Progress Report 17
for the Period September 1980 to February 1981

and Proceedings of the
17th Project Integration Meeting

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 81-35)
Progress Report 17
for the Period September 1980 to February 1981

and Proceedings of the
17th Project Integration Meeting

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 81-35)
ABSTRACT

This report describes progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981. It includes reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. It includes a report on, and copies of visual presentations made at, the Project Integration Meeting held at Pasadena, Calif, on February 4 and 5, 1981.
CONTENTS

PROGRESS REPORT

PROJECT SUMMARY .. 1
AREA REPORTS ... 5

PROJECT ANALYSIS AND INTEGRATION AREA 5
TECHNOLOGY DEVELOPMENT AREA 7
Silicon Material Task 7
Large-Area Silicon Sheet Task 15
Encapsulation Task 21

PRODUCTION PROCESS AND EQUIPMENT AREA 27
ENGINEERING AREA 31
OPERATIONS AREA 37

Figures
Production Process and Equipment Area Phase Schedule 27
Fraction of Lower Sky Shadowed 42

Tables
Silicon Material Task Contractors 8
Large-Area Silicon Sheet Task Contractors 16
Engineering Area Contractors 35
Recent Qualification Test Results 39
Recent Commercial Module Test Results 40
PROCEEDINGS

PROCEEDINGS SUMMARY .. 47
PLENARY SESSION .. 49

TECHNOLOGY DEVELOPMENT AREA

SILICON MATERIAL TASK

Status of Union Carbide EPSDU (Union Carbide Corp.) 50
Development of Hydrochlorination Reactor (Massachusetts Institute of Technology) .. 51
Significance of Hydrochlorination Results 54

PRODUCTION PROCESS AND EQUIPMENT AREA

Near-Term Cost Reduction Results 55

ENCAPSULATION TASK

Encapsulation Materials and Design Principles 59

OPERATIONS AREA

Block IV Module Results .. 71

PRODUCTION PROCESS AND EQUIPMENT AREA

Module Experimental Production System Development Units 83
Preview of Solarex's MEPSU Program (Solarex Corp.) 83
MEPSDU: Approach to Demonstration of Technical Readiness (Westinghouse Advanced Energy Systems Division) 91

TECHNOLOGY SESSIONS

TECHNOLOGY DEVELOPMENT AREA

SILICON MATERIAL TASK .. 103

Silicon Particle Formation and Growth (Aerochem Research Laboratories) .. 105
Silane-to-Silicon Process (Union Carbide Corp.) 109
Zinc Reduction of Silicon Tetrachloride (Battelle Columbus Laboratories) ... 113
Hydrochlorination Process (Massachusetts Institute of Technology) .. 117
Dichlorosilane CVD Process (Hemlock Semiconductor Corp.) ... 119
Definition of Purity Requirements (Westinghouse Electric Corp.) ... 125
Effects of Impurities on Solar Cell Performance (C.T. Sah Associates) 128

LARGE-AREA SILICON SHEET TASK ... 129

Silicon Web Process Development (Westinghouse Electric Corp.) .. 137
Advanced Dendritic Web Growth Development (Westinghouse Electric Corp.) 138
Multiple Silicon Ribbon Growth by EFG (Mobil Tyco Solar Energy Corp.) 143
Silicon on Ceramic (Honeywell Corp.) ... 152
Oxygen Analysis (University of Missouri, Rolla) ... 165
Advanced Czochralski Ingot Growth (Kayex Corp.) ... 171
Continuous Liquid-Feed Cz Growth (Siltec Corp.) .. 186
Semicrystalline Casting Process (Semix Inc.) ... 189
Silicon Ingot Casting: Heat Exchanger Method (HEM) (Crystal Systems Inc.) 192
ID Wafering (Silicon Technology Corp.) .. 211
Enhanced ID Slicing Technology (Siltec Corp.) ... 222
Characterization (Applied Solar Energy Corp.) ... 225

TECHNOLOGY DEVELOPMENT AREA

ENCAPSULATION TASK .. 233

Low-Cost Encapsulation Systems (Springborn Laboratories, Inc.) ... 236
Electrostatic Bonding (Spire Corp.) ... 242
Ion Plating (Illinois Tool Works) ... 246
Material Degradation and Life Prediction ... 247
PRODUCTION PROCESS AND EQUIPMENT AREA

MEPSDU Status
Solar Cell Junction Processing System (Spire Corp.)
Laser Annealing for Ion-Implanted Junctions (Lockheed Missiles & Space Co., Inc.)
Non-Mass-Analyzed Ion Implants
High-Resolution, Low-Cost Contact Development (Midfilm) (Spectrolab, Inc.)
Development of All-Metal Thick-Film Cost-Effective Metallization System (Bernd Ross Associates)
Automated Solar Module Assembly (ASMA) (Tracor MB Associates)
In-House Robotics
Processing Experiments on Non-Czochralski Silicon Sheet (Motorola, Inc.)
Optical Design for Light Trapping (Science Applications, Inc.)
Analysis and Evaluation of Process and Equipment (University of Pennsylvania)

ENGINEERING AREA AND OPERATIONS AREA

Block IV Contractor Experience
Environmental Testing
MIT-LL Test Facilities Status Report (Massachusetts Institute of Technology Lincoln Laboratory)
I-V Curve Tracer Employing a Capacitive Load (Massachusetts Institute of Technology Lincoln Laboratory)
Problem-Failure Analysis
Engineering Area Status
Commercial and Industrial PV Module Code Requirements (Burt Hill Kosar Rittelmann Associates)
Least Life-Cycle Energy Cost Interconnect Reliability Design 432
Photovoltaic Module Capacitance and Personal Safety 443
Hot-Spot Endurance Test Development and Results 451
AR Coating Degradation Studies (Clemson University) 465
Minimodule Accelerated Weathering (DSET Laboratories, Inc.) 472
Solar Spectral Measurements (DSET Laboratories, Inc.) 486
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Angstrom(s)</td>
</tr>
<tr>
<td>AM</td>
<td>Air Mass (e.g., AM1 = unit air mass)</td>
</tr>
<tr>
<td>AR</td>
<td>Antireflective</td>
</tr>
<tr>
<td>BCS</td>
<td>Balance of System (non-array elements of a PV system)</td>
</tr>
<tr>
<td>B-T</td>
<td>Bias/temperature</td>
</tr>
<tr>
<td>B-T-H</td>
<td>Bias/temperature/humidity</td>
</tr>
<tr>
<td>CFP</td>
<td>Continuous-flow pyrolyzer</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapor deposition</td>
</tr>
<tr>
<td>Cz</td>
<td>Czochralski (classical silicon crystal growth method)</td>
</tr>
<tr>
<td>DCF</td>
<td>Discounted cash flow</td>
</tr>
<tr>
<td>DLTS</td>
<td>Deep-level transient spectroscopy</td>
</tr>
<tr>
<td>DoE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DS/RMS</td>
<td>Directionally solidified/refined metallurgical-grade silicon</td>
</tr>
<tr>
<td>EB</td>
<td>Electron beam</td>
</tr>
<tr>
<td>EFG</td>
<td>Edge-defined film-fed growth (silicon ribbon growth method)</td>
</tr>
<tr>
<td>EPR</td>
<td>Ethylene propylene rubber</td>
</tr>
<tr>
<td>EPSDU</td>
<td>Experimental Process System Development Unit</td>
</tr>
<tr>
<td>ESB</td>
<td>Electrostatic bonding</td>
</tr>
<tr>
<td>ESGU</td>
<td>Experimental Sheet Growth Unit</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene vinyl acetate</td>
</tr>
<tr>
<td>FAST</td>
<td>Fixed abrasive slicing technique</td>
</tr>
<tr>
<td>FBR</td>
<td>Fluidized-bed reactor</td>
</tr>
<tr>
<td>FPUP</td>
<td>Federal Photovoltaics Utilization Program</td>
</tr>
<tr>
<td>GRC</td>
<td>Glass-reinforced concrete</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HEM</td>
<td>Heat exchanger method (silicon crystal ingot growth method)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric acid</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>ID</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>ILC</td>
<td>Intermediate-load center</td>
</tr>
<tr>
<td>IPEG</td>
<td>Interim Price Estimation Guidelines</td>
</tr>
<tr>
<td>IPEG4</td>
<td>Improved Price Estimation Guidelines</td>
</tr>
<tr>
<td>Iₚₛₑ</td>
<td>Short-circuit current</td>
</tr>
<tr>
<td>I-V</td>
<td>Current-voltage</td>
</tr>
<tr>
<td>LAPSS</td>
<td>Large-area pulsed solar simulator</td>
</tr>
<tr>
<td>LAR</td>
<td>Low-angle ribbon (silicon growth method)</td>
</tr>
<tr>
<td>LAS</td>
<td>Large-Area Silicon Sheet Task</td>
</tr>
<tr>
<td>LCP</td>
<td>Lifetime cost and performance</td>
</tr>
<tr>
<td>LeRC</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>LSA</td>
<td>Low-Cost Solar Array</td>
</tr>
<tr>
<td>mgSi</td>
<td>Metallurgical-grade silicon</td>
</tr>
<tr>
<td>MIT-LL</td>
<td>Massachusetts Institute of Technology Lincoln Laboratory</td>
</tr>
<tr>
<td>MBS</td>
<td>Multiblade sawing</td>
</tr>
<tr>
<td>MEPSDU</td>
<td>Module experimental process system development unit</td>
</tr>
<tr>
<td>MWS</td>
<td>Multiwire sawing</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NBNM</td>
<td>Natural Bridges National Monument</td>
</tr>
<tr>
<td>NDE</td>
<td>Nondestructive evaluation</td>
</tr>
<tr>
<td>NOCT</td>
<td>Nominal operating cell temperature</td>
</tr>
<tr>
<td>NTCR</td>
<td>Near-Term Cost Reduction</td>
</tr>
<tr>
<td>OTC</td>
<td>Optimal test conditions</td>
</tr>
<tr>
<td>P</td>
<td>Individual module output power</td>
</tr>
<tr>
<td>PA&I</td>
<td>Project Analysis and Integration Area</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Pavg</td>
<td>Module rated power at SOC, V_{no}</td>
</tr>
<tr>
<td>PDU</td>
<td>Process Development Unit</td>
</tr>
<tr>
<td>PEBA</td>
<td>Pulsed electron beam annealing</td>
</tr>
<tr>
<td>P/FR</td>
<td>Problem-failure report</td>
</tr>
<tr>
<td>PIM</td>
<td>Project Integration Meeting</td>
</tr>
<tr>
<td>Pmax</td>
<td>Maximum power</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>PnBA</td>
<td>Poly-n-butyl acrylate</td>
</tr>
<tr>
<td>POCl3</td>
<td>Phosphorus oxychloride</td>
</tr>
<tr>
<td>PP&E</td>
<td>Production Process and Equipment Area</td>
</tr>
<tr>
<td>ppba</td>
<td>Parts per billion atomic</td>
</tr>
<tr>
<td>ppma</td>
<td>Parts per million atomic</td>
</tr>
<tr>
<td>PRDA</td>
<td>Program Research and Development Announcement</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic(s)</td>
</tr>
<tr>
<td>PVB</td>
<td>Polyvinyl butyral</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for proposal</td>
</tr>
<tr>
<td>RFQ</td>
<td>Request for quotation</td>
</tr>
<tr>
<td>RMS</td>
<td>Refined metallurgical-grade silicon</td>
</tr>
<tr>
<td>RNHT</td>
<td>Relative normal hemispherical transmittance</td>
</tr>
<tr>
<td>RDI</td>
<td>Return on investment</td>
</tr>
<tr>
<td>RTR</td>
<td>Ribbon-to-ribbon (silicon crystal growth method)</td>
</tr>
<tr>
<td>SAMICS</td>
<td>Solar Array Manufacturing Industry Costing Standards</td>
</tr>
<tr>
<td>SAMIS</td>
<td>Standard Assembly-Line Manufacturing Industry Simulation</td>
</tr>
<tr>
<td>SCIM</td>
<td>Silicon coating by inverted meniscus</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SEMI</td>
<td>Semiconductor Equipment Manufacturers Institute</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SERI</td>
<td>Solar Energy Research Institute</td>
</tr>
<tr>
<td>SiCl₄</td>
<td>Silicon tetrachloride</td>
</tr>
<tr>
<td>SiF₄</td>
<td>Silicon tetrafluoride</td>
</tr>
<tr>
<td>SiHCl₃</td>
<td>Trichlorosilane</td>
</tr>
<tr>
<td>SOC</td>
<td>Silicon on ceramic (crystal growth method)</td>
</tr>
<tr>
<td>SOC</td>
<td>Standard operating conditions (module performance)</td>
</tr>
<tr>
<td>SOLMET</td>
<td>Solar-meteorological</td>
</tr>
<tr>
<td>SPG</td>
<td>Silicon particle growth</td>
</tr>
<tr>
<td>SSMS</td>
<td>Spark-source mass spectrometry</td>
</tr>
<tr>
<td>STC</td>
<td>Standard test conditions (cell performance)</td>
</tr>
<tr>
<td>TR</td>
<td>Technical Readiness</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>V_{no}</td>
<td>Nominal operating voltage</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open-circuit voltage</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>Zinc chloride</td>
</tr>
</tbody>
</table>
PROGRESS REPORT

Project Summary

Construction of the Union Carbide Corp. silane-to-silicon Experimental Process System Development Unit (EPSDU) (100 MT/yr), which was started in September 1980, is progressing well. Concrete and steel are being emplaced and the large distillation column is ready for installation. Union Carbide has initiated plans for the construction of a 1000 MT/yr silicon (Si) production plant that would start commercial operation in 1985.

The experimental reactor at Massachusetts Institute of Technology has the potential of reducing the cost of Si, if incorporated into a Siemens production plant, by enabling the recycling of silicon tetrachloride (STC) in the production of trichlorosilane (TCS).

The Hamco advanced Czochralski ingot grower with melt replenishment will be completed in February 1981, except for the automatic controls, which will be added in July 1981. Capacity will be five 30-kg ingots (15-cm dia) per run.

Efforts continue to increase the throughput rates of wafering machines: internal-diameter (ID) at Silicon Technology Corp. and multiwire (FAST) at Crystal Systems. The goals are 17 wafers/cm for 15-cm-dia wafers and 25 wafers/cm for 10-cm square wafers, which have been demonstrated at 85% and 90% yields, respectively, but with low slicing rates of 0.25 wafers/min.

The design of the web ribbon experimental sheet growth unit (ESGU) by Westinghouse continues to make good progress.

Mobil Tyco has reached its growth-rate goal of 4 cm/min for a single 10-cm-wide edge-defined film-fed-growth (EFG) ribbon and has grown three 10-cm-wide ribbons at 3.3 cm/min. Cells fabricated from 10-cm-wide ribbons grown at 3.5 cm/min, with CO₂ ambient atmosphere, show efficiencies of 11.2% AM1 (AR coated, 28°C, 13-cm² area).

Module encapsulation technology progress, as summarized at the PIM, included:

Material and process candidates under development and evaluation meet cost goals ($14/m²) and have 20-year life potential.

Encapsulation material requirements, specifications, and characterizations continue to evolve.

Trade-offs for various module encapsulation designs and materials are being analyzed and will be verified by test.

Durability testing of materials and modules (experimental and contemporary) is continuing in both accelerated and real time.

Ethylene vinyl acetate (EVA) developed as a module pottant is used in five of the Block IV modules.
Major material suppliers (DuPont Co., Rohm & Haas Co., 3M Co., Corning Glass Works, Schott, Masonite Corp., U.S. Gypsum Co., etc.), stimulated by the Low-Cost Solar Array Project (LSA), are participating voluntarily in encapsulation activities.

Automated solar cell and module manufacturing processes contracts were awarded (November 1980) to Solarex Corp. and Westinghouse Electric Corp.

Module Experimental Process System Development Unit (MEPSDU) efforts are to demonstrate low-cost manufacturing technology:

The Solarex process uses 10 x 10-cm Semix polycrystalline wafers with spray-on front-junction formation, back-surface junction, spray-on AR coating, and electroless Ni contacts dipped in solder. The modules will be an EVA laminated glass superstrate design.

The Westinghouse process uses 2.5 x 10-cm dendritic web ribbons with diffused front junction, diffused back-surface junction, dip AR coating, and evaporated Ti/Pd/Cu-plated Cu contacts. Aluminum electrical interconnections will be ultrasonically welded to the cells. The modules will be an EVA-laminated glass superstrate design.

Analysis of non-mass-analyzed ion implantation indicates that it can be cost competitive with gaseous diffused-junction formation.

Block IV module observations and conclusions:

Manufacturers had some difficulties in evolving new designs that incorporated new technology, as evidenced by schedule slips, module problems during tests, and some retreats to conventional technology.

Price and performance progress of LSA module block purchases continues; prices are down, but the rate of decrease has slowed; efficiencies are up and reliability and durability are better, especially hail protection, moisture protection, and fault-tolerance capabilities.

Large-scale producibility will not be verified with limited purchase quantities.

Block IV module activities were critiqued by seven module manufacturers under contract in the four solicited topics listed below. The comments and ensuing discussions were well thought out, worthwhile, and mature. They will be incorporated into the Block V activities as appropriate. Major points are:

Design specifications: Module design is compromised and made more difficult by specifying both terminal voltage and module length. The module design specifications should be generalized whenever possible because they are used by many other buyers.

Environmental tests: Some believe that temperature range is excessive and humidity durations are not adequate. All would not voluntarily do as complete testing as the LSA tests.

SAMIS-SAMICS: Expensive operation and lack of confidence in results were two critical comments resulting from the inability to generate
accurate inputs with the small quantities involved. The less-complex IPEG4 is more useful to the contractors as an estimation tool. Most contractors also have costing methods of their own.

General: Industry working relationship with the Jet Propulsion Laboratory (JPL) is good. Feedback and consultation by JPL specialists is helpful. Block IV module requirements are not well matched to today's market, which is primarily for stand-alone applications. The Block IV activities were a valuable learning experience.

A flat-module and array safety design workshop, held February 3 and attended by more than 100 people, was based upon an Interim Standard for Safety written primarily by Underwriters Laboratories. The two-part document draft, consisting of construction requirements and performance requirements, will be updated based upon workshop comments and discussions.
Area Reports

PROJECT ANALYSIS AND INTEGRATION AREA

The objective of the Project Analysis and Integration (PA&I) Area is to support the planning, integration and decision-making activities of the Project. This is executed by providing coordinated assessments of Project goals and of progress toward the achievement of the goals by the various activities of the Project, the solar array manufacturing industry, and suppliers; by contributing to the generation and development of alternative Project plans through the assessment of possible achievements and economic consequences; by establishing the standards for economic comparisons of items under Project study; by supporting the integration of the tasks within the Project and between the Project and Program elements through development of procedures, and by developing analytical capabilities and performing or participating in the studies of required trade-offs.

The metallization-grid-pattern optimization effort, in cooperation with the PP&E Area, has made significant progress. The equations for the two-bus-bar design have been written and entered into the APL optimizing program.

Two different designs have been identified. The first is the present conventional design in that it is optimized using only two variables. The second is an improved design using four variables in the optimization. These designs, plus a third that uses less metal, will be used by PP&E in a large (about 50 each) sampling of solar cells. The actual output power produced from the cells will be compared with the results computed in the program.

Evaluation of the results of the near-term cost-reduction contracts has been completed. This was done in cooperation with the PP&E area; the results are presented in the Proceedings section of this document (see pp. 55-58).

A review of the SAMICS methodology is in progress. It covers the environmental requirements in SAMIS and a major update of the cost-account catalog, including labor rates, inflation rates, commodity prices and financial-organizational parameters. The user interface with SAMIS is also being reviewed to attempt to reduce the trauma experienced by first-time or occasional users. Formats A and C, the users' guide and other documentation are being reviewed. Planning is under way for a users' workshop.

The initial design was completed for the year-by-year financial reports (balance sheet, income statement, etc.) for SAMIS. Coding will start soon, after completion of a revision of the way the cost account catalog is handled in SAMIS. This will save about half the cost of that part of the computation (the savings will be about $15/run).

Sensitivity analyses were performed on the $2.70/Wp PV manufacturing plant. This was the first application of IPEG4 in the LSA Project. In addition, the calibration of IPEG4 to SAMIS has been completed and IPEG4 capabilities have been expanded to include RACI (Rapid Amortization of Capital Investment) price estimates.
TECHNOLOGY DEVELOPMENT AREA

Silicon Material Task

INTRODUCTION

The objective of the Silicon Material Task is to establish the practicality of processes capable of producing silicon (Si) suitable for use in the manufacture of solar cells at a rate equivalent to 500 MWp/yr of solar arrays at a price less than $14/kg (1980 $) by 1986. The program formulated to meet this objective provides for development of processes for producing either semiconductor-grade Si or a less pure, but utilizable (i.e., a solar-cell grade) Si material.

TECHNICAL GOALS, ORGANIZATION AND COORDINATION

Solar cells are now fabricated from semiconductor-grade Si, which has a market price of about $65/kg. A drastic reduction in cost of material is necessary to meet the economic objectives of the LSA Project. Efforts are now under way to develop processes that will meet the Task objectives in producing semiconductor-grade Si. Another means of meeting this requirement is to devise a process for producing so-called solar-cell-grade Si material, which is less pure than semiconductor-grade Si. However, the allowance for the cost of Si material in the overall economics of the solar arrays for LSA is dependent on optimization trade-offs, which concomitantly treat the price of Si material and the effects of material properties on the performance of solar cells. Accordingly, the program of the Silicon Material Task is structured to provide information for optimization tradeoffs concurrently with the development of high-volume, low-cost processes for producing Si. This structure has been described in detail in previous LSA Progress Reports. Besides the process development mentioned above, the program includes economic analyses of silicon-producing processes and supporting efforts, both contracted and in-house at JPL, to respond to problem-solving needs.

Thirteen contracts are in progress; these are listed in the table below.
SILICON MATERIAL TASK

Silicon Material Task Contractors

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Technology Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor-Grade Silicon Processes</td>
<td></td>
</tr>
<tr>
<td>Battelle Columbus Laboratories</td>
<td>Reduction of SiCl₄ by Zn in fluidized-bed reactor</td>
</tr>
<tr>
<td>Columbus, Ohio</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954339</td>
<td></td>
</tr>
<tr>
<td>Energy Materials Corp.</td>
<td>Gaseous melt replenishment system</td>
</tr>
<tr>
<td>Harvard, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955269 (Near-Term Cost-Reduction Contract)</td>
<td></td>
</tr>
<tr>
<td>Hemlock Semiconductor Corp.</td>
<td>Dichlorosilane CVD process</td>
</tr>
<tr>
<td>Hemlock, Michigan</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955533</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corp.</td>
<td>Silane-Si process</td>
</tr>
<tr>
<td>Tonawanda, New York</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954334</td>
<td></td>
</tr>
<tr>
<td>Solar-Cell-Grade Silicon Processes</td>
<td></td>
</tr>
<tr>
<td>Dow Corning Corp.</td>
<td>Electric-arc furnace process</td>
</tr>
<tr>
<td>Hemlock, Michigan</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954559</td>
<td></td>
</tr>
<tr>
<td>SRI International</td>
<td>Na reduction of SiF₄</td>
</tr>
<tr>
<td>Menlo Park, California</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954771</td>
<td></td>
</tr>
<tr>
<td>Westinghouse Electric Corp.</td>
<td>Reduction of SiCl₄ by Na in arc heater reactor</td>
</tr>
<tr>
<td>Trafford, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954389</td>
<td></td>
</tr>
</tbody>
</table>
Impurity Studies

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Technology Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawrence Livermore Laboratories</td>
<td>Impurity concentration measurements by neutron activation analysis</td>
</tr>
<tr>
<td>Livermore, California</td>
<td></td>
</tr>
<tr>
<td>NASA Defense Purchase Request</td>
<td></td>
</tr>
<tr>
<td>No. WO-8626</td>
<td></td>
</tr>
<tr>
<td>Sah, C. T., Associates</td>
<td>Effects of impurities on solar cell performance</td>
</tr>
<tr>
<td>Urbana, Illinois</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954685</td>
<td></td>
</tr>
<tr>
<td>Westinghouse R&D Center</td>
<td>Definition of purity requirements</td>
</tr>
<tr>
<td>Pittsburgh, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954331</td>
<td></td>
</tr>
</tbody>
</table>

Supporting Studies

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Technology Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>AeroChem Research Laboratories</td>
<td>Formation and growth of Si particles from SiH₄ at high temperatures</td>
</tr>
<tr>
<td>Princeton, New Jersey</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955491</td>
<td></td>
</tr>
<tr>
<td>Lamar University</td>
<td>Technology and economic analyses</td>
</tr>
<tr>
<td>Beaumont, Texas</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954343</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Hydrochlorination of metallurgical-grade silicon and SiCl₄</td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955382</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF PROGRESS

Development of Processes for Producing Semiconductor-Grade Silicon

Four processes for producing semiconductor-grade Si were under development in this period by Battelle Columbus Laboratories, Energy Materials Corporation, Hemlock Semiconductor Corporation and Union Carbide Corporation.

Battelle Columbus Laboratories concluded the experimental phase of their effort to develop a process for producing Si based on the reduction of silicon tetrachloride (SiCl_4) by zinc (Zn). Battelle was given a four-month contract extension, covering October 1980 through January 1981, for the purpose of continuing shakedown and testing operations aimed at accomplishing eight-hour operation of the process development unit (PDU). Numerous modifications and repairs were made to the apparatus. However, all attempts at sustained operation failed due to system malfunctions, primarily corrosion effects, plugging with zinc-zinc chloride mixtures, and breakage of equipment during operation.

Energy Materials Corp. completed its experimental effort on an Si melt-replenishment system for Czochralski crystal growth using trichlorosilane (SiHCl_3), under a near-term cost-reduction contract. The concept of in situ deposition of Si in a reactor and its subsequent removal and collection by melting was demonstrated. However, Technical Feasibility as a continuous process was not accomplished. The final report is being prepared.

Hemlock Semiconductor Corp. continued development of a process for producing Si approaching semiconductor-grade quality from dichlorosilane (SiH_2Cl_2) using Siemens-type C-reactors. Construction of the Process Development Unit (PDU), which will be used to investigate the scaled-up redistribution of SiHCl_3 and to produce SiH_2Cl_2 for reactor testing, was begun in November, with completion scheduled in May 1981. All concrete and structural steel work was completed, and all of the major pieces of equipment were ordered.

To assess the purity of redistributed chlorosilanes, samples of SiHCl_3 from various sources were passed through Dowex catalyst of the type that is expected to be used in the PDU, and the resulting mixtures, containing about 11 mole % of SiH_2Cl_2, were fed to a Siemens-type reactor. Analysis of the Si product indicated that it was of high quality and that the Dowex catalyst does not contribute contamination by electrically active species.

Union Carbide Corp. continued with the construction of a 100-MT-Si/yr experimental process system development unit (EPSDU) at East Chicago, Indiana. The process consists of the hydrochlorination of metallurgical-grade Si and SiCl_4 to SiHCl_3 and rearrangement of the latter to silane (SiH_4), which is then pyrolyzed to Si. All foundations for equipment and structures were completed and the structural steel for the process gantry was erected. All underground utilities and services lines were installed and the civil-structural subcontracts were completed with installation of two pre-engineered structures, the control room and the Si powder melter building. Fabrication of process and
auxiliary equipment for the EPSDU is progressing well. Equipment items started to arrive at the site.

In the UCC R&D program, the free-space reactor (FSR) PDU program was successfully completed after demonstrating long-term operability of the reactor. Three 12-hour tests and several shorter ones were completed according to plan. Fabrication of an alternative silane pyrolysis PDU, using a fluidized-bed reactor, was completed and installation is under way. Melter subcontract work by Kayex Corp. is about two months behind schedule. Most of the major components were procured and assembled. System checkout and preliminary melting tests using chunk Si will start soon.

Development of Processes for Producing Solar-Cell-Grade Silicon

Three contracts fall into this category; final reports are being prepared on each of them. SRI International's final report on the process for producing Si by the sodium reduction of SiF₄ was delayed for additional changes and is expected to be issued early in March. Dow Corning Corp. issued its final report on the direct arc-reactor process, in which silica is reduced by carbon. Westinghouse Electric Corp. is about to publish the final report on its arc heater process, involving the reduction of SiCl₄ by sodium.

Impurity Studies

C. T. Sah Associates is conducting a program to determine the maximum concentration of the metallic impurities -- titanium (Ti), molybdenum (Mo), Zn, and others -- that can be tolerated in the base of Si solar cells to maintain a given efficiency. To accomplish this, a computer model based on the fundamental parameters of solar cells for the determination of the effects of impurities and defects on cell performance is being developed. Three steps are employed in this study: (1) obtain the recombination rates of electrons and holes at impurity centers in Si; (2) compute the Si solar cell performance using the data obtained in (1), and (3) compare computed and measured cell performances. The voltage-stimulated capacitance transient spectroscopy and the diode reverse-switching current transient methods are employed to measure the thermal capture rates of electrons and holes at these impurity energy levels. The exact transmission line model is employed to compute the solar cell performances of n+/p/p+ and p+/n/n+ cells.

Measurements of the electron and hole capture rates at the lower Ti donor level and upper Ti acceptor level were made and compared with those published in the literature. Some of the published data are not accurate, due to the presence of large series resistance in both the Schottky barrier and diffused p/n junction diodes used. Large series resistance gives large resistance-times-capacitance time constants and seriously affects the filling rate measurements from which the majority carrier capture rates were determined. In addition to large series resistance, space-charge-limited current has also been observed in p-base Ti-doped n+/p diffused diodes at low temperatures (about 200K), and this current seriously affects the accuracy of the capture-rate measurements.
In the program by Westinghouse R&D Center to determine the effects of impurities on the performance of solar cells, spectral response measurements made in single-crystal and polycrystalline solar cells containing Mo, Ti, vanadium (V), or chromium (Cr) correlated well with cell I-V data. Both grain boundaries and impurities in polycrystalline devices were found to reduce carrier lifetime, resulting in decreased red response and cell efficiency. Deep-level transient spectroscopy (DLTS) and spectral response data taken together suggest interaction of Cr, a fast-diffusing species in Si, with grain boundaries to form precipitates.

Accelerated aging tests were completed for copper (Cu)- and nickel (Ni)-doped solar cells at 400°C, 600°C and 800°C. For Ni the data fit a model for thermally activated behavior with an activation energy of 0.673 eV. The "time to failure" (time to reduce cell efficiency to 90% of initial value) projected for cell operation at normal temperatures would be in excess of 20 years. In contrast to Ni, the time-temperature behavior of the Cu-doped devices does not fit a simple Arrhenius model.

Chromium-doped wafers were subjected to POC13 gettering at 600°C or 825°C and subsequently were step etched to reveal any variations in Cr activity with depth from the gettered surface. No activity was determined by DLTS to depths up to two mils below the junction, implying very rapid Cr outdiffusion or some form of thermal deactivation.

Supporting Studies

In a study of the formation and growth of Si particles from the decomposition of SiH₄ at high temperatures, AeroChem Research Laboratories used a high-temperature fast-flow reactor to make particle-growth measurements as functions of temperature (600°C to 1200°C), pressure (50 to 550 torr), and residence time (0.5 to 30 ms). Optical diagnostics consisting of attenuation and Mie scattering of laser light are being used to obtain information on formation, growth rates, and sizes of the particles. The extent of SiH₄ decomposition is being measured by infrared absorption spectroscopy. Particles are collected in the observation zone to check the particle concentrations and sizes, measured optically. Some of the results are presented in the Proceedings of the 17th PIM (see p. 103).

Lamar University prepared the draft final report on their process feasibility study, covering all efforts since contract inception in 1975. The report was reviewed by JPL personnel and is to be published soon.

In support of the Union Carbide program, the Massachusetts Institute of Technology is studying the production of SiHCl₃ by the hydrochlorination of metallurgical-grade Si and SiCl₄. Experiments were carried out with the objective of studying the life of the Si bed in the fluidized-bed reactor. After 238 hours of reaction, no significant change in the reaction rate was observed. The longevity of the Si bed shows that the hydrochlorination process can be operated continuously for long periods without interruption. A material balance of 92% was made on the Si. This result confirms the stoichiometry of the hydrochlorination reaction.
In a corrosion study made on Incoloy 800H, the selected material for the hydrochlorination reactor in the Union Carbi de EP SDU, no measurable amount of corrosion was observed when a test sample was exposed to the hydrochlorination reaction for 238 hours at 500°C and 300 psig. A stable silicide protective film of approximately 20 µm thickness appears to form on the Incoloy 800H surface. This protective film is readily destroyed by air and moisture when it is exposed to the atmosphere but appears to be stable in the reactor environment. The study indicates that the Incoloy alloy is a good choice for this reactor.

The JPL in-house program included effort on the FBR, the conversion of SiH₄ to molten Si, consolidation of sub-µm Si powder produced by FSRs, and impurity studies.

The 2-in.-dia FBR was modified to improve instrumentation and to facilitate experiments. A series of experiments was then performed to determine how bed clogging would be affected by gas velocity. The results showed that the reactor could be operated without clogging at velocities as low as four times the minimum fluidization velocity (i.e., U/Um f = 4) at 700°C and 10 mole % SiH₄ in hydrogen, but the velocity during the initial period of the test must be higher (U/Um f > 7) to prevent clogging.

The silane-to-molten-silicon (SMS) conversion reactor was brought to temperatures above 1600°C on four occasions with no damage to the graphite heater or to the graphite reaction crucible. Lumps of Si obtained by melting sub-µm powder separate cleanly from the reactor walls.

Thermally stimulated capacitance measurements are being performed to determine electrically active impurity concentrations and energy levels of traps introduced by the impurities. Measurements were made on n-type substrate samples with aluminum contacts forming Schottky barrier diodes. The diode characteristics showed too much leakage to allow satisfactory measurements to be made; consequently, the diode fabrication process is being improved.

A method of consolidating sub-µm Si powder is being investigated. The top of a pedestal of Si is melted using a high-frequency generator. The sub-µm powder is extruded through a quartz tube, and partially compacted Si powder is fed into the molten Si surface and solidified by lowering the pedestal. It was shown that the surface of the pedestal can be melted successfully.
Large-Area Silicon Sheet Task

Present solar cell technology is based on the use of silicon wafers obtained by slicing Czochralski (Cz) or float-zone ingots (up to 10 cm in diameter), using single-blade inner-diameter (ID) diamond saws. This method of obtaining single-crystal silicon wafers is tailored to the needs of large-volume semiconductor device production (e.g., integrated circuits, discrete power and control devices other than solar cells). The small market offered by present solar cell users does not justify industry's development of the high-volume silicon production techniques that would result in low-cost photovoltaic electrical energy.

The improvement of the standard Czochralski ingot growth process by reduction of expendable material costs and improvement of ingot growth rate together with improved slicing techniques will produce large areas of silicon at costs meeting the goals of the LSA Project. Growth of large ingots by casting techniques, such as Heat Exchanger Method (HEM) growth, can further reduce sheet costs.

The objective of the Large-Area Silicon Sheet Task is to develop and demonstrate the feasibility of several processes for producing large areas of silicon-sheet material suitable for low-cost, high-efficiency solar photovoltaic energy conversion. To meet the objective of the LSA Project, sufficient research and development must be performed on a number of processes to determine the capability of each of producing on a number of processes to determine the capability of each of producing large areas of crystallized silicon at a low cost. The final sheet growth configurations must be suitable for direct incorporation into an automated solar array processing scheme.

Growth of crystalline silicon material in a geometry that does not require cutting to achieve proper thickness is an obvious way to eliminate costly processing and material waste. Growth techniques such as edge-defined film-fed growth (EFG), dendritic growth (web), silicon-on-ceramic (SOC), etc., are possible candidates for the growing of solar cell material.

Research and development on ribbon, sheet, and ingot growth plus multiple-blade, multiple-wire, and inner-diameter (ID) blade cutting, initiated in 1975-76, are in progress.

ORGANIZATION AND COORDINATION

When the LSA Project was initiated (January 1975) a number of methods potentially suitable for growing silicon crystals for solar cell manufacture were known. Some of these were under development; others existed only in concept. Development work on the most promising methods is now continuing. After a period of accelerated development, these methods will be evaluated and the best will be selected for advanced development. As the growth methods are refined, integrated process schemes will be developed by which the most cost-effective solar cells can be manufactured.

The Large-Area Silicon Sheet Task effort is organized into four phases: research and development of sheet growth methods (1975-77); advanced development of selected growth methods (1977-80); prototype development
LARGE-AREA SILICON SHEET TASK

(1981-82); development, fabrication, and operation of pilot production growth plants (1983-86).

Large-Area Silicon Sheet Contracts

Research and development contracts awarded for growing crystalline silicon material for solar cell production are listed below. Preferred growth methods for further development have been selected.

Large-Area Silicon Sheet Task Contractors

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Technology Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Systems, Inc.</td>
<td>Heat exchanger method (HEM)</td>
</tr>
<tr>
<td>Salem, Massachusetts</td>
<td>ingot growth; fixed-abrasive slicing technique (FAST)</td>
</tr>
<tr>
<td>JPL Contract No. 954373</td>
<td></td>
</tr>
<tr>
<td>Kayex Corp.</td>
<td>Advanced Cz growth (Adv. Cz)</td>
</tr>
<tr>
<td>Rochester, New York</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955733</td>
<td></td>
</tr>
<tr>
<td>P.R. Hoffman Co.</td>
<td>Multiblade slurry slicing technique (MBS)</td>
</tr>
<tr>
<td>Carlisle, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 955563</td>
<td></td>
</tr>
<tr>
<td>Siltec Corp.</td>
<td>Inner diameter (ID)</td>
</tr>
<tr>
<td>Menlo Park, California</td>
<td>wafering</td>
</tr>
<tr>
<td>JPL Contract No. 955282</td>
<td></td>
</tr>
<tr>
<td>Siltec Corp.</td>
<td>Advanced Cz growth (Adv. Cz)</td>
</tr>
<tr>
<td>Menlo Park, California</td>
<td></td>
</tr>
<tr>
<td>JPL Contract No. 954886</td>
<td></td>
</tr>
<tr>
<td>Silicon Technology Corp.</td>
<td>Internal diameter (ID)</td>
</tr>
<tr>
<td>Oakland, New Jersey</td>
<td>slicing</td>
</tr>
<tr>
<td>JPL Contract No. 955131</td>
<td></td>
</tr>
<tr>
<td>Semix Corp.</td>
<td>Ubiquitous crystallization process (UCP)</td>
</tr>
<tr>
<td>Gaithersburg, Maryland</td>
<td></td>
</tr>
<tr>
<td>DOE Contract No. DE-F101-80ET 23197</td>
<td></td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

Large-Area Silicon Sheet Task Contractors (Continued)

Shaped Sheet Technology

Mobil Tyco Solar Energy Corp.
Waltham, Massachusetts
JPL Contract No. 955843

Edge-defined film-fed growth (EFG)

Westinghouse Research
Pittsburgh, Pennsylvania
JPL Contract No. 955843

Dendritic WEB growth (WEB)

Honeywell Corp.
Bloomington, Minnesota
JPL Contract No. 954356

Silicon-on-ceramic (SOC) substrate

Material Evaluation

Applied Solar Energy Corp.
City of Industry, California
JPL Contract No. 955089

Cell fabrication and evaluation

Cornell University
Ithaca, New York
JPL Contract No. 954852

Characterization - Si properties

Charles Evans and Associates
San Mateo, California
JPL Contract No. LK-694028

Technique for impurity and surface analysis

Spectrolab, Inc.
Sylma, California
JPL Contract No. 955055

Cell fabrication and evaluation

University of Missouri, Rolla
Columbia, Missouri
JPL Contract No. 955414

Partial pressures of reactant gases

Materials Research, Inc.
Centerville, Utah
JPL Contract No. 957977

Quantitative analysis of defects and impurity evaluation technique

INGOT TECHNOLOGY

Crystal Systems: The Schmid-Viechnicki technique (heat-exchanger method or HEM) was developed to grow large single-crystal sapphire. Heat is removed from the crystal by means of a high-temperature heat exchanger. The heat removal is controlled by the flow of helium gas (the cooling medium) through the heat exchanger. This obviates motion of the crystal, crucible, or heat zone. In essence, this method involves directional solidification from the melt where the temperature gradient in the solid is controlled by the heat.
LARGE-AREA SILICON SHEET TASK

exchanger and the gradient in the liquid is controlled by the furnace temperature. The overall goal of this program is to determine whether the heat-exchanger ingot casting method can be applied to the growth of large shaped-silicon crystals of 30-cm-cube dimensions of a quality suitable for the fabrication of solar cells. This goal is to be accomplished by the transfer of sapphire-growth technology (50-lb ingots have already been grown), and theoretical considerations of seeding, crystallization kinetics, fluid dynamics, and heat flow for silicon.

Siltec and Kayex: In the advanced Cz contracts, efforts are geared to developing equipment and processes to achieve the cost goals and demonstrate the feasibility of continuous-Cz solar-grade crystal production. Siltec's approach is to develop a furnace with continuous liquid replenishment of the growth crucible accomplished by a meltdown system and a liquid-transfer mechanism with associated automatic feedback controls. Kayex has already demonstrated the growth of 150 kg of single-crystal material, using only one crucible, by periodic melt replenishment.

Semix: The semicrystalline casting process is a Semix proprietary process yielding a polycrystalline silicon "brick" capable of being processed into cells of up to 16% efficiency at AM1.

Crystal Systems, P. R. Hoffsan, Silicon Technology and Siltec: Today most silicon is sliced into wafers with an inner-diameter saw, one wafer at a time. Advanced efforts in this area are continuing. The multiwire slicing operation uses reciprocating blade-head motion with a workpiece fed from below. Multiwire slicing uses 5-mil steel wires surrounded by a 1.5-mil copper sheath that is impregnated with diamond as an abrasive.

The multiblade slurry technique is similar to the multiwire slicing technique, except that low carbon steel blades (typically 1 cm in height and 6 to 8 mils thick) are used in conjunction with an abrasive slurry mixture of SiC and oil.

MATERIAL EVALUATION

Applied Solar Energy Corp. (ASEC): Proper assessment of potential low-cost silicon sheet materials requires the fabrication and testing of solar cells using reproducible and reliable processes and standardized measurement techniques. Wide variations exist, however, in the capability of sheet-growth organizations to fabricate and evaluate photovoltaic devices. It therefore is logical and essential that the various forms of low-cost silicon sheet be evaluated impartially in solar cell manufacturing environments with well-established techniques and standards. ASEC has been retained to meet this need.

University of Missouri, Rolla (UMR): UMR is investigating the effects of partial atmospheric pressures of oxygen on the reaction at the contact interface between molten silicon and fused silica in several of the ingot and shaped-sheet growth techniques.

Materials Research, Inc.: The current MRI sheet defect structure assessment effort includes a correlation of impurity distributions with defect
LARGE-AREA SILICON SHEET TASK

structures in various sheet materials obtained from the ingot and shaped-sheet manufacturers.

Charles Evans and Associates and Cornell University are doing silicon-sheet impurity analysis and structure characterization, respectively, by electron beam techniques.

SHAPED-SHEET TECHNOLOGY

Mobil Tyco Solar Energy Corp.: The EFG technique is based on feeding molten silicon through a slotted die. In this technique, the shape of the ribbon is determined by the contact of molten silicon with the outer edge of the die. The die is constructed from material that is wetted by molten silicon (e.g., graphite). Efforts under this contract are directed toward extending the capacity of the EFG process to a speed of 4.5 cm/min and a width of 10.0 cm. In addition to the development of EFG machines and the growing of ribbons, the program includes economic and theoretical analysis of ribbon thermal and stress conditions.

Westinghouse: Dendritic web is a thin, wide ribbon form of single-crystal silicon produced directly from the silicon melt. "Dendritic" refers to the two wirelike dendrites on each side of the ribbon, and "web" refers to the silicon sheet that results from the freezing of the liquid film supported by the bounding dendrites. Dendritic web is particularly suited for fabrication into solar cells for a number of reasons, including the high efficiency of the cells in arrays and the cost-effective conversion of raw silicon into substrates.

Honeywell: The purpose of this program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The method to be developed is directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12% or greater. The method consists of applying a graphite coating to one face of a ceramic substrate, and dipping that substrate in molten silicon. The silicon wets only the graphite-coated face and thus produces uniform thin layers of large-grain polycrystalline silicon. A minimal quantity of silicon is consumed.
Encapsulation Task

INTRODUCTION

The objective of the Encapsulation Task is to develop and qualify one or more solar array module encapsulation systems that have demonstrated high reliabilities and 20-year lifetime expectancies in terrestrial environments, and that are compatible with the low-cost objectives of the Project.

The scope of the Encapsulation Task includes developing the total system required to protect the optically and electrically active elements of the array from the degrading effects of terrestrial environments. The most difficult technical problem has been the development of high-transparency materials on the sunlit side that also meet the LSA Project low-cost and 20-year-life objectives. In addition, technical problems have occurred at interfaces between elements of the encapsulation system, between the encapsulation system and the active array elements, and at points where the encapsulation system is penetrated for external electrical connections.

The encapsulation system also serves other functions in addition to providing the essential environmental protection: e.g., structural integrity, electrical resistance to high voltage, and dissipation of thermal energy.

The approach being used to achieve the overall objective of the Encapsulation Task includes an appropriate combination of contractor and JPL in-house efforts. These efforts can be divided into two technical areas:

(1) Materials and Process Development. This effort includes all of the work necessary to develop, demonstrate, and qualify one or more encapsulation systems to meet the LSA Project cost and performance goals. It includes the testing of off-the-shelf materials, formulation and testing of new and modified materials, development of automated processes to handle these materials during formulation and fabrication of modules, and systems analysis and testing to develop optimal module designs.

(2) Life Prediction and Material Degradation. This work is directed toward the attainment of the LSA Project 20-year-minimum life requirement for modules in 1986. It includes the development of a life-prediction method applicable to terrestrial photovoltaic modules and validation by application of the method to specific photovoltaic demonstration sites. Material degradation studies are being conducted to determine failure modes and mechanisms. This effort supports both the materials and processes development work and the life-prediction method development.
ENCAPSULATION TASK

SUMMARY OF PROGRESS

Materials and Process Development

Pottant Materials

Candidate pottants for development and evaluation over the next two years at Springborn Laboratories have been identified in anticipation of LSA Technology Readiness. These are divided by process. The lamination-process pottants are ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), and a recently identified all-acrylic thermoplastic laminating film from 3M Co. The casting-process pottants are poly-n-butyl acrylate (PnBA), a polyurethane and General Electric Co.'s low-cost TRV silicon rubber. The 3M acrylic laminating film and the GE TRV silicone-rubber casting liquid will be given preliminary evaluations at Springborn, with actual development and fine tuning to be carried out by the respective material manufacturers. Future work will reduce emphasis on identifying new encapsulation material candidates and will increase emphasis on improving existing material candidates. This will be carried out by fabrication and testing of modules to improve materials in those areas of specific weaknesses that limit or affect module reliability and durability.

UV Absorbers

Dr. Otto Vogl of the University of Massachusetts is continuing work on UV absorbers by grafting reactions of 4-vinyl 2(-hydroxyphenyl) benzotriazole with various polymers. Reactions are carried out with carefully prepared and purified absorber samples. Preparation of 3-propenyl-phenol by pyrolysis is also being worked on for use in condensation of diazotized o-nitroaniline in an attempt to make 5-propenyl-IV directly. Preparation of the 5-propenyl derivative has been concentrated on the preparation of p-propenyl phenol by pyrolysis of bisphenol A. Condensation of a diazonium salt, possibly with a disubstituted bisphenol A to produce a product that can be pyrolyzed to obtain unsubstituted benzotriazole and propenyl-substituted benzotriazole, has been studied. All products (derived from bisphenol A and pyrolyzed) of this path are potential UV absorbers. A crude condensation product has been prepared and will be characterized. If identified, the sample will be sent to JPL for further evaluation.

A modified technique using vacuum-sealed tubes (allowing reactions to be carried out at about 20°C higher) instead of an open-flask system has been successful in grafting 4-vinyl tinuvin to polypropylene. Careful evaluation will be made of this method using fractionation and gel-permeation chromatography analysis. Additional grafting experiments will be carried out using other polymers (polymethyl methacrylate, PnBA), EVA copolymers, polycarbonate, and polyamides).

Technology transfer of the vinyl tinuvin process from the University of Massachusetts to Springborn Laboratories has been accomplished.

Laboratory-scale production of vinyl tinuvin (approximately 250 grams) was accomplished at Springborn. The next effort with the chemically
ENCAPSULATION TASK

attachable UV screening agent will be to demonstrate chemical incorporation into EVA and other candidate pottants.

Electrostatic Bonding

Ten electrostatically bonded (ESB) minimodule assemblies were received from Spire as required by contract. These are being distributed to outdoor weathering sites at JPL, Point Vicente, and Goldstone, and for JPL qualification testing and other scheduled tests. Five minimodule assemblies with mesh interconnects are scheduled to be received from Spire before completion of contract, about February 1981.

Module Design

Phase I module analysis work has been completed and Phase II certification testing has begun at Spectrolab-Hughes. A day-long technical presentation on Phase I work was presented at JPL on September 11, 1980, which was summarized at both the Module Durability and Life Testing Workshop on September 23, 1980, and at the 16th PIM on September 25, 1980. The Phase I computer analysis has identified nine encapsulation design principles useful to module designers. The principles involve design features relating to thermal, optical, structural, and electrical properties, all of which were highlighted at the PIM, and will be reported in the Spectrolab-Hughes Phase I report.

Illinois Tool Works has identified three areas of difficulty in producing a state-of-the-art performing solar cell: (1) ion-plated metallization will readily form an ohmic contact on phosphorus-enriched Si surfaces but not on boron-enriched surfaces; (2) RF heating of junctions leads to junction deterioration or promotion of metal diffusion to the junction (it is believed that RF junction heating can be stopped with the use of a Faraday cage), and (3) improper packaging for shipment of diffused but unmetsllized wafers results in mechanical damage to the fragile and very thin active surfaces. All of these problem areas are being worked on.

Bonding and Primers

Springborn has supplied samples of essentially all of the candidate encapsulation materials to Dr. Edward Plueddemann for identification of appropriate primers and adhesion systems, including EMA and PnBA. A primer for EVA has already been worked out and is performing satisfactorily. Efforts have also been started to identify primers for coupling candidate antisoiling coatings to outer-cover films and glasses.

Material Degradation and Life Prediction

Photodegradation Model for EVA:

A new approach to polymer photodegradation modeling by the University of Toronto that has as its basis the prediction of chemical change occurring...
ENCAPSULATION TASK

within the polymer system as a function of outdoor exposure time was initiated. A preliminary photooxidation mechanism has been formulated and a literature search of available rate data has been carried out.

A computer simulation package necessary to generate concentration-time profiles from the mechanical model as well as a preliminary experimental design of alkane photooxidation studies has been completed.

A new gas-chromatography photolysis diagnostic technique using a continuous-wave Hg-Cd laser to irradiate weathered polyurethane samples and to monitor carbon monoxide evolved has been developed and assembled at Toronto. Preliminary studies on the development of an automatic sequential sampling system for the 50 to 100 solid samples have also been carried out. The development of this instrument would permit early detection of early weathering damage in solid plastic samples and give data necessary to test computer models.

An automatic viscometer has been demonstrated by sequential routine measurements of both solvents and polymer solutions. Preliminary measurements of weathered samples of EVA (clear and white) supplied to Toronto by Springborn indicate that there is an increase in the viscosity of solutions of the polymers (exposed outdoors in Toronto, April–October) compared with the unweathered samples. Viscosity tests are continuing.

Initial experiments on the photooxidation of n-decane as a model for polyethylene are being done. The gas-chromatograph conditions for effective product separation to afford quantitative data for validation of the computer model are being optimized.

Corrosion Diagnostics and Modeling:

A new method of rapid computer-aided analysis for ac impedance response of solar arrays has been developed at Rockwell Science Center. This analysis is being implemented to characterize mechanical damage efforts, corrosive aging mechanisms and consequent performance degradation.

Three analysis methods have been developed for nondestructive evaluation of impedance measurements of solar cells and solar arrays. These methods include: (1) a current-voltage (I-V) response model, (2) a model for distribution of impedance parameters, and (3) an analysis of frequency dependence of ac impedance response.

These models can now be combined to provide a computer-based interpretation of solar array performance in terms of ac impedance.

A particular cell-failure mode of cracking was analyzed by Rockwell Science Center using Auger electron spectroscopic profiling. Although cracking may or may not be induced by corrosive mechanisms, the void produced by a crack is a potential region for concentration of electrolytic impurities that aggravate the failure. Work at JPL has indicated that corrosion couples with the cracking process.
ENCAPSULATION TASK

In order to investigate this possibility, an Auger profile of a fracture surface adjacent to the metallization was made on a sample supplied by JPL. The cell was cracked and exposed to light with intermittent soaks in distilled water. The front-surface metallization of the solar cell consisted of a Pb/Sn solder whose major components were Pb, Sn and Fe with observable quantities of S, Cl, K, O, Cr, Ni, and C. The substrate (back-surface) electrode is a Ni/Pb alloy.

After a 200-sec sputter of superficial organic contamination, the fracture surface of the Si shows primarily Fe, Ni, and Cr. The distribution suggests a migration of Cr and Fe species from the upper electrode, possibly as a result of a corrosive mechanism. Some migration of Ni is also indicated. The metals that have apparently migrated are expected to be the most active from a thermodynamic point of view since the thermodynamic tendency to electrochemical oxidation takes the order C Fe-Ni Pb Sn.

A full year’s corrosion-monitor recordings have been accumulated at Mead, Nebraska; these experiments are being interrupted to return the corrosion monitors to the Science Center for calibration and analysis.

Fracture and Crack Modeling:

The TEXGAP program, a FORTRAN-coded finite-element computer program, is being procured from the University of Texas. The main feature of the program, not available in existing commercial programs, is the availability of a finite-element code that has been developed for the analysis of cracks in structures due to differential temperature loading. The program will be used to predict the stress-intensity factor at the tip of a crack or at the interface between two dissimilar materials of a solar array. The results of this analysis will be used for solar array life prediction.

The mechanical modeling of modules has continued in house as follows:

(1) A series of computer analyses with various material properties and thicknesses of encapsulants has been completed. The data are being compiled and analyzed.

(2) A study investigating the stresses in cells bonded directly to the support frame (minimum thickness of adhesive) has been completed.

(3) An extension of (2) is in progress to study the effect of thickness of adhesive on the stresses in cells.

Module Life Testing:

Validation of the Battelle accelerated-test plan* continued in house through 40 days of accumulated test time. Fatigue cracks appeared in some of

ENCAPSULATION TASK

the interconnects. One module exhibited an electrical open at +950C. Electrical power output curves, however, were normal for all modules at ambient temperature.

Nine types of minimodules being weathered at the JPL site have endured six months of weathering with no visual degradation and no significant reduction in electrical output except that two of three Springborn-Solar Power minimodules with EVA pottant and Super Dorlux (a wood product) substrates showed reductions of maximum power output of 67% and 33%. Failure analysis showed the cause to be cracked cells (three and one, respectively). It is assumed that the cell cracks were caused by humidity expansion of the Super Dorlux substrate. It is not known whether the cells were cracked during manufacture with humidity expansion widening the cracks, or cracks were initiated by the humidity expansion. An in-house program is under way to determine the temperature and moisture characteristics of Super Dorlux.

Two Controlled Environment Reactors (CER) have been constructed and tested in house. They were shipped to Springborn Laboratories (October 29, 1980) for accelerated weathering of sample modules. The CER provides acceleration of UV radiation up to 30 suns while maintaining temperature (+ 10°C) on the absorbing surface between 30°C and 60°C. It is equipped with rain and fog nozzles.

It was discovered that ventilation is extremely important during accelerated weathering. Springborn was instructed to purge the system continuously during testing using air, N₂, or any other gas mixture. The CER testing temperature range can be expanded to 100°C by installing a heating unit. Installation instructions were given to Springborn. An inspection of available accelerated testing facilities (RSA sun lamp) was also made and advantages of CER over RSA sun lamp were discussed.
PRODUCTION PROCESS AND EQUIPMENT AREA

AREA OBJECTIVES

The Production Process and Equipment Area is chartered to work with the Large-Area Sheet Task, the Encapsulation Task and the Engineering Task by selecting and developing manufacturing processes and by developing trade-offs designed to minimize the cost per watt of assembled solar modules. This work is divided into the phases shown in the figure below. At present PP&E is on schedule with Phase III, the design and development of equipment leading to demonstrations of 1982 Technical Readiness.

<table>
<thead>
<tr>
<th>CALENDAR YEAR</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 STRAWMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50c STRAWMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASE I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCESS ASSESSMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2/W TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSITIVITY TO VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASE II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCESS DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIVIDUAL PROCESSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTIRE SEQUENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASE III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN & DEVELOP EQUIPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASE IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PILOT OPERATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Production Process and Equipment Area Phase Schedule

SUMMARY OF PROGRESS

The main Phase II efforts, the MEPSDU contracts with Solarex and Westinghouse, are under way and are approaching preliminary design reviews. Major milestones have involved approval of program plans and work breakdown structures.
Light-Trapping Concept

- Use of high index of refraction materials
- Diffusely reflecting intercell area

Light Trapping by Diffuse Reflection in Thick Film

Diffuse light trapping is accomplished when an incident ray enters a higher index transparent layer and is scattered.

An example related to photovoltaic modules is shown below:
PRODUCTION PROCESS AND EQUIPMENT AREA

Process Sequence Development

An evaluation of approximately 500 advanced-Cz wafer samples indicated that excessive saw damage and microcracking result in a loss in electrical and mechanical yields.

Both Phase III contracts (Solarex and Westinghouse) were signed on November 26, 1980. These are two-year contracts culminating in the demonstration of Technical Readiness by 1982.

A contract was started with Motorola to investigate problems associated with processing non-Cz Si material into solar cells. The processes developed under Contract No. 954847 will be applied to this material. The contractor has agreed to investigate these processes on several non-Cz substrates, e.g., RTR and web.

Westinghouse has characterized its ultrasonic bonding of 0.001 aluminum foil with regard to the sintering of the cell metallization, the bonding pressure and power setting, and the resulting bond pull strength. The ultrasonic seam bonder was moved from Kulicke and Soffa (K&S) to their AESD Division. The seam-bonding test will be conducted at AESD by Westinghouse personnel.

Junction Formation

Spire Corp. has progressed through the construction phase of the PEBA (Pulsed Electron Beam Annealer). This machine is designed to anneal ion-implanted junctions at a rate of 10 MW/yr. Preliminary testing has been encouraging and final adjustment work has begun.

The effects of non-mass-analyzed beam parameters have been established. Sixty 2 x 2-cm samples were ion implanted without mass analysis in August and were sent to Applied Solar Energy Corp. for processing and testing. These cells were AR coated but have no back-surface field. In addition, data indicated a lack of sensitivity to implant energy over a range of 5 to 15 KeV. A reduction in dose increased the sheet resistance linearly. ASEC says that the metallization system could be optimized to achieve a fill factor of 0.76 without losing active area, up to a sheet resistance of about 500 ohms per square. This corresponds to a dose level of about 2 x 10^14 atoms/cm^2.

Lockheed has successfully laser annealed back-surface fields, as well as front cell junctions, using their quartz 90° light-pipe homogenizer on the neodymium glass laser.

Metallization

The Solarex development effort to plate nickel directly on silicon has ended. PP&E is concerned about the marginal results of temperature cycling of sample cells. Efforts to verify this process in the PP&E laboratory have failed to obtain good adherence to cell p+ (Al BSF) surfaces. More work is necessary to ready this process for production.
Spectrolab has modified its previous process sequence to remedy problems with the Midfilm process. The junction cleanup step (laser scribing) is now being performed after the metallization step instead of after the junction formation step. This alleviates problems with the metal shunting the edge of the junction. The Ag powder (four types)-resin (three types) matrix has been completed with the best results obtained using 95% Thick Film Systems (TSF) spherical powder with 5% 3347D TFS frit and the newly formulated Ferro RG4933 resin, which is less humidity-sensitive. Early results gave unacceptable high series resistance (Rs) readings. The probable cause was insufficient removal of the resin from under the collector grid. Experiments involving time, temperature, pre-baking and oxygen content have produced Rs of 31 mΩ, down from the unacceptable 80 mΩ range.

Bernd Ross Associates has terminated AVX as a subcontractor for ink formulations. In order to provide more insight into the process variables and their tolerances, a more detailed study of the fabrication of the pastes is being carried out. A facility that will allow complete control of materials and processes by contract scientific personnel is being developed. Since silver fluoride is the most problem-prone component of the present base-metal paste, and since it was one of three SiO etching agents during the initial Contract No. 955164, it is of interest to examine some of the other materials in combination with base-metal pastes. The first such material is Teflon powder. This is a deviation from the original program plan.

Assembly

Kulicke & Soffa has requested and received permission to exhibit the solar module assembly-line machine, developed under PP&E near-term cost-reduction contract, to prospective buyers at their Horsham facilities, and at the IEEE PV Conference in Florida. K&S will pay all transportation costs.

