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INTRODUCTION - .___ _ -__-.-- 

Recent experimental and theoretical studies related to ultrasonics 

have demonstrated that the scattering of elastic waves by defects in a 

material provides information about both. This information may be used 

for determining the properties of any imperfection such as the size and 

orientation of a crack or it may be used for determining the mechanical 

and strength properties of the material. 

Vary and his associates have emphasized the aspects of applying 

ultrasonics to material evaluation [1,2,31. Their material information 

contents are experimentally measured in terms of ultrasonic attenuation 

and velocity factors. Using these concepts and a simple model, Vary [41 

presented some very useful empirical relations that correlate these factors 

to the fracture toughness and the yield stress and gave data for two 

maraging steels and a titanium alloy. 

The above mentioned findings are indeed very interesting and yet 

somewhat intriguing. After going through an extensive literature review, 

the author [5] suspected that the links between the strength properties 

(fracture toughness and yield stress) and the ultrasonic factors (attenu- 

ation and velocity factors) are the material microstructural parameters. 

It was pointed out that the size of the second phase particles and the 

distance between them play a very important role in material resistance 

to fracture. 

In a first step toward defining the relation between Klc , fracture 

toughness and vL@G.m , the ultrasonic attenuation factor, the interaction 

of a pair of second phase particles (referred to as inhomogeneSties) is 

studied. Since energy is trapped or dissipated in the vicinity of the 
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neighboring inhomogeneities, the ultrasonic factors measured at far field 

reflect this energy loss. Assuming that the attenuation is a function of 

incident wave frequency and that the energy trapped in the vicinity of the 

inhomogeneities provides the fracture energy a relation between the fracture 

toughness and the ultrasonic attenuation factors can be obtained. To ac- 

complish this purpose both the far field and the near field solutions of 

the interaction problem are needed. 

Currently, scattering theory of a single flaw is available 151. The 

approach of Gubernatis, Domany and Krumhansl [6] is of particular interest 

in that they gave the scattered field solution far from the flaw in terms 

of the displacements and strains in the scatterer, i.e. the inhomogeneity. 

They also expressed the physical quantities such as total and differential 

cross sections in terms of the scattered field quantities. Since the 

strains and displacements inside the scatterer are not available for the 

dynamic case, they used the results from Eshelby [7] for the static case 

and studied the case appropriate to long wave limit 181. 

The purpose of this report is to study the dynamic response of in- 

homogeneities, one or two, and to determine the strains and displacements 

inside them under incident plane waves as depicted in Figs. 1 and 2. The 

method of equivalent inclusion is used 191. The underlining approach, 

the formulation and governing equation for the eigenstrains, and the 

determination of the energy due to the presence of the inhomogeneities 

are presented in this report. The derivation of the correlation between 

KILand v f3 will follow later. 
L 6 



RZVIEW OF SCATTERING THEORY: SINGLE FLAW .-____ ---------~- --._ - 

In a recent article, Gubernati's, Domany and Krumhansl (GDK) [61 

summarized their recent work on elastic wave scattering with app licat ion 

in which 

where 

to nondestructible evaluation. They studied the elastic scattering of 

a single flaw (be it a void, a crack or an inhomogeneity) under an experi- 

mental situation as depicted in Fig. 1. The scattered amplitudes and 

cross sections (measurable quantities) were derived specifically in terms 

of the scattered fields of stress and displacement at large distance from 

the scatterer. 

