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Introduction

5 1. If the current-voltage curve of an iron wire stretched 4O *

through rarefied hydrogen is recorded under the proper conditions,

a peculiar phenomenon a ppears, which is shown schematically in

Fig. 1. With increauing voltage a the current

i increases at firs:., although at lower rate

than the voltage. Fbwever, from a certain voltage

value onwards, the current increase ceases

(Point a). From there onwards, the current

remains almost constant over an appreciable

range of voltage until, after a certaiA

increment ab (Point b), it rather suddenly begins to climb again.

This property of such iron resistances has been known for

a long time and is commonly used in technological applications in

order to keep the current in an apparatus independent of the line

voltage, as in Nernst lamps in particular. Such resistances are

also used (under the name "Variators") as starting resistances

for smaller motors.

An explanation for the peculiar form of the current-voltage

curve has not previously appeared in the literature; the well-

known high temperature coefficient of resistance for iron has

been invoked now and then. While this explains the strong

curvature of the lower branch 0 -a of the characteristic, the

origin of the vertical slope of branch a-b remains to be clarified.

* Numbers in the margins indicate page number in original foreign text
1
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It will be sought in the following to give this clarification

in the frame of a general investigation of the behavior of electrically

heated wires in rarefied gases.

We will begin our task with the heat balance equation:

(1)	 i2 R (T) - A(T),

(i w current,

T * temperature of the wire,

R(T ► - resistance of the wire at temperature T,

and AM - heat, loss per second at the temperature T).

When R and A are known as functions of the tempe-ature, this equation4on

gives the temperature for each current i, as well as the electrical

resistance R and the terminal voltage o - i R.

Numerous measurements of the temperature dependence of the

electrical resistance are available in the literature, so that the .

function R(T ► Can be considered to be known for almost all metals

that might be considered. The temperature dependence of the heat

loss A requires, on the other hand, a more penetrating investigation,

to which the first part of the following work is directed. We will

use these results in the second part for construction of

characteristics; we will find that in the case of just the iron

resistance discussed above, the characteristic constructed on tho

basis of Eq. (1 ► cannot be realized because it corresponds to a

labile state. The real behavior of wires will be derived, and a

theory of these resistances will be given. Finally in the third

part the results of the theory will be tested against experlUdent.

2
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I. The Laws of Cooling

6 2. Three phenomena are to general effective in cooling a

heated body: radiation, heat conduction, and convection.

a) The radiation is given by the Stefan-Foltzmann law,

which reads as follows for a black object:

(2)	 As(T) = a (T 4 	 To4 ) • o.
	 j

where T = the absolute temperature of the object,

To - the absolute temperature of the surroundings,

	

o = the surface area of the object, 	 1

and a = the radiation constant = 5.76 x 10 -12 Watt/cm 2-deg2

With an object not perfectly black, the absorptivity

appears as a factor on the right hand side. This quantity in

general depends on the temperature. With polished metals the

radiation law is modified by a dependence of the absorptivity on

the wavelength of the radiation as well. The theory (Aschkinass2)

gives in this case a radiation formula which we can write in

the following form with the use of the radiation constant:

(3 ) = = 1,04 V^ ll 1000 	 l
(-10—Y".1.

-   	
o Watt

where s represents the specific resistance of the metal at the

temperature T in i2 -mm2/m, i.e. the resistance of a wire of
1 m length and 1mm2 in cross section.

W. Gerlach, Zeitschr. f. phys. 2 p. 76, 1920.

2E. Aschkinass, Ann. d. phyn. 17 p. 9fo, :9^5.
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The fraction of the heat lose due to radiation is appreciable

only at high temperatures and very small pressures; we will

consider it in general to be correction factor.

b) While the radiation losses simply add to the remaining

heat losses, this is not true of the heat lost by convection.

These losses cannot be determined separately; rather, the process

of heat conduction is modified by convection. The heat current

carried with the moving gas alters the temperature distribution

in the gas and thus, the heat loss through conduction as well.

For this reason, convection is not very accessible either to

experimental or theoretical study. To the author's knowledge,

the only available attempt at a theory is that of L. Lorand ; for

a flag vertical plate suspended in open space he obtains the 	 /404

following expression for the quantity of heat lost per unit surface

area:

(4)	 Ak=C	 1 !1 p h (T-T0)5/4,

with C = a constant,

1 = the height of the plte,

and P = the density of the surrounding gas at a large

distance from the plate.

This formula can obviously apply only in those cases in

which the heat loss is large in comparison with the gas at rest.

Without this assumption, the heat loss per degree of temperature

excess AKAT-T0 ), calculated on the basis of the formula, decreases

befteath all limits with increasing 1 or decreasing 	 (T-T0 ) and

would ultimately become smaller than the heat loss in the gas at

LL.Lorenz, Wied. Ann. 13, p. 579, 1884.
"x
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rest, which is impossible. Thus the Lorenz result, as confirmed
ti

by experiment, is of very limited application.

We will therefore restrict ourselves in the following to

those cases in which the heat loss through convection is excluded

as much as possible. According to Kundt and Warturg 4 this can

always be achieved by making the gas pressure sufficiently small,

for on the one hand, this decreases the buoyancy (the driving

force of the gas motion) thus reducing the gas velocity, while

on the other hand the heat capacity of a unit volume will also

decrease, decreasing the cooling effect of the gas. This pressure

dependence is expressed in the Lorenc,i formula (4) by the

factor.

c) Thus we are left with heat conduction as the essential

cause of heat loss through the surrounding gas. From now on, we

will consider a definite arrangement; a wire of radius r l and length

1 is stretched along the axis of a cylindri<,al vessel of radius ro;

the absolute temperature of the wire is T 1 that of the vessel is

To . The wire length we take to be so large in comparison with

its radius that we can consider the wire to zae infinitely long;

..e,3 , the temperature along the entire length of the wire can

be considered to be the same. Thus we ignore heat conduction

from the ends of the wire. Let X be the thermal conductivity of

the gas and T the temperature at a distance r from the axis.

Consider a cylindrical shell of radius r and thickness dr

concentric with the wire. In the stationary state the same heat

current passes through each such shell, namely, the quantity of /
405

4A. Kundt and E. Worburq, Pogg. Ann. 156,p. 177, 1875. 	 5



(5)
^r

lu r^
t

heat given off from the wire:

C°	 . Y rx 
rJr I.

Now according to the kinetic theory of gases, 
X is proportional

to vrT"' in agreement with the average of the rather scattered

experimental results . 5 .Let us therefore set

4	 ^JT,

thIAS	 :Txt )If JP,

and integrated

This gives the desired temperature dependence of the heat loss

by conduction. According to this, AL is independent of ga gs pressure.

3. Formula (5) is, however, valid only at high gas pressures.

At lower pressures, the heat transport is affected by the temperature

jump occurring between the hot surfs°,e of the wire and the gas

layer immediately neighboring the surface. For this case the

formula of Smoluchowski 6 applies for the heat loss:

•. n t C 7'^ .^ 'I'i1 e
(5a)	 I^ a•	

r	 {	 t ^^
r,	 ^,•	 r,

Landolt-Hornstein, Phys. - Chem. Tab., 4th Ed., p. 743, 1912.

6M. V. Smoluchowshi, Wlied. Ann. G4, p. 101, 1998.
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where 'Y is the "temperature jump coefficient", i.e., that length

which gives the temperature jump when multiplied by the temper-

ature gradient in the gas. Here Y is of the order of magnitude of

the mean free path length L in the gas and is proportional to it, /406

and is thus inversely proportional to the gas pressure p. it is

easily seen that with decreasing pressure p, the second term of

the denominator grows; thus A in fact decreases. At very large

pressures the second term disappears in comparison with the first=then

the 5moluchowski formula goes over into our Formula ( 5)-at least
for small temperature differences( T i-To « TI ) for which one can

put 3 / 2 Jo ( t?? -To ) in place of (Ti/x - To3/	 )

In fact the Smoluchowski formula is valid only for small

temperature differences, since X as well as Y were assumed to

be independent of T in its derivation. In reality X and "v vary

appreciably with temperature; X , as remarked above is proportional,

to PT, and Y is proportional to the mean free path length L. Thus

V	 is, say, Y o L = Y o LOT, since L is proportional to the absolute

temperature.Since, according to the theoretical ideas ? of the origin

of the temperature jump, an appreciable variation of the proportionality

constant Yo with temperature is not to be expected, it may be assumed

7cf. for example:
M. Knudsen, Ann. d. Phys. 34, p. 593 1 1911.
M. V. Smoluchowski, Ann. d. Phys. 35, p. 983, 1911.
H. Bolza, M. Born and Th. V. Karman, Gottinger Nachr., 1913.
B. Baule, Ann. d. Phys. 44, p. 145, 1914.

T
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that Y is proportional to T. Because of its neglect of this

temperature dependence, the Smoluchowski formula is unsuited

for our purposes, where temperature differences ua to almost

10000 are to be assumed. The question now arise, whether the

derivation of t Us formula can be adapted to large temperature

differences. Thin is in fact possible. However the formula

obtained is so complicated that it is suitable neither for

obtaining a general understanding of the problem, nor for technical

applications. Above all, the calculation can be carried through,

as in the Smoluchowski case, only under the Assumption that

the mean free path is small in comparison with the wire radius.