ARCO Solar is continuing work to debug the automated soldering machine. The ribbon-feed mechanism is being reworked at Albuquerque Laboratories to achieve more uniform cell-to-cell spacing. Final cell-to-interconnect alignment adjustments will follow after the spacing problem has been solved. The contractor hopes for a verification demonstration run in February 1981.

JPL has stressed that Science Applications Task I, the Optical Design Rules task, should receive relatively more emphasis than Task II. During November the Task I work studied more cases of minimum-design-change modules. Work on the Task II cost-analysis area was continued. Based on preliminary test data, the optimum packing fraction for modules was calculated as a function of time. Results indicate that by using white diffuser optical concentration, the 1979 cost of field-installed arrays can be reduced by a factor of 0.63. These calculations are based upon present array costs of $5.68/W, structure costs of $8.00/m², and land cost of $5.40/m².

The final report from ASEC on the high-efficiency p/n cell and module assembly contract has been approved. Tooling developed on this contract is deliverable. This tooling was used for fabrication of modules for the JPL Block IV purchase and was shipped to PP&E when no longer required.
Tracor MBA is continuing development of its automated laminating station. This station has three major components: (1) the vacuum-platen end effector used for robotic transfer of cell arrays and sheet materials, (2) the lamination preparation station, and (3) an automated lamination chamber. The vacuum platen has been built and tested. The platen can pick up, by means of its 35 vacuum cups, a 1 x 4-ft array of interconnected cells, glass and finished modules. All detail components of the automated lamination station are on order or are being fabricated in house at Tracor MBA.
ENGINEERING AREA

INTRODUCTION

During the reporting period, activities within the Engineering Area emphasized array requirements generation, array subsystem development, array component engineering, module specification and test requirements development, and performance criteria and test standards development. A summary of Engineering Area in-house and contracted efforts in these areas of activity is presented in the Proceedings section of this document. An expanded description of the status of each of the Engineering Area contracts was included in the 17th PIM handout. Active contracts are listed on pp. 35-36 below.

ARRAY REQUIREMENTS

A in-house investigation of array maximum power point fluctuation during the normal range of operating conditions has been initiated. Selection of the optimum input voltage window for power conditioning is influenced by the array voltage fluctuations due to site weather conditions. SOLMET Typical Year data tapes are now being used to generate yearly array power output for 26 sites as a function of irradiance level and cell temperature. Since the voltage at maximum power of an I-V curve is a function of temperature and since the maximum power output is a function of both temperature and irradiance level, the fraction of yearly power generated for a given voltage range can be determined. The optimum voltage range (expressed as $\Delta V/V$) for a power conditioner is the minimum $\Delta V/V$ for which a desired fraction of available power is actually within the operating range (input voltage range) of the power conditioner. These data will be developed for both fixed-voltage and maximum tracking arrays.

In conjunction with the 17th PIM, an industry workshop on Module and Array Safety was conducted jointly by LSA Engineering and Underwriters Laboratories at JPL on February 3, 1981. A broad spectrum of module manufacturers, systems designers and PV users were represented by 100 workshop participants. The presentations and discussions centered on a draft version of an interim safety requirement document that had been jointly prepared by JPL and UL and forwarded in advance to workshop pre-registrants. Proposed requirements and test methods were described in detail. A significant result of the workshop was a clarification of the roles of UL and the NEC and the positive influence of early development of safety requirements on user acceptance of PV systems, especially for residential and ILC applications.

Also in support of the development of module safety requirements, JPL has recently completed an assessment of requirements concerning the ability of the capacitance of a photovoltaic module to hold a hazardous charge after extraction of the module from a high-voltage array. Results to be presented in the workshop indicate permissible capacitance levels from cell string to module ground. Current modules easily meet the requirements.

Carnegie-Mellon University, which had an LSA contract to perform an exploratory study, "Safety and Product Liability Considerations for
ENGINEERING AREA

Photovoltaic Modules and Panels," released the final report, DOE/JPL 955846-81/1, in January. The report addressed legal issues as they apply to module design, manufacture and application and suggested a methodology to be used during design of a photovoltaic module or array to eliminate or minimize perceived hazards.

Burt Hill Kosar Rittelmann Associates completed work on the study of commercial-industrial PV module and array code requirements. Preparation of the final report was initiated, with release scheduled March 30, 1981.

Results from the second part of the wind-tunnel tests have been received by the Boeing Co. The increased end-loading problem described in the September report can be reduced 50% to 70% by putting end plates on the arrays. The dynamic pressure data are being analyzed by Boeing. The Phase IV effort was initiated and the dynamic modes of two possible configurations have been determined as well as the seismic loads for those configurations. A draft of the Phase III report was received in January and is scheduled for release in March, 1981.

ARRAY SUBSYSTEM DEVELOPMENT

A design data package describing the large ground-mounted array displayed at the 16th PIM was completed including detailed panel and array structure design drawings. JPL Drawings 10097880, 10097881, and 10097882 provide sufficient detail to permit adaptation to a variety of module configurations. Copies are available from the LSA Engineering Area. A task report documenting the overall structure design effort is in press. In addition, a descriptive brochure, JPL No. 400-104, "JPL Low-cost Solar Array Structure," January 1981, was prepared for release and general distribution by DOE to interested photovoltaic-industry participants.

Contracts for the integrated residential photovoltaic array development effort have been signed with the AIA Research Corp. (JPL Contract No. 955893) and the General Electric Co. (JPL Contract No. 955894). The effort addresses the optimization of the PV array subsystem-roof interface and delivery of a prototypical section.

AIARC sponsored an eight-hour workshop on January 12, 1981, for the subcontractors performing the conceptual design work associated with the Integrated Residential PV Array Development effort. The objective of the workshop was to provide a consistent basis for the design effort and to answer questions and concerns with respect to the design boundary conditions and assumptions relative to cost.

General Electric Co. has completed a preliminary evaluation matrix of 19 residential array concepts, which were combined into 14 distinctively different module/array types. Thirty-nine evaluation criteria were grouped into seven broad categories and used to rank the concepts. Results of a preliminary assessment indicate that direct-mounted, overlapped shingle-type installation ranked highest.
The module soiling studies report was published and distributed during this reporting period. The report, JPL Publication No. 5101-131 (DOE/JPL 1012-41), Photovoltaic Module Soiling Studies May 1978-October 1980, November 1, 1980, describes the results to date of the in-house experimental study to characterize and understand the effects of outdoor contaminants on sensitive optical surfaces of flat-plate photovoltaic modules and cover materials. This report is available through the LSA Data Center and NTIS.

A task report (JPL Publication No. 5101-163), Determining Terrestrial Solar Cell Reliability, which documents the proceedings of the solar cell reliability workshop held May 1-2, 1980 at Clemson University, Clemson, South Carolina, was published during this reporting period. Included in the report are reproductions of graphic presentation materials and highlights of discussions related to solar cell reliability test methods. The report is available from the Data Center or from NTIS as Report No. DOE/JPL 954929-81/8. In the follow-on phase of cell reliability testing at Clemson there will be a strong focus on those cell types and metallization systems that will be used in modules designed for residential application demonstrations. This activity will be coordinated through MIT-LL.

During this reporting period, the series-parallel effort concentrated on the development of a hot-spot qualification test and, in turn, a better understanding of the operation of cells under back bias conditions. Several problems in connection with the analytical prediction of hot-spot problems and subsequent correlation of these results with tests are under investigation. These include the significance of power dissipation in a cell relative to the cell area, uniformity of power generation loci, and the uniformity of the light beam over the surface of the cell under test. The infrared camera equipment is being used to determine the temperature gradients over the surface of test cells. A hot-spot qualification test has been included in the Block V procurement package and test results were presented at the 12th PIM.

The solar cell fracture-mechanics effort continued during this reporting period. Optical microscopy and SEM examination of solar cells from Applied Solar Energy Corp. that were fracture-mechanics tested indicated that the fracture-initiating flaws for these cells are edge chips and cracks, some of which were not observed before the fracture testing. These cracks were sometimes covered by metallization and AR coating and were not obvious. A quantitative correlation of fracture strength and flaw size is under way.

A major effort in examining the mechanical fatigue life of cell interconnects is also continuing. The predictive model presented at the last PIM correlated well with interconnect failures experienced at Schuchuli, Arizona. Applying this failure prediction technique to similar modules at the Mead, Nebraska, site indicates that interconnect-fatigue problems should be expected there within two years. During the reporting period, an interconnect-fatigue cycling apparatus was fabricated and large numbers of interconnects tested to failure. Several additional configurations will be tested in the future. In the meantime a formal cost-optimal-design algorithm has been developed and its practicality demonstrated. The algorithm yields 20-year array power reduction and required interconnect redundancy to achieve
minimum life-cycle energy cost. Future work includes refining the algorithm (based upon additional interconnect tests) and developing charts and nomographs from which to compute interconnect strain levels (without the substantial cost impact of using a finite element computer code). An expanded predictive module based on observed probabilistic failure statistics together with the test data was presented at the 17th PIM.

In the area of PV/thermal module development, tests were completed on an unglazed PV/T module configuration to verify the feasibility of a PV/T test method proposed as part of the IPC. Preliminary indications are that the test method will be applicable to a variety of collector types and configurations. Work has been initiated on a joint task report with Arizona State University to document the background and rationale for the electrical and thermal performance test methods being developed for flat-plate PV/T and concentrator modules.

In the area of environmental test development, evaluation of the use of a "greenhouse" effect accelerated aging environmental exposure technique is continuing. After 75 days of exposure, minimodules from the outdoor hot box test have been taken down, inspected, flashed and tested for voltage breakdown. There has been some cosmetic degradation of several of the modules, but no electrical degradation. The post-exposure voltage breakdown test results are being studied. The modules are back in the hot box for further exposure.

In the Voltage Isolation Task a variety of activities continued. The low-voltage film breakdown apparatus fabrication is in progress. Sheldahl delivered the test samples on February 3, 1981. The order was placed for the Biddle Partial Discharge Test apparatus, with delivery scheduled for October 1981. Cell-string flaw-characterization test-fixture fabrication was completed and initial air-gap and film-breakdown tests will begin after the 17th PIM. Several material test samples were received for electrical isolation capability testing including hardcoat anodized aluminum plates (intended for PV/T collector substrates) and laminate sections representing the Motorola Block IV design back surface composite. Humidity sensors and monitors were received and mounted in modules that will be installed at the JPL Field Site No. 1 High Voltage Facility. The decision was made to expand the test voltage capability to 3000 Vdc and to add a second test rack at this facility. Work on the facility modification is in progress.

IIT Research Institute released the first quarterly report on LSA Engineering Area Support Contract No. DOE/JPL 955720-801, on development of elements of a reliability design guidebook for flat-plate photovoltaic modules and arrays. This report documents work performed and completed by IITRI through September 1980 on two subtasks. It is available upon request from the LSA Data Center.

The DSET Laboratories Spectral Measurement contract, which is gathering data on relative global vs direct vs diffuse irradiance for the New River, Arizona, site, demonstrated fully automatic solar spectrum data acquisition, reduction and curve plotting using their NOVA-30 computer. Solar spectrum measurements at resolutions ranging from 1 nanometer to 5 nanometers, depending on the portion of the spectrum being measured, have been initiated at regular monthly intervals and will continue over the next two-year period.
ENGINEERING AREA

MODULE SPECIFICATIONS

As part of developing design test and qualifications criteria for the Block V Module Production RFP, drafts were completed of both residential and intermediate-load specifications. The drafts, along with the new interim safety standard, were forwarded to approximately 80 PV industry participants on January 21, 1981, with a request for review and comments by February 10th. Release of the two specifications, JPL Publication No. 5101-161 for intermediate-load requirements and JPL Publication No. 5101-162 for residential requirements, was scheduled for February 20, 1981. Work was initiated on a preliminary draft of a Central-Station Application Preliminary Specification.

PERFORMANCE CRITERIA AND TEST STANDARDS

The Array Subsystem Task Group met in Huntsville, Alabama, on November 19 and 20, 1980. The Electrical Performance Subgroup of the Array Subsystem Task Group met in October and November 1980, and January 1981. Test methods for actively and passively cooled concentrator modules were reviewed. Principal issues were: (1) the appropriateness of using reference cells for the I-V characterization of concentrator modules; (2) the advantages and disadvantages of several different formats for presenting electrical and thermal performance data; (3) new criteria in safety and durability and test methods for salt spray and SO$_2$.

The PV/Thermal Subgroup of the Array Subsystem task group met in Huntsville on November 18, 1980 at Wyle Laboratories. The subgroup discussed a draft of the Operating Cell Temperature Determination Test for Flat Plate Actively Cooled Modules and several performance criteria statements. A final version of the test method was prepared for the Task Group. Several of the criteria statements were also prepared for final review by the Task Group.

In support of the SERI-funded JPL standards efforts, Wyle Laboratories was awarded a contract to identify and document corrosion sensitivities and failures associated with outdoor exposure of photovoltaic modules and components and to document performance criteria and candidate test methods for inclusion in TPC-2. A data package on the corrosion observations at JPL field site prepared by LSA Quality Assurance was delivered to Wyle.

Engineering Area Contractors

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Contract Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIA Research Corp.</td>
<td>955893</td>
<td>Integrated residential PV array development</td>
</tr>
<tr>
<td>Boeing Co.</td>
<td>954833</td>
<td>Wind-loading study on module and array structures</td>
</tr>
<tr>
<td>Burt Hill Kosar</td>
<td>955614</td>
<td>Residential module O&M requirements study</td>
</tr>
<tr>
<td>Rittelmann Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butler, PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>Contract Number</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Clemson University</td>
<td>954929</td>
<td>Solar cell reliability test</td>
</tr>
<tr>
<td>Clemson, SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSET Laboratories, Inc</td>
<td>713131</td>
<td>Accelerated sunlight exposure of modules</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSET Laboratories, Inc</td>
<td>713137</td>
<td>Spectral radiometric measurements and standards</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Electric Co.</td>
<td>955894</td>
<td>Integrated Residential PV Array Development</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIT Research Institute</td>
<td>955720</td>
<td>Reliability engineering of modules and arrays</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underwriters Laboratories</td>
<td>955392</td>
<td>Solar array and module safety requirements</td>
</tr>
<tr>
<td>Melville, NY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPERATIONS AREA

MODULE PRODUCTION TASK

Block IV Design and Qualification

Applied Solar Energy Corp., Motorola, Inc., Solar Power Corp., and Spire Corp. have completed work on the design and qualification phase of this task. ARCO has delivered intermediate-load modules for testing, but has not yet completed an approved set of drawings for the residential module; hence, residential modules have not yet been fabricated for test. Photowatt has delivered intermediate-load modules that are now in the environmental test sequence. Solarex Corp. has provided both residential and intermediate-load modules for testing but a completely satisfactory lamination sequence has not yet been demonstrated.

The physical features, encapsulation systems, cell features and electrical characteristics of these modules are tabulated in the Proceedings of the 17th PIM and are to be considered a part of this Progress Report (see pp. 71-74). A summary of the problems encountered in the course of the qualification testing and a brief summary of price analysis also appears in the Proceedings (see pp. 75-81).

Generally, the following observations and conclusions hold:

-- New design and technology were assimilated, but with some difficulty. Schedules slipped, tests were failed, and there were a few retreats to conventional approaches.

-- Large-scale production was not tested.

-- Prices are down; efficiencies have risen; reliability and durability appear to have improved because of better hail protection, improved moisture protection and fault-tolerant cell-circuit arrangement.

-- Most designs are to be offered commercially.

Block IV Production

Although purchase orders have been issued to six of the eight participants in the Block IV design phase, modules have been received from only two contractors. Motorola has delivered all but 10 modules ordered and will be the first contractor to complete the order. Solar Power has provided seven modules of a commercial configuration to be tested in lieu of the module designed under Block IV. ASEC, GE and Spire are in the fabrication mode. Solarex has not yet been given the go-ahead, since the drawing packages are not approved. ARCO Solar and Photowatt purchase orders have not yet been issued, and await qualification testing of the modules under Phase I.
OPERATIONS AREA

Block V

The Block V RFP was prepared and made ready for issue, but was held back because of rebudgeting.

MODULE TEST AND EVALUATION

Environmental Testing

Two special series of tests were run in this period, both related to the Block V specifications. One of these was an extended sequence of thermal cycling tests of various modules to determine susceptibility to interconnect-fatigue cracks. This test was initiated after interconnect failures of Block II and III modules (Y type) in the field in less than two years. In the long-term temperature-cycling tests, opens occurred in Y-type modules in less than 100 cycles and in V-type Block III modules in less than 200 cycles. The proposed Block V 200-cycle temperature test should effectively uncover field interconnect problems that might occur in the first two to four years.

The other special test was the proposed Block V humidity cycling test. Results were reported by John Griffith at the 17th PIM (see p. 373). This single test is more effective than the Block IV temperature and humidity tests combined, both in severity and in the variety of degradation observed.

Tests have been completed on World Bank modules and results were also reported at the PIM (see p. 373).

Other environmental test results are summarized in the following tables. Modules tested include Block IV MIT-LL Residential Experiment Station (RES), and two commercial types (one with CdS cells).
Recent Qualification Test Results

<table>
<thead>
<tr>
<th>VENDOR CODE</th>
<th>Construction Details</th>
<th>Principal Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Glass, PVB, Tedlar/Al/Tedlar; Modified edge sealant includes glass tape and a butyl tape between laminate and SS frame</td>
<td>This latest version passed all hi-pot tests; backing material delaminated at J-box area</td>
</tr>
<tr>
<td>US</td>
<td>Glass, PVB, Tedlar/steel/Tedlar; steel backing now grounded to frame</td>
<td>Earlier ungrounded back surface modules failed hi-pot but this latest version passed; edge sealant extruded from ends of modules during temperature cycling</td>
</tr>
<tr>
<td>VS</td>
<td>Glass, PVB, Tedlar/Al/Tedlar, Al frame</td>
<td>Modules were electrically unstable with variations to ±4%; many cracked cells found in the first to be received; after temperature cycling, there was frame separation at the corner of one, terminal covers loosened and fell off, some delamination at frame seal, 2 cell cracks</td>
</tr>
<tr>
<td>YR, YS</td>
<td>Glass, EVA, Tedlar</td>
<td>Latest set of two modules each have completed temperature and humidity cycling; in temperature cycling, frame seal delamination and Tedlar delamination and blistering occurred; all four modules degraded electrically in humidity cycling—10, 14, 16, and 45%, respectively; internal shorting was discovered in one; some cells moved closer and are touching</td>
</tr>
</tbody>
</table>
OPERATIONS AREA

Recent Qualification Test Results (Continued)

<table>
<thead>
<tr>
<th>MIT-LL Res Program/ Application Area</th>
<th>Construction</th>
<th>Principal Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB/NE</td>
<td>Glass, PVB, Tedlar</td>
<td>J-Boxes came loose, warped; terminal strip loosened; backside Tedlar delamination</td>
</tr>
<tr>
<td>YB/NE</td>
<td>Glass, EVA, Tedlar</td>
<td>Tedlar delamination and blistering, encapsulant air bubbles in temperature</td>
</tr>
</tbody>
</table>

Recent Commercial Module Test Results; Temperature and Humidity Cycling Only

<table>
<thead>
<tr>
<th>Vendor Code</th>
<th>Construction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>Glass, encapsulant, Al substrate and frame</td>
<td>Satisfactory after temperature cycling</td>
</tr>
<tr>
<td>BV</td>
<td>Clear acrylic, silicone gel encapsulant, white acrylic substrate, Al side rails</td>
<td>Catastrophic failure in temperature cycling; acrylic substrate corners broken, one cover sheet broken, delamination and bubbles over cells, electrical failures (18%, 29%, 50% and 52% loss, respectively)</td>
</tr>
<tr>
<td>EB</td>
<td>Glass, PVB, CdS cells, plastic screen, copper pan, paint; hermetically sealed</td>
<td>In temperature cycling, encapsulant bubbles developed at ends of cells; voltage-regulator plastic covers melted; one module has 25% power loss after humidity cycling; electrical measurements made in natural sunlight because of slow response time of CdS; power increased at low ambient temperatures after tests but stayed nearly the same at about 60°C</td>
</tr>
</tbody>
</table>
Performance Measurements

The spectral response of cells presently used for Block IV modules manufactured by ASEC, GE, and Photowatt do not match that of the reference cells now in use. New reference cells are being selected, fabricated and calibrated. Reference cells are also being selected, fabricated and calibrated for MIT Lincoln Laboratory to be used for testing ASEC, ARCO Solar, Inc., Solec International, Inc., Solarex, Motorola and Spire (photovoltaic/thermal) modules.

LAPSS 2 is functioning properly and is being used for module evaluation. Four types of modules with a maximum power of from 20 to 60 watts were measured using LAPSS 1 and LAPSS 2. Results indicate that LAPSS 1 P_{max} measurements average 1.2% higher than LAPSS 2 P_{max} measurements. Most of this difference is attributed to a similar difference in the measurement of module current (I_{sc} and I_{mp}). This difference is considered to be within the normal measurement error of the system.

Field Tests

A draft of the annual report for the year ending August 31, 1980, is in press and is expected to be distributed by mid-February. The key conclusion from analysis of the data covered in the report is that no fundamental life-limiting mechanisms have been identified that could prevent the 20-year life goal being met.

Preparation began for deployment of the Block IV modules. To accommodate these modules a reorganization of the test site network is underway:

-- Eight of the Continental Remote sites -- Canal Zone, Key West, New Orleans, Houghton, New London, Albuquerque, Fort Greely (Alaska), and Mines Peak -- will double in size from four to eight 4 x 8-ft test stands. Most of the Block II modules will be removed and replaced with Block IV intermediate load modules; approximately four of each type will be deployed.

-- The operating mode at the Continental Remote sites at Seattle, Crane, San Nicolas Island and Dugway will be changed to one of reduced activity. No Block IV modules will be deployed and the scheduled yearly acquisition of performance data on the remaining Block II modules will occur as time is available.

-- At the local remote sites, Goldstone, Point Vicente and Table Mountain, all of the Block I modules and about half of the Block II and III modules will be removed and replaced with the same quantity and type of intermediate-load modules as deployed at the Continental Remote sites. In addition, small arrays composed of Block IV residential modules will be deployed.

-- At the JPL site, approximately 85% of the Block I modules and 70% of the Block II modules will be removed. The quantity of Block IV modules to be deployed will be two to three times the number at the
local remote sites. The residential modules will be mounted as roof-section arrays on the large support in the northeast corner of the field.

On December 22, 1980 a diffuse-sky shadowing experiment was conducted at the JPL test site to confirm results obtained the previous year by the Performance Measurement Group. The purpose of the experiment was to determine the difference in insolation from the top to the bottom of a test subarray that is located behind (north of) another subarray. The difference is attributable to the shadowing of a portion of the sky by the forward subarray. All data were taken within 15 minutes of solar noon. The sky was hazy with high cirrus cloud formations. Insolation varied between 80 to 90 mw/cm² during the test period. A Li-Cor pyranometer was placed at the top of the array while a reference cell was moved down the subarray face in 6-in. increments. Readings from both instruments were recorded simultaneously. The subarrays were tilted 50° during the test period. The results, shown graphically in the following figure, indicate that the insolation at the bottom of the subarray could be as much as 13% less than at the top for the conditions stated and that the loss of insolation is almost linear as a function of the fraction of the sky below the sun that is shadowed or blocked out. This experiment will be repeated for other sky conditions.
OPERATIONS AREA

Failure Analysis

Analysis of a number of modules returned from Mead, Schuchuli, and Mount Laguna from one Block II and III manufacturer were found to have broken cell interconnects and open due to cracked cells. The interconnect was found to have failed because of improper interconnect stress-relief loop forming, short active length for flexing, and thermal mismatch between the polyester glass substrate, the cell, and the copper interconnect. MIT Lincoln Labs also returned 20 modules from the Natural Bridges National Monument Application for analysis. Sixteen of the module failures involved shorts to ground, which were caused by the interconnect foil contacting ground, generally between the edges of the foil and the metal substrate or in the terminal area. The 17th PIM presentation on shorts to ground covered this problem in detail (see pp. 399-410). Three laminated-design modules with broken cover glasses were found to have edge chips, which initiated fractures during diurnal temperature cycling. One module failed due to a cracked cell, which fractured both main current collectors on the front surface of the cell. There was also a notable amount of discoloration at cell edges and where cell cracks existed in this PVB-encapsulated module.

The Mount Laguna Solar array was visited in January 1981. The number of 30W modules in the bypass mode (open-circuited) has increased from 128 in August 1980 to 160 in January 1981. The 20W module bypass increased from 14 to 20 during the same period. The next on-site evaluation is planned for July-August of 1981. It is expected that the latter module bypass rate will show a further increase at that time, since the predominant failure mode (fractured interconnects) tends to show open circuits at elevated temperatures.

Applications Interface

Test and Applications Project support provided:

-- Attendance and follow-up support to 22 reviews (Quarterly and Critical) at both Sandia for PRDA applications and Lincoln Laboratory for residential applications.

-- Coordination and follow-up support of module failure analysis activity as associated with field failures at various MIT-LL and Lewis Research Center installations.

-- Coordination of field survey of the PV installation at Mount Laguna.

-- Received modules from PRDA and residential applications for qualification testing.

-- Received and processed requests from Lincoln Laboratory for 10 reference cells to support the current residential applications. Number of required cells will probably increase as more experiments are undertaken. Sandia's request for 40 reference cells (to support concentrator PRDAs) has been received and is being discussed with Sandia.
Proceedings Summary

Highlights of the 17th Project Integration Meeting held February 4 and 5, 1981, at the Pasadena Center, Pasadena, California:

The first day of the meeting consisted of a summary of a panel discussion on the Role of Government in Photovoltaics by invited industry executives and JPL management at The California Institute of Technology on the previous day. Highlighted were consensus items such as the need for emphasis on central-power-station demonstration work, continued underwriting of high-risk research and technology development, and the agreement that while $0.70/W modules will be produced, debate persists on whether that will be the common selling price in 1986.

In addition, the first day's session presented a summary of Union Carbide Corp. Si refinement activities. Also presented was a summary of the hydrogenation work on silicon tetrachloride being done by MIT and the significance of that work on the potential improvements in conventional Siemens deposition processes.

A summary was also presented on the results of approximately two and a half years' work in near-term cost-reduction activities. Numerous predicted cost reductions were realized through the contract actions that were completed.

A comprehensive discussion was held on encapsulation materials and design principles for photovoltaic module encapsulation packaging. Various aspects of material characteristics, compatibility with module requirements, lifetime potential and costs were presented.

The results of a Safety Design Workshop held the previous day were presented, highlighting the many safety considerations under study by LSA and its principal safety contractor, Underwriters Laboratories. Specific engineering procedures have been developed as a result of this work, which is still under way.

Block IV module procurement results were presented regarding physical and performance characteristics and attention was invited to the definite improvements over previous module purchases by LSA.

Presentations were made by both Westinghouse and Solarex on their NEPSDU contracts. Considerable interest was shown by the audience in both contract efforts, then just starting.

The computerized price estimation technique, IPEG4, was demonstrated to illustrate the flexibility of this new analytical tool. Example analyses were manipulated by audience request in real time.
Participants were privileged to hear two notable speakers. Eddie Mlavsky, for many years directly involved in the U.S. Photovoltaics Program, discussed some international perspectives on photovoltaics that were of interest in view of his work in Israel during the past two years. Paul MacCready presented an exciting film and a talk on his adventures and successes with the Gossamer Penguin and with the Solar Challenger photovoltaics-powered light aircraft.
Union Carbide reported on the status of development of the silane (SiH₄)-to-silicon (Si) process. An experimental process system development unit (EPSDU) with a Si capacity of 100 MT/yr is being constructed at East Chicago, Indiana. All foundations were completed, the structural steel for the process gantry was erected, and all underground utilities and service lines were installed. Process equipment is being fabricated, with delivery of some items already taking place.

The free-space reactor process development unit (PDU) effort was successfully completed, with demonstration of long-term operability of the reactor.

Hydrochlorination of mgSi and SiCl₄ for Si Processes (MIT)

Development of a process for producing low-cost trichlorosilane (SiHCl₃), which is used to make SiH₄ in the Union Carbide process and from which Si is deposited in the conventional (Siemens) process for producing semiconductor-grade Si, was described by MIT. The study has shown the conditions under which the hydrochlorination reaction should be carried out. Copper was shown to be an effective catalyst.

Significance of the Hydrochlorination Results (JPL)

The MIT hydrochlorination process, which converts metallurgical-grade Si (mgSi) and SiCl₄ to SiHCl₃ in a low-cost operation, has wider potential commercial application than only to the Union Carbide silane-to-silicon process. Relatively large amounts of SiCl₄ are produced as a byproduct in the conventional (Siemens) process for making semiconductor-grade Si and also in other processes using chlorosilanes as intermediates. Economic advantage could accrue from conversion of this SiCl₄ to SiHCl₃, thereby eliminating SiCl₄ disposal costs and attaining nearly complete Si utilization. It was recommended that trade-off studies be conducted to evaluate the potential savings.
PLENARY SESSION: SILICON MATERIAL TASK

STATUS OF UNION CARBIDE EPSDU

UNION CARBIDE CORP.

Hiroshi Morihara

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYCRYSTALLINE SILICON</td>
<td>02/04/31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROACH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-PURITY SILANE PRODUCTION FROM METALLURGICAL-GRADE SILICON; AND SILANE PYROLYSIS AND CONSOLIDATION TO FORM SEMICONDUCTOR-GRADE POLYCRYSTALLINE SILICON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UNION CARBIDE CORPORATION</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOALS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• DEMONSTRATE PROCESS FEASIBILITY AND ENGINEERING PRACTICALITY.</td>
<td></td>
</tr>
<tr>
<td>• ESTABLISH TECHNOLOGY READINESS USING EPSDU SIZED TO 100 MT/YR.</td>
<td></td>
</tr>
<tr>
<td>• SILICON PRICE OF LESS THAN $14/KG FOR HIGH VOLUME PROCESS.</td>
<td></td>
</tr>
<tr>
<td>• DEFINE PROCESS ECONOMICS.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATUS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN & ENGINEERING WORK ON THE EPSDU</td>
<td></td>
</tr>
<tr>
<td>• THE CIVIL-STRUCTURAL SUBCONTRACT TO BE COMPLETED IN MID-FEBRUARY.</td>
<td></td>
</tr>
<tr>
<td>• PROCESS AND AUXILIARY EQUIPMENT STARTED TO ARRIVE AT THE JOB SITE.</td>
<td></td>
</tr>
<tr>
<td>• DETAILED INSTALLATION DRAWINGS FOR MECHANICAL AND ELECTRICAL SUBCONTRACTS TO BE COMPLETED WITHIN TWO MONTHS.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SILANE PYROLYSIS R & D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• THE FREE-SPACE REACTOR PDU WORK SUCCESSFULLY COMPLETED.</td>
<td></td>
</tr>
<tr>
<td>• GC METHOD DEVELOPMENT WORK SUCCESSFULLY COMPLETED.</td>
<td></td>
</tr>
<tr>
<td>• THE SI POWDER MELTER/SHOTTER ASSEMBLED AND READY FOR SYSTEM CHECKOUT.</td>
<td></td>
</tr>
<tr>
<td>• ASSEMBLY OF THE FLUID-BED PYROLYSIS PDU NEARING COMPLETION AND READY FOR CHECKOUT IN A WEEK.</td>
<td></td>
</tr>
</tbody>
</table>
PLenary SESSION: Silicon Material Task

Development of Hydrochlorination Reactor

Massachusetts Institute of Technology

Jeffrey Mui

Epsdu Program Major Milestones

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>CY 1981</th>
<th>CY 1982</th>
<th>CY 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JFMAMJ</td>
<td>JFMAMJ</td>
<td>JFMAMJ</td>
</tr>
<tr>
<td>JPL Epsdu Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Design</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Equipment</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Installation/Checkout</td>
<td></td>
<td>4 5 6</td>
<td>7 8</td>
</tr>
<tr>
<td>1.4 Operation</td>
<td></td>
<td>9 10 11</td>
<td>12 13</td>
</tr>
<tr>
<td>1.5 Commercial Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Supporting R&D</td>
<td></td>
<td>14 15</td>
<td></td>
</tr>
<tr>
<td>1.7 Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Bid package ready for mechanical & electrical installation.
2. Most equipment for silicon to silane delivered to site.
3. Equipment for silane pyrolysis delivered to site.
4. Subcontract award for mechanical installation and off-site subassembly started.
5. Start of on-site installation.
6. Start of on-site electrical installation.
7. End of installation & start of checkout.
8. End of checkout.
10. Start of startup.
11. Startup complete and start of data acquisition.
12. End of data acquisition and start of durability assessment.
13. End of test program.
14. Start of fluid-bed PDU testing.
15. End of fluid-bed testing.
What Is the Hydrochlorination Reactor?

UNION CARBIDE SILANE-TO-SILICON PROCESS

I HYDROCHLORINATION: \(3 \text{SiCl}_4 + 2 \text{H}_2 + \text{Si} \rightarrow 4 \text{SiHCl}_3 \)

II REDISTRIBUTION: \(2 \text{SiHCl}_3 \rightarrow \text{SiCl}_4 + \text{SiH}_2\text{Cl}_2 \)
\(\text{SiH}_2\text{Cl}_2 \rightarrow \text{SiHCl}_3, \text{SiH}_2\text{Cl}_2, \text{SiH}_3\text{Cl}, \text{SiH}_4 \)

III PYROLYSIS: \(\text{SiH}_4 \rightarrow 2 \text{H}_2 + \text{Si} \)

- Hydrochlorination step enables a closed loop process by recycling by-product \(\text{SiCl}_4 \)
- Reactor processes about 65 lbs of \(\text{SiCl}_4 \) for one pound of \(\text{Si} \) metal produced
- Cost saving on this step has a large impact on the economics of the overall process

What Has Been Done

HYDROCHLORINATION REACTOR DEVELOPMENT AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I ENGINEERING DATA
- Reaction kinetics, yield, conversion
- Catalyst, impurities
- Silicon particle size, mass life
- Corrosion study

II CONCLUSIONS
- Efficient reaction, high yield and conversion
- Copper catalyst doubles reaction rate
- Long periods of continuous operation
- Conventional metal alloys for reactor

III RECOMMENDATION
- Maximize reactor pressure 500 psig
- Add copper catalyst to increase rate
- INCOLOY 800 as material of construction for the reactor
PLENARY SESSION: SILICON MATERIAL TASK

What Remains to Be Done

I REFINE ENGINEERING DATA FOR SCALE-UP
 • OPTIMIZE PROCESS PARAMETER, FLUIDIZED-BED, PACKED-BED DESIGN
 • MAXIMIZE RAW MATERIAL UTILIZATION, RECYCLE BY-PRODUCT WASTE STREAM
 • QUALITY CONTROL, ORGANIC AND INORGANIC IMPURITIES IN CHLOROSILANE PRODUCTS

II CORROSION STUDY
 • MECHANISM OF CORROSION
 • SCREEN MATERIAL OF CONSTRUCTION FOR THE HYDROCHLORINATION REACTOR

Potential Application to Polycrystalline Silicon Technology

I THE CURRENT SIEMENS TECHNOLOGY FOR POLY SILICON
 \[\text{SiHCl}_3 + \text{H}_2 \xrightarrow{1000^\circ \text{C}} \text{Si, SiCl}_4, \text{HCl, LITES, HEAVIES} \]

II THE HYDROCHLORINATION OF SiCl\textsubscript{4}
 \[3 \text{SiCl}_4 + 2 \text{H}_2 + \text{Si} \xrightarrow{} 4 \text{SiHCl}_3 \]
 • IT PRODUCES THE STARTING SiHCl\textsubscript{3} FOR THE SIEMENS TYPE REACTOR AT ESSENTIALLY 100% EFFICIENCY
 • IT CONSUMES THE BY-PRODUCT SiCl\textsubscript{4}
 • IT CAN ALSO CONVERT HCl AND OTHER BY-PRODUCTS TO SiHCl\textsubscript{3}
 • IT FITS PERFECTLY INTO THE SIEMENS PRODUCTION SCHEME TO FORM A CLOSED LOOP PROCESS
 • SUBSTANTIAL SAVINGS ON RAW MATERIAL COST CAN BE REALIZED

53
PLenary Session: Silicon Material Task

Significance of Hydrochlorination Results
Jet Propulsion Laboratory
Ralph Lutwack

- STC - A By-Product of Chlorosilane Processes
 - Siemens Process
 - Union Carbide Process
 - Fluidized Bed Reactor Processes

- Present STC Utilization
 - Production of Silica
 - Epitaxial Deposition

- Advantages of HR Use
 - STC Disposal Costs Eliminated
 - Complete Si Utilization
 - Comparative Product Values
 - STC
 - Semiconductor Grade Si

- Conclusion and Recommendation
 - Economic Advantages
 - Tradeoff Studies
NEAR-TERM COST-REDUCTION RESULTS

JET PROPULSION LABORATORY

D.W. Boyd

Near-Term Activity Evolution

LEGISLATION

PUBLIC LAW 95-238, SECT. 208(b) (FEB., 1978); SUPPLEMENTAL APPROPRIATIONS BILL (PAUL TsONGAS, MA.)

$6.0M AUTHORIZED FOR NEAR-TERM TECHNOLOGY DEVELOPMENT OF PHOTOVOLTAIC SYSTEMS (ESPECIALLY COST REDUCING PRODUCTION TECHNOLOGIES)

GOALS

• ACCELERATE REDUCTION IN FLAT-PLATE PHOTOVOLTAIC MODULE MANUFACTURING COSTS (1979-1981)

• DEMONSTRATE NEAR-TERM COST REDUCTION IMPACT OF ADVANCED PROCESSING APPROACHES

• TRANSLATE COST-REDUCING MANUFACTURING TECHNIQUES INTO COMMERCIAL PRACTICE

• PROVIDE FOR MAXIMUM TECHNOLOGY TRANSFER TO INDUSTRY TO ENSURE COMMON BENEFIT

PROGRAM

• LSA PROJECT ADD-ON

• $4.5M FOR DEVELOPMENT OF COST REDUCTIONS IN MATERIAL, EQUIPMENT, MODULE DESIGN, PROCESSES AND AUTOMATION
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Contract Selection and Evaluation Process

- **PROPOSAL RECEIPT**
- **PROPOSAL EVALUATION**
- **CRITERIA**
 - Probability of Success
 - Cost Effectiveness
 - JPL Baseline vs Proposed Effort
- **CONTRACT AWARD**
 - 14 Contracts ($4.5M)
 - Wafer Preparation - 4
 - Cell Sequences - 4
 - Metallization - 2
 - Module Processes - 4

SCOPE
- Steps or Sequences

COST-REDUCTION DETERMINATION
- Review Board
- SAMICS Methodology
- Cost Evaluation
 - JPL Baseline vs Contractor Achievement
- Board Consensus
- Report

LSA Baseline Process Sequence

- Grow Ingot
- Crop and Grind
- Id Saw
- Texturize
- Spin-on Dopant
- Diffusion
- Back Surface Etch
- Screen Print Back
- Screen Print Front
- Edge Grind
- AR Coat
- Electrical Test
- Assemble Interconnects in PVB
- Solder Cells/Interconnects
- Inspect Solder
- Laminate
- Inspect Lamination
- Assemble Terminals
- Test Module
Near-Term Contract Cost-Reduction Results

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>TECHNOLOGY</th>
<th>PREDICTED COST REDUCTION ($/Wp)*</th>
<th>ACTUAL COST REDUCTION ($/Wp)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. KULICKE & SOFFA</td>
<td>MODULE ASSEMBLY</td>
<td>2.32</td>
<td>0.77</td>
</tr>
<tr>
<td>2. ARCO SOLAR</td>
<td>NON-CZ SHEET</td>
<td>2.16</td>
<td>-</td>
</tr>
<tr>
<td>3. SILTEC</td>
<td>CRYSTAL SLICING</td>
<td>1.46</td>
<td>0.33</td>
</tr>
<tr>
<td>4. ARCO SOLAR</td>
<td>MODULE ASSEMBLY</td>
<td>1.43</td>
<td>1.76</td>
</tr>
<tr>
<td>5. ENERGY MATT. CORP.</td>
<td>PHOTOVOLTAIC MATERIAL</td>
<td>1.40</td>
<td>0</td>
</tr>
<tr>
<td>6. SENSOR TECHNOLOGY</td>
<td>CELL PROCESS SEQUENCE</td>
<td>0.74</td>
<td>0</td>
</tr>
<tr>
<td>7. KAYEX</td>
<td>CZ GROWTH</td>
<td>0.43</td>
<td>0.62</td>
</tr>
<tr>
<td>8. MOTOROLA</td>
<td>METALLIZATION PATTERNING</td>
<td>0.38</td>
<td>0</td>
</tr>
<tr>
<td>9. MOTOROLA</td>
<td>CELL PROCESS SEQUENCE</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>10. MOTOROLA</td>
<td>ENCAPSULATION</td>
<td>0.26</td>
<td>0.11</td>
</tr>
<tr>
<td>11. SENSOR TECHNOLOGY</td>
<td>ETCHING</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>12. SOLLOS</td>
<td>METALLIZATION DEPOSITION</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>13. MB ASSOCIATES</td>
<td>ENCAPSULATION</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>14. RCA</td>
<td>MEGASONIC CLEANING</td>
<td>0.07</td>
<td>-</td>
</tr>
</tbody>
</table>

*1975 DOLLARS

Project Baseline/Near-Term Composite Common Parameters

- CELL SIZE: 3 in. dia
- NO CELLS/MOD: 316
- MODULE SIZE: 4 ft x 4 ft
- HARDWARE PERFORMANCE: 100 Wp
- MODULE EFFICIENCY: 6.7%
- CELL EFFICIENCY: 10%
Process Sequence Using Near-Term Contracts

<table>
<thead>
<tr>
<th>PROCESS STEP</th>
<th>PROCESS VALUE</th>
<th>PROJECT BASELINE</th>
<th>NEAR-TERM COMPOSITE</th>
<th>COMPOSITE COMPONENTS (NEAR-TERM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VALUE ADDED</td>
<td>YIELD %</td>
<td>ALTERNATE STEP</td>
<td>VALUE ADDED</td>
</tr>
<tr>
<td></td>
<td>$/Vpph</td>
<td></td>
<td>NAME</td>
<td>$/Vpph</td>
</tr>
<tr>
<td>CROPGIND</td>
<td>3.737</td>
<td>95</td>
<td>CROWS23</td>
<td>3.040</td>
</tr>
<tr>
<td>CIDSHY</td>
<td>0.044</td>
<td>95</td>
<td>IDSHICE</td>
<td>0.020</td>
</tr>
<tr>
<td>TEXTURIZE</td>
<td>0.020</td>
<td>95</td>
<td>TEXTURE</td>
<td>0.016</td>
</tr>
<tr>
<td>1 SPIN-ON</td>
<td>0.002</td>
<td>95</td>
<td>1 SPIN-ON</td>
<td>0.002</td>
</tr>
<tr>
<td>1 POCL</td>
<td>0.075</td>
<td>95</td>
<td></td>
<td>0.071</td>
</tr>
<tr>
<td>4 BSE</td>
<td>0.144</td>
<td>96</td>
<td>4 BSE</td>
<td>0.295</td>
</tr>
<tr>
<td>AGSPB</td>
<td>0.184</td>
<td>98</td>
<td>AGSPB</td>
<td>0.089</td>
</tr>
<tr>
<td>2 HOSPF</td>
<td>0.120</td>
<td>95</td>
<td>2 HOSPF</td>
<td>0.144</td>
</tr>
<tr>
<td>3 SPIN-ON</td>
<td>0.041</td>
<td>95</td>
<td>3 SPIN-ON</td>
<td>0.038</td>
</tr>
<tr>
<td>3 ARCONTI</td>
<td>0.030</td>
<td>90</td>
<td>3 ARCONTI</td>
<td>0.029</td>
</tr>
<tr>
<td>2 TEST</td>
<td>0.078</td>
<td>90</td>
<td>2 TEST</td>
<td>0.017</td>
</tr>
<tr>
<td>INTASSY</td>
<td>1.190</td>
<td>98</td>
<td>INTASSY</td>
<td>2.491</td>
</tr>
<tr>
<td>CELLASSY</td>
<td>1.741</td>
<td>98</td>
<td>CELLASSY</td>
<td></td>
</tr>
<tr>
<td>SOLDINSP</td>
<td>0.065</td>
<td>95</td>
<td>SOLDINSP</td>
<td></td>
</tr>
<tr>
<td>LAMINSF</td>
<td>0.003</td>
<td>95</td>
<td>LAMINSF</td>
<td>0.102</td>
</tr>
<tr>
<td>TERRASSY</td>
<td>0.016</td>
<td>95</td>
<td>TERRASSY</td>
<td>0.026</td>
</tr>
<tr>
<td>NIODEST</td>
<td>0.002</td>
<td>98</td>
<td>NIODEST</td>
<td>0.002</td>
</tr>
<tr>
<td>2 WRITEOUTP</td>
<td>9.863</td>
<td>95</td>
<td>2 WRITEOUTP</td>
<td>7.914</td>
</tr>
<tr>
<td>2 WRITEOUTP</td>
<td>7.084</td>
<td>10</td>
<td>2 WRITEOUTP</td>
<td>7.914</td>
</tr>
</tbody>
</table>

Conclusions

NEAR-TERM CONTRACT ACTIVITY WAS BENEFICIAL

- **LOW FUNDS EXPENDITURE**
- **SHORT TIME PERIOD**
- **FOCUS ON SPECIFIC TECHNOLOGY**

RESULTED IN

- **TIMELY IDENTIFICATION OF PROMISING AND LESS-CERTAIN PRODUCTION PROCESS IMPROVEMENTS**

NEAR-TERM PAYBACK IS FEASIBLE
PLENARY SESSION: ENCAPSULATION TASK

STATUS OF ENCAPSULATION MATERIALS AND OF ENCAPSULATION DESIGN PRINCIPLES

JET PROPULSION LABORATORY

E.F. Cuddihy

LSA Encapsulation Task

(17th PIM Meetings)

1) WOOD SUBSTRATE WORKSHOP
2) GENERAL PRESENTATION ON STATUS OF ENCAPSULATION MATERIALS AND DESIGN PRINCIPLES
3) CONTRACTOR PRESENTATIONS
4) FORUM ON ENCAPSULATION MATERIALS AND DESIGN PRINCIPLES FOR IN-DEPTH QUESTIONS AND DETAILS

Post-PIM Publication

1) ENCAPSULATION HANDBOOK

Program Divisions

• MATERIALS, PROCESSES, AND MODULE DESIGNS
 MATERIAL IDENTIFICATION AND DEVELOPMENT, MODULE FABRICATION PROCESSES, MODULE DESIGNS, ENGINEERING SPECIFICATIONS FOR MATERIALS AND MODULES

• MODULE LIFE AND RELIABILITY
 ACCELERATED, ABBREVIATED, AND OUTDOOR TESTING; CHEMICAL AND DESIGN REQUIREMENTS FOR MATERIALS AND MODULES TO ASSURE LONG-TERM SERVICE LIFE, PERFORMANCE, DURABILITY, AND RELIABILITY
Encapsulation Materials

Module Construction Elements

<table>
<thead>
<tr>
<th>Module Sunside</th>
<th>Layer Designation</th>
<th>Function</th>
</tr>
</thead>
</table>
| | SURFACE | • Low soiling
| | 1) MATERIAL | • Easy cleanability
| | 2) MODIFICATION | • Abrasion resistant
| | FRONT COVER | • Anti-reflective
| | POTTANT | • UV screening
| | POUROUS SPACER | • Structural superstrate
| | DIELECTRIC | • Solar cell encapsulation
| | SUBSTRATE | • Air release
| | BACK COVER | • Mechanical separation
| | | • Electrical isolation
| | | • Structural support
| | | • Mechanical protection
| | | • Weathering barrier
| | | • Infra-red emitter

Plus necessary primers/adhesives
PLENARY SESSION: ENCAPSULATION TASK

Cost Distribution*

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost - $/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (Low Iron)</td>
<td>$95.50 - 8.90</td>
</tr>
<tr>
<td>Spacer</td>
<td>0.10 - 0.10</td>
</tr>
<tr>
<td>Pottant</td>
<td>0.70 - 1.00</td>
</tr>
<tr>
<td>Silicon Cells</td>
<td>- -</td>
</tr>
<tr>
<td>Spacer</td>
<td>0.10 - 0.10</td>
</tr>
<tr>
<td>Pottant</td>
<td>0.70 - 1.00</td>
</tr>
<tr>
<td>Spacer</td>
<td>0.10 - 0.10</td>
</tr>
<tr>
<td>Back Cover</td>
<td>1.00 - 2.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$8.20 - 12.00</td>
</tr>
<tr>
<td>Edge Seal & Gasket</td>
<td>1.10 - 2.00</td>
</tr>
<tr>
<td>Module Total</td>
<td>$9.30 - 15.40/m²</td>
</tr>
</tbody>
</table>

*In 1980 dollars for large volume purchases

Lamination Pottants

<table>
<thead>
<tr>
<th>Material</th>
<th>Projected Cost</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Ethylene Vinyl Acetate</td>
<td>≈ $0.95/pound</td>
<td>Available (Springborn)</td>
</tr>
<tr>
<td>2) Ethylene Methyl Acrylate</td>
<td>≈ $0.95/pound</td>
<td>Being Developed (Springborn)</td>
</tr>
<tr>
<td>3) Acrylic Elastomer</td>
<td>≈ $1.50/pound</td>
<td>Imminent Availability (3M)</td>
</tr>
<tr>
<td>4) Poly Vinyl Butyral</td>
<td>≈ $3.00/pound</td>
<td>Commercial</td>
</tr>
</tbody>
</table>
PLENARY SESSION: ENCAPSULATION TASK

Formulation of Industrial-Ready EVA

<table>
<thead>
<tr>
<th>INGREDIENT</th>
<th>FUNCTION</th>
<th>SPRINGBORN FORMULATION IDENTIFICATION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A-9918 CLEAR (phr)*</td>
</tr>
<tr>
<td>ELVAX 150</td>
<td>BASE EVA</td>
<td>100</td>
</tr>
<tr>
<td>LUPERSOL 101</td>
<td>CURING AGENT</td>
<td>1.5</td>
</tr>
<tr>
<td>NAUGARD-P</td>
<td>ANTIOXIDANT</td>
<td>0.2</td>
</tr>
<tr>
<td>TINUVIN 770</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>CYASORB UV-931</td>
<td>UV STABILIZERS</td>
<td>0.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>ZnO₂</td>
<td>WHITE PIGMENTS</td>
<td>-</td>
</tr>
<tr>
<td>FERRO AM-105</td>
<td>UV STABILIZER</td>
<td>-</td>
</tr>
</tbody>
</table>

*COMPOSITION - PARTS PER HUNDRED OF RUBBER

Castable Pottants

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROJECTED COST</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLY-n-BUTYL ACRYLATE</td>
<td>$0.85/POUND</td>
<td>BEING DEVELOPED (JPL/SPRINGBORN)</td>
</tr>
<tr>
<td>ACRYLIC LIQUID</td>
<td>?</td>
<td>DEVELOPMENT BEING CONSIDERED (RICHARDSON)</td>
</tr>
<tr>
<td>ALIPHATIC POLYETHER URETHANE</td>
<td>$1.30/POUND</td>
<td>BEING DEVELOPED (SPRINGBORN)</td>
</tr>
<tr>
<td>SILICONES</td>
<td>$10.00/POUND</td>
<td>COMMERCIAL</td>
</tr>
<tr>
<td>G E SILICONES</td>
<td>$3.00/POUND</td>
<td>EXPERIMENTAL</td>
</tr>
</tbody>
</table>
PLENARY SESSION: ENCAPSULATION TASK

Pottants: Evolving Specifications and Requirements

- Glass transition temperature < \(-40^\circ C\)
- Mechanical creep resistance at 90°C
- Tensile modulus < 2000 psi at 25°C
- Optical transmission (0.4 to 1.1 \(\mu\)m), > 90%
- Hydrolysis resistance (to be defined)
- Ultraviolet reaction sensitivity (wavelength cut-off)
- Thermal oxidation resistance at 60°C
- Peak service temperature call-out
- Chemical inertness (copper, nickel, solder, etc)
- Others

Front Covers for Substrate Designs
UV-Screening Plastic Films

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>COMMERCIAL COST</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRYLIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) X - 22416, 2 MILS</td>
<td>(\approx 4.8$/\text{FT}^2)</td>
<td>AVAILABLE, 3M</td>
</tr>
<tr>
<td>b) X - 22417, 3 MILS</td>
<td>(\approx 6.7$/\text{FT}^2)</td>
<td></td>
</tr>
<tr>
<td>FLUOROCARBON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) TEDLAR 100 BG 30 UT, 1 MIL</td>
<td>(\approx 6$/\text{FT}^2)</td>
<td>AVAILABLE, DUPONT</td>
</tr>
<tr>
<td>b) TEDLAR 200 XRB 160 SE, 2 MIL</td>
<td>(\approx 12$/\text{FT}^2)</td>
<td>BEING DEVELOPED, DUPONT</td>
</tr>
<tr>
<td>ACRYLIC/FLUOROCARBON ALLOYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLENDS OF POLY VINYLIDENE FLUORIDE AND POLY METHYL METHACRYLATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) FLUOREX-A, 1.8 MILS</td>
<td>?</td>
<td>BEING DEVELOPED, REXHAM</td>
</tr>
</tbody>
</table>
PLENARY SESSION: ENCAPSULATION TASK

Edge Gasket Materials Survey
(Elastomeric Molding)

CANDIDATES
- ETHYLENE/PROPYLENE (EPDM)
- ETHYLENE VINYL ACETATE (EVA)
- NEOPRENE
- SILICONE

NOT CANDIDATES
- NATURAL RUBBER
- STYRENE/BUTADIENE
- BUTYL/HALOGENATED BUTYL RUBBERS
- NITRILE/BUTADIENE
- POLYSULFIDE
- HYPALON
- FLUOROElastomers

Edge-Seal Materials Survey
(Tacky Filler)

- BUTYLS
- POLYSULFIDES
- POLYURETHANES
- SILICONE
- HYPALONS
- NEOPRENES
- POLYAMIDES
- ACRYLICS

Edge Gaskets
Evolving Specifications and Requirements

- GLASS TRANSITION TEMPERATURE, < -40°C
- WEATHER STABLE
- NON-STAINING
- UNPLASTICIZED
- LOW COMPRESSION SET AT 60°C
- CHEMICAL INERTNESS
- ACCOMMODATE MODULE EXPANSION/CONTRACTION
- FABRICABLE AS SEAMLESS, ONE-PIECE UNIT

64
Dimensional Change of Masonite Under Vacuum-Bag Lamination Processing Condition

- Heating under vacuum for 20 min.
- Equilibration to atmosphere pressure
- Cool down at 1 atm N₂
PLenary session: encapsulation task

Commercial Corrosion-Prevention Coatings for Mild Steel

<table>
<thead>
<tr>
<th>Coatings</th>
<th>Cost, both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>• POLYVINYLIDENE FLUORIDE (PRIMER + ENAMEL)</td>
<td>11.2</td>
</tr>
<tr>
<td>PPG Industries, 10 years outdoor to date</td>
<td></td>
</tr>
<tr>
<td>• SILICONE/POLYESTER</td>
<td>5.4</td>
</tr>
<tr>
<td>DEXTER - MIDLAND, prototypes to 20 years</td>
<td></td>
</tr>
<tr>
<td>• POLYESTER</td>
<td>4.0</td>
</tr>
<tr>
<td>DEXTER - MIDLAND, 5-10 years outdoors</td>
<td></td>
</tr>
<tr>
<td>• ACRYLIC COATING</td>
<td>4.0</td>
</tr>
<tr>
<td>PPG Industries, 5 years outdoors</td>
<td></td>
</tr>
<tr>
<td>• POLYESTER (COMPLIANCE COAT)</td>
<td>4.0</td>
</tr>
<tr>
<td>DEXTER - MIDLAND, 5 years outdoors</td>
<td></td>
</tr>
<tr>
<td>• ACRYLIC EMULSION COATING</td>
<td>5.2</td>
</tr>
<tr>
<td>DEXTER - MIDLAND, 5 years (extrapolated)</td>
<td></td>
</tr>
<tr>
<td>• POLYESTER POWDER COATING</td>
<td>5.6</td>
</tr>
<tr>
<td>DEXTER - MIDLAND</td>
<td></td>
</tr>
<tr>
<td>• "BONDERITE" PRIMER TREATED CONVERSION; TO BE APPLIED PRIOR TO COATING</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Back Covers for Glass Superstrate Designs

• WHITE PIGMENTED POTTANTS (SPRINGBORN)

• SCOTCHPAR 10-CP-WHITE POLYESTER FILM (3M)
 a) 1 MIL STANDARD $\approx 2\\text{\$/FT}^2$
 b) 2 MIL STANDARD $\approx 4\\text{\$/FT}^2$
 c) 2 MIL HI-FILLED $\approx 5\\text{\$/FT}^2$

• WHITE PIGMENTED VERSIONS OF X-22416 AND X-22417 UV SCREENING ACRYLIC FILMS, BEING DEVELOPED BY 3M

• PLASTIC FILM/METAL FOIL LAMINATES
 • MYLAR
 • TEDLAR
PLENARY SESSION: ENCAPSULATION TASK

Candidate Anti-Soiling Coatings
Or Surface Treatments

1) FLUORINATED SILANE, L-1668 (3M)
2) FC-721 AND FC-723, FLUORINATED ACRYLIC POLYMER (3M)
3) PERFLUORODECANOIC ACID WITH CHEMICAL COUPLING PRIMER
4) GLASS RESIN 650 (OWENS-ILLINOIS)
5) WL-81 ACRYLIC (ROHM AND HAAS)
6) SANTICIZER 141 SURFACTANT (MONSANTO) WITH CHEMICAL COUPLING PRIMER Q3-6060 (DOW CORNING)
7) SHC-1000 ANTI-ABRASION COATING (GENERAL ELECTRIC)
8) MAGNESIUM FLUORIDE ANTI-REFLECTIVE COATING (DEPOSITED ON GLASS BY ION-PLATING, ITW)

Solar Cell Temperature
Illustrative Trend as Function of Thermal Resistivities and Backside Emissivity

- $\sum (L/K) \times 10^{-3}$
- $\epsilon_B \times 0.6$

Fixed Parameters:
- $\epsilon_F = 0.9$
- $t_0 = 20^\circ C$
- $t_t = 20^\circ C$
- $t_s = -5.2^\circ C$

Wind Speed 1 m/SEC
AM 1.5 SUNLIGHT
100 MILLIWATTS/cm²
34° TILT ANGLE
PLENARY SESSION: ENCAPSULATION TASK

Deflection Analysis
(Glass Superstrate Design)

WIND LOAD ± 50 psf
0.125 in. THICK, TEMPERED GLASS

(E = POTTANT MODULUS, PSI)

Thermal Stress Analysis (ΔT = 100°C)
(Glass Superstrate Design)
PLENARY SESSION: ENCAPSULATION TASK

Engineering Design: Trends and Guidelines

1) TEMPERATURE CONTROLLED PRIMARILY BY EMISSIVITY, AIR CIRCULATION, NOT BULK THERMAL CONDUCTION
2) AR COATING ON CELL A MUST
3) RIBS ARE NECESSARY ON SUBSTRATE MODULES
4) AL SUBSTRATE NOT COST EFFECTIVE FOR LARGE CELLS
5) ENCAPSULANT SHOULD BE ELASTOMERIC
6) LOW IRON TEMPERED GLASS COST EFFECTIVE
7) CRANE GLASS MATS ABOVE CELLS OKAY
8) FRAME DESIGN: 3/8" BITE, 1/16" GASKET
9) MINIMUM POTTANT THICKNESS HAS STRUCTURAL DEPENDENCE
Outline

• CONTRACT OVERVIEW
 • OBJECTIVES
 • APPROACH
 • SCHEDULE

• MODULE CHARACTERIZATION
 • MECHANICAL
 • ELECTRICAL

• ENVIRONMENTAL TEST EXPERIENCE

• PRICE ANALYSES

• SUMMARY AND CONCLUSIONS

Contract Objectives

• STIMULATE USE OF LATEST IMPROVEMENTS IN PRODUCTION TECHNOLOGY

• PROVIDE PROVEN, STATE-OF-THE-ART RESIDENTIAL & INTERMEDIATE-LOAD MODULE DESIGNS FOR DOE PROCUREMENTS

• ASSESS PROGRESS IN MEETING INTERIM PRICE AND PERFORMANCE GOALS

• PROVIDE INDUSTRY WITH PRODUCT PERFORMANCE DATA
PLENARY SESSION: OPERATIONS AREA

Third-Generation Designs

- Improved specification of power output
- Fault tolerance for increased reliability (improved yield)
- Mechanical and electrical configurations are addressed to generally larger applications
- Improved array efficiency is encouraged
- Environmental qualification procedures and levels are consistent with and responsive to application factors
- Process-control-related QA programs are emphasized
- Innovative design approaches demonstrating technology readiness (cells, materials, processes)

