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SUMMARY

This cffocit has expanded on previous work conducted under Contract NAS3-21263.
The primary objective in each case has been to cevelop a plasme-sprayed dusl
density ceramic sbradable sesl system for direct application to the HPT seal
shroud of small gas turbine engines.

The system concept is based on the NASA-developed thermal barrier coating and
depends upon an additional layer of modified density ceramic material adjacent
to the gas flow path to provide the desired abradability. This is achieved by
co-deposition of inert fillers with yttria-stabilized zirconia (YSZ) to
interrupt the continuity of the zircunia structure.

™e investigation of a variety of candidate fillers, with hardness values as
low as 2 on Moh's scale, has a7 to the conclusion that solid filler materials
in combination with a YSZ matrix, regardless of their hardness values, have 8
propensity for compacting rather than chearing as originally expected. The
olsurved compaction is accompanied by high energy dissipation in the rub
interaction, usually resulting in the adhesive transfer of blade material to
the stationary seal member.

Two YSZ-based coating systems which incorporated hollow alumino-silicate
spheres as density-reducing agents were surveyed over the entire range of
compositions from 100% filler to 100% YSZ. Abradability and erosion charact-
eristics were determined, hardness and permeabillity characterized, and engine
experience acquired with several system configurations.



INTROOLCT ION

The search for acceptable sbradable seal materials for small ges turbine
engines in the size class of the Army's 800 shp Advanced Technology Demon-
strator Engine (ATOE, i'as gained ircreasing importance in the present climate
of rapidly escalating fuel costs. The efficiency of these engines is extreme-
ly sensitive to operating clearances betwsen comprassor and turbine blade tips
and the stationary seal components. From the standpoint of specific fuei con-
sumption (SFC) the single most significent blade tip clesrance location is the
high pressure turbine (HPT). The plasma-sprayed ceramic ssal system investi-
gated in this program was inspired by the continuing lack of satisfactory
available seal systems adaptable to the HPT application.

This program follows the approach used in Contract NAS 3-21263 which was
conpleted in October 1979. Inert fillers are co-deposited with yttria-stab-
ilized zirconia (YSZ) to interrupt the continuity of ‘he zirconis structure in
the outermost layer. The resulting system is deposited over an intermediate
layer of moderately high density ceramic (approxima%ely 12% porosity) adjacent
to the metallic bond coat and metal substrate to mitigate the mismatch in ther-
mal expansion characteristics between the metallic and low density ceramic
components of the system. The filled layer provides a zone of modified
density adjacent to the gas stream to provide abradability.

Disappointing results obtained from attempts to incorporate "soft" solid
fillers in the YSZ matrix caused a major revision in the program scope during
the course of the investigation. when it became apparent that the solid
filler materials, regardless of their hardness value, invariably tended to
compact rather than sheai as originally expected, effort was redirected to
concentrate on systems in which density reduction was achieved through
incorporation of porosity.



Commercially supplied slumino-silicate hollow spheres were subsequently used
exclusively as the filler to provide “closed pore" porosity in two different
types of YSZ matricies. Pre-stabilized YSZ in the form of Zroz- 8 w/u

Y205 88 supplied by ZIRCOA Division of Corning Glass Works snd YSZ that
achieves stabilization during the spray process as supplied in the form of s
composite desicnated as Metco 202NS by Mstco, Inc. were investigated. Composi-
tional varistions ranging from 100% filler to 100K YSZ were evaluated for each
system,



SEAL SYSTEM DEVELOPMENT

The seal systems developed during this program have continued to build upon
the ever-increasing background of success obtained with the NASA-developed
yttria-stabilized zirconia thermal barrier coating systems. The basic phil-
osophy guiding the program has been to start with a proven high temperature
material, preferably one with significant engine experience, and to modify the
coating structure toward the end of improving the abradability of the material
while retaining the desirable high temperature charactertistics of the
original coating system. The end result becomes an “abradable thermal
barrier",

Coating Configuration

Typically, the NASA coating successes have been achieveo with "thin" coating
systems - i.e., bond coats 0,013-0.018 cm (0.005-0.007 in.) and oxide layers
0.038-0,051 cm (0.015-0,020 in.) thick, as shown in Figure la. Further, the
coatings have been "duplex" in that only two discrete layers are present, with
no "graded" or mixed-composition layers.

From the structure of the dual-density coating system, shown in Figure lb, it
is readily apparent that the concept involves essentally the addition of a
0.046-0.051 cm (0.018-.020 in.) reduced-density abradable layer superposed on
top of the basic NASA thermal barrier coating. An incursion of turbine blades
into a rub track particularly in small engines such as the GMA S00/ATDE, is
unlikely to exceed 0.025-0,038 cm (0.010-0.015 in.) without considerable
damage being incurred by the rotor system. The coating system geometry
selected has provided for this margin in the abradable outer layer.
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Specimen Fabrication

The basic concept of an abradable thermal barrier depends on devising a method
whereby the density in the blade track region of the seal is reduced below
that normally obtained in the plasma-spray process. One attractive method for
accomplishing the desired density reduction is to "co-spray" an inert "filler"
concurrently with the YSZ of the thermal barrier. This procedure interrupts
the continuity of the YSZ and produces a controlled structure. A mejor dif-
ficulty in using this technique arises from the significantly different temper-
ature capabilities (melting points) of YSZ and cendidate fillers. It is this
feature that prevents the constitutent powders from being bound together and
sprayed as a single coiposite material, since perticle temperature adequate
for softening YSZ (required for good deposition) would surely result in prema-
ture meiting or softening and subsequent collapse of the hollow spheres
comprising the filler material used exclusively during the latter stages of
the program. This consideration is less significant for the case of solid,
"soft" filler particles; however, the same general procedure was used for
fabricating all specimens.

A workable solution to the problem of spraying materials with such vastly
different characteristics has resulted from providing different residence
times in the plasma stream for each constituent powder according to its
particular requirements. This is accomplished by introducing the high-
temperature component (YSZ) through a powder feed port directly into the
plasma-spray gun body. The low-temperature component (filler) is fed by a
separate powder feeder into the plasma stream external to the gun body at a
point downstream from the nozzle. With the f’llers employed throughout this
program, no subsequent thermal treatment (e.g., for decomposition and volati-
lization to generate residual porosity) was required or provided, the filler
remaining in situ.
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Fabrication Equipment

The plasma spray equipment used in constructing the various coating specimens
was identical to that used by NASA in developing the yttria-stabilized zir-
conia thermal barrier coating system., The Plasmadyne Model SG-1B plasma spray
gun used exclusively for deposition of all layers of the coatings has powder
feed ports located both internal and external to the gun bocy. Normally, only
one of these ports is used at a time. However, because of the peculiar
requirements of the filled coating layer, separate powder feeders are used to
supply both ports simultaneously - the YSZ being introduced within the gun
body and the filler powder injected into the plasma stream through the exter-
nal downstream port. With this arrangement the optimum parameter ranges for
the multiple component system reflect a compromise of the requirements of the
individual component powders.

Processing Procedures

All substrate materials used in this investigation are Hastelloy X. This is
the same material as that used for the shroud segments of the GMA 500/ATOE and
ensures that a fully developed coating system will be compatible with engine
hardware.

The elasped time between plasma spray processing steps was held to the minimum
possible consistent with exercising care and good technique and in no case was
allowed to exceed 2 hours. This condition thus required that all specimens be
completed the same day that they were started.

Prior to deposition of each particular coating system, the substrates were

prepared by vapor degreasing, followed by grit blasting with 60 grit aluminum
oxide.
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Powder flow rates were precissly determined by collecting and weighing timed
specimens of material delivered by the powder feeder. Spray distances were
the same as those established by NASA for the several discrete layers of the
coatings, with the same distance maintained for both the standard density
layers and the filled layers, regardless of the filler employed. All spraying
was done with hand-held equipment, specimens oriented vertically, and cooling
air supplied to the rear face of the specimen coupons.

gond Coat Powder

The bond coat employed in all instances was NICrAlY obtained from Alloy
metais, Inc., Troy, Michigan, with the following chemical composition:

Cr 25.7%
Al 5.6%
Y 0.32%
Ni Balance

Mesh specification was -200 +325. Although this composition differs from the
16.2% Cr-5.5% Al-0.6% Y-Bal Ni material originally developed for the NASA
thermal barrier coating, it is representative of a later, improved NASA
technology. The source of supply is identical to that used by NASA.