For wire radii of the same order of magnitude as L or smaller,

there is as yet no theory. This assumption, however, means in

our case, in which the wire radius is small in comparison with

that of the surrounding vessel, that the term^
 u +l

	-^
•

in Eq. (5a) is small in comparison with in.•	, i.e., that
ri

the influence of the temperature jump on the heat Loss is small.

Thus, if the temperature jump appreciably affects	 the heat

loss, the assumption above cannot be •fulfilled.8

At low gas pressures we are, therefore, forced to rely on

experiment to obtain the heat loss.

8with Smoluchowski, the situation was different. He considered
the diameter of the inner heat -emitting cylinder to be only
slightly smaller than that of the surrounding vessels thus
In r /r was of appreciably smaller order. Thus, in his case,
the iemberature jump exerted a noticeable effect on the quan-
tity of heat transported from b N1 on.

7
1
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5 4. The experiments were set up so that a measured electric current
,

i could be :sent through the wire under study and the terminal voltage e

could be determined between its ends. Then in the stationary state the quantitya
of heat lost, expressed in energy units, is equal to the electrical energy

input ei. The temperature, on the other hand, can be determined from

the resistance R ue/i, if this is known as a function of the temperature.

Fig. 2 shows the experimental apparatus. The test wire D was stretched

vertically through a thin walled glass vessel G.

of 30 mm diameter and provided with a cooling jacket.

The ends of the wire were clamped tightly in 3mm i
i

thick brass rods. For eaFe in changing the wire,	 l • ,

the upper rod was cemented into a slide S, while

the lower rod was onl y a :short piece to which a
ra

copper wire was soldered whose lower end was
i

immeresed in mercury, which provided a path for

the current. In this fashion the wire could be	 Fig.

stretched evenly and could respond to the rather considerable thermal expansion

at the high temperatures employed. Regulation of the temperature of the 	 /408

walls of the vessel was provided by water flowing through the cooling jacket.

The water temperature was determined with a mercury thermometer. The

vessel G could be evacuated with a Gaede rotary mercury pump. The pressure

measurement at higher pressures was made with a mercury manometer; at

lower pressures (below 4mm Hg) the measurement was made with a McLeod

manometer. The hydrogen used to fill the vessel was prepared electrolytically

from potash lye with nickel electrodes and dried with calcium chloride and

phosphorus pentoxide. Control measurements which were carried out with

mN rest hydrogen, which had been diffused in through a red-hot palladium tube,

resulted in the same values, indicating that the electrolytically prepared
5

hydrogen was sufficiently pure. Platinum was chosen as the material of the

I
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wire, since on the one hhnd it is best suited to determination of the

temperature and, on the other hand, affords a clean welt-defined surface.

$o called "hair wires" 9 of 0,0511 mm diameter were used. The wire length

amounted to 10 cm overall. Current and voltage measurements were carried

out with precision laboratory instruments (Ammeter Am and voltmeter Vm).

The voltage drop across this ammeter was calculated from the anMneter resistance

and was used to correct the measured voltage.

15. Sources of Error and Corrections. The following sources of error

come into question: 1. The thermal resistance of the glass wall, and

2. the finite wire length (heat loss through the leads). One can imagine

the effect of the first replaced by hydrogen layer of the same thermal

resistance. Thus 'it amounts to an apparent enlargement of the radius of

the vessel. Since, however, glass conducts heat abou t. five times better

than hydrogen and the thickness of the glass only amounted to about 0.5 mm,

this enlargement of the vessel radius amounts to only about 0.1 mm and

can, therefore, be neglected. On the other hand, the heat loss at the

ends of the wire has an important effect , which appears as follows.
Because of the lower temperature of the ends both the resistance (and therewith

the temperature) as well as the heat loss appear smaller than would be the

case with a wire at a uniform temperature. One can eliminate this error by

measuring the voltage, not between the ends of the wire, but rather between /4

two points sufficiently separated from the ends. This method is, however, not

applicable to our thin wires, since the leads necessary for measurement of

the voltage, however thin one may attempt to make them, must exert a cooling

effect and lower the temperature of the wire at the point of Attachment.

Another way would be to send the same current through two wires of different

length stretched in the same fashion. The heat loss and temperature might then

9supplier Hartmann and Braun, A.-G., Frankfurt a.M.
10



be determined from the difference in the measured voltages., 10 However,

because of the yet unclear effgct of the convection, which by Eq. (4)

must depend upon the wire length, the author has not chosen to use this

method, but has preferred to calculate the required correction, which was

determined in the following fashion.

Let x be the distance of a point on the wire from an end; X , the

thermal conductivity of the metal of the wire in Watt/cm-deg; q, the cross

section; and Ao(T) and RO (T), the heat loss and resistance per centimeter of

wire length, respectively. Then the temperature distribution along the wire

will be determined through the differential equation

(b)

	 rl	
.1' 1 — ^^ lt"[t3

with the accessory condition that the temperature of the end of the wire (x=xo)

is equal to the temperature of the surroundirgs. This is an assumption, which

can be regarded as fulfilled in view of the large cross section of the brass

rods providing lead connections. We may further assume that the wire is so

long that the temperature in the middle is independent of x (dc • d • 0^

We can then regard the wire as infinitely long on one side and do not need to

worry about the other end. The equation can be easily integrated in the

case that A°(T) and R OM are linear functions of T:	 i 410

;' . r — 7.0

(Rio - resistance per cm at temperature To . C and a = constants). Then we have

tlt	 t,

10
R. Goldschmidt, Phys.ik. Zeitschr. 12, p. 417, 1911.

11
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wi th

d. is the temperature at the middle of the wire, since 	 s'

# 'M o. .

Taking into account the accessory condition, the solution of the

differential equation becomes:
10 

-0 for

or

The temperature measured in our set up is the average value

u

from which the correction formula for the temperature follows:

mit A - "/ I q

For our experimental set up (platinum wire of 0.0513 mm diameter,

10 cm long, R=5.14 Ohm at 0  , X =0.70 Watt/cm-deg) the factor K is

calculated to be	 A l 06. 10-.; A inp, 	 m A
3eg

The observed heat loss is then 	 44

,6 W 2
J
 d'tT; ds :.f^(T^ l _ 1	 .^(ra 

j 1 1 _
	 ;

U	 =Y	 `	 t

Thus the following correction formula results for A: 	
/411

K

12	 1^

^7t'»
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or approximately (A,/i a e a terminal voltage):

(9a)	 —
+

Earlier we assumed a linear variation for the functions A(T) and

R(T). If we now drop this assumption, then the solution of the differential

equation can no longer be brought into a useable form. Nevertheless we

can give an approximate solution if A and R do not deviate strongly from

linearity, For T we assume a function of the form of (7), but we give the

constant 0 a different value, namely one that allows dT/dx to take the

proper value at xnO. This value can rigorously be calculated from the

differential equation (6); upon taking into account the subsidiary condition

dT/dxw 0 for TaT.

(71) d T

thus

I) d;r

Since 
on 

the other hand our assumption of (7) gives

61 r

one finds after some rearrangement the following value for

1--le"; .
	

. 1—

A V (r.
, 

— to) t(TS)

wi th

(10)

rx	
IWO	 I	

TO

Ire

/412

and thus the following correction formula for the temperature is found.

13
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For the measurements the average value of the vesistance R appearing

in Eq. (1) was calculated from the constants of the resistance formula, while

A was in general determined by graphical integration; f proved to be always

not far from one, differing by at most 20% in the most extreme case.

The correction formula for the heat loss could not he developed in

general form. The observed heat loss

t,
r^,	

,^ 3
l o t F, I/ l

i!

teas, therefore, calculated under the assumption of various functions Ao(T),

some of which rose more rapidly, others morti slowly, than in a linear

fashion. Always there resulted for A b an expression of the form

The factor g(T,.) was always almost equal to the reciprocal value of f(T,,a ),

so that the product fg, appearing as a factor multiplying K in formulae

(9) and (9a), can to a satisfactory approximation be set equal to one.

These formula, therefore, maintain their validity even for the case of a

nonlinear variation of A(t) and R(T).

§ 5. Results of Measurements. First the resistance function of the

platinum wire material employed was determined. To this end the wire was

wound in the usual fashion on a mica cross. This was sealed into a glass

vessel filled with rarefied hydrogen and the resistance thermometer thus

prepared was compared with a platinum resistance thermometer of Heraeus that

had been calibrated in a boiling apparatus. The comparison was made in a

paraffin oil bath at temperatures between Oo and 3800E in steps of about

200 . The results could be represented to within 1/10 degree by the quadratic
14
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•	 ' equation

(11)	 g = 1 -- 0,II03241	 0,449 + 10 M tz

(to the temperature in Celsius degrees, RO= resistance at O°C.) Without

hesitation this formula could be used to this high degree of accuracy even

for higher temperatures (up to about 9000), in spite of the low purity of
.

the metal shown by the low value of the first constant. With the actual

measurements the determination of the average wire temperature from the

measured resistance was made with the aid of the above equation using

graphical methods.

In this fashion current and voltage were determined for the sample wire.