Schedule

<table>
<thead>
<tr>
<th>BLOCK IV DESIGN & QUALIFICATION</th>
<th>1979</th>
<th>1980</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINAL PLAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>ASECC</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>GENERAL ELECTRIC</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>PHOTONVATT</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>SOLAR TECHNOLOGY</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
<tr>
<td>SPIRE</td>
<td>V</td>
<td>o</td>
<td>O</td>
</tr>
</tbody>
</table>

V: CONTRACT START O: FINAL DESIGN REVIEW □: PRELIM. DESIGN REVIEW △: FINAL REPORT ◀: MOD. TO JPL FOR TEST

72
Physical Features

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>SIZE</th>
<th>MASS</th>
<th>ELECTRICAL TERMINATION</th>
<th>CELL CONFIGURATION</th>
<th>CELL PACKING FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CM</td>
<td>Kg/m²</td>
<td>PER SERIES</td>
<td>SERIES PARALLEL</td>
<td></td>
</tr>
<tr>
<td>Residential Solar</td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>SERIES PER DIODE</td>
</tr>
<tr>
<td>ARCO SOLAR GE</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.79</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>Intermediate Load</td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>SERIES PER DIODE</td>
</tr>
<tr>
<td>ARCO SOLAR GE</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>ASEC</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.74</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>SPARE</td>
<td>1.20</td>
<td>0.77</td>
<td>Pigtails</td>
<td>20</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Encapsulation

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>SUPERSTRATE OR TOP COVER</th>
<th>POTTANT</th>
<th>SPACER</th>
<th>SUBSTRATE OR BACK COVER</th>
<th>FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR GE</td>
<td>TEDLAR</td>
<td>EVA</td>
<td>RTV</td>
<td>POLYETHYLENE FOAM</td>
<td>BATTEN-SEAM</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>3/16 in. GLASS</td>
<td>EVA</td>
<td>CRANEGGLASS</td>
<td>WEATHERPROOF</td>
<td>PAPER TEDLAR</td>
</tr>
<tr>
<td>INTERMEDIATE LOAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR GE</td>
<td>3/16 in. GLASS</td>
<td>PVB</td>
<td>-</td>
<td></td>
<td>ALUMINUM</td>
</tr>
<tr>
<td>ASEC</td>
<td>3/16 in. GLASS</td>
<td>PVB</td>
<td>-</td>
<td></td>
<td>ALUMINUM</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>3/16 in. GLASS</td>
<td>PVB</td>
<td>-</td>
<td></td>
<td>STAINLESS STEEL</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>3/16 in. GLASS</td>
<td>PVB</td>
<td>-</td>
<td></td>
<td>ALUMINUM</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>LUMAR</td>
<td>EVA</td>
<td>GLASSFIBER</td>
<td>ACRYLIC</td>
<td>TELAR</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>3/16 in. GLASS</td>
<td>EVA</td>
<td>CRANEGGLASS</td>
<td>PELLON</td>
<td>MYLAR-AI-COAT</td>
</tr>
<tr>
<td>SPARE</td>
<td>3/16 in. GLASS</td>
<td>EVA</td>
<td>CRANEGGLASS</td>
<td>PELLON</td>
<td>MYLAR-AI-COAT</td>
</tr>
</tbody>
</table>

73
Cell Features

<table>
<thead>
<tr>
<th></th>
<th>SIZE (cm)</th>
<th>BASE MATERIAL</th>
<th>JUNCTION</th>
<th>FRONT METALLIZATION</th>
<th>BACK METALLIZATION</th>
<th>ENCAPSULATED CELL EFF. AT SOC (%)</th>
<th>ENCAPSULATED CELL EFF. AT 28°C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENTIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>10 (Dia)</td>
<td>Cz</td>
<td>n/p</td>
<td>PRINTED-Ag</td>
<td>Ti-Pd-Ag</td>
<td>10.0</td>
<td>12.3</td>
</tr>
<tr>
<td>GE</td>
<td>10 (Dia)</td>
<td>Cz</td>
<td>n/p</td>
<td>PRINTED-Ag</td>
<td>Ti-Pd-Ag</td>
<td>10.1</td>
<td>12.5</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>9.5 x 9.5</td>
<td>SEMI-XTL</td>
<td>n/p/p+</td>
<td>PRINTED-Ag Ti-Pd-Ag</td>
<td>Ti-Pd-Ag</td>
<td>8.3</td>
<td>9.9</td>
</tr>
<tr>
<td>INTERMEDIATE LOAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>10 (Dia)</td>
<td>Cz</td>
<td>n/p</td>
<td>PRINTED-Ag</td>
<td>Ti-Pd-Ag</td>
<td>10.9</td>
<td>12.3</td>
</tr>
<tr>
<td>ASC</td>
<td>7.62 (Dia)</td>
<td>Cz</td>
<td>n/p/p+</td>
<td>Ti-Pd-Ag</td>
<td>Pd-Ni-SOLDER</td>
<td>11.5</td>
<td>13.8</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>10 x 10</td>
<td>Cz</td>
<td>n/p/p+</td>
<td>Ti-Pd-Ag</td>
<td>Ni-SOLDER</td>
<td>11.6</td>
<td>10.3</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>7.6 (Dia)</td>
<td>Cz</td>
<td>n/p/p+</td>
<td>Ni-SOLDER</td>
<td>Ni-SOLDER</td>
<td>9.2</td>
<td>13.8</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>10 (Dia)</td>
<td>Cz</td>
<td>p/n</td>
<td>Ni-SOLDER</td>
<td>Ni-SOLDER</td>
<td>10.2</td>
<td>11.2</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>9.5 x 9.5</td>
<td>SEMI-XTL</td>
<td>n/p/p+</td>
<td>Ti-Pd-Ag</td>
<td>Ti-Pd-Ag</td>
<td>8.6</td>
<td>9.8</td>
</tr>
<tr>
<td>SPIRE</td>
<td>6.4 x 6.4</td>
<td>Cz</td>
<td>n/p/p+</td>
<td>Ti-Pd-Ag</td>
<td>Ti-Pd-Ag</td>
<td>11.7</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>RATED VOLTAGE AT SOC (volts)</th>
<th>RATED POWER AT SOC (watts)</th>
<th>NOMINAL OPERATING CELL TEMPERATURE (NOCT) (°C)</th>
<th>MODULE EFF. AT SOC (%)</th>
<th>MODULE EFF. AT 28°C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENTIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>7.7</td>
<td>49</td>
<td>65</td>
<td>8.0</td>
<td>9.7</td>
</tr>
<tr>
<td>GE</td>
<td>7.0</td>
<td>15</td>
<td>68</td>
<td>7.7</td>
<td>9.4</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>4.5</td>
<td>56</td>
<td>56</td>
<td>7.4</td>
<td>8.6</td>
</tr>
<tr>
<td>INTERMEDIATE LOAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>15</td>
<td>32</td>
<td>47</td>
<td>8.7</td>
<td>9.8</td>
</tr>
<tr>
<td>ASE</td>
<td>14</td>
<td>71</td>
<td>55</td>
<td>8.5</td>
<td>10.2</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>15</td>
<td>33</td>
<td>56</td>
<td>7.7</td>
<td>8.8</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>5</td>
<td>26</td>
<td>56</td>
<td>4.9</td>
<td>6.1</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>5</td>
<td>56</td>
<td>46</td>
<td>7.8</td>
<td>8.6</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>14</td>
<td>56</td>
<td>56</td>
<td>7.3</td>
<td>8.3</td>
</tr>
<tr>
<td>SPIRE</td>
<td>15</td>
<td>50</td>
<td>56</td>
<td>0.8</td>
<td>11.5</td>
</tr>
</tbody>
</table>

74
Qualification Tests for Flat-Plate Modules

<table>
<thead>
<tr>
<th>TESTS</th>
<th>MODULES</th>
<th>TEST LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHANICAL LOADING</td>
<td>BLK I: X (100), BLK II: X (100), BLK III: X (100), PRDA-38: X, BLK IV: X, ILC/RES: X</td>
<td>2.4 kPa, 10,000 CYCLES</td>
</tr>
</tbody>
</table>
PLENARY SESSION: OPERATIONS AREA

Qualification Test Sequence

ENVIRONMENTAL TESTS

<table>
<thead>
<tr>
<th>PASS-FAIL CRITERIA</th>
<th>THERMAL CYCLING</th>
<th>HUMIDITY CYCLING</th>
<th>MECHANICAL LOAD OR WIND RESISTANCE</th>
<th>TWIST</th>
<th>HAIL IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND CONTINUITY (R < 50 mΩ)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ELECTRICAL ISOLATION (I < 50 µA)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>POWER DEGRADATION (∆P < 5%)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PHYSICAL DEGRADATION (PER ISP)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Summary of Qualification Test Results

<table>
<thead>
<tr>
<th>TEST</th>
<th>NUMBER OF PASS-FAIL CHECKS</th>
<th>NUMBER OF PROBLEMS</th>
<th>% PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CYCLING</td>
<td>160</td>
<td>37</td>
<td>2.1</td>
</tr>
<tr>
<td>HUMIDITY CYCLING</td>
<td>78</td>
<td>12</td>
<td>15.4</td>
</tr>
<tr>
<td>MECHANICAL LOAD OR WIND RESISTANCE</td>
<td>132</td>
<td>9</td>
<td>6.8</td>
</tr>
<tr>
<td>TWIST</td>
<td>128</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>HAIL IMPACT</td>
<td>90</td>
<td>6</td>
<td>6.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>588</td>
<td>68</td>
<td>11.6</td>
</tr>
</tbody>
</table>
Nature of Test Problems

<table>
<thead>
<tr>
<th>Pass-Fail Criteria</th>
<th>Number of Pass-Fail Checks</th>
<th>Number of Problems</th>
<th>% Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Isolation (I ≤ 50 µA)</td>
<td>135</td>
<td>3</td>
<td>2.2</td>
</tr>
<tr>
<td>Power Degradation (ΔP ≤ 5%)</td>
<td>279</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>Physical Degradation (PER ISP)</td>
<td>174</td>
<td>58</td>
<td>33.3</td>
</tr>
<tr>
<td>Total</td>
<td>588</td>
<td>68</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Electrical Isolation Problems

- 1 of 6 manufacturers
 3 of 40 modules

- Capacitive coupling of cell string to floating back foil; breakdown between foil and frame

- Corrected by improving isolation between foil and frame
PLENARY SESSION: OPERATIONS AREA

Power Degradation

- 3 OF 6 MANUFACTURERS
 4 OF 40 MODULES
- CRACKED CELLS (2 MODULES)
- UNDETERMINED (2 MODULES)
- LAMINATION PROBLEMS LIKELY CONTRIBUTOR IN ALL CASES
 - CRACKED CELLS
 - UNCURED EVA

Physical Degradation

6 OF 6 MANUFACTURERS
37 OF 40 MODULES

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>#MFRS</th>
<th>#MODULES</th>
<th>PROBABLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCAPSULANT DELAMINATION</td>
<td>6</td>
<td>21</td>
<td>PROCESS SEQUENCE; WORKMANSHIP</td>
</tr>
<tr>
<td>CRACKED CELLS</td>
<td>5</td>
<td>14</td>
<td>LAMINATION DAMAGE; ENVIRONMENTAL STRESS</td>
</tr>
<tr>
<td>METALLIZATION DISCOLORATION</td>
<td>2</td>
<td>3</td>
<td>FLUX RESIDUE</td>
</tr>
<tr>
<td>J-BOX THREADS STRIPPED</td>
<td>1</td>
<td>3</td>
<td>DESIGN/WORKMANSHIP</td>
</tr>
<tr>
<td>SEALANT EXTRUDED</td>
<td>1</td>
<td>6</td>
<td>MATERIAL SELECTION</td>
</tr>
<tr>
<td>BROKEN FRAME CORNER</td>
<td>2</td>
<td>1</td>
<td>DESIGN/WORKMANSHIP</td>
</tr>
</tbody>
</table>
PLENARY SESSION: OPERATIONS AREA

SAMIS/SAMICS Results for 1 MW/yr (1980 $)

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODULE ($/WATT)</th>
<th>CELL ($/WATT)</th>
<th>NON-CELL ($/WATT)</th>
<th>CELL MODULE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEC</td>
<td>9.55</td>
<td>8.79</td>
<td>0.76</td>
<td>92</td>
</tr>
<tr>
<td>GE</td>
<td>15.38</td>
<td>12.35</td>
<td>3.03</td>
<td>80</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>6.93</td>
<td>5.23</td>
<td>1.70</td>
<td>75</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>10.65</td>
<td>8.59</td>
<td>2.06</td>
<td>81</td>
</tr>
<tr>
<td>SOLAREX RES.</td>
<td>9.55</td>
<td>7.59</td>
<td>1.96</td>
<td>79</td>
</tr>
<tr>
<td>SOLAREX IL</td>
<td>10.35</td>
<td>7.59</td>
<td>2.76</td>
<td>73</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>8.79</td>
<td>7.48</td>
<td>1.31</td>
<td>85</td>
</tr>
<tr>
<td>SPIRE</td>
<td>20.20</td>
<td>14.49</td>
<td>5.71</td>
<td>72</td>
</tr>
</tbody>
</table>

Module Efficiency, Block Procurements

\[
\eta_M = \frac{\text{MODULE POWER}}{\text{GROSS AREA OF MODULE} \times \text{SOLAR INSOLATION}}
\]

\(\text{28°C} \)

\(\text{100 mW/cm}^2 \)

Year

1

11

111

IV

79
Module Price History

DOLLARS PER WATT FOR BLOCK PROCUREMENTS

1980 DOLLARS
28°C
100 mW/cm²

Quality Assurance Recommendations

• IMPLEMENT INSPECTION SYSTEM PLANS AS WRITTEN
• PROVIDE FOR TRAINING OF INSPECTORS AND PRODUCTION PERSONNEL
• FOCUS ON PROCESS CONTROL AT PIECE PART AND ASSEMBLY LEVELS
• PROVIDE FOR RAPID FEEDBACK OF INSPECTION DATA FOR CORRECTIVE ACTION IMPLEMENTATION
• GIVE MANAGEMENT ATTENTION TO THE APPLICATION AND EFFECTIVENESS OF QUALITY ASSURANCE ACTIVITIES
PLENARY SESSION: OPERATIONS AREA

Observations and Conclusions

- New designs and technologies were assimilated with some difficulty
 - Schedule slips
 - Test problems
 - Retreats to conventional approaches

- Large-scale producibility untested

- Price and performance progress continues
 - Prices are down
 - Efficiencies are up
 - Reliability and durability better
 - Hail protection
 - Moisture protection
 - Fault tolerance

- Most designs will be offered commercially
The Module Experimental Production System Development Unit (MEPSDU) presentations for the Production Process and Equipment Development Area were intended to acquaint the industry with the purpose and extent of these new contracts. After the two companies made their presentations a panel of industry representatives discussed concerns that they had identified from their experiences. Comments were also taken from the audience. Several concerns were identified by PP&E to be discussed at the contractor preliminary design reviews.

PREVIEW OF SOLAREX'S MEPSDU PROGRAM

SOLAREX CORP.

John Wohlgemuth

Design Philosophy

- Use processes that have already been verified, in most cases by more than one contractor.
- Use commercially available equipment or modifications of such equipment.
- Use production equipment, not laboratory-scale equipment.
- No manual handling of cells.
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

General Process Description

1. **Incoming Material**
 - Semicrystalline
 - 10 cm x 10 cm Wafer

2. **Surface Preparation**
 - NaOH Etch

3. **Front Junction Formation**
 - Spray-on Dopant
 - Belt Diffusion

4. **Back Junction Formation**
 - Al Paste
 - Belt Fire

5. **AR Coating**
 - Spray-on

6. **Metallization**
 - Negative Screen Print
 - Electroless Ni Plate
 - Solder Dip

7. **Edging**
 - Laser Scribe

8. **Cell Test**

9. **Tab and String**
 - Solder Contacts

10. **Encapsulate Module**
 - Laminated EVA
 - On Glass

11. **Module Test**

12. **Ship**
Module Design

72 10 cm x 10 cm Semicrystalline cells

2 Parallel - 36 Series

Approximate Envelope Dimensions

66 cm x 125 cm
26" x 49.3"

Design Voltage - 14.5 V

Glass Superstrate

Ethylene Vinyl Acetate Encapsulant

Polyethylene Vapor Barrier

Gasket for Mounting (No frame)

AMP Output Connectors

Internal Diode Protection - 3 Diodes per module

Module Cross Section

85
Incoming Material

SEMICYSTALLINE 10 cm x 10 cm wafers

Chosen because:
- Available for use now.
- Closely related to other advanced sheet materials.
- Consistent with 70$/watt cost goal.
- Solarex has sufficient experience with its processing to understand its behavior through the proposed process steps.

Quality Assurance:

Measure lifetime and bulk resistivity using microwave technique.

Good correlation between the measurement and subsequent cell performance.
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Back Surface Formation

- Screen print al paste
- Dry paste 150 to 250°F (belt)
- Fire paste 980°C (less than 1 min.)
- Remove residues (either HCl or abrasion)
- Oxide removal
- Water rinse
- Dry

Back Junction Formation

- Screen print al paste
- Dry paste 150 to 250°F (belt)
- Fire paste 980°C (less than 1 min.)
- Remove residues (either HCl or abrasion)
- Oxide removal
- HCl etch
- Water rinse
- Dry

Front Junction Formation

- Spray or deposit (water base)
- Dry spray 100-150°C
- Diffuse 50°C Air
- Spot check
- Sheet resistance
- All on belts

Surface Preparation

- Etch 37–44% HNO3
- Water rinse
- Neutralize 5% HCl
- Water rinse
- Dry
- Spot check
Tabbing and Stringing

Use K&S machine
Pulsed heat solder bonds
One piece stamped copper interconnect with solder plate for wraparound and series connection to next cell.
Two interconnects per cell with 4 bonds top and bottom.
Machine makes series strings of 12 cells.
Then places string in position and makes required parallel connections.
Produces layout of module ready for encapsulation

Encapsulate Module

- Rinse cell string
- Prime glass
- Lay-up module
- Laminate @ 100°C-1/2 hr.
- Install connector & gasket
- Test module
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Cost Analysis

Assumptions

50 MW per year production rate.
15% efficient encapsulated cells
AMI - 100 W/cm² - 25° C
93% yield from wafer to module
$0.306 per watt wafer cost

Results

IPEG - $0.691 per watt
Literature - $0.661 per watt
(Compilation of other's cost analysis for same process steps)

(All in 1980 dollars)

Efficiency of Semicrystalline Material

Small Area Samples (2 cm x 2 cm)
best - 17%
best lot average - 16.5%

Large Area Samples (9.5 cm x 9.5 cm)
best - 13.5%
best lot average - 12%

Typical Production
10 - 11% lot average

All efficiencies measured at 100 W/cm² - AMI - 25° C.
MEPSDU: APPROACH TO DEMONSTRATION OF TECHNICAL READINESS
WESTINGHOUSE ADVANCED ENERGY SYSTEMS DIVISION
C.M. Rose

Westinghouse MEPSDU Baseline Process Sequence

- Pre Diffusion Clean
- Back Junction Formation
- Front Junction Formation
- AR/PR Deposition/Bake
- Front Grid Delineation
- Metallize - Front & Back
- Rejection Cu Plating
- Cell Separation and Test
- Cell Interconnect
- Module Lamination
- Module Test
- Crate
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Pre-Diffusion Cleaning

PURPOSE: PREPARE WEB FOR DIFFUSION BY REMOVAL OF SURFACE CONTAMINANTS

PROCESS: { HF/DI H₂O/DRY
 PLASMA CLEAN

INPUT: 17" LENGTHS OF AS-GROWN WEB

OUTPUT: 17" LENGTHS OF CLEANED WEB

VALUE ADDED: $0.041/PEAK WATT; 25 MW/YR PRODUCTION

ALTERNATE: EXTENSIVE AND LESS AUTOMATABLE CHEMICAL CLEANING PROCESSES

Back Junction Formation

PURPOSE: FORMATION OF P+ BACK JUNCTION INTO P-BASE WEB

PROCESS: { COAT FRONT SURFACE OF WEB WITH SiO₂;
 BBr₃ DIFFUSION IN STANDARD DIFFUSION FURNACE;
 ETCH WEB TO REMOVE OXIDE

 1200 ± 200 Å THICK COATING OF SiO₂
 6 ± 1 CC/MIN Ar THROUGH BBr₃
 90 ±9 CC/MIN O₂

CONTROLS: 2400 ± 240 CC/MIN Ar CARRIER GAS
 TEMPERATURE = 960 ±5/-10°C
 TIME = 20 ±4 MIN
 COOLING RATE = 5 ± 1°C/MIN FROM T = 960°C TO T ≤ 700°C

OUTPUT: BACK SURFACE DIFFUSED WEB WITH 80 ±5/-20 Ω/□ SHEET RESISTIVITY

VALUE ADDED: $0.023/PEAK WATT (1980 $, 25 MW/YEAR PRODUCTION)

ALTERNATIVES: 1. ALUMINUM BACK SURFACE FIELD
 2. ION IMPLANTATION
Front Junction Formation

PURPOSE:
FORMATION OF N+ FRONT JUNCTION INTO P-BASE WEB

COAT BACK SURFACE OF WEB WITH SiO₂;

PROCESS:
POCl₃ DIFFUSION IN STANDARD DIFFUSION FURNACE;
ETCH WEB TO REMOVE OXIDE

INPUT:
17" LENGTHS OF WEB WITH FORMED BACK JUNCTIONS
1200 ± 200 Å THICK COATING OF SiO₂
200 ± 20 CC/MIN N₂ THROUGH POCl₃
1550 ± 150 CC/MIN N₂ CARRIER GAS

CONTROLS:
62.5 ± 6.0 CC/MIN O₂ CARRIER GAS
TEMPERATURE = 850 ± 5/-10°C
TIME = 35 ± 10 MIN
COOLING RATE = 5 ± 1°C/MIN FROM T = 850°C TO T < 700°C

OUTPUT:
N+ PP+ FORMED WEB WITH 50 ± 5 Ω/□ SHEET RESISTANCE

VALUE ADDED: $0.023/PEAK WATT (1980 $, 25 MW/YEAR PRODUCTION)

ALTERNATIVE: ION IMPLANTATION
Antireflective Coating Application

PURPOSE: APPLY AR COATING AND PLATING MASK TO SURFACE OF WEB

PROCESS:
- DIP AND WITHDRAW WEB FROM TiO\textsubscript{2}/SiO\textsubscript{2} METAL/ORGANIC SOLUTION
- AIR BAKE TO FORM GLASS AR COATING

INPUT: 17” LENGTHS OF WEB WITH N + PP + STRUCTURE

CONTROLS:
- 3.5 ± 0.5% OXIDE MIXTURE IN ALCOHOL
- OXIDE MIXTURE – 88 ± 2% TiO\textsubscript{2}/12 ± 2% SiO\textsubscript{2}
- WITHDRAWAL RATE = 30 ± 3 CM/MIN
- HEAT IN AIR FOR 15 ± 1 MIN AT 400 ± 10°C

OUTPUT: WEB WITH 750 ± 30 Å AR COATED SURFACES

VALUE ADDED: $0.005/PEAK WATT, 25 MW/YR PRODUCTION

ALTERNATIVE: NONE AS COST EFFECTIVE

Photoresist Coating Application

PURPOSE: APPLY PR LAYER TO SURFACE OF WEB FOR GRID DELINEATION

PROCESS:
- DIP AND WITHDRAW WEB FROM POSITIVE PR SOLUTION
- AIR BAKE TO CURE PR

INPUT: 17” LENGTHS OF AR COATED WEB

CONTROLS:
- 50 ± 5% SOLUTION OF PR AND PR THINNER
- WITHDRAWAL RATE = 25 ± 5 CM/MIN
- HEAT IN AIR 90 ± 3°C FOR 25 ± 3 MIN

OUTPUT: WEB COATED WITH 1.0 ± 0.2 μM OF CURED POSITIVE PR

VALUE ADDED: $0.011/PEAK WATT, 25 MW/YR PRODUCTION

ALTERNATIVE: NONE IDENTIFIED COMPATIBLE WITH BASELINE SEQUENCE
Grid Delineation

PURPOSE: DEFINE GRID PATTERN ON FRONT SURFACE OF CELLS

PROCESS: EXPOSE PR; DEVELOP PR; ETCH EXPOSED AR

NEGATIVE MASK LOCATED BETWEEN DENDRITES, SUN SIDE

EXPOSE PHOTORESIST AT 55 ± 10 MJ/CM² (BOTH SIDES)

DEVELOP EXPOSED PR; 60 ± 5 SEC AT 20 ± 5°C

CONTROLS:

- RINSE IN DI H₂O
- AR ETCH: 3:1/H₂O:HF FOR 5 ± 1 SEC
- RINSE IN DI H₂O AND DRY

OUTPUT: 17" LENGTHS OF WEB WITH SI EXPOSED GRID PATTERN HAVING LESS THAN 5% CELL AREA COVERAGE

VALUE ADDED: $0.020/PEAK WATT, 25 MW/YR PRODUCTION

Metallization

PURPOSE: APPLICATION OF BASE METAL SUB-STRATE CONTACTS

PROCESS: EVAPORATE Ti/Pd/Cu METALS ON FRONT AND REAR WEB SURFACES

INPUT: WEB WITH DELINEATED GRID (FRONT) AND EXPOSED SI BACK SURFACE

PRESSURE ≈ 10⁻⁶ TORR

E-BEAM METAL EVAPORATION

CONTROLS:

- COMPUTER POWER CONTROL/CRYSTAL DEPOSITION RATE SENSOR
- DEPOSITION RATES = 2-5 Å/SEC

OUTPUT: WEB WITH 300 ± 50 Å Ti/Pd/Cu FILMS ON FRONT AND BACK

VALUE ADDED: $0.032/PEAK WATT, 25 MW/YR PRODUCTION

ALTERNATIVE: OTHER METALLIZATION CONFIGURATIONS
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Rejection of Excess Metal

PURPOSE: REMOVE EXCESS METALS FROM CELL FRONT SURFACES

PROCESS:

- DISSOLVE UNEXPOSED PR
- REMOVE METAL COATED ON PR

INPUT: 17” LENGTHS OF WEB WITH Ti/Pd FILMS DEPOSITED ON ENTIRE SURFACE

ACETONE IMMERSION OF WEB

CONTROLS:

- ULTRASONIC AGITATION
- MEOH/H₂O RINSE; DRY

OUTPUT: 17” LENGTHS OF WEB WITH Ti/Pd FILMS DEPOSITED ONLY ON SILICON

VALUE ADDED: $0.010/PEAK WATT, 25 MW/YR PRODUCTION

Copper Electroplating

PURPOSE: DEPOSIT CURRENT CARRYING CONTACTS ON CELLS

PROCESS: ELECTROPLATE COPPER OVER EXPOSED Cu SURFACES

INPUT: 17” LENGTHS OF WEB WITH DEPOSITED Ti/Pd/Cu SUB-STRATE

ACIDIC COPPER PLATING SOLUTION

CONTROLS:

- CURRENT DENSITY = 15 ± 5 MA/CM² FOR 10 ± 1 MIN
- RINSE IN DI H₂O/DRY

OUTPUT: 17” LENGTHS OF WEB WITH 6-8 µM THICK COPPER PLATING

VALUE ADDED: $0.031/PEAK WATT, 25 MW/YR PRODUCTION

ALTERNATIVE: SILVER ELECTROPLATING
Cell Separation

PURPOSE: SEPARATE CELLS FROM DENDRITE/WEB MATRIX
OPTICALLY ALIGN WEB IN LASER Scribe

PROCESS:
- LASER Scribe CELL PATTERN ON Scribe
- MECHANICALLY FRACTURE/SEPARATE CELLS FROM MATRIX

INPUT: 17" LENGTH OF COPPER PLATED WEB

CONTROLS:
- Scribe DEPTH = 50 ± 5 µM (REAR Scribe)
- Mechanical Fracture/Separation

OUTPUT: FOUR 2.5 x 10 CM FINISHED CELLS

VALUE ADDED: $0.015/PEAK WATT (INCLUDING CELL TEST); 25 MW/YR PRODUCTION

Interconnect

PURPOSE: INTERCONNECT INDIVIDUAL CELLS IN SERIES/PARALLEL MODULE MATRIX

PROCESS:
- ULTRASONICALLY BOND ELECTRICAL INTERCONNECT TABS TO ADJACENT CELLS
- POSITION INDIVIDUAL CELLS IN REQUIRED MODULE MATRIX

INPUT: 180 PROCESSED CELLS LOADED INTO CASSETTES
- .0015" ALUMINUM INTERCONNECT TABS

CONTROLS:
- MICROPROCESSOR CONTROLLED ULTRASONIC BONDING PARAMETERS (POWER, FORCE, AND SPEED) AND CELL HANDLING STATION

OUTPUT: FOUR SERIES CONNECTED STRINGS OF 45 CELLS POSITIONED FOR LAMINATION

VALUE ADDED: $0.018/PEAK WATT, 25 MW/YR PRODUCTION

ALTERNATIVES: 1. ULTRASONIC SPOT BONDING OF INTERCONNECTS
2. SOLDER REFLOW BONDING
Module Lamination and Assembly

PURPOSE: ENCAPSULATE INTERCONNECTED CELLS INTO LAMINATED MODULE ASSEMBLY

PROCESS
- LAMINATE MODULE LAYUP
- INSTALL LAMINATED ASSEMBLY INTO FRAME
- TEMPERED FLOAT GLASS, INTERCONNECTED CELL ASSEMBLY,

INPUT:
- EVA, CRANE GLASS, KORAD, RUBBER GASKETS, AND FRAME COMPONENTS

CONTROLS:
- LAMINATION TEMPERATURE = 200 ± 4°C
- LAMINATE VACUUM = (1 ± 0.5) x 10⁻² TORR

OUTPUT:
- 16" x 48" SOLAR MODULE MEETING JPL 5101-138 ENVIRONMENTAL SPECIFICATION

VALUE ADDED: $0.205/PEAK WATT (INCLUDING TEST AND CRATING), 25 MW/YR PRODUCTION

Process Sequence Status

- BASELINE MEPSDU PROCESS SEQUENCE SELECTED
- ALL BASELINE PROCESS SEQUENCE STEPS SUCCESSFULLY DEMONSTRATED
- COMPATIBILITY OF STEPS WITHIN SEQUENCE DEMONSTRATED
- ALTERNATE STEPS UNDER INVESTIGATION
SAMICS Analysis: Conceptual Factory

- 25 MW/YR PRODUCTION, BALANCED LINE
- ALL AUTOMATED PROCESSES
- CELLS: 2.5 CM X 40 CM (NOM)
- MODULES: 40 CM X 120 CM
- 12% MODULE EFFICIENCY AT 28°C
- 345 DAYS/YR OPERATION (3 SHIFT)
- DENDRITIC WEB SHEET MATERIAL COST $.24/WATT (1980 $)
- 86% OVERALL YIELD

MEPSDU Module Mechanical Design

- OVERALL SIZE OF 40 cm X 120 cm (OPEN APERTURE 38 cm X 118 cm)
- LAMINATED TEMPERED FLOAT GLASS SUPERSTRATE
- LAMINATION LAYUP: EVA, CRANE GLASS, MOISTURE BARRIER
- COR-TEN STEEL USED FOR FRAME AND MOUNTING
- DESIGNED TO PASS JPL 5101-138

MEPSDU Module Electrical Design

- 180 CELLS/MODULE; 2.5 cm X 10.0 cm CELLS
- 4 PARALLELED STRINGS OF 4.5 SERIES CONNECTED CELLS
- ALL CONNECTIONS INSIDE MODULE TO BE ULTRASONICALLY WELDED
- INTERCELL SPACING: 0.03 cm
- PACKING FACTOR: 92%
- TEN ELECTRICAL INTERCONNECTS/CELL
- CELL ASPECT RATIO IMPROVES RELIABILITY
MEPSDU Module Operation

- THERMAL ANALYSIS UNDERWAY
- ASSUMING NOCT OF 40°C MODULE OUTPUT AT 80 MW/cm²:

\[
\begin{align*}
\text{VOLTAGE} & : 19.1 \text{ V} \\
\text{CURRENT} & : 2.39 \text{ A} \\
\text{POWER} & : 45.6 \text{ WATTS} \\
\text{MODULE EFFICIENCY} & : 18.9\%
\end{align*}
\]

- ASSUMING AT 25°C AND 100 MW/cm²:

\[
\begin{align*}
\text{VOLTAGE} & : 20.4 \text{ V} \\
\text{CURRENT} & : 2.95 \text{ A} \\
\text{POWER} & : 61 \text{ WATTS} \\
\text{MODULE EFFICIENCY} & : 12.7\%
\end{align*}
\]
Measured Yield Required to Demonstrate 0.95 Confidence That Large Production Yield Will Be 86%
PLENARY SESSION: PRODUCTION PROCESS AND EQUIPMENT AREA

Data Collection During Technical Readiness Demo Runs

- OVERALL INPUT
- OVERALL OUTPUT
- OPERATIONAL COST FACTORS
 - OPERATOR TIME
 - EXPENDABLE CONSUMPTION RATES
 - ENERGY CONSUMPTION RATE

Approach to Demonstration of Technical Readiness

- DESIGN, BUILD AND OPERATE A BALANCED 1 MW/YR MEPSDU LINE
- EXPLOIT ADVANTAGES OF DENDRITIC WEB SILICON
- EMPHASIS PLACED ON MAXIMIZING EFFICIENCY
- INCORPORATE ONLY QUALIFIED PROCESS STEPS
- INCORPORATE ONLY AUTOMATABLE PROCESS STEPS
- UPDATE SAMICS CONTINUALLY TO VERIFY THAT PROCESS SEQUENCE WILL MEET COST GOALS OF $.70/WATT IN 1986 (1980 $)
- SPECIFY MEPSDU EQUIPMENT WITH DEMONSTRATED RELIABILITY RECORD
Seven contractors reported on progress in developing Si production processes and in supporting activities.

Having summarized the status of their programs at the plenary session, Union Carbide Corp. and the Massachusetts Institute of Technology reviewed progress in more detail. The free-space reactor R&D program was successfully completed by UCC. Design and procurement of the Si powder melting and consolidation equipment were completed, and installation and checkout are in progress. In MIT's study of the hydrochlorination of metallurgical-grade Si and SiCl₄ to SiHCl₃, a prolonged test (238-hour duration) was carried out to study the life of the Si bed in the fluidized-bed reactor. No significant change in the reaction rate was observed, indicating good bed life.

Hemlock Semiconductor Corp. started construction of the dichlorosilane (SiH₂Cl₂) PDU, after making changes in its design and location as a result of finding that SiH₂Cl₂ is more hazardous to handle than previously thought. The PDU will be used to study the preparation of SiH₂Cl₂, and to make feedstock for Siemens-type reactors to investigate the Si deposition process. Hemlock described the safety-related tests that were conducted on SiH₂Cl₂ and its mixtures with hydrogen and air.

Battelle Columbus Laboratories reported on efforts to operate a PDU consisting of the critical components required for their process (zinc reduction of SiCl₄). Battelle described the numerous modifications that were made to the PDU to improve operability and stated that in 10 tests made after the modifications, Si deposition was achieved in seven. Efforts to operate for eight hours failed; the longest test was 41 minutes. The experimental phase of the Battelle contract was completed at the end of January.

In the area of impurity studies, Westinghouse reported on its spectral response measurements made on polycrystalline solar cells, indicating that both impurities and grain boundaries reduce carrier lifetime, causing decreased red response and cell efficiency. Information was also presented on accelerated aging tests and other studies. Progress was reported by C. T. Sah Associates on the program to determine the maximum concentrations of certain metallic impurities that can be allowed in Si solar cells to maintain a given efficiency.

Experimental results were reported by AeroChem Research Laboratories in a study on the formation and growth of Si particles produced by the decomposition of silane at high temperatures. Representative data indicate that: (1) particles formed from silane decomposition have a narrow size distribution and are spherical in shape at a given time in the
decomposition-growth process; (2) the decomposition-growth process is dominated by heterogeneous gas-particle interactions for sizes greater than 0.05 μm radius; (3) rates of particle growth and silane decomposition are consistent with diffusion-limited kinetics in the 50 to 550 torr pressure range studies; (4) tentatively, particles larger than 0.05 μm radius do not grow by agglomeration; and (5) particles larger than 0.05 μm radius have a cellular structure.

Material presented by the contractors is summarized in the following pages.
SILICON MATERIAL TASK

SILICON PARTICLE FORMATION AND GROWTH
AEROCH EM RESEARCH LABORATORIES

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of solar grade silicon</td>
<td>February 4, 1981</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-temperature fast-flow reactor studies of kinetics of silane decomposition and silicon particle formation and growth.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AeroChem Research Laboratories, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assemble reactor and diagnostics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Si particle formation and growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor precursor species</td>
</tr>
<tr>
<td>Utilize data in silane to silicon process</td>
</tr>
</tbody>
</table>

Particle Formation and Growth Studies

- **LIGHT SCATTERING DATA**

- **SIZE CALIBRATION**

- **PARTICLE GROWTH RATES**

- **PARTICLE SEEDING**

- **PARTICLE COLLECTION**
SILICON MATERIAL TASK

Apparatus Construction

- HTFFR

- LIGHT SCATTERING DIAGNOSTICS

- LONG PATH IR CELL

- FLUIDIZED BED

![Diagram of apparatus construction]

- THERMOCOUPLE
- VACUUM LINE
- HEATER ELECTRODE CONNECTION
- WINDOW
- ALUMINA SIGHT TUBE
- ZIRCAR INSULATION
- RESISTANCE HEATING ELEMENT
- SILICON SEED INLET
- FLUIDIZED BED
- Ar INLET
- SiH$_4$ INLET
- LAMP
- PHOTODIODE
- Ar INLET
SILICON MATERIAL TASK

1 μm
(4300)

0.25 μm
(100)

0.05 μm

0.01 μm >

HETEROGENEOUS GROWTH

HOMOGENEOUS GROWTH
SILICON MATERIAL TASK

Problems and Concerns

MORE WORK NEEDED

- PARTICLE CONCENTRATION
 BY FORWARD SCATTERING
- EXPERIMENTS CLOSE TO PROCESS CONDITIONS
- ADDITIONAL COMPUTER WORK
- IMPROVE Si, SiH, SiH₂ MEASUREMENTS

SILANE-TO-SILICON PROCESS
UNION CARBIDE CORP.

CONTRACTOR: UNION CARBIDE CORPORATION
PRICE PROJECTION (1980$, 1000-MT/YR, 20% ROI)

ASSUMPTIONS:

- PLANT SIZE:
 - TOTAL PLANT COST: $9.66 M
 - START-UP COST: $1.74 M
 - WORKING CAPITAL: $0.72 M
 - ANNUAL OPERATING COST: $5.88 M
 - FEDERAL INCOME TAX: 46%

- CONSTRUCTION TIME: 2.5 - 3 YRS
- DEPRECIATION: 10 YEARS SUM OF YEARS DIGITS
- PROJECT LIFE: 15 YEARS

PROJECTION

<table>
<thead>
<tr>
<th>ROI RATE, %</th>
<th>PRODUCT PRICE, $/KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8.77</td>
</tr>
<tr>
<td>15</td>
<td>9.77</td>
</tr>
<tr>
<td>20</td>
<td>10.90</td>
</tr>
</tbody>
</table>

* INCREMENTAL PRODUCT PRICE INCREASE GOING FROM LIQUID SILICON TO POLYCRYSTALLINE SILICON SHOT HAS NOT BEEN DETERMINED. ONE TO TWO DOLLAR/KG INCREASE IS ANTICIPATED.
Problems and Concerns

EPSDU ENGINEERING & INSTALLATION

- A SAFETY REVIEW MEETING WAS HELD IN NOVEMBER 1980, AND POSSIBLE PROBLEMS WERE IDENTIFIED. DESIGN CHANGES ARE BEING MADE WHICH ADDRESS THESE POTENTIAL PROBLEMS.

- A PORTION OF THE WASTE TREATMENT SYSTEM DESIGN IS RELATIVELY NOVEL, AND SOME FIELD ADJUSTMENT MAY BE NEEDED FOR PROPER OPERATION.

SILANE PYROLYSIS R & D

- A SUCCESSFUL OPERATION OF THE SILICON POWDER MELTING/SHOTTING SYSTEM MUST BE DEMONSTRATED.

- A RELIABLE SILICON POWDER TRANSFER SYSTEM FROM THE FREE-SPACE REACTOR TO THE MELTER/SHOTTER MUST BE DESIGNED.

Engineering Summary

A. M. G. SILICON - TO - SILANE

- PROCESS DESIGN COMPLETE
- FACILITY DESIGN COMPLETE
- ALL MAJOR EQUIPMENT ORDERED
- INSTALLATION DESIGN -- COMPLETE IN APRIL
- INSTALLATION SUBCONTRACTS -- ONGOING THRU 1981
- SHAKE-DOWN/STARTUP -- EARLY 1982

B. SILANE - TO - POLYSILICON

- PROCESS DESIGN -- COMPLETE IN MAY
- INSTALLATION DESIGN -- COMPLETE IN 1981
- SHAKE-DOWN/STARTUP -- MID 1982
Free-Space Reactor Summary

- THREE 12-HR. RUNS & SEVERAL SHORT DURATION RUNS CONFIRMED REACTOR OPERATIONAL.
- POLYCRYSTALLINE BOULE PULLED FROM MELTED POWDER SHOWED RESISTIVITY OF 55 ncm, P TYPE.
- PDU OPERATION WAS SUCCESSFULLY COMPLETED AND ALL ITS OBJECTIVES WERE MET.
- EPSDU PYROLYSIS REACTOR DESIGN WAS INITIATED.

Fluid-Bed Reactor Summary

- PDU DESIGN & FABRICATION COMPLETED.
- INSTALLATION & CHECKOUT IN PROGRESS.
- OPERATING PROCEDURES PREPARED.
- STARTUP WITH HYDROGEN PLANNED FOR APRIL.
SILICON MATERIAL TASK

Quality-Control Activities Summary

- PHOSPHINE DOPANT PROFILE COMPLETED IN EPITAXY REACTOR.
 - PROVIDES CONFIRMATION OF ANALYTICAL METHOD AND
 CALIBRATION FOR RAPID GO/NO GO SPOT EVALUATION
 OF SILANE.

- POLYSILICON RODS GROWN WITH CONTROLLED DIBORANE OR
 PHOSPHINE DOPANT LEVEL IN SILANE FEED GAS.
 - PROVIDES CONFIRMATION OF ANALYTICAL METHOD AND
 CALIBRATION FOR ON-LINE SILANE QUALITY MONITORING.

- DIBORANE/SILANE VAPOR-LIQUID EQUILIBRIUM MEASURED AT
 EPSDU OPERATING CONDITIONS.
 - NEAR IDEAL BEHAVIOR CONFIRMS EPSDU DESIGN BASIS.

- EPSDU O/C LABORATORY FACILITY ORDERED.

- ON-LINE SAMPLING DEVICES DESIGNED.

Melting and Consolidation Summary

- SILICON SHOTTER DESIGN & PROCUREMENT COMPLETED.

- INSTALLATION & CHECKOUT IN PROGRESS.

- PRELIMINARY TESTS USING CHUNK SILICON TO
 START SOON.
ZINC REDUCTION OF SILICON TETRACHLORIDE

BATTEN COLUMBUS LABORATORIES

CONTRACTOR: BATTEN COLUMBUS LABORATORIES (BCB)
PRICE PROJECTION (1980$, 1000-MT/YR, 20% ROI)

ASSUMPTIONS:
- FLUIDIZED-BED REACTORS: TWO 29-INCH DIAMETER OR ONE 41-INCH DIAMETER
- ELECTROLYSIS CELLS FOR ZINC AND CHLORINE RECYCLE: ONE, TWO, SIX, OR TWELVE

<table>
<thead>
<tr>
<th>PROJECTION DOLLARS PER KILOGRAM:</th>
<th>2 REACTORS 12 CELLS</th>
<th>2 REACTORS 6 CELLS</th>
<th>1 REACTOR 2 CELLS</th>
<th>1 REACTOR 1 CELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCL</td>
<td>$18.59</td>
<td></td>
<td></td>
<td>$14.80</td>
</tr>
<tr>
<td>LAMAR U.</td>
<td>$19.75</td>
<td>$17.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progress Since 16th PIM

- PDU OPERATING EXPERIENCE REVIEWED TO DEFINE NEEDS FOR IMPROVEMENT OF DESIGN AND PROCEDURE
- MODIFICATIONS OF DESIGN AND PROCEDURE MADE, RESULTING IN IMPROVED PDU OPERATION
- OUTGASSING OF RESIDUAL ZINC FROM 400µm-DIA MINIPLANT PRODUCT GRANULES MODELLED TO PERMIT EXTRAPOLATION TO EXPECTED 800µm PRODUCT
PDU Activities Since 16th PIM: Overview

- Review of operating experience to identify needed system improvements
- Upgrading of PDU system
- Resumption of PDU operation
- Summary of experience

PDU Improvements

- Redesigned reactor inlet and outlet connections
- Corrected reactor shell warpage
- Modified quartz delivery table
- Improved ZnCl₂ recirculation in condenser
- Improved zinc feed system
- Modified reactor distributor plate

PDU Operation

- Ten runs conducted
- Silicon production achieved in seven runs

Summary of PDU Experience

- System operability improved
- Present graphite-lined stainless steel reactor requires basic redesign to be commercially practical
- Zinc reduction process still technically and economically viable with appropriate design of fluidized-bed reactor
SILICON MATERIAL TASK

Zinc Removal

OBJECTIVE
• TO STUDY THE REMOVAL OF AN EXPECTED ~100 ppmw RESIDUAL ZINC FROM THE GRANULAR PRODUCT OF THE ZINC VAPOR REDUCTION OF SiCl, IN A FLUIDIZED BED OF SEED PARTICLES.

APPROACH
1. CONSIDER OPTIONS.
2. STUDY VACUUM OUTGASSING OF MINIPLANT PRODUCTS CONTAINING ~160 ppmw AND ~2300 ppmw ZINC.
3. DEVELOP MODEL FOR EXTRAPOLATION OF MINIPLANT-PRODUCT RESULTS TO LARGER SIZE.
4. REVIEW OPTIONS AND DATA, AND RECOMMEND PROCEDURE.

OPTIONS
1. POST-PROCESS FUSION OF ZINC GRANULES (REJECTED BECAUSE OF LOSS OF CONVENIENT FREE-FLOWING PRODUCT FORM).
2. POST-PROCESS HEAT TREATMENT OF GRANULES IN VACUUM OR INERT GAS, AT E.G., 1100 C (TEMPERATURE LIMITED BY SINTERING AND LOSS OF FREE-FLOWING FORM).
3. POSTPONE ZINC REMOVAL UNTIL FUSION IN INGOT FORMATION OR SHEET FORMING PROCESS.

Conclusions From Outgassing Data

(1) MODEL A (DIFFUSION OF ZINC THROUGH SOLID SILICON SPHERE) IS INCONSISTENT WITH DATA AT DIFFERENT CONCENTRATION LEVELS.
(2) MODEL C (ZINC VAPOR PERMEATION OF MICROPORES ORIGINALLY OCCUPIED BY ZINC) RESOLVES BEHAVIOR AT DIFFERENT CONCENTRATIONS, BUT RATIO OF INITIAL TO LATER OUTGASSING RATE IS TOO LOW FOR SPHERICAL PARTICLES (ALSO TRUE FOR MODEL A).
(3) MODEL B (DIFFUSION OF ZINC THROUGH SOLID SILICON TO CONNECTED ZERO-IMPEDANCE MICROPORES) RESOLVES DATA WITH ASSUMPTION THAT PORE SIZE OR DEGREE OF POROSITY IS A FUNCTION OF ZINC CONCENTRATION. RATIO OF INITIAL TO LATER OUTGASSING RATE IS TOO HIGH FOR UNIFORM POROSITY, CAN BE RESOLVED BY ASSUMING RANGE OF PORE SIZES.
(4) NO CORRELATION IS COMPLETELY SATISFACTORY, BUT EFFORT TO RESOLVE IS NOT JUSTIFIABLE.
(5) WORST-CASE SCENARIO (MODEL C) PREDICTS HUNDREDS OF HOURS OUTGASSING TIME FOR 800-µm-DIAMETER GRANULES AT 1100 C. IF CONNECTED POROSITY IS CONFIRMED (MODEL B) ONLY TENS OF HOURS MAY BE NEEDED.
(6) AS OUTGASSING ADDS TO COST, IMPLICATIONS OF REMOVING ZINC IN INGOT- OR SHEET-GROWTH PROCESS SHOULD BE SERIOUSLY CONSIDERED.
SILICON MATERIAL TASK

Volumetric Ratio of Zn Condensate to SiO Condensate in Cz Ingot Growth

- RATE OF ATTACK OF SiO₂ BY Si(l) = 1 x 10⁻⁵ cm min⁻¹ [CHANey & VARKER, J. CRYSTAL GROWTH 33, 188 (1976)]
- Si(l) SATURATED WITH O AT 30 ppmw

\[
\frac{V_{Zn}}{V_{SiO}} = \frac{0.0074 w}{0.335 t (1/h + 4/d)^{1}}
\]

- \(V_{Zn}\) = Zn CONDENSATE VOLUME, cm³
- \(V_{SiO}\) = SiO CONDENSATE VOLUME, cm³
- \(w\) = ZINC CONCENTRATION, ppmw
- \(t\) = Si/SiO₂ EXPOSURE TIME, minutes
- \(h\) = INITIAL SILICON DEPTH, cm
- \(d\) = CRUCIBLE DIAMETER, cm

PREDICTION FOR \(d = 18\) cm, \(h = 19\) cm and \(t = 180\) min:

<table>
<thead>
<tr>
<th>(w), ppmw</th>
<th>(\frac{V_{Zn}}{V_{SiO}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.005</td>
</tr>
<tr>
<td>50</td>
<td>0.024</td>
</tr>
<tr>
<td>100</td>
<td>0.048</td>
</tr>
<tr>
<td>500</td>
<td>0.238</td>
</tr>
<tr>
<td>1000</td>
<td>0.475</td>
</tr>
</tbody>
</table>

CONCLUSION

AT ≤ 100 ppmw ZINC IN SILICON, ZINC CONDENSATE SHOULD NOT BE NOTICED IN SiO CONDENSATE.

Project Summary

- TECHNICAL AND ECONOMIC FEASIBILITY OF THE ZINC REDUCTION PROCESS REMAINS PROMISING
- 13%-EFFICIENT CELLS (WITH AR COATING) ATTEST TO UTILITY OF THE PRODUCT
- UNDERSTANDING OF PROCESS ENHANCED BY PDU OPERATION
- BASICALLY NEW FLUIDIZED-BED REACTOR DESIGN NEEDED FOR COMMERCIAL OPERATION
SILICON MATERIAL TASK

HYDROCHLORINATION PROCESS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TECHNOLOGY
POLYCRYSTALLINE SILICON

REPORT DATE
FEBRUARY 4, 1981 17th PIM

APPROACH
HYDROCHLORINATION OF METALLURGICAL GRADE SILICON TOGETHER WITH SILICON TETRACHLORIDE AND HYDROGEN TO FORM TRICHLOROSILANE FOR PRODUCING SILICON

CONTRACTOR
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

GOALS
TO SUPPORT THE UNION CARBIDE SILANE-TO-SILICON PROCESS BY CONDUCTING EXPERIMENTAL AND THEORETICAL STUDIES,
• ESTABLISH FUNDAMENTAL UNDERSTANDING OF HYDROCHLORINATION OF METALLURGICAL GRADE SILICON IN TERMS OF REACTION KINETICS AND ROLE OF CATALYST
• OPTIMIZE THE REACTION CONDITION FOR THE HYDROCHLORINATION STEP

STATUS
1 REACTION KINETICS MEASUREMENT
• TEMPERATURE
• PRESSURE
• H₂/SiCl₄ FEED RATIO
• COPPER CATALYST CONCENTRATION
• PARTICLE SIZE DISTRIBUTION
• EFFECT OF IMPURITIES IN SILICON

II MASS LIFE STUDY
• NO CHANGE IN REACTION RATE AFTER 238 HOURS - LONG MASS LIFE

III CORROSION STUDY
• NO CORROSION OF THE METAL REACTOR MADE OF INCOLOY 800
• STABLE SILICIDE PROTECTIVE FILM ON REACTOR WALL

Summary of Progress

• REACTION RATE AT 500 PSIG, 500°C REINFORCES THE UNION CARBIDE ENGINEERING DESIGN
• COPPER CATALYST INCREASES REACTION RATE BY 100%
• REACTION RATE INDEPENDENT OF Si PARTICLE SIZE
• IMPURITIES IN M.G. SILICON INCREASE REACTION RATE
• LONG MASS LIFE MEANS REACTION CAN BE RUN FOR LONG PERIODS OF TIME WITH NO INTERRUPTION
• CORROSION OF THE METAL REACTOR IS NOT A PROBLEM
• INCOLOY 800 IS A GOOD CHOICE AS THE MATERIAL OF CONSTRUCTION OF THE HYDROCHLORINATION REACTOR
SILICON MATERIAL TASK

What Has Been Done

HYDROCHLORINATION REACTOR DEVELOPMENT AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I ENGINEERING DATA
- REACTION KINETICS, YIELD, CONVERSION
- CATALYST, IMPURITIES
- SILICON PARTICLE SIZE, MASS LIFE
- CORROSION STUDY

II CONCLUSIONS
- EFFICIENT REACTION, HIGH YIELD AND CONVERSION
- COPPER CATALYST DOUBLES REACTION RATE
- LONG PERIODS OF CONTINUOUS OPERATION
- CONVENTIONAL METAL ALLOYS FOR REACTOR

III RECOMMENDATION
- MAXIMIZE REACTOR PRESSURE 500 PSIG
- ADD COPPER CATALYST TO INCREASE RATE
- INCOLOY 800 AS MATERIAL OF CONSTRUCTION FOR THE REACTOR

Potential Application to Polycrystalline Silicon Technology

I THE CURRENT SIEMENS TECHNOLOGY FOR POLY SILICON
\[\text{SiHCl}_3 + \text{H}_2 \xrightarrow{1000^\circ\text{C}} \text{Si}, \text{SiCl}_4, \text{HCl}, \text{LITES}, \text{HEAVIES} \]

II THE HYDROCHLORINATION OF SiCl\(_4\)
\[3 \text{SiCl}_4 + 2 \text{H}_2 + \text{Si} \xrightarrow{\text{HCl}} 4 \text{SiHCl}_3 \]
- IT PRODUCES THE STARTING SiHCl\(_3\) FOR THE SIEMENS TYPE REACTOR AT ESSENTIALLY 100% EFFICIENCY
- IT CONSUMES THE BY-PRODUCT SiCl\(_4\)
- IT CAN ALSO CONVERT HCl AND OTHER BY-PRODUCTS TO SiHCl\(_3\)
- IT FITS PERFECTLY INTO THE SIEMENS PRODUCTION SCHEME TO FORM A CLOSED LOOP PROCESS
- SUBSTANTIAL SAVINGS ON RAW MATERIAL COST CAN BE REALIZED
Silicon Material Task

Dichlorosilane CVD Process

Hemlock Semiconductor Corp.

Technology

<table>
<thead>
<tr>
<th>Polycrystalline Silicon</th>
</tr>
</thead>
</table>

Approach

Chemical Vapor Deposition of Silicon from Dichlorosilane (DCS)

Contractor

Hemlock Semiconductor Corporation

Goals

- Demonstrate process feasibility
- Establish technical readiness by operation of EPSD1 sized to about 152 MTPY
- Silicon price of less than $2/1000 lbs ($0.72/kg) (1980$ 1000 MTPY, 22% ROI) in low-risk program
- Define process economics

Report Date

February, 1981

Status

- Safety related redesign of PDU, intermediate reactor feed programs complete
- PDU, intermediate reactor systems under construction
- Silicon purity from DCS or redistributed TCS excellent (zone refining, solar cells)
SILICON MATERIAL TASK

Autoignition Temperature

TEMP.

COMBUSTION

AIT

NON-COMBUSTION

CONCENTRATION

RESULTS

DCS 58 °C ± 5 °C
DCS/H₂ 255 °C ± 5 °C
10/90 EQUILIBRATED TCS 130 °C ± 5 °C
DCS/TCS/STC 10/86/10
TCS LITERATURE 215 °C
Explosion Severity

- PRESSURE - TIME BEHAVIOR CHARACTERISTIC OF COMBUSTION IN A CLOSED VESSEL

![Graph showing pressure-time behavior of combustion in a closed vessel with experimental data and average and maximum values for CH₄/AIR.]

CH₄/AIR
- AVERAGE = 900 PSI/SEC
- MAXIMUM = 2700 PSI/SEC

<table>
<thead>
<tr>
<th>SYSTEM COMPOSITION</th>
<th>AVG. PSI/SEC</th>
<th>MAX. PSI/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS</td>
<td>6. x 10⁴</td>
<td>1 x 10⁶</td>
</tr>
<tr>
<td>DCS/H₂ 10/90</td>
<td>3.2 x 10⁴</td>
<td>5.4 x 10⁴</td>
</tr>
<tr>
<td>H₂ (LITERATURE)</td>
<td>2.4 x 10⁴</td>
<td></td>
</tr>
<tr>
<td>EQUILIBRATED TCS</td>
<td></td>
<td>2.4 x 10⁴</td>
</tr>
<tr>
<td>DCS/TCS/STC 10/80/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCS (17, 23% IN AIR)</td>
<td>1.2 x 10³</td>
<td></td>
</tr>
</tbody>
</table>

121
DCS Hazards Summary

- LOW AIT FOR DCS
 ==> IGNITION OF DCS IS EXTREMELY FACILE, AND CAN BE UNPREDICTABLE

- HYDROLYSIS PRODUCTS ARE COMBUSTIBLE

- DCS/AIR MIXTURES HAVE HIGH EXPLOSION SEVERITY POTENTIAL
 ==> REMOTE OR PROTECTED LOCATION FOR EQUIPMENT SHOULD BE USED

- EXPLOSIVE OUTPUT TRIALS INDICATED DEFLAGRATION RATHER THAN DETONATION

- DILUTION OF DCS WITH H₂ ATTENUATES HAZARDS

PDU Revised Design Features

- REMOTE LOCATION

- NO DCS STORAGE

- MINIMAL DCS HOLDUP IN EQUIPMENT

- DCS DILUTED WITH H₂ BEFORE TRANSPORT

- REMOTE OPERATION
Silicon Material Task

Purity of Si Grown From Laboratory Rearranger-Supplied Chlorosilanes

<table>
<thead>
<tr>
<th>TCS Source</th>
<th>Catalyst</th>
<th>Boron (PPBA)</th>
<th>Donor (PPBA)</th>
<th>Al (PPBA)</th>
<th>Carbon (PPMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>---</td>
<td>0.19</td>
<td>1.1</td>
<td>0.30</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td>Dowex (24 °C)</td>
<td>0.48</td>
<td>1.4</td>
<td>0.09</td>
<td>0.5</td>
</tr>
<tr>
<td>Control</td>
<td>---</td>
<td>0.15</td>
<td>1.7</td>
<td>0.18</td>
<td>0.3</td>
</tr>
<tr>
<td>A</td>
<td>Dowex (77 °C)</td>
<td>0.69</td>
<td>1.2</td>
<td>0.06</td>
<td>0.4</td>
</tr>
<tr>
<td>Control</td>
<td>---</td>
<td>0.11</td>
<td>0.84</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Dowex (77 °C)</td>
<td>0.24</td>
<td>1.0</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Dowex (77 °C)</td>
<td>0.41</td>
<td>1.7</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:
- Silicon purity greatly exceeds solar requirements.
- Dowex resin is not a direct source of impurities.
- Dowex resin may serve as an indirect source of boron in some situations.

Intermediate Reactor Task

Objectives
- Demonstrate safe and efficient production of silicon from commercial DCS in an intermediate-sized reactor.
- Focus on system operability, especially at large rod diameters.

Status
- Project delayed for safety reasons.
- Feed system completely redesigned.
- Construction underway.
- Startup scheduled for March, 1981.
SILICON MATERIAL TASK

HSC Low-Cost Si Process Cost-Capital Summary

FOR A 1000 METRIC TONNE PLANT:

\[
\begin{array}{|c|c|}
\hline
\text{MANUFACTURING COST} & 15.47 \\
\text{PROFIT (20% ROI)} & 4.38 \\
\text{PRODUCT COST} & 19.85^* \\
\hline
\end{array}
\]

MANUFACTURING CAPITAL: $21.9 M

*NOTE: IN PIM HANDOUT, PRICE OF Si PRODUCT WAS ERRONEOUSLY GIVEN AS $18.95/KG.

