and test the AGC level to verify the direction upon entering the
track mode.

Track Mode: The controller enters the track mode with a calculated position
Pnow for time Tnow‘ This is not a valid position, however, since ¢now lags

the real-time position by an amount equal to the computaiional time. To over-
come this intrinsic delay the first beam is formed ahead of the current position
for a time Tfirst which is calculated and stored in memory. The microprocessor
continuously compares the time from the real-time clock to the time stored in
memory and when the two are equal the despin or track mode is in sync with

the actual position. The AGC is sampled and compared to a predetermined level
for final verification before the track mode is initiated. This entire pro-

cedure requires 7 msec.

In the track mode the next beam position and time are computed in advance.
When the time on the real-time clock equals the calculated value, the new

beam is formed in less than 1 microsecond. This process is repeated through-
out the 40 minute TDRS view period. At the end of that time the controller
enters the acquisition sequence again in anticipation of the second TDRS.

The tracking function developed for a spinning spacecraft provides an accurate
spin rate and elevation angle determination, and performs electronic beam
despinning without any ground or spacecraft inputs. However, it is still
incomplete because the mission unique orbit aspects mentioned in Section 3.4.1
must be included to update the pointing direction several times during each
TDRS view period.

4.0 HARDWARE DESCRIPTION AND FUNCTION

An important feature of the overall system design is the use of standard circuitry
and off-the-shelf component: in the microprocessor controller. The operational
versatility is strictly a function of the software programming. As a result

only a basic functional description is provided in the following sections.

A complete set of controller schematics are provided in Appendix B.
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4.1 Antenna Control System

A block diagram of the ESSA antenna control electronics is shown in Figure 4-1.
Hardware implementation consists of four main boards; the Texas Instruments
TM990/100M microcomputer, the input/output becard, the LED dome driver, and the
PIN diode driver. All boards and the cuommercial power supplics are located

in the ESSA control box except the PIN diode driver board which is attached

to the antenna structure and connected to the console via a serial interface.
The serial interface was selected only to facilitate antenna range testing.
Reducing the number of wires between the controller and antenna driver board was
imperative since the spinning tests required the use of slip rings. In an
actual spacecraft application, however, a parallel interface will be used for
improved performance and higher reliability.

The TM900/100M CPU board contains 4096 16-bit words of EPROM (Erasable Program-
mable Read Only Memory), the TMS 9900 microprocessor, terminal interfaces, and
TIBUG. TFour type 2716 (2K x 8) LPROMS are used and contain all of the oper-
atiny software and TIBUG which is a comprehensive, interactive debug monitor
written by Texas Instruments. The 512 words of RAM proved to be adequate for
temporary storage and therefore no RAM expansion was required. The TMS3900
microprocessor utilizes a versatile direct command-driven [/0 interface design-
nated as the communications-register unit (CRU). The CRU provides up to 4096
directly addressable input bits and 4096 directly addressable output bits.

Both input and output bits can bhe addressed individually or in fields of 1 to
16-bits. The TM990/100M also contains one TMS 9901 which provides the necessary
address decoding and latches to implement 16 CRU 1/0 lines. These [/0 lines
are used as discretes (single bit) for controlling the analog to digital con-
verter and not for parallel 1/0. The TMS 9901 also contains the hardware for
all interrupts used in £SSA. The CPU board provides the necessary hardware

and software to communicate with either a ASR733 keyboard/printer terminal
which was used during the development phase or the handheld TM990/301 micro-
terminal which is used for normal operation of the ESSA console.
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The 1/0 (Input/Output) board which was designed by BASD contains the two con-
verters, a real-time counter, and overhead circuits. A 12-bit analog to
digital converter is used to convert the 0 to +6 VDC AGC analog signal to a
digital word representing the signal level. The second converter is a digital
to analog type that is used to generate the AGC signal from the simulator
described in Section 4.2. The lower half of the real-time counter is implemented
in hardware and interrupts the microprocessor every 10.9 msec while the upper
half of the real-time counter is implemented in software. All of the above
1/0 devices 2re coniected in parallel between the data bus and the address
bus; and each has a unique address which the CPl board outputs on the address
bus when transferring data to or from the I/0 board on the data bus. (This
technique is known as Memory Mapped 1/0). The main overhead circuits are

the address decoder which enables only one [/0 device at a time and the bi-
directional bus buffers which control the direction of data flow.