From them the temperature and heat loss were calculated as described in 5 4

and were corrected according to formulae (8a) and (9a). The results are sum-

marized in the curves of Figs, 3 and 4, where the heat loss is plotted as

a function of the temperature for various gas pressures p.	 /414

/413

/^
x

+i
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The heat loss A thus measured is composed of radiation as well as

conduction losses, which are eventually affectes't, by convection. In order

to be able to ascertain the conduction contribution by itself, the radiation

loss was determined by a special measurement at the highest vacuum; the gas

pressure was no more than O G ^,.1 mm higher than the mercury vapor pressure,

which amounted to about 0.001 mm. Here the application of the corrections

formulae (8a) and (9a) appeared to be no longer admissible, since the A(T)

curve (Eq. 3) deviated very strongly from linearity. Therefore, A was

determined by forming the difference of the measured voltages on two

wires of different length (10.0 and 34.2 cm) carrying the same current. This

result is given by the points marked with simple crosses and the curve

labeled with pa0 in Fig. 4. The curve is computed according to the Aschkinass

theory (Eq. 3); however, the calculated A values had to be multiplied by a

factor of 1.7 in order to reach agreement with the measurements. Thus the

absorptivity of the platinum surface had to be 1.7 times greater than the

calculation assumes. The origin of this difference will not be further

discussed here. At the same time, the opportunity was taken to test

correction formulae (8a) and (9a). The A values calculated with the

aid of these formulae applied to the shorter wire of 10 cm in length are marked

in Fig. 4 with the circled crosses. On account of the wire length, these were

the most unfavorable conditions for the use of these formulae. It is obvious

that the deviation from the correct values is small, particularly at the

higher temperatures, in spite of the large size of the correction, which at

times amounted to as much as 40% of the measured value. The formulae thus

lead to approximately correct results even far outside of the domain for

which they were derived.

It is clear from Fig. 4 that the contribution of radiation to the heat

loss becomes considerable only at the lowest pressures. For these pressures
16



p - n,33 wto
A

;S^ Mrs

' Fig, S.

' the remaining heat loss (by conduction) after subtraction of the radiation is

given by the two dashed curves in Fig. 4.

17. Before we undertake the task of calculating the current-voltage curve /4i5

from the measured variation of the function A(T), there remains to be discussed

the form of the A-curves and the conclusions to be drawn from them in relation

to the heat conduction process in hydrogen. At high pressure the curves

are convex tawards the abscissa and follow fairly exactly the law

R
'	 ,i r	 („ Ia,c ' ( 7 "'	 ' rt4 I)

as Fig. 3 shows, where the curve passed through the second series of pointsll

from the top (p=250 nmm) is calculated by this law. With decreasing pressure

A decreases, and in fact, more rapidly the higher the temperature is; the

curvature decreases, and near p=80 nn the curves are almost straight lines.

By further decreases in the pressure they show a concave curvature towards

tN abscissa, which constantly increases with decreasing pressure after

subtraction of the radiation (dashed curves.) Without this correction,

but as a conse ,uence of the radiation, the concavity towards the abscissa

later decreases again and finally changes over to convex curvature towards

the abscissa. The variation pictured here

1

i 1

is, however, only relevant at higher

temperatures. At lower temperatures the

behavior is quite different. Here the

curves are almost exactly linear, and

what is most striking the transition to

the higher temperature region results

in a pronounced cusp, particularly at

the lowest pressures.

11The top serieu of points (p=740mm) were not considered
because of their somewhat anomalous behavior, obviously a
consequence of the effect of convection (see below) . 17
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In Fig. 5, which shows the lower portion of the curve for p n0.33 mm on an

enlarged scale. this cusp is particularly clear. Recording the points

directly above the cusp was difficult, because the lability phenomena dis- 	 /L16

cussed below appeared. This is a proof that to the left of the cusp, the

curve must show a very shallow rise. At every pressure the cusp lies at

about the same temperature, namely around 12 	 FurtherFurther experimental series

showed that the cusp moves to higher temperatures, both with increasing

temperature TO of the surroundings and with decreasing wire diameter.

The origin of this striking separation between two different regions of

temperature is very difficult to understand. The first idea that might occur

is that convection is significant and that the cusp represents the transition

from laminar flow to turbulence. This idea must be rejected since the Reynolds

number here is too small by many orders of magnitude. The clarification of

this question, which is far afield from the purpose of this work anyway, must

therefore await later investigations.

We will now attempt to represent the observations above 200 0 by a

formula. The structure of the Smoluchowski formula suggests that we

should try an equation of the type of our formula (5). The denominator of

the right side would then have to be expanded with a contribution dependent

on the "temperature jump". Therefore the expression

It

was calculated from the measurements and was plotted in Figs. 6 and 7. Fig. 7

gives the F values for the smaller pressures. For graphical reasons the

product pF was chosen as ordinate. For the bottom curve, which otherwise would

fall on top of the next one above it, the scale of the ordinate was reduced

in the rat.: 3;4. It is clear that each series of points falls with great

accuracy on a straight line. Only the curve obtained at atmospheric pressure

is noticeably curved. Since it is reasonable to assume that convection played

18
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a disturbing role here, we will not consider these points in the following.

The deviation of the highest temperature points on the lines corresponding

to the lower pressures is probably connected with a nonuniform temperature /417

distribution caused by lability (cf. Part II), which was at times observed

here and which would have to throw the measurements into error.

t

Thus F can be represented by the equation

rIn=.I/-r ST

and A
L
 by

(12)	
To. - r.1

where M and N are constants which depend on the gas pressure p and can be

determined from Figs. 6 and 7. They are tabulated in the third and fourth

columns of Tab. I for the different pressures.

Table I 

.:^^,1 t' !10 ,.v	 i.'
obs"f	 obg

ao
11,9
AS

0,0::;	 1,s9
0,0411	 1,30
0.:12	 1,50

}	 0.05,
0,421
1,41

6,0
2,b9
1,0:
#J-31

0,41
1,4,1
9,34

14,4

1.50
8,29
8,3

(	 1s

0,92
6,40

20,4
1 58

P
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b8	 I obs^
10"om

Cal
.V
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IO^w
cal
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104 91 1,00 0,42 0.461
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1l,9 ii 1,90 0,90 to"
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In the second column the ratio L o/r1 of the mean free path length in

u	
/418

the gas at the temperature To ( n 10 C) to the wire radius is given, it

is obvious that M is almost constant and N is approximately proportional to

p so long as Lo/r 1 is small in comparison with one. Conversely, if Lo/r1
}

is large in comparison with one, then the products Mp and Np are approximately

constant, as columns 5 and 5 show. This last product has, however, a smaller

value than at high pressure. Only the values at the highest pressure

(ps250 mm) deviate. Here there is probably, as at atmospheric pressure, a

disturbing influence exerted by convection.

In order to determine more exactly the dependence of the quantities M and

N on p, their reciprocals were plotted

as functions of p. This is carried out

in Fig. 8, which shows that 1/M and 1/n

can most simply be represented by

exponential functions. Thus one obtains

from M and N the empirical formulae:

(13 a;
	 ^auo

.^' ..	 144

	

t I,411—	 +,L.)

The values of M and N calculated with these formulae are reproduced in

columns 7. and 8. of Table I. They show satisfactory agreement with the

quantities determined from observation.

For higher pressures at which the exponential terms can be neglected

(p >20 mm), these formulae yield the following simplified formula for the

(tsb)

heat loss:	 a

4)
20	
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When one considers that LOT/To is the mean free path length in the immediate 1.19

vicinity of the wire, then one notices the strong similarity with the

Sinoluchowski equation (5a), extended to larger temperature differences

by analogy with Eq. (5)t

i X %1 t7^^ - T y^^
(5b)	 ,44 -

Our formula differs from the above in only one respects in the second

term of the denominator the radius r  a-pears increased by a contribution

equal to 1.4 times the mean free path. Equating the two formulae yields for

and	 the values

lu ''
x@Vii, 1	 1,17. 10` 6 wan 3

c=tt deg ^2
1 002 ^0

.!s.i oo— - — 14,3

and for the thermal conductivity of hydrogen at 0°C.

X(00 )- X 0 273= 1.93 x 10-3 Watt/cm-deg - 4.62 x 10 -4g cal/cm-deg-sec

X(1000) = X  373 = 2.26 x 10-3 Watt/cm-deg - 5.40 x 10-4g cal/cm-Aeg-sec

Other authors have measured earlier the following values:

X (00 ) - 3.19 x 10 -4 (Graetz 1c),

X (00 ) - 3.27 x 10-4 (Winkelmann13),

Y - 6.96 (Smoluchowski 14 for hydrogen on glass),
0

Y o = 5.70 (Gehrcke l^ for hydrogen on silver),

Yo 5.6 (Smoluchowski 16 for hydrogen on platinum from the measurements

of Knudsen)

2L. Graetz, Wied. Ann. 14, p. 232, 1881.
3A. Winkelmann, Wied. Ann. 44, pp. 177 & 429, 1891.14M. V. Smoluchowski, loc. c t..