For an incident plane wave of angular frequency w and wave vector r, 

Fig. 1, the incident displacement vector is 

U:(F,t) = up exp i(k l Y - wt) (1) 

where 

Ii/ = a = W/VL 

B = U/VT 

vL = longitudinal sound velocity 

V T = transverse sound velocity 

Employing integral theorems and the Green's function approach, they 

showed that the final form of the basic scattering equation is 

Ui(;;) = U;(7) + U:(F) 

u;(F) = 6p &I2 ( dV’ gim(F - 7 )U,,,(F’) 

R2 

+ ' 'jklm R I dv' gij,k(~ - r') U1 ,m(~') 

2 

(2) 

(3) 



" = 'flaw - 'matrix 

6 c 
jklm = CC 1 jklm flaw - cc jklm)matrix 

R, = region occupied by scatter 

For an. isotropic elastic medium, l'n the far field at a distance r 

from the defect, they found that the scattered field depended on a certain 

vector, the f-vector, as follows: 

U; 
eiar 

s eiejfj( Z ) r + 

i8r 
t (6.. - 

1J 
,r+o0 (4) 

where the f-vector is defined as 

-- 
fj(k) = 4nL12 [6o w2 I dv ui exp(-ik*r) 

R2 

+ikej&c.. J 
1Jkl R 

dv ckl exp(-ik*F)l (5) 
2 

and is dependent upon the differences in material density and properties, 

between the matrix and the defect, the incident wave field and the total 

displacement and strain fields "inside" the scatterer, RP. 

With the asymptotic value of 7 given in Eq. (4), the asymptotic 

value Of U~j can be obtained as 

2 
iccr 

ij ek 'i j fk(a 

,ior 
t iv [Za 7 [eiejekfk(Z)l 

iBr 
[eifj(B) t ejfi(E)l 

- 28 + 
i8r 

eiejekfk(8) I r+m (6) 



and various cross section can be expressed in terms of the scattered 

asymptotic values. For example, the differential cross section, for any 

given frequency it is a measure of the fraction of incident power 

scattered into a particular direction, is found to be 

dP(w) = lim <r2ei utj Uj> 
dS2 r---J- <IO> 

where a dot denotes time differentiation and an angle bracket denotes 

time averaging, i.e. 

<f(t)> = $ l IT f(t)dt 
0 

The differential d-Q is the differential element of a solid angle. The 

total cross section is simply 

P(w) = I dR 9 

4lT 
03) 

From Eqs. (4-8) it can be seen that the far field solution, the 

scattered amplitudes and cross sections, depends upon the determination 

of the displacement and strain fields inside the scatterer and the evalu- 

ation of the volume integrals in Eq. (5), see statements following Eq. 5, 

Ref. 191. The displacement and strain fields are currently not available 

for the dynamic case. As a remedy, Gubernatis [81 used the results 

obtained for the static case from Eshelby [7], obtained by employing a 

method called equivalent inclusion method. 
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INHOMOGENEITIES IN A TIME-HARMONIC WAVE FIELD 

From the above formulation, it is clearly seen that displacement and 

strain fields inside scatterers (inhomogeneities) play a very important 

role in nondestructive evaluation. In studying the interaction between 

two inhomogeneities, the dynamic version of the equivalent inclusion 

method is used. The method was first employed by Mura [lOI and his 

associates [ill in studying composites. 

Let the ultrasonic experimental situation be depicted as in Fig. 2 

such that the incident power is along the positive z-axis. Let the total 

strain be the combination of elastic strain and non-elastic (or eigen-) 

strain: 

Ee 
* 

E 
rs = rs t E rs 

where crs, c e rs and c ,.: are the total strain, elastic strain and the 

eigenstrain, respectively. The eigenstrain is the non-elastic strain 

which is caused by a change of the form of an inclusion, which if the 

surrounding matrix material were absent, would have gone through some 

homogeneous deformation. Due to the difference in material properties 

between the matrix and the inclusions, this change of form causes dis- 

turbance in stress and associated strain in the material. 