The LED dome and PIN diode driver boards are BASD designed and are essentially
the same as those used in the manual ESSA control box from Contract NAS5-23518
except for two aspects. Both boards now communicate with the CPU board via
several interfaces and the PIN diode driver board has an cxtra set of registers
which allows all 120 elements to update in less than 1 usec.

4.7 AGC Simulator

An AGC simulator was included to simplify software development and system check-
out in the absence of an antenna range test facility. This capability was in-
corporated as a permanent feature in the engineering system to permit conference
room type demonstrations.

The simulator is primarily a software package requiring only two toggle switches
and digital to analog converter for implementation. Its function is the internal
generation of an AGL voltage proporticnal to the received signal strength. The
theory of operation is as follows. When the simulation switch is set, a target
position is created by the simulation software. This target can be at a fixed
position or rotating depending on the spin mode toggle switch. When an AGC
voltage is called for the simulation software computes the solid angle between
the calculated beam position and the target. This angle becomes the argument
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in a second order polynomial which provides a mathematical model of the antenna
pattern with accurate gain roll-off characteristics as a function of solid angle
away from the beam peak. This gain level is converted into a dc voltage by the
D/A converter and fed back into the AGC input port. A separate polynomial
function is used to represent a single element pattern as well.

The disadvantage of the simulator is a substantial overhead burden on the micro-
processor. The effect is to slow down the execution of the algorithm sequence
due to the long pauses imposed by the AGC computations.

5.0 PERFORMANCE TEST RESULTS

Upon completion of the microprocessor controller and subsequent software
debugging, the performance characteristics of the engineering model system
were evaluated with antenna range tests. All tests were carried out per the
requirements of Test Procedure 58826. The test resulte with typical data
examples are described for each mode in the sections that follow.

5.1 Omnidirectional Mode

Separate Radiation Distribution Patterns (RDPs) were taken for each of the two
beams described in Section 3.1. Computer analysis of this data is presented in
Tables 5-1 and 5-2 in terms of gain level and percent of hemispherical coverage.
Coverage at the -7 dB level is roughly 82% for both patterns.

A composite RDP was created in real-time allowing the microprocessor to select
the beam having the maximum amplitude. Computer analysis of this pattern is
summarized in Table 5-3. A significant coverage improvement over either of

the individual patterns is apparent at the -7 dB gain level. The percent of
hemispherical coverage increased from 82 to 97.6. Conical cuts of the far-field
patterns are shown in Figures 5-1 through 5-4 for ¢ = 900, 600. 30° and 0°
respectively. The two independent beams are identified by the solid and dashed
lines. The composite pattern is the circumference of the plot. Figure 5-5
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shows a real-time composite amplitude pattern created by the microprocessor.
The antenna was spinning on axis while receiving a signal from a fixed source.
The "spikes" on the pattern indicate amplitude comparison during 5 revolutions
or 1800° degrees of mechanical rotation.

Phase information related to the composite pattern is presented in Table 5-4.
Instantaneous phase changes due to beam switching were recorded for a range of
differential amplitudes. For example, a 0 dB amplitude differential corresponds
to the beam crossover points. The measured phase increments refer to the
difference in electrical path length from the phase center of each beam to the
source,

The beam toggling concept was introduced to meet the hemispherical coverage
requirement at the -7 dB gain level. The composite pattern successfully does
this, however, the effect of the instantaneous phase and amplitude variations
due to beam switching has not been determined. Therefore the phase information
in Table 5-4 is included to support a future quantitative telemetry link analysis
based on known modulation formats. Such an analysis is beyond the scope of this
contract.
Table 5-4
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5.2 Directive Mode

Directive mode performance was characterized by measurements on fifty beams
distributed within the hemispherical coverage region. Emphasis was placed on
verification of the beam forming algorithm which selected the subarray elements.
The purpose of the directive mode tests was to determine the pointing error
between the desired and actual directions.

The test procedure was as follows:

o Both the ESSA antenna and antenna range coordinate systems
were synchronized.

o The desired beam pointing direction was inputted to the
controller and the antenna range was mechanically aligned
in that direction.

® A gain measurement was taken.

e The peak of the beam was found by tweaking the mechanical
alignment and the actual azimuth and elevation angles were
recorded.

e The solid angle pointing error was calculated using the
azimuth and elevation angle differences between the desired
and actual pointing directions.