Oxide Layer Powder

The yttria-stabilized powder employed in the early phases of this
investigation marked a potentially significant departure from the
NASA-developed thermal barrier materials. Because the material used in the
NASA-developed coatings was quite expensive and had a history of lengthy
delivery times, Metco 202-NS was selected for the oxide layer component in the
interest of controlling costs and expediting the execution of the program. A
principal difference between the two powders is in the method of
stabilization. Metco 202-NS achieves stabilization during the spray process
instead of by pre-alloying and is available off the shelf at a fraction of the
cost of the pre-stabilized meterial.



Recent, and as yet unpublished, investiqations at DDA on various combinations
of bond coat and yttris-stabilizec zirconia materials indicates that the NASA-
developed materisl possesses superior thermal shock/fatigue resistance com-
pared to other materials tested. This fact, together with the unexpected
availability of an improved pre-stabilized YSZ containing 8 w/o Y05

(again, representative of later, improved NASA technology) resulted in the use
and comparison of both Metcc 202-NS and pre-stabilized YSZ during the latter
stages of the program.

Standard Density Layers

Techniques identical to those used by NASA were employed in depositing the
standard density intermediate layer for each coating configuration. As prev-
iously mentioned, however, in some cases Metco 202-NS was substituted for the
pre-alloyed yttria-stabilized zirconla used in the NASA -developed thermal
barrier coatings.

Abradable Layers

Preparation of the abradable layers for most of the coating system investi-
gated was predicated on minor modifications tu the spray parameters developed
by NASA. Earlier work showed that modest reductions in both arc current and
operating voltage (arc power level) were beneficial for depositing filled
(abradable) layers without overheating the filler particles. Since adequate
melting of the zirconia particles was exhibited when using the modified
parameters, these values were retained for the process baseline.

Surface Machining

The surface of each specimen was prepared by machining with a single-point
cutting tool of the replaceable carbide insert variety prior to any further
conditioning. The specific machining parameters were determined ac part of an
earlier effort by trial and error using both single-point machining and wet
grinding techniques. The coatings were found to macihine easily with either
method, and as expected, the smoother surfaces were obtained by grinding.
Specimens subjected to grinding operations were flushed with clear water and
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Jdried in vacuum to remove any contamination from the grinding coolant. The
parameters established for single-point machining were used for the prepar-
ation of all subsequent coating systems. These parameters were:

Cutting tool carbide insert -TPG 431 -KG 8

work Speed 118.9 m/min. (390 ft./min.)

Cross Feed 0.015 cm/min. (0.006 irvmin.)
Material removed per pass 0.025 cm (0.010 inches)

Haraness of each of the coating systems was measured after machining by using
the R15Y superficial hardness scale (15 kg load, 1.27 cm (1/2 inch) diameter
tall indenter).

Abradable Layer "Fillers"

The materials used as fillers in the outermost or "abradable" layer, fall into
two separate and distinct categories:

° Soft, solid particles with low shear strength to reduce
overall coating strength and enhance abradability while retaining
a more or leus continuous structure

(] Hollow spherical particles to act as density-reducing agents
within the zirconia matrix.

Materials in the former classification that were obtained and analyzed for
particle size distribution in the as-received powder form included:

Bentonite Pyrophyllite

Dolamite Silica

Kaolin, GEO wollastonite

Mullite, KMC Zinc-Zirconium Silicate
Mullite, Metco XP 1146 Zircon, H & G

Mullite, Plasmadyne 314M Zircon, Plasmadyne 360F

Nickel Oxide, Metco XP 1145

10



A primary criterion for the selection of these materials was reasonable compat-
ibility of the thermal coefficient of expansion with the YSZ matrix meterial.
In most cases, however, it was impossible to locate a commercial source for
plasma spray-grade powders, with the as-received materials conteining an excep-
tionally large percentage of "fines". These powders tended to clog the plasma
spray unit powder feeders and made it impossible to produce coatings with the
desired composition and structure.

Particle sizes, both distributed and cumulative, for s typical material, e.g.,
wollastonite (CaOe 5102) are shown by the solid lines in Figure 2. This
powder, in addition to several other potential fillers, was modified by «
proprietary agglomeration technique to produce the particle size distribution
shown by the dashed lines in Figure 2. The agglomerated powder was found to
feed and deposit satisfactorily when co-sprayed with YSZ.

Materials Ranking Methodology

With materials systems that possess the wide variety of performance-related
characteristics found in abradable seals, it becomes desirable to establish a
tormalized basis for ranking and, ultimately, selection.

In vrder to establish a ranking methodology that would be as objective and
unbiased as possible, rather than the product of exclusive opinion and conjec-
ture by the investigators, the assistance of a wide variety of technical
personnel closely associated with small gas turbine technology was recruited.
Participants were requested to assign a value between one and five (five being
highest) to the relative importance of listed evaluation criteria. Identifica-
tion of the respondent was optional. Twenty seven requests were issued, with
nineteen responses received, only one of which was submitted anonymously.

because of the generally subjective nature of abradable seal studies and the
fact that no universally accepted evaluation criteria exist, the personal
opinion of the respondents appears to have been heavily influenced by their
individual areas of responsibility. In most cases, it is a simple matter to
iventify the technical discipline of the respondent, if not the identity of
the individual himself by analyzing the content of the¢ response.

11
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In spite of the uravoidable bias inherent in an evaluation msthodology that
must be establisned without the benefit of absolutes, the procedure is
nevertheless vseful in establishing the criteria deemed most important and,
conversely, least significant by the concensus. The criteria considered were:

Abradability

Permeability (internal leakage)

Surface roughness

Thermal shock resistance

Stability with time (at temperature)

Erosion resistance

Chemical stability (with respect to turbine environment)
Fabrication repeatability

Cost

Chemical and metallurgical compatibility with downstream
component s

e Risk of mechanical damage to downstream components in event of
spalling

In addition, the following were suggested by one or more of the respondents:

Simplicity in application

Tolerance for thermal distortion without spalling
Machinability (related to cost)

Thermal insulation effects (cooling air reduction)
Rdaptability to complex geometry

The final rankings and average weighting factors compiled from the survey are
presented in Table I.

It is not surprising to note that there was nearly unanimous agreement in
establishing abradability as the most important criterion for evaluation.
Lacking this important characteristic, all other considerations become
inconsequential. The nearly equivalence in estimated importance of thermal
shock resistance and erosion resistance should probably be expected since both
of these features are related to durability.
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Stability with time at temperature and fabrication repeatability were judged
to be nearly equal in importance, followed closely by chemical stability with
respect to the turbine envirorment, cost and permeability.

Ranked lowest in importance were risk of mechanical damege to downstream
components, chemical and metallurgical compatibility with downstream
components and surface roughness. Exception to this low ranking of the
importance of surface roughness was taken by the aerodynamicist charged with
maximizing turbine performance and serves to illustrate the difficulty of
removing the subjectivity from the task.

Selection of the best seul material system from the candidates evaluated can
be accomplished by scoring the relative performance of all materials for each
test on a scale of 1 to 10 (10 being highest), thrn multiplying the
performance score by the appropriate weighting factor and finally summing the
resulting products for each material candidste. In spite of the recognized
imperfect nature of this methodology, the highest total weighted score should
result in the systematic election of the 'best® overall system based on the
predetermined evaluation criteria.
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Table 1
Evaluation Criteria Average weighting Factors

Average
Criterion Rank Weighting Factor
Abradability 1 4.8
Thermal Shock Resistance 2 4.3
Erosion Resistance 3 4,2
Stability with Time (at Temperature) 4 3.9
Fabrication Repeatability 5 3.8
Chemical Stability (wrt Turbine Envir.) é 3.5
Cost 7 3.3
Permeability 8 3.2
Risk of Mechanical Demage to Downstream Components 9 2.9
Chemical and Metallurgical Compatibility Components 10 2.8
Surface Roughness 11 2.6
Simplicity in Application . .
Tolerance for Thermal Distortion without Spalling . .
Machinability . ]
Thermal Insulation Effects . .
] ]

Adaptability to Complex Geometry
*Isolated or insufficient response to warrant inclusion

15



TeST APPARATUS

High ed Abradability Ri

Abracdability evaluations were conducted on both a low speed, room tempe:ature

screening rig and on the high speed, high temperature test rig shown in Figure
3. This rig consists of a steam turbine-driven spindle with replaceable test

disks.