Problems and Concerns

- PROJECT DELAY DUE TO SAFETY CONSIDERATIONS
Silicon Material Task

Definition of Purity Requirements
Westinghouse Electric Corp.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impurity effects in silicon</td>
<td>2/4/81</td>
</tr>
</tbody>
</table>

Approach
Analysis of silicon material and solar cells with controlled impurity additions

Contractor
Westinghouse Electric Corp., R&D Center

Phase IV

Goals
Evaluate impurity effects in:
- Polycrystalline silicon
- High efficiency cells
- Experimental silicon material
- Cells subjected to processing e.g. gettering
- Cells treated to simulate long term behavior

Status
Phase IV experimental program approximately 70% completed

Recent Results:
- Spectral response data indicate both impurities and grain boundaries reduce carrier lifetime in polycrystal cells.
- Accelerated aging of Ni-doped cells projects time to failure over 20 years
- Combined electrical bias/temperature stress show no effect for seven impurities up to 205°C
- Impurity model for narrow base, BSF and wide base, ohmic contact high efficiency devices completed.

![Graph](image-url)

- Single Crystal (004) with 10^{15} cm$^{-3}$ Cr
- Uncontaminated Single Crystal
- Uncontaminated (76) Poly Crystal
- Poly Crystal (216) with 10^{15} cm$^{-3}$ Cr

- Wavelength (μm)
- amps/watt of the cell / amps/watt of the standard $\times 100$
SILICON MATERIAL TASK

STD. CELL (n = 14%)
- Efficiency Projected by Impurity Model
- Efficiency Calculated by Finite Element Model

WIDE BASE CELL (n = 15.5%, W_B = 765 µm)
- Impurity Model Curve Projected from Standard Design Cell Behavior
- Finite Element Model Curve

Mo Concentration, cm^{-3}
SILICON MATERIAL TASK

Efficiency Projected by Impurity Model
Efficiency Calculated by Finite Element Model
SILICON MATERIAL TASK

EFFECTS OF IMPURITIES ON SOLAR CELL PERFORMANCE

C.T. SAH ASSOCIATES

<table>
<thead>
<tr>
<th>TECHNOLOGY IMPURITY EFFECTS IN SILICON SOLAR CELLS</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROACH Capacitance transient spectroscopy and p/n junction diode reverse switching current transient are used to determine the thermal capture rates of electrons and holes at the impurity recombination levels in silicon. CONTRACTOR C. T. SAH ASSOCIATES</td>
<td>81/02/05</td>
</tr>
<tr>
<td>GOALS To determine the capture rates accurately so that the maximum allowable recombination impurity concentration at a given AM1 efficiency can be predicted.</td>
<td></td>
</tr>
</tbody>
</table>

STATUS

- Large series resistance have been observed from low temperature d.c. current-voltage characteristics of both Schottky and p/n junction diodes doped with Ti, V, Cr and Mo. The large RC time constant makes the published electron capture rate at the $E_C - 228$ mV Ti level unreliable due to the very short electron filling time (< 10 ns). A 30-60 ohm-cm n-Si doped with Ti is grown to give larger electron capture time at the Ti level.
Several temperature profiles of cartridges #2 and #3 (the two cartridges furthest away from the melt replenishment port) in the multiple-ribbon-growth machine (Machine 16) have been made. The data indicate a temperature variation of about 20 to 30° across the die tops. This cannot be corrected with adjustments of the present cartridge end heaters and is attributable to undue influence of the main furnace heaters. It is apparent that this condition is adversely affecting the optimum growth throughput of the EFG ribbons in the multiple-ribbon machine. Five to six different modifications of the main furnace heaters were made to assess a proper direction toward solving this poor thermal symmetry. Several subsequent multiple-ribbon growth runs were attempted.

One hour and 49 minutes of simultaneous three-ribbon growth was demonstrated as part of a 5-hour, 20-minute run. The run was terminated due to a shortage of starting material in the necessary rod form. A total of 19 meters of 10-cm-wide ribbon was grown from the three cartridges at an average rate of 3.3 cm/min.

Several high-growth-rate runs were made in Machine 17 using CO₂ ambient and a new die-shield configuration.

Runs made in Machine 18 with CO and CO₂ ambient and improved gas purging in the vicinity of the die top resulted in production of 7 to 8 meters of 10-cm-wide ribbon material.

Westinghouse Electric Corp. (Web)

Westinghouse is now in the design phase of a web ESGU. This includes some redesign of the present web grower configuration.

Engineering drawings of the dendritic web ESGU mechanical system were received at JPL for review and a preliminary design review was held with Westinghouse at JPL.

Work continues on the design of the low-cost modifications of the web-growth system. Electronic developments include: redesign of the closed-loop melt-level controller; a re-specified custom temperature controller for a reduction in the component cost; installation for testing of the start-up programmer, and identification of a supplier for the web-thickness
sensor-controller. Mechanical design developments include: identification of a lower-cost stainless-steel pipe for the furnace chamber wall and design of an inexpensive web take-up reel.

Advanced web throughput runs have begun and faster growth rates have been achieved while maintaining thickness (Westinghouse relates stress to ribbon thickness, not pull speed or width). This development, like the planned web width-control study, depends upon passive heat-shield design development.

Honeywell Corp. (SOC)

Both the SCIM II and dip-coat machines were operated during this period; 10-cm-wide slotted substrates were coated by SCIM II at speeds of 3 to 5 cm/min. Areas of uniform thickness, 100 µm, were deposited on the substrate.

Problems encountered and overcome included the continuous formation of dendrites along the center of the sheet, the freezing of silicon between the crucible and the coating trough, mullite substrate cracking and non-uniformity of temperature along the furnace tunnel. The best SCIM-coated cell showed an efficiency of 7.5% AM1.

SOC material dip-coated at speeds of 3 to 5 cm/min continues to provide cells of 10-10.5% AM1 efficiencies.

The latest contract expired December, 1980. Further work in this technology will be funded by SERI, and will be managed jointly by JPL and SERI.

Ingot Technology

Kayex Corp. (Advanced Cz)

A design review of the Advanced Cz ESGU was held at JPL in October. The ESGU will be a prototype of equipment suitable for high-volume silicon ingot production (150 kg of ingots from a single crucible, 2.5 kg/h throughput, 90% yield). The review consisted of presentation and discussion of design and assembly drawings, system diagrams and machine and process specifications together with appropriate technical justifications.

Kayex has commenced modification of a CG 2000 (to be called CG 6000) for the Cz ESGU. All of the long-lead-time items are in, and the chamber, framework, and crucible-lift mechanism are assembled; 15-in-dia crucibles are in and are being analyzed for impurities. Testing and debugging has begun on the console electronics. Growth-parameter sensors and microprocessor test and definition continue for automated growth.

Siltec Corp. (Advanced Cz)

Siltec’s Advanced Cz contract expired in September, 1980; negotiations are under way for continuation of the program into the next phase, ESGU development. Siltec presently is working with in-house funding on two major problem areas. These center mainly on the transfer-tube heater system and the
LARGE-AREA SILICON SHEET TASK

automatic ingot-diameter control. Using a new modified diameter controller, Siltec has successfully demonstrated the growth of a large ingot (weighing approximately 60 kg) from the CLF furnace with a uniform 13.8-cm diameter along the entire length.

Crystal Systems, Inc. (HEM)

A redirection of program goals for the HEM casting technology was made during this reporting period. The new goal calls for the growth of HEM ingots to yield 35 kg (30 x 30 x 15 cm) in a 56-hour cycle time. The other goals of the original contract remain the same.

Several growth runs aimed at improving the quality of the ingot material have been completed. These are tests with various growth parameters; such runs will continue in coming months.

Successful growth of several 35-kg ingots was reported by CSI. A growth rate of 28 hours per 35-kg ingot with a total cycle time of 56 hours has been achieved. No further attempt to improve the cycle time was made in this period. Emphasis at this point is on optimization of the growth process to improve material quality. CSI has noted a substantial increase in the amount of single-crystal material across the bottom of the ingots for these runs.

Preliminary results from a material analysis of the HEM material showed a large amount of precipitates, presumably the source of carbon impurities in the material. These precipitates are also the source of the high concentration of dislocations in this material. The impurities observed in this material are undoubtedly due to the graphite heaters in the HEM furnace.

Semix Inc. (Semicrystalline Casting)

Terms of a confidentiality agreement have been established and the first meaningful technical review took place during this reporting period. Technical and economic data that were received at and after the PIM are now being analyzed to ascertain the validity of Semix's process claims.

Hardware design and fabrication continues on the casting, wafering and test subsystems. In the wafering area, Semix is planning to evaluate high-speed multi-blade slicing and ID wafering by various manufacturers. Data collection for a SAMICS analysis report has been completed. A review draft of this report, entitled "Definition of Present Technology and Economic Considerations," has been received by DOE/JPL; a final version illustrating 1982 and 1986 sheet costs will be made based on comments and suggestions from JPL and DOE.
LARGE-AREA SILICON SHEET TASK

Silicon Technology Corp. (Advanced ID Sawing)

STC has replaced the hollow spindle of the prototype R&D slicing machine with a solid ball-bearing spindle. This successfully reduced the excessive blade vibrations observed with the hollow spindle. Some feed-column-related vibration remains. Nevertheless, 15-cm-dia wafers are now being successfully plunge-cut at rates up to 4.5 cm/min with slice and kerf thickness (d and k) each equal to 12.5 mils at >90% yield. Edge chipping remains the major fault with rotary slicing, but slow rates (3.8 cm/hr) and high slice thickness (d = 20 mils, k = 11 mils) are also problems.

For the 10 x 10-cm ingot wafering, both single-crystal material from Crystal Systems, Inc., and polycrystalline material were used. The minimum thickness of the poly wafers was 6.5 mils and the kerf loss was 11 mils. (The d + k value for the desired goal of 25 wafers/cm is 16 mils.) The average yield for these runs was greater than 90%, the material being sliced at an average rate of 2.5 cm/min (0.25 wafer/min). One observation made by STC was that polycrystalline material was easier to slice than single-crystal and had greater yields. Also, STC noted that the 6.5-mil wafers were very difficult to handle.

The use of thin core material for the saw blades (4.8 mil or 120 µm thick) resulted in some blade deflection causing a blade-rubbing problem with the wafers. This problem does not occur with the thicker (6-mil) core material. More 4.8-mil core material of different steel composition has been ordered and will be used in subsequent experiments.

Siltec Corp. (Enhanced ID Slicing)

Slicing experiments with the 42-cm (16 5/8-in.) blade head have resulted in the production of 250-μm (10-mil)-thick wafers with 200-μm (8-mil) kerf thickness from 10-cm-dia silicon ingots. These experiments were done with ingot rotation and yields of 85-90% have been achieved. Blade life, however, has been much less than expected (about 200 cuts as opposed to 800-1000 expected). Wafer throughput in these demonstrations averaged 0.25 wafers/min.

Crystal Systems, Inc. (FAST)

An attempt at slicing a 10-cm dia ingot at 25 wafers/cm was successfully completed at CSI during this period. The yield was <30%. The slicing rate was a moderate 2.9 mils/min; slice and kerf thickness, d + k, was 7 mils + 9 mils. CSI also tried to slice a 15-cm-dia ingot but aborted the run after approximately 13 cm. The reason for the failure was given as a combination of wire and roller degradation.

One significant achievement during this period was that one wire pack electroplated in house was able to slice through three ingots with yield of 85%, 80% and 38%, respectively. The last run might have also had an 80% yield, but the epoxy holding the ingot in place loosened and the ingot shifted during the last 20% of slicing.

132
Material Evaluation

Applied Solar Energy Corp. (Cell Fabrication)

Cells fabricated on vertically sliced HEM wafers (Ingot No. 41-41C) show that the material in some places is as good as Cz material. An average taken over one entire slice indicates that the HEM efficiency is 92% of that of the Cz controls (HEM average: 10.2% AM1, Cz average: 11.1% AM1). No definite pattern of cell efficiency was obtained over the cross-section of the ingot although there is a trend toward lower efficiency for cells from the seed area. Horizontal sections of the same ingot (41-41C) have been fabricated into cells and tested. The results will be correlated with the results for the vertical sections. Material from the same ingot will also be tested for dislocation densities and oxygen and carbon concentrations.

Gettering experiments on HEM ingot material were also performed during this period. The results are similar to those in earlier gettering experiments, i.e., cells made from material at the top of the ingot improve substantially with gettering whereas those from material at the bottom of the ingot showed little improvement. DLTS measurements reveal a wide band of trapping levels in this material indicating a large number of impurities.

Data from dislocation-etch experiments on the HEM and EFG material revealed that dislocations are evenly distributed throughout the HEM ingot, while the EFG ribbons showed a significant drop in dislocation density on ribbon grown in a CO atmosphere.

A two-step diffusion process on polycrystalline EFG, Wacker and Hamco Cz materials did not improve the Wacker or Hamco Cz cell performances and degraded the performance of the EFG cell. A 9-hour, 750° pre-diffusion step has shown a 10% improvement in the short-circuit current on Wacker Silso material.

University of Missouri, Rolla (Reactant Gas Studies)

UMR visited three Task II sheet growth contractors to measure oxygen partial pressures in their silicon growth systems during this reporting period. The three contractors are Westinghouse, Horn-well and Crystal Systems, Inc.

At Westinghouse, the web growth system proved to be very stable, with little change in the partial pressure of oxygen with varying gas flow rates. There also was no evidence of back diffusion of oxygen into the system. These findings were of particular interest to Westinghouse in that they indicate that some cost savings can be made by reducing gas flow rates.

Cornell University (Silicon Sheet Characterization)

HEM samples were investigated by a combination of EBIC and optical microscopy-etching. It is found that high-angle grain boundaries in HEM are only weakly electrically active. Centers of electrical activity are due to
boundary dislocations. Many grain boundaries that appear macroscopically to be high-angle boundaries are really made up of alternating sections of coherent twin or low-angle boundaries, or both.

Materials Research, Inc. (Silicon Microstructure)

MRI is currently characterizing the defect structure of both the surface and cross-section areas of web material from Westinghouse. The through-the-thickness defect density may or may not be similar to the surface density; this is to be investigated. Two web samples have been mounted edge-on and are presently being prepared for defects and image characterization.

Honeywell's SOC material has been difficult to section. The entire width of the mullite substrate has had to be bonded to an aluminum support plate during cutting.

In-House Activities

MBS Slurry Tests: Four additional types of corrosion inhibitors for a water-based slurry to be used in MBS wafering were evaluated. The evaluations consisted of fatigue testing of the 1095 carbon steel MBS blades in a water solution of the corrosion inhibitors. The fatigue lives of blades tested in three of the four types of inhibitors evaluated were greater than the fatigue lives of such blades tested in the standard PC oil used in MBS slurries. These water-based corrosion inhibitors would provide a large cost savings for MBS wafering.

MBS Blade Tests: Lateral deflection and twist tests were made on 1095 high-carbon steel and three types of metallic glass (Metglas) ribbons for the MBS wafering technology. The lateral deflection tests are used to compare flexibility of metallic glass ribbon with that of 1095 carbon blades under equivalent tensile forces in MBS wafering and the lateral twist test results indicate that a very small force can produce an appreciable twisting of the metallic glass ribbons.

Crystal Growth: Two runs were made with the in-house Czochralski crystal growth system using a new flexible seed holder in attempts to grow and evaluate crystals from Battelle-produced polysilicon starting material. In the first effort, melting as-received poly resulted in clouds of vapor that obscured the operator's view and made growth difficult. For the second run the poly was leached for 20 minutes in HF, rinsed and dried before melting. It produced much less vapor. In both cases, small single crystals were grown and are being evaluated.

Characterization: A preliminary measurement of oxygen content in HEM material using an IR spectrophotometer on material adjacent to that used for the solar cells indicate a correlation between cell efficiency and oxygen content in the material. The lower-efficiency cells were made from material that exhibited high oxygen content.
LARGE-AREA SILICON SHEET TASK

Preliminary experiments on silicon grain boundaries using a light-induced deep-level transient spectroscopy (DLTS) method has shown some signals from the minority carrier trapping levels. More investigations are under way to improve the resolution of this technique. This technique can provide information concerning minority carrier trapping levels at the grain boundaries that a conventional DLTS measurement cannot give.

Economic Analysis: A Monte-Carlo simulation model program has been improved to include the consideration of ingot technology alternatives. Several runs were made with current data and the results indicate that there is need for further improvement of the model for an equitable comparison of results from different sheet technologies. A program to examine the sensitivity of various parameters has been developed for the EFG, HEM and SOC processes. This will compute the add-on price of silicon as a function of sheet thicknesses, throughput rates and other parameters of the processes.

Other: A Cameca IMS-3f ion microanalysis probe was delivered and installed in JPL. This instrument provides the capabilities of elemental analysis with coherent spatial resolutions of less than 1 µm depth resolutions of 100Å, and detection limits of 10^{13} to 10^{16} atoms/cm2 (depending on element) and will greatly enhance the capability of the Task in evaluating silicon-sheet material.
LARGE-AREA SILICON SHEET TASK

SILICON WEB PROCESS DEVELOPMENT

WESTINGHOUSE ELECTRIC CORP.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Completion Date</th>
<th>Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single crystal ribbon growth</td>
<td>10/30/80</td>
<td>2/4/81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon dendritic web growth</td>
<td>• 27 Square centimeters per minute growth demonstrated</td>
</tr>
<tr>
<td>Contractor</td>
<td>• One-day manually-controlled melt replenished growth cycle demonstrated</td>
</tr>
<tr>
<td>Westinghouse Electric Corp. Research & Development Center JPL Contract 954654</td>
<td>• Solar cell efficiency of 15.5% AM1 demonstrated. Average efficiency = 13.5% AM1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goals</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Area rate of growth 25 cm²/minute</td>
<td>• Semi-automated growth demonstrated - 8 hours</td>
</tr>
<tr>
<td>• Continuous melt replenishment</td>
<td>• Thickness routinely 100-200 µm</td>
</tr>
<tr>
<td>• Cell efficiency > 15% AM1</td>
<td>• Dislocation density routinely < 10⁴/cm²</td>
</tr>
<tr>
<td>• Semi-automatic growth cycle</td>
<td></td>
</tr>
<tr>
<td>• Thickness 100-200 µm</td>
<td></td>
</tr>
<tr>
<td>• Dislocation density < 10⁴/cm²</td>
<td></td>
</tr>
</tbody>
</table>
Large-Area Silicon Sheet Task

Advanced Dendritic Web Growth Development

Westinghouse Electric Corp.

Technology Report Date
02/04/81

Approach
- Silicon dendritic web growth
- Contractor: Westinghouse Electric Corp.
 - Research & Development Center
 - JPL Contract 955843

Goals
- Demonstrate Technology Readiness
 - Automated melt-replenished growth period to 65 hours
 - Area rate of growth 25 cm²/min
 - Length of web crystal >10 meters
 - Dislocation density <10⁴/cm²
 - Resistivity 1 to 3 ohm-cm p-type
 - Terrestrial solar cell efficiency >15%
 - Demonstrate Advanced Throughput
 - 30-35 cm²/min area growth rate

Chronology of Key Development Goals

<table>
<thead>
<tr>
<th>Process Development</th>
<th>Technology Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>954654</td>
<td>955843</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area Throughput Rate, cm²/min</th>
<th>Demonstrate 25</th>
<th>Routinely 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Efficiency, AM1%</td>
<td>Demonstrate 15</td>
<td>Average 15</td>
</tr>
<tr>
<td>Continuous Melt Replenishment</td>
<td>1 Day Cycle</td>
<td>3 Day Cycle</td>
</tr>
<tr>
<td>Growth Mode</td>
<td>Semi-Automatic</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

138
LARGE-AREA SILICON SHEET TASK

1986 Cost Projection per SAMICS/IPEG (1980 $)

Assumptions:

- Area throughput rate 25 cm²/minute
- Terrestrial Cell efficiency 15%
- Continuously melt-replenished 3 day growth cycle
- Automated growth
- Solar grade polysilicon price $14/kg
- Thickness 150 µm

Projected Cost, $/Wpk

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value-Added Sheet Cost</td>
<td>.134</td>
</tr>
<tr>
<td>Polysilicon Cost</td>
<td>.039</td>
</tr>
<tr>
<td>Total Sheet Cost</td>
<td>.173</td>
</tr>
<tr>
<td>DOE/JPL 1986 Goal</td>
<td>.224</td>
</tr>
</tbody>
</table>

Overview of Approach

- Overall objective is to achieve the Low Cost Solar Array Project technology readiness goal for silicon sheet growth
- Program combines the demonstrated key elements of silicon web growth shown by economic analysis to be capable of satisfying the DOE/JPL 1986 cost goal
- Major program tasks to achieve technology readiness are:
 - Design and build prototype web growth machine having features to satisfy 1986 goal
 - Operate prototype machine to demonstrate technology readiness
 - Provide full information for transfer of technology
- Develop advanced web growth techniques and demonstrate higher area throughput rates
Milestone Chart

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ON</td>
<td>D</td>
<td>J</td>
</tr>
<tr>
<td>1. Design and Fabricate a Prototype Web Growth Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Investigate Form of Feedstock Silicon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Operate the Prototype Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Evaluate Prototype Machine for Technology Readiness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Develop Advanced Web Growth Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Update Economic Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Evaluate Effect of Process Variations on Quality of Silicon Web</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Provide Web Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Evaluate Energy Utilization of the Prototype Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Provide Technology Transfer Information in Form of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) Equipment capable of producing silicon equivalent to that demonstrated during program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B) Written procedures applicable to the equipment in (A) above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Support Preliminary and Final Design and Performance Reviews</td>
<td></td>
<td></td>
<td>AS DIRECTED BY JPL</td>
</tr>
<tr>
<td>Preliminary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Support Meetings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Provide Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Provide Prototype Web Growth Machine at Close of Contract</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work in Progress

- Design of prototype web growth machine
- Development of advanced web growth techniques for high throughput

Development Plan: Advanced Web Growth Techniques for High Throughput

High Speed Growth
Increase dissipation of latent heat. Maximize coefficients in equation $V = C + D/\sqrt{\xi}$
- Modify lid design*
- Modify shield configuration*
- Control melt height (continuous melt replenishment)*
- Manage gas flow

Wide Web Growth
Management of melt profile and thermal stress
- Growth slot/susceptor shield design to control melt profile
- Control of thermal stress (elastic)
 - Develop criterion for critical buckling stress*
 - Identify required thermal profile in web
 - Design lid/shield system to generate required profile

Combine Speed and Width Designs
* Current Activity
LARGE-AREA SILICON SHEET TASK

Design Status: Prototype Web Growth Machine

Mechanical Design

• Functional design completed
• Design refinement for equipment cost reduction in progress

Electronic Design

• Functional design near completion
• Unverified control circuits undergoing evaluation
• Design refinement for equipment cost reduction in progress

Closed-Loop Circuit for Melt-Level Control
LARGE-AREA SILICON SHEET TASK

Current Problems

- Long delivery time for electronic components
- Availability of low-cost pellet-form polysilicon

Summary

All Tasks On Schedule Per Contract Requirement

- Prototype design
- Development of techniques for higher throughput

MULTIPLE SILICON RIBBON GROWTH BY EFG

MOBIL TYCO SOLAR ENERGY CORP.

1980 Goals

1. Demonstrate on a small cell (minimum 4 cm²) that 13% efficiency can be obtained from any ribbon grown in resistance-heated equipment: Achieved.

2. Show ribbon growth at 10 cm width to be possible at 4 cm/minute: Achieved.

3. Demonstrate cell efficiencies of 10.4% on cells of 50 cm² area prepared from 10 cm wide ribbon grown at ~4 cm/minute: Achieved.

4. Technical features demonstration, multiple ribbon growth: three ribbons, 10 cm wide at 4 cm/minute for eight hours under continuous melt replenishment; mean cell efficiency on a 10% sample = 10.2%: First scheduled for July 1980: Not achieved. Rescheduled for December 1980: Not achieved.

143
Run 16-248

12/10/80
TIME:
9:30 10:30 11:30 12:30 1:30 2:30 3:30

CART. #3
Seeding trials (seed fracture problems)

CART. #2
9:36
5 HR 17 MIN

CART. #1
Seeding trials (unstable growth)

15 MIN

Growth unstable (ribbon dimensions unacceptable, reseeded)

24 MIN

1 HR 10 MIN

- "Freeze" to the die (restart necessary).
- Stable growth under automatic control from one cartridge.
- Periods of simultaneous growth of three acceptable 10 cm wide ribbons.
Run 16-250

12/31/80
TIME: 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00

CART. #1
Seeding trials (seed fracture problems)
Ribbon left frozen while working on cartridges #2 and #3

CART. #2
Seeding trials (unstable growth)
Melting back broken ribbon into the die, reseeding (seed fracture problems)

CART. #3
Seeding trials (fracture problems)
X Trying to repair wiring errors in the automatic width control system

Ribbon growth unstable due to control problems

15 MIN
1 HR 15 MIN
40 MIN

* = "Freeze" to the die (restart necessary).
- = Stable Growth under automatic control from one cartridge.
$ = Periods of simultaneous growth of three acceptable 10 cm wide ribbons.
1. The hot-zone temperature profile problems which previously prevented satisfactory growth in cartridge positions 2 and 3 have been solved.

2. The automatic width control system has been shown to function well to sustain growth for long periods without attention. Cartridge position 2 operated for 54 hours in run 246 and 6 3/4 hours in run 250. In both these cases, steady-state growth appeared likely to continue much longer, but the runs had to be ended at the end of the workday.

3. The automatic control system cannot reliably compensate for the large temperature excursions induced in the left side of cartridge 1 by the lowering of silicon rods into the melt replenishment unit. This problem may be partially solved by operating the ribbon-edge control loop at higher gain, but will be more completely solved by the inclusion, in future furnace hot zone designs, of somewhat greater separation between the melt replenishment unit and the growth cartridges.

4. The cooling profile in the cartridge needs to be changed to reduce the magnitude of thermal stresses imposed on the ribbon. The cartridge/puller mounting hardware also needs to be redesigned to ensure a more precise alignment between these two units.

5. The existing melt replenishment system cannot supply silicon at a rate sufficient to sustain the growth of three relatively thick 11-cm wide ribbons. A new replenishment unit is being designed which uses silicon in the form of chunks and which, when built, will be developed to obtain an adequate melting rate to feed the four cartridges of future multiple ribbon furnaces.

6. Design modifications need to be made to the cartridge and hot zone so that gas flows and compositions in the multiple furnace can be more precisely controlled. It will then be possible to determine the conditions necessary for low-carbide ribbon as is produced by furnaces 17 and 18.

7. The cartridge power supplies need to be revised to provide greater immunity to false triggering and power surges caused by power-line transients. The use of power controllers with properly applied SCR's rather than triacs, and careful selection of the output voltage of the step-down transformers, appear likely to solve this problem.

*This is design work undertaken for our internal multiple growth program.
LARGE-AREA SILICON SHEET TASK

Ambient Studies in Furnace 17

- USE OF HOLLOW DIE SHIELD HAS IMPROVED GAS DISTRIBUTION AT INTERFACE.

- AMBIENT MANIPULATION SHOWN TO HAVE INFLUENCE ON QUALITY OF RIBBON GROWN WITH COLD SHOE SYSTEM.

- SOLAR CELLS OF 10 TO 11% AM1 EFFICIENCY PRODUCED AT SPEEDS OF 3.5 TO 4 CM/MINUTE.

- OPTIMIZATION STUDIES IN PROGRESS TO INVESTIGATE AMBIENT/SPEED/COOLING PROFILE/COLD SHOE EFFECTS.
Large-Area Silicon Sheet Task

Machine 17

<table>
<thead>
<tr>
<th>Date</th>
<th>Run No</th>
<th>Growth</th>
<th>Thickness (cm)</th>
<th>Speed (cm/minute)</th>
<th>Process</th>
<th>Average Resistivity (Ω-cm)</th>
<th>Jsc</th>
<th>Voc</th>
<th>FF</th>
<th>n</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/30/80</td>
<td>17-139</td>
<td>CO$_2$ off</td>
<td>0.019 - 0.033</td>
<td>3.5</td>
<td>PH$_3$, 1" x 2", no AR</td>
<td>5</td>
<td>15.5</td>
<td>0.470</td>
<td>0.734</td>
<td>5.35</td>
<td></td>
</tr>
<tr>
<td>12/16/80</td>
<td>17-136</td>
<td>CO$_2$ off</td>
<td>0.030</td>
<td>3.1</td>
<td>PH$_3$, 2" x 4", no AR</td>
<td>5.9</td>
<td>13.8</td>
<td>0.472</td>
<td>0.681</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>12/16/80</td>
<td>17-134</td>
<td>CO$_2$ off</td>
<td>0.027</td>
<td>3.1</td>
<td>PH$_3$, 2" x 4", no AR</td>
<td>6.2</td>
<td>14.1</td>
<td>0.459</td>
<td>0.680</td>
<td>4.40</td>
<td>furnace problem</td>
</tr>
<tr>
<td>11/05/80</td>
<td>17-131</td>
<td>reduced ambient, SPO</td>
<td>0.029</td>
<td>3.6</td>
<td>PH$_3$, 2" x 4", no AR</td>
<td>5</td>
<td>16.7</td>
<td>0.483</td>
<td>0.621</td>
<td>5.0</td>
<td>graphite-like</td>
</tr>
<tr>
<td>10/26/80</td>
<td>17-126</td>
<td>reduced ambient, SPO</td>
<td>0.025</td>
<td>3.4</td>
<td>PH$_3$, 2" x 4", no AR</td>
<td>5.2</td>
<td>15.7</td>
<td>0.476</td>
<td>0.708</td>
<td>5.29</td>
<td>graphite-like</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CVD, 2" x 4", no AR</td>
<td>17.8</td>
<td>0.503</td>
<td>0.714</td>
<td>6.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CVD, 2" x 4", no AR</td>
<td>16.8</td>
<td>0.501</td>
<td>0.709</td>
<td>5.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- CO$_2$ off indicates carbon dioxide is off during the growth process.
- CO$_2$ on indicates carbon dioxide is on during the growth process.
- PH$_3$ refers to phosphine gas used in the growth process.
- CVD refers to Chemical Vapor Deposition.
- SPO refers to Standard Process Option.
LARGE-AREA SILICON SHEET TASK

Evaluation

SOLAR CELL EVALUATION OF MATERIAL GROWN
IN JPL GROWTH MACHINE NO. 1.
ALL CELLS WERE FABRICATED WITH THE PH, DIFFUSION PROCESS.

FLN LIGHT, 100 mW/cm², 28°C, AR COATED, CELL AREA = 13 cm²

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Growth Conditions</th>
<th>J_{sc} (mA/cm²)</th>
<th>V_{oc} (V)</th>
<th>FF</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-139</td>
<td>CO₂ "off"</td>
<td>22.6</td>
<td>.683</td>
<td>.71</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.6</td>
<td>.476</td>
<td>.73</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.2</td>
<td>.478</td>
<td>.74</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.2</td>
<td>.502</td>
<td>.72</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>CO₂ "on"</td>
<td>26.6</td>
<td>.521</td>
<td>.75</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.0</td>
<td>.514</td>
<td>.74</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.0</td>
<td>.528</td>
<td>.76</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.7</td>
<td>.533</td>
<td>.72</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.9</td>
<td>.527</td>
<td>.75</td>
<td>11.1</td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

Run 17-139

Graph showing the relationship between \(L_n \) (in \(\mu m \)) and \(NO \) (in \(Cm^{-2}Sec^{-1} \)) for \(CO_2^{ON} \) and \(CO_2^{OFF} \).
Cartridge-Furnace Interaction in JPL No. 1

- INCREASED POWER DEMAND OF 10 CM CARTRIDGE HAS NECESSITATED COMPLETE REBUILDING OF FURNACE POWER SUPPLIES:

MAIN ZONE
- INSULATION RECONFIGURED.
- HEATER POSTS REDESIGNED FROM POLYBDENUM TO GRAPHITE TO IMPROVE HANDLING OF HIGHER CURRENTS.

AFTERHEATER
- POWER DEMAND COUPLED TO MAIN ZONE INSULATION EFFECTIVENESS.
- AVAILABLE TRANSFORMER POWER INADEQUATE FOR HEATING LARGER CROSS SECTION LINEAR COOLING PLATES.

FACE HEATER
- POWER DEMAND COUPLED TO COLD SHOE/AFTERHEATER CONFIGURATION.
- HEAVY DUTY CONTROLLERS INSTALLED.

- GROWTH CONDITIONS CLOSELY RELATED TO BALANCE OF MAIN ZONE, AFTERHEATER, FACE HEATER POWER LEVELS.
SILICON ON CERAMIC

HONEYWELL CORP.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICON ON CERAMIC</td>
<td>FEBRUARY 4, 1981</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROACH</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIM-COATED SOC 12 x 100 cm SLOTTED CERAMIC</td>
<td>• SCIM-COATING 10 cm x 100 cm FULLY SLOTTED SUBSTRATES ROUTINELY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>• 15 cm/min DEMONSTRATED (DIPCOATING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONEYWELL INC.</td>
<td>• 30 cm/min THIN LAYERS SCIM-COATED.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOALS</th>
<th>• 10.54% CELL EFFICIENCY (DIPCOATED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 cm WIDE x 100 cm LONG</td>
<td>• 7.64% ON SCIM-COATED SOC</td>
</tr>
<tr>
<td>15 cm/min PULL SPEED</td>
<td>• 9.6 ± .5% AVERAGE EFFICIENCY FOR 74 RECENT DIP-COATED CELLS.</td>
</tr>
<tr>
<td>350 cm²/min THROUGHPUT</td>
<td></td>
</tr>
<tr>
<td>11% CELL EFFICIENCY</td>
<td></td>
</tr>
<tr>
<td>9.8% AVERAGE EFFICIENCY</td>
<td></td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

Growth Activities and Status

• ALL SCIM-11 RUNS NOW USE 10 cm x 100 cm SUBSTRATES FULLY SLOTTED
• MANUAL MELT REPLENISHMENT USED WITH EACH RUN.
• HEAVY BORON DOPING ROUTINELY USED IF DESIRED.
• LONGITUDINAL TEMP. PROFILE HAS BEEN SPECIFIED.
• TRANSVERSE TROUGH TEMPERATURE GRADIENTS SIGNIFICANTLY IMPROVED.
• EFFECTS OF CHANGES IN CRUCIBLE, TROUGH, PREHEATER, TEMPERATURES INVESTIGATED.
• EFFECTS OF LIQUID-SOLID INTERFACE POSITION INVESTIGATED.
• EFFECTS OF GAS BLOWING, GAS PURITY INVESTIGATED.
• SCIM-III DESIGN COMPLETE, CONSTRUCTION BEGUN.
• MATERIAL PRODUCTION BASED ON DIPCOATING.
• SCIM-1 NOT IN OPERATION
LARGE-AREA SILICON SHEET TASK

Longitudinal Thermal Profile, SCIM II

![Graph showing longitudinal thermal profile with substrate travel and temperature values.](image-url)
LARGE-AREA SILICON SHEET TASK

SCIM Sample 45-3 (1-8-81)

Distance Across Sample in CM

Silicon Thickness (µm)

1 2 3 4 5 6 7 8 9

RAISED Substrate

NORMAL Substrate

Solid

Inverted Meniscus

Back Meniscus

Trough Meniscus

TILTED TROUGH

Locus of Liquid Solid Interface
Liquid-Solid Interface (LSI) Effects

- LSI CLEARLY VISIBLE BECAUSE OF NON-ZERO CONTACT ANGLE.
- WHEN DENDRITES FORM, LSI ROUGHENS; SOLID POINTS PROJECT INTO LIQUID, AS VIEWED FROM BACK.
- COATING OCCURS OVER A WIDE RANGE OF MENISCUS PRESSURES, BUT THICKNESS VARIES
- LSI POSITION ALONG HORIZONTAL AXIS CONTROLLED BY MENISCUS PRESSURE; SUBSTRATE ANGLE AND HEIGHT HAVE MUCH LESS EFFECT.
- FOR GIVEN THERMAL CONDITIONS, THERE IS A PREFERRED LSI POSITION ALONG HORIZONTAL AXIS. TOO CLOSE PRODUCES THIN LAYERS. TOO FAR PRODUCES DENDRITES.
- BLOWING ARGON ON MENISCUS MOVES LSI AWAY FROM TROUGH. NON-DENDRITIC GROWTH CAN BE OBTAINED WITH HIGHER MENISCUS PRESSURES.
LARGE-AREA SILICON SHEET TASK

Dendrites

TYPES OF DENDRITES IN SOC GROWTH

A. LARGE, THICK REGIONS
B. SMALL, ISOLATED REGIONS
C. SINGLE ISOLATED PEAKS
D. THIN, FINE STRUCTURE; LARGE REGIONS
E. FINE STRUCTURE, LONG NARROW REGIONS
 (SCIM-II ONLY)

KNOWN CAUSES OF DENDRITES

1. MELT TOO COOL
2. SPEED TOO FAST
3. CARBON, SILICON IN SLOTS

POSSIBLE CAUSES OF DENDRITES

1. IMPURITIES IN MELT -
 CONSTITUTION SUPERCOOLING
2. SURFACE ROUGHNESS OF CERAMIC
3. SiO ON CARBON SURFACE
4. VIBRATION OF MELT
5. THICKNESS TEMPERATURE GRADIENT
 (PREHEATER LOCATION)
6. MENISCUS GEOMETRY AND PRESSURE

157
Slotted SOC Cell

No: 485-4-211

Total Area: 5.0 cm²
Metal Coverage: 8.0%

\[I_{sc} = 125.8 \, mA \]

\[I_{sc} = 87.2 \, mA \]

<table>
<thead>
<tr>
<th></th>
<th>Before AR</th>
<th>After AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc (V)</td>
<td>0.568</td>
<td>0.573</td>
</tr>
<tr>
<td>Jsc (mA/cm²)</td>
<td>17.44</td>
<td>25.16</td>
</tr>
<tr>
<td>FF</td>
<td>0.754</td>
<td>0.731</td>
</tr>
<tr>
<td>η (%)</td>
<td>7.47</td>
<td>10.54</td>
</tr>
</tbody>
</table>

\[J_{sc} \] before AR = 100 cm²
\[J_{sc} \] after AR = 80 cm²
SCIM-Coated Slotted SOC Cell

No: 38-4-35-111

- After AR: $I_{sc} = 100.8 \text{ mA}$
- Before AR: $I_{sc} = 71.6 \text{ mA}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before AR</th>
<th>After AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{oc}</td>
<td>0.539 V</td>
<td>0.548 V</td>
</tr>
<tr>
<td>J_{sc}</td>
<td>14.32 mA/cm2</td>
<td>20.16 mA/cm2</td>
</tr>
<tr>
<td>FF</td>
<td>0.697</td>
<td>0.692</td>
</tr>
<tr>
<td>η</td>
<td>5.38 %</td>
<td>7.64 %</td>
</tr>
</tbody>
</table>

Total Area: 5.0 cm2
Metal Coverage: 8.0%
LARGE-AREA SILICON SHEET TASK

![Graphs showing data for voltage, fill factor, short-circuit current density, and conversion efficiency.]

- **Voltage (V):**
 - AVE = 0.57 V, σ = 0.01 V
 - AVE = 0.72 V, σ = 0.03

- **Fill Factor:**
 - AVE = 0.27, σ = 0.07

- **Short-Circuit Current Density (mA/cm²):**
 - AVE = 23.8 mA/cm², σ = 0.7 mA/cm²
 - AVE = 10.8 mA/cm², σ = 0.5

- **Conversion Efficiency (%):**
 - AVE = 1.2 %, σ = 0.5

160
LARGE-AREA SILICON SHEET TASK

![Graphs showing various parameters vs. diffusion length.](image)

DIFFUSION LENGTH (um) vs. FILL FACTOR, CONVERSION EFFICIENCY, OPEN-CIRCUIT VOLTAGE, and SHORT-CIRCUIT CURRENT.
LARGE-AREA SILICON SHEET TASK

Summary of JPL Cell Results

- BEST DIP-COATED CELL: -10.54%
- BEST SCIM-COATED CELL: -7.64%
- 1980 BASELINE CELLS:

\[
\begin{align*}
\eta & = 9.6\% \pm 0.5 \\
J_{sc} & = 23.6 \frac{mA}{cm^2} \pm 0.7 \\
V_{oc} & = 0.57 \text{ V} \pm 0.01 \\
FF & = 0.72 \pm 0.03 \\
A & = 5 \text{ cm}^2 \text{ for all cells }
\end{align*}
\]
TOTAL AREA

AM1 WITH AR COATING

Major Assumptions

- 2.5 MILLION m^2 PRODUCTION
- 0.25-cm/sec PULL SPEED
- TWO 12.5-cm TRACKS PER COATING MACHINE
- $50,800 COST FOR SILICON COATING MACHINE
- 1/12 OPERATOR PER COATING MACHINE; 4.7 SHIFTS
- OPERATOR LABOR $13,150/YEAR WITHOUT FRINGE BENEFITS
- COATING MACHINES STACKED SIX HIGH (24 ft^2 PROPRACTION FLOOR SPACE PER MACHINE)
- $5.78/m^2 CERAMIC COST
- 85% PLANT EFFICIENCY
- 92% PROCESS YIELD
Projected Technology Costs by IPEG2 ($/m²)

<table>
<thead>
<tr>
<th>TASK</th>
<th>EQPT</th>
<th>SQFT</th>
<th>DLAB</th>
<th>MATS</th>
<th>UTIL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON COATING</td>
<td>0.0078</td>
<td>0.0283</td>
<td>0.0692</td>
<td>0.330 (^{(a)})</td>
<td>0.00678</td>
<td>7.981</td>
</tr>
<tr>
<td>SILICON COATING</td>
<td>1.917</td>
<td>0.1731</td>
<td>0.954</td>
<td>0.662 (^{(c)})</td>
<td>0.12154</td>
<td>3.828 (^{(e)})</td>
</tr>
<tr>
<td>INSPECT</td>
<td>0.104</td>
<td>0.1045</td>
<td>0.966</td>
<td>---</td>
<td>0.00352</td>
<td>1.178</td>
</tr>
<tr>
<td>TOTALS</td>
<td>2.029</td>
<td>0.306</td>
<td>1.98</td>
<td>8.531 (^{(e)})</td>
<td>0.132</td>
<td>12.987 (^{(e)})</td>
</tr>
</tbody>
</table>

\(^{(a)}\) CARBON,
\(^{(b)}\) SUBSTRATES,
\(^{(c)}\) ARGON, CRUCIBLES, FURNACES, INSULATION,
\(^{(d)}\) POLYSILICON,
\(^{(e)}\) EXCLUDING SILICON,
\(^{(f)}\) INCLUDING SILICON
LARGE-AREA SILICON SHEET TASK

IPEG2 Projected Cost Breakdown

ADDED VALUE $12.99/M²
INCLUDING SI $17.35/M²

Problems and Concerns

- ADEQUATE SILICON THICKNESS AT HIGH SPEEDS NOT DEMONSTRATED
- DENDRITIC GROWTH IN SCIM-11
- CELL EFFICIENCY OF SOC GROWN AT HIGH SPEEDS NOT DEMONSTRATED
OXYGEN ANALYSIS
UNIVERSITY OF MISSOURI, ROLLA

P.D. Ownby
H.V. Romero

Introduction

An oxygen partial pressure maintained higher than 10^-19 atm. in the presence of molten silicon is observed to enhance the interaction between the silicon and the container material. Thus it is desirable to know the p_{O_2} over molten silicon in actual production facilities.

p_{O_2} measurements were made in:
- Westinghouse Silicon Web Furnaces
- Honeywell SC14 Coater Furnace
- Honeywell Dip Coater Furnace

To determine: p_{O_2} of purge gas
p_{O_2} of furnace atmosphere at operating temperature
LARGE-AREA SILICON SHEET TASK

Conditions for Westinghouse Runs

— THORIA-YTTRIA OXYGEN CELL USED WITH A CO/CO$_2$ REFERENCE GAS HAVING A P$_{O_2}$ OF 10$^{-14}$ ATM.

— LONG SAMPLE LINE FROM FURNACE TO CELL

— SLOW SAMPLE RATE (14. CC/ Min) DRAWN THROUGH CELL WITH HOUSE VACUUM-GAS FLOW PATH(1)

— THORIA TUBE DESTROYED BY THERMAL SHOCK ON INITIAL HEAT-UP--CELL REBUILT WITH NEW THORIA TUBE

— LESS THAN 0.5 VARIATION IN LOG P$_{O_2}$ OVER DURATION OF RUNS EXCEPT WHEN AIR WAS INTRODUCED INTO THE SAMPLE LINE

— HOUSE ARGON P$_{O_2}$ = 10$^{-12}$ ATM.

Gas Flow in Oxygen Cell

![Diagram of gas flow in oxygen cell]

1 Gas Flow 14 CC/min

2 Gas Flow 640 CC/min Max.

Gas Exhaust Tube

Thermocouple

Solid Electrolyte Cell

Alumina Tube
LARGE-AREA SILICON SHEET TASK

Gas Supply to Oxygen Cell

House Argon Supply Air from RE furnace from WA furnace

Flow meter

Oxygen Cell

Flow meter HVAC Vacuum

Log pO₂ vs Time for Westinghouse Web Furnace

Log pO₂

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7

Time (hours)
LARGE-AREA SILICON SHEET TASK

Response of Oxygen Cell to Introduction of Air
(While Monitoring House Argon)

![Graph showing the response of an oxygen cell to the introduction of air while monitoring house argon.](image)

Conditions for Honeywell Runs

- Zirconia-Yttria Oxygen Cell with 1 atm. of oxygen for reference
- High sample rate (200 cc/min)—gas flow path 2
- p_{O_2} of house argon for dip furnace was $10^{-4.8}$ atm.
- p_{O_2} of house argon for scim furnace was $10^{-5.0}$ atm.
- p_{O_2} of scim furnace atmosphere varied between $10^{-16.0}$ and $10^{-14.3}$ atm during coating
- p_{O_2} of dip furnace atmosphere varied between $10^{-14.8}$ and $10^{-13.0}$ atm during coating

168
LARGE-AREA SILICON SHEET TASK

pO₂ vs Time for Honeywell SCIM Coater

- **ADD SILICON**
- **ADD BORON**
- **SEAL PORT**
- **EXIT GATE OPEN**
- **EXIT GATE CLOSED**
- **ENTRANCE GATE OPEN**
- **ENTRANCE GATE CLOSED**
- **SILICON OPENED**
- **SILICON CLOSED**
- **POWER REDUCED**
- **EXIT CLOSED**

Log *pO₂*

Time (hours)

pO₂ vs Time for Honeywell Dip Coater

- **ARGON PURGE**
- **FURNACE COLD**
- **HEAT-UP**
- **INSERT SAMPLES**
- **CLEAN OUT MELT**
- **SILICON MELTED**
- **SAMPLE BROKE OFF**

Log *pO₂*

Time (hours)
LARGE-AREA SILICON SHEET TASK

Summary of Results

BASELINE OXYGEN PARTIAL PRESSURE AS MEASURED AT 1000°C WITH SOLID ELECTROLYTE CELL

1 FROM WESTINGHOUSE WEB FURNACE:
 \(P_{O_2} = 10^{-12.5} \text{ ATM} \)

2 FROM HONEYWELL SOC FURNACES:
 A) SCIM COATER:
 \(P_{O_2} = 10^{-16.0} \text{ ATM} \)
 B) DIP COATER:
 \(P_{O_2} = 10^{-15.5} \text{ ATM} \)

3 FROM MOBIL-TYCO EFG FURNACE:
 \(P_{O_2} = 10^{-12.1} \text{ ATM} \)
Design Program Requirements

| TECHNOLOGY - INGOT GROWTH | REPORT DATE: DECEMBER 31, 1980
<table>
<thead>
<tr>
<th></th>
<th>START DATE: JULY 1, 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROACH.</td>
<td>MODIFICATIONS.</td>
</tr>
<tr>
<td></td>
<td>A. OVERALL EQUIPMENT DESIGN.</td>
</tr>
<tr>
<td>DESIGN OF A MODIFIED CG 2000 RC CRYSTAL GROWER FOR ADVANCED CZOCHRALSKI GROWTH FOR TECHNICAL READINESS.</td>
<td>B. PROCESS AUTOMATION WITH M.P.U.</td>
</tr>
<tr>
<td>GOALS.</td>
<td>C. SENSOR DEVELOPMENT: MELT LEVEL, MELT TEMPERATURE, CRYSTAL DIAMETER.</td>
</tr>
<tr>
<td>EQUIPMENT TO BE CAPABLE OF PULLING FIVE CRYSTALS, EACH OF 30 KG WEIGHT, 150 MMS DIAMETER FROM A SINGLE 16" DIAMETER CRUCIDILE.</td>
<td>D. RADIATION SHIELD TO ACCELERATE GROWTH.</td>
</tr>
<tr>
<td></td>
<td>E. RECHARGE MELTING RATE OF 25 KG/HR USING SILICON CHUNKS OF GRANULAR SILICON UTILIZING A RECHARGE HOPPER.</td>
</tr>
<tr>
<td></td>
<td>F. MODIFIED GROWTH CHAMBER SUITABLE FOR USE AS A PRODUCTION FACILITY.</td>
</tr>
<tr>
<td></td>
<td>G. THROUGHPUT CAPABILITY OF 2.5 KG/HR.</td>
</tr>
</tbody>
</table>
Equipment Design CG 6000 RC

<table>
<thead>
<tr>
<th>GOALS</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. OVERALL EQUIPMENT DESIGN.</td>
<td>A). 2000 RC AS BASIC CONCEPT</td>
</tr>
<tr>
<td></td>
<td>B). INCREASED CHAMBER SIZE.</td>
</tr>
<tr>
<td></td>
<td>C). IMPROVED RELIABILITY: - SEALS, WELDS, VIEWPORTS, ARGON SUPPLY, GRAPHITE.</td>
</tr>
<tr>
<td></td>
<td>D). INCREASED CAPACITY: - 15" x 12" AND 16" x 12" HOT ZONES. SEED MOTION MECHANISM.</td>
</tr>
<tr>
<td></td>
<td>10" ADDED TO PULL CHAMBER HEIGHT</td>
</tr>
<tr>
<td></td>
<td>150 KW POWER SUPPLY.</td>
</tr>
<tr>
<td></td>
<td>E). IMPROVED SERVICEABILITY.</td>
</tr>
<tr>
<td></td>
<td>A). MPU SYSTEM - PLUG COMPATIBLE FOR REPLACING ANALOG SYSTEM.</td>
</tr>
<tr>
<td></td>
<td>B). SENSOR DEVELOPMENT FOR MELT LEVEL, MELT TEMP, CRYSTAL DIAMETER.</td>
</tr>
<tr>
<td></td>
<td>SUITABLE RADIATION SHIELD.</td>
</tr>
<tr>
<td>2. PROCESS AUTOMATION.</td>
<td>SUPPLEMENT HOPPER UPRATED (150 KW) POWER SUPPLY.</td>
</tr>
<tr>
<td></td>
<td>INCORPORATE ABOVE MODS. AND DEVELOPMENT WORK.</td>
</tr>
<tr>
<td>3. ACCELERATED GROWTH.</td>
<td>UPRATED (150 KW) POWER SUPPLY.</td>
</tr>
<tr>
<td>4. RECHARGE MELTING RATE OF 25 KG/HR.</td>
<td>SUITABLE RADIATION SHIELD.</td>
</tr>
<tr>
<td>5. THROUGHPUT RATE OF 2.5 KG/HR.</td>
<td>RECHARGE HOPPER UPRATED (150 KW) POWER SUPPLY.</td>
</tr>
<tr>
<td>TASK DESCRIPTION</td>
<td>7/4</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>1 DESIGN PHASE (MECHANICAL)</td>
<td></td>
</tr>
<tr>
<td>A) HOT ZONE</td>
<td></td>
</tr>
<tr>
<td>B) PULL CHAMBER SYSTEM</td>
<td></td>
</tr>
<tr>
<td>C) FURNACE TANKS</td>
<td></td>
</tr>
<tr>
<td>D) CRUCIBLE LIFT MECHANISM</td>
<td></td>
</tr>
<tr>
<td>E) SEED LIFT MECHANISM</td>
<td></td>
</tr>
<tr>
<td>F) BASE PLATE & FRAME</td>
<td></td>
</tr>
<tr>
<td>G) ANCILLARY MODIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>2 DESIGN PHASE (ELECTRICAL)</td>
<td></td>
</tr>
<tr>
<td>A) POWER SUPPLY</td>
<td></td>
</tr>
<tr>
<td>B) SPECIAL PANELS</td>
<td></td>
</tr>
<tr>
<td>C) SPECIAL HARNESSES</td>
<td></td>
</tr>
<tr>
<td>D) ANCILLARY ELECTRICAL MODS</td>
<td></td>
</tr>
<tr>
<td>3 DESIGN DOCUMENTATION</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY INGOT GROWTH</td>
<td>REPORT DATE: FEBRUARY 5, 1981</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>START DATE: SEPTEMBER 26, 1980</td>
</tr>
<tr>
<td>APPROACH. CONSTRUCTION AND DEVELOPMENT EQUIPMENT TO DEMONSTRATE AN ADVANCED CZOCHRALSKI GROWTH PROCESS TO PRODUCE LOW COST SILICON INGOTS FROM A SINGLE CRUCIBLE FOR TECHNOLOGY READINESS.</td>
<td>GOALS.</td>
</tr>
<tr>
<td></td>
<td>1. CONTINUOUS GROWTH OF 150 KG OR MORE OF MULTIPLE INGOTS FROM ONE CRUCIBLE USING MELT REPLENISHMENT.</td>
</tr>
<tr>
<td></td>
<td>2. DIAMETER OF 15 CMS E.P.D. 10^4 PER CM^2</td>
</tr>
<tr>
<td></td>
<td>3. GROWTH THROUGHPUT 2.5 KG PER HOUR USING A RADIATION SHIELD.</td>
</tr>
<tr>
<td></td>
<td>4. AFTER GROWTH YIELD 90%</td>
</tr>
<tr>
<td></td>
<td>5. RECHARGE MELTING RATE OF 25 KG/HR USING HOPPER RECHARGING TECHNIQUES.</td>
</tr>
<tr>
<td></td>
<td>6. MICROPROCESSOR CONTROLS PLUS IMPROVED SENSORS FOR MELT LEVEL, MELT TEMPERATURE AND CRYSTAL DIAMETER.</td>
</tr>
<tr>
<td></td>
<td>7. PROTOTYPE EQUIPMENT SUITABLE FOR HIGH VOLUME SILICON PRODUCTION TRANSFERABLE DIRECTLY TO INDUSTRY.</td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

Overall Program

<table>
<thead>
<tr>
<th>TECHNOLOGY - INGOT GROWTH</th>
<th>REPORT DATE: FEBRUARY 5, 1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>START DATE: SEPTEMBER 26, 1980</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROGRAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EQUIPMENT CONSTRUCTION AND TEST.</td>
</tr>
<tr>
<td>2. PROCESS DEVELOPMENT.</td>
</tr>
<tr>
<td>3. AUTOMATION AND CONTROLS.</td>
</tr>
<tr>
<td>4. ANALYTICAL STUDY.</td>
</tr>
<tr>
<td>5. DOCUMENTATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROGRAM GOAL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CONSTRUCT/DEBUG/TEST CG 6000 RC CRYSTAL PULLER.</td>
</tr>
<tr>
<td>2. A. ACCELERATED RECHARGE.</td>
</tr>
<tr>
<td>B. ACCELERATED GROWTH.</td>
</tr>
<tr>
<td>C. YIELD AND COST IMPROVEMENT.</td>
</tr>
<tr>
<td>3. MPU INCORPORATING MELT LEVEL, MELT TEMPERATURE, DIAMETER CONTROL SENSORS.</td>
</tr>
<tr>
<td>4. A. PURITY ANALYSIS.</td>
</tr>
<tr>
<td>B. SOLAR CELL FABRICATION.</td>
</tr>
<tr>
<td>5. A. TECHNICAL REPORTS.</td>
</tr>
<tr>
<td>B. ECONOMIC ANALYSIS.</td>
</tr>
<tr>
<td>C. PRODUCTION/PROCESS EQUIPMENT SPEC. FOR TECHNOLOGY READINESS.</td>
</tr>
<tr>
<td>D. FINAL REPORT.</td>
</tr>
</tbody>
</table>
Project Title:
Advanced Czochralski Growth
for Technology Readiness

Program Plan Revision No. 1

<table>
<thead>
<tr>
<th>Task Description</th>
<th>ON</th>
<th>D</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>N</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equipment construction and test</td>
<td></td>
</tr>
<tr>
<td>a. Construction phase</td>
<td></td>
</tr>
<tr>
<td>b. De-bug and test</td>
<td></td>
</tr>
<tr>
<td>2. Process Development</td>
<td></td>
</tr>
<tr>
<td>a. Accelerated recharge</td>
<td></td>
</tr>
<tr>
<td>b. Accelerated growth</td>
<td></td>
</tr>
<tr>
<td>c. Yield improvement</td>
<td></td>
</tr>
<tr>
<td>3. Controls and Automation</td>
<td></td>
</tr>
<tr>
<td>a. Sensor Development</td>
<td></td>
</tr>
<tr>
<td>b. Controls Development on grower</td>
<td></td>
</tr>
<tr>
<td>c. Final test runs, documentation</td>
<td></td>
</tr>
<tr>
<td>4. Analytical Study</td>
<td></td>
</tr>
<tr>
<td>a. Purity analyses</td>
<td></td>
</tr>
<tr>
<td>b. Solar cell fabrication</td>
<td></td>
</tr>
<tr>
<td>5. Documentation</td>
<td></td>
</tr>
<tr>
<td>a. Technical reports</td>
<td></td>
</tr>
<tr>
<td>b. Economic analysis</td>
<td></td>
</tr>
<tr>
<td>c. Production/process equipment spec for technology readiness</td>
<td></td>
</tr>
<tr>
<td>d. Final report</td>
<td></td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

Overall Program Status

<table>
<thead>
<tr>
<th>TECHNOLOGY - INGOT GROWTH</th>
<th>REPORT DATE: FEBRUARY 5, 1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>START DATE: SEPTEMBER 21, 1980</td>
<td></td>
</tr>
<tr>
<td>TASK</td>
<td>STATUS</td>
</tr>
<tr>
<td>1. CONSTRUCTION AND TEST</td>
<td>1. CONSTRUCTION ALMOST COMPLETE. TESTING UNDERWAY.</td>
</tr>
<tr>
<td>2. PROCESS DEVELOPMENT</td>
<td>2. A. ALL PURCHASE ORDERS PLACED FOR SILICON, CRUCIBLES, GRAPHITE.</td>
</tr>
<tr>
<td>A. RAW MATERIALS.</td>
<td>B. RADIATION SHIELD DESIGN COMPLETE QUOTATIONS AWAITED.</td>
</tr>
<tr>
<td>B. ACCELERATED GROWTH.</td>
<td>C. 150 KW POWER SUPPLY RECEIVED.</td>
</tr>
<tr>
<td>C. ACCELERATED RECHARGE.</td>
<td>D. ONGOING.</td>
</tr>
<tr>
<td>D. YIELD AND COST IMPROVEMENT.</td>
<td>3. SYSTEMS UNDER EVALUATION. EXPERIMENTAL RUNS COMMENCED.</td>
</tr>
<tr>
<td>3. AUTOMATION AND CONTROLS.</td>
<td>4. EVALUATION OF METHODS ONGOING.</td>
</tr>
<tr>
<td>4. PURITY ANALYSIS AND SOLAR CELL FAB.</td>
<td>5. A. COMPLETE.</td>
</tr>
<tr>
<td>5. DOCUMENTATION.</td>
<td>B. ONGOING.</td>
</tr>
<tr>
<td>A. DESIGN REVIEW.</td>
<td>C. COMMENCE, JUNE 1981.</td>
</tr>
<tr>
<td>B. ECONOMIC ANALYSIS.</td>
<td></td>
</tr>
<tr>
<td>C. TECHNOLOGY TRANSFER INFORMATION.</td>
<td></td>
</tr>
</tbody>
</table>
Overall View of Kayex CG 6000 RC Crystal Puller (JPL's LASS Task ESGU)
LARGE-AREA SILICON SHEET TASK

Cz Growth Parameters, Low-Cost Cz
(Poly Lump Feed)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>5 Crystals x 30 Kg</th>
<th>3 Crystals x 50 Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crucible Size (ins)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Crystal Diameter (cms)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Avg. Straight Growth Rate (cms/hr)</td>
<td>11.40</td>
<td>8.56</td>
</tr>
<tr>
<td>Total Poly Melted (kg)</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Total Crystal Pulled (kg)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Pulled Yield (%)</td>
<td>93.75</td>
<td>93.75</td>
</tr>
<tr>
<td>Yield After CG(%)</td>
<td>82.5 (18 Kg loss)</td>
<td>96.25 (12 Kg loss)</td>
</tr>
<tr>
<td>No. of Crystals/Crucible</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cycle Time (hrs)</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Process Time Cycle