The test data is presented in Table 5-5. The mean airgular pointing error is
3.6° which is comparable to the :30 beam pointing capability of the ESSA array.
It iz also interesting to note that the mean gain which includes all pointing
errors is 13.74 dB. Subtracting the 0.7 dB allotted for beam crossover losses
results in a coverage gain of 13.04 dB which is 0.2 dB greater than the previous
12.85 dB figure (4). The reason for this gain improvement can be explained as
follows. The beam forming algorithm always selects tne 12 closest elements to
the desired pointing vector. The result is that every subarray consists of
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Table 5-5

DIRECTIVE MODE PERFORMANCE

F79-08

BEAM DESIRED DIRECTION | ACTUAL DIRECTION | MEASURED | POINTING
0 ) 6 ¢ GAIN (dB)ERROR (DEG)
1 0 0 1 0 14.5 1.0
2 1.5 45 2 45 14.0 0.5
3 3.0 9 3 90 4.2 0
4 ! 4.5 135 4.5 ' 135 | 14.5 0
5 | 6.0 180 2 180 | 14.0 4.0
| !
6 , 7.5 225 1 180 13.9 6.8
7 . 9.0 270 14 270 13.5 5.0
8 ~ 10.5 315 13 315 13.7 2.5
G 12.0 5 4 . 5 13.7 2.0
10 13.5 | 50 14 | 58 13.9 2.0
! ]
|
11 15.0 95 17 | 88 14.2 2.8
12 16.5 140 17.5 | 134 14.6 2.0
13 18.0 185 18.5 | 193 14.5 2.6
15 19.5 | 230 18.5 | 235 14.75 1.9
15 21.0 , 275 21 270 | 14.2 1.8
16 22.5 | 320 22.5 325 L 13.7 1.9
17 240 | 10 26 20 | 13.6 4.7
18 25.5 | 55 28.5 ' 62 L1401 3.3
19 27.0 | 100 27.5 105 BBV 2.3
20 28.5 | 145 30 | 142 L 14.2 2.1 |
|
21 30.0 190 30 195 13.7 | 2.5 |
22 31.5 235 31 230 4.6 = 2.6
23 33.0 280 33 280 13.6 0 |
24 34.5 325 355 330 14.8 3.0
25 36.0 15 L 40 22 3.0 ¢ 59 |
t i i
26 ! 37.5 ' 60 ' 4.0' 60 ' 147 ! a5 '
27 ! 39.0 , 105 ' 41,0 ' 108 4.0 | 2.8
28 £2.5 . 150 | 44.0 ' 160 it . 7.6 !
29 42.0 195 42,0 188 14.0 4.7
30 , 43.5 240 | 42.0 245 14.4 3.7
31 ! 45.0 285 | 48.5 287 13.7 3.8
32 - 46.5 330 . 47.5 337 12,0 0 8.2
33 48.0 20 | 46.5 28 C13.1 6.1
34 49.5 65 ' 86.5 65 137 3.0 |
35 51.0 | 110 . 57.0 115 L1301 7.2 |
| i |
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Table 5-5 (Cont'd)
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T 1
DESIRED DIRECTION | ACTUAL DIRECTION |MEASURED |POINTING J
BEAM 8 ¢ R GAIN (dB)|CRROR (DEG
36 52.5 155 57.0 | 155 14,2 4.5
37 : 54.0 200 54.0 | 205 13.1 4.0
38 ; 55.5 245 55.0 | 250 14.4 4.8
39 ; 57.0 290 61.0 | 293 14.3 6.9
40 ; 58.5 335 53.0 | 340 | 12.3 6.9
41 : 60.0 25 60.0 30 12.7 4.3
42 | 61.5 70 62.0 75 2.9 4.4
43 ; 3.0 115 63.0 | 117 4.6 1.3
44 ‘ 64.5 160 64.5 | 160 13.6 0.1
45 : 66.0 205 64.0 | 203 i 13.8 3.5
) !

46 ! 67.5 250 67.5 | 260 P13.9 9.2
47 | 69.0 295 69.0 | 298 | 14.8 2.8
48 - 70.5 340 72.0 i 345 bo12.1 5.0
49 72.0 30 72.0 | 33 12.9 2.9
5 73.5 75 77.5 | 83 11.1 8.7

‘ |

box.
steering increments.

contiguous elenents.
The pre-prigrammed element combinations were derived to provide 6° beam

This was not the case however, with the manual control

Although the desirability of adjacent elements subarrays

recognized for optimum gain, this was not a hard requirement imposed on subarray
configurations.