The mechanism used to provide thvw rub incursion motion is designed around a
rigid frame system which supports the test coupon sbove the rotating IN 792
test disc in the quartz lamp heated cavity. The vertical incursion orive is
fixed to the frame above the test coupon through a thin flexure which essen-
tially isolates the normal and tangential forces produced by the rub. The rub
interaction rates of 0.0025 cm/sec (0.001 in/sec) and 0,025 cn/sec (0.010
ir/sec) are achieved by controlling the pulse rate of a stepping motor which
arives a lead screw. Normal forces are sensed by a load cell positioned
between the lead screw and the flexure leaf. The tangential forces are
transmitted by a rigid load frame through swivel couplings to two load cells
mounted outside the heated cavity. These signals are then summed electrically
to provide the total instantaneous tangential force signal.

When large numbers of specimens must be screened for abradability ss is the
case in this program it is expedient to conduct at least the initial tests on
the low spesd, room temperature test rig shown in Figure 4. Tactiie feedback
is an important feature of thesz tasts since any “chatter" or similar distress
is immediately apparent to the test operator.

Al though 1ntuitively suspect, testing at low speeds has the decided advantages
of:

Rapid turn-around time

Relative insensitivity to minor imbalance

Minimal cost

Reduced risk to rig or operators in the event of blade loss

16
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Numerical arguments show, as will be discussed later, that for a given blade
geametry without abrasive tip treatment, incursion rate and number of blades
on the test rotor, a low speed test is only slightly less severe and conducive
to smearing than one conducted at higher speeds. Tre net effect, therefore,
is that at least for screening purposes, the validity of testing at low and
high speecs is comparable. This conclusion has generally been supported by
laboratory observation.

Erosion Test Rig

trosion tests were conducted on the appartus shown in Figure 5. The specimen
is mounted at the prescribed angle to the impinging air/particulate stream.
The tests were performed at room temperature with the particulate flow rate
set at a nominal 30 gms/hr (0.066 1b/hr) and the air flow nominally at 11.2
m ¥hr (400 ft’/hr) with a supply pressure of 482.3 KPag (70 psig). A

timer shuts the rig off at the predetermined time. The erosive medium used
was AC Coarse Air Cleaner Dust (Natural Arizona Road Dust) which is primarily
calcium silicate and has the following particle size distribution:

0.5 microns 12%
5-10 microns 12%
10-20 microns  14%
20-40 microns 23%
40-80 microns 30%
80-200 microns 9%

Specimen and dust reservoir weights are recorded prior to and at the
conclusion of each test.

The angular incidence of the specimen with respect to the erosive air stream
was selected as 15° based on previous tests of the standard density system.

The 15° setting was considered to be most representative of engine air flow

conditions and would not unduly penalize candidate coating systems.

18
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Permeability Rig

Through-leakage as a result of interconnected porosity was evaluated on the
rig schematically shown in Figure 6. This simple fixture consists essentially
of inlet and exhaust. ports which are formed in a polyurethane insert in the
cover. When the cover is clamped in place over the sample, polyurethane acts
as a seal preventing leakage across the abradable surface to the exhaust port
or to the atmosphere. The incoming argon is thereby forced to pass through
the abradable material in order to reach the exhaust port. The feed port is
sonnected to a pressure gage, flowmeter and argon tank and the exhaust port is
cpen to the atmosphere. Pressure is set at the argon tank by means of a
regulator, and through-flow in the coating is monitored at the flowmeter. The
érea used for the flow calculation is the actual cross sectional area of the
specimen.

Engine Tests

It is generally agreed that the most realistic test conditions are found in
actual engine tests. Dual density seal systems developed during the course of
this program have been engine tested in two different engines.

The GMA 500 Advanced Technology Demonstrator Engine (ATDE) being developed by
DDA for the U. S. Army provided an opportunity for testing early formulations
in the lst and 2nd stage (unshrouded) and in the 4th stage (shrouded) turbine
seal locations. Later formulations were tested in the gas generator turbine
(unshrouded) seal location of the CATE (Ceramic Applications in Turbine
Engines) engine being developed by DDA for DOE under NASA management. The
results of these tests will be discussed in more detail later in this report.
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All specimens, regardless of the test apparatus employed, were tested in a
fully machined condition so that the exposed surface was representative of a
finished part.

TEST RESWTS

Low-Strength Solid-Filled Systems

All results of tests with systems employing various low-strength solid fillers
to interrupt the continuity of the YSZ matrix structure were obtained prior to
the discovery of a powder feeder fill-dependency problem and its subsequent
correction. Consequently, the structures prepared and tested were probably of
non-optimized proportions. This is discussed in further detail in the Engine
Test Results section.

The rub wear scar shown in Figure 7 was obtained in a low speed test of a
system comprised of 50 v/o0 YSZ and 50 v/0 pyrophyllite

(A1,51,0,45(0H);). This result was typical of all tests in which

solidg-filled YSZ structures were abraded by turbine wheels of cast MAR-M246
alloy. There are several features common to all of these solid-filled
systems. Most pronounced was the tendency of each structure to compact or
densify in the rub zone rather than shear as originally anticipated.
Accaompanying the observed densification were 1) adhesive transfer of blade tip
material in varying degrees and 2) nearl, total absence of seal structure
penetration by the blade tip.

Although the filled structures tested were non-optimized, the rub wear scars
produced were significantly more severe than those obtained with non-filled
normal density YSZ structures. Since the latter are considered to be
virtually "non-abradable®, there appeared to be little potential for producing
the desired abradability using the solid filler approach. These efforts were

23



Figure 7

e f—
Rub Direction

Abradability Wear Scar 50 v/o YSZ/50
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Fiyure 8 Abradability Wear Scar 80 v/o Eccosphere Filler/20 v/o YSZ



-

. g
o
-

I

-

———
-
——
-+ 4
-
|
it
|
!
D e B

$ 8 308§

& i =1 i £ - S :
w p.st P o
1 = 3 = - i3
! : = - v
: . S -
= q by s rs | Shoe $ gt sy Sybas frae s Peals
Az 5t 3 S35 peues ey suaad bREe:
5 & e 5 & R St e Lgees Jouha U
<= - - - - D GENSENS SEN.
— RN - b9 oo e = c2pEn solul o .
< : bk % 55! m rsed o :
; s Losw s 19 EnERD DK s g o g

- - [0 FuN I ERONY S - 4 RS s -—
- . e N —ed —F - R - -
- . ISED SRS T N SUUI a0 3 CHSTN SRUNY SBLS -4-- bl
- - - -t s T ™ & o ] —pe b - - -
-— » -es -l . . -4 IDPNY SE. IemNe B i e . ~ -4+
- - B T P B TR D e T R ~¥-—- - 4
N . S PRl L L ERS 553 A Ee 03 S i - !
A

~ Loeo

i S 3

R H d bl uki g | e B e T | B O
i & SISY LB B W cns saums oudy EUGEN 10 4 ) FRFL] O
: ' ©°
: i ! ¥i (BT 1AW i1 (1 FRE IR A HM Bi8 IS (0
< il B —F-_¥ - el f7= T 253 o ”
: : = ¥ n“
b = et Sreee oy 7 s bt ran — =t 3 SIEE RE riia: e M
STt & T Loutt S TSy LRS! Sl ekt stut Man ey seest 5353 ' FIBN ST et Eoams ssams Q
= E : = 2 1 leo
o 2 oot 3 (2 : 1. 'M b 4“ “
— 2 R 3 s B s B R R B s L
B e — R T e = = )
£ Si SRR N
o = e 3 CE I S & spnns cIaae anwes myu I3 ”
3 oo tagts Jos | 1223
T (8, 523 EBat: teas | o8
| . : a8 158 S5 | 4t S
H ' 3% & 3l Hag ¢ ris: ]
I_ | . ' = § s [
] 1 -~ s B - ™
{ ! i ! id R T &)
M : o
- _

e

-
-
-

f

!