<table>
<thead>
<tr>
<th>Operation</th>
<th>Low Cost Cz</th>
<th>Low Cost Cz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preparation</td>
<td>150 MINS</td>
<td>165 MINS</td>
</tr>
<tr>
<td>Load Poly</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Close Furnace</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pump Down</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Melt</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>2. Growth Cycle (Initial)</td>
<td>508 MINS</td>
<td>962 MINS</td>
</tr>
<tr>
<td>Lower Seed *</td>
<td>15°</td>
<td>15°</td>
</tr>
<tr>
<td>Stabilize Temp.</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Seed Growth</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Crown Growth</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Straight Growth</td>
<td>343</td>
<td>797</td>
</tr>
<tr>
<td>Taper End</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>3. Recharge/Growth Cycle</td>
<td>2792 MINS (4 Cycles)</td>
<td>2324 MINS (2 Cycles)</td>
</tr>
<tr>
<td>Cool Crystal</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Remove Crystal</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Load Hopper & Vac Down (2)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Lower Hopper (2)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Melt Poly Lump</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Lower Seed *</td>
<td>15°</td>
<td>15°</td>
</tr>
<tr>
<td>Stabilize Temp.</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Seed Growth</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Crown Growth</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Straight Growth</td>
<td>343</td>
<td>797</td>
</tr>
<tr>
<td>Taper End</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

* Completed during stabilization of melt temperature.
LARGE-AREA SILICON SHEET TASK

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>LOW COST CZ</th>
<th>LOW COST CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUT DOWN CYCLE</td>
<td>140 MINS</td>
<td>140 MINS</td>
</tr>
<tr>
<td>COOL FURNACE</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>REMOVE CRYSTAL **</td>
<td>10**</td>
<td>10**</td>
</tr>
<tr>
<td>CLEAN, SET UP</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

COMPLETED DURING FURNACE COOLING TIME

TOTAL TIME =

- 60 HRS
- 60 HRS

GROWTH RATE CALCULATION:

AVERAGE STRAIGHT GROWTH FOR 27 KG

- 343 MINS = 4.72 KG/HR
- AT 1050 GMS/INCH: = 4.49"/HR GROWTH RATE

AVERAGE STRAIGHT GROWTH FOR 47 KG

- 797 MINS = 3.54 KG/HR
- = 3.37"/HR GROWTH RATE

SAMICS-IPEG Input Data and Cost Calculation

CONDITIONS (PER CYCLE)

TOTAL Si MELTED (KG)	160	160
CRystal WT (KG)	30	50
No CRystals/CRUCIBLE	5	3
DIAMETER OF CRYSTAL (CMS)	15	15
AVG. STR. GROWTH RATE (CMS/HR)	11.4	8.56
CYCLE TIME (HRS)	60	60
CRUCIBLE SIZE (INS)	16 x 12	16 x 12

INPUT DATA ($1980)

CAPITAL EQUIP COST (EQPT)	$ 266900	266900
MANUFACTURING FLOOR SPACE (SQFT)	100	100
PROD. OPERATOR (0.65 PERSONS/YR)	$ 8554	8554
ELECT. TECHNICIAN (0.3 PERSONS/YR)	$ 5082	5082
INSPECTOR (0.1 PERSONS/YR)	$ 1155	1155
TOTAL D/LAB	$ 14791	14791
LARGE-AREA SILICON SHEET TASK

<table>
<thead>
<tr>
<th>DIRECT USED MATERIALS & SUPPLIES</th>
<th>LOW COST CZ</th>
<th>LOW COST CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLES/YR HRS/CYCLE</td>
<td>138/60</td>
<td>138/60</td>
</tr>
<tr>
<td>POLY KG/yr CHARGED</td>
<td>22080</td>
<td>22080</td>
</tr>
<tr>
<td>SEED ($20 EA)</td>
<td>1380</td>
<td>1380</td>
</tr>
<tr>
<td>DOPANT (NOT COSTED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGON (150 FT³/CYCLE HR @ $0.02/FT³)</td>
<td>24840</td>
<td>24840</td>
</tr>
<tr>
<td>CRUCIBLES (16" x 12" @ $375 EA.)</td>
<td>51750</td>
<td>51750</td>
</tr>
<tr>
<td>MISCELLANEOUS (4 SETS OF 16" GRAPHITE/YR AT $8889 PER SET)</td>
<td>35556</td>
<td>35556</td>
</tr>
<tr>
<td>MATERIALS TOTAL (MATS)</td>
<td>$113526</td>
<td>$113526</td>
</tr>
</tbody>
</table>

UTILITIES (PROCESS)		
ELECTRICITY		
(90 KW @ $0.035/KW) (CYCLE TIME - 3 HRS) (# OF CYCLES)	$24778	$24778
COOLING WATER		
(90 KW @ $0.0074/KW) (CYCLE TIME - 2 HRS) (# OF CYCLES)	$5331	$5331
UTILITIES TOTAL (UTIL)	$30109	$30109

<table>
<thead>
<tr>
<th>IPEG PRICE</th>
<th>LOW COST CZ</th>
<th>LOW COST CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 EOPT = $0.57/YR = $ EOPT</td>
<td>152133</td>
<td>152133</td>
</tr>
<tr>
<td>C2 SOFT = $1.09/YR = $ SOFT</td>
<td>10900</td>
<td>10900</td>
</tr>
<tr>
<td>C3 DLAB = $2.1/YR = $ DLAB</td>
<td>31061</td>
<td>31061</td>
</tr>
<tr>
<td>C4 MATS = $1.2/YR = $ MATS</td>
<td>136231</td>
<td>136231</td>
</tr>
<tr>
<td>C5 UTIL = $1.2/YR = $ UTIL</td>
<td>36131</td>
<td>36131</td>
</tr>
<tr>
<td>ANNUAL COST</td>
<td>$366456</td>
<td>$366456</td>
</tr>
</tbody>
</table>

QUAN. (TOTAL CHARGE x % YIELD) (KG)	18216 KG	19044
THROUGHPUT	2.2 KG/HR	2.3 KG/HR
ADD ON COST ($KG OR $/M²)	$20.12	$19.24
(ASSUME 1 KG = 1M²)		
PEAK WATT CALCULATION	14.19¢/PEAK WATT	13.57¢/PEAK WATT

\[
\text{PEAK WATT} = \frac{1000 \times \text{CELL EFF.} \times \text{CELL YIELD} \times \text{MANUF. YIELD}}{15\% \times 35\% \times 99.5\%}
\]
LARGE-AREA SILICON SHEET TASK

CONDITIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUCIBLE SIZE (INS)</td>
<td>16" x 12"</td>
</tr>
<tr>
<td>CRYSTAL DIAMETER (CMS)</td>
<td>15</td>
</tr>
<tr>
<td>GROWTH RATE (CMS/HR)</td>
<td>11.40</td>
</tr>
<tr>
<td>TOTAL POLY MELTED (KG)</td>
<td>160</td>
</tr>
<tr>
<td>TOTAL CRYSTAL PULLED (KG)</td>
<td>150</td>
</tr>
<tr>
<td>PULLED YIELD (%)</td>
<td>93.75</td>
</tr>
<tr>
<td>YIELD AFTER CG (%)</td>
<td>86.25</td>
</tr>
<tr>
<td>NO OF CRYSTALS/CRUCIBLE</td>
<td>3</td>
</tr>
<tr>
<td>CYCLE TIME (HRS)</td>
<td>49.85</td>
</tr>
</tbody>
</table>

3 x 50 KG CRYSTAL GROWTH

Process Time Cycle

<table>
<thead>
<tr>
<th>Operation</th>
<th>MINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PREPARATION</td>
<td></td>
</tr>
<tr>
<td>LOAD POLY</td>
<td>25</td>
</tr>
<tr>
<td>CLOSE FURNACE</td>
<td>5</td>
</tr>
<tr>
<td>PUMP DOWN</td>
<td>10</td>
</tr>
<tr>
<td>MELT</td>
<td>125</td>
</tr>
<tr>
<td>1. PREPARATION</td>
<td>165</td>
</tr>
<tr>
<td>2. GROWTH CYCLE (INITIAL)</td>
<td></td>
</tr>
<tr>
<td>LOWER SEED *</td>
<td>15*</td>
</tr>
<tr>
<td>STABILIZE TEMPERATURE</td>
<td>30</td>
</tr>
<tr>
<td>SEED GROWTH</td>
<td>20</td>
</tr>
<tr>
<td>CROWN GROWTH</td>
<td>55</td>
</tr>
<tr>
<td>STRAIGHT GROWTH</td>
<td>597 (SEE CALCULATION)</td>
</tr>
<tr>
<td>TAPER END</td>
<td>60</td>
</tr>
<tr>
<td>2. GROWTH CYCLE (INITIAL)</td>
<td>762</td>
</tr>
<tr>
<td>3. RECHARGE/GROWTH CYCLE</td>
<td></td>
</tr>
<tr>
<td>COOL CRYSTAL</td>
<td>30</td>
</tr>
<tr>
<td>REMOVE CRYSTAL</td>
<td>10</td>
</tr>
<tr>
<td>LOAD HOPPER & VAC DOWN (2)</td>
<td>60</td>
</tr>
<tr>
<td>LOWER HOPPER (2)</td>
<td>10</td>
</tr>
<tr>
<td>MELT POLY LUMP</td>
<td>90</td>
</tr>
<tr>
<td>LOWER SEED *</td>
<td>15*</td>
</tr>
<tr>
<td>STABILIZE TEMP.</td>
<td>30</td>
</tr>
<tr>
<td>SEED GROWTH</td>
<td>20</td>
</tr>
<tr>
<td>CROWN GROWTH</td>
<td>55</td>
</tr>
<tr>
<td>STRAIGHT GROWTH</td>
<td>597</td>
</tr>
<tr>
<td>TAPER END</td>
<td>60</td>
</tr>
<tr>
<td>3. RECHARGE/GROWTH CYCLE</td>
<td>1924</td>
</tr>
</tbody>
</table>

* COMPLETED DURING STABILIZATION OF MELT TEMPERATURE
LARGE-AREA SILICON SHEET TASK

OPERATION

4. SHUT DOWN CYCLE 140 MINS
 COOL FURNACE 80
 REMOVE CRYSTAL ** 10**
 CLEAN, SET UP 60
 TOTAL TIME (HRS) 49.85

** COMPLETED DURING FURNACE COOLING TIME

AVERAGE STRAIGHT GROWTH FOR 47 KG

597 MINS = 4.72 KG/HR
AT 1050 GMS/INCH = 4.49"/HR AV. GROWTH RATE REQUIRED

SAMICS-IPEG Input Data and Cost Calculation
For 3 x 50-kg Crystal Growth

CONDITIONS (PER CYCLE)
TOTAL SI MELTED (KG) 160
CRYSTAL WEIGHT (KG) 50
NO CRYSTALS/CRUCIBLE 3
DIAMETER OF CRYSTAL (CMS) 15
GROWTH RATE (CMS/HR) 11.40
CYCLE TIME (HRS) 49.85
CRUCIBLE SIZE (INS) 16" x 12"

INPUT DATA ($1980)
CAPITAL EQUIP COST (EQPT) $266900
MANUFACTURING FLOOR SPACE (SQFT) 100
ANNUAL DIRECT SALARIES
 PROD. OPERATOR (0.65 PERSONS/YR) $8554
 ELECT. TECH. (0.3 PERSONS/YR) $5082
 INSPECTOR (0.1 PERSONS/YR) $1155
TOTAL D/LAB $14791
LARGE-AREA SILICON SHEET TASK

DIRECT USED MATERIALS & SUPPLIES
85% USAGE PER YEAR

<table>
<thead>
<tr>
<th>CYCLES/yr</th>
<th>HRS/CYCLE</th>
<th>SEED (20 EA)</th>
<th>DOPANT (NOT COSTED) ARGIN 150 FT³/CYCLE HR @ $0.02/FT³)</th>
<th>CRUCIBLES (16" x 12" = $375 EA.)</th>
<th>MISCELLANEOUS (4 SETS OF 16" GRAPHITE/ YR @ $8889 PER SET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>49.85</td>
<td>$1660</td>
<td>$24825</td>
<td>$62250</td>
<td>$35556</td>
</tr>
</tbody>
</table>

POLY KG/YR CHARGED 26560 G
SEED (S20 EA) 1660 DOPANT (NOT COSTED)
ARGON 150 FT³/CYCLE HR @ $0.02/FT³) 24825
CRUCIBLES (16" x 12" = $375 EA.) 62250
MISCELLANEOUS (4 SETS OF 16" GRAPHITE/ YR @ $8889 PER SET) 35556

MATERIALS TOTAL (MATS) $124291

UTILITIES (PROCESS)

ELECTRICITY (90 KW @ $0.035/KW)(CYCLE TIME 24498 - 3 HRS)(# OF CYCLES)

COOLING WATER (90 KW @ $0.0074/KW)(CYCLE TIME 5290 - 2 HRS)(# OF CYCLES)

UTILITIES TOTAL (UTIL) 29788

LOW COST CZ IPEG PRICE 3 x 50 KG CRYSTAL GROWTH

C1 EQPT = $0.57/YR = $EQPT 152133
C2 SOFT = $1.09/YR = $SOFT 10900
C3 DLAB = $2.1/YR = $DLAB 31061
C4 MATS = $1.2/YR = $MAT 149149
C5 UTIL = $1.2/YR = $UTIL 35746

ANNUAL COST $378989

QUAN. (TOTAL CHARGE x % YIELDING)(KG) = 22908 KG
THROUGHPUT = 2.77 KG/HR
ADD ON COST ($KG OR $M²) = $16.54
(ASSUME 1 KG - 1M²)

11.66¢/PEAK WATT

185
SUMMARY OF WORK AND RESULTS:

Recent efforts centered on identification and control of process variables to achieve optimum monocrystalline yields.

Automatic diameter control of ingots of 125 dia can now hold diameter variations to 380 µm. Ingots of 75 kg (150 µm dia.) have been grown. Better control of thermal convection currents in melt resulted in significant increases in monocrystalline yield.

The melt transfer system was simplified, with improved insulation and better temperature control of the replenishing melt stream.

Preliminary material analysis shows greater consistency in impurity levels (i.e. carbon, oxygen and others) in ingot material grown from the CLF furnace.

An overall design for a production prototype CLF-Cz furnace has been begun, incorporating Siltec's new microprocessor-controlled AG660-Cz growth furnace.

Schematic of Silicon "Rock" Feeder for the Continuous Liquid-Feed Furnace

Constructed Hopper Chamber for Si Particles (50 kg Capacity)
LARGE-AREA SILICON SHEET TASK

Bench Test of Silicon Particle Feeder

Effect of Crystal Size on CLF-Cz Add-On Cost

Artist's Conception of CLF Cz ESGU

ORIGINAL PAGE IS OF POOR QUALITY
LARGE-AREA SILICON SHEET TASK

Siltec's AG660 Cz Furnace

Control Panel for Microprocessor-Controlled AG660
LARGE-AREA SILICON SHEET TASK

SEMICRYSTALLINE CASTING PROCESS
SEMIX INC.

Basic Terms of Cooperative Agreement

- ESTABLISHED AGREEMENT FORMAT - INTEGRATED INTO JPL/LSA PROJECT
- 3 YEAR PROGRAM
- FINANCIAL COST SHARING AGREEMENT - 77.6% D.O.E. - $7.7M
 22.4% SEMIX - $2.2M
 PAYBACK - 1% OF NET SALES AFTER PROGRAM SUCCESSFULLY COMPLETED
- PATENT AND TECHNICAL DATA RIGHTS
 GOVERNMENT WAIVES PATENT RIGHTS
 RESTRICTION OF PROPRIETARY INFORMATION

Agreement Objectives

- DEVELOP AND DEMONSTRATE THE KEY ELEMENTS OF SI SHEET TECHNOLOGY NEEDED BY SEMIX TO ACHIEVE COMMERCIAL READINESS TO MEET 1962 PRICE GOALS AT 10MW/YEAR OUTPUT
 $1.66/WP* (SHEET) • $56/KG SILICON COSTS FOR $2.80/WP (MODULE)
- DEVELOP AND DEMONSTRATE TECHNOLOGY READINESS TO MEET 1966 PRICE GOALS
 $.37/WP* (SHEET) • $14/KG SILICON COSTS FOR $.70/WP (MODULE)
- SEMIX INTENDS TO FULLY COMMERCIALIZE TECHNOLOGY WITH PRIVATE FUNDS, TO MEET OR EXCEED PHOTOVOLTAIC PROGRAM GOALS
- SEMIX INTENDS TO SELL SHEET TO PHOTOVOLTAIC INDUSTRY AT PRICE GOALS IF PROJECT IS SUCCESSFUL (PROJECTED BY FY 83)

* Alliation based upon JPL PRICE GUIDELINES
Program Status

PHASE I — JUNE 1980 — JUNE 1981

<table>
<thead>
<tr>
<th>Task Description</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK 1 — ECONOMIC AND TECHNICAL PERFORMANCE ANALYSIS OF CURRENT SEMICRYSTALLINE PROCESS</td>
<td>80%</td>
</tr>
<tr>
<td>TASK 2 — DEMONSTRATE PROOF OF CONCEPT</td>
<td>25%</td>
</tr>
<tr>
<td>TASK 3 — PRELIMINARY DESIGN, ANALYSIS AND PROTOTYPE EVALUATION</td>
<td>60%</td>
</tr>
<tr>
<td>TASK 4 — CRITICAL SUBSYSTEM DESIGN, ASSEMBLY AND TEST</td>
<td>50%</td>
</tr>
<tr>
<td>TASK 5 — PRELIMINARY TECHNICAL AND ECONOMIC EVALUATION FOR 1985 GOALS</td>
<td>90%</td>
</tr>
</tbody>
</table>

- 2 REVIEW MEETINGS — DOE/JPL/SEMIX
- DELIVERABLES ON SCHEDULE — SEVERAL CELLS DELIVERED AHEAD OF SCHEDULE FOR EARLY VERIFICATION

Summary of Ubiquitous Crystallization Process (UCP) SAMICS Analyses

(1980 $/W_p)

<table>
<thead>
<tr>
<th>Process</th>
<th>CASE 1</th>
<th>CASE 2</th>
<th>CASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982 TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon Price</td>
<td>$56/Kilogram</td>
<td>$14/Kilogram</td>
<td>$14/Kilogram</td>
</tr>
<tr>
<td>Casting</td>
<td>0.41</td>
<td>0.20</td>
<td>0.065</td>
</tr>
<tr>
<td>sizing</td>
<td>0.04</td>
<td>0.032</td>
<td>0.003</td>
</tr>
<tr>
<td>Wafering</td>
<td>0.39</td>
<td>0.31</td>
<td>0.127</td>
</tr>
<tr>
<td>Cleaning</td>
<td>0.006</td>
<td>0.005</td>
<td>N/A</td>
</tr>
<tr>
<td>Quality Control</td>
<td>0.014</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>Total Value Added for Processes</td>
<td>0.86</td>
<td>0.558</td>
<td>0.196</td>
</tr>
<tr>
<td>JPL Price Allocation</td>
<td>1.00</td>
<td>N/A</td>
<td>0.26</td>
</tr>
<tr>
<td>Feedstock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon Cost</td>
<td>0.789</td>
<td>0.158</td>
<td>0.130</td>
</tr>
<tr>
<td>Total Sheet Cost</td>
<td>1.649</td>
<td>0.716</td>
<td>0.326</td>
</tr>
<tr>
<td>Cell Efficiency</td>
<td>12%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>
LARGE-AREA SILICON SHEET TASK

UCP SAMICS Analyses
(Not Including Cost of Si Feedstock)
(1980 $/Wp)

CASE 1
- Q.C.: 1.6%
- CLEANING: 0.7%
- WAFFERING: 45.3%
- CASTING: 47.7%
- SIZING: 4.7%

TOTAL VALUE ADDED
ADDED = $0.86

CASE 2
- Q.C.: 2.0%
- CLEANING: 0.8%
- WAFFERING: 54.9%
- CASTING: 36.6%
- SIZING: 5.7%

TOTAL VALUE ADDED
ADDED = $0.558

CASE 3
- Q.C.: 0.5%
- CASTING: 33.3%
- WAFFERING: 64.8%
- SIZING: 1.4%

TOTAL VALUE ADDED
ADDED = $0.196

UCP Semicrystalline Cell Measurements

- 11% AM1 AVERAGE 10 X 10 CM CELL EFFICIENCY — MEASURED BY SEMIX
- >12% AM1 AVERAGE 2 X 2 CM CELL EFFICIENCY — MEASURED BY SEMIX
LARGE-AREA SILICON SHEET TASK

SILICON INGOT CASTING: HEAT EXCHANGER METHOD (HEM)

CRYSTAL SYSTEMS INC.

F. Schmid
C.P. Khattak

IPEG Analysis Assumptions for HEM Casting

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment cost per unit, $</td>
<td>35,000</td>
</tr>
<tr>
<td>Floor space per unit, SQ.FT.</td>
<td>60</td>
</tr>
<tr>
<td>Labor, units/operator</td>
<td>10</td>
</tr>
<tr>
<td>Cycle time, Hrs.</td>
<td>48</td>
</tr>
<tr>
<td>Expendables/run, $</td>
<td>135</td>
</tr>
<tr>
<td>Conversion ratio, m²/kg</td>
<td>1</td>
</tr>
</tbody>
</table>

Ingots are cast by HEM and sectioned into nine bars of 10 cm x 10 cm x 30 cm size.

Value added price

<table>
<thead>
<tr>
<th>Value added price</th>
<th>$8.65/M²</th>
</tr>
</thead>
</table>

Goal

<table>
<thead>
<tr>
<th>Value added price</th>
<th>$18.15/M²</th>
</tr>
</thead>
</table>
LARGE-AREA SILICON SHEET TASK

![Graph showing the relationship between value added price and expendables per run. The goal is represented by a horizontal line at 18, and the graph shows a linear increase in price as expendables per run increase.](image-url)
LARGE AREA SILICON SHEET TASK

GOAL

VALUE ADDED PRICE, $/m^2

CYCLE TIME, HRS.

195
LARGE-AREA SILICON SHEET TASK

FINISHED INGOT SIZE, kg

VALUE ADDED PRICE, $/m²

GOAL
LARGE-AREA SILICON SHEET TASK

Revised IPEG Analysis Assumptions
For HEM Casting

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT COST PER UNIT, $</td>
<td>35,000</td>
</tr>
<tr>
<td>FLOOR SPACE PER UNIT, SQ.FT.</td>
<td>60</td>
</tr>
<tr>
<td>LABOR, UNITS/OPERATOR</td>
<td>10</td>
</tr>
<tr>
<td>CYCLE TIME, HRS.</td>
<td>48</td>
</tr>
<tr>
<td>EXPENDABLES/RUN, $</td>
<td>135</td>
</tr>
<tr>
<td>CONVERSION RATIO, m²/kg</td>
<td>1</td>
</tr>
</tbody>
</table>

INGOTS ARE CAST BY HEM AND SECTIONED INTO
NINE BARS OF 10 CM X 10 CM X 15 CM SIZE.

VALUE ADDED PRICE $15.59/M²

GOAL $18.15/M²
Heat Exchanger and Furnace Temperatures

<table>
<thead>
<tr>
<th>RUN</th>
<th>PURPOSE</th>
<th>SEEDING FURN. TEMP. ABOVE M.P. OC</th>
<th>GROWTH CYCLE DECREASE OF FURN. TEMP. OC</th>
<th>GROWTH TIME IN HRS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-37</td>
<td>Improve crystallinity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Run aborted during meltdown due to problem at heat exchanger fitting</td>
</tr>
<tr>
<td>41-38</td>
<td>Improve crystallinity</td>
<td>24</td>
<td>42</td>
<td>25</td>
<td>Good crystallinity</td>
</tr>
<tr>
<td>41-39</td>
<td>Improve crystallinity</td>
<td>8</td>
<td>24</td>
<td>25</td>
<td>No seed meltback on top of seed</td>
</tr>
<tr>
<td>41-40</td>
<td>Improve crystallinity</td>
<td>6</td>
<td>22</td>
<td>27</td>
<td>No seed meltback</td>
</tr>
<tr>
<td>41-41</td>
<td>Cast 32 x 32 cm² 35 kg ingot</td>
<td>15</td>
<td>33</td>
<td>40</td>
<td>Crucible leaked at crack on wall. Final weight was 30.8 kg. Ingot sent to JPL.</td>
</tr>
<tr>
<td>41-42</td>
<td>Improve crystallinity at bottom</td>
<td>37</td>
<td>29</td>
<td>24</td>
<td>Spurious nucleation restricted to area of melted back seed in contact with crucible</td>
</tr>
<tr>
<td>41-43</td>
<td>Improve crystallinity at bottom</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>Spurious nucleation restricted to area of melted back seed in contact with crucible</td>
</tr>
<tr>
<td>41-44</td>
<td>Improve crystallinity at bottom</td>
<td>62</td>
<td>64</td>
<td>31.5</td>
<td>Spurious nucleation restricted to area of melted back seed in contact with crucible</td>
</tr>
<tr>
<td>RUN</td>
<td>PURPOSE</td>
<td>SEEDING FURN. TEMP. ABOVE M.P. OC</td>
<td>GROWTH CYCLE DECREASE OF FURN. TEMP. OC</td>
<td>GROWTH TIME IN HRS.</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>41-45</td>
<td>Improve crystallinity at bottom</td>
<td>39</td>
<td>29</td>
<td>23</td>
<td>Run aborted after 17 hrs. of growth time due to crucible breakage.</td>
</tr>
<tr>
<td>41-46</td>
<td>Cast 32 x 32 cm² 35 kg ingot</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>41-47</td>
<td>Study heat flow</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>41-48</td>
<td>Cast 32 x 32 cm² 35 kg ingot</td>
<td>14</td>
<td>14</td>
<td>28.5</td>
<td>Ingot sent to JPL</td>
</tr>
<tr>
<td>41-49</td>
<td>Study heat flow</td>
<td>33</td>
<td>33</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>Study heat flow</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
Grid Pattern on Cross Section of Ingot Cast in Run 41-41, Corresponding to Positions for Resistivity Values Shown Below

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
<th>(i)</th>
<th>(j)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.31</td>
<td>1.17</td>
<td>1.18</td>
<td>1.28</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>1.66</td>
<td>1.20</td>
<td>1.19</td>
<td>1.17</td>
<td>1.34</td>
<td>1.29</td>
<td>1.23</td>
<td>1.25</td>
<td>1.24</td>
<td>1.20</td>
<td>1.40</td>
</tr>
<tr>
<td>(c)</td>
<td>1.36</td>
<td>1.29</td>
<td>1.34</td>
<td>1.40</td>
<td>1.39</td>
<td>1.46</td>
<td>1.49</td>
<td>1.38</td>
<td>1.29</td>
<td>1.38</td>
<td>1.25</td>
</tr>
<tr>
<td>(d)</td>
<td>1.45</td>
<td>1.44</td>
<td>1.45</td>
<td>1.47</td>
<td>1.48</td>
<td>1.58</td>
<td>1.53</td>
<td>1.40</td>
<td>1.48</td>
<td>1.44</td>
<td>1.37</td>
</tr>
<tr>
<td>(e)</td>
<td>1.60</td>
<td>1.44</td>
<td>1.49</td>
<td>1.53</td>
<td>1.58</td>
<td>1.57</td>
<td>1.60</td>
<td>1.52</td>
<td>1.62</td>
<td>1.44</td>
<td>1.55</td>
</tr>
<tr>
<td>(f)</td>
<td>1.55</td>
<td>1.47</td>
<td>1.55</td>
<td>1.59</td>
<td>1.50</td>
<td>1.52</td>
<td>1.51</td>
<td>1.58</td>
<td>1.59</td>
<td>1.56</td>
<td>1.63</td>
</tr>
<tr>
<td>(g)</td>
<td>1.45</td>
<td>1.58</td>
<td>1.47</td>
<td>1.55</td>
<td>8.55</td>
<td>1.66</td>
<td>1.69</td>
<td>1.75</td>
<td>1.57</td>
<td>1.57</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Resistivity data in Ω-cm
Cross Section of Ingot Cast in Run 41-48
LARGE-AREA SILICON SHEET TASK

FIXED-ABRASIVE SLICING TECHNIQUE (FAST)

CRYSTAL SYSTEMS, INC.

F. Schmid
C.P. Khattak

Silicon Slicing Summary

<table>
<thead>
<tr>
<th>RUN</th>
<th>PURPOSE</th>
<th>FEED FORCE/BLADE</th>
<th>AVERAGE CUTTING RATE</th>
<th>WIRE TYPE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>441-SX</td>
<td>Test codeposited bladepack</td>
<td>0.069 31.60</td>
<td>3.7 0.092</td>
<td>5 mil, 0.125 mm W wire, codeposited with 45, 30 µm diamonds</td>
<td>48% yield. Diamond pull-out caused blade wander.</td>
</tr>
<tr>
<td>442-SX</td>
<td>Test codeposited bladepack</td>
<td>0.066 30.01</td>
<td>3.4 0.085</td>
<td>5 mil, 0.125 mm W wire, codeposited with 45, 30 µm diamonds</td>
<td>55% yield. Loss of wafers during last inch of cut.</td>
</tr>
<tr>
<td>443-SX</td>
<td>Test codeposited bladepack</td>
<td>0.070 32.14</td>
<td>3.5 0.087</td>
<td>5 mil, 0.125 mm W wire, codeposited with 45, 30 µm diamonds</td>
<td>38% yield.</td>
</tr>
<tr>
<td>444-SX</td>
<td>Test codeposited bladepack (25/cm)</td>
<td>0.044 19.9</td>
<td>- -</td>
<td>5 mil, 0.125 mm stainless steel core; 0.1 mil, 2.5 µm Cu wire; codeposited with 45, 30 µm diamonds</td>
<td>Run aborted due to wires jumping from the grooves of support rollers and diamond pullout</td>
</tr>
<tr>
<td>445-SX</td>
<td>Test codeposited bladepack</td>
<td>0.072 32.7</td>
<td>2.9 0.074</td>
<td>5 mil, 0.125 mm W core, codeposited with 45, 30 µm diamonds</td>
<td>48% yield; diamond pullout reduced cutting effectiveness.</td>
</tr>
<tr>
<td>446-SX</td>
<td>Test CSI codeposited bladepack</td>
<td>0.070 31.6</td>
<td>3.8 0.096</td>
<td>5 mil, 0.125 mm W wire, codeposited on one side with 45 µm diamonds</td>
<td>49% yield.</td>
</tr>
<tr>
<td>447-SX</td>
<td>Test CSI codeposited bladepack</td>
<td>0.072 32.5</td>
<td>2.6 0.066</td>
<td>5 mil, 0.125 mm W wire, codeposited on both sides with 45 µm diamonds</td>
<td>91% yield.</td>
</tr>
<tr>
<td>448-SX</td>
<td>Test CSI codeposited bladepack</td>
<td>0.072 32.5</td>
<td>3.7 0.094</td>
<td>5 mil, 0.125 mm W wire, codeposited on both sides with 45 µm diamonds</td>
<td>80% yield.</td>
</tr>
<tr>
<td>449-SX</td>
<td>Life test (2nd run)</td>
<td>0.079 35.8</td>
<td>2.8 0.071</td>
<td>5 mil, 0.125 mm W wire, codeposited on both sides with 45 µm diamonds</td>
<td>74% yield.</td>
</tr>
<tr>
<td>450-SX</td>
<td>Life test (3rd run)</td>
<td>0.082 37.0</td>
<td>2.4 0.061</td>
<td>5 mil, 0.125 mm W wire, codeposited on both sides with 45 µm diamonds</td>
<td>38% yield. Sudden breakage of wafers due to loosening of workpiece.</td>
</tr>
<tr>
<td>451-SX</td>
<td>Test CSI codeposited 25/cm bladepack</td>
<td>0.063 28.5</td>
<td>2.15 0.055</td>
<td>5 mil, 0.125 mm W wire codeposited on both sides with 45 µm diamonds</td>
<td>Run aborted due to loss of water coolant system which caused wafer breakage.</td>
</tr>
<tr>
<td>452-SX</td>
<td>Life test (2nd run) 25/cm</td>
<td>0.082 28.3</td>
<td>2.9 0.071</td>
<td>5 mil, 0.125 mm W wire codeposited on both sides with 45 µm diamonds</td>
<td>18% yield. Some breakage during handling.</td>
</tr>
<tr>
<td>453-SX</td>
<td>Slice 15 cm diamond crystal</td>
<td>0.071 32.4</td>
<td>1.9 0.048</td>
<td>5 mil, 0.125 mm W wire codeposited on both sides with 45 µm diamonds</td>
<td>Run aborted after 4.5 inch of cut.</td>
</tr>
</tbody>
</table>
SEM Photograph of Electroplated Wire Before Use in Runs 437-SX and 438-SX, Showing Diamonds Buried in Nickel

SEM Photograph of Wire Used in Run 437-SX Showing High Diamond Concentration and Even Diamond Distribution
SEM Photos of Electroplated Wires Showing No Diamonds on the Sides
SEM Photograph of Wire After Use
In Runs 433-SX Through 435-SX

Wire Shown Above, Before Use
Sample No. 1. CSI Electroplated Wire, with Diamond on One Side
LARGE-AREA SILICON SHEET TASK

Run Number 448 SX
Run Number 449 SX
Run Number 450 SX
CSI Wirepack

DEPTH OF CUT (INCHES)

CUTTING TIME (HOURS)
LARGE-AREA SILICON SHEET TASK

RUN NUMBER 453-SX
15 cm diameter ingot

DEPTH OF CUT (INCHES)

CUTTING TIME (HOURS)
LARGE-AREA SILICON SHEET TASK

RUN NUMBER 452 SX
25/cm Wirepack

DEPTH OF CUT (INCHES)

CUTTING TIME (HOURS)
Sample No. 2. CSI Electroforming Technique to Produce Predetermined Kerf
1. Contract Goals

The contract goals are aimed at demonstrating the state-of-the-art capability of ID slicing for producing wafers suitable for solar cells.

This contract is aimed at demonstrating reduced-kerf slicing of silicon, and slicing throughput is of secondary consideration.

The two slicing methods used for slicing 6-in. dia silicon are aimed at producing wafers with thickness greater than 10 mils with a total material usage at 17 to 18 wafers/cm. This translates to approximately 23 mils for slice thickness plus kerf.

Plunge cutting of 4-in.-dia round and 4-in. square ingots and rotational cutting of 4-in.-dia round ingots are aimed at producing 25 wafers/cm, which translates to about 16 mils for slice thickness plus kerf.

2. Equipment and Blades.

The plunge cutting of 6-in.-dia ingots is being done exclusively on the RD-140 prototypes machine due to its large capacity. The RD-140 saw has a 32-in.-dia blade mount that can slice ingots up to 8-in diameter.

The design of the RD-140 is different from the pivot arm concept. The blade mount and spindle are kept stationary while the ingot is moved vertically by linear air bearing pads on a granite block.

There were three spindles used for the saw. They are:

1) Air-bearing spindle.
2) Hollow conventional-bearing spindle.
3) Solid conventional-bearing spindle.

The solid mechanical spindle has provided the best results. Chief advantages of the mechanical spindle are low vibration, trueness of the rotational plane and high reliability.

The air bearing pads on the granite block were the cause of some vibration which affected the quality of the wafers during the cutting stroke. By adjusting air pressure, the problem has been resolved and the air bearing surface provides an accuracy of 1 µm over a 10-in cutting stroke. The smooth action of the air pads evidences itself by exceptionally good surface quality of wafers cut on the RD-140 saw.

The blade mount used on the RD-140 is a hydraulic Dyna-Head design which does not permit the fine tuning of the ID runout. Typically, the ID of a 32-in. blade had a 2- to 3-mil runout. We are in the process of building a mechanical mount that will allow a much truer ID, thereby allowing faster cutting rates and thinner wafers.
LARGE-AREA SILICON SHEET TASK

The 32-in.-dia blades had 6-mil cores, which provided good results. We are able to slice satisfactory with about 13 mils of kerf. We plan to experiment with 4- and 5-in. cores which will reduce kerf by 1 or 2 mils; however, the thinner cores may be more successful on smaller-diameter blades. Since we do not need the full capacity of the 32-inch blade, we plan to make a 27-inch blade mount that will amply accommodate 6-in.-dia crystals.

Rotational slicing of 6-in. and 4-in. round crystals and plunge slicing of 4-in. square crystals were done on a standard 22-inch STC saw equipped with crystal rotation and programmed feed rate. The programmable feed is of a new design that allows feed rates up to 6 in./min. Programming is done through a cam that moves a linear potentiometer.

All slicing was programmed for the rotational slicing and slicing of 4-in.-square wafers.

The 22-inch blades had 6-mil cores, which gave kerf losses from 11 to 12 mils. We tried some 22-inch blades with 5-mil cores, but they were not very successful. We think that the problem was with the material and we have ordered some new 5-mil sheet material. We also plan to test 4-mil cores, which will reduce kerf below 10 mils.

3.1 Six-in-Dia Plunge Cutting

Average kerf for the 32-in.-dia blades was 13 mils. We were able to cut wafers down to 12 mils thick with yield greater than 85%. Throughout the 6-in. plunge runs, we were able to maintain cutting speeds at 1.5 in./min. The kerf plus slice thickness yielded about 16 wafers/cm; our goal is 17 wafers per cm.

The greatest area for improving wafers/cm will come from reduction of kerf losses. A 27-inch OD can amply accommodate 6-in.-dia wafers. Kerf should be reduced to 11.5 mils for the 27-in.-dia blades. With the present slice thickness of 12 mils, we should achieve 17 wafers per cm.

3.2 Six-in. Dia Rotational Slicing

Rotational slicing of 6-in.-dia wafers was less successful than plunge cutting. Although kerf was reduced to 11.5 mils on the 22-inch blade, it was difficult to get whole wafers less than 18 mils thick. Even at 20 mils, yield was only about 50%. Cutting rates were about .3 in./min. It was much more difficult to slice 6-in. dia ingots rotationally than 4-dia.-dia ingots. The problem may be due to alignment of the rotational axis and larger deviations at the larger diameter.

3.3 Rotational Slicing of 4-in. Dia Ingots

We were able to cut wafers down to 9 mils thick with about 9.5 mils kerf. Rotational slicing of 4-in.-dia wafers yielded the lowest kerf due to
the use of smaller 16-in blades. Average cutting rates were about .4 in./min for plunge cutting. The feed was programmed from 0.080 to 0.600 in./min and the rotation from 9 to 20 rpm.

3.4 Plunge Cutting of 4-in. Squares

We achieved best results on 4-in. square polycrystalline silicon with a fine-grain structure (1 to 5-μm grain sizes.) With 11 mils kerf, we were able consistently to cut 3 to 6-mil wafers at 1 in. per minute. Yield was better than 90%. When the thickness was doubled to 10 or 12 mils we were able to increase cutting rates to 2.5/min with the same yield. This type of material seems to slice much better than single-crystal or larger-grain polycrystalline silicon.

We tested other 4-in.-square material but were not able to reduce slice thickness below 10 mils with the same yields.

4. Conclusions

The best results are achieved by plunge cutting 6-in.-dia single-crystal silicon and 4-in.-square fine-grain polycrystalline silicon. Although rotational slicing allows for use of smaller blades, ease of set-up, lower equipment cost and faster cutting rates seem to favor conventional plunge cutting. Of course, square ingots must be plunge cut.

We still intend to pursue rotational slicing of 6-in.-dia silicon because the problems we are encountering may be due to the equipment being used rather than inherent deficiencies in rotational slicing. The biggest problem we are seeing is the difficulty in aligning the rotational axis, which may be resolved by better equipment and techniques.

In terms of achieving the stated goals of material usage, we have already demonstrated 25 wafers/cm with 4-in.-square material and we should be able to demonstrate 17 to 18 wafers/cm with 6-in. material within a short time with the 27-inch blade mount.

Production capability with desired add-on costs is very easily attainable with some more development in terms of automation using present state-of-the-art ID technology.

5. Recommendations for Future Work

We plan to continue plunge cutting and rotational cutting of 6- and 4-in. ingots.

The RD-140 and the STC 22-inch machines will be modified to improve results. Both machines will be changed to mechanical blade mounts to allow less run-out of the ID.

The blade mount enclosure on the RD-140 will be modified to reduce turbulence, which will allow thinner wafers.
LARGE-AREA SILICON SHEET TASK

A 27-inch blade mount will be used to slice 6-in. material. We will experiment with 4-mil and 5-mil core material on the 22- and 27-inch blade mounts to reduce kerf losses.
LARGE-AREA SILICON SHEET TASK

Contract Goals

6-INCH DIAMETER - 17-18 WAFERS/CM
(23 MILS T + K)

4-INCH SQUARE
25 WAFERS/CM
(16 MILS T + K)

4-INCH ROUND

SLICING METHODS

PLUNGE CUTTING
6" Ø ROUND
4" Ø ROUND
4" SQUARE

ROTATIONAL CUTTING
6" Ø ROUND
4" Ø ROUND
LARGE-AREA SILICON SHEET TASK

Equipment

- RD-140 Prototype 32-inch Saw
- Standard STC 22-inch Saw

Modifications:
- Programmable Feed Rate
- Crystal Rotation
- Monitoring Devices

Blades

32-inch - 13 MILS KERF
22-inch - 11 MILS KERF
22-inch - 10 MILS KERF
16-inch - 9 MILS KERF

Slicing Results

<table>
<thead>
<tr>
<th>KERF</th>
<th>SLICE THICKNESS</th>
<th>WAFFERS/CM</th>
<th>CUTTING SPEED</th>
<th>YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>6" Ø Plunge</td>
<td>13 MILS</td>
<td>12 MILS</td>
<td>16</td>
<td>1.5 IN/MIN</td>
</tr>
<tr>
<td>6" Ø Rotary</td>
<td>11.5 MILS</td>
<td>18 MILS</td>
<td>13</td>
<td>0.6 IN/MIN</td>
</tr>
<tr>
<td>4" Ø Rotary</td>
<td>9.5 MILS</td>
<td>9 MILS</td>
<td>21</td>
<td>0.8 IN/MIN</td>
</tr>
<tr>
<td>4" Plunge</td>
<td>11 MILS</td>
<td>5 MILS</td>
<td>25</td>
<td>1 IN/MIN</td>
</tr>
</tbody>
</table>
Side View of Silicon Technology Corp. RD-140 Prototype 32-in. 1D Saw
(Note Fixed Saw Head and Movable Ingot Feed Fixtures)
Close-Up View of Ingot Rotating Fixture as Mounted in Standard STC 22-in. ID Saw
LARGE-AREA SILICON SHEET TASK

12-in. ID Blade for STC RD-140 Prototype ID Saw in Background

ORIGINAL PAGE IS OF POOR QUALITY
IPEG Assumptions With Present Technology (1980 $)

<table>
<thead>
<tr>
<th></th>
<th>6 in-round</th>
<th>4 in-square</th>
<th>4 in-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingot Size</td>
<td>6 in-round</td>
<td>4 in-square</td>
<td>4 in-square</td>
</tr>
<tr>
<td>Wafer Thickness</td>
<td>12 mils</td>
<td>6 mils</td>
<td>12 mils</td>
</tr>
<tr>
<td>Cutting Speed</td>
<td>1.5"/min.</td>
<td>1"/min.</td>
<td>2.5"/min.</td>
</tr>
<tr>
<td>Equipment Cost</td>
<td>$45,000.00</td>
<td>$40,000.00</td>
<td>$40,000.00</td>
</tr>
<tr>
<td>Machine Area</td>
<td>84 ft.²</td>
<td>80 ft.²</td>
<td>80 ft.²</td>
</tr>
<tr>
<td>No. of Machines/Operator</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Blade life</td>
<td>4,000 slices</td>
<td>4000 slices</td>
<td>4000 slices</td>
</tr>
<tr>
<td>Blade Cost</td>
<td>100</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Other Materials/Year</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>2000 watts</td>
<td>2000 watts</td>
<td>2000 watts</td>
</tr>
<tr>
<td>Add-on Cost/Meter²</td>
<td>25.79</td>
<td>42.50</td>
<td>17.02</td>
</tr>
</tbody>
</table>

Sheet Cost Comparison: 4-in. Square Wafers ($/m²)

![Graph showing sheet cost comparison](image)

- **6 mil wafers**
- **12 mil wafers**
LARGE-AREA SILICON SHEET TASK

Plans for ID Technology

Near Term -

27-inch Blade Mount
Mechanical Blade Mount
Redesigned Wheel Guard
Thinner core 22- and 27-inch Blades
Programs for Feed Rates

Long Term -

Equipment Design
- Higher Throughput
- Automation

Blade Design

Systems Approach to Factory Design
SUMMARY OF WORK AND RESULTS:

Severe limitations were experienced in slicing thin wafers with ID rotation because of anisotropic material characteristics of single-crystal silicon.

Reduction of ingot feed eliminated fracturing problems but resulted in less than cost-effective wafer-throughput levels.

Best results achieved consistently with ID rotation are 250 μm-thick, 100-μm-dia wafers with kerfs of 200 m sliced at a feed rate of 15 μm/min.

Results were improved by increasing cutting head size, thereby reducing high-frequency vibrations during slicing.

Cutting-edge position control was effective in all experiments, particularly when cutting with low-kerf (152-200 μm) blades.

Prefabricated blade inserts for ID blade show great potential but require further work in bonding of insert to core to become an effective production tool.

Alternative solution of sttched blade core construction has shown good results.

Comparison of ID plunge and rotation cutting results indicate that a multiple-ingot ID plunge techn.que will improve slicing production significantly.
LARGE-AREA SILICON SHEET TASK

Close-Up of Blade Position Control System With Ingot in Position for Wafering

Perspective View of Prefabricated Insert Blade

ID Blade With Core Ingot

Close-Up View of Insert-Core Bone Showing Distortion at Weld

ID Blade Construction With Etched Core

Conceptual Drawing of Multiple Ingot Feed for ID Wafering
LARGE-AREA SILICON SHEET TASK

150-mm-dia Wafers Trimmed to Show Packing Improvement With Hexagonal Shape

Meyer & Burger TS-23 ID Saw

Close View of Meyer & Burger TS-23 27-in. Blade Head
LARGE-AREA SILICON SHEET TASK

CHARACTERIZATION
APPLIED SOLAR ENERGY CORP.

Material Evaluation

1. **EFG (MOBIL - TYCO):**

 A. COMPARISON OF EFG MATERIALS WITH AND WITHOUT A CO ENVIRONMENT IN THE SAME FURNACE.

 B. LOW TEMPERATURE ANNEALING (600°C, 30 hr.)

 C. GRAIN BOUNDARIES PASSIVATION WITH TWO STEP DIFFUSION (ALSO INCLUDE POLY HAMCO CZ AND SILSO)

2. **DENDRITIC WEB (WESTINGHOUSE):**

 A. BASELINE PROCESS

 B. ADVANCE PROCESSES

3. **HEM (CRYSTAL SYSTEM) - MAPPING OF A CRYSTAL:**

 HEM I.D. 41-41C

EFG Materials With and Without CO In Ambient of Same Furnace

<table>
<thead>
<tr>
<th></th>
<th>Voc, mV</th>
<th>Jsc, mA/cm²</th>
<th>Cff %</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without CO</td>
<td>540</td>
<td>22.9</td>
<td>70</td>
<td>8.6</td>
</tr>
<tr>
<td>With CO</td>
<td>567</td>
<td>25.1</td>
<td>76</td>
<td>10.7</td>
</tr>
<tr>
<td>CZ Control</td>
<td>582</td>
<td>28.2</td>
<td>78</td>
<td>12.7</td>
</tr>
</tbody>
</table>

SELINE PROCESS ON 2 x 2 CELLS WITH S:1 AR MEASURED AT 280°C AM1.
LARGE-AREA SILICON SHEET TASK

EFG Material With Low-Temperature Annealing
(600°C, 30 h)

<table>
<thead>
<tr>
<th></th>
<th>Voc, mV</th>
<th>Jsc mA/cm²</th>
<th>CFF %</th>
<th>η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Annealed</td>
<td>493</td>
<td>13.2</td>
<td>74</td>
<td>4.8</td>
</tr>
<tr>
<td>Annealed</td>
<td>493</td>
<td>13.3</td>
<td>73</td>
<td>4.7</td>
</tr>
<tr>
<td>Cz Control</td>
<td>568</td>
<td>20.1</td>
<td>74</td>
<td>8.5</td>
</tr>
</tbody>
</table>

BASELINE PROCESS ON 2x2 CELLS WITHOUT AR MEASURED AT AM1 AT 280°C. (EFG MATERIAL WITHOUT CO IN THEIR GROWTH)

Average Short-Circuit Current Density
(Jsc mA/cm²) for Two-Step Diffusion Process (750°C, 9 h in POCl3)

<table>
<thead>
<tr>
<th></th>
<th>EFG</th>
<th>Poly</th>
<th>SILSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 2 Step Diffusion</td>
<td>17.9</td>
<td>22.1</td>
<td>22.4</td>
</tr>
<tr>
<td>2 Step Diffusion</td>
<td>15.3</td>
<td>22.1</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Jsc of Control: 23.4

Baseline Process on 2 x 2 cells without AR, measured at AM0, 280°C. (EFG Material without CO in growth)
Dendritic Web Solar Cell from Baseline Process

<table>
<thead>
<tr>
<th></th>
<th>WEB ID. NO.</th>
<th>CZ CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17-1373 (\rho = 2.5) cm</td>
<td>17-1377 (\rho = 3.4) cm</td>
</tr>
<tr>
<td>Voc (mV)</td>
<td>AV. 532</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>S. D. 530-534</td>
<td>532-536</td>
</tr>
<tr>
<td></td>
<td>R 2</td>
<td>2</td>
</tr>
<tr>
<td>Jsc (mA/cm²)</td>
<td>AV. 28.8</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>S. D. 0.5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>R 28.3-28.4</td>
<td>27.8-28.4</td>
</tr>
<tr>
<td>CFF (%)</td>
<td>AV. 76</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>S. D. 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R 75-76</td>
<td>75-76</td>
</tr>
<tr>
<td>(\eta) (%)</td>
<td>AV. 11.6</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>S. D. 0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>R 11.4-11.7</td>
<td>11.3-11.5</td>
</tr>
</tbody>
</table>

NOTE. 1) 2x2 cm cells under AM1 measured at 28°C test block temperature.
Dendritic Web Solar Cells From Advanced Process

<table>
<thead>
<tr>
<th></th>
<th>WEB</th>
<th>WEB</th>
<th>CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc (mV)</td>
<td>545</td>
<td>531</td>
<td>581</td>
</tr>
<tr>
<td>S.D.</td>
<td>14</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>526-558</td>
<td>514-546</td>
<td>570-582</td>
</tr>
<tr>
<td>Jsc (mA/cm²)</td>
<td>29.2</td>
<td>28.1</td>
<td>29.9</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>28.5-29.8</td>
<td>27.4-28.8</td>
<td>29.3-30.4</td>
</tr>
<tr>
<td>CFF (%)</td>
<td>79</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>S.D.</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>78-80</td>
<td>75-79</td>
<td>77-79</td>
</tr>
<tr>
<td>η (%)</td>
<td>12.5</td>
<td>11.7</td>
<td>13.5</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>11.8-13.0</td>
<td>10.9-12.2</td>
<td>13.2-13.7</td>
</tr>
</tbody>
</table>

NOTE:
1) Measured under AM1 at 28°C test block temperature.
2) Advanced process: SJ+BSF+MLAR

HEM ID 41-41C

- **SIZE:** 12" x 12" x 6"
- **WT.** ~ 35 kg
Summary of Results for HEM (ID 41-41C)

Average Parameters for Horizontally Cut Layers
(Values Normalized to Control are in Parenthesis)

<table>
<thead>
<tr>
<th></th>
<th>V_{oc},mV</th>
<th>$J_{sc},\text{mA/cm}^2$</th>
<th>$CFF,%$</th>
<th>$\eta,%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>557 (.97)</td>
<td>26.1 (.93)</td>
<td>69 (.91)</td>
<td>10 (.82)</td>
</tr>
<tr>
<td>Middle</td>
<td>566 (.98)</td>
<td>27.0 (.96)</td>
<td>73 (.96)</td>
<td>11.1 (.90)</td>
</tr>
<tr>
<td>Bottom</td>
<td>550 (.95)</td>
<td>25.1 (.89)</td>
<td>73 (.96)</td>
<td>10.0 (.81)</td>
</tr>
<tr>
<td>Cz Control</td>
<td>577</td>
<td>28.2</td>
<td>76</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Average Parameters for Vertically Cut Layer
(Values Normalized to Control are in Parenthesis)

<table>
<thead>
<tr>
<th></th>
<th>V_{oc},mV</th>
<th>$J_{sc},\text{mA/cm}^2$</th>
<th>$CFF,%$</th>
<th>$\eta,%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL</td>
<td>559 (.97)</td>
<td>25.8 (.95)</td>
<td>72 (.93)</td>
<td>10.4 (.85)</td>
</tr>
<tr>
<td>Cz Contr:</td>
<td>577</td>
<td>27.3</td>
<td>77</td>
<td>12.2</td>
</tr>
</tbody>
</table>

All values were measured in AM1, 28°C. Cells were fabricated by baseline process with SiO AR coating.

Cell Size: 2x2cm
LARGE-AREA SILICON SHEET TASK

HORIZONTALLY CUT HEM ID 41-41C

$J_{sc}(\text{mA/cm}^2)$ for Bottom Layer

Ave 25.1 (892)
Control Ave 28.2

CFF (%) for Top Layer

Ave 68% (60°)
Control Ave 71%
VERTICALLY CUT HEM ID 41-41C

Resistivity Distribution

CFF (%)

AVE. 72% (93%)
CONTROL AVE. 76%
LARGE-AREA SILICON SHEET TASK

HEM ID 41-41C

Represented by top layer: 25%
Represented by middle layer: 60%
Represented by bottom layer: 15%

Average for the whole crystal: 10.7 AM1
Normalized to Cz control: 87% (in usable area)
Encapsulation Task progress and status were reported in three major PIM sessions. A general overview and summary of module encapsulation technology and design guidelines was presented by Ed Cuddihy in the Wednesday-morning plenary session, with a follow-up discussion session on Thursday afternoon. Individual contractor reports were presented during contract reviews on Wednesday afternoon and Thursday morning.

A major goal of the Encapsulation Task is to compile and publish this year an encapsulation-design report that will document the encapsulant material system performance requirements and the status and characteristics of available encapsulant materials and fabrication processes. The report is being organized to be of maximum usefulness to module manufacturers and to the material-supply industry. This is being achieved through discussions at the PIMs and continuing technical contracts between LSA and industry. It is expected that this encapsulation-design report will be updated in subsequent years. Ed Cuddihy presented at this PIM the current technology status and the general content of the evolving encapsulant material specifications and performance requirements. Selected figures from the presentation are included in these Proceedings (see p. 59).

The following highlights are summarized from the LSA contract review session, which also covered JPL in-house efforts on module-life assessment and photothermal aging. Selected figures from the presentations are included.

Springborn Laboratories: EVA formulated specifically for PV module lamination is now being made available to module manufacturers for module production evaluation. Alternative potant materials being intensively developed and evaluated include EMA for lamination and PnBA for a casting potant. One low-cost edge-gasket material, under evaluation for module mounting, that appears to meet the LSA goals is EPDM (ethylene propylene diene monomer) rubber, which comes in a variety of compositions and molded forms. The EPDM edge gasket may be supplied either as a continuous extruded shape and cut to fit the module edges or as a complete molded one-piece "picture frame."

Spire Corp.: Small solar modules with cells electrostatically bonded (ESB) to a borosilicate glass superstrate and encapsulated on the back side with a conventional potant and cover film have been produced routinely, and these modules are currently undergoing durability testing. These modules have also been produced with preformed mesh front metallization applied during the ESB process.
ENCAPSULATION TASK

The ESB process has also been demonstrated as a lower-temperature approach to bonding Si wafers to larger glass sheets and processing the cells with interdigitated back-contact metallization.

Illinois Tool Works: Ion plating of front metallization has been used on 4-in.-dia wafers with boron-doped junctions in n-type base Si to produce cells as good as production cells. Low-cost materials and high deposition rates are the potential advantages of this approach.

Rockwell Science Center: The measurement of module or cell ac impedance has been demonstrated as a potentially sensitive non-destructive field or laboratory evaluation technique for assessing changes in solar cell series and shunt resistance. The technique will be applied to a set of Block II modules now undergoing accelerated life testing at JPL.

JPL In-House: Photothermal degradation rates and mechanisms and ultraviolet absorption characteristics of polymeric encapsulants are being measured as a function of polymer composition and test exposure conditions. Data are being obtained for silicones, EVA, PnBA, polyurethane, and acrylic films. Additional materials will be characterized during the coming year. Failure mechanisms and critical temperature limits associated with module hot-cell experience are being identified for use in establishing module circuit design and diode protection criteria.

Modeling of the photodegradation of UV screening acrylic outer cover films has yielded rates of degradation of the material constituents and of the total system. These data have been used to provide material composition criteria for the achievement of optimum low-cost long-life cover films.

Encapsulation Task Highlights Summary: Candidate encapsulant material systems and configurations that meet the LSA cost and performance goals and have the potential for meeting the life and durability goals have been identified and demonstrated. Recognizing that module manufacturers may prefer different module assembly methods (e.g., casting vs laminating pottants), candidate pottants for each process have been identified. Furthermore, it is expected that future module designs will be optimized for specific applications and for specific geographic or climatic areas. In consideration of these different requirements, candidate design approaches within the cost guidelines include both the glass superstrate designs and the steel or wood hardboard substrate panel designs. Each design approach has its advantages and disadvantages, depending on application and deployment site. The lowest potential cost resides with the hardboard substrate design.

Validation of the 20-year module life potential is still the focus of intensive LSA studies on photothermal degradation at JPL with contracted support from organizations that include Case Western Reserve University, University of Toronto, Colorado State University, Rockwell Science Center and the California Institute of Technology.

Specific life-limiting module failure modes that have been observed and related to the characteristics of the encapsulation material systems include cell cracking due to gas evolution under hot-spot cells and cell cracking and interconnect fatigue due to expansion and contraction of organic substrate panels with varying humidity and temperature. Candidate solutions to these
failure modes have been identified and are in the process of evaluation. Solution approaches include optimizing the module circuit design to limit hot-spot temperatures, controlling the substrate expansion stresses by material selection and packaging design and by ranking and selecting encapsulants for the greatest photothermal stability.

Encapsulation Task Technical Readiness

I. ENCAPSULANT MATERIALS, PROCESSES, & DESIGNS WHICH MEET THE LSA COST, PERFORMANCE, & LIFE GOALS
 - FABRICATION OF PROTOTYPE MODULES WITH SELECTED MATERIALS AND PRODUCTION METHODS
 - PASS JPL QUALIFICATION TESTS
 - A DESIGN SPECIFICATION HANDBOOK FOR INDUSTRY (MATERIAL SUPPLIERS AND MODULE BUILDERS)
 - OPTIMIZE DESIGNS FOR MINIMUM LIFE CYCLE ENERGY COST

II. ASSESS 20-YEAR LIFE POTENTIAL BY ACCELERATED AND OUTDOOR TESTING
 - IDENTIFY AND ELIMINATE OR MINIMIZE LONG TERM MATERIAL DEGRADATION MODES
 - ACCUMULATE MAXIMUM OPERATING EXPERIENCE
 - PROVIDE LIFE PREDICTION RELATIONSHIPS BASED ON MODELS AND ACCELERATED TESTS
ENCAPSULATION TASK

LOW-COST ENCAPSULATION SYSTEMS

SPRINGBORN LABORATORIES, INC.