This earlier design error was pointed out and corrected by means of micro-
nrocessor controller and the beam forming algorithm. The conclusion is that
an overall improvement in coverage gain results when contiguous element subarrays
are used exclusively, The additional gain provided by these optimum subarray
configurations more than compensates for any losses due to irregular beam steering

increments caused by the non-uniform element distribution.
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5.3 Multi-Beam Mode

Four sample cases were evaluated in each of the 2, 3 and 4 beam configurations.
The test results are summarized in Tables 5-6 and 5-7, and the supporting patterns
are shown in Figures 5-t through 5-17. Assuming a mean peak gain of 13.7 dB

from section5.2, the expected gains for 2, 3 and 4 beams are 10.7 dB. 8.9 dB

and 7.7 dB respectively.

Ther results of the 2 beam tests, Table 5-6, are encouraging in terms of both
measured gain and pointing direction. Two distinct beams failed to develop in
case 4 because the 45° angular separation was small compared to the 53° beamwidths.
Therefore the two subarrays merged into a single elongated aperture and a fan

beam resulted.

lable %-6
MULTI-BLAM PERFORMANCE - 2 BEAMS

CASE N | DESIRED DIRECTION 5 (U ACTUAL GIRECTION
\4"1 ‘3‘2 4‘1 GAIN q‘>2 GAIN
1 27 0 180 5 10.1 179 8.8
2 40 90 225 90 9.4 226 10.3
3 50 45 135 53 10.9 129 11.2
4 60 270 315 301 13.3 -—- ————
iable 5-7
MULTI-BEAM PERFORMANCE - 3 BEAMS
CASE o |. DESIRED DIRECTION ¢ ACTUAL DIRECTION
e v\:‘ l \’?\.) ‘:\3 7 \:‘1 m \:‘2 mIN k,"f; GA!N
e e T B e S S P e
1 2 0 120 240 4 7.6 124 8.8 234 8.3
2 40 45 135 225 47 8.2 140 8.2 a2 9.0
3 50 90 150 210 90 6.7 152 6.9 219 8.2
4 60 | 250 295 340 247 8.8 .- ce-e ——- -
— A E———— L,A‘- P SR — B T T e T T . e e e . w . - B S T T .
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Cases 1 and 2 in the 3 beam test results, Table 5-7, are as expected. The
beamwidths are broad approximately 70° and the gain figures are roughly equel.
However, in cases 3 and 4 the solid angle pointing separations are small
compared to the beamwidth and the overlapping beams create an interferometer
type pattern. This is particularly evident in Figure L-13 by the narrow beam-
widths and deep nulls.

In ali of the 4 beam cases the interferometer effect dominates, since the
maximum anqular separation of 90° is nea:'ly equal to 82° half power beamwidth.
This is evident by examining the patterns in Figures 5-14 through 5-17. This
is the same phenomena which limited the performance of a single array in the
omni mode. In fact, if case 1, Figure 5-14, had a 0 value of 60° instead of
27°, the pattern would be identical to either one of the single beams which

is used in the omni mode.

In addition to the multi-beam tests described above a two beam crossing test was
also performed. A six element subarray remained fixed as a second six-element
subarray was steered closer and closer until a single 12-element subarray
resulted. This sequence is presented in Figures 5-18 through 5-21. In view

of the 2 beam test results there are no surprises. At a separation of 450,
Figure 5-18, two distinct beams are present. As the separation is decreased

to 34% and then to 230. Figures 5-19 and 5-20 respectively, a fan beam results
from the single elongated aperture. Finally at a separation of 12° a single
circular aperture is created with a gain of 13.8 dB. (Note the 0 dBi reference
level change in Figure 5-21). The pattern for 0° separation was identical to
that or Figure 5-21 since the subarray elements remained unchanged.

In summary these test results indicate that multiple beams are practical using
the ESSA array as long as the interferometer effect is avoided. This is accom-
plished by paying careful attention to the anqular pointing direction and beam-
width combinations. When this is done both the gain and pointing direction are

very close to the predicted values.
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5.4 Acquisition/Track Mode

Performance tests were conducted to evaluate the acquisition and track functions
for both a 3-axis stabilized and spinning spacecrafts with emphasis on the former.