-

l

i

-T
-« vAT
‘)KL'JD\M
e T M 'R

t
I3
.
il
¢

!
=
o i~

8ot
70|

60

Jo

40

30

20
1o

CUALITY



subsequently discontinued in favor of approaches which introduced porosity to
interrupt the continuity of the YSZ structures. The resulting systems
achieved abradability through the friability and crushing of the porous filled
structures. A typical abradability wear scar for this type of structure is
shown in Figure 8.

Alunino-Silicate Hollow Sphere Fillers for YSZ Matrix System

Hollow alumino-silicate spheres were used to provide closed-pore porosity in
both pre-stabilized and flame-stabilized YSZ structures. These spheres were
obtained commercially as Type FA-A Eccospheres ™ from Emesson and Cuming,
Inc. This material is chemical., identical to the Cenospheres used previously
in Contract No. NAS 3-21263. However, as shown in Figure 9, the particle size
distribution of the Eccospheres is much more heavily weighted in the larger
sizes than the Cenospheres, which consist of more than 30 percent “fines".

The larger particles, in addition to being more suitable for the plasma spray

process, produce a more uniform, porous structure when combined with a YSZ
matr ix,

Pre-Stabilized YSZ Matrix Systems

The pre-stabilized YSZ selected for evaluation in combination with the
previously described Type FA-A Eccosphere filler was supplied by ZIRCOA
Oivision of Corning Glass Works. The composition was ZrO,« 8 w/o Y0y

and was considered by NASA to rank among the best thermal barrier materials
available at the time the tests were conducted.
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Magn: 100X

Figure 10 Particle shape for pre-.tabilized YSZ plasma-spray grade
powder Zr0,+. 8 w/o Y,,();
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The granular form of the plasme-spray grade powder is shown in Figure 10. The
particle size distributirn of the powder as supplied is shown in Figure 11
where it can be seen that the majority of the material is within the preferred
particle size range of 44-77 microns (-200 +325 mesh). It should be noted
that the abscissa of Figure 11 differs from Figure 9 by one decade.

The array of composition and spray parameter varistions investigated is shown
in Table I1. Three spray distances and three arc power variations were tested
for each of 7 compositions within the material system. In addition, one
composition consisting of 14 v/o matrix/86 v/o filler (designated as System
111-G) was tested, which corresponded to 50/50 weight percent as shown in
Figure 12. Typical photographs of the low speed abradability wear scars and
time-dependent erosion signatures for 30, 60 and 120 minutes total exposure
for some of the variations listed in Table 11 are presented in Figures 13

through 20.

In general, power levels and spray distances reduced from the median values
resulted in softer coatings which exhibitea increased erosion damege, as may
be seen by comparing Figures 13 and 14, Significant improvements in
abradability were observed for filler concentration levels of 50 v/o0 and
higher as shown in Figures 13 and 15 through 20. Observe the deep, distinct
grooving on the ceramic surface for compositions containing %0 v/o or more
filler in contrast to the glazed wear scar and smeared layer of blade tip
material shown in Figure 13,

Because only the 20/80 and 14/86 ratio systems, prepared by using the
mid-range parameters (SO 1, PL 1), indicated a reasonable balance between
abradability and erosion resistance, high speed rig testing was restricted to
these systems. Results of these abradability tests, showing the rub wear scar
and blade tip condition for the 20 v/o matrix/80 v/o filler system (System
111-F) are presented in Figure 21.
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Results obtained for the system comprised of 14 v/o metrix/86 v/o filler
(System 111-G) are shown in Figure 22, where the rub wear scar, blade tip
condition and erosion signature following 30 minutes exposure are presented.

Hardness as measured on the R15Y scale as a function of composition is shown

in Figure 23 for various spray distances and Figure 24 for various power
levels.
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Erosion signature (30 min. exposure)

b.

Abradability wear scar

(Flow direction ea® )

(Rub direction ‘ )

Figure 17 Abradability and initial erosion results for System 1I-D
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d. Erosion signature (120 min. exposure)

C. Erosion signature (60 min. exposure)

(Flow direction eap )

(Flow direction =® )

I-D

Cont'd. Erosion results (continued) for System

17

Figure

Magn: 3X
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Photomicrographs of the microstructures corresponding to the spray distance
and power level variations of the 80 v/o filler/20 v/o matrix composition are
shown in Figure 25-29 inclusive. Both 100X and 1000X magnifications are
presented for each of the microstructures. Reducing the spray distance ano
reducing the power level both resulted in coatings in which the FA-A filler
particles retained their hollow sphere morphology. Baseline spray conditions
as well as increased spray distance and power level resulted in some apparent
softening and deformation ("splatting”) of the hollow filler particles,
thereby reducing the porosity.

Flame-St YSZ ix

The flame-stabilized YSZ selected for evaluation in combination with the
previously descrihed Type FA-A Eccosphere filler was supplied by Metco, Inc.
The initial composition of this composite material is described by Metco as
Zr0, « 20 w/o Y,05. The composition of the deposited coating is unknown.

The spherical form of the plasma-spray grade composite powder is shown in
Figure 30. The particle size distribution of the powder as-supplied is shown
in Figure 11 where it can be seen that virtually all of the material is below
the preferred particle size range of 44-77 microns (-200 +325 mesh). It
should be recalled that the abscissa of Figure 11 differs from Figure 9 by one
decade, as noted previously. The large fraction of "fines” in this material
undoubtedly contributed to the different performance exhibited by coatings
within this system.

The array of compositions and spray parameter variations investigated is shown
in Table III. Three spray distances and three arc power variations were
tested for each of 7 compositions within the material system. In addition one
composition consisting of 18 v/o matrix/82 v/o filler (designated as System
111-0) was tested, which corresponded to 50/50 weight percent as shown in
Figure 31. Typical photographs of the abradability wear scars and

t ime-dependent erosion signatures for 30, 60 and 120 minutes total exposure
for some of the variations iisted in Table III are presented in Figures 32

through 4l.
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b) Ceramic Particle Morphology (outer layer)

Figure 25 Porosity characteristics and ceramic particle morphology of
coating system 1-F
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Bond Coat Std Density Filled Oxide

\ Laver Laver

Magn: 100X

a) Porosity Characteristic

Magn: 1000X

b) Ceramic Particle Morphology (outer laver)

Figure 26 Porosity characteristics and ceramic particle morphology of
coating 11~}
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Bond Coat Std Density Filled Oxide
Layer Layer

a) Porosfity Characterist i

Magn: 1000X

b) Ceramic Particle Morphology (outer laver)

Figure 28 Porosity characteristics and ceramic particle morphology of
coating IV-F
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Figure 29 Porosity characteristics and ceramic particle morphology of
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Erosion signature (30 min. exposure)
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Erosion signature (120 min. exposure)

d.

C. Erosion signature (60 min. exposure)
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Cont'd. Erosion results (continued) for System
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Erosion signature (120 min. exposure)

d.

C. Erosion signature (60 min. exposure)

(Flow direction eep )

(Flow direction =® )

Cont'd. Erosion results (continued) for System III-I
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Erosion signature (30 min. exposure)
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Because only the 20/80 and 18/82 ratio systems, prepared by using the mig
range narameters (SO 1, PL 1), indicated a reasonable balance between
abradability and erosicn resistience, high speed rig testing was restricted to
these systems. Results of the abracabilitv tests, showing the rub wear scar
and bls~e tip conoition for the 20 v/o matrix/80 v/o filler system (System
I11-N) are presented in Figure 42,

Results obtained for the system comprised of 18 v/o matrix/82 v/o filler
(System 1I1-0) are shown in Figure 43 where the rub wear scar and erosion
signature following 30 minutes exposure are presented.

