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INTRODUCTION

Recent experimental and theoretical studies related to ultrasonics
have demonstrated that the scattering of elastic waves by defects in a
material provides information about both. This information may be used
for determining the properties of any imperfection such as the size and
orientation of a crack or it may be used for determining the mechanical
and strength properties of the material.

Vary and his associates have emphasized the aspects of applying
ultrasonics to material evaluation [1,2,3]. Their material information
contents are experimentally measured in terms of ultrasonic attenuation
and velocity factors. Using these concepts and a simple model, Vary [4]
presented some very useful empirical relations that correlate these factors
to the fracture toughness and the yield stress and gave data for two
maraging steels and a titanium alloy.

The above mentioned findings are indeed very interesting and yet
somewhat intriguing. After going through an extensive literature review,
the author [5] suspected that the links between the strength properties
(fracture toughness and yield stress) and the ultrasonic factors (attenu-
ation and velocity factors) are the material microstructural parameters.
It was pointed out that the size of the second phase particles and the
distance between them play a very important role in material resistance
to fracture.

In a first step toward defining the relation between K fracture

[
toughness and nga/m » the ultrasonic attenuation factor, the interaction
of a pair of second phase particles (referred to as inhomogeneities) is

studied. Since energy is trapped or dissipated in the vicinity of the



neighboring inhomogeneities, the ultrasonic factors measured at far field
reflect this energy loss., Assuming that the attenuation is a function of
incident wave frequency and that the energy trapped in the vicinity of the
inhomogeneities provides the fracture energy a relation between the fracture
toughness and the ultrasonic attenuation factors can be obtained. To ac-
complish this purpose both the far field and the near field solutions of

the interaction problem are needed.

Currently, scattering theory of a single flaw is available [5]. The
approach of Gubernatis, Domany and Krumhansl [6] is of particular interest
in that they gave the scattered field solution far from the flaw in terms
of the displacements and strains in the scatterer, i.e. the inhomogeneity.
They also expressed the physical quantities such as total and differential
cross sections in terms of the scattered field quantities. Since the
strains and displacements inside the scatterer are not available for the
dynamic case, they used the results from Eshelby [7] for the static case
and studied the case appropriate to long wave limit [8].

The purpose of this report is to study the dynamic response of in-
homogeneities, one or two, and to determine the strains and displacements
inside them under incident plane waves as depicted in Figs. 1 and 2. The
method of equivalent inclusion is used [9]. The underlining approach,
the formulation and governing equation for the eigenstrains, and the
determination of the energy due to the presence of the inhomogeneities

are presented in this report. The derivation of the correlation between

chand vLBG will follow later.



REVIEW OF SCATTERING THEQRY: SINGLE FLAW

In a recent article, Gubernatis, Domany and Krumhansl (GDK) [6]
sumnarized their recent work on elastic wave scattering with application
to nondestructible evaluation. They studied the elastic scattering of
a single flaw (be 1t a void, a crack or an inhomogeneity) under an experi-
mental situation as depicted in Fig. 1. The scattered amplitudes and
cross sections (measurable quantities) were derived specifically in terms
of the scattered fields of stress and displacement at large distance from
the scatterer.

For an incident plane wave of angular frequency w and wave vector k ,

Fig. 1, the incident displacement vector is

uilr,t) = uj exp i(K » ¥ - ot) (1)
where
k] = a = /vy
B = w/vT

= Jongitudinal sound velocity

<
-
I

vy = transverse sound velocity

Employing integral theorems and the Green's function approach, they

showed that the final form of the basic scattering equation is

ui(F) = u3 (M + ui (P (2)
in which
u?(F? =8 [ dv' gy(r - T )u, (7))
R2
+ 6 Cjk]m IP dv' g'ij,k(? - F') u-‘ ’m(?') (3)

where 2



G0 = pf]aw B pmatrix

¢ “ikim © (Cjk1m)f1aw - (Cjk1m)matrix

R, = region occupied by scatter

For an_isotropic elastic medium, in the far field at a distance r
from the deféct, they found that the scattered field depended on a certain

vector, the f-vector, as follows:
iar
S ~ —, €
> .e.f. = +
ug e1leJ( a ) -
i8r

)& > o
'iJ - e'iej) fJ( B ) r ’ r (4)

+ (6
where the f-vector is defined as
2

— k —
. = 1) 2 N ~ike
fJ(k) W [8p w f dv Uj exp(-iker)
2

dv €47 exp(-iker)] (5)