165E. Gehrcke, Ann. d. phys.2; p. 103, 1900. 	 21
M. Smoluchowski, Ann. d. Pliiys. 35, p. 983, 193,1.
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The comparison shows that the agreement of our empirical formula
/!2

(14) with (5b) is only formal.	 In particular our formula yields a value
of the temperature Jump coefficient more than two times too large. 	 In this
connection, agreement is not to be expected, since the use of formula (5b)

µ at larger temperature differences can not be Justified theoretically. 	 Thus
one is not Justified in drawing conclusions about the temperature dependence

t

of the temperature Jump coefficient from the observed formal similarities.
On the other hand	 there are difficulties in explaining the largep	 g	 e9

deviation of the thermal conductivity from the values of other observers.
It is noteworthy that Schleiermacher 17 . who determined the thermal conduc-

tivity of hydrogen by a method similar to that used here, although on much
thicker wires, found values of the thermal conductivity that were also too
large, namely:

x (4")	 4,10 - 10 +,
x (1040)	 3,.3 • 10 4

The last value deviates only slightly from our result. The process of heat
conduction through gases in the vicinity of thin wires thus requires clarifi-

cation by further experiments, in which the wire radius, 18 in particular,

should be varied.

I1. The Current-Voltage Curves and the Dependence of the :Dire

Temperature on the Current.
A

8. By means of the function A(T) determined in Part I, it is now

possible for us to construct the current-voltage curve for wires of arbitrary

material using the method sketched in the introduction. The required

additional function R(T) giving the dependence of the wire resistance on

temperature, we take from the work of Somerville 19 , who investigated the

temperature coefficient of resistance of a larger number of differtat metals

17A. Schleiermacher, Wied. Ann, 34, P. 623, x,888. cf. also S. Weber
18 Ann, d. Phys. 54, pp. 325 & 437, 1917, and references there cited.
it should be especially emphasized that formulae (13a) and (13b) do
not pretend to repres3nt the dependence of the heat loss on the
wire radius. The quantity rl is introduced into them only for the

19 sake of a more transparent formulation.
A. Somerville, Phys. Rev. 31, p. 261, 1910.

r
t	
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over a wide temperature range (0-1000 0 ). in the interest of sim-

plicity, we will, unless expressly stated otherwise, always assume /^?1

in the following that the wire length is so large that the influence

of the ends need not be considered. Thus we assume that the temper-

ature can be considered to be uniform over the entire length of the

wire.

The construction of the current-voltage curve can be carried

out graphically without calculation as follows: The connection

among the voltage e, current i, heAt loss per sec. A and resistance

R is given through the equations 	 ,	 (7).
• BIT)

or logarithmically

lug; e - log i *A lug A (T) ,

lug a -• log i --. log R (7) .
In a coordinate system in which log i is drawn as the abscissa and log

e serves as ordinate, the lines log Awconstant are parallel straight

lines inclined at 450 to the coordiriate axes. The lines log R-const.

are likewise parallel straight Lines which are perpendicular to the

first group. This means, however, that every point in the lag a-log

i coordinate system is systematically a point in the rectangular lqg

R- log A coordinate system which is rotated 45 0 counterclockwise with

respect to the log a-log i system, as
w^

Figure 9 shows. in addition, the scale in
the log R-log A system is smaller by a factor 1/rte 	 r	 ' 1
than in Lhe log a-log i system. In order to find	 '^ '•'

the a-i curve one needs only to plot the R-A curve

(which is parametrically represented by the func- 	
Fig. 1.

tions AM and R(T)) on logarithmic graph paper. The a-i curve is

then found by rotating the coordinate axes by 45 0 clockwise. If a

temperature scale is placed on the R-axis next to the resistance scale,

then all relevant quantities can be read off the diagram.	 /422
This construction is carried out in Figure 10 for an iron wire

of 10 cm length and 0.0513 diameter using the A-curves obtained in

Fart I and the Somerville resistance values. The surprising result

is found that the e(i) curves after rising monotonically from small
values of the current and voltage.	 23



* bend backwards; i.e., that the current, which at first had risen with

the voltage, reaches a maximum and decreases with further increases

in voltage. At still higher voltage the current reaches a minimum and then

increases again with increasing voltage. One may take the abscissa difference
between maximum and minimum in the logarithmi:: representation, that is, the

ratio of the currents at these points as a measure for the size of the

effect, The effect is most pronounced at medium pressures (p=9 mm); it
decreases at higher and lower pressures and is almost imperceptible at

atmospheric pressure.
we wish to use the name "reversing characteristic" for those current-

voltage curves for which the transition from the rising secction to the
decreasing section occurs through a vertical section that is, there is

a maximum of the current. This is in contrast to the "decreasing" curves

for which the transition occurs through a horizontal section (a voltage
maximum).

Before we turn ourselves to the question of the real occurrence of

such reversing characteristics, we want to determine the condition that the
construction leads to curves of this type. The condition is obviously that
the voltage, or rather the temperature (since the voltage always increases /423
with increasing temperature, as is evident in Fig. 10) increases with

decrea=ing current i, i.e., that dT/di 4 0. The derivative dT/di is cal-

culate.- from Eq . (1) :

	

lu.- i ,!u„AC7j	 lug;Ft(7)

	

da	 1 dA	 I /R
dro

After we introduce the dimensionless quantities

	

U to I' 4A	 r dad

Wo hAua the fnllnwinn!	 0#
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L.. ^.... ,^...1

SrJ	 wRC

Fig. 11.

s

The quantities a and A , which are the logarithmic derivatives of the

functions AM and R(T), are equal to the powers of the absolute temperature

with which A and R vary in the vicinity of the temperature in question.

Calculation of the corresponding quantities for the functions R(i) and

e(i) yields

► d k	 i d e Id r , I T.
(1^)	 7t 46	 of d-r i.	 0 -Y t i

! !	 + y	 R

The condition for the appearance of a reversing characteristic with

de/di and dT/di < p , respectively follows from Eq. (15 and ( 16), respectively:

(17)
	

U —to <Q,

i.e., the heat loss A must show a smaller percentage growth with temperature

than the resistance R.
/4.24

If a and p are plotted as functions of T, the condition (17) 	 `—^—

requires that the a -curve lie beneath the p -curve. Since this can only

occur in a pecewise fashion, the condition requires that the two curves

intersect. Such an intersection point (a - p = 0) implies according to

Eq. (16) that de/di * °°.	 Thus it corresponds to a current maximum or minimum

a^	
M	

_ u r,e 
^,"	 i n the characteristic, as in Fig. 10.

• , . , # .^r ► ,	 Fig. 11 shows the curves p = p (T)
'
its e

•	 , „ %V	 for various metals. They are calculated
x»x „	 Ft

from the above-mentioned data of

Somerville on the temperature coefficient

am 1 d k
T" _dT

The curves were calculated by means

of the equation

Y, No a+

except for the values for platinum.

The values for the material of the

"hair wire" samples were calculated from Eq. (11).

25



For pure platinum the following equation was employed:

jr M I + 0,003945 8 — Op584 - 10- 0 Is

Wit1h Pto Ag. Cu and W P lies i n the vicinity of one, since with these
metals the resistance grows almost proportionately to the absolute temperature.
With iron and nickel P attains substantially higher values. The curve for

iron possesses a shallow maximum at 300-4000 upon wHch a peak at 700
0 is
0superimposed. The P -curve for Ni shows a sharp maximum at about 200

For both metals the maximum values of P are larger than 2. Because of the
strong effect of slight impurities as well as mechanical and thermal pre-	 /425
treatment, the behavior of these metals can of course be described only in
general terms.

The quantity a we calculate from the results of Part I and obtain
the following resOts.

a) With cooling by radiation, we find from Eq. (3)

T 
t	

4'	 t	 T ds(,($ .. , '	 !..! t M
A . J 7	 7' 7 J^i

Since	 r	 r dfi

V	 'W d f

we obtain the approximation

oil
40

For temperatures above 300
0
C, for which	 I — (i.r.l

	

I	 T

is almost one, we have then

1, 18a)	 U. ;V 5;

b) With cooling only by conduction at high pressure we find from
Eq. (5):

(19)	 Ut

26



c) With cooling only by conduction at low pressure, we find from

Eq. (12):

U^O	 » r r	 _ „» >r

where n%N/M. The last column of Table I gives the values of n for different

pressures.

d) With cooling by both conduction and radiation, we find;

N)	 0 	 - uL
 + A^ t o q^L	 #	 1.

.1 .
(.1 b)	 rrL + A ., -'' 	 ("I — rr^.tL+Ajj

The following should be noted in connection with the formulae:	
/426

a) With radiative cooling alone, as with wires in high vacuum, tv "xs
is always larger than 5 and is thus far larger than 0 . In this case

(e.g. incandescent lamps) reversing characteristics can never appear.

b) 1 1,,(Conductive cooling at high pressure) is according to Eq. (19)

always larger than 3/2. The curve k' L 
 
M is drawn in on Fig. 11. It

intersects only one of the 0-curves, namel y that of iron at about 550

and 7700 . With iron wires in hydrogen at high pressure (about atmospheric

pressure) reversing characteristics are therefore to be expected only in a

limited temperature domain.

c) At lower pressures ti Lis according to Eq. (20) always smaller

than 11 L . by the amount nT/(1+nT), which can assumo a maximum value of

1, and wh ch,besides,depends on the pressure p as well as the temperature.