The equations of motion for a continuum are 

'jk,k = PUj (10) 

where a dot indicates a differentiation with respect to time while a 

subscript comma indicates a spatial differentiation. In a linear elastic 

matrix with small strain deformation, the strain-displacement relations 

are 



E 
rs = 2 1 hr,s + UJ t.111 

and the generalized Hooke's law is 

where c jkrs are the elastic constants. Employing Eqs. (9-12) the dis- 

placement equations of motion can be written as: 

'jkrs 'r,sk -piij = 
E * 

'jkrs rs,k (13) 

If the matrix is isotropic the elastic constants cjkrs can be expressed 

as 

C 
jkrs = x djk6rs ' u &jr6ks + u &js6kr (14) 

where X, u are Lame's constants and "ij is the Kronecker's delta. 

If the displacement and strain fields are time-harmonic, they can 

be written as 

uj(F3t) = uj(?;) exp(-iwt) 

c,,*(r,t) = c,:(T) exp(-iwt) 

where (~1 is the frequency of the incident wave and i l i = -1 . 

tution of Eqs. (15,16) in Eq. (13) leads to 

'r,sk + pw2u. = 
* 

'jkrs J 
c 

jkrs Ers,k 
in v 

(15) 

(16) 

A substi- 

(17) 

For a body of volume v and surface s containing an arbitrary distribution 

of eigenstrain, the traction free boundary condition can be expressed as 

'jkrs 'r,s "k = 'jkrs ErP "k On ' (18) 

I I 



Consider now the associ.ated Green's functi‘on wjth homogeneous 

boundary conditions: 

. . 
'jkrs grm,sk - p gjm =. -6 jm G(r-r'.t), in v (191 

'jkrs grm,s "k = 0, ons (.20) 

- -1 Here, the Green's function gj,(r-r ,t) represents the displacement in the 

j-direction at point r by a unit body force in the m-direction applied at 

the point r'. The points defined by 7 and r' are referred to the obser- 

vation and source points, respectively. The Dirac delta function, 
-- 

b(r-r',t), represents the body force. For the time-harmonic case 

a(F-F’ .t) = 
-- 

6(r-r') exp(-iwt) 

- -1 
CJjm(r-r .t) 

- -1 = gjm(r-r ) exp(-iot) 

The substitution of the above equation in Eqs. (19,20) yields 

'jkrs g,,sk ' Pu2 gjm = - 6jm 
-- 

6(r-r') , in v 

(21) 

(22) 

(23) 

'jkrs grm,s "k = 0 3 on s (24) 

To derive an integral representation for the solution to the eigen- 

strain problem, a dynamic version of the Betti-Rayleigh reciprocal theorem 

is considered. Multiplying Eq. (17) by gjm and Eq. (23) by uj and sub- 

stituting one from the other the following is obtained: 

um(F') = J C. v Jkrs (gjm 'Jr Sk - Uj g,m Sk - gjm e,$,k)dV , (25) , 

after an integration over the volume v. Noting the symmetric properties 

of c. Jkrs and applying Gauss' divergence theorem and boundary conditions, 

an integral expression of the displacement fPeld in terms of the eigen- 
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strains is obtained as follows: 

um(? ) = j E *g s 'jkrs rs jm "k ds 

-j,, 'jkrs gjm Er$ k dv (26) , 

With the application of Gauss* theorem once more, the above equation can 

be reduced to a more compact form: 

Um(? ) = f 
'jkrs , gjm k (r-r') Er~(~dV 

V 
or 

Urn(F) = -J c. v Jkrs gjm,k (.F-7' ) c ,:(F')dv' 

where 

(274 

(27b) 

a a 
gjm,k = K gjm = - %$ gjm (28) 
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ISOTROPIC LINEAR ELASTIC MEDIUM __-.-_--.- ---------- 

For a linear elastic, isotropic and infinitely extended material, 

where 

the Green's function is well-known: 

- -1 1 
gjm(r-r ) = - 

4?lpw2 

a a exp iclR --- 
axj axm [ R 

_ exp iBR 
R 

- -1 R = jr-r 1 

1 1 (29) 