A simple two-way link was established in the antenna range and the basic test
scenario proceeded as follows:

o A forward link was established for acquisition. The
ESSA antenna received a 2106 MHz and determined the
direction of arrival in real-time as described in
Section 3.4. (The required duration of this link
was less than 1 second for the 3-axis stabilized case.
In the spinning tests the forward link transmission
period was variable, corresponding to data collection
for 3, 5 and 10 revolutions.

e Upon completion of the acquisition sequcnce a return
link was established by transmitting a 2287 MHz signal
from the ESSA antenna.
® A gain measurement was taken.

e Pointing error was determined.

Test results, special considerations and conclusions are presented for the
stabilized and spinning cases respectively in Sections 5.4.1 and 5.4.2.

5.4.1 3-Axis Stabilized Spacecraft

Pointing errors were determined using the same test technique described for
the directive mode. There are, however, three pointing direction terms
available for determining the error sources. The first is the calculated or
derived pointing direction. This is the final output of the acquisition phase
algorithm sequence. The second is the beam pointing direction in which the

hoH
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calculated value is rounded off to the nearest beam steering increment.
Finally, there is the true or line of sight direction determined mechanically
with the antenna range.

In general, we know from the directive mode tests that the pointing errors are
comparable to the beam steering resolution. If the magnitude of the mean
error increases, in this mode, the presumed source will be the ambiguity in
the calculated direction.

The test data for the same 50 beams used and selected at random is presented
in Table 5-8.

The mean pointing errors for the calculated direction and the beamed direction
are nearly equal at 5.22° and 5.16° respectively. Since the mean pointing
error for the directive mode alone was 3.60, additional error due to the
acquisition phase was minimal. On the average the direction of arrival for
the received signal was determined to within f1.6°. Acquisition accuracy is
better than the f3° beam steering ambiguity because it is calculated from a

4 beam weighted average.

The results of the acquisition and track mode for the 3-axis stabilized space-
craft are excellent. A 5.2° mean pointing error results in a gain reduction
of roughly 0.5 dB with respect to the peak gain. Since this is less than the
0.7 dB figure assumed for beam crossover less the coverage gain is unaffected.
This is also confirmed by the 13.1 dB mean gain level from Table 5-8. This
figure is 0.3 dB higher than the coverage gain cited in reference (1).

In view of the test results it is unlikely that pointing errors can be reduced
by modifying the acquisition algorithms. If more accurate pointing is desired

it may be advantageous to sample adjacent beams in the vicinity of the acquisition

beam and make a final determination based on a received signal amplitude

comparison.

In addition phase measurements were taken to access the beam to beam phase
variations for the directive beams of Phases Il and 111,
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The ESSA
antenna and range coordinates were synchronized and the line of sight direction
for the random test case was established. The acquisition/track function was
initiated and the final resolved beam was used as the 0° phase reference. The

Five directions were selected at random and tested one at a time.

phase of the seven directive beams used in the converging process, Phases I
and II1, were measured with respect to this reference.
in Table 5-9 for the five test cases,

The results are given

The maximum phase variation is less than the 20° specification limit for all
five cases. As a result the algorithm sequence is acceptable in terms of

phase variation.

Table 5-9
Beam to Beam Phase Variations for Acquisition Sequence

LINE OF SIGHT RELATIVE PHASE OF “RELATIVE PHASE OF MAXIMUM PHASE
DIRECTION (deg)| PHASE 11 BEAMS (deg) PHASE 111 BEAMS (deg) VARIATION
|0 ¢ 1 2 3 1 2 3 4 (deq)

56 | 117.5 +2 22,510 +1 -9.3| -6.5 | +8.4] 0 14.9
52 50 +4.7 [+19 | +0.5 -2.0| +1.5 [ 0 [+12 18.5
24 1.6 +5.5 | +2.0] +4.5 +20 +6.5 | -1.5 | -1.8 15.5
75 | 213 -5.81-14.51-1.0 -16.5 |-16.5 | -2.5 | 0 15.5

64 | 288 0 +2.81-6.2 +0.5 | +13.5 | 0 +0.5 19.7

.4.2 Spinning Spacecraft

Limited testing was carried out to evaluate the basic acquisition and track

algorithms for a spinning

spacecraft.