2

tike; 8 S IR
and is dependent upon the differences in material density and properties,
between the matrix and the defect, the incident wave field and the total
displacement and strain fields "inside" the scatterer, R,.
With the asymptotic value of us given in Eq. (4), the asymptotic
value of o?j can be obtained as

s ... elor
o, ¢ ey Gij fk(E)

eiar .
+ iu [2a T [eiejekfk(a)]
iBr _ .
[eifj(B) + ejfi(B)]

+
™m
~|m

iBr _
eiejekfk(B) } r > (6)
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and various cross section can be expressed in terms of the scattered
asymptotic values. For example, the differential cross section, for any
given frequency it is a measure of the fraction of incident power

scattered into a particular direction, is found to be

dp(w) _ lim <r2ei O?j uj>
dQ >

(7)

(-]
<I >

where a dot denotes time differentiation and an angle bracket denotes

time averaging, i.e.

<f(t)> = % fz f(t)dt

The differential dQ is the differential element of a solid angle. The

total cross section is simply

Plw) = [ do gy (8)

From Egs. (4-8) it can be seen that the far field solution, the
scattered amplitudes and cross sections, depends upon the determination
of the displacement and strain fields inside the scatterer and the evalu-
ation of the volume integrals in Eq. (5), see statements following Eq. 5,
Ref. [9]. The displacement and strain fields are currently not available
for the dynamic case. As a remedy, Gubernatis [8] used the results
obtained for the static case from Eshelby [7], obtained by employing a

method called equivalent inclusion method.



INHOMOGENEITIES IN A TIME-HARMONIC WAVE FIELD

From the above formulation, it is clearly seen that displacement and
strain fields inside scatterers (inhomogeneities) play a very important
role in nondestructive evaluation. In studying the interaction between
two inhomogeneities, the dynamic version of the equivalent inclusion
method is used. The method was first employed by Mura [10] and his
associates [11] in studying composites.

Let the ultrasonic experimental situation be depicted as in Fig. 2
such that the incident power is along the positive z-axis. Let the total

strain be the combination of elastic strain and non-elastic (or eigen-)

strain:
e *
[ = € €
rs rs t “rs (9)
* - . 3
where Ers’ Eri and Ers are the total strain, elastic strain and the

eigenstrain, respectively. The eigenstrain is the non-elastic strain
which is caused by a change of the form of an inclusion, which if the
surrounding matrix material were absent, would have gone through some
homogeneous deformation. Due to the difference in material properties
between the matrix and the inclusions, this change of form causes dis-
turbance in stress and associated strain in the material.

The equations of motion for a continuum are

Tik,k = P Uj (10)

where a dot indicates a differentiation with respect to time while a
subscript comma indicates a spatial differentiation. In a linear elastic

matrix with small strain deformation, the strain-displacement relations

are



s = oxlup o tug ) (1)

and the generalized Hooke's law is

_ e
%jk T “jkrs “rs (12)
where Cjkrs are the elastic constants. Employing Eqs. (9-12) the dis-

placement equations of motion can be written as:

. *
Cikrs Yr,sk = P U5 % Cikprs Ers,k (13)

If the matrix is isotropic the elastic constants Cjkrs can be expressed
as

Cjkrs = A djkérs U §5p8ks * M S350kp (14)

where X, U are Lame's constants and Gij is the Kronecker's deita.

If the displacement and strain fields are time-harmonic, they can

be written as

uj(F}t) = uj(YU exp(-iwt) (15)

e X(r,t) = e XF) i (16

ps (T = e (r exp{-iwt) )

where w is the frequency of the incident wave and i « i = -1. A substi-

tution of Egs. (15,16) in Eq. {13) leads to

u + pwlu; = e ¥ in v (17)

Cjkrs r,sk J cjkrs rs,k

For a body of volume v and surface s containing an arbitrary distribution

of eigenstrain, the traction free boundary condition can be expressed as

- *
Cjkrs Yr,s "k = Cjkps Frs Mk O S (18)




Consider now the associated Green's function with homogeneous

boundary conditions:

Cikrs 9rm,sk = P ﬁjm = - Gjm &(r-r*,t), inv (19)

Cikrs Yrm,s "k~ 0, ons (20)