Ethylene Vinyl Acetate (EVA) Pottant

NOW PRODUCED BY SPRINGBORN LABORATORIES-“CRANEGLASS” SPACER

ADVANTAGES:
- Glass mat available in roll form
- Effective anti-blocking surface
- Positive spacer for module components
- Aids degassing in lamination
- Provides insulation resistance
- Total integrated transmission 91%
- Add on cost, $0.78/ft²

* Product improvement with no loss of power

Candidate Pottant Under Development
Ethylene Methyl Acrylate*

- Cost, $0.59/LB
- Very high thermal stability
- Excellent adhesion properties
- Non-hydrophilic
- Available with anti-blocking additive
- Vacuum bag lamination demonstrated
- Total integrated transmission: 91.5%
- Extrudable in thin films

* GULF OIL CHEMICALS
ENCAPSULATION TASK

ETHYLENE/METHYL ACRYLATE

FORMULA NO. A11877

<table>
<thead>
<tr>
<th>PARTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EMA TD 938 BASE RESIN</td>
<td>100.0</td>
</tr>
<tr>
<td>LUPERSOL 231 (CURING AGENT)</td>
<td>3.0</td>
</tr>
<tr>
<td>CYASORB UV-531 (STABILIZER)</td>
<td>0.3</td>
</tr>
<tr>
<td>TINUVIN 770</td>
<td>0.1</td>
</tr>
<tr>
<td>NAUGARD - P (ANTIOXIDANT)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- INGREDIENTS TUMBLE BLENDED PRIOR TO EXTRUSION - NO SEPARATE COMPOUNDING STEP REQUIRED
- NO RELEASE PAPER REQUIRED DURING ROLL WINDUP
- SAME CURE REQUIREMENTS AS EVA POTTANT
- SAMPLES AVAILABLE FOR INDUSTRIAL EVALUATION BY MARCH, 1981
ENCAPSULATION TASK

Butyl Acrylate Casting Syrup

CURRENT FORMULATION:

- BUTYL ACRYLATE POLYMER 35%
- BUTYL ACRYLATE MONOMER 60%
- HEXANEDIOLDIACRYLATE (CROSSLINKING AGENT) 5%

CURE CHARACTERISTICS:

- APPROX. 5 MINUTES AT 45°C
- INITIATOR: LUPERSOL - 11, 0.5% BY WEIGHT
- POT LIFE APPROX. 8 HOURS AT ROOM TEMPERATURE

SAMPLES WILL BE AVAILABLE FOR INDUSTRIAL EVALUATION BY MAY, 1981

PROPERTIES:

SYRUP: WATER WHITE, CLEAR
- VISCOSITY APPROX. 10,000 CENTIPOISE
- SPECIFIC GRAVITY APPROX. 0.94

CURED PROPERTIES:

- TENSILE STRENGTH (D538) 200 PSI
- 100% MODULUS (D-638) 300 PSI
- ULTIMATE ELONGATION (D638) 100%
- HARDNESS (SHORE A) 44
- GEL CONTENT 84%
- ODOR: ACCEPTABLE LOW

MAY BECOME ACCEPTABLE REPLACEMENT FOR RTV SILICONES
ENCAPSULATION TASK

BUTYL ACRYLATE CASTING SYRUP

NEW METHOD OF PRODUCTION:

SOLVENT → MONOMER → INITIATOR

POLYMERIZATION VESSEL

MONOMER → CROSSLINKING AGENT

WIPED - FILM VACUUM STRIPPER

SOLVENT RETURN LOOP

COMPLETED SYRUP

ELIMINATES THE RECOVERY OF DRY POLYMER AND PROCEEDS DIRECTLY TO SYRUP FORMULATION
Gasket Compounds

<table>
<thead>
<tr>
<th>COMPOUNDED ELASTOMER</th>
<th>COST $/LB</th>
<th>COMPRESSION SET RECOVERY</th>
<th>COST/SET RECOVERY INDEX $/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICONE</td>
<td>$2.53</td>
<td>65 - 90%</td>
<td>2.81 - 3.89</td>
</tr>
<tr>
<td>ETHYLENE/ VINYL ACETATE</td>
<td>$0.85</td>
<td>65 - 80%</td>
<td>1.06 - 1.31</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>$0.87</td>
<td>75 - 85%</td>
<td>1.02 - 1.16</td>
</tr>
<tr>
<td>EPDM</td>
<td>$0.58</td>
<td>70 - 90%</td>
<td>0.64 - 0.83</td>
</tr>
</tbody>
</table>

EPDM Compounds, Advantages:
- Best Compression Set/Cost Patio
- Low Cost
- Easy Extrusion - Complex Profiles
- Demonstrated Weatherability
- History of Successful Use in Related Application (Automotive Windshields)

A. For Comparative Purposes Only
ENCAPSULATION TASK

RS/4 Sunlamp Exposure

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>HOURS</th>
<th>PROPERTY RETAINED (ASTM D-638)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TENSILE</td>
</tr>
<tr>
<td>3M ACRYLIC FILM X-22417</td>
<td>3,000</td>
<td>54%</td>
</tr>
<tr>
<td>EMA BASE RESIN (UNCOMPONED)</td>
<td>5,000</td>
<td>10%</td>
</tr>
<tr>
<td>EMA A11877 (COMPOUNDED)</td>
<td>5,000</td>
<td>100%</td>
</tr>
<tr>
<td>DUPONT TEDLAR 100 BG 30 UT</td>
<td>3,000</td>
<td>100%</td>
</tr>
<tr>
<td>BUTYL ACRYLATE BASE FORMULATION</td>
<td>4,090</td>
<td>N/A</td>
</tr>
</tbody>
</table>

EVA POTTANT
(NO COVER FILM)

CLEAR STABILIZED EVA EXPOSED 17,600 HOURS
NO OBSERVABLE CHANGE

<table>
<thead>
<tr>
<th>TOTAL INTEGRATED TRANSMISSION</th>
<th>ULTIMATE ELONGATION</th>
<th>TENSILE STRENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>(%)</td>
<td>(psi)</td>
</tr>
<tr>
<td>CONTROL</td>
<td>91</td>
<td>510</td>
</tr>
<tr>
<td>EXPOSED 17,600 HRS</td>
<td>90</td>
<td>560</td>
</tr>
</tbody>
</table>

UNSTABILIZED ELVAX 150 (EVA) BECOMES SOFT, TACKY AND LOSES PHYSICAL PROPERTIES IN LESS THAN 1,000 HOURS

* ASTM D-638
ENCAPSULATION TASK

ELECTROSTATIC BONDING
SPIRE CORP.

Phase III Summary

• INTEGRAL FRONT MODULE FABRICATION IS ROUTINE
 --- Efficiency to 13%
 --- Yield in Non-Production Bonder > 90%

• PREFORMED CONTACT BONDING
 --- Process Routine with Skilled Operators
 --- Efficiency Nearly as Good as Conventional Cells

• LOW TEMPERATURE MODULE FABRICATION
 --- 12" x 16" Modules Fabricated on Hot Plate
 --- Good Results with Proper Glass Surface
 --- Continue Work to Lower Bond Temperature

• LARGE AREA BONDER ENGINEERING
 --- Conceptual Design Complete
ENCAPSULATION TASK

Low-Temperature Preformed Contact Process

1. Press Preform into Glass at High Temperature

2. Electrostatically Bond Bare Cell to Glass/Wire Structure at Low Temperature
ENCAPSULATION TASK

SEM Photo of Cu Wire Hot Pressed Into Glass Cover Slip (350x)

SEM Photo of Cu Wire Hot Pressed Into Glass Cover Slip (100x)
ENCAPSULATION TASK
ION PLATING

ILLINOIS TOOL WORKS

ITW-Endurex Cell No. 101
Front: Ni, Sn With Bus Bars and Solder Dip
Back: Ti, Cu

 Ion-plated cell made in January 1981

Solar power 4-inch cells
Control group

I (AMPS)

V (VOLTS)
ENCAPSULATION TASK

Proposed Low-Cost Metallization Systems
For p on n and n on p Solar Cells

<table>
<thead>
<tr>
<th></th>
<th>P on N type wafers (Solar Power Corp.)</th>
<th>N on P type wafers (Spectrolab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st layer</td>
<td>Nickel, Chromium</td>
<td>Nickel, Chromium, Titanium</td>
</tr>
<tr>
<td>2nd layer</td>
<td>Copper</td>
<td>Copper</td>
</tr>
<tr>
<td>BACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st layer</td>
<td>Titanium</td>
<td>Titanium-Aluminum Alloy</td>
</tr>
<tr>
<td>2nd layer</td>
<td>Copper (.124 Ω·cm²)</td>
<td>Copper (.091 Ω·cm²)</td>
</tr>
</tbody>
</table>

--Copper is used for ease of connecting
--Additional layers for corrosion protection, etc. may be used

MATERIAL DEGRADATION AND LIFE PREDICTION

JET PROPULSION LABORATORY

SCOPE

- Testing of module designs under real, saturated and accelerated environment
- Photothermal studies
- Degradation mechanism modeling
- Monitoring of environment
- Diagnostic techniques

MINI MODULES | P CELL | LENS | EVA | PV | RTV | FAB | THERMAL LENS

监测材料和材料系统排名的模型设计和预测方法

- 测试模块设计在真实、饱和和加速环境中的性能
- 光热研究
- 腐蚀机制建模
- 环境监测
- 诊断技术

MINI MODULES | P CELL | LENS | EVA | PV | RTV | FAB | THERMAL LENS

- 红外
- 激光光解
- 材料的电容
- 材料的介电常数

247
ENCAPSULATION TASK

Long-Term Degradation Modeling

EVA : UNIVERSITY OF TORONTO
STATUS : DEVELOPED COMPUTER MODEL OF PHOTODEGRADATION
PNBA : CASE WESTERN RESERVE U.
STATUS : DEVELOPED MECHANISM OF PHOTODEGRADATION OF UNCROSSED-LINKED PNBA
UV SCREENING: IN-HOUSE
COVERS
STATUS : DEVELOPED PHOTODEGRADATION MODEL AND ACCELERATED TESTING CRITERIA

PHOTOTHERMAL DEGRADATION OF EVA FILMS

LOADS AND STRESSES

• UV LEVEL: 6-10 SUNS/DARK
• TEMPERATURE: 25°C, 70°C, 85°C, 105°C
• OXYGEN LEVEL: FULL ACCESS, NO EDGE SEAL, CLOSED OVEN

PROPERTIES MEASURED

• WEIGHT LOSS
• CHANGE IN ABSORBANCE: UV/VISIBLE/IR
• STRESS-STRAIN
• EXTRACTION/GPC/SWELLING STUDIES

OBJECTIVE

• DETERMINE DEGRADATION RATES
ENCAPSULATION TASK

WEIGHT LOSS DATA

70°C
GRADUAL WEIGHT LOSS UP TO 0.5 WT% AFTER 500 HRS OF AGING

85°C
GRADUAL WEIGHT LOSS UP TO 1% AFTER 800 HRS OF AGING

105°C

UV-VISIBLE TRANSMISSION ANALYSIS OF EVA FILMS

- TESTS CARRIED OUT AT 70°C, 85°C, 105°C. SIMILAR FEATURES AT ALL TEMPERATURES RATES DIFFERENT

105°C
a: CLOSED OVEN; b: NO EDGE SEAL, UV; c: UV/AIR
ENCAPSULATION TASK

TRANSMISSION ANALYSIS ON EVA FILMS

RESULTS

- LOSS OF ADDITIVES (800 HR TEST)

<table>
<thead>
<tr>
<th></th>
<th>CLOSED</th>
<th>NO EDGE SEAL</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°C</td>
<td>0</td>
<td>11%</td>
<td>19%</td>
</tr>
<tr>
<td>105°C</td>
<td>0</td>
<td>14%</td>
<td>24%</td>
</tr>
</tbody>
</table>

- YELLOWING: (Δ ABSORBANCE AT 400 nm)

<table>
<thead>
<tr>
<th></th>
<th>CLOSED, NO UV</th>
<th>UV+ NO EDGE SEAL</th>
<th>UV+ AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°C</td>
<td>0.01</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>105°C</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

FT — IR ANALYSIS OF EVA FILMS

- 25°C
 SLOW PHOTOOXIDATION INDICATED BY HYDROXYLS FORMATION (OLD DATA)

- 105°C

- FASTER PHOTOOXIDATIVE FORMATION OF HYDROXYLS IN PRESENCE OF UV AND O₂

- BUILD UP OF ACETIC ACID IN CLOSED OVEN
ENCAPSULATION TASK

EXTRACTION OF IRRADIATED EVA FILMS

- PERCENT EXTRACTIBLE ~30% UNDER ALL EXPERIMENTAL CONDITIONS AFTER 800 HRS

- MOLECULAR WEIGHT ANALYSIS OF EXTRACTIBLES

 105°C, 800 HRS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>200,000</td>
</tr>
<tr>
<td>OVEN (CLOSED)</td>
<td>170,000</td>
</tr>
<tr>
<td>UV/AIR</td>
<td>91,000</td>
</tr>
<tr>
<td>UV/NO EDGE</td>
<td>44,000</td>
</tr>
<tr>
<td>SEAL</td>
<td></td>
</tr>
</tbody>
</table>

- SWELLING STUDIES: IN PROGRESS

PHOTOTHERMAL TESTING OF PVB FILMS

LOADS AND STRESSES

- TEMP 55°C, 70°C

- O₂ LEVELS: CLOSED OVEN, AMBIENT AIR

 NO EDGE SEAL (3” X 1/2”)

- UV LEVELS: 6-10 SUNS, DARK

PROPERTIES MEASURED

- WEIGHT LOSS

- EXTRACTION, MOL. WT.

- TRANSMISSION
ENCAPSULATION TASK

RESULTS

WEIGHT LOSS AT 70°C

<table>
<thead>
<tr>
<th></th>
<th>WT. LOSS</th>
<th>ACTIVATION ENERGY 55-70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED OVEN</td>
<td><0.5%</td>
<td>~10K CAL/MOLE</td>
</tr>
<tr>
<td>UV/AIR</td>
<td>6%</td>
<td>~10K CAL/MOLE</td>
</tr>
<tr>
<td>NO EDGE SEAL</td>
<td>9%</td>
<td></td>
</tr>
</tbody>
</table>

EXTRACTION AT 70°C

<table>
<thead>
<tr>
<th></th>
<th>% SOLUBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>100</td>
</tr>
<tr>
<td>CLOSED OVEN</td>
<td>100</td>
</tr>
<tr>
<td>UV/AIR</td>
<td>54</td>
</tr>
<tr>
<td>NO EDGE SEAL</td>
<td>59</td>
</tr>
</tbody>
</table>
ENCAPSULATION TASK

RESULTS

FT-IR SPECTROSCOPIC ANALYSIS

- CLOSED OVEN, 105°C: Si—H STRETCH DISAPPEARING, NO CARBONYL FORMATION, TRACE HYDROXYL

- UV/AIR AT 105°C, 800 HRS: LOSS OF Si—H LARGE HYDROXYL PEAK, FORMATION OF CARBONYL

EXTRACTION

- PERCENT EXTRACTIBLES UNCHANGED = 0.4%
- NO CHANGE IN MOL. WT. OF EXTRACTIBLES

WEIGHT LOSS DATA

- CLOSED OVEN AT 105°C: 0.3% AT 800 HRS
- UV/AIR AT 105°C: 0.5% AT 800 HRS

TRANSMISSION CHANGE

- YELLOWING IN CLOSED OVEN, ACCELERATED UNDER UV/AIR E (ACTIVATION)
 85° — 105° = 20K cal/MOLE
Photodegradation of PnBA

RATE OF ABSORBANCE CHANGE OF P-NBA AS A FUNCTION OF IRRADIATING TIME

Development of Accelerated Test Chambers

- TESTS CONDUCTED ON WOOD SUBSTRATE MODULES: PREDICTED CELL CRACKING WITH CURRENT DESIGN

- IDENTIFIED NEW FAILURE MODE: CORROSION AT CRACK SITES: MAY BE RADIATION DRIVEN

- TWO TEST CHAMBERS CONSTRUCTED, TESTED, SHIPPED AND INSTALLED AT SPRINGBORN LABS
ENCAPSULATION TASK

Photothermal and Photodegradation
Of UV-Stabilized Front-Cover Films

PHOTOTHERMAL STUDIES OF 3M — ACRYLIC FILM

- AT ROOM TEMP STRAIN AT YIELD POINT WAS MEASURED TO BE 4.5 — 10% DEPENDING ON ORIENTATION

- AFTER 800 HRS. AT 85°C, SLIGHT TRANSMISSION GAIN (< 1%) AT 400 nm

Loss of UV Absorber From Korad at 85°C
ENCAPSULATION TASK

Material Modification Concepts

• CUT DOWN SYNERGISM (SENSITIZATION) THRU MORE RAPID DEACTIVATION OF UV ENERGY

• ATTACH UV ABSORBERS CHEMICALLY ON POLYMER CHAIN

NEW CANDIDATE

COPOLYMER OF MMA AND 5 VINYL TINUVIN

\[
\text{5 VINYL TINUVIN}
\]
MEPSDU planned activities presented by Solarex and Westinghouse (contracts awarded November, 1980) were critiqued by senior industry representatives. MEPSDU efforts are to demonstrate technology capable of manufacturing modules for $0.70/Wp.

The Solarex process uses 10 x 10-cm Semix polycrystalline wafers with spray-on front-junction formation, back-surface junction, spray-on AR coating, and electroless Ni contacts dipped in solder. The modules will be an EVA-laminated glass superstrate design.

Westinghouse process uses 2.5 x 10-cm dendritic-web ribbons with diffused front junction, diffused back-surface junction, dip AR coating, and evaporated Ti/Pd/Cu-plated Cu contacts. Aluminum electrical interconnections will be ultrasonically welded to the cells. The modules will be an EVA-laminated glass superstrate design.

Critiques indicated that backup activities should be implemented to offset potential problem areas when any are identified.

The near-term cost-reduction contracts resulted in the timely identification and demonstration of cost-effective process improvements, especially in automated cell interconnections and module assembly.

A computer program for cell metallization grid trade-off analyses is available. The program calculates cell power losses from series resistance and shading effects for various cell grid designs.

Analysis of non-mass-analyzed ion implantation indicates that it can be cost-competitive with gaseous diffused junction formation.
MEPSDU STATUS

JET PROPULSION LABORATORY

D.B. Bickler

- Open minded approach using processes from several sources
- Both using cassettes with rectangular wafers
- Both reasonably well balanced production
- Demonstration at relatively small rates (1 MW & 5 MW)
- Both have experience with proposed processes, mostly low volume
- Preliminary design reviews due in March 1981

Near-Term Cost-Reduction Contracts

- Timely identification of cost effective process improvements
- Automated cell interconnecting most cost effective
- Some promising technologies identified which are not yet fully developed

Junction Formation

- Pulsed electron beam annealing machine constructed and ready for testing

- Laser annealing data indicates that with development it can be equivalent to pulsed electron annealing.

- Non-mass analyzed ion implantation not only feasible but practical
PRODUCTION PROCESS AND EQUIPMENT AREA

Metallization

- MIDFILM processes developed using Ag; samples being prepared for environmental test

- BERND ROSS ASSOCIATES Cu based printed metallization shifting emphasis from AgF flux to Teflon

- JPL computer program for parallel grid trade offs is available

- MOTOROLA GRID PATTERN ANALYSES USE "ACTUAL" METAL CROSS SECTION

Assembly

- MB ASSOCIATES LAMINATION STATION IN FINAL STAGES OF ASSEMBLY

- JPL IN-HOUSE ASSESSING MEPsdU's FOR AUTOMATED MECHANICAL HANDLING

- SCIENCE APPLICATIONS DIFFUSE REFLECTION ANALYSIS INDICATES APPROXIMATELY 6% GAIN USING WHITE BACKGROUND ON STATE-OF-THE-ART MODULES
Solar Cell Junction Processor

- P_{31} Implant @ 2.5×10^{15} - 1200 4" Wafers/Hour
- Pulse Anneal - Liquid Phase Epitaxy
- Cassette-to-Cassette
PRODUCTION PROCESS AND EQUIPMENT AREA

SPI-PULSE 7000 Pulse Annealer

- Fluence - 2 Joule/cm² (max.)
- Beam Area - 100 cm²
- Rep Rate - 1 Pulse/Second (Max)
- Transport Rate - 1200 Wafers/Hour
PRODUCTION PROCESS AND EQUIPMENT AREA

SPI-PULSE 7000 Block Diagram

Layout of High-Speed Vacuum Transport
PRODUCTION PROCESS AND EQUIPMENT AREA

Process Chamber: Top View

- Entrance Vestibule
- Process Area
- Main Chamber Process Port
- Gate Valves
- Vestibule
- Track Drive
- Exit Vestibule
Y Track Cassette Input Locks

OUTER LOCK DOOR HOUSING

EXTERNAL CASSETTE

WAFER TRANSFER ARM

INTERNAL ELEVATOR CASSETTE

ELEVATOR DRIVE

LOCK VALVE

PUMPING PORT

TO IMPLANT REGION
PRODUCTION PROCESS AND EQUIPMENT AREA

Junction Processor: Hardware Status

1. ELECTRON BEAM PULSER
 • All Hardware Fabricated
 • Assembly Almost Completed
 • Control/Transport System Operational
 • HV Checkout Next Week
 • Anneal Development in March

2. WAFER TRANSPORT SYSTEM
 • Pulser Portion Completed
 • Ion Implanter Track Being Designed
 • Cassette Elevators Design Complete

3. ION IMPLANTER
 • Concept Determined
 • Design to Begin in 1-2 Months
Development of Junction Processing Equipment

<table>
<thead>
<tr>
<th>PROGRAM TASKS</th>
<th>1980</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1.0 PULSE ANNEALER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Developmental Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Design and Fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Test and Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 WAFER TRANSPORT SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 System Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 System Fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 ION IMPLANTER DEV.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Ion Beam Dev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 System Design and Fab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 SYSTEM INTEGRATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Design and Fab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 System Test and Demo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 SEMICS COST ANALYSIS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LASER ANNEALING FOR ION-IMPLANTED JUNCTIONS

LOCKHEED MISSILES & SPACE CO. INC.

2 x 4 cm Cell Processing Variations and Results

<table>
<thead>
<tr>
<th>WAFER SURFACE CONDITIONS</th>
<th>ION IMPLANTATION LEVELS</th>
<th>SCREEN</th>
<th>LASER ENERGY DENSITY (J/cm²)</th>
<th>MEAN VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ALBF</td>
<td></td>
<td>Voc(mV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRONT</td>
</tr>
<tr>
<td>Chem-Polished PO-5</td>
<td>5 KEV, 2.5 x 10¹⁶</td>
<td></td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Chem-Polished PO-5</td>
<td>5 KEV, 2.5 x 10¹⁶</td>
<td></td>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>Chem-Polished PO-10</td>
<td>10 KEV, 2.5 x 10¹⁶</td>
<td></td>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>Chem-Polished PO-10</td>
<td>10 KEV, 2.5 x 10¹⁶</td>
<td></td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Flash-Etched FE-5</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Flash-Etched FE-5</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Flash-Etched FE-10</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>2</td>
</tr>
<tr>
<td>Flash-Etched FE-10</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Text-Etched TE-10</td>
<td>10 KEV, 4 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>Text-Etched TE-10</td>
<td>10 KEV, 4 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>WITH BSF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem-Polished PO-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>PEB 5</td>
</tr>
<tr>
<td>Chem-Polished PO-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB 4</td>
</tr>
<tr>
<td>Chem-Polished PO-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB 5</td>
</tr>
<tr>
<td>Chem-Polished PO-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB + 4</td>
</tr>
<tr>
<td>Flash-Etched FE-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>PEB ONLY 3</td>
</tr>
<tr>
<td>Flash-Etched FE-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB ONLY 5</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.0</td>
<td>PEB + LASER 1.9 3</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>PEB ONLY 5</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB ONLY 2</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB + LASER 1.9 4</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB ONLY 2</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB + LASER 1.9 4</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB ONLY 2</td>
</tr>
<tr>
<td>Text-Etched TE-10 BSF</td>
<td>10 KEV, 4 x 10¹⁵</td>
<td></td>
<td>1.2</td>
<td>PEB ONLY 4</td>
</tr>
<tr>
<td>Text-Etched TE-10 BSF</td>
<td>10 KEV, 4 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB ONLY 2</td>
</tr>
<tr>
<td>Text-Etched TE-10 BSF</td>
<td>10 KEV, 4 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>PEB + LASER 1.9 4</td>
</tr>
<tr>
<td>Chem-Polished PO-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Chem-Polished PO-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>Flash-Etched FE-5 BSF</td>
<td>5 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Flash-Etched FE-10 BSF</td>
<td>10 KEV, 2.5 x 10¹⁵</td>
<td></td>
<td>1.5</td>
<td>3</td>
</tr>
</tbody>
</table>
2 x 4 cm Cells Ranked by Conversion Efficiencies

<table>
<thead>
<tr>
<th>Rank</th>
<th>Conversion Eff. Grouping</th>
<th>Cell Process Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15%</td>
<td>Chem-Pol, 5 KeV, LA(^*)@1.5J, AL-BSF</td>
</tr>
<tr>
<td>2</td>
<td>14%</td>
<td>Chem-Pol, 10 KeV, LA @1.5J, AL-BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 5 KeV, LA @1.5J, BSF w/PEBA + Laser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.5J, AL-BSF</td>
</tr>
<tr>
<td>3</td>
<td>13%</td>
<td>Chem-Pol, 10 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 5 KeV, LA @1.5J, BSF w/PEBA only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.5J, BSF w/PEBA + Laser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 10 KeV, LA @1.5J, BSF w/PEBA + Laser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 5 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 5 KeV, LA @1.5J, BSF w/PEBA + Laser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.2J, BSF w/PEBA only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 10 KeV, LA @1.2J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 10 KeV, LA @1.2J, BSF w/PEBA only</td>
</tr>
<tr>
<td>4</td>
<td>12%</td>
<td>Flash Etch, 5 KeV, LA @1.5J, BSF w/PEBA only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 5 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text Etch, 10 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chem-Pol, 5 KeV, LA @1.2J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 5 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 10 KeV, LA @1.2J, No BSF</td>
</tr>
<tr>
<td>5</td>
<td>11%</td>
<td>Chem-Pol, 5 KeV, LA @1.2J, BSF w/PEBA only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text Etch, 10 KeV, LA @1.5J, BSF w/PEBA + Laser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 5 KeV, LA @1.2J, No BSF</td>
</tr>
<tr>
<td>6</td>
<td>9 & 10%</td>
<td>Text Etch, 10 KeV, LA @1.5J, No BSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Etch, 5 KeV, LA @1.2J, BSF w/PEBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text Etch, 10 KeV, LA @1.2J, BSF w/PEBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text Etch, 10 KeV, LA @1.2J, No BSF</td>
</tr>
</tbody>
</table>

* Laser Annealed
Ion-Implanted BF$_2$ BSF-PEBA/Laser

Ion-Implanted BF$_2$ BSF-PEBA
SIMS Profile of Phosphorus in Texture-Etched Silicon

Depth (microns)

Concentration (atoms/cm²)

LASER ANNEALED (1.5 J/cm²)

AS IMPLANTED
SIMS Profile of Boron in Chem-Polished Silicon

PRODUCTION PROCESS AND EQUIPMENT AREA

CONCENTRATION (atoms/cc)

DEPTH (microns)

AS IMPLANTED
ELECTRON BEAM ANNEALED
LASER ANNEALED (1.5J/CM²)
ELECTRON BEAM PLUS
LASER ANNEALED (1.5J/CM²)
SIMS Profile of Boron in Flash-Etched Silicon

- As Implanted
- Electron Beam Annealed
- Laser Annealed (1.5 J/cm²)
- Electron Beam Plus Laser Annealed (1.5 J/cm²)

Concentration (atoms/cc) vs. Depth (microns)
Scan Pattern for Annealing 3-in.-dia Wafer
Process Verification: 2 x 2 cm Cells

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>BSF</th>
<th>Laser Pulse 1.5J/cm²</th>
<th>Voc (mV)</th>
<th>Isc (mA)</th>
<th>CFF (%)</th>
<th>η (%)</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem Polished, 5 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>550</td>
<td>133</td>
<td>77</td>
<td>14.3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>550</td>
<td>135</td>
<td>77</td>
<td>14.2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Single</td>
<td>588</td>
<td>143</td>
<td>73</td>
<td>15.4</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>X</td>
<td>584</td>
<td>141</td>
<td>73</td>
<td>15.1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Chem Polished, 10 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>546</td>
<td>131</td>
<td>79</td>
<td>14.3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>546</td>
<td>126</td>
<td>76</td>
<td>13.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Single</td>
<td>584</td>
<td>134</td>
<td>74</td>
<td>14.6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>X</td>
<td>584</td>
<td>133</td>
<td>74</td>
<td>14.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Flash Etched, 5 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>544</td>
<td>133</td>
<td>77</td>
<td>14.1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>544</td>
<td>132</td>
<td>75</td>
<td>13.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Single</td>
<td>578</td>
<td>139</td>
<td>71</td>
<td>14.4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>X</td>
<td>576</td>
<td>135</td>
<td>74</td>
<td>14.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Flash Etched, 10 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>550</td>
<td>131</td>
<td>78</td>
<td>14.1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>546</td>
<td>128</td>
<td>76</td>
<td>13.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Single</td>
<td>584</td>
<td>137</td>
<td>75</td>
<td>15.3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>X</td>
<td>580</td>
<td>137</td>
<td>71</td>
<td>14.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Re-implanted:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>546</td>
<td>129</td>
<td>76</td>
<td>13.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>548</td>
<td>128</td>
<td>76</td>
<td>13.3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>554</td>
<td>127</td>
<td>77</td>
<td>13.9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>554</td>
<td>127</td>
<td>74</td>
<td>13.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Furnace Annealed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 KeV, 2.5 x 10¹⁵/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>-</td>
<td>546</td>
<td>135</td>
<td>78</td>
<td>13.9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>-</td>
<td>582</td>
<td>137</td>
<td>74</td>
<td>14.9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Nd: Glass Laser for 1-PPS Application

PRODUCTION PROCESS AND EQUIPMENT AREA
Conclusions

- Texture etched silicon surfaces are not compatible with pulsed laser annealing processing.

- Implantation/pulse annealing parameters for a back surface field formation require further development to optimize performance.

- Screened and fired aluminum paste for a back surface field formation yield acceptable performance in combination with front implant/laser annealed devices.

- A high throughput pulsed laser system to accommodate single pulse annealing of three (3) inch diameter wafers at a rate of one (1) per second appears feasible.
PRODUCTION PROCESS AND EQUIPMENT AREA

NON-MASS-ANALYZED ION IMPLANTS

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY

D.J. Fitzgerald

PURPOSE • INCREASE THROUGHPUT (BEAM CURRENT)
 • REDUCE COMPLEXITY (COST)
 • IMPROVE PRODUCTION EFFICIENCY (POWER/MASS FLOW)

APPROACH • STUDY MOLECULAR PHOSPHORUS/CONTAMINANT
 EFFECTS WITH MASS ANALYSIS (CALTECH)
 • PERFORM DIRECT IMPLANTS WITHOUT MASS ANALYSIS (JPL)

Mass Spectrum From Solid Red Phosphorus Source
PRODUCTION PROCESS AND EQUIPMENT AREA

I-V Characteristics

- I-V Characteristics Diagram for solar cell with AR-coated and bare solar cell layers.
- Implant Parameters:
 - Dose: 1×10^{15} P-ATOMS/cm2
 - Energy: 10 KeV at 10°
 - Species: Phosphorous (No Mass Analysis)
 - Cell Size: 2 cm x 2 cm x 12 mils
Effect of Implant Energy and Molecular Species on Power Output

- AM0-ILLUMINATION (140 mW/cm²)
- CAMPUS DATA
 - P⁺
 - P₂⁺
 - P₄⁺
 - DOSE: 2 x 10¹⁵ (P-ATOMS/cm²)
- JPL DATA
 - PHOSPHOUS WITHOUT MASS ANALYSIS
 - DOSE: 1 x 10¹⁵ (P-ATOMS/cm²)
Effect of Dose on Sheet Resistance

- JPL (CORRECTED) DATA (15 KeV)
- CAMPUS DATA (20 KeV/P-ATOM)

Sheet Resistance, Ω/□ vs Dose, P-Atoms/cm²
Effect of Dose on Power Output

- CAMPUS DATA - P_2^+ AT 40 K\text{V} (20 K\text{eV} / \text{P-ATOM})
- JPL (CORRECTED) DATA - RED PHOSPHOROUS SOURCE WITHOUT MASS ANALYSIS AT 15 K\text{eV}
- AMO ILLUMINATION (140 mW/cm2)

CURRENT DENSITY AT 400 mV, mA/cm2

DOSE, P-ATOMS/cm2
Results

• SOLAR CELL JUNCTIONS MADE WITH PHOSPHOROUS W/O MASS ANALYSIS
• NON-MASS-ANALYZED IMPLANT HAVE COMPARABLE PERFORMANCE
• POWER OUTPUT INSSENSITIVE TO DOSE >2.5 \(10^{15}\) ATOMS/CM\(^2\)
• SMALL INCREASE IN POWER OUTPUT AT LOWER IMPLANT ENERGY

Conclusions

• ION IMPLANTED JUNCTIONS W/O MASS ANALYSIS IS FEASIBLE
• DOSE UNIFORMITY REQUIREMENTS MAY BE RELAXED ABOVE 2.5 \(10^{15}\) ATOMS/CM\(^2\)
• RELATIVELY LOW VOLTAGE IMPLANTS DESIREABLE < 5 KV
• ION THRUSTER/MILLING TECHNOLOGY USABLE FOR CELL IMPLANTS
PRODUCTION PROCESS AND EQUIPMENT AREA

HIGH-RESOLUTION, LOW-COST CONTACT DEVELOPMENT (MIDFILM)

SPECTROLAB INC.
Alec Garcia

Program Tasks

I. Establish MIDFILM Process at Spectrolab

II. Fabrication of Modules

III. Environmental Test

IV. Alternate Materials
PRODUCTION PROCESS AND EQUIPMENT AREA

Midfilm Process Sequence

SURFACE PREPARATION
30% NaOH

JUNCTION FORMATION
SPIN-ON DIF. SOURCE

P+ BACK
PRINT & FIRE A1

CLean A1 BACK
HF + BRUSH CLEAN

SPIN-ON RESIN

EXPOSE RESIN

APPLY SILVER

FIRE CONTACT

JUNCTION CLEAN
LASER Scribe

TEST

AR COAT

TEST

*These steps are the MIDFILM photolithographic technique for producing front contacts.

Exposure System:

- **Mercury Vapor Lamp ~ 1000 Watts**

- **Collimating Lens**

- **10 Seconds Exposure**
Powder Firing Parameters

- **No Dry**
- **Pre-Fire at 575°C, 24"/Min., 18"**
 - *Remove Organics*
- **Fire at 675°C, 36"/Min., 18"**
 - *Sinter Silver*

24 in. per min., No AR Coating

<table>
<thead>
<tr>
<th>Cell #</th>
<th>Voc</th>
<th>Isc</th>
<th>Is500</th>
<th>ns500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>596</td>
<td>639</td>
<td>559</td>
<td>10.0</td>
</tr>
<tr>
<td>22</td>
<td>596</td>
<td>628</td>
<td>534</td>
<td>9.5</td>
</tr>
<tr>
<td>21</td>
<td>593</td>
<td>621</td>
<td>545</td>
<td>9.7</td>
</tr>
<tr>
<td>36</td>
<td>597</td>
<td>642</td>
<td>574</td>
<td>10.3</td>
</tr>
<tr>
<td>24</td>
<td>595</td>
<td>626</td>
<td>543</td>
<td>9.7</td>
</tr>
<tr>
<td>13</td>
<td>594</td>
<td>633</td>
<td>553</td>
<td>9.9</td>
</tr>
<tr>
<td>23</td>
<td>596</td>
<td>615</td>
<td>528</td>
<td>9.4</td>
</tr>
<tr>
<td>14</td>
<td>594</td>
<td>610</td>
<td>525</td>
<td>9.4</td>
</tr>
<tr>
<td>17</td>
<td>596</td>
<td>623</td>
<td>552</td>
<td>9.9</td>
</tr>
<tr>
<td>15</td>
<td>596</td>
<td>639</td>
<td>567</td>
<td>10.1</td>
</tr>
<tr>
<td>16</td>
<td>598</td>
<td>647</td>
<td>581</td>
<td>10.4</td>
</tr>
<tr>
<td>19</td>
<td>597</td>
<td>633</td>
<td>547</td>
<td>9.2</td>
</tr>
<tr>
<td>27</td>
<td>597</td>
<td>644</td>
<td>552</td>
<td>9.9</td>
</tr>
<tr>
<td>20</td>
<td>595</td>
<td>613</td>
<td>541</td>
<td>9.7</td>
</tr>
<tr>
<td>14</td>
<td>596</td>
<td>625</td>
<td>563</td>
<td>10.1</td>
</tr>
<tr>
<td>18</td>
<td>595</td>
<td>640</td>
<td>472</td>
<td>8.4</td>
</tr>
<tr>
<td>33</td>
<td>599</td>
<td>661</td>
<td>592</td>
<td>10.6</td>
</tr>
<tr>
<td>26</td>
<td>594</td>
<td>612</td>
<td>526</td>
<td>9.4</td>
</tr>
<tr>
<td>32</td>
<td>595</td>
<td>635</td>
<td>538</td>
<td>9.6</td>
</tr>
<tr>
<td>30</td>
<td>596</td>
<td>628</td>
<td>553</td>
<td>9.9</td>
</tr>
<tr>
<td>25</td>
<td>596</td>
<td>614</td>
<td>544</td>
<td>9.7</td>
</tr>
<tr>
<td>35</td>
<td>600</td>
<td>661</td>
<td>570</td>
<td>10.2</td>
</tr>
<tr>
<td>28</td>
<td>598</td>
<td>660</td>
<td>581</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th>Voc</th>
<th>Isc</th>
<th>Is500</th>
<th>ns500</th>
</tr>
</thead>
<tbody>
<tr>
<td>596</td>
<td>672.6</td>
<td>549.6</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Standard Deviation

<table>
<thead>
<tr>
<th>Voc</th>
<th>Isc</th>
<th>Is500</th>
<th>ns500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>15.5</td>
<td>20.9</td>
<td></td>
</tr>
</tbody>
</table>

Yield: 23 of 25 - 92%
Soldering Results: 45° Pull Test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average Pull Strength</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sec., 340°C</td>
<td>283 Grams</td>
<td>One Cell Tab Had No Strength</td>
</tr>
<tr>
<td>1 Sec., 370°C</td>
<td>643 Grams</td>
<td>All Cells at Least 500 Grams</td>
</tr>
<tr>
<td>1 Sec., 400°C</td>
<td>531 Grams</td>
<td>All Cells at Least 375 Grams</td>
</tr>
</tbody>
</table>

5 Cells Were Tested in Each Group.
Progress to Date

New source of electronic pastes identified. Solar cell experiment completed and analyzed. Analysis indicates some potential sources of problem. Front contact experiment unsuccessful due to adhesion problems of recent paste batches.

Macroscopic comparison of successful and unsuccessful batches of S080. The fired print (left) spontaneously separated from the solar cell. Dark brown appearance is probably due to oxidation during removal from furnace tube while passing through flame curtain. The fragment labeled control to the right is bright coppery in appearance, has good adherence and electrical characteristics.
Optical micrographs of S080 successful and S079 unsuccessful screened prints with experimental copper pastes.
Left side, top: Silicon substrate under good S080 print (electrode removed by etching in concentrated nitric acid).
Bottom: Silicon substrate of S079 print (electrode peeled spontaneously).
Right side, top: S080 successful electrode print.
Bottom: S079 unsuccessful electrode print.
Magnification 400x
SEM micrographs of SOBO control successful screen print. Left side: silicon substrate, right side: electrode.
SEM MICROGRAPHS OF SO80, UNSUCCESSFUL ELECTROPLATING EXPERIMENT.
LEFT SIDE: SUBSTRATE. RIGHT SIDE: ELECTRODE.
Energy dispersive xray spectrum of original S080 screened print with log ordinate
Energy dispersive x-ray spectrum of recent attempt to reproduce S080 (linear ordinate)
Energy dispersive X-ray spectrum of silicon substrate from which unsuccessful 5080 electrode was removed by peeling (linear ordinate)
Energy dispersive X-ray spectrum of S079 screened print with log ordinate
Conclusions and Problems

1. Paste manufacture of experimental pastes reinitiated.

2. Special analysis shows essential compositional components but potentially inadequate SiO_2 removal by decomposing silver fluoride.

3. Inadequate adhesion of previously manufactured pastes prevented electrical evaluation of front contact experiment.

4. Escalating cost of silver fluoride (AgF) makes substitute scavenging agent desirable.
I. PHASE ONE — IMPROVE EXISTING LAYUP AND INTERCONNECT SYSTEM. PROGRESS SINCE LAST PIM:

- PHASE COMPLETED AS PER CONTRACTUAL REQUIREMENTS
- PREPARATION CYCLE TIME REDUCED 40% (15 Sec to 8.5 Sec)
- MANIFOLD TYPE DISPENSER FOR IMPROVED SOLDER PASTE DISPENSING
- IMPROVE LAYDOWN ACCURACY TO ROBOT MAXIMUM (± 0.050")
- SOLDERING TIME REDUCED ON ORDER OF MAGNITUDE (30 Sec to 3 Sec)
- NEW SOLDER TECHNIQUE TO ELIMINATE SOLDER AND FLUX SMEAR
- SYSTEM INSTALLED IN NEW ENCLOSURE
II. PHASE THREE — AUTOMATED MODULE ENCAPSULATION.

PROGRESS SINCE LAST PIM:

- DETAILED LAYOUT DRAWINGS COMPLETED
- FRAME FABRICATED
- COMPONENT DRAWINGS 75% COMPLETE
- COMPONENT FABRICATION 50% COMPLETE
- COMPONENT ASSEMBLY (ONTO FRAME) 30% COMPLETE
Objective
APPLICATION OF ADVANCED ROBOTICS
AND MACHINE PERCEPTION TECHNIQUES
TO SOLAR CELL MODULE PRODUCTION.

Plan
• AUTOMATION EVALUATION STUDY TO IDENTIFY POTENTIAL APPLICATIONS
 OF MACHINE INTELLIGENCE
 • INITIAL STRAWMAN BASED ON 1978 JPL PROCESS SEQUENCE
 • MEPSDU BASED STRAWMEN (IN PROCESS)
• LAB DEMONSTRATION OF SELECTED DEVELOPMENT TASK(S)

Automation Issues
• WHAT IS THE PROCESS SEQUENCE?
• CONTINUOUS VS. BATCH PROCESSING
• INTER-STEP TRANSFER
• BUFFERING
• MODULE FABRICATION
• INSPECTION AND TESTING FOR QUALITY CONTROL FEEDBACK
• PROCESS CONTROL
• COMPUTERIZATION
PRODUCTION PROCESS AND EQUIPMENT AREA

Process Sequence

• THE MEPSDU PROPOSALS FROM SOLAREX AND WESTINGHOUSE ARE CURRENTLY BEING EVALUATED

• A PRODUCTION STRAWMAN WILL BE PROPOSED FOR EACH MEPSDU

Continuous vs Batch Processing

CONTINUOUS

• CONVEYOR BELT OPERATIONS
 • FURNACES, SPRAY-ON COATINGS, DIFFUSION, SILK SCREEN

• K & S CELL STRINGING MACHINE

• CELL TEST

• LASER SCRIBING

BATCH

• DIP COATING

• CLEANING/ETCHING

• METAL PLATING

Interstep Transfer

• BETWEEN FIXTURES (CASSETTES, ETC.)

• CELL ORIENTATION

• INVERTING CELLS

• CONVERGENT/DIVERGENT PROCESSES
PRODUCTION PROCESS AND EQUIPMENT AREA

Buffering

- LINE BALANCING
- MACHINE DOWN TIME
- MORE FLEXIBLE WHEN DONE ON INDIVIDUAL CELL BASIS

Inspection and Testing

- INSPECTION FOR BROKEN CELLS
- VERIFICATION THAT CELL IS PRESENT
- ELECTRICAL TESTS
- CELL ORIENTATION

Process Control

- MAINTAIN PROCESS PARAMETER SUCH AS CHEMICAL CONCENTRATIONS, TEMPERATURE, AND PROCESSING TIME
- COULD POSSIBLY ADJUST ONE PARAMETER ON THE BASIS OF DEVIATIONS OF ONE OF THE OTHERS
- STATUS MONITORED BY CENTRAL COMPUTER

Computerization

- DISTRIBUTION OF CONTROL
- INTER-STEP COMMUNICATION
- HUMAN INTERFACE
PRODUCTION PROCESS AND EQUIPMENT AREA

Candidate Development Tasks

1. CELL HANDLING
 - INTERSTEP TRANSFER
 - BUFFERING
 - INSPECTION

2. MODULE FABRICATION
 - BUS BARS
 - PARALLEL INTERCONNECTIONS
 - BYPASS DIODES
 - TERMINALS

Development Task Selection Considerations

- SHOW COST BENEFIT USING SAMICS METHODOLOGY
- ALTHOUGH A PUMA ROBOT WILL BE USED FOR DEMONSTRATION PURPOSES, IT IS RECOGNIZED THAT A SOMEWHAT SIMPLER DEVICE MAY ALSO BE SUITED TO THE TASK.
PRODUCTION PROCESS AND EQUIPMENT AREA

Westinghouse Process Sequence

1. PRE-DIFFUSION CLEAN - PLASMA ETCH
2. Pocl3 DIFFUSION - DIFFUSION FURNACE
3. OXIDE ETCH
4. BSF FORMATION - PLASMA SPRAY, DRIVE FURNACE
5. AR COATING - DIP TANKS, FURNACES
6. PHOTORESIST COATING - DIP TANKS, FURNACES
7. EXPOSE/DEVELOP/ETCH - LIGHT SOURCE, DIP TANKS
8. METALLIZATION - BOX COATER
9. REJECTION/PILING - PLATING LINE
10. CELL SEPARATION - LASER SCRIBE
11. CELL TEST
12. INTERCONNECT - ULTRASONIC WELDER
13. LAMINATION/ASSEMBLY
14. MODULE TEST
Solarex Process Sequence

1. SURFACE PREPARATION - NaOH ETCH
2. FRONT JUNCTION FORMATION - SPRAY-ON DOPANT, BELT DIFFUSION
3. BACK JUNCTION FORMATION - AL PASTE, BELT FIRE
4. AR COATING - SPRAY-ON, BELT DRY
5. METALLIZATION - NEGATIVE SCREEN PRINT, ELECTROLESS Ni PLATE, SOLDER DIP
6. EDGING - LASER SCRIBE
7. CELL TEST
8. TAB AND STRING - SOLDER CONTACTS
9. ENCAPSULATE MODULE
10. MODULE TEST

Computer Vision Demonstration

- INSPECTION AND VERIFICATION IN THE CONTEXT OF A SIMULATED CELL STRINGING OPERATION
- ESTIMATE POSITION ERRORS
- CORRECTLY IDENTIFY SITUATIONS WHERE TWO OR THREE CELLS OVERLAP
- DETECT BROKEN CELLS, MISSING CELLS

Other Applications

- INTERSTEP TRANSFER
 - MISSING CELLS
 - BROKEN CELLS
- CONVEYOR BELTS
 - OVERLAPPING CELLS
- LASER SCRIBING
 - BROKEN CELLS
 - VERIFY SIZE

307
PRODUCTION PROCESS AND EQUIPMENT AREA

Vision System Features

- Adapts to changes in the absolute location of the task
- Absolute cell position is determined to avoid propagation of errors
- Easily programmed to handle different cell sizes and layup patterns

Improvements

- Increased image resolution
- Hardware image feature extraction for increased speed
- Extend image analysis to handle interconnects
- Modify to handle different cell shapes
PRODUCTION PROCESS AND EQUIPMENT AREA

PROCESSING EXPERIMENTS ON NON-CZOCZRALSKI SI SHEET
MOTOROLA, INC.

Major Areas of Investigation

1. PROCESS TECHNOLOGY
 SUBSTRATE SURFACE PREPARATION
 SURFACE ETCHING
 SURFACE TEXTURING
 SURFACE CLEANING
 PROCESS UNIFORMITY CONSIDERATIONS
 HANDLING RECTANGULAR SHAPES

2. CELL DESIGN
 METALLIZATION PATTERN OPTIMIZATION FOR RECTANGULAR CELLS

3. METALLIZATION
 PLATED METALLIZATION ADVANCEMENTS

4. COST ANALYSIS
 DOCUMENTATION OF MOTOROLA APPROACH AND COMPARISON WITH SAMIS

Process Technology: Baseline Process Sequence

1. BLANKET PHOSPHORUS DIFFUSION, PH₃ AT 900°C.
2. MESA JUNCTION ETCH, PHOTORESIST WITH A PLASMA ETCH FOR SILICON.
3. SILICON NITRIDE COAT, LPCVD Si₃N₄ AT 780°C.
4. OHMIC PATTERN, PLASMA ETCH NITRIDE.
5. METAL PLATE, NICKEL-COPPER OR PALLADIUM-NICKEL-COPPER.
Process Technology: Surface Preparation Experiment

1. **DESIRED STRUCTURE: SIDE-BY-SIDE COMPARISON OF TEXTURED AND NON-TEXTURED (FRONT SURFACE) CELLS.**

2. **PROCEDURE:** USE SILICON NITRIDE COATING TO MASK TEXTURED SURFACE PREPARATION ON ENTIRE BACK SIDE AND HALF OF FRONT SIDE (LENGTHWISE) FOR 10 RIBBON SAMPLES.

3. **SOLAR CELL STRUCTURE:** FORM PAIRS OF SIDE-BY-SIDE 1 cm BY 2 cm SOLAR CELLS, ONE CELL OF THE PAIR ON TEXTURED SIDE AND THE OTHER ON SMOOTH SIDE OF THE RIBBON. (USE BASELINE PROCESS.)

Substrates Used for Texture-Etch And Surface-Etch Studies
Process Technology: Surface Preparation Experiments

RESULTS

1. 10 RIBBONS PROCESSED, UP TO 11 CELL PAIRS PER RIBBON.

2. 48 PAIRS USED FOR ANALYSIS.

3. 32 PAIRS INDICATED IMPROVEMENT IN SHORT CIRCUIT CURRENT, I_{SC}, WITH TEXTURING.
 AVERAGE I_{SC} INCREASE 2.1 mA OR 4.3%.

4. 15 PAIRS INDICATED DECREASE IN I_{SC} WITH TEXTURING.
 AVERAGE I_{SC} DECREASE 1.6 mA OR 3.2%.

5. TOTAL AVERAGE INCREASE WITH TEXTURING (FOR ALL 48) WAS 0.9 mA OR 1.9%.

Cell Design: Metal Pattern Optimization Procedure

EXPRESSION FOR EFFICIENCY:

$$\eta = \eta^0 \cdot T \cdot (1-F) - (PS/Pl)$$

$$= \eta^0 \cdot T - \Delta \eta$$

WHERE

- η = OVERALL EFFICIENCY
- η^0 = INHERENT SUBSTRATE CONVERSION EFFICIENCY
- T = OPTICAL TRANSMISSION COEFFICIENT OF EXPOSED FRONT SURFACE
- F = METAL SHADOWING FRACTION
- PS = OHMIC POWER LOSS
- Pl = TOTAL INPUT POWER OVER USEFUL SPECTRUM

NOTE:

$$\Delta \eta = \eta^0 \cdot TF + PS/Pl$$

$$= \Delta \eta_{SHADOW} + \Delta \eta_{OHMIC}$$
PRODUCTION PROCESS AND EQUIPMENT AREA

CELL DESIGN - METAL PATTERN OPTIMIZATION PROCEDURE

NECESSARY OPTIMIZATION CONDITION

\[\frac{\partial}{\partial aF} \Delta \eta = 0 \]

HENCE \[\frac{\partial}{\partial aF} (P\Omega /P_1) = - \eta^{0T} \]

THIS CONDITION, ALONG WITH OTHER SPECIFIC CONSTRAINTS RELATED TO THE DESIRED CELL DESIGN, RESULTS IN EQUATIONS TO DETERMINE OPTIMUM LINE WIDTHS, SPACING, ETC.

Surface Current and Potential Distributions
At a Zone Element

Optimized Performance vs Line Width
(Spacing Variable) for 1 x 2-in. Cell With Side Buses
Metallization: Electroless Nickel Plating

Formula Currently Being Investigated:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel Sulfate $\text{NiSO}_4\cdot6\text{H}_2\text{O}$</td>
<td>25 g/l</td>
</tr>
<tr>
<td>Sodium Pyrophosphate $\text{Na}_3\text{P}_2\text{O}_7\cdot10\text{H}_2\text{O}$</td>
<td>50 g/l</td>
</tr>
<tr>
<td>Ammonium Hydroxide 58% NH_4OH</td>
<td>66 m/l</td>
</tr>
<tr>
<td>Sodium Hypophosphite $\text{Na}_2\text{H}_2\text{PO}_2\cdot\text{H}_2\text{O}$</td>
<td>25 g/l</td>
</tr>
</tbody>
</table>

PRODUCTION PROCESS AND EQUIPMENT AREA

Cost Analysis: Motorola Costing Program

REQUIRED INPUT FILES:

1. PROCESS NAME FILE
2. CELL DIMENSION FILE
3. PROCESS DATA FILE
4. VARIABLE DATA

Cost Analysis: Input File Contents

1. PROCESS NAME FILE
 - PROCESS NAME
 - NUMBER OF PROCESS STEPS
 - PROCESS SEQUENCE
 - PROCESS CATEGORIES

2. CELL DIMENSION FILE
 - DIMENSION IDENTIFYING NAME
 - CELL AREA
 - DIMENSION FILE NAME
 - SILICON CONSUMPTION
PRODUCTION PROCESS AND EQUIPMENT AREA

COST ANALYSIS - INPUT FILE CONTENTS

<table>
<thead>
<tr>
<th>3. PROCESS DATA FILE</th>
<th>4. VARIABLE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS YIELD (%)</td>
<td>ANNUAL PRODUCTION VOLUME (MW)</td>
</tr>
<tr>
<td>MACHINE EFFICIENCY</td>
<td>CELL EFFICIENCY (%)</td>
</tr>
<tr>
<td>MACHINE CAPACITY</td>
<td>SOLAR CONCENTRATION (SUNS)</td>
</tr>
<tr>
<td>MACHINE COST</td>
<td>SILICON COST ($/KG)</td>
</tr>
<tr>
<td>DIRECT LABOR</td>
<td>FACTORY LIFE (MONTHS)</td>
</tr>
<tr>
<td>FLOOR SPACE</td>
<td>INTEREST RATE (%)</td>
</tr>
<tr>
<td>ELECTRICAL POWER</td>
<td>ELECTRICAL POWER RATE ($/KWH)</td>
</tr>
<tr>
<td>VENTILATION</td>
<td>DIRECT LABOR RATE ($/HOUR)</td>
</tr>
<tr>
<td>DE-IONIZED WATER</td>
<td>SILICON THICKNESS (MICRONS)</td>
</tr>
<tr>
<td>PROCESS EXPENSES</td>
<td></td>
</tr>
<tr>
<td>MACHINE EXPENSES (CONSTANT)</td>
<td></td>
</tr>
<tr>
<td>MACHINE EXPENSES (VARIABLE)</td>
<td></td>
</tr>
<tr>
<td>PROCESS MATERIALS</td>
<td></td>
</tr>
<tr>
<td>FACILITY REQUIREMENT CODE</td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT MAINTENANCE PERSONNEL</td>
<td></td>
</tr>
</tbody>
</table>

315
Motorola Costing Program

SIMPLIFIED BLOCK DIAGRAM OF MOTOROLA COSTING PROGRAM
Organization of Design Guide

- BACKGROUND - MATERIAL TO FAMILIARIZE AUDIENCE WITH BASIC PHYSICAL CONCEPTS, GOALS AND PURPOSES OF THIS GUIDE
- SIMPLIFIED DESIGN TECHNIQUES - TO ALLOW A DESIGN ENGINEER TO DEVELOP EFFECTIVE OPTIONS AND STUDY TRADE-OFFS
- EXAMPLES - TO ILLUSTRATE THE TECHNIQUES PRESENTED
- CONCLUSIONS AND REFERENCES - FOR FOLLOW UP IN MORE DETAIL ON FACTS PRESENTED HERE

Acknowledgments

- SCIENCE APPLICATIONS, INC. APPRECIATES THE ASSISTANCE OF THE LOW COST SOLAR ARRAY PROJECT OF THE JET PROPULSION LABORATORY, PARTICULARLY DON BICKLER AND PAUL ALEXANDER OF PPE AND ED CUDDIHY OF THE ENCAPSULATION TASK.

- THE DESIGN GUIDE WAS PREPARED BY C.N. BAIN, BRUCE GORDON, BOB MALINOWSKI, AND T. MICHAEL KNASEL (PROJECT MANAGER) OF SAI McLEAN, VIRGINIA.
Table of Contents

BACKGROUND

OPTICAL DESIGN GUIDE

INTRODUCTION
 CONTRACT DETAILS
 GOALS OF DESIGN GUIDE
 DEFINITIONS

OPTICAL PRINCIPLES
 REFRACTION, REFLECTION
 DIFFUSE LIGHT TRAPPING IN THICK FILMS
 APPROXIMATE CLOSED FORM SOLUTION
 COMPUTER MODELING
 SIMPLIFIED DESIGN EQUATIONS

BASELINE MODULE DESIGN
 MODULE LAYOUT, CELL SPACING GEOMETRY
 BASELINE PERFORMANCE ESTIMATES
 EXPERIMENTAL CONFIRMATION

SIMPLIFIED DESIGN TECHNIQUES

DESIGN RULES
 VARIATION IN PACKING FACTOR, MODULE THICKNESS
 AND INDEX OF REFRACTION

TRAPPING GAIN AS A FUNCTION OF PACKING FACTOR
 AND LAYER THICKNESS

MODULE DESIGN
 MODIFICATIONS THAT USE LIGHT TRAPPING
 MAXIMIZING GAIN IN A DENSELY PACKED MODULE
 MULTIPLE LAYERS
 INTRA-CELL TRAPPING
PRODUCTION PROCESS AND EQUIPMENT AREA

EXAMPLES

SYSTEM CONCEPTS THAT EXPLOIT LIGHT TRAPPING
GROWTH SYSTEM
WALL INTEGRATED SYSTEMS

FUTURE PROSPECT
GOALS OF COST/BENEFIT STUDY
INFORMATION REQUIRED

CONCLUSIONS

REFERENCES

Introduction

- CONTRACT DETAILS
- GOALS OF DESIGN GUIDE
- DEFINITIONS
TITLE: ANALYSIS OF COST-EFFECTIVE PHOTOVOLTAIC PANEL DESIGN CONCEPTS USING LIGHT TRAPPING

SPONSOR: JET PROPULSION LABORATORY

CONTRACT NO: 955787

OBJECTIVES:

1. DEVELOP OPTICAL DESIGN RULES FOR EFFICIENT USE OF LIGHT TRAPPING IN FLAT PANEL PHOTOVOLTAIC MODULES

2. PERFORM A COST BENEFIT STUDY OF OPTIMUM DESIGNS TO DETERMINE ECONOMIC VALUE OF LIGHT TRAPPING

Goals of Design Guide

TAking the point of view that a photovoltaic module is an optical thick film - three dimensional optical system in which trapping of light can and does take place:

- Develop graphical relationships between cell/module efficiencies and optical variables

- Variables shall include:
 - Cell spacing
 - Cover plate materials
 - Encapsulation thickness
 - Index of refraction of all optical materials
 - Reflectivity (angular pattern) of back layer

- Modeling effort shall address single and multiple trapping layers

- Simplified equations shall be developed as approximations to fully detailed calculations

- Pictorial displays and cross-sectioning of optical materials shall be used as appropriate

The design guide will enable the engineer to use light trapping effectively in PV panel design.
PRODUCTION PROCESS AND EQUIPMENT AREA

Definitions

- **Thin Film Optical Systems** - Two dimensional structures that reflect, refract or transmit light dependent on the wavelength and the optical properties of the materials - optical radiation goes forward or backward only.

- **Thick Film Optical Systems** - Three dimensional structures that reflect and transmit optical radiation forward or backward, with propagation possible transverse to layer structure.

- **Light Trapping** refers to propagation in thick films where light is trapped in high index materials by total internal reflection. Light is not normally trapped unless it is scattered in a diffuse (i.e., non-specular) manner.

Optical Principles

- Refraction, reflection in thick films
- Light trapping concept
- Thick films for optical concentration
- Closed form approximate solution
- Computer modeling
- Simplified design equations
Refraction, Reflection in Thick Films

REFRACTION AND REFLECTION ARE THE PRINCIPAL OPTICAL INTERACTIONS IN THICK FILMS:

- **REFRACTION**: BENDING OF OBLIQUE RAYS AS THEY PASS FROM ONE MEDIUM TO ANOTHER HAVING A DIFFERENT REFRACTIVE INDEX
- **REFLECTION**: THE RETURN OF RADIATION BY A SURFACE WITHOUT CHANGE IN WAVELENGTH
 - **SPECULAR**: FROM A SMOOTH SURFACE
 - ANGLE OF INCIDENCE (θ_i) EQUAL ANGLE OF REFLECTION (θ_r)
 - **DIFFUSE**: FROM A ROUGH SURFACE
 - INTO MANY (SOMETIMES ALL) DIRECTIONS OF A HEMISPHERE

Most surfaces contribute specular and diffuse components.

Thick Films as Optical Concentrators

THE ABILITY OF THICK FILMS TO PROPAGATE OPTICAL RADIATION IN A TRANSVERSE DIRECTION RAISES THE POSSIBILITY THAT OPTICAL CONCENTRATION (CALLED GAIN) CAN BE ACHIEVED. SUCH SYSTEMS WOULD HAVE THE FOLLOWING PROPERTIES:

- **MAXIMUM THEORETICAL GAIN FOR ANY RECEIVING ELEMENT WOULD BE LIMITED TO THE SQUARE OF THE RATIO OF INDICES**, ($\frac{n_{\text{high}}}{n_{\text{low}}}$)2
- **MAXIMUM GAIN FOR AN ARRAY OF ELEMENTS THAT TRAP WOULD BE LIMITED TO THE RATIO OF THE TOTAL AREA TO AREA OF RECEIVER**, $\frac{A_{\text{total}}}{A_{\text{receiver}}}$
- **THE GAIN WILL BE LIMITED ALSO BY THE ABSORPTION OF THE THICK FILM**
Light-Trapping Concept

- USE OF HIGH INDEX OF REFRACTION MATERIALS
- DIFFUSELY REFLECTING INTERCELL AREA

Light Trapping by Diffuse Reflection in Thick Film

Diffuse light trapping is accomplished when an incident ray enters a higher index transparent layer and is scattered.