According to Table 1, n grows steadily with decreasing pressure and

attains at zero pressure a finite limiting value of about 0.003; nT /( 1+nT)

varier similarly with p. We will refrain from reproducing the cx L-curves,

because at low pressure the curves are strongly affected by radiation.

d) In the general case 01 is calculated from a Land 01 S using a kind

of rule of mixtures (Eq. 21a). The form (21b) is more convenient. Since

4i 
S - Litt varies only inside narrow limits (in the temperature domain

200-10000C, only between 2.7 and 4.1), this form shows that because of

radiation a contribution is added to a L . This contribution is proportional
to the ratio of the radiative loss to the total heat loss; it is therefore 	

27



very small at low temperatures, but at higher temperatures and low pressures,

it increases rapidly with the temperature. Thus it can occur that at low

pressure and higher temperatures a increases with increasing temperature,
although a L and o S each decrease as the temperature rises. The o -curves
at lower pressure must, therefore, pass through a minimum at a certain

temperature.

The a. -curves thus calculated appear in Fig. 12, and confirm the
discussion above. At higher pressures o decreases with increaing temperature.

With decreasing pressure p, the a -curves at first slide downwards
because of the decrease of a L . From p-9 mm onwards the curves begin to

climb again at higher temperatures and slide upwards again by further

decreases in ;pressure as a consequence of the increasing influence of the
second term in Eq. (21b). the curve for

p-9 nwn lies lowest of all. It thus

corresponds to the .911411est ti -values.	 •

Therefore Eq. (17) will be satisfied

over the widest temperature domain,

and the reversing characteristic will

be the most pronounced, as the diagram

of Fig. 10 already shows. This curve	 ,,	 s

(px9 i►ui► ) is also drawn in on Fig. 11.

Besides the	 0 -curve of iron, it

also intersects the curves for Ni, Ag,	 I

and W with three points of intersection

in the first case and one intersection----------"fie'

point for each of the last two metals.	 Fig. it,

Thus reversing characteristics are to be

expected with these metals as well.

0 9. Let us now turn ourselves to the question of the real occurrence of

reversing characteristics. Such curves have never been observed, and even

in the author's expeeiments- to get ahead of the story they have not

appeared. Now can this difference between theory and reality be explained?

Since, as is well known, unstable states can easily appear in conductors

having a "decreasing" characteristic 20 it is plausible to seek the origin of

`qW. Kaufmann, Ann. d. Phys. 2, p. 159, 1900; for a review, see
for example, H. Busch, Stab lit, Labil ,tat and Pendelv,,nc en in
der Blectrotechik ("Stability, Lability and —Oscillation in Uec-
trot^no1 gy-wT ,, Lei,pzicj (S. Hirzel) 1913, ch. 1.

/427
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the deviation in a lack of stability, In fact the Kaufmann stability criterion

is usually not satisfied by a conductor having a reversing characteristic

and connected to a current source through a series resistance R V, for this 	 /428

criterion demands that	 rr
Re	 .r 

rI 1 •

In the vicinity of a maximum or minimum of the current where -de /di grows beyond

all bounds, this can surely not be the case, however great the series re-

sistance R  may be.	 I

Closer investigation shows, however, that the Kaufmann stability criterion

is not applicable here. In this connection let us consider the diagram of

the logarithmic characteristic in Fig. 13; a is the characteristic of the

conductor, while E is that of the source of current with the sexies resistance

included. The stationary state corresponds to the intersection point P of

the two curves. Let us now assume that the equilibrium is disturbed by

giving the conductor a somewhat smaller temperature than that corresponding

to the stationary state. In this case its resistance will be somewhat

smaller, so that the state corresponds, say, to the point P I on the character-

istic E. In order for the state to be stable, the perturbation of the

equilibrium must disappear by itself; that is, the temperature must increase.

Thus the heat influx must be larger than the loss, Let us put through P 1 a

line of equal resistance, i.e. equal temperature. This is the line

parallel to the A-axis which cuts the characteristic a at the point P o . The

heat influx is then given by the length ; the outflow, by

Thus the stability condition is that the point P i lies rightwards and

above Po ; i.e., that the characteristics E and a intersect the way they do in

Fig. 13, or expressed analytically:

d t	 +^ t

In the special case that E is the voltage of a constant battery with a series

resistance Rv (E=Eo-iRv ) the condition becomes

E	 )' 	

^i	̂ /129

k

The Kaufmann condition must not be exactly satisfied for the state to

29
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be stable. 21 Thus labile states appear only when the characteristic of the

current source is very steep, like, say, the dotted curve E' r` in Fig. 13.

Let us investigate further the case of

two equal resistances with reversing character

istics connected in series to a battery of

,,,, ,*^► 	 constant voltage E
0
. The condition for the

,,/"	 equilibrium state is then

F'n _ e  U) pct re (i),

1,,1	 where el (i) and e2 (i) are the voltages on

the respective resistances. The possible

equilibrium states are found by allowing the

characteristic a (i) to intersect the curve

e-Eo , as in Fig. 14.

The figure (14) shows that three

intersection points appear in general,

of which the two outer ones S1 and S3	 It

correspond to stable states. On the

other hand, the stability appears

doubtful in the state corresponding

to the center intersection point S2,

since both resistances have equal

temperatures and resistance and both 	 ---
o	 •

have reversing characteristics. 	 Ma.ti^•

Here the stability must be specially

investigated. In this case, however,

the graphical method applied above is not applicable, because the state is

determined by two mutually independent variables, namely the temperatures of

the two resistances. We are therefore forced into an analytic treatment.

21 Essentialfor the result is the alteration of R and T in the
same sense, i.e., a positive temperature coefficient for the
conductor. As is easily seen, the inverse result appears with
a negative temperature coefficient. Thus the Kaufmann criterion
is again found. If the characteristic is determined by thermal
processes, then conductors with "decreasing" characteristics, Like
those Kaufmann investiated, in fact, always have negative tempera-
ture coefficients of resistance.
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This can be carried out without difficulty using the well -known method of
	

/430

small variations and well -defined rules of calculation. However, we wish

to adopt a simpler method, which, although it does not supply us the complete

stability condition, will give us the most important necessary condition.

Let the temperatures of the two resistances be T i and T2 , their heat

capacity, K. and let t be the time. Then the two following equations are

valid:

in the stationary state at the point. S 2 (d/dt=0 9 T 1=T2=To) the following

holds for both resistances:
if, R( r•) — A ( TO) ' ().

Let us now consider a state deviating slightly from equilibrium. Thus we put

where	 Q 1 , 
8

20 and j are quantities so small that their squares and products

can be neglected, and we can put

R(7'^1 R(T^ } ►9y ) m. R TQM + #I R'lT„% mit ff(r,,	 Cd R)r.t,

etc.

^i the following results:

R l FO) 2 'e.% + [i, I R't1'o; — . ( r,)I A# W K d^1'
R(ro) 2 %l + (b' h'(re) — ^l'(Tol^ 0, — A d O

and by forming the difference:

For stability it is necessary that deviations from the equilibrium state vanish

by themselves, i.e., that the absolute values of B1 and 82 decrease with	 /431

time. The same, however, must apply to the absolute value of the difference

since this difference must likewise vanish in the stationary state. A

necessary, but not sufficient, stability condition is thus that 	 el	
9 2

and d( B1 - e2)/dt have opposite signs. By the last equation this yields 3 1

0



the condition

a

i.e.	 ,,.> r► ,

However, since by Eq. (17) it is just this conditon that resistances with

reversing characteristics do not satisfy, we have the result that the state

at point S2 is always la_ bile. This means however the following:

For two resistances with reversing characteristics connected in series,

the state in which both resistances have the same temperature is always labile.

This is a very important result. Since one can view any resistance as

being composed of an arbitrary number of partial resistances connected in

series, it follows that a uniform temperature distribution must always

represent an unstable state in resistances with reversing characteristics.

Thus a nonuniform temperature distribution must set in.

§ 10. Which temperature distribution really appears in a resistance with

a reversing characteristic, and what 15 to be expected as the shape of the real

current-voltage curve? To answer thin question let us imagine the wire to

be divided into a number n of partial resistances connected in series. At

first we will choose n=2. Thus we consider the case illustrated in Fig. 14.

We label the voltage along the lower branch of the characteristic a (up to the

current maximum) with e o . The voltage along the central reversing branch

we call e S , and above the current minimum we call the voltage e y . Here

e a , e R , and e Y signify voltages across the whole wire; the voltages of the

partial resistances are thus half as large. The real state appearing then 	 /432

corresponds to one of the stable intersection points S 1 or S3 . Thus one

resistance assumes the voltage e a /2, the other e Y 
/2. The total voltage

thus takes the value (e a + e Y )/2. In general the possible total voltages

are obtained by taking all combinations of the three elements e. /2, e $ /2,

and a /2 two at a time; thus
Y	 L' ♦ R^	 tom+ tr	t^ r,.

op

Only the combination	 _ + _ e^

must be left out because of instability. If these five values are plotted

as a function of the current then a connected curve is found, which is

drawn in Fig. 15.
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Thus the total characteristic of the resistance

•	 is composed of the two parts. It is composed of

five branches, of which the lowermost and upper-

most coincide with the branches e a and e Y of the

curve applying to a wire at a uniform temperature.

For short we will call this curve the "isothermal

characteristic" in what is to follow.

^'••	 In place of -the central reversing branch e 0 of

------^ 	 the isothermal characteristic (dotted in Fig. 15),
FIs.W	 three new branches have appeared, which all run

between the current maximum and current minimum of

the isothermal characteristic.