Here, the Green's function gjm(Fl?“,t) represents the displacement in the
j-~direction at point r by a unit body force in the m-direction applied at
the point r'. The points defined by r and r' are referred to the obser-
vation and source points, respectively. The Dirac delta function,

s{r-r',t), represents the body force. For the time-harmonic case
S(r-r',t}) = 8(r-r') exp(-iwt) (21)
ooy | = oy | : -
gjm(r-r ,t) = gjm(r—r ) exp(-iot) (22)
The substitution of the above equatibn in Eqs. (19,20) yields

Cikrs Irm,sk ¥ Pe® 95y = - S5 S(r-T') , dnv (23)

Cikrs 9m,s "k = 0, ons (24)

To derive an integral representation for the solution to the eigen-
strain problem, a dynamic version of the Betti-Rayleigh reciprocal theorem
is considered. Multiplying Eq. (17) by I5m and Eq. {23) by us and sub-

stituting one from the other the following is obtained:

(25)

- _ *
un(r') = Iv €jkrs (gjm UYr,sk = Y5 9rm,sk = Ijm s, k1Y

after an integration over the volume v. Noting the symmetric properties
of C5krs and applying Gauss' divergence theorem and boundary conditions,

an integral expression of the displacement field ihAterms of the eigen-



strains is obtained as follows:

9
—y N
um(r ) IS cjkrs ©rs gjm Nk ds
*
-f Cikrs gjm €rs,k dv (26)

v

With the application of Gauss' theorem once more, the above equation can

be reduced to a more compact form:

um(F‘)

or

u_(r)

m

where

g.

9.k (T-7') € S(F)dv (27a)
_jv Cikrs Tsmk (T-7') € g (7 )av! (27b)
— g. = - _8'_ g_ (28)

k Jjm axk Jm
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ISOTROPIC LINEAR ELASTIC MEDIUM

For a linear elastic, isotropic and infinitely extended material,

the Green's function is well-known:

- _ 1 exp i8R
gjm(r r') Amrpw? {8 R Gjm
3 ] exp iaR  exp iBR
- LRt g R 1) (29)
J m
where
R = |r-r']
02 = 0w o W
Py vi
g2 = pw?
U vz
T

By substituting Eq. (29) in Eq. (27b) the induced displacement can be
shown to be
—. _ 1 2
um(r) = - FmoaZ [ @A Wr

Tpw r,m

2
M T T T

+ 2u ij,jkm i (30)
where
A (&1
Q
0y = JIf ej(r) SXRLBR) 4 (32)
Q

From Eq. (30) the strain field can be obtained by direct differentiation

as follows:

|
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2
L (®mk,kn * an,km)

- 2u \y]. + 2u ] (33)

k,kjmn ik, kjmn

The displacement and strain field given in Egs. {30,33) are those
due to the presence of eigenstrains in the regions of inhomogeneities
Q's, respectively. They obviously depend on the form of the eigenstrains.
Since the eigenstrains are not a known priori, it is convenient to expand

+hna A3
L ©

*
i Bij + Bijk X, + Bijk1 X, X+ . (38)

in the region where the eigenstrains are present. The quantities Bij’
Bijk’ ... are constants symmetric with respect to the free indices i and

j and having values independent of the order in which the summation indices

appear, i.e. Bijk] = Bij]k , Bijk1m = Bijkm] , etc. Using Eq. (34) for

ei; and substituting it in Egs. (31,32), the functions Wij and ¢ij are

found to be in terms of the constants Bij’ Bijk’ ... and some volume

integrals as follows:

¥io® Bis v(r) + B ik wk(F) + Bijk] wH(F) + ... (35)
%5 = B].J. o(r) + By k o, (r) + Bijk] ¢k](F) + ... (36)
where
p(r) = [[f exp(ioR) R"-"‘R dv!
Q
P (r) = 115 % %R%L‘Bl dv'
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v (r) = fff'xi x! ... X;ZEZEélEBl dvt (37)
kl...s Q 1 (cont'd)
_ exp(igR)

o) = [ S2LIERL 4,

Q
¢k(;) = fff x! exp(iBR) 4,
Y TR
= _ - , exp(ipR .

¢k]...s(r) = féf Xp X3 oen X R dv

The substitution of Eqs. (35,36) in Eq. (33) leads to

enn{™ = Donis(T) Biy ¥ Dppysa (7D Bygy + - (38)

where Bkj s are constants, and

4"pm20mnkj(;3 N 2“(‘*U’k.]'mn'd’kjmn)

2
- u 8% {45y Sim ¥ Popk éjn)
= A(Gz\b,mn skj) (39)

2 — -
dmpw®B 51 07 = 20(¥g 4 smn= %1,k jmn?