Since these functions are so inter-

dependent, the only meaningful performance parameter is tracking or electronic

beam despinning accuracy as a function of acquisition time.
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The test scenario proceeded as follows: i

o A forward link was simulated at 2106 MHz by trans-
mitting to the rotating ESSA antenna.

® The acquisition mode was initiated but the data
collection period, Phase V, was varied.

e The true spin rate was determined by measuring the
time interval between output pulses from an electro-
optical revolutions counter.

il

The spin rate error is simply the difference between the calculated value (from
the acquisition phase) and the true value determined mechanically. This rate
error was converted into an anqular pointing error after 100 revolutions or
36000 degrees of rotation. Data from the 5 and 10 rpm test cases is shown in
Figures 5-22 and 5-23 respectively. The average rate error is based on ten

independent test cases.

Although it is difficult to draw conclusions from such limited test data, it
appears that there are no fundamental flaws in either the control sequence logic

or execution of the algorithms.

On the assumption that this is valid data, we can make quantitative conclusions
regarding the tracking performance of the present system.

1) For a 5 rpm spin rate a data collection period or
acquisition phase of roughly 108 seconds will be re-
quired to ensure a beam pointing error of less than

60 after 200 revolutions or 40 miutes.

Beam pointing errors greater than 6° are unacceptable because the gain roll-off

will exceed 0.7 dB* causing the coverage gain to drop.

* 0.7 dB is significant because coverage gain calculations assume this
as a maximum gain roll-off regardless of source; bcam crossover or
pointing error.

60




g
on
s
e

3jea395ed§ bujuutds wda G 40§ Adeanddy bupydedl 22-§ aunby 4

A 3SYHd - POJ3d u01323110) VIVO

(spu0d3s)
8 2L
]

-
L T
L 9

(suoy3n|oA3y)

ozt 801
. “
6

[« ] --g
D e O

o
q--w

ot

(sax4baq)

suoLInoAdy GOI
4333y 40443

fujjuiogd weag



3jead2deds Huruuids wda Q1 40j Aoeanddy bupyoeay €2-§ aanby 4

A ISYHd - POLJad UO0LII3( (V) VIVE

(spu023s)
v 2y 9¢ ot S
5 F ¥ i " _ : _ 0
o ot 6 8 Ny 9 S v
e | ,
{suo13n|0A3Y)
A
[ ]
.4/\ papJebauasig 9
Juiod eIeg Siyl [
(saaubag) ~
-8 suopanioasy 001
4314V 40443

-0l Buyjuiog weag
- 21
ail

- 91

L

81




F79-08

2) For a 10 rpm spin rate an acquisition phase of nearly
80 seconds will be required to ensure a beam pointing
error of less than 6° after 400 revolutions or 40 minutes.

Initially it seems paradoxical that an acquisition period of 108 seconds is
reauired at 5 rpm but only 80 seconds are needed for 10 rpm. This is reason-
able however, since accuracy depends on the number of data points and not the
collection time.

Another factor is that the Phase V timing increments were chosen to favor the
higher rpm rates to satisfy the general case. Improved performance will result
by optimizing the timing intervals for a specific spin rate.

Phase measurements were not taken for this mode. However, since adjacent beams
are used in both the acquisition and track functions, beam to beam phase varia-
tions in excess of the previously determined value of 10° deqrees maximum(s) are
not expected. Measured phase data for electronic beam despinning will be re-

quired ultimately for complete performance characterization.
6.0 RELATED STUDY EFFORTS

During the course of the contract several related study efforts were conducted
in special interest areas. Although this subject material is outside the scope
¢f this report and thereturc not included, this section is provided to acquaint
the reader with these additional topics. A summary of the scope and conclusions
are presented for each task in the sections that follow.
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6.1 Low Gain ESSA Configurations for Scout Applications

The purpoce of this study was to determine the RF radiation characteristics

for three Srout compatible ESSA antenna configurations. The three configura-
tions analyzed included an 8-inch diameter truncated sphere, a 15-inch diameter
truncated sphere and a toroidal surface with a 25-inch major diameter and a
12-inch minor diameter.

The results of this effort include a performance comparison, Table 6-1, weight,
size and power estimates, Table 6-2, and a plot of coverage gain versus ESSA
antenna size, Figure 6-1.