Harudness as measured on the R15Y scale as a function of composition was shown
pieviously in Figure 23 for various spray distances and Figure 24 for various
puwer levels.

rhotanicrographs of the microstructures corresponding to the spray oistance
and power level variations of the 80 v/o filler/20 v/o matrix composition are
shiown in Figures 44-48 inclusive. Both 100X and 1000X magnifications are
presented for each of the microstructures.

Permeability

Gas flow permeability for each coating configuration in both the
pre-stabilized ano flame-stabilized matrix systems was measured using the
procedure previously described. Static supply pressures up to 344.5 KPag (50
psig) were applied with zero leakage noted. These results are compared with
the results obtained for conventional abradable materials in Figure 49.

The YSZ matrix systems exhibiteu nearly zero leakage compared to most of the
conventional abradable materials. Many of the conventional materials rely on
high levels of open porosity to provide abradability, accounting for their
hign permeability.
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Erug;on

Material orosion for each coating configuration in both the pre-stabilized (8
w/0) and flame stabilized (M-202) matrix systems was measured using the
erosion procedures previously described. These results are shown in Figures
50 through 56.

The 100% YSZ system, which i{s the standard NASA thermal barrier, is shown {n
Figure 50 for both the 8 w/o and the M-2C2 powiers. The 8 w/c powder s
clearly a more erosion resistant system than the M-202 powder. As the
percentage of YSZ is decrees=d in favor of increasing percentages of
eccospheres, the erosion resistance of the M-2u2 systems decrease more rapidly
than the 8 w/¢ system, as is seen in Figures 52 through 54. In Figure 52, it
is seen that the M-202 60/40 system has severely deteriorated in erosion
resistance when compared to the 8 w/o system. Similar deteriorated
performance is not experienced with the 8 w/o system until a 20/80 composition
is tested. This is shown in Figure 55,

ENGINE TEST RESULTS

Abradable turbine tip seal structures resulting from this program were tested
in two different engines: the GMA 500/ATDE and a development engine included
as part of the CATE (Ceramic Applications in Turbine Engines) program intended
to introduce ceramic components into an industrial-type gas turbine. The

temperature of the turbine enviromment in these engines was nominally in the
range 1800-2000°F,

Because of the timing of the opportunities for testing, and the subsequent
discovery of unsuspected powder feed problems to be discussed later, all sfal
structures tested in the GMA 500/ATDE were ultimately shown to be of unknown
or questionable composition. Early tests conducted in the CATE eingine were
also subject to these uncertainties.

94



-y oy

-

onm -

e P

-

| ashanitacns ol

:

4 m——— e — - - — e oy —m—— e a b b Wbt mpep e e o e s RO,

R -~ wa3sk§ ZSX Y00Y 3O uOysoi3 oS aanSy3

.. ")
‘UTH - 2wl ' X , o . . v U - awmr ] ey

-9 - . -

@t L o 9 e~ o, .oz SR ot 0 B

v ———
'

—
e

' oy
] 3 N Q.-)...'L
'", i a i H i M
‘ lvoo poo-
WS. : : : . : | L poo-
= 2 L w
E g
gro- = = gto-
= X GS %% SdWV 0SY% A
5
-Mw A @S %€ SdWV 0SS Al
7 as %% SAWV 0SS 111
- WHO. T - N . “ -WﬁOo
‘ u 0as % SaWv 0SS 11 : & .
! : R :
. g g w o lOoaesyysavos9r - - L b
R ek Seb e A | veo:
< .- e - : . . ] o - .. - yv” : , . - . . . .. . : N ..:.. . caw H . ”. ce ” .
USRI S - .- S NSUIRR DRIV SRS £ /R
R SR R T T T
A R S i tomeer g tom i - il A b ,
R T T vt L (O S UUUUE MUCE St ULt SOV L OOt SUOVULEE! RISt SN SRS SO SN SIS

95



' ) wa3sds ouo,znmouuw c/a .c~ ZSi O/A Q8 JO voysoxly 15 2xn314 .
L A
.ot 09 oe 0zt 09 of
: 1] [} . . ] )
8 0

W . . g boo- beo-
' /N 111
‘ Al
. poo- boo-

w =1
8 & _m
: 22
H m o

_ﬂ?m M P10°

4] w2
, , ' % @S %% SdWV 0S% A
P ; : \ @S %€ SdNV 0SS Al
]

as %% SdWV 0SS 111

. : : bio- 7 a5 : bio-
. . 7 as %S SdWV 0SS 11
[
b T G, as %% SdWV 059 I
n N .
“ - i o ) z0° ‘ | . pzo"
e : 0% — - - 3 ... .. 25K 0/MS
11 . . i
i
i - — e = I S, _ - R [ - e e . .

96



PR R
MR
. >

waisig 212uydsoad3 o/A (Y ZSX O/A 09 JO UOISO S 2and1y

- - - "UFR - dwyy . _— __ . ‘utR - 2ull
(1741 - 09 ot 0 (174 09 . (413 0
: : 0 : —d 0
‘hoo- koo-
P e P
[@]
2 “m /@:H
-~ 1O
i
S
M7 .
Te. = [ W._”o
17>
X @S %% SdWV 0S¥ A
A @S %€ SdHV 0SS Al
10° pre:
7 aS %% SdWV 0SS III
0 as %S SAWV 05§ 11
“ ( @S %% SdWV 059 I
beos - — , bzo*

0K . - 4 ZSi O/M 8

97



—— e -

e ==

R

w93sLg 319ydsodd3 O/A (G ZSX O/A (G JO uorsoial

‘UTK - I9WIl
071 29 o€ 0
0
[ >
& - __ boo-
e O 2
11
Al
AQ.umh
I
©O1
WAQ'
bzo
' : AN

- o~

SSVH_FALSVEAV
$SVW qaqoud

0zl

€6 2andy1y
Ut - Quy]

09 o€

X a
a
v
a
O

A

%% SAWV 0S% A
%€ SARV 0SS Al

%% SARV 06S 111
as %S SdWV 0SS II

as %% SdWV 059 1

ZSk O/M 8

poo-

g1o°

b1o°

98



1744

‘o - owyy

WIISAg

09

213yds0222 o/A (9 ZSA O/A Q% JO uorsoag

ot

1748

800"

dA1SVHdyY

74 (IR

n

SsY

910"

ozo°

SSVIW aidaoua

%G 2an3dyyg
‘UTR - 2wl

0zt 09

GE

X GS %% SRV 0S% A

A as %€ SARV 0SS AL
7 GS %% SdWV 06§ 111
11 @S %S SdWV 0SS 11
D as %% Sdkv 059 1

SA O/M 8

%00°

800°

T16°

910"

0z0°

99



PN

-n

ozl

e e e - e

wa3sLg 313ydsodd3 o/a g 7SX o/a g7 30 uorsoay GG 2and1g
— ‘Ut - 9WIl ‘nrR - auwyl
09 ot 0 (174 § 09 ot
’ o - 2
X @S %% SRV 0% A ® j
A TS %€ SRV 0SS Al %00° !
V as %% SdRV 0SS 111
3 GS %S SdKV 0SS 11 Q/; 2N
800" A T o~
0 GS %% SdKV 059 1 S RN
—~ ... ~ /@ I1
T A v 11
~
= <
I &%
< D m*w g Al
AMW
mic
S
sms
w.w»m
) ,ﬂg. A
©1 F.N
i oW ’ 0 ZSA O/M 8