By substituting Eq. (29) in Eq. (27b) the induced displacement can be 

shown to be 

urn(F) = - 47i;02 [ a2A YJ 
rr,m 

+ 2u B2 arnk k - 2p yy. , Jk,jkm 

+ 2u CJ. 
Jk,jkm I 

where 

(30) 

(31) 

0 i j = 111 (32) 

R 

From Eq. (30) the strain field can be obtained by direct differentiation 

as follows: 
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Emn(‘) = - ---& [A a2 y 
4npo rr,mn 

' LJ "('mk kn + @nk,km) , 

- 2u Y. jk,kjmn ' 2u 'jk,kjmn ' (33) 

The displacement and strain field given in Eqs. (30,33) are those 

due to the presence of eigenstrains in the regions of inhomogeneities 

R's, respectively. They obviously depend on the form of the eigenstrains. 

Since the eigenstrains are not a known priori, it is convenient to expand 

the eigenstrain in a form of polynomial 1121 

* 
E 

ij = 
B 

ij 
+B 

ijk 'k 
+B 

ijkl 
Xk x1 + . . . (34) 

in the region where the eigenstrains are present. The quantities Bij, 

B-0 ljk' --- are constants symmetric with respect to the free indices i and 

j and having values independent of the order in which the summation indices 

appear, i.e. Bijkl = B.. ljlk ' Bijklm = Bijkml , etc. Using Eq. (34) for 

eii and substituting it in Eqs. (31,32), the functions Yij and 0ij are 

found to be in terms of the constants Bij, Bijk, . . . and some volume 

integrals as follows: 

'4 =B 
ij ij ~(') ' Bijk ok ' Bijkl ~kl(') ' ..- 

@ ij = Bij '$('I ' Bijk @k(r) ' Bijkl $kl(T) t . . . 

where 

j,(F) = 11, %I$!& dv' 
. 

$k(r) = ,k, X;c w dv' 

(35) 

(35) 
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. . . . 

9J 
kJ...s 

(7) = J;‘.x” x; . . . x; y dv’ 

4(r) = JJJ exp;i6R) dv' 

R 

c+(F) = JLJ x;( exp;i8R) dv' 

. . . . 

4 
kl...s 

(r) = J/J xi x; . . . x$ F dv' 

The substitution of Eqs. (35,36) in Eq. (33) leads to 

Ed,, = D mnkj(d Bkj ' DmnkjJ(~ Bkjl + . . . (38) 

where Bkj...s 
are constants, and 

- X(a2$,mn 6kj) 

(37) 
(cont'd) 

(39) 

4npd D mnkjl(') = 2P($ kjmn-$1 kjmn) , 3 

- u B2(@ 1,kn "jm ' %,mk 'jn) 

. . . . 
- A a2 Ql,mn 'kj 

It should be noted that the Dkjmn are symmetric with respect to k,j and 

m,n. General Jy, Di.jkJ.. . (r)# Dkl ij . ..(F) unless i#j and kfl, e.g. 

D 1122fD2211 hut D1223=D2312 ' etc* 

The development so far has reduced the determination of the displace- 

ment and strain field to the determination of the constants Bijs Bijk... 
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and the volume integrals give? in Eq. (37). For the static case, 

(3 , @ + 0, Eshelby showed that Dmnkj(T) is a constant and Dmnkjl,.., are 

zero. Once the i.ntegrals in Eq. (37) are evaluated, the solution now will 

depend upon the determinati'on of the constants Bij,Bijk . ,... 
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EVALUATION OF VOLUME INTEGRALS @'S AND $'S __--~ 

Let the volume integrals given in Eq. (37) be denoted by 

1 = JJJ ,-,(,r’) l expRi3R dv' (41) 

where 5 = c1 for the $-integrals and 5 = .6 for the $-integrals, p(?) is 

of the form of (x')~ (y')u (z')' , R is an interior region where o(?) is 

distributed, and R = 17 - ?I. Employing suitable Taylor series expansion 

and the multinomial theorem, the I-integral can be written in a reasonably 

convergent series as 

IF) > 

111 (~')'(y')~(z')"-'-~ p(x',y',z')dx'dy'dz' , r outside R (42) 
R 

and 

1(-F) < 

111 PW BY’ ,z’> an axllaylkazl(n-l-k) ( 
i-2 

exPrfSr')dx'dy'dz', 

r inside R (43) 

When R is an ellipsoidal region the integrals in I, and I, can be 

readily obtained by using results from Dyson 1121, e.g. 