It is easy to convince oneself that, if the voltage Eo is allowed to run

through all values from zero upwards, so that the curve E o-e in Fig. 14 is

displaced upwards parallel to itself from the position E o-O, then the respective

intersection points S 1 and S3 in fact run through current values corresponding to

the characteristic of Fig. 15.

The total characteristic can be determined in the same fashion when we

imagine the resistance to be divided into n equal parts of size R/n. Then all

possible total voltages may be calculated by taking all possible combinations of /433

the three elements e a /n, e a /n, and e Y /n, at a time. The elements a 
(x /n

and e Y /n may occur several times in a combination. However, e 5 /n may not do

so, as this would mean lability. Thus the following total voltages are possible:

a) (n+1) combinations without a 	 r,	 (,o=i)e,+P 	̂ 2)•.+ 2t^ 	 2e,+(w-2)er,
to

b) n combinations with a	 (r—t)e.+e#	 (m-2t e,+er+r,	 (w2^..+.,+:^
N	 i	 n	 .. .

w	 ' '	 w

The total characteristic is thus composed of (2n+1) branches, which all run

between the current maximum and minimum of the isothermal characteristic and

which can easily be drawn. One obtains the first group (combinations without

e S ) by taking the ordinates bounded by e a and e Y of the isothermal character-

istic and dividing them into n pieces. The dividing points of the same order

are then connected by (n+1) curves (counting also the e a and e Y curves).

The terms of the second group (combinations with e 5 ) differ from the first

group by the amount (e B - ea )/n. The curve branches of this group thus divide

3 3



the distance (e Y - 0, )/n between two neighboring curves of the first group
in the ratio (e 8 , % ) (e 

Y - 
e
,6 

), i.e., in the same ratio in which the

ordinate sections between the e o and e Y -curves of the isothermal characteristic

are divided by the e. curve. The (2n+1) branches of the total characteristic then

form a connected zigzag line that does not intersect itself. This curve is drawn

in Fig. 16 for the case n=10. The first group of branches is labeled with the

integers from 0 to 10. The integer gives the number of partial resistances having

the voltage a and the corresponding temperature T 	 . The rest of the resistances

have the temperature T
y 

. On the branches of the second group lying directly

underneath, the number of partial resistances at temperature T Y is smaller by

one, since one resistance has the temperature T^

To record experimentally a characteristic of the complicated form of Fig. 	
/434

16 is only possible with the application of special techniques, which will not be

gone into here. We wish, however, to determine the appearance of the characteristic

when it is recorded in the usual fashion by connecting the composite resistance

to a source of current at voltage E o through a series resistance R v and then gradually

reducing the series resistance Rv . What

then occurs can be determined by forming the

!^	 %r	 intersection of the line e-E
0
-iRv ("resistance

	

°R 1	 line") with the characteristic in Fig. 16 and

x
then following the movement of the point of

intersection as the series resistance is

lowered, i.e., the resistance line is rotated

in a clockwise sense about its intercept

w ^-	 (point D) on the ordinate axis. One then sees
r'.1s	

the following: at first the intersection point

moves rightwards on the lowermost branch of the characteristic e(i), until the

resistance line has turned so far that it touches the characteristic at the point

P10 in the vicinity of the first maximum of a and i. With further rotation the

intersection point jumps over to the next branch (9) of the characteristic, moves

rightwards on this branch up to the point P 9 , then jumps to the branch (8), and

so forth, until the branch e , is reached. Thus only a few pieces of the character-

istic are recorded. If the resistance Rv is allowed to increase so that the

resistance line rotates back again, a different outcome results: the intersection

point moves back along the branch e 
Y 

to a point somewhat above the uppermo3t

F

	

	 current minimum; then it jumps to the next lower branch (1) of the characteristic e,

moves downwards on this branch up to the next minimum of i and e, where it jumps

34



again to the branch (2). This continues until the branch (10) is reached; the

current and voltage then decreases steadily to zero along this branch.

Physically the following occurs. As the voltage gradually increases from 	 /435

zero, Ude partial resistances all have at first the same temperature T, a , which

steadily increases with voltage until the point P 10 is reached. Then--corresponding

to the Jump of the intersection point to branch 9 in the diagram-- one of the partial

resistances ju ,.nps to the higher temperature T.Y , which makes the current fall and

the temperature To sink correspondingly. By further increase in voltage the

temperatures increase steadily again up to the point P 9 , whereupon a second

resistance takes on the temperature T Y . This continues until at the point Po

all of the partial resistances have reached the high temperature TY , which from

there on, increases uniformly in all of the resistances. On the way back, with

decreasing voltage, the analogous process takes place in reverse order, although

at lower temperatures, namely temperatures in the vicinity of those temperatures

TQ2 and Ty 
2 

corresponding to the minimum value i k of the current. When the

voltage was increasing the relevant temperatures lay in the vicinity of the

tempeatures Tai and T Y , corresponding to the maximum value i nn of i.

In order to work out the behavior of a real resistance, which can be thought

of as composed of infinitely many partial resistances, iet us go to the limit

n= w . Then the individual pieces of the broken zigzag line of Fig. 16 move

infinitely close together and become infinitely small. The two zigzag lines then

pass over into the vertical straight lines I - i and i	 i k . The characteristic

then assumes the shape shown in Fig. 17, which

can be derived from the isothermal characteristic

(dashed in Fig. 17) in an obvious fashion.

The theory thus in fact yields a character-	 ^!

istic similar in shape to Fig. 1, and showing

a constant current over a wide range of voltage.

However, the theoretical curve has the

peculiarity that the constant current value

is larger for increasing voltage than for

decreasing voltage. The resistance shows	
ria•It
	 /436

hysteresis.

The physical process go 9 on through the vertical stretches of the
characteristic is quite similar to that described above for the case of a finite

subdivision of the resistance. The only difference here is that now, as a result

of the vanishing size of the partial resistances, the alteration in the total length

of the hot portion of the wire no longer occurs in finite jumps, but instead 	 35



proceeds continuously. In addition the temperatures of the hotter and cooler

portions of the wire remain constant as a consequence of the constancy of the

current. Thus, with increasing voltage, at the point P, (current maximum of the

isothermal characteristic) a small piece of the wire (which had a uniform temperature

up to this point) suddenly takes on the temperature T y, corresponding to the

;point P2 (e = e -y (1m)), while the rest of the wire remains at the temperature

T as corresponding to the point P 1 . If the voltage is allowed to decrease

again, the temperature remains at first uniform across the wire--not only up to

the point P29 but beyond that up to the minimum in current of the isothermal

characteristic (point P 3 )
1
 which corresponds to the wire temperature TY 2#< T y, .

With a further decrease in temperature a small piece of the wire suddenly takes

on the appreciably lower temperature T 0 2 < T (^j , corresponding to the poir,; P4

(e - ea ( k)). With decreasing voltage the cold piece grows, while the

temperatures remain constant at T Y2 snd Tax respectively, until the point P4

is reached, where the whole wire has the temperature T (1 2 . From there down to

zero voltage the wire maintains a uniform temperature distribution.

The temperature distribution along the wire on the vertical stretches

of the curve thus corresponds to something like that of Fig. 18. The length of

the hot piece must, as one easily sees, grow linearly with the voltage.

11. The consideration of g 10 apply rigorously only to a conductor 	
/437

composed of a very large number of discrete pieces. If these pieces are fused

to form a continuous wire, an essentially new

feature is added, which we have neglected

up till now, namely heat conduction through

the wire. This prevents the development of 	 ► •

discontinuities of temperature along the 	 Fig, 10.

wire. A temperature distribution such as

that of Fig. 18 is therefore in reality

excluded, since the infinitely large temperature gradient on the boundary between

the hot and cold regions would immediately be transformed into a finite gradient

by the thermal conduction. The boundary transition discussed in the previous

paragraph is, therefore, not physically admissible. To find the true behavior

of our wire we must now investigate the effect of this thermal conduction.22

22We will exclude from consideration the heat developed in the
temperature gradient as a consequence of the Thomson effect,
since it is always small in comparison with the Joule heat,
as an approximate calculation shows.
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We begin with the differential equation for the temperature distribution

derived above

where we will from now on understand A(T) and R(T) to refer to a unit length

of the wire rather than its total length. We write Eq. (6) in the form:

(6a)	 401'	 *,r, (A (,n

A single integration yields 	 ^

We shall measure x from the center of the wire; there symmetry demands that the

temperature have a maximum Tm, so that dT/dx s 0. This determines the constant of

integration, and we obtain

r	 r.

(22)	 t. ^'* ':1^ r !` d7	 .. J'1 !, .l1.	 4438
e	 ^^

where the integration constant, equal to the maximum temperature T m , is to

be chosen so that
Ir

The formal integration, which is obviously easy to carry out, will not be done;

instead we will proceed graphically. By Eq. ( 6a) the function of f(T) contains

the expression A(T)/R(T ) , By Eq. ( 1) this is nothing other thAA the square of

that current that would have to flow in a wire of infinite length to heat it

to an identical temperature T; i.e. A(TI/R(T) is identical with the function

i 2 (T), and the inverse function is thus identical to T(i 2 ), which can be taken

from the diagram of Fig. 10. This function varies generally like the function

R(i 2 ). In the vicinity of the reversed characteristic, where the current i does

not vary much, the variation of these function is similar to that of R(i) and

that of the isothermal characteristic e(i). Thus, if the quantity A (T)/R(T)

is plotted as abscissa and T is plotted as ordinate, as in the right hand side

of Fig. 19, a reversed curve similar to the characteristic e(i) is obtained

(solid line). Let us further draw a parallel to the ordinate axis corresponding

to the current is naturally assumed to be constant. On this parallel A(T) /R(T)	 i2.