An example related to photovoltaic modules is shown below:
PRODUCTION PROCESS AND EQUIPMENT AREA

Closed-Form Approximate Solution

ASSUMPTIONS:
• Single trapping layer, index \(n_2 \), placed in air, index \(n_1 \).
• No absorption in layer.
• No Fresnel reflections.
• Homogeneous mixture of diffusing layer and cells.
• Perfect diffuse (Lambertian) reflection between cells.

METHOD—SERIES SOLUTION TO RAY PROPAGATION

\[G_0(n_1) = \frac{1}{(C+L - LC)} \]

\[n_1 = \frac{n_2}{n_1} \]

\(C \) = CELL PACKING FACTOR

\(L \) = LOSS DUE TO LESS THAN CRITICAL ANGLE REFLECTION

\[L = \sin^2 \theta_c = \left(\frac{n_1}{n_2} \right)^2 \]

FOR THE CASE WHERE THE PACKING FACTOR IS SMALL THE EXPRESSION REACHES THE OPTICAL LIMIT FOR GAIN

\[G_0(n_1) = \frac{1}{(n_1)^2}; C \rightarrow 0 \]

\[= \left(\frac{n_2}{n_1} \right)^2 \]

Derivation of Closed-Form Solution

\[G = \left[1 + \frac{(1-C)(1-L)}{1-C-L+LC} + \frac{(1-C)(1-L)^2}{1-C-L+LC} \right] \]

\[G = \sum_{n=0}^{\infty} (1-C-L+LC)^n = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{for } x < 1 \]
PRODUCTION PROCESS AND EQUIPMENT AREA

Simplified Design Equations

1) GAIN WITH NO FRESNEL REFLECTIONS
\[G_0 = \frac{1}{C+L-LC} \]

2) GAIN WITH FRESNEL REFLECTION AT TOP LAYER
\[G_0 \cdot \frac{1}{C+L-LC-LF+LCF} \]

3) GAIN WITH FINITE REFLECTIVITY \(R \leq 1.0 \)
\[G(R) = \frac{1}{1-R(1-C-L+LC+LF-LCF)} \]

4) GAIN FOR LESS THAN OPTIMUM THICKNESS \(\tau/\Lambda < 0.3 \)
\[G(T) = 1 - \left(\frac{G_0 - 1}{1-(1-3.33/2)^3} \right) \]

5) EFFECTS OF ADDITIONAL LAYERS ARE MULTIPLICATIVE
\[G(N_1, N_2 \ldots) = 1 + \left(G(N_1) G(N_2) \ldots - 1 \right) \]

6) EFFECTS OF \(R, T \) CAN BE ALSO INCLUDED
\[G(N_1, N_2 \ldots, R_1 \ldots, T_1 \ldots) = 1 + \left(G(N_1, R_1, T_1) G(N_2, R_2, T_2) \ldots - 1 \right) \]

Computer Model for Simulation of Light Propagation
And Diffusion by Monte Carlo Methods

IN ORDER TO CHECK THE CLOSED FORM SOLUTION AND TO PROVIDE MORE DESIGN
DETAIL A COMPUTER CODE WAS WRITTEN WITH THESE FEATURES:

- PROPAGATION OF LIGHT IN THREE DIMENSIONS INCLUDES FRESNEL LOSSES,
 ABSORPTION LOSSES, AND DIFFUSION LOSSES

- DIFFUSED RAYS GIVEN ANGLES WHICH EFFECTIVELY SAMPLE
 THE REAL DISTRIBUTION OF DIFFUSED LIGHT - A MONTE CARLO TECHNIQUE
 IS USED

- VARIOUS DIFFUSION PATTERNS INCLUDING LAMBERTIAN DISTRIBUTION
 ARE AVAILABLE AS INPUT

- A TWENTY BY TWENTY BOX MATRIX IS USED TO DEFINE CELL AND
 DIFFUSING AREAS

THE ACCURATE COMPUTER PREDICTIONS WERE THEN COMPARED TO THE CLOSED
FORM SOLUTIONS.
Closed-Form Equation vs Computer Calculation Comparison Format

- **LABELS**
 - CELL DIAMETER (INCHES)
 - OR SIDE IF SQUARE
 - REFLECTIVITY OF WHITE DIFFUSING LAYER, R
 - TOTAL THICKNESS ABOVE CELL, T
 - INDEX OF REFRACTION ABOVE CELL, N

- **AXES**
 - Y AXIS, GAIN ON CELL, G
 - X AXIS, PACKING FACTOR, PF

- **LINE**
 - CLOSED FORM EQUATION
 - POINTS, MONTE-CARLO MEAN (X) AND ERROR (BAR)

Closed-Form Equation vs Computer Calculation
PRODUCTION PROCESS AND EQUIPMENT AREA

1 INCH CELLS P=.85 T=.25 N=1.5

GAIN

GAIN

328
PRODUCTION PROCESS AND EQUIPMENT AREA

Baseline Module Design

- MODULE LAYOUT, CELL SPACING GEOMETRY
- BASELINE PERFORMANCE ESTIMATES
- EXPERIMENTAL CONFIRMATION

Light-Trapping Concentration for PV:
Concept Description

- LIGHT TRAPPED BY DIFFUSE BACK REFLECTION FROM THE REGION BETWEEN CELLS CAN CONTRIBUTE TO SYSTEM PERFORMANCE
- SYSTEM TRADE-OFF IS BETWEEN CELL SPACING, COVER THICKNESS AND INDEX OF REFRACTION
- LIGHT TRAPPING WORKS OVER THE ENTIRE HEMISPHERE THUS, PROVIDING CONCENTRATION OF SOLAR DIFFUSE RADIATION AS WELL AS DIRECT

Module Layout; Cell-Spacing Geometry
Definition of Layers in Baseline Module Cross Section*

<table>
<thead>
<tr>
<th>OPTICALLY IMPORTANT MODULE LAYERS FROM SUN SIDE DOWN</th>
<th>PREFERRED MATERIAL CHOICES AND NOMINAL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAMINATION</td>
</tr>
<tr>
<td></td>
<td>CASTING</td>
</tr>
<tr>
<td>SUPERSTRATE DESIGN:</td>
<td></td>
</tr>
<tr>
<td>TOP COVER</td>
<td>LOW IRON, TEMPERED SODA-LIME GLASS, 125 MIL MINIMUM</td>
</tr>
<tr>
<td>POTTANT</td>
<td>ETHYLENE VINYL ACETATE (EVA) OR ETHYLENE METHYLACRYLATE (EMA), 5 MIL MINIMUM</td>
</tr>
<tr>
<td>SPACER</td>
<td>NON-WOVEN GLASS MAT TO ACHIEVE MINIMUM POTTANT THICKNESS - CRANEGLAS</td>
</tr>
<tr>
<td></td>
<td>MAY NOT BE REQUIRED</td>
</tr>
<tr>
<td>SUBSTRATE DESIGN:</td>
<td></td>
</tr>
<tr>
<td>TOP COVER</td>
<td>BIAxIALLY ORIENTED POLYMETHYLACRYLATE (PMMA) OR TEDLAR, 3 MIL</td>
</tr>
<tr>
<td>POTTANT</td>
<td>NONE REQUIRED ON SUN SIDE</td>
</tr>
<tr>
<td></td>
<td>SAME</td>
</tr>
</tbody>
</table>

For either module:

- CELLS
 - FOUR INCH ROUND OR FOUR BY ONE INCH RECTANGULAR, PACKING FACTOR 0.6 TO 0.85
 - SAME

*Source: JPL LETTER TO SAI October 1, 1980.

Variation in Module Thickness

- The thickness of a photovoltaic module is a function of module size, materials used, wind and environmental loads on the module and the array structure.

- In modules where the encapsulating materials provide most of the module strength, superstrate layer thicknesses may increase optical performance and strength.

- In light trapping PV modules, the important design parameters are:
 - Material index and transmission
 - Length of transmission paths
 - Number of reflections, energy absorbed
 - Trapping layer material heat capacitance

- Material(s), thickness of trapping layer(s), cell size and PF can be controlled to maximize gain, or to minimize module cost per watt.

- These parameters and costs can be traded off against land, structure, and operation and maintenance costs to minimize system cost per watt.
PRODUCTION PROCESS AND EQUIPMENT AREA

Experimental Confirmation

--- SIMPLIFIED DESIGN EQUATION

(TOP) CALCULATION INFINITE DIFFUSING MATRIX

(BOTTOM) SINGLE DIFFUSING AREA, BLACK ELSE WHERE

DATA:
- SMALL DIFFUSING AREA
- LARGE DIFFUSING MATRIX

Design Rules

- VARIATION IN MODULE THICKNESS/MATERIAL INDEX OF REFRACTION

- TRAPPING GAIN AS A FUNCTION OF PACKING FACTOR AND LAYER THICKNESS
Design Equations for Various Indexes of Encapsulant, Thickness and Packing Factor

PRODUCTION PROCESS AND EQUIPMENT AREA

4 INCH CELLS F=.85 N=2

GAIN

1/1
1/1/2
1/6
1/8
1/12
1/16
1/24

1.000

1.500
2.000
2.500
3.000

PF
PRODUCTION PROCESS AND EQUIPMENT AREA

4 INCH CELLS P= .85 N=2.5

4 INCH CELLS P= .85 N=2.8
PRODUCTION PROCESS AND EQUIPMENT AREA

Typical Gains for Block III Modules
Using Simplified Design Equations

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>AS CONFIGURED</th>
<th>WITH T = 1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCO</td>
<td>1.08</td>
<td>1.17</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>1.10</td>
<td>1.20</td>
</tr>
<tr>
<td>SENSOR TECHNOLOGY</td>
<td>1.12</td>
<td>1.24</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>1.06</td>
<td>1.13</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>1.13</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Module Design

- **MODIFICATIONS FOR LIGHT TRAPPING**
- **MAXIMIZING GAIN IN A DENSELY PACKED MODULE**
- **MULTIPLE LAYERS**
- **INTER-CELL/INTRA-CELL TRAPPING**

Maximizing Gain in Densely Packed Module

These steps will produce an optically efficient PV module:

- **AR COATING**
- **ADD DIFFUSE REFLECTOR**
- **OPTIMIZE SUPERSTRATE THICKNESS BASED ON CELL SIZE**
- **UTILIZE TWO OR MORE TRAPPING LAYERS**
- **USE DIFFUSING LAYER ON CELL GRIDS**
- **ADD REFLECTORS TO SUPER- AND SUB-STRATE EDGES**
- **OPTIMIZE LOAD**
Modifications for Light Trapping

Design Options to be Considered

<table>
<thead>
<tr>
<th>MATRIX OF STUDY CASES</th>
<th>PANEL PERFORMANCE IMPROVEMENT DUE TO TRAPPING FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLEXITY OF TRAPPING LAYER</td>
<td>INTER-CELL REGION</td>
</tr>
<tr>
<td>Single Layer</td>
<td>(BASELINE CASE)</td>
</tr>
<tr>
<td>- Existing Design</td>
<td></td>
</tr>
<tr>
<td>- Optimal Design</td>
<td></td>
</tr>
<tr>
<td>Multiple Layers</td>
<td>Use Commercial Module Design</td>
</tr>
<tr>
<td>- Existing Design</td>
<td></td>
</tr>
<tr>
<td>- Optimal Design</td>
<td></td>
</tr>
</tbody>
</table>

Intercell-Intracell Trapping

- **INTER-CELL TRAPPING** traps light by diffuse back reflection from the regions between cells.

- **INTRA-CELL TRAPPING** uses a diffusing layer on the cell grid itself to recover a large part of grid blockage losses.

- In both cases, light trapping works over the entire hemisphere, thus providing concentration of the sky diffused component of solar radiation.

System Concepts That Exploit Light Trapping

- **GROWTH SYSTEM**

- **WALL INTEGRATED SYSTEMS**
Growth System

DESIGNING A PHOTOVOLTAIC SYSTEM TO ALLOW FOR THE OPTIMUM PACKING FACTOR WITH TODAY’S PRICES, CAN ALSO ALLOW A MORE EFFECTIVE SYSTEM WHEN THE DOE COST GOALS ARE MET OR EXCEEDED, SINCE THE INFLATION SENSITIVE MATERIAL AND LABOR ITEMS ARE PRODUCED EARLY.

ECONOMIC MODEL

REQUIRED AREA OF SOLAR CELLS

\[A_s = \frac{P_{out}}{n^2} \]

REQUIRED TOTAL AREA

\[A_T = \frac{A_s}{P.F.} \]

TOTAL COST = \[C_T = A_s C_s + A_T (C_C + C_F + C_L) \]

COST/n² OF:

- Solar Cells
- Trapping Structure
- Land

\[C_T = \frac{P_{out}}{n^2} \left[C_s + \frac{1}{P.F.} (C_C + C_F + C_L) \right] \]
Example: 1980 Cell Prices, Three Encapsulant Thickness
Future Prospect

- Goals of Cost/Benefit Study

- Information Needed

Goals of Cost-Benefit Study

As a follow-up to the design guide a cost/benefit study was performed:

- Uses simplified design equation for PV module performance

- Simplified costing equations to relate cost of cells, encapsulant, array structures and land at a constant power level, were developed

- The goal is to determine the optimum cost/benefit point for optical design of photovoltaic panels.
PRODUCTION PROCESS AND EQUIPMENT AREA

Information Required

IN ORDER TO PERFORM THE COST/BENEFIT STUDY THE FOLLOWING DATA IS REQUIRED:

- MODULE
 - OPTICAL MATERIALS, INDEX, ABSORPTION,
 VOLUMETRIC COST OF MATERIALS, COST
 OF LABOR FOR MANUFACTURER
 - COST OF CELLS, AND EFFICIENCY

- ARRAY
 - AREA RELATED COST OF ARRAY STRUCTURE,
 COST OF LAND

PROCEDURE IS TO TRADE-OFF PACKING FACTOR, AND/OR MODULE THICKNESS VERSUS COST FOR THE SAME LEVEL OF DELIVERED ELECTRICAL POWER.

Conclusions

- OPTICAL DESIGNS OF PV PANELS USING LIGHT TRAPPING INTRODUCE A HOST OF NEW PARAMETERS THAT MUST BE CONSIDERED IN PV MODULE DESIGN AND NEW RESEARCH AND DEVELOPMENT AVENUES THAT PROMISE TO PROVIDE EARLY DIVIDENDS.

- LIGHT TRAPPING CAN BE USED TO:
 - IMPROVE EFFICIENCY IN STANDARD PV MODULES
 - OPTIMIZE PV MODULE DESIGNS BASED ON COST USING CURRENT AND PROJECTED MATERIAL, LABOR, MONEY AND REAL ESTATE
 - IMPROVE THE EFFICIENCY OF SOLAR SYSTEMS ARCHITECTURALLY INTEGRATED INTO BUILDINGS TO PROVIDE PV ELECTRIC POWER GENERATION, SPACE HEATING AND DIFFUSE LIGHTING.

- LIGHT TRAPPING PV MODULES USING TRAPPING LAYERS MADE OF CURRENTLY AVAILABLE MATERIALS IS ALREADY A VIABLE PROPOSITION. THE DEVELOPMENT OF HIGHER INDEX MATERIALS CAN IMPROVE THIS SITUATION EVEN AS CELL COSTS DECLINE.
PRODUCTION PROCESS AND EQUIPMENT AREA

Design Method

- Familiarization with Concepts - Examples
- Obtain data on materials: optical properties and costs to augment data on module
- Use design nomographs or simplified design equations to obtain gain as a function of packing factor and thickness of encapsulant above cell
- Use costing nomograph or simplified costing equations to determine gain for various packing factor and thickness values, find a cost minimum
- Estimate cost savings obtained at minimum and compare with standard design
- Repeat with other material choices

Recommended Applications

Based on this study it is recommended that designers consider light trapping designs in situations where

- Round cells (full or partial) are to be utilized
- Silicon is costly and/or in short supply
- Cells are roof and/or wall integrated (residential)
- Module thickness is important - (hail areas is an example)
- Rapid power requirement growth is anticipated at site
- Thin or sharp shadows fall on array
- Array area costs are low
PRODUCTION PROCESS AND EQUIPMENT AREA

References

2. UNITED STATES PATENT NO. 4,162,928, "SOLAR CELL MODULE", NEAL F. SHEPARD, JR., JULY 31, 1979, (ASSIGNED TO NASA).

6. UNITED STATES PATENT APPLICATION "FIXED SOLAR ENERGY CONCENTRATOR" (ASSIGNED TO SCIENCE APPLICATIONS, INC.).
Design Rules for Front Metallization
Of Large-Area Solar Cells

1. Observe: Careless metallization design is costly.

2. Select conductor metal of the highest practical conductivity.

3. Select deposition processes which approach bulk conductivity as closely as practical.

4. Each higher level in the hierarchy of conductors needs a much lower sheet resistance than the preceding level. This leads to the "sky scraper rule" for the bus lines: Build high rather than wide.

5. If the bus lines cannot have a sheet resistance small compared to the grid lines, omit the bus lines. Proceed directly to 10.

6. Select the bus line spacing, for bus lines of round wire, according to:

 \[2W = \left(\frac{3}{\pi} \frac{\rho_{BL}}{R_{sh,GL}} \frac{2}{3} \frac{V_{mp}}{j_{mp}} \right)^{1/8} \frac{1}{2} L_1 \]

7. Select bus line wire diameter according to:

 \[T_{BL} = \left(\frac{32}{3\pi} \frac{|j_{mp}|}{V_{mp}} \rho_{BL} L_1^2 W^2 \right)^{1/3} \]

8. For rectangular bus wires of height-to-width ratio \(k \), multiply each \(\pi \) by \(4k \).
9. For bus lines of constant sheet resistance $R_{sh,BL}$ rather than thickness directly proportional to width, as in round or rectangular wires, the relationship:

$$\frac{T_{BL}}{2W} = L_{1} \left(\frac{|j_{mp}|}{3V_{mp}} \frac{R_{sh,BL}}{\delta_{BL}} \right)^{1/2}$$

applies, instead of 6.) and 7.). Choose W then as small as practical, considering 13.) and 14.).

10. Arrange grid lines normal to bus lines, and parallel to each other.

11. Select grid line width as small as practical, commensurate with acceptable production costs and yields and solar cell value differences resulting from the consequent efficiency differences.

12. Select grid line spacing S according to:

$$S = \left(\frac{6V_{mp}T_{GL}}{|j_{mp}|R_{sh,FL}} \right)^{1/3} - \frac{2}{3} \frac{R_{sh,GL}}{R_{sh,FL}} \frac{\delta_{GL}}{V_{mp}} W^2$$

13. Check that

$$\frac{\delta_{GL}}{S} = \left(\frac{1}{3} \frac{R_{sh,GL}}{R_{sh,FL}} \frac{\delta_{GL}}{V_{mp}} \right)^{1/2} W$$

14. Check that

$$S \leq 2 \cdot \left[\left(\frac{R_{sh,GL}}{R_{sh,FL}} \delta_{GL} \right) \left(\frac{3V_{mp}}{|j_{mp}|} \right) ^{1/2} W \right]^{1/2}$$

15. If checks 13.) and 14.) are negative, select S as small as possible in view of 11.), but not significantly larger than given by 14.). If T_{GL}/S is large compared to right hand side of 13.), use the smallest practical value for T_{GL}, if pattern resolution is limiting. If grid line width-to-thickness ratio is limiting, reduce thickness (increase $R_{sh,GL}$), to find T_{GL} and $R_{sh,GL}$ values for least power loss.

16. The "shape factor" δ varies from 0.75 for fully tapered grid lines to unity for uniform width lines of equal shading.
PRODUCTION PROCESS AND EQUIPMENT AREA

Back Metallization

3 LAYERS IN PARALLEL:

\[R_{SH,P} = \frac{1}{2 \times 10^{-3} \text{ cm thick}} = 50 \Omega \]

\[R_{SH,P^+} = \frac{0.02}{2 \times 10^{-2} \text{ cm thick}} = 10 \Omega \]

\[n_A = 2 \times 10^{18} \text{ cm}^{-3} \]

\[u_p = 160 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \]

\[R_{SH,Cu} = \frac{1.7 \times 10^{-6} \text{ cm thick}}{1 \times 10^{-4} \text{ cm thick}} = 1.7 \times 10^{-2} \Omega \]

COMPOSITE SHEET RESISTANCE:

\[R_{SH,COMP} = \frac{R_{SH,P} \cdot R_{SH,P^+} \cdot R_{SH,Cu}}{R_{SH,P} + R_{SH,Cu} + R_{SH,P} + R_{SH,P^+}} \]

\[= \frac{50 \times 10 \times 1.7 \times 10^{-2}}{1.7 \times 10^{-1} + 8.5 \times 10^{-1} + 50 \times 10} \]

\[= 1.7 \times 10^{-2} \text{ (-0.2%) } \]

CONCLUSIONS:

1. **Metal dominates sheet flow, even in 0.1 \(\mu \text{m} \) thickness.**
2. **Current flow through semiconducting base (P and P+) is normal.**
3. **Bus wires on back permit layer-metal savings for equal performance. (Important for TF AG with Cu bus wires.)**

GENERAL:

4. **Grid structure on back does not provide metal saving, requires proportionally greater thickness for equal performance.**
Optimization Constraints

1. WHERE SHEET RESISTANCE (OR CONDUCTOR THICKNESS) IS FIXED, AN OPTIMIZATION OF INDIVIDUAL DIMENSIONS IS NOT POSSIBLE. OPTIMUM WOULD BE SPACING \(\cdot 0 \). HOWEVER, THE SHADING RATIOS \(T_{GL} \) AND \(T_{BL} \) CAN BE OPTIMIZED. (DESIGN RULES 9 AND 13.)

2. WHERE CONDUCTOR THICKNESS IS PROPORTIONAL TO WIDTH, INDIVIDUAL DIMENSIONS CAN BE OPTIMIZED. (DESIGN RULES 6 AND 7.)

3. WHEN TECHNOLOGICAL CONSTRAINTS DETERMINE THE LINE WIDTH, AN OPTIMUM SPACING CAN BE DETERMINED. (DESIGN RULE 12.)

REDUCING LINE SPACING, WHILE KEEPING THE LINE WIDTH TO SPACING RATIO CONSTANT, REDUCES THE VOLTAGE DROP IN THE NEXT LOWER LEVEL OF CONDUCTOR \(V_{FL} \cdot 0 \), WHEN \(S \cdot 0 \). HOWEVER, IT DOES NOT MAKE SENSE TO REDUCE THE SPACING FURTHER, WHEN THE NEXT LOWER LEVEL VOLTAGE DROP IS ALREADY NEGLIGIBLE COMPARED TO THE HIGHER LEVEL CONDUCTOR VOLTAGE DROP AND SHADING LOSS. (DESIGN RULES 14 AND 15.)
PRODUCTION PROCESS AND EQUIPMENT AREA

Tapered Grid Lines

\[V(W) = R_{NHMP} \frac{S W^2}{2 T_{GL}} \cdot G(f) \]

\[P = J_{MP} S W V_{EFF}(f) \]

\[V_{EFF} = V(W) \cdot \frac{1}{2} \cdot H(f) \]

<table>
<thead>
<tr>
<th>Type</th>
<th>(f)</th>
<th>(G(f))</th>
<th>(V_{EFF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Width</td>
<td>1</td>
<td>1</td>
<td>(V(W))</td>
</tr>
<tr>
<td>Fully Tapered</td>
<td>0</td>
<td>1</td>
<td>(\frac{1}{2} V(W))</td>
</tr>
</tbody>
</table>
Oblique Grid Lines

\[V_{\text{OBL}}(W) = \frac{V_{\text{NORM}}(W)}{\cos^2 \alpha}; \]

\(\alpha = 30^\circ \):

\[V_{\text{OBL}}(4) = 1.33 \, V_{\text{NORM}}(4); \]

OR:

\[T_{\text{GL,OBL}} = 1.33 \, T_{\text{GL,NORM}}; \]

TO OBTAIN \(V_{\text{OBL}}(W) = V_{\text{NORM}}(W) \)

| \(\alpha \) | 0 | 30° |
|----------------|-----------------|
| GRID SHADING | 0.3 cm² | 1.966 cm² |
| BUS SHADING | 0.36 cm² | 0.30 cm² |
| ADD'L CONNECTIONS | - | 0.035 cm² |
| TOTAL SHADING | 1.16 cm² | 1.40 cm² |
| REL. POWER LOSS | 0 | -0.6% |
| \(\alpha \) | 0 | 30° |
PRODUCTION PROCESS AND EQUIPMENT AREA

Hierarchy of Conductors: Decreasing Sheet Resistance

Semiconducting Front Layer:

\(R_{\text{SH,FL}} = 35 \Omega \)

Grid Lines (10 \(\mu \)m thick Cu):

\(R_{\text{SH,GL}} = 1.7 \cdot 10^{-3} \Omega \)

Bus Lines (30 ga Cu wire, 0.255 mm dia.):

\(R_{\text{SH,BL (equiv.)}} = 8.5 \cdot 10^{-5} \Omega \)

If \(R_{\text{SH,BL}} = R_{\text{SH,GL}} \): DO NOT USE Bus Lines!

Minimum loss with grid lines only, S·0, 10 cm x 10 cm cell:

\(\frac{P}{\text{Ideal}} = 11.7\% \)

Examples for 10 cm x 10 cm cells:

A.) 65 grid lines, 10 \(\mu \)m thick Cu, 85 \(\mu \)m wide

\(\frac{P}{\text{Ideal}} = 12.0\% \)

B.) 65 grid lines, 10 \(\mu \)m thick Cu, 25 \(\mu \)m wide

7 bus lines, 10 \(\mu \)m thick Cu, 750 \(\mu \)m wide

\(\frac{P}{\text{Ideal}} = 12.1\% \)

C.) 65 grid lines, 10 \(\mu \)m thick Cu, 25 \(\mu \)m wide

7 bus lines, 255 \(\mu \)m dia Cu wire

\(\frac{P}{\text{Ideal}} = 4.9\% \)

Effect of Metal Mass on Cell and Its Price

<table>
<thead>
<tr>
<th>Metallization</th>
<th>Grid Lines</th>
<th>Bus Lines</th>
<th>Back Metal</th>
<th>Total Mass</th>
<th>Metal Price</th>
<th>Metal Cost</th>
<th>Power Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>No. GL</td>
<td>Thick Mass</td>
<td>No. BL</td>
<td>Thick Mass</td>
<td>DIAMETER</td>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>TF Ag</td>
<td>40</td>
<td>20(^2)</td>
<td>127</td>
<td>20(^2)</td>
<td>52.5</td>
<td>4</td>
<td>10.6</td>
</tr>
<tr>
<td>TF Ag</td>
<td>4</td>
<td></td>
<td>271</td>
<td></td>
<td>20(^2)</td>
<td>0</td>
<td>29(^2)</td>
</tr>
<tr>
<td>Bulk Cu</td>
<td>65</td>
<td>10</td>
<td>255</td>
<td>324</td>
<td>146</td>
<td>4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

1) *PER 10 CM X 20 CM CELL
2) 50% OF VOLUME IS Ag
At the Wednesday-afternoon session of the PIM devoted to Block IV Module Production, contractors commented on the efficacy of that initiative by addressing design and performance requirements, environments, SAMICS-SAMIS, and general topics. Discussion was candid and, not surprisingly, there were both positive and negative comments on the contract content. A summary of these comments is given below.

Under the topic Design and Performance Requirements, these remarks stand out as subjects for consideration and concern:

1. Standardizing on a module terminal voltage is not necessary, and when coupled with dimensional constraints and the requirement to specify power at NOCT, becomes an important cost driver.

2. Redundant terminals serve no crucial purpose and raise the cost, but redundant interconnects are of significant value.

3. Efficiency was characterized both as being of critical importance and of secondary importance.

4. The need for shunt diode protection when arrays are used with maximum power tracking electronics in highly paralleled arrays was challenged. The case for diodes located external to the modules was advocated. The hot-spot endurance of modules should be verified (as planned for Block V).

5. The focus on residential and intermediate-load modules was said to be out of step with the market, which now is oriented toward remote applications.

6. The documentation required by JPL in support of a design program is unreasonable.

7. The quality assurance program demanded by JPL is too rigorous, given recent improvements in module yield and reliability. QA imposed is not what contractors use for commercial product line.
"Environmental Requirements" also elicited a wide range of comments:

1. Thermal and humidity testing was characterized both as valid and as inadequate. Recommendations were received both for more severe and for less severe testing. Constant, longer-term humidity testing at lower temperature rather than cycling was suggested. Thermal cycling both before and after humidity testing was proposed. Less severe thermal cycling but with increased number and rate of cycles was recommended.

2. Environmental design and testing should be site specific.

3. Tests such as hail and twist should be deleted when prior testing or analysis shows that design is satisfactory.

4. Wind loading should be a panel requirement, not a module requirement. That is, structural capability of modules should be evaluated as installed (rack or roof, as applicable).

5. Pass-fail should be determined on a performance basis, not on cosmetic criteria; a 5% performance degradation limit is too small.

6. In qualifying modules there is no need to run tests by both the contractor and JPL. Substantial costs to contractors for duplicate tests were identified.

7. Environmental testing is not a substitute for life testing.

8. Increased emphasis should be placed on reliability and durability requirement.

The use of SAMICS-SAMIS elicited considerable spirited discussion; comments ran the gamut from favorable to unfavorable, as follows:

1. Program is easy to use; program is difficult to use. The consensus was that it is difficult to use, particularly for new users who lack computer experience.

2. The high cost of running the program is a nearly universal objection.

3. Their usefulness is generally held to be dubious, primarily because of the imprecision of the Block IV input data, but there were also complaints that SAMIS overhead is too high and that some catalog prices are not correct.

4. Some contractors preferred to omit SAMIS (Solar Power) or do their own cost projection (Motorola).

5. Since the results can be manipulated, the program is valuable only in a relative sense; however, there was fairly good agreement between SAMIS results and prior contractor bids in several cases.
In the area of general comments, the need for more rapid feedback from JPL was mentioned, and the desirability of having large prototype runs was also expressed.

In the open discussion that followed the contractors' presentations, cognisant JPL personnel responded to these comments. It is expected that some -- but not all -- of the recommendations can be incorporated in the Block V contracts.

In the Thursday-morning session, John Griffith, LSA Environmental Test Director, presented the results of comparative environmental testing of candidate foreign and domestic modules for water-pumping applications. The U.S. modules compared favorably with their foreign competitors. In exploratory testing of 11 modules in the proposed new Block V humidity-freeze cycle, this was seen to be more effective than the Block IV sequence in inducing corrosion, delamination, and some forms of power degradation.

Steve Forman of MIT-LL gave an update of applications experiments experience and a status report on residential experiments under development. Residential sites in the Northeast are nearing completion, and the Southwest Residential Experiment station (RES) is approaching the hardware phase. Array performance at the various MIT-LL sites continues to be excellent, with some concern about the increasing frequency of interconnect failures and discoloration of PVB-encapsulated cells.

Charles Cox of MIT-LL reported on their recently developed I-V meter for field use. The meter uses a capacitor-charging method of I-V curve tracing and is capable of handling high-power (multiple-module) measurements.

Steve Sollock and Alex Shumka of the JPL Failure Analysis Laboratory gave a joint presentation on module cell string shorts to ground. Sollock presented a historical overview that showed the problem to be prevalent and persistent, and he characterized the various types of shorts that have been encountered. Shumka detailed the causes of each type, and described the experimental tools available for analysis. It was concluded that the problems seen to date can be prevented through attention to design and workmanship.

R.C. Ross, Jr., Engineering Area manager, presented a summary of Engineering Area activities since the 16th PIM. Recently published reports by Engineering Area contractors include the Phase I report on Product Liability Assessment by Carnegie-Mellon University and the Third Annual Report of the Clemson University cell-reliability testing contract.

In the area of requirements development, two new module design and test specification drafts prepared by LSA Engineering were distributed to the PV industry for review and comment, along with a preliminary draft of a module and array safety requirements document, jointly developed by JPL and Underwriters Laboratories.

An industry workshop on module and array safety was conducted in conjunction with the 17th PIM on February 3, 1981.
ENGINEERING AND OPERATIONS AREAS

As part of the Array Subsystem Development activities, a design data package for the LSA-developed Low-Cost Array Structure was made available to industry participants.

Contract awards were made during this reporting period to General Electric Co. and the American Institute of Architects Research Corp. for integrated residential PV array development. In the area of Module Engineering and Reliability, reports were issued covering in-house soiling studies and the proceedings of the Cell Reliability Workshop that was sponsored jointly by JPL and Clemson University. A number of ongoing tasks were described briefly in the areas of requirement development, array subsystem development, module engineering and reliability studies, and standards activities. The status of a number of these activities was described in a technical session held jointly with the Operations Area.

Due to a schedule conflict, Dr. Weinstein of Carnegie-Mellon University was unable to present his discussion of Module Product Liability as planned during the joint session; however, participants in the Safety Workshop did hear his presentation covering methodology for assessment of product safety and liability.

A presentation by J. Oster and R. Rittelmann of Burt Hill Kosar Rittelmann Associates described the results of their study of commercial and industrial PV module and array requirements based on a review of building codes and regulations. Important findings were related to module sizing and modularity, material selection restrictions, and wiring and interconnection concerns, especially with regard to the National Electric Code.

A defect design approach to sizing terrestrial photovoltaic electrical insulation systems was presented by C. R. Mon. The approach consists of gathering quantitative data characterizing voltage breakdown statistics of thin insulating films. For a designated failure density the number of layers of film of a particular thickness can be selected. Typical flaws that can enhance the likelihood of breakdown were discussed and design procedures to minimize their effects presented.

The method realizes its full power when failure rate data is available. This technique was discussed and preliminary results were presented.

Clemson University offered a presentation covering exploratory testing of several different types of photovoltaic cells for the purpose of investigating possible correlation between cell electrical characteristic degradation and losses and/or removal of antireflective (AR) coating. The initial impetus to study this problem came from reports on field observations made by MIT-LL on modules taken from photovoltaic field application sites. When MIT-LL personnel learned of the availability of special equipment at Clemson University, i.e. an IBM 7400 Spectrophotometer, it was suggested to the JPL Engineering Area that quantitative tests using color spectrum analyses might provide useful reliability data.

From the tests performed, plots were generated of percentage decrease in electrical output vs percentage missing AR coating from the cell. The color-spectrum analysis data gathered was taken using strict controls on
ENGINEERING AND OPERATIONS AREAS

orientation and alignment, observation angle and spectral reflectance. Data derived from use of IBM 7400 spectral reflectance measurements included chromaticity tristimultus, etc.

Module hot-spot endurance test development was addressed in presentations prepared jointly by J. Arnett and C. Gonzales. Details of the new Block V Hot-Spot Endurance Test Procedure and its rationale for development were presented at the Safety Workshop on February 3. As a follow-up, specific testing results and preliminary design information were presented at the joint technology session.

In presentations by R. Whitaker and E. Zerlaut of DSET Laboratories, Phoenix, Arizona, the current status of two LSA Engineering Area contracts was described. The results of a total of 1.7×10^6 langley of exposure of Block III Modules (approximately equivalent to 8.5 years of weathering) during the preceding 18 months was described along with examples of typical before-and-after I-V measurements. Completion of the computer software and instrument calibration for the DSET Scanning Spectroradiometer was reported along with sample solar spectral curves as part of the Natural Sunlight Measurements contract.
Design and Performance Requirements

- REQUIRED OUTPUT VOLTAGE WITHIN A RANGE (15V-60V) NOT FIXED.
- REDUNDANT CIRCUIT THROUGHOUT NOT ONLY AT TERMINATION
- BYPASS DIODES EXTERNAL TO MODULE.
- MODULE INTERCHANGEABILITY SHOULD END WITH PHYSICAL DIMENSIONS ONLY NOT ELECTRICAL PERFORMANCE

Effect of Design Requirement

- FIXED VOLTAGE REQUIREMENT
 1. NONSTANDARD CELL SIZE (3.05" DIAMETER)
 2. LOWER PACKING FACTOR
 3. ADDITIONAL ENGINEERING TIME
 4. INCREASED COSTS

- FIXED ENVELOPE DIMENSIONS AND INCREMENTAL DIMENSION RESTRICTIONS
 1. LOWER PACKING FACTOR
 2. DETERMINED CELL SIZE AND QUANTITY
 3. DOES NOT FIT ANY COMMERCIAL OR ARCHITECTURAL STANDARD
ENGINEERING AND OPERATIONS AREAS

Module Efficiency

- Efficiency should not be a factor if it is not economical.

Knowledge Gained During This Contract

- Tempered glass
- Reduction of hot spots
- Low cost frame assembly
- Bypass diodes
- Tedlar substrate
- SAMICS program

Environmental Test Requirements

- Severity
 1. Covers extreme environmental condition
 2. Cycle time faster than actual in many cases

- Results
 1. Pass/failure based on electrical performance and safety.
 2. Power degradation seems extreme when compared to other 20 year lifetime products

- Test Data
 1. Data is very helpful in isolating problem areas

- In-house testing
 1. Without JPL testing we would conduct our own selected tests on a random sample basis.
ENGINEERING AND OPERATIONS AREAS

SAMICS and SAMIS

1. **THE PROGRAM**
 1. VERY WELL DONE
 2. EASY TO USE AND ACCURATE
 3. EXPERT HELP FROM JPL STAFF
 4. COSTS TOO MUCH TO RUN

2. **TEST RESULTS**
 1. ACCURACY IS DOUBTFUL
 a. INPUT DATA ACCURACY
 b. INTENT OF OUTPUT
 c. CONSIDERED TO BE TODAY'S COST - NOT PILOT PLANT COST

Suggestions

- CHECK LIST IN USERS GUIDE
- TROUBLE SHOOTING SECTION IN USERS GUIDE
- EXPLAIN IMPORTANT FUNCTIONS (SAVE/STOP)
- ADD COST SAVING SECTION (TEXT EDITOR, IPEG, STACKING, ETC.)
- SPECIFY EXACT REPORTS REQUIRED BY NAME AND NUMBER
- REVIEW ALL INPUT (FORMAT A.B.C. AND CURRENT TECHNOLOGY)
- SPECIFY IF "PROOF COPY" IS REQUIRED

General Comments

FEEDBACK:

- ADEQUATE
- HELPFUL
- SUFFICIENT

DESIGN AND PRODUCTION NEEDS:

- QUOTE HIGH EFFICIENCY/HIGH TECHNOLOGY MODULES
- QUOTE LOW COST MODULES
- LARGER PROTOTYPE RUNS
ENGINEERING AND OPERATIONS AREAS

ARCO SOLAR, INC.

W.R. Bottenberg

Introduction

At this time, as PV technology faces new markets, the primary general concerns are the balance of cost reduction versus reliability requirements and the need to meet immediate and near-term market demands while developing technology for the long term. ARCO Solar's involvement in Block IV is with two designs for two applications: (1) an intermediate-load module, and (2) a residential module. Module (1) is related to our mainline product and the Block III product, while module (2) is a new departure. Our goal in these developments, like JPL's in Block IV, has been to go for improved quality and cost reduction in that order. The tendency in Block IV to emphasize reliability is certainly an advantage for long-term market development, even where it increases cost in the near term.

A. Design and Performance Requirements

To a certain extent we found the Block IV design requirements incompatible with commercial market requirements. The specification of both voltage and module dimensions (especially the 1.2 meter dimension) potentially required a costly redesign and a more costly product, without any improvement in reliability.

For the present world market, with a large number of different applications, module dimensions need not and should not be standardized, and voltage is not standardizable for all applications. Therefore, Block IV designs may not be compatible with customer requirements. These concerns apply to Module (1) not Module (2). Further, at a time when the majority of sales are for applications of 1-10 modules for battery charging, array dimensioning is not critical for efficiency. We are on the threshold of penetrating some markets where area and area-related costs become important and module efficiency more critical to the buyer.

ARCO Solar has improved the design of both module types more rapidly than might have happened otherwise, as a result of these requirements and our interaction with JPL. The intermediate-load module is based on a commercial product that had previously been modified to incorporate a metal-foil back as a moisture barrier to meet world market requirements for hermeticity. This had to be grounded when Block IV hi-pot testing revealed capacitive coupling from the circuit to the foil, which discharged to the frame.

The residential module was developed at this time partly because of the stimulus of Block IV. Improvements in termination and diode design resulted from interaction with JPL and the design requirements. More important, our choice of EVA instead of PVB for this module resulted from these requirements.
Engineering and Operations Areas

As shown in the table, we found sample modules using EVA to be clearly superior in maintaining performance parameters after 15-year simulated exposure at DSET Laboratories in Phoenix.

Plastic Encapsulant System Performance

<table>
<thead>
<tr>
<th>POTTANT</th>
<th>COVER</th>
<th>V_{oc}</th>
<th>V_{pm}</th>
<th>I_{sc}</th>
<th>I_{pm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA</td>
<td>TEDLAR</td>
<td>1.00 +.02</td>
<td>1.02 +.05</td>
<td>1.02 +.03</td>
<td>1.00 +.05</td>
</tr>
<tr>
<td>EVA</td>
<td>KORAD</td>
<td>1.01 +.01</td>
<td>.999 +.05</td>
<td>1.01 +.05</td>
<td>1.00 +.08</td>
</tr>
<tr>
<td>PVB</td>
<td>TEDLAR</td>
<td>0.72 +.22</td>
<td>0.71 +.27</td>
<td>0.70 +.16</td>
<td>0.58 +.24</td>
</tr>
<tr>
<td>PVB</td>
<td>KORAD</td>
<td>0.99 +.03</td>
<td>1.11 +.08</td>
<td>0.86 +.12</td>
<td>0.79 +.15</td>
</tr>
</tbody>
</table>

B. Environmental Test Requirements

These requirements are about right for this stage of development. A key to JPL's success in assisting development is the coupling of progressively stiffer requirements in the successive Block procurements with experience in accelerated testing and in the field. The common experimental data base for lifetime testing and evaluation is a key benefit from JPL's program to the developing PV industry.

The test results are meaningful as indicators of what we should be doing in design. However, the relationship of these test requirements to probable module lifetime remains to be established. European environmental specifications are much stiffer. JPL and industry need to balance carefully the roles of cost and reliability in design and to determine what environmental requirements are needed to achieve optimally balanced designs.

C. SAMICS-SAMIS

The investment of engineering time for estimating cost elements for this rather complex program is high, considering the reliability of input data that can be obtained before production starts. For near-term production, current operational data are much more useful for estimating cost. For far-off production, back-of-envelope calculation is adequate for development program justification until economic analysis methods of the type required for internal planning may be used. These methods of analysis are very company-specific and depend on company strategic goals. Thus SAMICS is not useful to the individual contractor for estimating future costs. This is not to say that SAMICS may not be very useful at the program level, comparing processes or technologies across the industry, if some imprecision can be tolerated in the estimated input data.
ENGINEERING AND OPERATIONS AREAS

D. GENERAL

Data feedback from JPL is good; we found the personnel very cooperative, and the failure analysis work is excellent.

Technology development activities should focus on such things as developing environmental and life-history performance data, and not so much on defining voltage and dimensional characteristics, which are market-directed.

GENERAL ELECTRIC CO.
Neal Shepard

Topics of Concern

- PROCUREMENT DURATION
- DESIGN CHANGES
- ENVIRONMENTAL TESTING

Procurement Duration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
<td>APR</td>
</tr>
<tr>
<td>PROPOSAL SUBMITTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE DELIVERY COMPLETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL DESIGN REVIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLOW-ON PROPOSAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBMITTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLOW-ON CONTRACT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLOW-ON MODULE DELIVERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPOSAL EVALUATION

CONTRACT PERFORMANCE

362
ENGINEERING AND OPERATIONS AREAS

Scheduling Implications

- 26 MONTHS FROM BLOCK IV DESIGN INCEPTION UNTIL COMPLETION OF STAGED PROCUREMENT
- TOO LONG TO "FREEZE" DESIGN
- SHORTENED SCHEDULE POSSIBLE WITH ONE CONTRACT FOR ENTIRE BLOCK IV PROCUREMENT

Design Changes

<table>
<thead>
<tr>
<th></th>
<th>BLOCK IV</th>
<th>BLOCK IV-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR CELL SUPPLIER</td>
<td>ARCO - SOLAR</td>
<td>SOLEC INTERNATIONAL</td>
</tr>
<tr>
<td>MODULE-TO-MODULE</td>
<td>INTEGRAL WIRING</td>
<td>INTEGRAL AMP INC.</td>
</tr>
<tr>
<td>INTERCONNECTION</td>
<td>WITH SCREW/WASHER</td>
<td>UNDER CARPET FCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WITH CRIMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONNECTIONS</td>
</tr>
</tbody>
</table>

Environmental Testing

- DUPLICATE TESTING (BY JPL AND THE CONTRACTOR) IS EXPENSIVE

- 50 CYCLE THERMAL CYCLING TEST $3500.00
- 7 DAY HUMIDITY TEMPERATURE TEST $2050.00
JPL Solar Module Development Effort

STRUCTURE:

- EMPHASIS ON SOLID TECHNOLOGY
- THIRD-PARTY INPUT
- EVALUATION SUPPORT

INTENT:

- RELIABLE, LOW-COST RESIDENTIAL AND INTERMEDIATE LOAD MODULES
- SOMewhat OUT-OF-STEP WITH PRESENT COMMERCIAL MARKETS, I.E., LOW-VOLTAGE, REMOTE SYSTEMS

APPROACH:

- ITERATIVE
- INDUSTRY AND USER FEEDBACK
- DESIRE TO IDENTIFY APPROPRIATE SOLUTIONS
ENGINEERING AND OPERATIONS AREAS

Solar Module Design and Test Specifications

TEST SPECIFICATIONS:

- QUALIFICATION - GOOD, COMPLETE, NECESSARY
- LIFE TESTING - LACK OF LIFE TESTING TENDS TO SKEW
 MODULE DESIGNS TOWARDS PASSING QUAL REQUIREMENTS WITH
 POTENTIALLY REDUCED LIFE AS A CONSEQUENCE, E.G., METALLIC
 BACKSKIN OF LAMINATED MODULES
- SUGGEST: BALANCE OF QUAL AND LIFE TEST REQUIREMENTS
 WHICH SHOULD BRING ABOUT BALANCE PRODUCT DESIGNS

DESIGN CRITERIA:

- ORIENTATION TOWARDS RESIDENTIAL/INTERMEDIATE LOAD APPLICATIONS
 OUT-OF-STEP WITH TODAY'S COMMERCIAL MARKETS, I.E., LOW VOLTAGE,
 REMOTE SYSTEMS

SAMICS

VALUE

- COMPARE PROCESSES WITHIN FRAMEWORK OF FIXED BURDEN COMPANY
- ALL LABOR SUPPLIES AND COMPONENTS ARE AT SAME PRICE FOR
 EVERYONE
- PROGRAM IS "UPDATEABLE" FOR NEW ITEMS

DRAWBACKS

- CAN BE INTERPRETED AS TRUE COSTS WHICH IS NOT NECESSARILY SO
- CAN BE MANIPULATED
- DOES NOT ALLOW FOR MANAGEMENT INFLUENCE
- HAS LOADING IN INDIRECTS THAT ARE NOT NECESSARILY VALID

365
Design and Performance Requirements

Is the design and performance specification responsive to your perception of the need for modules?

By placing a limitation on size and requirement for an integral voltage, JPL has restricted the module design in regard to cell size.

This restriction becomes more severe as the cell size increases.

What has been the effect of the design requirements on your design?

Forced Solarex to use a 9.5 cm x 9.5 cm cell instead of a 10 cm x 10 cm cell. This had a significant impact on module cost since a 9.5 cm x 9.5 cm cell costs the same as a 10 cm x 10 cm cell.

How critical is module efficiency?

People should not buy modules by efficiency but by average power knowing the module size and the measurement conditions.

The importance of module efficiency depends on conditions of the use including:

- Land availability and cost
- Support structure and interarray wiring costs
- Maintenance requirements and cost

Only after this systems analysis can one determine if a lower-cost-per-watt, lower efficiency module is a better value than a higher-cost-per-watt, higher efficiency module.
ENGINEERING AND OPERATIONS AREAS

In the process of designing to comply with the specification, did you learn anything useful about module design?

No more so than designing a module to any specification for a customer.

Environmental Test Requirements

Are the tests too stiff or too lenient?

We prefer a higher temperature humidity test with no cycling 70°C and 90% relative humidity. Problems show up faster.

Should do thermal cycle tests both before and after humidity.

50 thermal cycles too short to really indicate expected field performance.

+90°C to -40°C is too severe to actually simulate performance.

Recommend less severe cycle, much shorter cycle, but many more cycles.

Are the results of the tests meaningful?

In general thermal cycle and humidity are very useful.

Don’t really understand the results of the hail test and why some modules are tested to failure.

As more modules are provided without frames a redefinition of the mechanical loading test may be required.

Twist test appears meaningless especially after the mechanical loading test.

367
ENGINEERING AND OPERATIONS AREAS

Would you perform the testing if JPL did not require it?

We do thermal cycle and humidity testing routinely.

Probably would not do the mechanical loading and twist tests since these properties are well known for glass.

SAMICS and SAMIS

Do you believe the results of this analysis?

Our quote for small quantities (100 kW) was actually less than SAMICS results due to the high overhead rate in SAMICS. We believe that the high overhead is due to an artificial environment where the factory only makes modules. An integrated cell-module line better distributes overhead and yields a lower cost.

We identified a number of areas where materials cost was either much higher or much lower than we now pay.

How could the system be improved?

The formal SAMICS procedure doesn't provide a format that is easy to use for identification of cost components and cost drivers.

Would rather JPL stress a less complicated technique that the contractor can use to understand the cost components and cost drivers.
ENGINEERING AND OPERATIONS AREAS

General

Is the feedback of data from JPL adequate for our needs?

Generally, the feedback is very good but slow.

In what ways could the technology development activities of the project be better focused on your module design and production needs?

I believe that the JPL procurement group needs more support and interaction with the encapsulation and PPRE groups to better incorporate results from other JPL programs.

Other

Why does JPL put out a specification entitled “Design and Test Specification for Intermediate Load Modules” and limit the size and voltages of the module? Such decision should be left up to the module manufacturer and the system designer.
Design and Performance Requirements

• SPECIFICATIONS
 --- Cost Drivers
 • Redundant output terminations
 • Dimensional tolerances
 • High voltage isolation

• PERFORMANCE REQUIREMENTS
 --- Generally Well Stated
 --- Referenced to NOCT
 • Difficult to establish

• DESIGN REQUIREMENTS
 --- Obvious Interpretation Is To Design A High Reliability Module

• MODULE EFFICIENCY
 --- Critical

• MEETING OF SPECIFICATIONS
 --- Useful Learning Process
 --- Thanks To Engineering Area Personnel
ENGINEERING AND OPERATIONS AREAS

Environmental Test Requirements

- LEVEL OF REQUIREMENTS IS APPROPRIATE

- NEED FOR CONTINUOUS UPDATE
 --- e.g. Hot Spot Test

- FOR CONSISTENCY JPL SHOULD DO ALL TESTING AND REPORT IN DETAIL

- ULTIMATELY REQUIREMENTS SHOULD BE SITE SPECIFIC

SAMICS and SAMIS

- SAMIS IS EXPENSIVE

- RESULTS ARE REPRESENTATIVE BUT INTERPRETATION DIFFICULT FOR THE UNINITIATED

- USE IPEG FOR WORKING SYSTEM

- RESERVE SAMICS FOR FINAL DETERMINATION
ENGINEERING AND OPERATIONS AREAS

General

• JPL DATA FEEDBACK
 --- Information Available Informally
 --- Formal Structure Inadequate

• PROJECT ACTIVITIES
 --- Establish Independent Certification of Modules
 --- JPL Specifications Often Quoted
 • Only comprehensive documents
 • Not always representative of customer needs

• BLOCK PROCUREMENT PROGRAM
 --- Represents and Demonstrates Technology Advancement
 --- Should Insure Establishment of Reliable Industry Standards
 --- It is Difficult to Make Significant Technological Advancements and Cost Reductions Simultaneously and at Low Volume
ENGLISH AND OPERATIONS AREAS

ENVIRONMENTAL TESTING

JET PROPULSION LABORATORY
John S. Griffith

Contents

• RESULTS OF TESTING WORLD BANK MODULES

• NEW BLOCK V HUMIDITY TEST - TRIAL RUN ON 11 DIFFERENT TYPES OF MODULES

WORLD BANK MODULES
UNDP Project GLO/78/004

• TITLE: TESTING AND DEMONSTRATION OF SMALL SCALE SOLAR POWERED PUMPING SYSTEMS

• PURPOSE: DEVELOPMENT AND DEMONSTRATION OF IRRIGATION PUMPING IN DEVELOPING COUNTRIES

• FINANCED BY: UNITED NATIONS DEVELOPMENT PROGRAMME

• EXECUTED BY: WORLD BANK

• A&E: SIR WILLIAM HALCROW AND PARTNERS, CONSULTING ENGINEERS AND ARCHITECTS, LONDON, IN ASSOCIATION WITH THE INTERMEDIATE TECHNOLOGY DEVELOPMENT GROUP LTD

• LOCATIONS: SUDAN, MALI (AFRICA), PHILLIPPINES

Test Requirements

• U.V. IRRADIATION: AT ROYAL AIRCRAFT ESTABLISHMENT, FARNBOROUGH, ENGLAND, 2 MODULES

• BLOCK IV TEST: (JPL5101-16A) AT JPL, 4 MODULES
ENGINEERING AND OPERATIONS AREAS

Test Results for F1 Modules

- **CONSTRUCTION**
 GLASS TOP COVER, 0.13 mm AIRSPACE, CELLS IN SILICONE RUBBER ENCAPSULANT, ANODIZED ALUMINUM SUBSTRATE

- **TEST RESULTS**
 - **UV**
 AMBER DISCOLORATION OF ENCAPSULANT NEAR EDGE SEAL
 - **HIPOT**
 FAILED PRETEST AND POSTTEST HIPOT
 - **TEMPERATURE CYCLING**
 ONE OF FOUR MODULES OPEN CIRCUITED DUE TO MULTIPLE FRACTURED INTERCONNECTS. DIFFUSION OF EDGE SEALANT INTO ENCAPSULANT (1 MODULE)
 - **HUMIDITY CYCLING**
 THE TWO UV IRRADIATED MODULES SHOWED FURTHER DISCOLORATION, DELAMINATION NEAR TERMINALS ON ONE. MILKY ENCAPSULANT IN THE OTHER
 - **WIND**
 NOT DONE. NO MOUNTING PROVISIONS.
 - **TWIST**
 ONE MODULE SHORTED TO FRAME

- **COMMENTS**
 DESIGN DEFICIENCIES INCLUDE AIRGAP UNDER GLASS, NO STRESS RELIEF LOOPS, SINGLE (NON-REDUNDANT) INTERCONNECTS, INADEQUATE ENCAPSULANT UNDER CELLS (0.03 TO 0.15 mm).