2
W B0 yn Sim * 01k Syn)

2
Ao Yy mn Sk

It should be noted that the ijmn are symmetric with respect to k,j and
m,n. Generally, Dijk]...(F)f Dk1ij...(?) unless i#j and k#1, e.g.
P1122702211 but D1pp3=Dp3)p » ete.

The development so far has reduced the determination of the displace-

ment and strain field to the determination of the constants Bij' Bijk...
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and the volume integrals given in Eq. (37). For the static case,
a , B+ 0, Eshelby showed that Dmnkj(F) is a constant and Dmnkj].... are

zero. Once the integrals in Eq. (37) are evaluated, the solution now will

depend upon the determination of the constants Bij’Bijk
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EVALUATION OF VOLUME INTEGRALS ¢'S AND ¥'S

Let the volume integrals given in Eq. (37] be denoted by

1= fff o) - SRR gy (41)

where ¢ = o for the y-integrals and ¢ = B for the ¢-integrals, p(r') is

of the form of (x')* (y')¥ (z')V , @ is an interior region where p(r') is
distributed, and R = |r - r'|. Employing suitable Taylor series expansion
and the multinomial theorem, the I-integral can be written in a reasonably

convergent series as

n

_ - nondd (-1)" d exp igr
e, = Lol L TR axaykazaTK ( ).
IIJ'(I] vk |n']'k [ ' ' ' 1 ' - :
x') (y")Y™z") p(x',y',z')dx'dy'dz"' , r outside Q (42)
Q
and
© n n-l n
— -1) 1,k_n-1-k
MR, o= ) ) L TII(nToR)T (XY :
exp izr' Ca e
fff p(x ,.Y sZ )8x|]ay.kaz (n 'l k) ( r,l )dX dy dZ >
Tr inside Q (43)

When © is an ellipsoidal region the integrals in I, and I, can be

readily obtained by using results from Dyson [12], e.q.

. , o 1 2m-1 -1 m—]
[[f 3% 4yt = 4ra aa, (-1 1 am ag
Q r tzes ngy (@m- ])'(2m—1)(2m+4)




("‘] )m‘-l sz"-]
(Zm-1)!

rt

32 sinzr!
[ =2 S < ama e s
axpaxé 123 nay

{'(gm:gl(zm-4) AM3,Mm-3, (2m-2)(3) _ m-2.m-2
om-3Y(?m=5) % “k °p " (2m-3)(2m-1) “k °k
pot 2m
coszr' g - (-1)" ¢
fff“j:——dv mzo i tm,o
where
L i} ﬂa1aziL z 2m1a2m2a2m3 2m1!2m2!2m3!
m,0  22M(p+1) M, oM, oM, m, fm, Im !
] J‘co wm d\b

° (a,2+p) " (a,2+y)™ (a,2+p)™ VQ

my +my +mg =m,

Q = (a,*+y)(a,2+y)(a,?+y) ,

in which (x/a,)? + (y/a,)? + (z/a,)® = 1.

15
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DETERMINATION OF EIGENSTRAINS

Let the inhomogeneitiés be situated as shown in Fig. 2, where
QI and QII are the regions occupied by the inhomogeneities. If the
a J—
i5(r)

applied elastic fields are denoted by strains e?j(F), stresses o
and displacements u?(?) and if the self-equilibrated fields due to the
presence of the inhomogeneities are denoted by eij(?), oij(?) and uj(?ﬁ
the total fields due to the appiied fieid and the inhomogeneities are
then the sum of the two. It is noted here that the time-dependence is
suppressed. The MEI can be used to determine the eigenstrains E:jl(?)

in Q, and er II(?) in Q;, as follows:
1 ij II :

AC L e T+ % er I = -ac.l s €2 (F) in @ (44)
k1 &x1 ijk1 &K1 ijk1 fk1\v I
II 0 * 11 _ 11 a . .
BCi5k1 &1 () * Cigpn " (F) = -8Ci 540 £ (Y) in @py (45)
where
I _ I o)
Bliskt = Gzt Gi5i (46)
II I o
A = Gz - Gy (47)
0 I II . . -
and Cijk] . Cijk] . Cijk] are the elastic moduli tensor of the matrix,

the first inhomogeneity QI’ and the second inhomogeneity QII’ respectively.