C-1 > 
m-l 

411 w dv' = 4na,a2a, 3 
2m-1 am-l ,m-1 

k k 
n m=l (2m-1)!(2m-1)(2m+l) 
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[2m-2)(2m-4) m-3 m-3, (2m-2)(3) 
{ 7-&$-.3--( ak ak p + -[%Xm k am-2aF-2 1 

* . . 

111 rt 
cos3rtclvI = Y 

(.qrn 52m L 
m=o 2m! my0 

where 
-w2a3 

L = --- 
2'm(m+l) c a 

2mla2mza2m3 2m,!2m,!2m3! 

w ml ,m2 n3 
m,!m,!m,! 

l Im 

qrn @J 
, 

O (a, 2+$)m1(a22+*)m2(a32+~)m3 JiTJ 

ml f m2 + m3 = m , 

Q = (a,2+$)(a,2+$)(a32+$) , 

. . . 

in which (x/a,)2 + (y/a,)* + (z/a,)2 = 1. 
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DETERMINATION OF EIGENSTRAINS ----__ __--.__ 

Let the inhomogeneities be situated as shown in Fig. 2, where 

RI and OII are the regions occupied by the inhomogeneities. If the 

applied elastic fields are denoted by strains ca ij(F), stresses oa i j('-) 

and displacements u;(r) and if the self-equilibrated fields due to the 

presence of the inhomogeneities are denoted by Eij(~), oij(r) and uj(a 

the total fields due to the applied field and the inhomogeneities are 

then the sum of the two. It is noted here that the time-dependence is 

suppressed. The ME1 can be used to determine the eigenstrains ~~~ * h 

in 2 I and E. rjl'(r) in RII as follows: 

I 
AC.. ,Jk' Ek,(') + Ciikl E;llm = -*CiJkl E;,(F) in RI (44) 

AC 
II 

ijkl Ekl(8 + CiSkl ELII1(fl = -ACii[l ‘z,(F) in RI1 (45) 

where 
I 

AC.. = Ciikl - C 
0 

ijkl ijkl 

II I 0 
AC.. 1Jkl = ‘ijkl - ‘ijkl 

0 I II 
and C 

ijkl 
,c.. ,c ljkl ijkl 

are the elast 

(46) 

(47) 

ic modu li tensor of the matrix, 

the first inhomogeneity RI, and the second inhomogeneity RII, respectively. 

Consider now the expansion of the eigenstrains in polynomial form 

such that 

a 
~ij(F7 = Ei,j + Eijk Xk + Eijkl Xk X1 ' .. ~ 

E;~I(T) = Bii + B.! 
ljk 'k 

+ Biikl xk x1 + . . . in RI (49) 
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(50) 

are related by 
P 0 -P x. 1 = x. 

1 
t a.. x. 

IJ J (51) 

? = (xP 
i x0) a 

j- j ji 
(52) 

where the barred and unbarred quantities are measured from the two 

di'fferent coordfnate systems as shown in Fi'g. 2. The position vectors 

where a.. 1J is the coordinate transformation matrix. 
II I 

that the unknown constants Bi: , B.. , B 
II 

1J ijk 
, B ijk ' 

It is easy to show 

. . . in Eqs. (49,501 

satisfy the following simultaneous equations: 

+D m~fjkl[O1Bi~kl + -..I + a,,anh rDc~~jr'l'i:I 

+D c~~jk[OlBi:: + Dc~:jkl [OlBi::l + . . .I} 

0 I I 
+c B stmn mn = -AC stmnEmn 

AC s:mn { 1; Dmiij io]Bi~ + 
? 