A complete description of this work is contained in a study report entitled
"Scout Compatible ESSA Antenna Systems for Spinning Spacecraft," dated

1 August 1978. A companion document containing a nreliminary engineering
proposal for the development of a first user flight model is entitled "Flight
Model Development of an ESSA System on a Spinning Spacecraft,” dated

1 September 1978.

6.2 Thermal Model Description and Analysis Results

Thermal models were developed for the Engineering Model ESSA antenna with three
different internal electronics configurations as follows:

Model Configuration Nodes
I Antenna Electronics and one TDRSS Transporder 62
11 Antenna Electronics and two TDRSS Transponders 69
I Antenna Electronics, GPS electronics and two TDRSS 76
Transponders

The models and subsequent analysis were dcoveloped to identify any major thermal
problems due to heat dissipation from internal electronics systems. The results
of this analysis are summarized in terms of predicted temperatures for each of
the electronics packages. The data frum the three models indicates that thermal
contro]l of the ESSA antenna and associated electronics can be accomplished with
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F79-08

selective surface finishes; no active or semi~active thermal control devices
are needed. The table below is a summary of the results for the various
electronics packages:

ALLOWABLE PREDICTED
0 0 0 )
ITEM Rmx(c) Hﬁn(c) %wx(c) %ﬁn(c)
Antenna Elec. 40 0 26 2
GPS 50 -20 11 7
Transponder (1) 40 -10 40 25
Transponder (2} 40 -10 22 10

It should be noted that the above predicted temperature ranges could be reduced
by allowing close thermal coupling between the various electronic boxes. Hand
calculations indicate that the internal temperature range could be held to

20°C + 10°c using this technique. Also, t1e present design uses only radiative
couplings for thermal control. Therefore, the operating range of warm instru-
ments could be lowered by the use of custom design conductive interfaces with
the internal support ring and/or the spherical shell.

In this effort, no attempt was made to find an "optimum" thermal design. Further
refinement in the external finishes and the internal conductive interfaces
should allow accommodation of a wide variety of internal electronics complements.

The situation would even be further improved if the antenna were in a spinning
configuration. A spinning antenna would have much lower Ts across the shell
and consequently a more even temperature distribution on the shell and antenna
elements.

The details of this effort are rdocumented in two reports entitled "Thermal Model
Description" and "Thermal Analysis Results" both dated 25 August 1978.
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6.3 ESSA II Analysis and Test Results

The purpose of this task was to assess the gain characteristics of ESSA type
antennas employing phase corrected apertures. This type of antenna is
referred to as ESSA-1I. Following the analysis phase a 38 cm radius model
was implemented to demonstrate the performance improvement.

Although the experimental model was only moderately successful, the projected
performance for a 38 cm R ESSA-II is 15.85 dB which is 1.85 dB above the
coverage gain of the same size ESSA-I.

Performance projections for ESSA-II type antennas between 38 cm and 102 cm in
radius are given in Figure 6-2. ESSA-I and ESSA-II performance comparisons
for the same size range are summarized in Figure 6-3.

This task is described in a separate report entitled "Gain Improvement Feasi-
bility Study Report and Hardware Implementation Test Results," dated 10 May 1979.
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22 f————
20 b - ESSA H
(PHASE CORRECTED SUBARRAYS)
18] —- -
16 .
COVERAGE GAIN
(dBi)
14 TR
12} . ]
ol ESSA T
(NON-PIASE CORRECTED SUBARRAYS)

'] I
6 /( . - . -

i

} 'SPHERICAL RADIUS
0 5 10 15 (inches) 20 25 30
0 12.7 25.4 38.1 (cm) 50.8 63.5 16.2

Figure 6-3 ESSA I and II Performance Comparison
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1) GENERAL INFORMATION

The £SSA electronics consist of a control console and a hand-held
terminal. The control box contains the TI-990 microprocessor

and a BASD designed interface electronics board. This board
primarily converts the digital computer commands into the analog
signals which control the antenna and display dome.

Although, the display dome gives a visual representation of the
active antenna elements, the theory of operation between the two
is different. That is, the display dome functions in a serial
mode, but the antenna drivers operate in a parallel mode. The
active "1's" on the display dome actually march through each dis-
play LED until the entire 120 element display has been clocked in.
This is evident by the flickering appearance of the LEDs when

the pattern is being changed. In the antenna, however, the active
"1's" are serially clocked into shift registers from which the
entire 120 element pattern is transferred in parallel to the PIN
diode drivers with a single clock pulse.