Kt

910°

020°

100




SO raman
pooly o e

“._ ; ,A .«.. SRS
o } ' LI N R
KIT. smumhm ouonn 70223 Noc.n 3o uorsoagy

ouyL W . hahiia o

. m : W- T N

- - ORI S

5 Bl P B S I SRR

. . uu.w”. B
- B SR
= o S T N i ks m S R 1 -
= w - ~1T — .m e i e S didg. X aS % SAW osy A LU lwod
R 2 SE0R OO IS TN S hall AN SN O 1 R O o |
S ST T T o P o A es e sav oss a1 [ |
b 3 H . P ; . I TR B i .
100C) FRET ERREE JRETS pan - .xrt.-”f_lyrl.w.zlrl..r!; ..mrt R I) ainas EERMEEES S S FS Rt
. P R h o - . Al 0 U @s %% SARY 0SS 111 : :
R R e e NG I et A xrxm bt g e e s e :
DS S N - o PR SN L. ) I A . : I B . “ : . N v ”
g e e i B O R & LR i B B O FE Ol B TEC T R N
SURREFON SR N S N RPN IRESTSNNNS SN ” ” o N e L a
S G AT " : h : i ; & 1 TijT O asuysawvos9 1 ool

AL SR y_ “l '“n,_ -.M-»- PO . [ _ w:d L‘.ti.w(-o!'- N —— ———

v

¥
1
A
!
.
+

SSVH qiqoyd

SSVIW JATSVHEY

e
B
—
\

) . o
. , , ﬁ w " : y m ey N
.Tf.lf N LI I S z1g° N L m R | 1 m
o 1T : Y r (wn-~ BREt el Eiei I R it It AR S R P ST A BN Sy Pl iy
0 G S I B R 21
[ : m w ; Wﬁ P , RN RN D R R A R
| ! : ; ; . , i
] L -m« - “noﬂut SRS B A L ENNE SN SRS .
i ¢ : - - .
o N ] ' i - Aadl A A S B A '
B At SRR T 4 < £ Eeauk ! e e st rl-“-..: ﬁ.:.*. L;%i)
- -y . i N P . I T H w IS B 4 i
N . ' i o M 5N H i ' o L
- R - SRere Shladad S fEPSt nans PO e
- R wnx- o | T ST N T i | h IR T R R : k
H - s AN NEtas Sut] el el T Ml S I ,r.o,mlﬂwwauu ¥ SR
L8 ; P L SRREERRIT SR CECN BN A IR JEh talts AN -
Tih s ooy, IR L T ChRe N SN L IR
...... R H R S ISt IS STt . L3 s A R {
S e 1o TSy o g ot t—
TR COUNS UL SR RRRRIUESt IETRS ST £ CporpTepene e e s e iy
FESE S N I DR A [0S IS CEESI SR R I T 1664 i 312 STt ISR s MY
= 3 T 1 Shore o e ey g SRR B Ry
oy : : ‘o : P ] : : et TR
= ol M b u..,w.lu Y YT " i
. H SR -t B S v v RN T T
RRTS PR O NN OR NN O oo - R S ISR RS !
.....  ERNE CRISR 2N T h i~ RS Saheal Slbeas S DEMEIREEY INSRT POEEs OB TRans Sebe punt B
. et R A ; . R JORS JRTTE JTRRS ooy ]
oy ! =i w ! i IEEESSS . N | Seoey Noet O RIS

101



Following correction of the problem causing the uncertainty in the structures,
an opportunity occurred for additional testing in the CATE #ngine. Results of
these tests have become available during the preparation ov this report and
are significant in that they represent what may be considered as the first
qualified success in applying truly abradable seals in a high temperature
turbine environment . :

Further details of both the GMA S00/ATOE and CATE engine tests are discussed
in the following paragraphs.

MA 500/ATDE Engine Tests

Rs a direct consequence of the total lack of an effective metal-compatible
sbradatle seal system from other sources, an opportunity for engine testing in
the GMA 500/ATOE occurred midway through this program. Because of the timing
and the demonstratec critical need for abradable turbine seals (metal-based
vystems fro.. comiercial vendors had produced catastrophic results), a
nun-optimized dual density cersmic composition was selected as being the best
system available at the time.

In order to select the candidate system for engine testing, compositions were
examined which covered a wide range of Metco 202 YSZ/Type FA-A Eccosphere
ratios. At this time ".ne superiority of the Zircoa material had not yet been
fully established ar 4 the Metco material was selected strictly on the basis of
cost. The ratios weie defined by potentiometer control settings of the
Plasmadyne Model 1000A powder feeders subsequent to determining the measured
flow rates. The initial set of specimens, identified as A, B and C had powder
feeder control ratios and hardness values as shown in Table IV.

Low speed abradability tests at room temperature on the sofest specimen (A)
resulted in virtually no perceptible penetration and produced significant
adhesive transfer in the rub zone. Conversely, little distress was observed
to result from erosion tests. Both results led to the conclusion that
specimen A, and consequently the rest of this series, were too hard and
another set of specimens, identified as D-K, plus 100% FA-A Eccospheres, was
prepared. The corresponding powder feeder control setting ratios and the
respective hardness values are shown below the dashed line in Table IV,
arranged in order of apparent increasing Eccnsphere content.
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Table 1V

YSZ/FA-A Spray Combinations and R15Y Hardness Levels

Specimen (SZ/FA-A Potentiometer Rstios Hardness-R15Y
A 35/35 89-92 Sprayed as
B 35/25 91-94 one batch
c 35/15 93-94 *
D 35/50 61-66 Sprayed as
H 35/60 48-61 one batch
1 35/70 54-59
J 35/75 70-77Anomalous
E 35/80 65-6ﬂ hardness
K 35/85 58-74/values
F 25/90 4-24
G 15/100 =14-7

10Uk FA-A 0/100 -18
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Lt SR

The expected trend of decreasing hardness with increasing Eccosphere content
was observed with the exception of specimens E, J and K which constituted
one-third of the specimen population. No explanation for this anomolous
behavior was found at the time and was consequently attributed to the vagaries
which can be present in the hand-held application of plasma sprayed coatings.
The source of the problem was ultimately found to be related to the particular
model powder feeders used throughout much of the pregram and is discussed more
fully later in this section.
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The composition selected for engine testing in the 4th stage turbine location
of the GMA 500/ATDE was the 35/70 mixture corresponding to specimen "I". Two
additional specimens were prepared with the hardness again ranging in the
mid-50"s on the R15Y scale. Low-speed room-temperature abradability was
checked to a depth of 0.016 in. with no distress to the labyrinth knives;
erosion resistance was good, if not outstanding. The abradability test wear
scar is shown in Figure 57 in which some glazing of the seal material has
occurred at the bottom of the grooves formed by the labyrinth knives.

An opportunity to also test seals in the 1st and 2nd stage turbine blade tip
locations in the GMA S00/ATDE was created when a commercially obtained blade
.ip seal material was rubbed by the rotor blade tips, resulting in extensive
adhesive transfer of blade tip material to the stationary seals. The extent
of the damage required replacement of the seal segments and a composition of
35/60 was selected to withstand the more highly erosive environment of the
unshrouded early turbine stages. This composition should have corresponded to
that of specimen “H" discussed earlier, but specimen coupons sprayed simultan-
eously with the engine parts exhibited R15Y hardness levels in the range from
36-50, which is appreciably softer than the 48-61 exhibited by the "H"
specimen,

The difference in hardness values between coupons sprayed individually and
those sprayed in conjunction with the preparation of engine parts provided a
clue to why coatings on parts for engine service often performed far differ-
ently than expected. It was subsequently observed that the spray equipment
appeared to perform unpredictably on occasion, apparently depending upon the
amount of spray material in the powder feeder hoppers. To confirm the suppo-
sition that the hopper fill level was influencing the resulting coatings, both
powder feeders were calibrated for three different fill levels. The resuits
of these calibrations are shown in Figure 58 where it can be readily seen that
for a constant powder feeder control setting, the actual powder output can
vary by as much as 100 percenc, depending on the amount of material in the
hopper.
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Figure 57
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The implications of this discovery are obvious. The usual laboratory
technique employed in preparing smell numbers of specimens during coating
development has been to use a small amount of powder in the feeders. This
reduces the risk of contamination of unused material and simplifies the
changing from one powder to another. Conversely, when engine parts are
sprayed the hopper is rilled to near capacity so that the powder supply will
not be exhausted prior to completion of the coating. Thus, because of the
proven fill-level dependency, coatings on engine parts sprayed with parameters
established on the basis of development coupons can have cheiacteristics
vastly different from those expected.