Consider now the expansion of the eigenstrains in polynomial form

such that
a
eg;(F) = Egy ¢ Bk X Eigkn Xk X7 % oo (48)
* 1 1 I I i
€43 (r) = Bij + Bijk X, * Bijk] X Xp * o ingy (49)



> IT _ I1 IT _ IT —

L r) =B.,. +B.. x +8B X +.,. inQ 50

©i5 O = Byt B X T B X N B § (50)
where the barred and unbarred quantities are measured from the two

different coordinate systems as shown in Fig, 2. The position vectors

are related by

P © -p
X; = %y o+ 355 Xj (51)
—p p o

. = . - 52
X3 (xJ xj) a5 (52)

where a; . is the coordinate transformation matrix. It is easy to show

11 I I _
» B ... in Egs. (49,50)

that the unknown constants Bij ij Bijk , Bijk s

satisfy the following simultaneous equations:

I I I I I
ACstmn { mmJ[O]B * Dmnijk[O]Bijk
I I 11 I1
+ Dmni3k1 [0]B1Jk1 + ...]1 + amcanh [DChij[O]Bij
N II 0 II I1 II
Denigk @By * Dcpi gk (01Bygpq * -- 1)
o 1 _ I
* Cotmn Ban = ~2CstmnEmn (53)
I I

9
ACstmn {[52' n1J[0]B 5‘5 mn13k[O]B1Jk

9 I
T D [O]B1Jk1 .l

p mnijkl
3 IT
mc #nh 2 Pf [axf ch1‘][O]B
R S SN § S 11
axf Denijk [01Bq 5k * 5% Dehijk1 [01B 54y + -+ 1}
0 I I I
= Cstamn anp “ACotmn E mnp (54)
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Loe 2 (018~ + 2= p I [o18
21 Blstmn tlgx 39X mn\J ij  3x_ax_ mnijk ijk
P q P q
4+ 9% 52 I [ I
3% 5% Dunijk1 [0Bgjq * -+ ]
P q
N 52 I 0 B II
mc %nh pf 2qg [5%;52; Deni 5101
52 I1 Il
* ayfay Ch1Jk[0]B1Jk
2 I1 II
+ -\'ra-\— D._l_.' 211 [OJB::k'} + . ]}
deng Cnirgki 1J
0 I I
+ Cstmn anpq ACstmn mnpq s

IT

I 1
ACstmn tagmann [Dchij[00B55 + Deni i [01By 5k

I
Dchij

Il

I
k11038 5k7 *

11 II
]+ [Dmn1J[O]B1J

11 I1 13

t mn1Jk[0]B1Jk + Dmn13k1[0]813k1 ...

o]
Cstmn

II
8Cs tmn {acma

_é_

+[5§L_
*p
+_9_D
oX

p

+ Cstrnn

II I
By = -AC

5
hn?fp [Bxf

I I
ch13k[0]B13k

II

mnlJ[O]B

I _

stmn Emn

ch1J[O]B

3 I

I
Xf DCh1Jk][O]B1Jk1 ..

IT II

II
mnp = = Cs

mn1Jk1[0]B1Jk1 t... 1l

I _

tmn Emnp

(55)

(56)

(57)
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] IT { 92 I I
7T Alstmn *3cm@hnd fplgq [3xfaxg ch1J[O]B
2 I 2 1 I
+_8° [01B MR"__D .., 1 [0]B + ...
axfaxg ch1Jk 1Jk Xfoxg chijki ikl
2 11 I 2 IT 11
2 0185+ -2 D [018B + ...}
= mn1J = “mnijkl ijkl
axpaxg axpaxq
T _ I1 -
+ Cstmn anpq ACstmn Ernnpq > (58)

etc.

in which the right hand side are determined by expanding the applied in a

polynomial as in Eq. (48) and the equivalency equations used for any point

P are
Aci§k1 {Ek% (r") + Ek%I(Fp)} + c1§k1 e:]I(Fp)
= -DCis1 i (rP) 5 P in o (59)
ac 15&1 {Ekl(r )+ €k1 NGl C;o 5K e:i (v")
11 o (60)

= —AC1Jk] Ek](r‘ ) s P in Qz

The notation Dijkl[O] . 5%; Dijkl[o] . mean that the D's are evaluated
at the point "0". The D's are defined in Eq. (39,40) ... . The super-
scripts I and II are referred to the regions QI and Q11 occupied by the

inhomogeneities.
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INTERACTION ENERGY

If an elastic body 1s subjected to surface tractions ti(F}t) and
body forces fi(;;t) , the induced elastic fields depend upon the elastic
moduli of the body. Let oi;n(F;t) . ei;n(F}t) R u:n(F}t) and cig(F,t) .
e..(r,t) , uif(F,t) be the stress, strain and displacement fields induced
when the elastic moduli are Ci;:](F) and Ci§k1(?) , respectively. The
initial state, denoted by superscript in , can be considered as the state
where there are no inhomogeneities and the final state, denoted by f ,
can be considered as the state where there are inhomogeneities present.