The quantity A(T)/R(T)-i2 is then equal to the distance from this line to the

37

k

4

«	 -eMyW3w...rwrr..a ... ^•.n^rr..	.rMw«^.«.. _

F



, a
r

plot 0

-

%	 i

abscissa calculated for the curve T(A/R), shown by the arrows in Fig. 19,

To obtain f(T), this distance must still be multiplied by the factor R(T)/ A q

i.e,, by a quantity which increases with increasing ordinate T. Thus the dashed

curve of Fig. 19 results. Here the scale of the abscissa was arbitrarily chosen

to mane the dashed curve meet the solid curve at the temperature To , As a

result of the multiplication, the negative maximum of f(T), corresponding to the

higher temperature, is relatively enlarged, while the positive maximum at the

lower temperature is relatively reduced. The characteristic shape of the curve is,

however, not altered.	 /A39

For different currents, i.e. for different positions of the vertical A/R n iZ,

the dashed curve has different shapes. If the problem is to be solved rigorously,

it must be drawn anew for each i. For the following qualitative discussion,

however, it is sufficient to use the solid T(A/R)-curve instead of the dashed

one, and to carry out the multiplication with R(T)/ A. q only by use of a

suitable scale; that is, this factor is to treated as a constant.

In general the line A/R a 1 2 intersects the characteristic T(A/R) in

three points, whose ordinates we will call T a , T S , and T Y In correspondence

with our earlier notation. Then the following results immediately from the dif-

ferential equation (6a)

I. Since at the maximum of T, d 2T/dx2 < 0 and thus f(T) must be negative,

the maximum temperature Tm can only lie between T 6 and T^ or else below T.,

It cannot lie between % and T^	 In particular Tm must always be smaller than

T 	
,
2. The closer Tm lies to T X or T a ,respectively, the shallower is the

maximum in T, and the wider apart are the points where the T(x) curve intercepts

the abscissa, and thus the greater is the wire length 1. Thus with a sufficiently

long wise, T must lie very near T	 or Tm

^,	 • 38
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3. two different temperature distributions are possible: one, in which

tha maximum temperature Tm lies near T, 

9

and the other in which it is near T a

4. Since f(T) and therefore d2T/dx2 is zero at the temperatures T 
a 

and	 /440
T	 the T (x) curve must have inflection points at these temperatures. In 	

^..

the temperature domain between T 
a 

and T8 (d2T/dx2 > A) must be convex towards

the x-axis. Everywhere else it mush be concave

Here the temperature distribution can already be given in general terms.

It is represented on the left hand side of Fig. 19 by curves I and Ii.

The discontinuous line III shows the temperature distribution that would result

without taking the thermal conduction into account.

For a more precise determination of the temperature distribution, we refer

to Eq. (22). This equation expresses the fact that the square of the temperature

gradient is proportional to the area enclosed by the ordinate A/R=i 2 , the curve

T(A/R), and the abscissas corresponding to the temperatures Tm and T.

Let us now consider an excellent special case. let the current have

exactly such a value i* that both areas bounded by the curve T(A/R) and the

ordinate A/R=i 2 and between T Y and T8 on the one hand, or between T $ and Tri

on the other hand, are equal in size. Mathematically speaking then,

r.
(23)	 1./" , <tt	 +^

More exactly the current should be a very small amount larger than the "normal

current" f* defined by this condition. Let us choose T m very close to T Y ;

then the temperature will be almost constant over a long stretch of the wire.

An the other hand, by Eqs. (22) and (23), (dT/dx) 2 will be very near zero at the

inflection poi ►rts at the temperature T c4 . Thus in this region the temperature

is again almost, constant over a long stretch of the wire. We thus obtain a

temperature distribution similar to that portrayed in Fig. 20. In the center

of the wire there i s a region of almost constant high temperature, whose value

is approximately equal to T Y . At each of the two ends there is a region of

lower temperature, also practically constant. Here T is nearly equal to T a

In each case there is a transition region in between, where the temperature

falls rather steeply from the higher value to the lower value. There is also a

transition region at each end where the temperature falls from the value T a down

to the still lower final temperature To. In the vicinity of the temperatures 	 /A41,

T Y and T a we can also describe the temperature variation. Here the f(T) curve

can be approximated by a straight tine; i.e., f(T) is approximately proportional
39
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to (T-T y ) and (T - T a, ), respectively. The constant of proportionality is

equal to the slope of the f(T) curve, i.e., equal' to , the reciprocal of the slope of

the T(A/R)-curve in Fig. 19. Then the differential equation (6a) becomes linear

and leads to an exponential law, with a constant equal to the square root of the

proportionality constant. Thus the T(x) - curve (Fig. 20) approaches the horizontal

lines T = T . and T - T
V 

, respectively, according to the exponential law e- 
'6 x

whose constant a is equal to the square root of the reciprocal slope of the

T(A/R) curve at the temperature in question. The length of the transition region

(calculated say between the point of steepest slope for the T(x) curve and the

point where T has approached the value T. and Ty 	 respectively, to within some

definite amount) will be of the order of magnitude of the reciprocal of the constant

8	 . It is hus directly proportional to the square root of the slope of

the T(A/R)-curve and thus also to the slope of the characteristic e(i). Now the

slope of the T(A/R)-curve (Fig. 19) is not very different at the temperatures T a

and T Y . If the reversed portion of the characteristic is not very steep, this

slope is of the same order of magnitude as the slope of a normally sloping charac-

teristic. Thus it follows that the lengths of the transition regions TOTO.ITOL TRq

and T Tyare not very different from each other. With characteristics that

are not too steeply reversed they are of the same order of magnitude as the

transition regions at the end of a wire with normally sloping characteristic. 	 /442

The transition	 from the T OL region to the	 Ty region, which is

composed of the two regions T^ T a and TT Ty , is thus about twice as long.

The steeper is the reversed portion of the characteristic e(i), the longer

is the transition and the more smeared out is the boundary between the

hot and cold portions of the wire. With a vertical slope in the isothermal

characteristic, the transition becomes infinitely long, and the hot and cold

parts of the wire are no longer spearate at all.

The temperature distribution of Fig. 20 holds rigorously only for an

infinitely long wire. However, it is valid to a satisfactory approximation

whenever the wire length is large in comparison with the length of the transition

region. Since the wire coordinate x does not appear in the differential equation,

40
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it continues to be satisfied in this case even after a parallel displacement
of the transition curve along the x-3xis. The length of the hot portion of the

wire is thus undetermined at the normal current i*-- but only at this current.

Thus	 Thus the average wire temperature can have
any arbitrary value between T, ,, and T  0

while the voltage can have any value between
a	 and	 e }. This yields the wire

characteristic fianediately. Below the

current i* it coincides with the lower branch

of the isothermal cnaracteristic, at the

normal current i* it rises vertically to

the upper branch of the isothermal character-
>:.le

istic, and then coincides with this branch

t	 from there on. The lower branch of the

isothermal characteristic between the current

i* and the current i)iaxiiiiuin i
M 

is followed

oy the wire characteristic, because the temperature distribution, in which the

entire wire apart froiii the ends has the temperature T,x 	 I is always possible 23
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as we saw above. Thu.,, the characteristic appears as the heavy solid line in

Fig. 21, where in addition the isothermal characteristic is drawn in with dashes.

The true characteristic is thus derived from the isotheniml curve 
in 

a

sfiMlar fashion to the way the thermodynamic p,v curve is derived from the
xv-1versinLi" tlieoratica Van der Waals Curve by replacing the reversed branch by a
straight line parallel to the ordinate. The abscissa of the line is chosen that

it cuts two pieces of approximately equal area from the reversed curve.

We now wish to investigate the effect of the finite wire length. It will

be important only when the length of either the hot portion or the cold portion

of the wire becomes comparable to the length of the transition region. In the first

case, the inaxiiiami temperature TM will be noticeably s ►iialler than T N	 . Since
(dT/dx) 

2 
at T % Ta remains positive by Eq. (22), the 1 2 ordinate must be displaced

to the right in Fig, 19. Thus the current must become qreater than i*. If, conversely,

the length of the cold portion of the wire is siiiall then dT/dx must have an

appreciable value at T - Tex , Thus the left hand side of Eq. (23) must be greater

than zero. Here again from Fig. 19 a rightward dispaceinent of the i`-ordinate is

230n, the other hand, the tipper branch of the isothermal chirac-
teristic is not part of the wire characteristic; for currents
i*, since at these currents, d T/dx would be imaginary above
t , as figure 19 shows.	 41



.	 4

necessary. Thus the current is again greater than M The corners of the character-

istic at the points P 1 and P2 (Fig. 21) will thus be rounded off, as shown by the

t thin solid curve in Fig. 21. If at each current the deviations of the voltage in

this region from the values e QL and e y , respectively, are labeled with 6 e,

K

	

	 it is easily seen that d e is independent of the length of the wire. Since the

absolute value of the total voltage is proportional to the wire length, the relative

deviation d e/e is inversely proportional to the wire length. Thus the larger is

the length of the wire, the more exactly the characteristic meets the corners of the

characteristic of the infinitely long wire,	 awn with the heavy line in Fig. 21.