The solution to the problem of achieving t! e desired composition on a pre-
Jdictable and repetitive basis has been to replace the suspect powder feeders
with models representing the latest state of the art. Plasmadyne Model 1250A
units have been recently acquired and shown to deliver powder to the spray gun
at rates which are virtually independent of the hopper fill level as shown by
the calibration data in Figure 59.

The turbine tip seals tested in the lst, 2nd and 4th stages of the GMA 500/ATDE
were prepared prior to the discovery and subsequent correction of the powder
feeder problem. Consequently, the compositions actually tested in the engine
were probably not those intended; no pre-test measurements are available.

Although no valid conclusions can be drawn regarding the performance of the

dual density ceramic seals tested in the GMA 500/ATDE, it may be of interest
to observe the types of distress experienced by the components.
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Because of exceptionally tight clearances selected for the particular build in
which the dual density ceramic seals were incorporated, an extremely heavy rub
occurred within the first minute of operation which resulted in an immediate
shut-gown. The condition of the first stage turbine tip seals following the
heavy rub (one minute of operation) is shown in Figures 60 and 6l. Metallic
deposits resulting from the adhesive transfer of blade tip material to the
seal surfaces are evident in Figure 60. Evidence of an even harder rub is
shown in Figure 6], where a massive section of the ceramic hes been plowed
away by the penetrating blade tip.

Ouring th~ tear-down following the hard rub, the clearances were increased by
renoving stock from the seal surfaces. The engine was re-assembled and
returned to the stand to resume testing. Following 68:12 hours of additional
testing, the engine was again disassembled for inspection. The condition of
the first and second stage turbine seals was as shown in Figures 62 and 63,
respectively. The severe erosion evidenced in these photographs may have been
trigyered by the scrubbing action of particles initially remcved from the
damaged area of the first stage seal, resulting in a type of avalanche effect
in removing further material. It appears that the erosion of the second stage
seal material has been accelerated as a consequence of the bombardment by
erosive wear debris from the first stage seal. Regardless of the erosion
mechanism that was active, the seal structure has been found to be appreciably
softer than intended and probably lacked any significant amount of erosion
resistance even under ideal circumstances. Erosion was not limited te the
abradable layer; material loss in both the first and second stages also
included the standard density intermediate layer.

The condition of the seal installed in the 4th stage turbine seal location
following 35:29 hours of testing is shown in Figure 64. It can be seen from
tr is photograph that the knives on the shroud have rubbed the seal over the
entire circumference. Sume slight evidence of erosion at the aft edge of the
seal is also present.
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Since the time that the photograph of the seal was made, the seal has been
installed in two additional builds with test times of 68:12 and 3:25 hours,
respectively. This seal has now accumulated 107:06 hours of test time and is
still considered to be serviceable. Although the unit is not accessible for
preparation of a photograph showing its present condition, visual observation
has shown no appreciable change in its condition during the last 71:37 hours
of testing.

In comparing the 4th stage seal test results with those of the lst and 2nd
stages, it should be noted that not only are the temperatures significantly
different at each of these locations but also the erosive environment is
significantly less severe for the shrouded 4th stage. Further, the rub
mechanisms are different, in that the knives of a shrouded stage do not tend
to generate loose wear debris to the extent that is typical of seals abraded
by cgiscrete blade tips.

CATE Engine Tests

Two acuditional opportunities to engine test dual density ceramic seals were
made available as part of the CATE (Ceramic Applications in Turbine Engine)
program sponsored by the Department of Energy and administered by NASA. The
location selected for evaluation was the gasifier turbine tip seal and since
the testing opportunities preceded the availability of ceramic blading
specified for this program, MAR M246 turbine blades were employed in the
turbine. Thus, the rub situation was similar to that found in the GMA
500/ATDE 1st and 2nd turbine <tages with respect to both materials and
temperatures.

The first dual-density ceramic seal for the CATE application was fabricated
prior to resolution of the previously described powder feeder problem.
because of the poor erosion resistance experienced in the GMA 500/ATDE tests,
it was arbitrarily decided to increase the hardness of the structure by a
modest amount. Because of the unsuspected uncertainty associated with the
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powder feeders, the hardness was over-corrected with an R15Y range of 74-80.
Post-test semi-quantitative X-ray energy dispersion analysis (XEDA) results
indicated that the actual composition of the seal material was 75 percent
zirconia and 25 percent eccospheres, by weight.

Adhesive transfer of blade tip material to the stationary seal surface
resulted in the wear scar shown in Figure 65a. The corresponding distress to
the blade tips is shown in Figure 65b, where the maximum depth of material
removed was observed to be approximately .020 in. (.051 cm). Damage of this
magnitude resulted in severe performance degradation requiring removal of the
engine from the test stand.

The second (and latest) opportunity to evaluate the dual density ceramic seal
concept in a CATE engine has resulted in the preparation and ‘nstallation of a
gasifier turbine seal that was still undergoing testing at the time of this
writing. The composition selected for this seal consisted of equal weight per-
centages of pre-stabilized ZrO2 * 8 w/o Y203 and Type FA-A Ecco-

spheres, sprayed at a total weight flow rate of 2.90 lb/hr (1.32 kg/hr).
Because of the significant difference in density of the YSZ and filler mater-
ials, the volume percentages were 14 and 86, respectively. This seal was
sprayed with newly acquired, state of the art powder feeders which have been
shown to be free from the previously described powder feed-rate uncertainties.

The CATE engine in which the latest seal configuration has been installed is
being used primarily to develop a microprocessor for its electronic fuel
control. Consequently, the engine has experienced numerous starts and stops
but has logged relatively few hours of running time. Although the dual
density ceramic turbine seal in this installation has accumulated only a few
tens of hours of actual test time, it has experienced considerable thermal
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cycling, apparently withcut incident. The exceptionally fine performance of
the engine has been attributed by the test engineers to significant improve-
ment in the gasifier turbine seal. It is perhaps significant to note that no
deterioration in performance with time has been observed, indicating that
erosion is not yet a seriocus concern.

The condition of the seal following 41:00+ hours of testing is shown in Figure
66. Although it is apparent that some adhesive transfer of blade material to
the seal has occurred, the seal has been abraded to a net depth of 0.010 in.
(0.025 cm). Measured removal of blade tip material is also approximately
0.010 in (0.025 cm). Both material removal from the blade tip and deposition
on the seal appeared to be uniform over the entire width of the rub path, with
no localized build-up on either member. The post test condition of the blade
tips is shown in Figure 67.

The rubbed blade track surface appears to contain a glassy phase of the seal
material and exhibited extensive mud-flat cracking of the glazed surface, as
shown in Figure 66. The damage appears to be superficial and has not ser-
iously affected the ability of the coating to withstand the engine environment.

The circumferential extent of the rub interaction experienced during the 41+

hours of testing is shown in Figure 68. Following photographic documentation
this seal was re-installed in the engine for additional service.
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DISCUSSION OF RESULTS

A numerical argument for the observed behavior of the various seal systems can
be obtained from order-of-magnitude standard machining considerstions. 1If
each blade is assumed to be analogous to a cutting tool, then the incursion
deptir per blade encountering the seal material is given by the simple rela-
tionship:

where:

Og = incursion depth per blade (in/blade)

I = radial rotor axis displecement (incursion) rate
(ir/sec)

N = rotational speed (rev/sec)

n = number of blades on disk

For the observed test conditions,
D. =« 001 in/sec
B
34200 rev/sec x 38 blades
60
= 4.6 x 1078 tn/blade

For a chip to be produced, the radius of curvature of the cutting "tool"

(Rc, blade tip edge) must be less than the incursion (depth of cut) per
blade. This is readily seen from Figure 69, in which the depth of cut is
shown to be less than the tool cutting edge radius. It is obvious from this
figure that the local tangent to the blade at or below the seal material sur-
face will always indicate a resultant force (acting normal to the tangent)
directed downward into the seal material with a forward component in the
direction of engagement. Standard manufacturing techniques and materials are
incapable of producing blades with edges sufficiently sharp to machine freely
at the incursions encountered in actual rub situations. The end result is the
smearing of the seal and adhesive transfer of the blade material to the seal
structure frequently observed in practice.
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Thus, for producible blades, movement of the blade into the seal will always
tend to cause densification or compaction of the seal material. This explan-
ation is compatible with the fact that no satisfactory turbine seal has yet
been developed in spite of widespread industry attention.