6 Dmiijk[olBiik 

LD + axp miijkl IOIBiikl + **-I 

+ amc a LD nh apf [asif c;;j[O,Bi:' 

t a Dc;;jk[O]Bi;; t -?- Dc;;jkl[O]Bi;;l + . . . 1) 
Gf ax f 

-CO 
I 

stmn Bmnp = -AC 
I I 

stmn Emnp 

(53) 

(54) 
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~ A',:,, {r~ Dm~~j[O,JBi: -t ~~ Dm~ijklOlB 
I 

. 
P 9 P 9 

ijk 

a2 I I 
' axpaxq 'mnijkl [OIB ijkl + . . . 1 

+a mc anh apf aqg 
a2 D1l 

‘axfax 
9 

,-hi-j IOIBi:I 

0 I I 
+ c stmn 'mnpq = -AC stmn Emnpq 3 

. . . 

II 
'acmahn [D ciij [nIBi: 

I 
AC stmn ’ Dchijk[nIBijk 

I -I II - II 
’ Dchijkl IOIBijkl + m s .I + [Dmnij[OlBij 

+ Dmiijk[nIBi:i + Dm~:jkl [blBi:[l + . . .ll 

0 II 
+c stmn Bmn = -AC 

II E; 
stmn mn 

AC 
II 

stmn {a LD cmahnafp [axf Gil J[‘lB 
..- i; 

f a Dc~ijk~~~BiJk + ~ 
I-I 

axf 
f Dchijkl [OIBijkl ’ . ..I 

+[a D 
ax P 

mfi:j[~lBi;lt & Dm;fjk[~lBi$ 
P 

+c" II II - 
stmn Bmnp = - Cstmn Emnp 

(55) 

(56) 

(57) 
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&- ACsiAn (a a2 
. cmahnafpagq [axfaxg ___- Dc~ij[~lBi: 

t -a2 - Dc~ijk[iSIBi~k ’ ~~~~~ Dc~ijkl I'IBi:kl ' , , -1 
aXfaXg 

+ [a2 
axpax, 

Dm~~j[~lBi~*+ -a& Dm~~jkl I~~Bi:~l f -.. II 

P q 

+c” II 
stmn Bmnpq 

II - 
= -ACstmn Emnpq 3 (58) 

etc. 

in which the right hand side are determined by expanding the applied in a 

polynomial as in Eq. (48) and the equivalency equations used for any point 

F are 

= -ACijk, Ekl (rP) ; P in RI 

II -a -p 
= -ACijkl Ek,(r ) ; P in R, 

(59) 

(60) 

The notation Dijkl[Ol , $-- Dijkl 101 * * * mean that the D's are evaluated 

at the point "0". The D'sPare defined in Eq. (39,40) . . . . The super- 

scripts I and II are referred to the regions RI and RII occupied by the 

inhomogeneities. 
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INTERACTION ENERGY 

If an elastic body is subjected to surface tractIons ti(F,t) and 

body forces fi(r,t) , the induced elastic fields depend upon the elastic 

moduli of the body. Let Uij in(r,t) , eiin(F,t) , uin(F,t) and Gii(F,t) , 

Ei:(;,t) , Uif(~,t) be the stress, strain and displacement fields induced 

when the elastic moduli are CiJnkl(r) and Ciikl(r) , respectively. The 

initial state, denoted by superscript fi , can be considered as the state 
- 

where there are no inhomogeneities and the final state, denoted by f , 

can be considered as the state where there are inhomogeneities present. 