The ESSA control electronics also interface to a set of switches

on the front panel. There are twoe reset switches. The TI-Bug

RESET is used once each time power is turned on. The ESSA/RESET

is used to regain control when the processor is occupied in an
operational mode. It will not be needed for modes where return

of control is automatic. These are modes: 1 - directive beam,

2 - omni, 3 - multibeam, and 4 - accuisition and track non-spinnings,
5 - spinning is with switches 4 and 5 both on.

2) INITIAL TURN ON

® Connect the TM990/301 microterminal to "TERMINAL"
connector on the ESSA Control Console front panel.

C-2
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0 Turn off all mode select switches and turn the con-
sole PWR-ON switch to on.

o Depress the TI-BUG/RESET button ~n the consol.

o Depress CLR

o Enter 1030

o Depress FEEE]

o Depress "RUN

The program will now execute the 'Reset' portion of the ESSA
control program as shown in the flow chart in Figure 1. The
default beam and target positions are copies from permanent
memory (PROM) to volatile memory (RAM) for the default cases.
Table 1 shows a summary of the most pertinent parameters.
Section 4 provides a description of how to modify these para-
meters at run time.

Note that the program examines the Operational Mode Select
switches as they appear left to right. If you attempt to run
mode 4 and forget to turn the toggle switch for mode 1, 2 or 3
off, you will be disappointed.

3) HOW TO RUN ESSA IN AN OPERATIONAL MODE

o If ESSA is in active omni or ACQ/TRK - DESPIN
depress ESSA/RESET

0 Select the operational mode by setting one of the
mode select switches on the control console to ON.
Mode 4 has a spinning or stationary option. Mode

c-3
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4)

5 requires both ACQ/TRK and SPIN to be on. This
is controlled by the toggle switch on the far
right. The'simulator ON/OFF switch on the far
left should always be up unless you are operat-
ing with an external AGC input.

Depress H/S terminal button.

Depress RUN

NOTE: Be sure to first turn the mode select
switch OFF before changing to a new mode
or ESSA/RESET will cause the program to
just re-enter the same active program,

HOW TO MODIFY THE CONTROL PARAMETERS AT RUN TIME

0
0

=]

Restore default conditions (see Paragraph 5)
Mode Switch OFF

Depress l H/S on terminal

Depress TI-BUG/RESET on console

Depress l CLd] on terminal

F79-08

+ (See Below for decimal to hexadecimal conversions)

Depress the hexadecimal number keys on the
terminal to enter the parameter's hex address
(see Table 1)

Depress rEMA The current value is displayed

Modify the value by depressing the hex button
on the terminal.



F79-08

0 Enter the new value by depressing EMD; or depress
EMDI if you wish to examine or modify a set of
values which are sequential in memory.

0 Select mode switch

o0 Depress RUN

If you wish to use the microterminal's built-in hexadecimal to
decimal conversion capability, insert the following steps at
the point denoted by the arrow above. Remember that all angles
are entered in degrees x 10 as whole numbers.

o Depress D-H

0 Enter the data via hex data key depressions. The
decimal data in the five right-hand digits on
the terminal are converted (i.e. 270° is 2700
HEX = OABC).

0o Depress D-+H The results of the conversion are

displayed in the four right hand digits of the
display.

0 Repeat above H»D for hexadecimal to decimal
5) TO RESTORE DEFAULT CONDITIONS
0 Set all mode switches OFF

o Depress H/S

o Depress RUN

o Refer to Section 3 for mode selection

C-6
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TI BUG RESE ESSA/RESET

ENABLE: Clock (#1), ¢=0 (#2)
ESSA/RESET Interrupts

SET: Clock = 0, Elements/Beam = 12,
No Spin, Simulation AGC Disabled

ENABLE
SIMULA
TION
AGC
RUN DIRECTIVE
BEAM MODE
RUN OMNI |,
BEAM MODE J:l
RUN
MULTIBEAM
MODE

RUN PHASE I-1IV
OF ACQUISITION
AND TRACK

MODE

RESET .
ALL CONTROL
AND

AIT FOR
H/S RUN

[TRACK (COMPUTE
RATE & DESPIN)

**ESCAPE FROM MODE BY PRESSING ESSA/RESET

Figure 1
C-7
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