Using the notations given in [14], the difference in power input and

the rate of change in kinetic energy plus potential energy is

AE = f _ kin Uf _qin
cF e P
- [ filuy - u}")dv - [ tiluy - u}n)ds (61)
v s
where AE = interaction energy due to the presence of the inhomogeneities
1 o«
K = E'fv p uj uj dv. = kinetic energy
] .
U = 5[ oj5¢€55dv = strain energy

v

Hence the interaction energy rate is

*f *3 o f o ..in "‘in
E' - = fv o(uy uif - ug Uy )dv
] f.f in « in
+_ -
) fv(qij Ui5 " O ui,j)dv
e f . in
- f fi(ui - U Ydv

v

v - uMas (62)
S

1



A

The equations of motion for the induced fields are:

o f N in . in
-y = 9y, 7 PUC T gy T P , (63)
f in
t., = 0..n. = O n ‘ 64
1 13 ] 13 j (64)

Using integration by parts and the equations of motion plus

boundary conditions, Eqs. (63,64), the following identity can be

derived:
in * in

f{f (Oig aifj - oij ui’j)dv
AU ALERULAE

SR FEAREISALLY
= if ti(&if - U 1")n ds

S f o oin o in
- f{j o(u; ug' - Uy Uy }dv

+ IIJ fi(;if - aiin)dv
v

in ° f f * in
jj (Oij ugt - 045 Uy )n ds

in.* f v Foe i
- !JI [(513 i~ i )Ulf (Gij,j - Py )uiIn]dv

_ _ ©din | in
f{f p(ui ui u ' Uy )dv

g7 ! il - o e
R TTIRCALI RS AL P
- Iff (e ﬁif uif - Uii" Giin)dv ' (65)

The substitution of Eq. (65) in Eq. (62) leads to
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AE = - %—if t. (u - ﬁiin)ds - % f{f fi(aif - aii")dv
+_% f{f p(u f G f _ 1in ﬁii")dv
B} "% if ti(aif B ‘iin)
- 3 f{f (s, - ou; 0 f - (r, - paif")ai‘"] dv
- -3 I (035" ;15 - oy u D
- _.% f{j [ai§ &ijg - oi;" aifj]dv_ (66)

The above equation may be expressed in terms of strains as follows:

L 1 f e« f in = in
AE = “Ejfj (Gij Eij-cij E.ij )dV

Q

f,ff (0 1néf

f -
. 67
i EIJ Mydv (67)

When inhomogeneities exist in the body, the following definitions are

noted:
- in _ s+ a in_ _a__.o0o :a
€13 T %50 %5 T %5 7 Y S e
L (68)
13 1) 1]
o.f = c.® (e 8 +e ) in matrix
i3 ijk1 S g
- I a _ .0 a * I .
Cisk1 (Bl *5a) = Cisp (B ¥ 8 ~ 80 ) In Y
_ 11 a _ 0 a * Iy
Ciskt CBk1 * &) = Ciskn (B 8 8 ) TN 9y

Hence the ioteraction energy due to the presence of inhomogeneities is

f in 1 o] * a
AE = E - = - ..
£ T2 Iéf ijki k1 %1j dv
where Q = Q_ + Q._ + and e is the eigenstrain in each @ .

I It k1
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containing inhomogeneities under the excitation of incident power. The
brief review of the existing scattering theory of a single flaw led to

the realization of the importance of finding displacement and strain

fields inside inhomogeneities. They are currently not available. Defini-
tion and general equations for time-harmonic displacement and strain fields
in a pair of interacting inhomogeneities are given.

The interaction problems are presented via the dynamic eigenstrain
concept. This approach converts the probliem of dealing with inhomo-
geneous boundary conditions to that of dealing with an nonhomogeneous
differential equation. The nonhomogeneous term is directly related to

the strains and displacements in the scatterer and can be obtained by

the method of equivalent inclusions.
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