The apparent abradability demonstrated by some of the dual density ceramic seal
system compositions investigated in this program likewise does not contradict
the foregoing argument. The brittle nature of the ceramic matrix, particularly
with high concentrations of porosity, results in failure by crushirg during an
encounter with a blade. when the structures are sufficiently porous and weak,
the wear debris is flushed from the rub zone by turbulence in the gas path and
insufficient heat is generated to cause further distress to the wear scar.

For structures with higher densities, considerable heat is generated during
the rub which causes melting and smearing of the wear debris in the rub zone.
Ultimately, the local density in the wear scar can become sufficiently high to
cause adhesive transfer of blade material to the seal structure.

The brittle nature of the porous ceramic structures that contributes to the
abradability is also manifested in reduced erosion resistance. Bombardment of
the seal surface by incident particles entrained in the working fluid results
in the brittle fracture of the target and the formation of additional wear
debris that can be erosive to downstream components. It is probable, however,
that the total material available from this mechanism is insufficient to
create significant damage.
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} INAL COATING SYSTEM EVALUATION AND SELFCTION

The two coating systems selected for & complete evalustion analysis are 20/80
v/o and 50/50 w/o YSZ/FA-A compositions. A 50/50 w/o composition corresponds
to a 14/86 v/o for the 8% YSZ coating and an 18/82 v/0 mixture for the M-202
YSZ coating. These coatings are referred to in Table II and 111 as systems
I11-F, 111-G, I1II-N and I11-0 respectively. The high speed abradability test
results for these systems are shown in Figures 21, 22, 42 and 43,

For evaluation purposes, the systems were presumed to have operating {empera-
ture requirements no higher than 2100%. The systems were subjected to the
criteria as listed in Table I within the constraints described below. The
ratings are based upon a score of zero to ten, with ten being equivalent to a
perfect material, and are listed in Table V.

Rbradability was judged on the formation and condition of the wear scar and
the condition of the blade tip after a high speed rub. The basis for a score
of 10 is a rub in 100% FA-A, as shown in Figures 20 and 4l.

Ihermal shock resistance scoring is based on in-house DDA evaluation of normal
density 12 w/o and M=202 YSZ material. A 10 rating is given to the 12 w/o YSZ
which was tested at 1950% for 6000 cycles without failure. The M202 coat-
ing falled at 4000 cycles. The composite systems investigated here were 8%
YSZ, contained eccospheres in the final coating and were not thermally cycled;
thus, their specific performance is unknown. It has been speculated that the
presence of the eccospheres may degrade the thermal shock resistance. There
is no difference in performance between the 20/80 v/o0 and 50/50 w/o systems.

Erosion resistance scoring is based on a 30 minute erosion test of each of the

samples, which is then compared to the 30 minute erosion of a normally dense 8
w/0 YSZ system.,
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Stability with time at temperature is based upon in-house DDA studies of
normally dense 8 w/0 YSZ and M=202. For purposet of this investigation, it
has been assumed that the inclusion of an eccosphere filler will not degrade
the stability characteristics of the system.

Fabrication repeatability scoring is based upon the spread of Superficial
Rockwell Hurdness readings taken on each of the coating systems.

Chemical stability with respect to turbine envirorment has not been judged due
to insufficient experience with these systems in this particular area.

Cust scoring is based upon the price of raw materials for each of the coating
systems.

Permeability scoring is based on through-flow leakage tests conducted on each
of the systems,

Risk of mechanical damage to downstream components is scored on the basis of
possible erosion damage to components subjected to the displaced abradable
material. The total amount of YSZ material available to affect downstream
components is small and the resultant possible damage is minimal.

Chemical and metallurgical compatibility with downstream components is scored
on the basis of interaction of the YZS with engine components. This effect is
considered negligible,

Surface roughness i{s scored on the basis of comparing the machined surfaces of
the system with that of a 100% YSZ system.

Multiplying each of the scores by the appropriate weighting factors results in
the scores shown in Table VI. System F, the 20/80 v/0 8 w/0 YSZ systen
out-performs the other coating systems. If the cost criterion is removed from
consideration, the M-202 systems are removed completely from consideration in
favor of the 8% system.
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Table V
Coating System Ratings

System Scores

Weighting Sys F Sys G Sys N Sys 0
. Yactor 20/80-82 14/86-8%  20/80-202 18/82-202
Abradabilicy 4.8 3 4 5 6
Thermal Shock
Resistance 4.3 8 8 3 3
Frosion Resistance 4.7 5 3 1 2
Stability with Time
(at Temperature) 3.9 10 10 5 5
Fabrication
Repeatability 3.8 5 4 6 7
Chemical Stability
(wrt Turbine
Environient) 3.5 - - - -
Cost 3.3 2 2 10 10
Permeability 3.2 10 10 10 10
Risk of Mechanical 2.9 8 8 8 8

Damage to Downstream
Components

Chemical & Metal-

lurgical

Compatibility

w/ Downstream

Components 2.8 9 9 9 9

surface Roughness 2.6 6 6 7 7
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TABLE VI
Weighted Scores of Four Final Coating Systems

System Scores

Sys F Sys G Sys U Sys 0
20/80-8% 14/86-8% 20/80-202 18/82-202
Abradability 14.4 19,2 24.0 28.8
Thermal Shock Resistance 34.4 34.4 12.9 12.9
Erosion Resistance 21.0 12,6 4.2 8.4
Stability w/Time (at Temp) 39.0 39.0 19.5 19.5
Fabrication Repeatability 19.0 15.2 22.8 26.6
Chemical Stability (wrt Tur-
bine Environment) - - - -
Cost 6.6 6.6 33.0 33.0
Permeability 32.0 32.0 32.0 32.0
Risk of Mechanical Damage to
Downstream Components 23.2 23.2 23.2 23,2
Chemical & Metallurgical
Compatibility w/Downstream
Components 25,2 25.2 25.2 25.2
surface Roughness 15.6 15.6 18.2 18.2
2 230.4 222.0 215.0 227.8
2 w/oc Cost 223.8 215.4 186.8 195.2
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CONCLUSION:

Results of engine tests conducted early in the program were misleading because
of unsuspected difficulties with the powder feeders supplying the plasma spray
unit. Correction of the problem by replacement of the suspect powder feeders
with models representing the current state of the art led to a demonstrated
ability to create structures of known composition on a repeatable basis.

Engine testing of a gasifier turbine seal of known composition was accomp-
lished successfully in a CATE test engine for a period exceeding 41 hours.
The condition of the seal upon removal for inspection was such that it was

re-installed in a subsequent build for additional testing which is still in
progress.,

Althoujh some blade tip material was lost during the rub process, the depth of
the wear scar in the seal was of comparable dimension, indicative of the abrag-
able qualities of the material.

ihe extent of the engine testing was insufficient to fully assess the erosion
resistance of the seal material. However, it is expected that the long term
erosion resistance will be inadequate to satisfy the durability requirements
for applications beyond limited duty test vehicles.

A wide range of possible structures with greater hardness (and consequently
improved erosion resistance) exists between the engine-tested structures and
10% YSZ. Thus, considerable latitude is available for improving erosion
resistance if some assistance is given to the blade tips. This is most likely
to occur in the form of an abrasive material applied to the blade tips to
convert the seal material removal process from one analogous to milling to
another more representative of grinding. The latter should benefit from the
high speeds and light feeds exhibited by the rotor during an incursion.

It is strongly recommended, therefore, that future evaluations of turbine

abradable seal materiels be conducted with blades (real or stylized) which
incorporate a fully developed abrasive tip treatment.
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