During an experiment the characteristic is traced in the following manner:

with increasing voltage the current at first increases along the lower branch up to

the current maximum Po . It then Jumps along the "resistance line" PoP3	drawn

dotted in Fig. 21, until the normal current is reached. From

there on the variation follows the characteristic. With decreasing voltage the /444

current follows the characteristic past the point P 3 , up to the point P4

where the resistance line touches the characteristic. Then the current Jumps

along the resistance line to the somewhat higher value P 5 . From then on it pro-

ceeds along the lower branch of the characteristic.

At this point we have attained the goal of this section- -'to determine the

shape of the current-voltage curve to be expected. In the following section

we will test the theoretical results against experiment.

III. Experiments

§ 12. In the experiments the same set-up was used as was used in Part 1 to

record the AM curves (Apparatus Fig. 2). At first the current-voltage curves

were recorded for iron wires of 0.0513 mm

	

r	 /	 diameter. The results at different

pressures are represented by the curves of

Fig. 22. It is clear that the curves agree

in large measure with the theoretically

predicted shape, as characterized above in

	

1	 r
Fig. 21. In particular, the constanc

;.• j ,I (^	 of the current over a wide voltage range

is clear, as well as the sharp current

maximum on the rising branch of the :haracter-

	

i 	 istic, from where the current passes dis-

continuously over to the constant normal

42. s:.
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value. Very pronounced is the renewed rise of the current on the falling branch

of the characteristic shortly before the rising branch is reached again. Even

the quantitative agreement is satisfying. In order to test it, the theoretical

isothermal characteristic for p = 9 mm from Fig. 10 is drawn in on Fig. 22,	 /445

together with the measured curves and the actual characteristic that it implies

according to the theory. In fact the calculated normal current agrees very

accurately with the observed value, when the somewhat different pressures are taken

into account. That the characteristics differ not inconsiderably in the ordinate

direction, particularly at higher voltages, is not surprising when one considers

that, on the one hand the temperature Jump at the surface, and thus the shape

of the A(T)-curves, depends on the surface treatment of the wire and can therefore

be somewhat different for iron than for platinum. On the other hand, the

temperature dependence of the resistance of the iron employed here may, as a

result of a different degree of purity, very well be different from that of the

material used by Somerville, whose data we have used in the calculations.

The observations are particularly favored by the circumstatnce that, as

a glance at Fig. 11 will show, the reversed portion of the iron isothermal

characteristic falls exactly in the region of temperature where the material is

beginning to glow. Thus on the vertical portion of the characteristic the hot

portion of the wire glows, while the cool does not. Thus the temperature dis-

tribution can be observed directly by eye. In fact on recording the character-

istic it is observed that at the moment the current jumps along the resistance

line from its maximum value to the normal value, suddenly a short stretch of the

wire glows brightly, and then-- without any alteration of the series resistance--

it expands in length with a dec raase in brightness, exactly as is to be expected

by the theory. If the voltage is then increased, the glowing section grows

without altering its brightness, which is a sign that its temperature remains

constant, 
24 as the theory demands. At those points of the characteristic where

the current begins to rise again, the glow has spread out over the entire wire.

The sharp boundary between the cold and hot sections and the uniformity of the 	 /446

brightness of the hot sections is expecially striking, particularly at thi most

24 Thisholds only when the observations are made just after the
equilibrium state sets in. in reality, the process goes as follows:
At the instant the series resistance is reduced, the current becomes
larger as does the brightness of the glowing protion. it is just
then that the bright portion of the wire slowly begins to 91OW, as
the current and brightness simultaneously decrease and asymptotically
approach their normal values. The last process takes a long time;
often 10 or more minutes are required to reach constant value again. 4

3



favorable pressure (p . 10 mm).

Almost directly at the boundary^	 Y	 Y with the

	

.f	cold section the brightness was exactly

as great as in the center and the

position of the boundary could be con-
r	

veniently measured to an accuracy of 0.5 mm.

r1
R say	 In this fashion the length 1 1 of the hot

,
section on the vertical part of

the characteristic was measured at

various voltages with the aid of a

reflecting scale. These values are

plotted in Fig. 23 as a function of

voltage. Exact linearity is obvious, as theory leads us to expect.

At the highest of the applied voltages the wire suffered noticeable lasting

alterations from the high temperatures-- most probably as a result of sputtering.

Therefore the decreasing branch of the characteristic was always recorded

before the increasing branch. In spite of this precaution some of the recorded

curves i n fig. 22 show a perceptibly higher normal current on the rising branch

than on the falling one. We will return to the origin of this hysteresis

later.

Fig. 24 shows,the characteristic of two iron wires connected in series.

Here a technical resistance was used. It is employed as a series resistance 	 /
447

for Nernst incandescent lamps and contains two pairs of iron wires of about

0.07 mm diameter connected in series. Such a resistance was sealed to the

pump; it was filled with hydrogen at 5.7 mm pressure, and the outer wall

of the glass vessel was maintained at a constant temperature by flowing water.

It is noteworthy that two current maxima appear on the characteristic obtained.

This is also to be expected according

to the theory. Since after paz A ng the

^	 first maximum, only a partial resistance

begins to glow, the glow must spread out

t °	 over its entire length. Thereafter, the
i current must increase to almost its

G	 ^ 	 maximum value before the other partial

	FI& _^	 resistance can be induced to glow. In

fact during the experiment only one pair,

44	 of wires glowed below the upper current



R

r	 #

maximum. Above this maximum, both pairs glowed, while on the decreasing

branch of the characteristic a portion of each pair was glowing. The hysteresis

observed above was particularly strong with the characteristic of Fig. 24.25

Further observations were carried out on nickel wires. The results are

shown in Fig. 25, where the theoretically constructed isothermal characteristic /448

for p = 9 mm is also entered. These curves lack the pronounced current maximum.

Nothing else is to be expected, since the maximum and minimum current are not

perceptibly different at all on the isothermal characteristic. The quantitative

agreement of the calculated curve with the observed at p = 10 mrn is satisfactory

in view of the circumstances discussed above.

s

rip.:.,

Further experiments were performed with copper, silver and tungsten.

Similar phenomena, often appeared here as weld. With copper and silver at a

favorable gas pressure the characteristic glow of a short, sharply bounded

stretch of wire appeared. However, the temperature rose so high in this case

that the wire always burned through very rapidly,so that the complete character-

istic could not be recorded. Also with tungsten,the glow appeared on a bounded

portion of the wire. It was, in fact, so pronounced that at times the wire

glowed white-hat on a stretch less than 1 mm in length. while the rest of the

wire glowed only dimly. At this spot the wire rapidly burned through. The

25The iron resistances, as they are delivered from industry, have
a characteristic similar to that given in Figure 22 for p=210 mm.
Pressure, and probably also the type of fill gas, have obviously
been chosen to prevent the current maximum from occurring.
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^. theory, which leads us to expect reversing characteristics for these metals,	
/4_

} 
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as follows from the intersections of the a - and p -curves in Fig. 11, is

thus qualitatively confirmed here as well.

The only thing now left is the explanation of the hysteresis observed in

the characteristic of the iron wire. If the wire is studied under a microscope,

a well-known phenomenon is observed; larger crystallites had formed, which were

usually misplaced with respect to each other where they ran together. Thus at

these spots the wire cross-section appeared to be reduced and the wire had

to glow at a higher temperature there. Because of the cooler places tying in

between, the temperature of these spots, which preferentially determine the total

voltage across the wire, is not as dependent on the temperature of the neighboring

hot areas as in a wire of uniform cross-section. The situation resembles to a

certain extont the case of a wire composed of a finite number of short partial

resistances whose temperature is independent of one another. We have treated

this case in 5 10. In fact, the theory leads us to expect the appearance of

hysteresis here.

Summary_

I. The temperature dependence of the heat loss of thin wires in hydrogen

of various pressures was experimentally determined. Two temperature regions

appeared, separated by a definite cusp in the curves. Inside these regions

the heat loss depended differently on the temperature.

2. With the help of the temperature dependence found above, the current-

voltage curve of resistance wires was constructed. It was shown that with

resistances having a large positive temperature coefficient, "reversing"

characteristics result, on a portion of which the current decreases with

increasing voltage.

3. A stability argument showed that a uniform temperature distribution

is unstable in wires with a reversing characteristic. It was proved that such

a wire separates into two sharply bounded areas of different temperature. Thus / 450

a current-voltage curve must appear on which the current is almost constant

over a wide range of voltage.

4. The theory was confirmed by experiments on iron and nickel wires,

and the hysteresis phenomena appearing here were explained.

The present work was begun at the Radioelectrischen Versuchsanstalt fur

Marine and Heer zu Gottingen (The Army and Navy Institute for Radio and

Electrical Studies at Gottingen). After the dissolution of this institute,
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the work was continued at the Institut for angewandte Electrizitat der

Universitet Gottingen (the Institute for Applied Electricity of the University

of Ghtingen). I owe a large debt of gratitude to the leader of both

institutes, Prof. Dr. N. Reich, for his willing support. I wish to express

my thanks here.

Gottingen, in August, 1920.
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