Using the notations given in [141, the difference in power input and 

the rate of change in kinetic energy plus potential energy is 

. 
bE = if _ ;in + if _ ;in 

(61) 

where AE = interaction energy due to the presence of the inhomogeneities 

K = p ;i ii dV = kinetic energy 
V 

U = ~ I Uij Eij dV = strain energy 
V 

Hence the interaction energy rate is 

if _ iin = Jv p(;if iif - iin ;in)dv 

f l f in l in 
+;I (u.. u. -u.. u. . 

v 13 l,j IJ , 1 JJd 
v 

- Iv fi(iif - iiin)dv 

- Is ti(iif - iiin)ds (621 
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The equations of moti.on for the induced fields are: 

-fi = ai;,j - pui 
f = o in _ pii in 

ij,j i 

ti = f =-/nn 
'ij "j ij j 

(63) 

(64) 

Using integration by parts and the equations of motion PIuS 

boundary conditions, Eqs. (63,64), the following identity can be 

derived: 

I~, (oi5 ;ilj - oi~n 'il:)dV 

= [J (oii iif - oiin Giin)nj dS 

_ y- (oi;,j Gif - oij;; iiin)dv 

= LJ ti(lif - iiin)nj ds 

_ ,6J p(;if iif - iiin iiin)dv 

t J;J fi(iif - iii% 

= JJ (oiin ;if - oii iiin)nj ds 
S 

_ JIJ [(oiji:! - ouiin);if - (oii,j - puif)'iin'dv 

- ,;I p(;if iif - iiin iiin)dv 

= JJJ ($ iilj - crif ;$dv 
V 

+ 111 p(;'iin iif - Giin iif)dv 

_ JJ/ (.p $f uif - iiiin iii% 
V 

(65) 

The substitution of Eq. (65) in Eq. (62) leads to 
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. 
AE = - 3 SIf ti.(;if - ;iin)dS c ~ ,&I fi(;if - ;iinldv 

t ; JJJ p(jiif iif - iiiin ;$dv 
V 

= - $ p t&f - iii") 

- ; ,;, [(,fi - piiif)iif - (fi - piiin)iiinl dv 

= - + ,;, (c$ iifj - CL; t$jn)dv 

= - + ,;J’ [CL; iiT; - u$ $rjldv (66) 

The above equation may be expressed in terms of strains as follows: 

i = - 3 J~J (~i5 “is - ~i::n Ei~n)dV 

= - + J;, ($ ii; - o-is ii$)dv (67) 

When inhomogeneities exist in the body, the following definitions are 

noted: 

l in l a in a Eij = Eij , aij 
= 'ij 

=co -a 
ijkl Ekl ' 

;.f = ; a + ; 
lj ij ij (68) 

ff f = 
i.j 

Ciyk, (cky + c ) in matrix 
kl 

= C I ijkl (~~7 + Ed,) = Cigk, (Ed; + ckl - $I) in RI 

II a = C (E ijkl kl + ~~~~ = Cigkl (tzky + Ed, - E;,'*) in RI1 

Hence the interaction energy due to the presence of inhomogeneities is 

AE = Ef _ Ein = - 3 JAJ cigk, E;, ci; dv 

where R = RI + RI1 + . . . and E;, is the eigenstrain in each R . 
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CONCLUDING REMARKS 

Quantitative determination of attenuation and velocity factors 

requires the solution of far fields and near fields for a material 

containing inhomogeneities under the excitation of incident power. The 

brief review of the existing scattering theory of a single flaw led to 

the realization of the importance of finding displacement and strain 

fields inside inhomogeneities. They are currently not available. Defini- 

tion and general equations for time-harmonic displacement and strain fields 

in a pair of interacting inhomogeneities are given. 

The interaction problems are presented via the dynamic eigenstrain 

concept. This approach converts the problem of dealing with inhomo- 

geneous boundary conditions to that of dealing with an nonhomogeneous 

differential equation. The nonhomogeneous term is directly related to 

the strains and displacements in the scatterer and can be obtained by 

the method of equivalent inclusions. 
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