Test Results for F2 Modules

- **CONSTRUCTION**
 GLASS TOP, ENCAPSULATED CELLS, GLASS

- **TEST RESULTS**
 - **HIPOT**
 ALL FOUR MODULES FAILED PRETEST HIPOT, PASSED POSTTEST HIPOT
 - **WIND**
 ONE MODULE HAD INTERMITTENT OPEN DURING TEST. A LOOSE TERMINAL SCREW WAS FOUND

- **COMMENTS**
 RESULTS ARE SOMEWHAT AMBIGUOUS SINCE ISOLATION WAS RESTORED AND THE LOOSE SCREW PROBABLY CAUSED THE INTERMITTENT OPEN
Test Results for U1 Modules

- CONSTRUCTION
 GLASS TOP, CELLS IN PVB, TEDLAR, PVB, KORAD/STEEL BACK SURFACE. BUTYL EDGE SEALANT

- TEST RESULTS
 - HIPOT
 TWO MODULES FAILED PRETEST, 3 FAILED POSTTEST
 - TEMPERATURE CYCLING
 FRAME SEALANT EXTRUDED OUT OF FRAMES, (4 MODULES) AND IN TOWARD CELLS (2 MODULES)
 - HUMIDITY CYCLING
 ONE MODULE HAD BACK SURFACE DELAMINATION (BLISTER)

- COMMENTS
 SOME REDESIGN AND PROCESSING IMPROVEMENTS NEEDED

Test Results for U2 Modules

- CONSTRUCTION
 GLASS TOP, ENCAPSULATED CELLS, FIBERGLASS/POLYESTER SUBSTRATE

- TEST RESULTS (5 MODULES)
 - HIPOT
 UV IRRADIATED MODULES FAILED PRETEST HIPOT, PASSED POSTTEST HIPOT
 - HUMIDITY CYCLING
 ONE CELL CRACKED; NO ELECTRICAL DEGRADATION
 - TWIST
 INCREASE IN SERIES RESISTANCE OBSERVED, ONE MODULE

- COMMENTS
 RESULTS GENERALLY VERY GOOD. CAUSES OF HIPOT AND TWIST TEST PROBLEMS UNKNOWN
Conclusions

• **ONE U.S. AND ONE FOREIGN MODULE APPEAR TO BE SATISFACTORY AFTER CORRECTING SOME MINOR DEFICIENCIES**

• **ANOTHER U.S. MODULE REQUIRES MORE EXTENSIVE IMPROVEMENTS**

• **THE SECOND FOREIGN MODULE IS UNSATISFACTORY ON SEVERAL COUNTS**

PROPOSED NEW ENVIRONMENTAL TESTS FOR BLOCK V MODULES

• **QUALIFICATION TESTS HAVE NOT BEEN EFFECTIVE IN REVEALING SOME MODULE WEAKNESSES**

• **EXAMPLES**
 - BROKEN INTERCONNECTS IN < 2 yrs AT SCHUCHULI, UPPER VOLTA
 - HOT CELL PROBLEM AT MT. LAGUNA AND OTHER SITES
 - DELAMINATION, DISCOLORATION, CORROSION, ELECTRICAL DEGRADATION

• **NEW TESTS PROPOSED**
 - INTERCONNECT FATIGUE - 200 TEMPERATURE CYCLES
 - HOT CELLS - BACK BIAS SEVERAL CELLS TO WORST CONDITIONS
 - DELAMINATION, ETC - MORE SEVERE HUMIDITY TEST WITH FREEZING
New Humidity-Freezing Cycle Test
(To Follow 50 Temperature Cycles)

CONDITION

FREEZING

85% ± 2.5% RH

-85% ± 2.5% RH

100°C/h MAXIMUM

200°C/h MAXIMUM

0.5h MINIMUM

20 MINIMUM

4 MAXIMUM

CONTINUE FOR 10 CYCLES

TIME (h)

MODULE TEMPERATURE (°C)
Results of 85° - 85% Test

<table>
<thead>
<tr>
<th>VENDOR/BLOCK</th>
<th>PRE-85/85 TEST HISTORY</th>
<th>CONSTRUCTION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YII</td>
<td>NONE</td>
<td>RTV, F/P*</td>
<td>J-BOX CORROSION</td>
</tr>
<tr>
<td>YIII</td>
<td>NONE</td>
<td>RTV, F/P</td>
<td>J-BOX CORROSION</td>
</tr>
<tr>
<td>ZIII</td>
<td>NONE</td>
<td>SILICONE, F/P</td>
<td>6% ELECT. DEGRAD, YELLOWED ENCAP, DELAM AT ICs, CELLS, FRAME SEAL, 1 CELL CRACK</td>
</tr>
<tr>
<td>VIII</td>
<td>NONE</td>
<td>RTV, PVC SCREEN, ALUM PAN</td>
<td>YELLOWED ENCAP, GRAY METALLIZATION</td>
</tr>
<tr>
<td>VIII</td>
<td>NONE</td>
<td>GLASS, RTV, SCREEN ALUM PAN</td>
<td>GROUND TERM, RUST, FRAME SEAL DELAM</td>
</tr>
<tr>
<td>UIII</td>
<td>NONE</td>
<td>GLASS, PVB, TEDLAR, ALUM FRAME</td>
<td>19% ELECT. DEGRAD, 98% FRAME SEAL DELAM, END CAPS DISTORTED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*F/P, FIBERGLASS POLYESTER SUBSTRATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENDOR/BLOCK</th>
<th>PRE-85/85 TEST HISTORY</th>
<th>CONSTRUCTION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPRDA</td>
<td>QUAL</td>
<td>GLASS, RTV, MYLAR, ALUM FRAME</td>
<td>FRAME SEAL DELAM, CELL DELAM</td>
</tr>
<tr>
<td>REI</td>
<td>NONE</td>
<td>GLASS, PVB, TEDLAR/ALUM/TEDLAR BACK, SS FRAME</td>
<td>(2) CELLS CR., FRAME SEALANT EXTRUDED</td>
</tr>
<tr>
<td>SIIZ</td>
<td>NONE</td>
<td>GLASS, EVA, RIPSTOP, MYLAR/ALUM, BACKSPRAY</td>
<td>CORROSION OF RIVETS AND GROUND CLIP</td>
</tr>
<tr>
<td>GIV</td>
<td>QUAL</td>
<td>SHINGLE - GLASS, SILICONE, CARDBOARD</td>
<td>29% ELECT. DEGRAD, CORROSION OF ICs, COLLECTORS</td>
</tr>
<tr>
<td>MIV</td>
<td>QUAL</td>
<td>GLASS, PVB, TEDLAR, ALUM FRAME</td>
<td>60% FRAME SEAL DELAMINATION, GRAY ICs, RUSTED RIVETS</td>
</tr>
</tbody>
</table>
Comparison: Earlier Qualification Tests vs New 85° - 85%

Results

<table>
<thead>
<tr>
<th>VENDOR/BLOCK</th>
<th>PRE-85/85 TEST HISTORY</th>
<th>ELECT DEGRAD</th>
<th>CELL CRACKS</th>
<th>BACK SEALANT</th>
<th>EXTRUSION</th>
<th>CORROSION</th>
<th>CONTACTS</th>
<th>ENCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPRDA QUAL</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RII NONE</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIV NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIV QUAL</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIV QUAL</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YII NONE</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YIII NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIII NONE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIII NONE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ○ EARLIER QUAL TESTS - TEMP AND HUMIDITY CYCLING
- • RECENT 85/85 TEST

SIZE OF CIRCLE INDICATES DEGREE OF DEGRADATION
CONCLUSIONS

- WORLD BANK MODULES
 - TWO FOREIGN AND TWO U.S. TYPES OF MODULES WERE TESTED FOR APPLICATION TO PUMPING SYSTEMS IN DEVELOPING COUNTRIES
 - TWO MODULES WERE SATISFACTORY, 1 FOREIGN AND 1 U.S.; 1 U.S. WAS MARGINAL; ONE FOREIGN WAS UNSATISFACTORY

- PROPOSED NEW HUMIDITY-FREEZE TEST
 - THE NEW TEST IS 85°C, 85% R.H. FOR 10 days EXCEPT FOR 10 SHORT EXCURSIONS TO ~40°C
 - A TRIAL RUN WAS MADE ON 11 TYPES OF MODULES
 - RESULTS SHOW THE NEW TEST TO BE MORE EFFECTIVE IN REVEALING PROBLEMS WITH CORROSION, DELAMINATION, AND SOME FORMS OF POWER DEGRADATION
MIT-LL Residential PV Test Facilities

1. NE RESIDENTIAL TEST STATION
 5 PROTOTYPES IN CONCORD, MA
 1 ISEE IN CARLISLE, MA

2. SW RESIDENTIAL TEST STATION
 8 PROTOTYPES IN LAS CRUCES, NM

3. INNOVATIVE PV APPLICATIONS FOR RESIDENCES
 ARIZONA, FLORIDA, HAWAII (3)

4. SE RESIDENTIAL TEST STATION
 RFQ FOR SITE OPERATOR ISSUED 19 DECEMBER 1981

Northeast Residential Test Station, Concord MA

<table>
<thead>
<tr>
<th>PRIME CONTRACTOR</th>
<th>NO. OF MODULES</th>
<th>PV ARRAY DETAILS</th>
<th>TILT ANGLE</th>
<th>PEAK POWER - kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRISOLAR</td>
<td>36 ASEC</td>
<td>47.6</td>
<td>45°</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>INTEGRAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL ELECTRIC</td>
<td>575 6E SHINGLE</td>
<td>73.7</td>
<td>33.7°</td>
<td>5.6</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>80 SX STANDOFF</td>
<td>74.3</td>
<td>40°</td>
<td>6.2</td>
</tr>
<tr>
<td>WESTINGHOUSE</td>
<td>160 ARCO INTEGRAL</td>
<td>59.5</td>
<td>45°</td>
<td>5.4</td>
</tr>
<tr>
<td>MIT LL</td>
<td>120 SX STANDOFF</td>
<td>93.6</td>
<td>45°</td>
<td>7</td>
</tr>
</tbody>
</table>
ENGINEERING AND OPERATIONS AREAS

PEAK POWER DISTRIBUTION FOR 120 BLOCK-IV RESIDENTIAL SOLAR MODULES USED IN THE MIT/LL PROTOTYPE AT THE NORTHEAST RESIDENTIAL EXPERIMENT STATION

PEAK POWER DISTRIBUTION FOR 36 RESIDENTIAL APPLIED SOLAR ENERGY MODULES USED IN THE TRIGONAL PROTOTYPE AT THE NORTHEAST RESIDENTIAL EXPERIMENT STATION

ORIGINAL PAGE IS OF POOR QUALITY
ENGINEERING AND OPERATIONS AREAS

PEAK POWER DISTRIBUTION FOR 40 QUADS OF ARCO RESIDENTIAL MODULES
USED IN THE WESTINGHOUSE PROTOTYPE AT THE NORTHEAST RESIDENTIAL EXPERIMENT STATION

PEAK POWER DISTRIBUTION FOR 132 BLOCK IV RESIDENTIAL SOLAREX MODULES TO BE USED FOR THE CARLISLE HOUSE PROJECT

383
ENGINEERING AND OPERATIONS AREAS

Southwest Residential Test Station, Las Cruces NM

SITE OPERATOR: NMSEI

<table>
<thead>
<tr>
<th>PRIME CONTRACTOR</th>
<th>NO. OF MODULES</th>
<th>SIZE - M²</th>
<th>TILT ANGLE</th>
<th>PEAK POWER - kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDM</td>
<td>117 MOT STANDOFF</td>
<td>43.9</td>
<td>35°</td>
<td>4.7</td>
</tr>
<tr>
<td>TEA</td>
<td>112 MOT RACK MOUNTED</td>
<td>48.6</td>
<td>29.7°</td>
<td>4.5</td>
</tr>
<tr>
<td>SOLAREX</td>
<td>60 SX STANDOFF</td>
<td>70.6</td>
<td>26°</td>
<td>5.2</td>
</tr>
<tr>
<td>TRISOLAR</td>
<td>44 ASEC INTEGRAL</td>
<td>58.1</td>
<td>30°</td>
<td>5.1</td>
</tr>
<tr>
<td>ARTU</td>
<td>168 ARCO STANDOFF</td>
<td>62.5</td>
<td>45°</td>
<td>6.2</td>
</tr>
<tr>
<td>ARCO</td>
<td>126 ARCO BATTEN-SEAM</td>
<td>80</td>
<td>26°</td>
<td>6.6</td>
</tr>
<tr>
<td>GE</td>
<td>375 GE SHINGLE</td>
<td>73.3</td>
<td>26.6°</td>
<td>5.6</td>
</tr>
<tr>
<td>WESTINGHOUSE</td>
<td>160 ARCO INTEGRAL</td>
<td>59.5</td>
<td>30.2°</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Innovative PV Applications for Residences

1. **J. F. LONG HOUSE - PHOENIX, ARIZONA**
 120 ARCO BATTEN-SEAM MODULES, 4.6 kW

2. **FLORIDA SOLAR ENERGY CENTER, CAPE CANAVERAL, FLORIDA**
 152 ARCO STANDOFF MODULES, 5 kW

3. **HAWAII NATURAL ENERGY INSTITUTE, HONOLULU, HAWAII**
 THREE SITES: KALIHI, PEARL CITY, MOLOKAI
 ALL SITES USE ARCO MODULES
ENGINEERING AND OPERATIONS AREAS

PV Module Performance at Various MIT-LL Test Sites

I. SYSTEM TEST FACILITIES
- HNRL, UTAH 100 kW
- READ, NEBRASKA 25 kW
- RESIDENTIAL TEST BED, MASSACHUSETTS 25 kW
- AM RADIO STATION, BRYAN, OHIO 15 kW
- ROOFTOP TEST BED, MASSACHUSETTS 10 kW
- UNIVERSITY OF TEXAS, ARLINGTON 7.5 kW
- CHICAGO MUSEUM 1.5 kW

II. ENVIRONMENTAL TEST SITES
- NEW YORK UNIVERSITY - (23 MODULES)
- COLUMBIA UNIVERSITY - (10 MODULES)
- MASSACHUSETTS INSTITUTE OF TECHNOLOGY - (18 MODULES)
- MT. WASHINGTON, NEW HAMPSHIRE WEATHER STATION - (5 MODULES)

PV Module Failures at MIT-LL Test Sites

DATA UP TO 8/81

<table>
<thead>
<tr>
<th>Test Site</th>
<th>NEC</th>
<th>RES STF</th>
<th>ROOF STF</th>
<th>UTA</th>
<th>CHIC</th>
<th>NBNO</th>
<th>NBNM</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1)</td>
<td>-</td>
<td>-</td>
<td>15/945</td>
<td>-</td>
<td>6/268</td>
<td>-</td>
<td>-</td>
<td>15/1232</td>
</tr>
<tr>
<td>A (III)</td>
<td>-</td>
<td>-</td>
<td>5/64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5/64</td>
</tr>
<tr>
<td>B (III)</td>
<td>61/272</td>
<td>15/700</td>
<td>0/36</td>
<td>65/240</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76/2240</td>
</tr>
<tr>
<td>C (III)</td>
<td>8/372</td>
<td>-</td>
<td>5/640</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D (III)</td>
<td>35/728</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35/728</td>
</tr>
<tr>
<td>D (III)</td>
<td>-</td>
<td>5/194</td>
<td>1/74</td>
<td>-</td>
<td>4/300</td>
<td>-</td>
<td>-</td>
<td>9/400</td>
</tr>
<tr>
<td>E (III)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/1740</td>
<td>-</td>
<td>-</td>
<td>1/1740</td>
</tr>
<tr>
<td>F (III)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31/2004</td>
<td>-</td>
<td>31/2004</td>
</tr>
</tbody>
</table>

4.2% 2.2% 1.9% 27% 0% 0.5% 0.7% 250/11117 0.8%

* Array Start Date 5/40
** 52 MODULES HAVE BEEN FOUND WITH CRACKED GLASS COVER SHEETS

ORIGINAL PAGE IS OF POOR QUALITY

385
ENGINEERING AND OPERATIONS AREAS

PV Module Failures at MIT LL Test Sites

Data up to 01/81

<table>
<thead>
<tr>
<th>Site</th>
<th>Starting Date</th>
<th>Block I</th>
<th>Block II</th>
<th>Block III</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB</td>
<td>7/77</td>
<td>--</td>
<td>96/2240</td>
<td>--</td>
</tr>
<tr>
<td>RES STF</td>
<td>11/78</td>
<td>--</td>
<td>15/700</td>
<td>13/556</td>
</tr>
<tr>
<td>ROOF STF</td>
<td>5/77</td>
<td>15/945</td>
<td>5/100</td>
<td>1/74</td>
</tr>
<tr>
<td>UTA</td>
<td>8/78-4/80</td>
<td>--</td>
<td>65/240</td>
<td>--</td>
</tr>
<tr>
<td>UTA</td>
<td>4/80</td>
<td>--</td>
<td>--</td>
<td>5/640</td>
</tr>
<tr>
<td>CHIC</td>
<td>8/79</td>
<td>0/288</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>WBNM</td>
<td>8/70</td>
<td>--</td>
<td>--</td>
<td>4/800</td>
</tr>
<tr>
<td>NBNM</td>
<td>1/80</td>
<td>--</td>
<td>0/720**</td>
<td>32/3804</td>
</tr>
</tbody>
</table>

TOTALS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15/1233</td>
<td>180/4000</td>
<td>55/5884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.22%)</td>
<td>(4.50%)</td>
<td>(0.95%)</td>
<td></td>
</tr>
</tbody>
</table>

Note: 52 modules have been found with cracked glass cover sheets.

Principal Causes of Module Failures

1. **Cells cracked due to weathering or internal module stresses.**

2. **Failed solder joints.**

3. **Interconnects not soldered to rear sides of cells at assembly.**

4. **Cell string shorted to substrate.**

5. **Broken or split interconnects.**
In-Service Performance of Nebraska PV Modules

![Graph showing cumulative failed modules over operating time in months for 2240 modules, with a note for hail impact.]
ENGINEERING AND OPERATIONS AREAS

Module Failures at Mead Test Site

- FRONT ROW = 728 MODULES
- BACK ROW = 1512 MODULES
- STARTING DATE = JULY 1977

<table>
<thead>
<tr>
<th>DATE OF SEARCH</th>
<th>NUMBER OF FAILURES FOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FRONT ROW</td>
</tr>
<tr>
<td>OCTOBER 1977</td>
<td>0</td>
</tr>
<tr>
<td>NOVEMBER 1977</td>
<td>1</td>
</tr>
<tr>
<td>FEBRUARY 1978</td>
<td>0</td>
</tr>
<tr>
<td>MARCH 1978</td>
<td>0</td>
</tr>
<tr>
<td>JULY 1978</td>
<td>6</td>
</tr>
<tr>
<td>SEPTEMBER 1978</td>
<td>3</td>
</tr>
<tr>
<td>FEBRUARY 1979</td>
<td>2</td>
</tr>
<tr>
<td>MARCH 1979</td>
<td>1</td>
</tr>
<tr>
<td>JULY 1979</td>
<td>6</td>
</tr>
<tr>
<td>OCTOBER 1979</td>
<td>1</td>
</tr>
<tr>
<td>JULY 1980</td>
<td>11</td>
</tr>
<tr>
<td>OCTOBER 1980</td>
<td>4</td>
</tr>
<tr>
<td>TOTALS</td>
<td>35</td>
</tr>
</tbody>
</table>

Failed Modules With Broken Interconnects

<table>
<thead>
<tr>
<th>SITE (MFG)</th>
<th>TOTAL NO. OF MODULES</th>
<th>TOTAL NO. OF FAILURES</th>
<th>FAILURES WITH BROKEN INTERCONNECTS</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB (D-II)</td>
<td>728</td>
<td>35</td>
<td>4</td>
<td>3-1/4 YRS.</td>
</tr>
<tr>
<td>OHIO (D-III)</td>
<td>800</td>
<td>4</td>
<td>2</td>
<td>9 MOS.</td>
</tr>
<tr>
<td>RES STF (D-III)</td>
<td>194</td>
<td>5</td>
<td>5</td>
<td>2 YRS.</td>
</tr>
<tr>
<td>ROOF STF (D-III)</td>
<td>74</td>
<td>1</td>
<td>1</td>
<td>2 YRS.</td>
</tr>
<tr>
<td>(B-II)</td>
<td>64</td>
<td>5</td>
<td>1</td>
<td>3-1/4 YRS.</td>
</tr>
</tbody>
</table>

388
I-V CURVE TRACER EMPLOYING A CAPACITIVE LOAD

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

C.H. Cox III
T.H. Warner

Functions and Requirements

Operations
 Display
 Analysis
 Storage

Interface
 IEEE Bus

Packaging
 Portable
 AC Available

Basic Capacitive-Charging Method

\[V(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau \]

RESULTANT I-V CURVE

\[I = \begin{cases}
J_{SC} & \text{if } 0 \text{ SWITCH OPENS} \\
0 & \text{CHARGING COMPLETE}
\end{cases} \]
ENGINEERING AND OPERATIONS AREAS

I-V Curve Tracer

SEQUENCE CONTROL LOGIC

ARRAY

VOLTAGE SENSE

CURRENT SENSE

DATA AQUISITION

MEMORY

DISPLAY

DATA PROCESSING

USER CONTROL

ENERGY DISSIPATION

TAPE STORAGE

HP-85

391
Comparison of 10-kW Curve Tracers

BRANCH # AP1-1
AMB T = -1.8 DEG C
CEL T = 4.88 DEG C
INSO = 86.8 MW/SQ CM
VOC = 283. VOLTS
ISC = 19.4 AMPS
PMAX = 1635. WATTS
= 210. V & 8.83 A
ENGINEERING AND OPERATIONS AREAS

VOLTAGE 25 V/DIV

CURRENT 1.6 A/DIV

BRANCH # FT AP13
AMB T = 18.6 DEG C
CEL T = 14.6 DEG C
INDO = 98.6 MV/90 CH
VOC = 291. VOLTS
ISC = 0.98 AMPS
PHAX = 1528. WATTS
= 100. V & 7.88 A

VOLTAGE 25 V/DIV

CURRENT 2.6 A/DIV

BRANCH # TRISOL
AMB T = 0.868 DEG C
CEL T = 20.6 DEG C
INDO = 01.7 MV/90 CH
VOC = 236. VOLTS
ISC = 23.9 AMPS
PHAX = 4339. WATTS
= 100. V & 21.6 A
<table>
<thead>
<tr>
<th></th>
<th>Resistor Load</th>
<th>Capacitor Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power HP Total</td>
<td></td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>125</td>
<td>13 20 33</td>
</tr>
<tr>
<td>Size (cu ft)</td>
<td>4.3</td>
<td>0.5 1.08 1.58</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>10,000</td>
<td>2500 3200 5700</td>
</tr>
<tr>
<td>Power Consumption (W)</td>
<td>240</td>
<td>20 30 50</td>
</tr>
</tbody>
</table>
PROBLEM-FAILURE ANALYSIS

JET PROPULSION LABORATORY
Steve Sollock

Problem-Failure Reporting System
Short-to-Ground History

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>PROCUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLOCK I</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>COM AND DEVEL</td>
<td></td>
</tr>
</tbody>
</table>

Short to Ground

- PROBLEM CLASSIFICATION

- DESIGN
 - PROBLEMS RELATING TO PROCESS AND MATERIALS

- WORKMANSHIP
 - PROBLEMS RELATING TO PROCEDURE AND ASSEMBLY
Substrate Burnthrough Caused by Interconnect Foil Short to Substrate Pan Assembly

Sample Module Laminate

- Notched Frame Piece
- Main Frame
- Wire Termination
- End Plate
- Cell Substrate
- X
- Y
- Z
ENGINEERING AND OPERATIONS AREAS

Electrical Hazards Resulting From Shorts

- TO EQUIPMENT

- PERSONNEL

Short to Ground
PROBLEM-FAILURE ANALYSIS

JET PROPULSION LABORATORY
Alex Shumka

Objective

• PRESENT FAILURE ANALYSIS RESULTS ON SHORTS TO GROUND

• DISCUSS PROBABLE FAILURE CAUSE

• DESCRIBE MEASUREMENT TECHNIQUES ON DIELECTRIC MATERIALS USEFUL FOR DESIGN EVALUATION, QUALITY CONTROL AND FAILURE ANALYSIS

Shorts to Ground

• MODULE FRAME TO CELL STRING

• MODULE FRAME TO MODULE TERMINALS

• ARRAY STRUCTURE/MODULE FRAME TO MODULE INTERCONNECT WIRES

• FRAME TO FLOATING METALLIC MOISTURE BARRIER

• CELL STRING TO FLOATING/GROUNDED METALLIC MOISTURE BARRIER

General Construction
Improperly Etched Margin; Poor Dielectric Coating Application
ENGINEERING AND OPERATIONS AREAS

Misaligned Scrim Cloth;
Dielectric Coating Cut Through

GLASS

KAPTON
CU
EPOXY
SCRIM
EPOXY
PAN

PROPER ALIGNMENT

KAPTON TOP COVER

CU FOIL

EPOXY SOLDER RESIST

FAILURE

ORIGINAL PAGE IS
OF POOR QUALITY

401
Pressure-Induced Kapton Failure

- CLAMPING FORCE
- GLASS INTERCONNECT
- S.S. PAN
- SIDE VIEW
- KAPTON FILM
- PRESSURE SPLIT
- BOTTOM VIEW
- KAPTON
- CU FOIL
- CU
Burr-Induced Insulation Failure; Power Overstress at Solder Joint

ORIGINAL PAGE IS OF POOR QUALITY
Insufficient Spacing Between Cells and Frame

- Modules' Side Metal Frame
- Solar Cell
- TEDLAR
- EDGE SEALANT
- PVB
- PROTECTIVE GLASS TOP
Partical Discharge Tester

Discharges Due to Voids

Point-to-Plane Discharges

Surface Discharges

Contact Resistance Discharges

LOOSE OR NOISY CONTACT
Failure Analysis Module Dielectric Tests

<table>
<thead>
<tr>
<th>TEST</th>
<th>Q/C EVALUATION</th>
<th>DESIGN EVALUATION</th>
<th>DEGRADATION QUAL TEST</th>
<th>DEGRADATION FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITANCE</td>
<td>X</td>
<td>√ X</td>
<td>√ X</td>
<td>√ X</td>
</tr>
<tr>
<td>DISSIPATION FACTOR (R/X)</td>
<td>X</td>
<td>√ X</td>
<td>√ X</td>
<td>√ X</td>
</tr>
<tr>
<td>PARTIAL DISCHARGE (CORONA)</td>
<td>X</td>
<td>√ X</td>
<td>√ X</td>
<td>√ X</td>
</tr>
<tr>
<td>HI-POT</td>
<td>X</td>
<td>√ X</td>
<td>√ X</td>
<td>√ X</td>
</tr>
<tr>
<td>DC IL OR IR</td>
<td>X</td>
<td>√ X</td>
<td>√ X</td>
<td>√ X</td>
</tr>
</tbody>
</table>

NOTE:
- √ - TESTS PERFORMED BY JPLIFA
- X - TESTS RECOMMENDED BY JPLIFA

Summary

SOME FAILURE CAUSES

DESIGN:
INADEQUATE INSULATION MARGIN; UNDESIRABLE DEFORMATION OF INSULATION DUE TO COMPRESSIVE FORCES/ USE OF CONDUCTIVE SEALANT MATERIAL

WORKMANNERSHIP:
METALLIC BURRS; SHARP POINTS ON INTERCONNECTS; MISALIGNMENT OF INSULATORS AND/OR CELLS

HANDLING:
MECHANICAL DAMAGE OF TERMINALS AND FRAME

408
Discharges Due to Voids

Surface Discharges
ENGINEERING AND OPERATIONS AREAS

Point-to-Point Discharges

270°
ENGINEERING AND OPERATIONS AREAS

ENGINEERING AREA STATUS
(February 1981)

JET PROPULSION LABORATORY

R.G. Ross Jr.

Recent Accomplishments

• REQUIREMENT DEVELOPMENT
 • FLAT-PLATE MODULE SAFETY STANDARD (5101-164)
 • FLAT-PLATE ARRAY SAFETY WORKSHOP (FEB. 3)
 • BLOCK V MODULE DESIGN SPECIFICATIONS (5101-161, 5101-162)
 • PRODUCT LIABILITY PHASE 1 REPORT (CMU)

• ARRAY SUBSYSTEM DEVELOPMENT
 • GROUND-MOUNTED ARRAY STRUCTURE DESIGN PACKAGE
 • RESIDENTIAL ARRAY STRUCTURE CONTRACT INITIATION (GE, AIA/RC)

• MODULE ENGINEERING/RELIABILITY
 • MODULE SOILING REPORT (5101-131)
 • CELL RELIABILITY TESTING ANNUAL REPORT (CLEMSON)
 • CELL RELIABILITY WORKSHOP PROCEEDINGS (5101-163)
 • INTERCONNECT FATIGUE PROBABILITY ANALYSIS
 • HOT-SPOT ENDURANCE TEST PROCEDURE/RESULTS

• PERFORMANCE CRITERIA AND STANDARDS
 • FLAT-PLATE PV-T TEST METHOD
 • ACTIVELY COOLED CONCENTRATOR TEST METHOD
ENGINEERING AND OPERATIONS AREAS

Ongoing Activities

• REQUIREMENT DEVELOPMENT STUDIES
 • SAFETY DESIGN REQUIREMENTS (UL)
 • PRODUCT LIABILITY REQ. (CARNEGIE-MELLON)
 • COMMERCIAL BUILDING CODES (BURT-HILL)
 • WIND LOADING (BOEING/CSU)

• ARRAY SUBSYSTEM DEVELOPMENT
 • LARGE GROUND MOUNTED ARRAYS (JPL)
 • INTEGRATED RESIDENTIAL ARRAYS (GE AND AIA)

• MODULE ENGINEERING/RELIABILITY STUDIES
 • OVERALL RELIABILITY ANALYSIS (JPL/IITRI)
 • ELECTRICAL INSULATION (JPL)
 • GLASS BREAKAGE (JPL)
 • INTERCONNECT FATIGUE (JPL)
 • HOT-SPOT ENDURANCE (JPL)
 • CELL RELIABILITY TESTING (CLEMSON)
 • CELL FRACTURE MECHANICS (JPL)
 • ACCELERATED SUNLIGHT TESTING (DSET)
 • LONG-TERM HUMIDITY TESTING (WYLE)
 • CORROSION ENDURANCE (WYLE)
 • SOILING (JPL)

• STANDARDS ACTIVITIES
 • ARRAY TASK GROUP MANAGEMENT (FOR SERI)
 • PV-1 PERFORMANCE TEST DEVELOPMENT (JPL)
 • CONCENTRATOR PERFORMANCE TEST DEVEL (ASU)
ENGINEERING AND OPERATIONS AREAS

COMMERCIAL AND INDUSTRIAL PV MODULE
CODE REQUIREMENTS

BURT HILL KOSAR RITTEL MANN ASSOCIATES

J. Oster
R. Rittelmann

![Diagram showing the flow of responsibilities and requirements in commercial and industrial PV module code requirements.]

413
ENGINEERING AND OPERATIONS AREAS

Code Development and Usage

- INDUSTRY
- PROFESSIONAL
- PUBLIC
- CODE NEEDS OR REQUIREMENTS
- MODEL CODE GROUPS
- CODE CONGRESS
- EXECUTIVE DIRECTOR
- CODES
- DAY TO DAY
- RE-EVALUATION AND UPDATING

Southern Building Code Congress (SBCC)
SECTION 101.3: MATTERS NOT PROVIDED FOR:

ANY REQUIREMENT ESSENTIAL FOR STRUCTURAL, FIRE OR SANITARY SAFETY OF AN EXISTING OR PROPOSED BUILDING OR STRUCTURE, OR ESSENTIAL FOR THE SAFETY OF THE OCCUPANTS THEREOF, AND WHICH IS NOT SPECIFICALLY COVERED BY THIS CODE, SHALL BE DETERMINED BY THE BUILDING OFFICIAL.

SECTION 107.4: ALTERNATIVE MATERIALS AND EQUIPMENT

THE PROVISIONS OF THIS CODE ARE NOT INTENDED TO PREVENT THE USE OF ANY MATERIAL OR METHOD OF CONSTRUCTION NOT SPECIFICALLY PRESCRIBED BY THIS CODE, PROVIDED ANY SUCH ALTERNATIVE HAS BEEN APPROVED. THE BUILDING OFFICIAL MAY APPROVE ANY SUCH ALTERNATIVE PROVIDED THE BUILDING OFFICIAL FINDS THAT THE PROPOSED DESIGN IS SATISFACTORY AND COMPLIES WITH THE INTENT OF THE PROVISIONS OF THIS CODE, AND THAT THE MATERIAL, METHOD OR WORK OFFERED IS, FOR THE PURPOSE INTENDED, AT LEAST THE EQUIVALENT OF THAT PRESCRIBED IN THIS CODE IN QUALITY, STRENGTH, EFFECTIVENESS, FIRE RESISTANCE, DURABILITY AND SAFETY.
Engineering and Operations Areas

<table>
<thead>
<tr>
<th>BUILDING AREA</th>
<th>TYPE 1</th>
<th>TYPE 2</th>
<th>TYPE 3</th>
<th>TYPE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIREPROOF</td>
<td>PROTECTED A</td>
<td>PROTECTED B</td>
<td>UNPROTECTED</td>
</tr>
<tr>
<td>CLASSIFICATION</td>
<td>1A</td>
<td>1B</td>
<td>2A</td>
<td>2B</td>
</tr>
<tr>
<td>AA ASSEMBLY SCHOOL</td>
<td>NO</td>
<td>NO</td>
<td>34200</td>
<td>22500</td>
</tr>
<tr>
<td>EXAMPLE CITED: SECONDARY SCHOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B BUSINESS OFFICE</td>
<td>NO</td>
<td>NO</td>
<td>34200</td>
<td>22500</td>
</tr>
<tr>
<td>EXAMPLE CITED: DENTAL CLINIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REAL ESTATE OFFICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C FACTORY/INDUSTRY</td>
<td>NO</td>
<td>NO</td>
<td>22800</td>
<td>15000</td>
</tr>
<tr>
<td>EXAMPLE CITED: MACHINERY MANUFACTURER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D INSTITUTIONAL/ INCAPACITATED</td>
<td>NO</td>
<td>NO</td>
<td>21600</td>
<td>17100</td>
</tr>
<tr>
<td>E MERCANTILE</td>
<td>NO</td>
<td>NO</td>
<td>22800</td>
<td>15000</td>
</tr>
<tr>
<td>EXAMPLE CITED: SHOPPING CENTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F ASSEMBLY OTHER</td>
<td>NO</td>
<td>NO</td>
<td>19950</td>
<td>13125</td>
</tr>
<tr>
<td>G HAZARD</td>
<td>16800</td>
<td>14400</td>
<td>11400</td>
<td>7500</td>
</tr>
<tr>
<td>R RESIDENTIAL NON-HOUSEKEEPING</td>
<td>NO</td>
<td>NO</td>
<td>22800</td>
<td>15000</td>
</tr>
<tr>
<td>S STORAGE</td>
<td>NO</td>
<td>NO</td>
<td>19950</td>
<td>13125</td>
</tr>
<tr>
<td>BUILDING HEIGHT</td>
<td>TYPE 1</td>
<td>TYPE 2</td>
<td>TYPE 3</td>
<td>TYPE 4</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>STORIES AND FEET</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>CLASSIFICATION</td>
<td>1A</td>
<td>1B</td>
<td>2A</td>
<td>2B</td>
</tr>
<tr>
<td>A</td>
<td>ASSEMBLY SCHOOL</td>
<td>NO</td>
<td>NO</td>
<td>5 ST</td>
</tr>
<tr>
<td>EXAMPLE CITED:</td>
<td>SECONDARY SCHOOL</td>
<td>65</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>BUSINESS OFFICE</td>
<td>NO</td>
<td>NO</td>
<td>7 ST</td>
</tr>
<tr>
<td>EXAMPLE CITED:</td>
<td>DENTAL CLINIC</td>
<td>65</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>REAL ESTATE OFFICE</td>
<td>NO</td>
<td>NO</td>
<td>6 ST</td>
<td>4 ST</td>
</tr>
<tr>
<td>F</td>
<td>FACTORY/INDUSTRY</td>
<td>NO</td>
<td>NO</td>
<td>6 ST</td>
</tr>
<tr>
<td>EXAMPLE CITED:</td>
<td>MACHINERY MANUFACTURER</td>
<td>75</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>I</td>
<td>INSTITUTIONAL/</td>
<td>NO</td>
<td>NO</td>
<td>8 ST</td>
</tr>
<tr>
<td>INCAPACITATED</td>
<td>50</td>
<td>30</td>
<td>1 ST</td>
<td>20</td>
</tr>
<tr>
<td>M</td>
<td>MERCHANTILE</td>
<td>NO</td>
<td>NO</td>
<td>6 ST</td>
</tr>
<tr>
<td>EXAMPLE CITED:</td>
<td>SHOPPING CENTER</td>
<td>75</td>
<td>50</td>
<td>2 ST</td>
</tr>
<tr>
<td>A</td>
<td>ASSEMBLY OTHER</td>
<td>NO</td>
<td>NO</td>
<td>5 ST</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>40</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>HAZARD</td>
<td>5 ST</td>
<td>3 ST</td>
<td>2 ST</td>
</tr>
<tr>
<td>65</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>R</td>
<td>RESIDENTIAL</td>
<td>9 ST</td>
<td>4 ST</td>
<td>3 ST</td>
</tr>
<tr>
<td>NON-HOUSEKEEPING</td>
<td>100</td>
<td>50</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>S</td>
<td>STORAGE</td>
<td>5 ST</td>
<td>4 ST</td>
<td>3 ST</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>50</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>POTENTIAL FOR PHOTOVOLTAIC APPLICATION</td>
<td>CONSTRUCTION TYPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TYPE 1</td>
<td>TYPE 2</td>
<td>TYPE 3</td>
<td>TYPE 4</td>
</tr>
<tr>
<td></td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>CLASSIFICATION</td>
<td>1A</td>
<td>1B</td>
<td>PROTECTED 2A</td>
<td>PROTECTED 2B</td>
</tr>
<tr>
<td>A4 ASSEMBLY SCHOOL</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE CITED: SECONDARY SCHOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B BUSINESS OFFICE</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE CITED: DENTAL CLINIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F FACTORY INDUSTRY</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE CITED: MACHINERY MANUFACTURER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I INSTITUTIONAL INCAPACITATED</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M MERCANTILE</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE CITED: SHOPPING CENTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A ASSEMBLY TYPE</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H HAZAR</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R RESIDENTIAL</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-HOUSEKEEPING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S STORAGE</td>
<td>N.P.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY

| PROBABLE | IMPOBABLE | POSSIBLE | N.P. | NOT PERMITTED |

ORIGINAL PAGE IS OF POOR QUALITY
ENGINEERING AND OPERATIONS AREAS

Building Codes Reviewed

SOUTHERN BUILDING CODE CONFERENCE (SRCC)
STANDARD BUILDING CODE

BUILDING OFFICIAL CONFERENCE OF AMERICA (NOCA)
BASIC BUILDING CODE

INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO)
UNIFORM BUILDING CODE

PITTSBURGH BUILDING CODE

LOS ANGELES BUILDING CODE

Standards and Testing Agencies Reviewed

AMERICAN SOCIETY OF TESTING AND MATERIALS (ASTM)

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

NATIONAL BUREAUX OF STANDARDS (NBS)

FEDERAL STANDARDS AND SPECIFICATIONS

NATIONAL FIRE PROTECTION ASSOCIATES (NFPA)

UNDERWRITERS LABORATORIES (UL)
ENGINEERING AND OPERATIONS AREAS

Present Potential Barriers to the Development Of Photovoltaic Arrays in Model Codes

- Roof covering materials must achieve a Class A or R rating for many applications when tested according to ASTM E108, The Standard Methods of Fire Tests of Roof Coverings.

- Plastic materials must achieve an approved status of CC1 or CC2 according to ASTM D635, Rate or Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position, to be utilized. Even then, restrictions can be severe.

PLASTIC ROOF PANELS

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>MAX. PANEL AREA</th>
<th>TOTAL AREA OF PLASTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(INDEPENDENT UNIT)</td>
<td>(% OF FLOOR AREA)</td>
</tr>
</tbody>
</table>

SBCC AND BOCA

Class CC1 300 S.F. 30%
Class CC2 100 S.F. 25%

Photovoltaic Modules which become part of a bearing wall section or roof section must be rated according to ASTM E119 Standard Methods of Fire Tests of Building Construction and Materials for hours of fire containment with structural retention.

<table>
<thead>
<tr>
<th>CONSTRUCTION TYPE</th>
<th>FIREPROOF</th>
<th>NON-COMBUSTIBLE</th>
<th>EXTERIOR MASONRY WALLS</th>
<th>FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TYPE 1</td>
<td>TYPE 2</td>
<td>TYPE 3</td>
<td>TYPE 4</td>
</tr>
<tr>
<td>MOUNTING</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>Application</td>
<td>TYPE 1</td>
<td>TYPE 2</td>
<td>TYPE 3</td>
<td>TYPE 4</td>
</tr>
<tr>
<td>Non-Rearing</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>Exterior Walls</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>Exterier</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>Roof</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
<tr>
<td>Construction</td>
<td>FIREPROOF</td>
<td>NON-COMBUSTIBLE</td>
<td>EXTERIOR MASONRY WALLS</td>
<td>FRAME</td>
</tr>
</tbody>
</table>

421
ENGINEERING AND OPERATIONS AREAS

Rack

Standoff

Direct

Integral

422
ENGINEERING AND OPERATIONS AREAS

Preliminary Conclusions

- PV NOT ADDRESSED IN NEC
- POSSIBLE INCLUSION IN NEC 1984 EDITION. DRAFT REQUIRED BY MID - 1982
- PREMANUFACTURED WIRING SYSTEMS ADVANTAGEOUS
- VOLTAGE LEVEL 110 - 220 V (BASED ON COST OF WIRING)
- UL TESTING AND APPROVAL NECESSARY
- FURTHER WORK REQUIRED ON OPTIMUM SIZE
- NO MAJOR OR INSURMOUNTABLE PROBLEMS
- STANDARD INVESTIGATION IS ANTICIPATORY AND CURRENTLY UNDERWAY BY SERI AND ANSI
- CODE INVESTIGATION REQUIRED FOR EACH APPLICATION

National Electric Code Summary

GENERAL

THE PURPOSE OF THE CODE IS PRACTICAL SAFEGUARDING OF PERSONS AND PROPERTY.

SAFETY

LIVE PARTS OPERATING AT 50 VOLTS OR MORE SHALL BE GUARDED AGAINST ACCIDENTAL CONTACT DURING INSTALLATION. THIS MAY BE NECESSARY AT ALL VOLTAGE LEVELS.
ENGINEERING AND OPERATIONS AREAS

NATIONAL ELECTRICAL CODE SUMMARY

GROUNDING

NEC GROUNDING REQUIREMENTS FOR D.C. SYSTEMS DO NOT APPLY TO PV SYSTEMS IN GENERAL. THE AREAS OF NONAPPLICABILITY INCLUDE:

- QUALIFICATION FOR CIRCUIT AND SYSTEM GROUNDING BASED ON VOLTAGE LEVEL
- POINT OF GROUNDING CONNECTION FOR D.C. SYSTEMS
- GROUNDING OF CONDUCTOR ENCLOSURES
- GROUNDING OF SOME NONCURRENT-CARRYING METAL PARTS OF EQUIPMENT

PV GROUNDING SHOULD COMPLY WITH THE NEC IN CERTAIN AREAS:

- EFFECTIVE GROUNDING PATH
- GROUNDING ELECTRICAL CONDUCTOR REQUIREMENTS (E.G. SIZE AND MATERIAL)

PV SYSTEMS GROUNDING PHILOSOPHY SHOULD BE CHARACTERIZED BY:

- GROUNDING OF CONDUCTIVE ENCLOSURE OF ANY EQUIPMENT THAT IS INTERFACED WITH GROUNDED AC SYSTEM (DUE TO NEC REQUIREMENTS)
- GROUNDING OF ARRAY FRAME CONDUCTIVE MEMBERS
- METALLIC CONDUIT (IF USED) AND NON-UTILITY INTERFACING EQUIPMENT BE ISOLATED FROM GROUND
- UNGROUNDED CONDUIT ONLY ACCESSIBLE BY QUALIFIED PERSONNEL USING GROUND DETECTOR
- ISOLATION TRANSFORMER USED TO SEPARATE AC AND DC CIRCUITS
ENGINEERING AND OPERATIONS AREAS

NATIONAL ELECTRICAL CODE SUMMARY

WIRING

MAJOR DIFFERENCE BETWEEN RESIDENTIAL AND COMMERCIAL/INDUSTRIAL SECTORS IS THE USE OF CONDUCTOR PROTECTIVE ENCLOSURE, E.G., CONDUIT. THIS IS DUE TO PROPENSITY FOR MECHANICAL DAMAGE OF UNPROTECTED CONDUCTORS.

FACTORY INSTALLED INTERNAL WIRING OF EQUIPMENT THAT IS LISTED BY AN ELECTRICAL TESTING LABORATORY IS ACCEPTED FOR USE BY THE NEC WITHOUT NEEDING TO MEET FURTHER NEC REQUIREMENTS. PV WIRING DESIGN SHOULD CONSIDER THIS APPROACH TO ACCELERATE ACCEPTANCE, AS THE BURDEN OF INTERPRETATION IS ESSENTIALLY REMOVED FROM THE CODE OFFICIAL.

DEFINITE NEC REQUIREMENTS WILL APPLY IF THE WIRING QUALIFIES AS A "SERVICE ENTRANCE CONDUCTOR".

CONDUCTOR SIZING SHOULD BE BASED ON INDIVIDUAL SYSTEM CHARACTERISTICS AS WELL AS RELATED NEC REQUIREMENTS. THIS SIZING CRITERIA SHOULD INCLUDE:

- AMPERAGE OF SHORT-CIRCUIT "SYSTEM" CURRENT
- MAXIMUM INSOLATION
- NUMBER OF CONDUCTORS IN A RACEWAY OR CABLE (NEC)
- AMBIENT TEMPERATURE OF CONDUCTOR ENVIRONMENT
- MATERIAL(S) OF CONDUCTORS
- TOTAL SYSTEM VOLTAGE DROP (5% - NEC)
- COST

SYSTEMS WITH VOLTAGES IN EXCESS OF 600 VOLTS WILL NEED TO MEET CERTAIN NEC REQUIREMENTS FOR:

- SERVICE CONDUCTORS ENTERING A BUILDING (AWG NO. 6 OR NO. 8 MINIMUM)
- LIMITED ACCESS
ENGINEERING AND OPERATIONS AREAS

NATIONAL ELECTRICAL CODE SUMMARY

LIGHTNING

IN GENERAL THE NEED FOR LIGHTNING PROTECTION IS BASED ON THE FOLLOWING FACTORS:

- OCCUPANT SAFETY
- NATURE OF BUILDING AND CONTENTS
- RELATIVE EXPOSURE
- THUNDERSTORM FREQUENCY AND SEVERITY
- INDIRECT LOSSES
- AVAILABILITY OF FIREFIGHTING APPARATUS

TWO MAJOR CONSIDERATIONS FOR LIGHTNING PROTECTION FOR PV ARRAYS INVOLVE INDIRECT LOSSES RESULTING FROM VOLTAGE SURGES CAUSED EITHER BY DIRECT STIKE OR INDUCTION:

- FIRE RESULTING FROM ELECTRICAL EQUIPMENT OR CONDUCTOR INSULATION FAILURE
- SHOCK RESULTING FROM CONTACT WITH "HOT" EQUIPMENT ENCLOSURE OR UNINSULATED CONDUCTOR

THE TWO TECHNIQUES USED IN LIGHTNING PROTECTION SYSTEMS ARE "SHIELDING" AND "ARRESTING". THE SHIELDING METHOD INTERCEPTS THE STRIKE WHILE THE ARRESTING IS USED TO DRAIN DAMAGING HIGH POTENTIAL CURRENT TO GROUND. BOTH SHOULD BE USED ON PV SYSTEM.

SPACING OF THE PV SYSTEM FROM LIGHTNING TERMINALS DICTATES BONDING TO LIGHTNING SHIELD SYSTEM.

- NEC 250-46
- NFC SECTION 78 PARAGRAPH 3-24

LIGHTNING ROD CONDUCTORS CANNOT BE USED FOR PV SYSTEM GROUNDING

- NEC 250-86

NFC VOLUME 7 SECTION 78 ADDRESSES LIGHTNING PROTECTION SYSTEMS REQUIREMENTS.
ENGINEERING AND OPERATIONS AREAS

NATIONAL ELECTRICAL CODE SUMMARY

TERMINATION

WIRING TERMINATION REQUIREMENTS ARE NOT EXTENSIVELY ADDRESSED BY THE NEC.

CERTIFICATION BY A RECOGNIZED ELECTRICAL TESTING LABORATORY WOULD SUFFICE FOR ACCEPTANCE BY THE NEC. (IN MOST JURISDICTIONS)

FUNDAMENTAL TERMINATION REQUIREMENTS ARE:

- ADEQUATE CURRENT CAPACITY
- ADEQUATE ELECTRICAL INSULATION (VOLTAGE REQUIREMENT)
- LOW OHMIC CONTACT
- ADEQUATE WEATHERIZATION
- LOW LIFE-CYCLE COST

AT THIS POINT IN TIME, TESTING AND MAINTENANCE ACCESS IS IMPORTANT. WHEN RELIABILITY IS IMPROVED, AND IT IS FOUND THAT MEAN TIME BETWEEN FAILURE EXCEEDS MODULE LIFE, THEN THESE REQUIREMENTS SHOULD BE RECONSIDERED.

PERTINENT TEST STANDARDS PRESENTLY AVAILABLE FOR CONNECTORS:

- UL310 QUICK CONNECT TERMINALS
- UL486 WIRE CONNECTORS AND SOLDERING LUGS
- UL514 OUTLET BOXES AND FITTINGS
- MIL-STD-810-C ENVIRONMENTAL TEST METHODS
- MIL-STD-202, METHOD 107 ACCELERATED TEMPERATURE CYCLING
- ASTM D-1435-65 RECOMMENDED PRACTICE FOR OUTDOOR WEATHERING OF PLASTIC

QUICK CONNECT TERMINALS, ALTHOUGH NOT SPECIFICALLY MENTIONED IN THE CODE, ARE A RECOGNIZED METHOD FOR MAKING ELECTRICAL CONNECTIONS. INDIVIDUAL QUICK CONNECTS MUST BE TESTED AND APPROVED BY A RECOGNIZED TESTING LAB. SOME MUNICIPALITY CODES DO NOT RECOGNIZE QUICK CONNECTS WHERE INSTALLATIONS ARE CONSIDERED TO BE PERMANENT.
<table>
<thead>
<tr>
<th>ENGINEERING AND OPERATIONS AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty Length (Feet)</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Extention Closure (Walls)</td>
</tr>
<tr>
<td>Corrugated Iron & Steel</td>
</tr>
<tr>
<td>Protected Metal</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Asbestos</td>
</tr>
<tr>
<td>Corrugated Fiberglass</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Lead</td>
</tr>
<tr>
<td>Titanium, Copper, Zinc</td>
</tr>
<tr>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Interior Construction</td>
</tr>
<tr>
<td>1st CONVEYING SYSTEMS</td>
</tr>
<tr>
<td>Precast Conc. Slabs</td>
</tr>
<tr>
<td>Metal Deck</td>
</tr>
<tr>
<td>Short Span 3'1/2" Deep</td>
</tr>
<tr>
<td>Long Span 3' - 7'1/2" Deep</td>
</tr>
<tr>
<td>Steel Joists 12'</td>
</tr>
<tr>
<td>24"</td>
</tr>
<tr>
<td>Conc. One Way Slabs</td>
</tr>
<tr>
<td>Conc. Beam & Slab</td>
</tr>
<tr>
<td>Flat Plate & Slab</td>
</tr>
<tr>
<td>Joist & Slab</td>
</tr>
<tr>
<td>Waffle Slabs</td>
</tr>
<tr>
<td>Conc. T's (Single) (Double)</td>
</tr>
<tr>
<td>2nd Mechanical</td>
</tr>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>(Absorbed by Structural and Flooring Systems)</td>
</tr>
</tbody>
</table>
Overview

- **PROBLEM:** Diurnal thermal cycles strain interconnects, which may lead to their eventual rupture and loss of array power output.

- **GOAL:** Design module and interconnects not to exceed cost-optimal array power reduction after a specified number of years.

- **APPROACH:** Use design algorithm, presented here, incorporating:
 - Minimum life-cycle cost analysis
 - Interconnect structural analysis
 - Interconnect failure statistics

Cost-Optimal Interconnect Reliability Design Algorithm

[Diagram of the design algorithm with nodes labeled as follows:
- Alter end-of-life power reduction and/or array configuration
- Array circuit configuration
- Array power reduction at end of design life
- Module interconnect design
- Strain prediction analysis
- Predicted interconnect strain
- Array strain compatible
- Life cycle energy cost analysis
- Are costs minimum
- Final design
]
ENGINEERING AND OPERATIONS AREAS

Life-Cycle Energy Cost Analysis

- **EQUATION**

\[
\text{ENERGY COST (\$/kWh)} = \frac{\text{(BALANCE OF PLANT COST, \$/kW)}}{\text{INITIAL ARRAY COST, \$/m}^2 + \text{ARRAY L-C O&M COST, \$/m}^2 + \text{PLANT EFFICIENCY (100 mW/cm}^2, \text{NOCT)}}
\]

\[
\times \text{ANNUAL INSOLATION} \times \text{L-C ENERGY FRACTION}
\]

- **METHOD**

- DETERMINE ENERGY COSTS FOR VARIOUS 20-YEAR ARRAY POWER LOSS FRACTIONS AND INTERCONNECT REDUNDANCIES
- MINIMUM ENERGY COST DETERMINES DESIGN SELECTION

Strain Prediction Analysis

- **MODULE PROPERTIES:**
 - MATERIAL
 - GEOMETRIC
- **CELL OPERATING TEMPERATURE ABOVE AMBIENT**
- **YEARLY AVERAGE CELL DIURNAL TEMPERATURE RANGE**
- **YEARLY AVERAGE SITE DIURNAL TEMPERATURE RANGE**
- **CAP EXCURSION**
- **FINITE ELEMENT COMPUTER CODE OR RELATED NOMOGRAPHS AND CHARTS**
- **PREDICTED PEAK-TO-PEAK INTERCONNECT STRAIN**

- SEE D. MOORE'S PRESENTATION, THE "TIN CAN LID" PHENOMENON, AT THE 16th PIM
- CHARTS AND NOMOGRAPHS TO DETERMINE PREDICTED INTERCONNECT STRAIN ARE IN PREPARATION
ENGINEERING AND OPERATIONS AREAS

Allowable Strain Analysis

Array Power Loss

FROM 5101-167, SERIES/PARALLEL DESIGN WORKSHOP PROCEEDINGS
Cell Failure Probability Formula

\[P_C = 1 - (1 - F_{SS})^{\frac{1}{n}} \]

- \(P_C \): CELL FAILURE PROBABILITY
- \(F_{SS} \): SUBSTRING FAILURE PROBABILITY
- \(n \): NUMBER OF PARALLEL INTERCONNECT GROUPS PER SUBSTRING (APPROXIMATELY EQUAL TO NUMBER OF CELLS PER SUBSTRING)

EXAMPLE: 4 CELLS, \(n = 6 \)

Interconnect vs Cell Failure Probability
With Redundancy \(m \) as Parameter

\[P_I = P_C^{\frac{1}{m}} \]
ENGINEERING AND OPERATIONS AREAS

Interconnect Fatigue: Experimental Study

- OBJECTIVES
 - UNDERSTAND INTERCONNECT FAILURE PROBABILITY BEHAVIOR
 - RELATE INTERCONNECT FAILURE PROBABILITIES, STRAIN LEVELS, AND ARRAY LIFE

- APPROACH
 - DEVELOP APPARATUS TO MECHANICALLY SIMULATE FIELD THERMAL CYCLES (ACCELERATED TEST)
 - GATHER STATISTICAL FAILURE DATA FOR SEVERAL OFHC COPPER INTERCONNECT CONFIGURATIONS
 - DEVELOP STRAIN-LIFE (FATIGUE) CURVES FOR INTERCONNECTS. USE STRAIN PREDICTION ANALYSIS TO COMPUTE STRAIN

Interconnect Strain-Cycle Apparatus
ENGINEERING AND OPERATIONS AREAS

Interconnect Configurations Tested to Date

Interconnect Strain-Cycle Test Data

<table>
<thead>
<tr>
<th>CYCLES, N</th>
<th>FAILURE PROBABILITY, P_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>0.0056</td>
</tr>
<tr>
<td>10^3</td>
<td>0.0075</td>
</tr>
<tr>
<td>10^4</td>
<td>0.0172</td>
</tr>
<tr>
<td>10^5</td>
<td>0.0123</td>
</tr>
<tr>
<td>10^6</td>
<td>0.0374</td>
</tr>
</tbody>
</table>

$\Delta \varepsilon = 0.0056$ for T

$\Delta \varepsilon = 0.0075$ for 30S

$\Delta \varepsilon = 0.0123$ for 40S

$\Delta \varepsilon = 0.0172$ for 30T

$\Delta \varepsilon = 0.0374$ for S
OFHC Copper Strain-Cycle (Fatigue) Curves

Manson's Empirical Curve: \(\Delta e = 1.300 \times 10^{-0.023 N^{0.12}} \)

Observations

- **WEAROUT FAILURE RATES:** Exhibit small variability; they are essentially the same for all cases tested.

- **DEFECT-RELATED FAILURE RATES:** Exhibit large variability. A conservative envelope is therefore used in this region.

- **INTERCONNECTS EXHIBITING EXTENDED REGIONS OF HIGH STRAIN (S-TYPE):** Are more prone to defect failures.

Equations

- Wearout Failures:
 \[
 P_1 \cdot 1.4602 \cdot \log \frac{N_P}{n} + 0.5, \quad 0.5 < P_1 < 1.0
 \]

- Defect Failures:
 \[
 P_1 \cdot 0.3027 \cdot \log \frac{N_P}{n} + 0.5, \quad 0.03 < P_1 < 0.5
 \]
ENGINEERING AND OPERATIONS AREAS

Interconnect Fatigue Curves With Failure Probability as Parameter

- Constant probability fatigue curves are derived from Manson's curve using failure rate formulas obtained in this study.
- Realistic interconnect failure probabilities ($P_1 < 0.30$, say) at 20-year array life confines the design strain to values at or near the "fatigue limit" of the interconnect material: $\Delta \varepsilon = 0.0025$ to 0.005.

Interconnect Strain $\Delta \varepsilon$ vs Failure Probability P_1
With Array Life (Years) as Parameter
ENGINEERING AND OPERATIONS AREAS

Design Example: 1982 MTR Strawman

- ARRAY CONFIGURATION
 - OFHC COPPER INTERCONNECTS
 - 8 PARALLEL BY 11 SERIES CELLS PER SERIES BLOCK
 - 57 SERIES BLOCKS PER BRANCH CIRCUIT
 - 1 SERIES BLOCK PER DIODE
 - \(V_{\text{ARRAY}} = 250 \) VOLTS

- DESIGN OBJECTIVES
 - 20-YEAR ARRAY POWER REDUCTION YIELDING MINIMUM LIFE-CYCLE ENERGY COSTS
 - REQUIRED INTERCONNECT REDUNDANCY

- ALLOWABLE STRAIN ANALYSIS

<table>
<thead>
<tr>
<th>20-YEAR ARRAY POWER REDUCTION</th>
<th>SUBSTRING FAILURE PROBABILITY</th>
<th>CELL FAILURE PROBABILITY</th>
<th>INTERCONNECT FAILURE PROBABILITY, (P_i) FOR REDUNDANCY</th>
<th>MAXIMUM ALLOWABLE STRAIN, (\Delta e_r), FOR INTERCONNECT REDUNDANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(F_{SS})</td>
<td>(P_{SS})</td>
<td>(\text{for} \ m)</td>
<td>(\text{for} \ m)</td>
</tr>
<tr>
<td>0.20</td>
<td>0.092</td>
<td>0.008735</td>
<td>0.0935 0.2059 0.3057</td>
<td>(0.0027) 0.0035 0.0047</td>
</tr>
<tr>
<td>0.10</td>
<td>0.055</td>
<td>0.005130</td>
<td>0.0716 0.1725 0.2676</td>
<td>(0.0025) 0.0032 0.0042</td>
</tr>
<tr>
<td>0.05</td>
<td>0.029</td>
<td>0.002672</td>
<td>0.0517 0.1388 0.2274</td>
<td>(0.0024) 0.0030 0.0037</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0022</td>
<td>0.000200</td>
<td>0.0141 0.0585 0.1189</td>
<td>0.0022 (0.0025) 0.0028</td>
</tr>
<tr>
<td>0.001</td>
<td>0.00009</td>
<td>0.000008</td>
<td>0.0028 0.0200 0.0532</td>
<td>0.0022 0.0023 (0.0024)</td>
</tr>
</tbody>
</table>

- OBSERVATIONS
 - FOR A GIVEN INTERCONNECT REDUNDANCY, STRAIN LEVEL IS RELATIVELY INSENSITIVE TO ARRAY POWER REDUCTION, BUT SENSITIVITY INCREASES WITH INCREASING REDUNDANCY
 - FOR A GIVEN POWER REDUCTION, GREATER REDUNDANCY PERMITS HIGHER DESIGN STRAIN LEVELS; THE EFFECT IS MORE PRONOUNCED AT LARGER POWER REDUCTIONS, AT WHICH COST TRADE-OFFS BETWEEN STRAIN LEVEL AND REDUNDANCY CAN BE MADE
ENGINEERING AND OPERATIONS AREAS

- LIFE-CYCLE ENERGY COST ANALYSIS

\[
\text{ENERGY COST} = \frac{(\text{BALANCE OF PLANT COST, $/kW}) + (\text{INITIAL ARRAY COST, A} + \text{L-C O&M COST, B})}{\text{PLANT EFFICIENCY, NOCT}}
\]

\[
= \frac{2 \times \text{ANNUAL INSOLATION, $/m^2/yr} \times \text{L-C ENERGY FRACTION, $/LC}}{2 \times \epsilon_{LC}}
\]

\[
= \frac{(250) + 0.092}{2 \times \epsilon_{LC}}
\]

- ASSUMPTIONS
 - 0% DISCOUNT RATE
 - ARRAY COST LESS INTERCONNECTS: 113 $/m^2
 - CONSTANT ARRAY POWER LOSS RATE: \(\epsilon_{LC} = \sum_{n=1}^{20} \left(1 - \frac{n}{20} \right) \)

\[
f = 20-\text{YEAR ARRAY POWER LOSS FRACTION}
\]

- CALCULATIONS

<table>
<thead>
<tr>
<th>20-YEAR ARRAY POWER REDUCTION</th>
<th>INTERCONNECT REDUNDANCY</th>
<th>ESTIMATED COSTS FOR INTERCONNECTS $/m^2</th>
<th>TOTAL INITIAL ARRAY COST $/m^2</th>
<th>LIFE-CYCLE ENERGY FRACTION $/LC</th>
<th>LIFE-CYCLE ENERGY COST $/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>2</td>
<td>4.22</td>
<td>117.22</td>
<td>17.9000</td>
<td>0.043</td>
</tr>
<tr>
<td>0.10</td>
<td>2</td>
<td>4.22</td>
<td>117.22</td>
<td>18.9500</td>
<td>0.040</td>
</tr>
<tr>
<td>0.05</td>
<td>2</td>
<td>4.22</td>
<td>117.22</td>
<td>19.4750</td>
<td>0.039</td>
</tr>
<tr>
<td>0.01</td>
<td>3</td>
<td>5.05</td>
<td>118.05</td>
<td>19.8950</td>
<td>0.038</td>
</tr>
<tr>
<td>0.0001</td>
<td>4</td>
<td>6.18</td>
<td>119.18</td>
<td>19.9895</td>
<td>0.039</td>
</tr>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>20.0000</td>
<td>∞</td>
</tr>
</tbody>
</table>

- COST-OPTIMAL DESIGN SELECTION

- DESIGN FOR A POWER REDUCTION OF 1% AND AN INTERCONNECT REDUNDANCY OF 3
ENGINEERING AND OPERATIONS AREAS

PHOTOVOLTAIC MODULE CAPACITANCE AND PERSONAL SAFETY

JET PROPULSION LABORATORY
G.R. Mon

• OBJECTIVE
 • DETERMINE LIMITS ON MODULE CAPACITANCE TO GUARANTEE PERSONAL SAFETY DURING ROUTINE OPERATION AND MAINTENANCE FIELD REMOVALS AND REPLACEMENTS

• APPROACH
 • GATHER DATA ON HUMAN TOLERANCE TO ELECTRICAL SHOCK BY CAPACITIVE DISCHARGE
 • DETERMINE MAXIMUM ALLOWABLE MODULE UNIT CAPACITANCE AS A FUNCTION OF ARRAY OPERATING VOLTAGE
Factors Affecting Severity of Shock

- **VOLTAGE**
 - TYPE
 - AC
 - DC - CONTINUOUS OR INTERRUPTED
 - EXPONENTIAL DECAY
 - MAGNITUDE

- **CURRENT**
 - TYPE
 - MAGNITUDE
 - DURATION

- **BODY IMPEDANCE**
 - CURRENT PATH
 - PRESENCE OF MOISTURE

Human Physiological Response to Electric Shock

- **AC - 60 Hz, 120 V (UL, USDL)**

<table>
<thead>
<tr>
<th>I, mA</th>
<th>PHYSIOLOGICAL RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.5</td>
<td>NO SENSATION</td>
</tr>
<tr>
<td>0.5 - 2</td>
<td>THRESHOLD OF PERCEPTION</td>
</tr>
<tr>
<td>1 - 5</td>
<td>REACTION</td>
</tr>
<tr>
<td>2 - 10</td>
<td>MUSCULAR CONTRACTION</td>
</tr>
<tr>
<td>5 - 25</td>
<td>CAN'T LET GO</td>
</tr>
<tr>
<td>> 15</td>
<td>STOPPAGE OF BREATHING</td>
</tr>
<tr>
<td>> 25</td>
<td>SEVERE MUSCULAR CONTRACTION</td>
</tr>
<tr>
<td>30 - 200</td>
<td>VENTRICULAR FIBRILLATION</td>
</tr>
</tbody>
</table>

- **DC**

 DOES NOT PRODUCE SEVERE MUSCULAR CONTRACTIONS AS DOES AC.
 HIGHER DC LEVELS CAN BE TOLERATED
Electrical Impedance of the Human Body

- **Measurement** - 50 Hz, 125 V

![Electrical Impedance Circuit Diagram](image)

\[R_D + R_E = 1456 \, \Omega \]
\[C_D + C_E = 0.65 \, \mu F \]
\[R_{\text{INT}} = 711 \, \Omega \]

- **Suggested Working Values**
 - **Damp**: \(R_{\text{HUMAN}} = 500 \, \Omega \)
 - **Dry**: \(R_{\text{HUMAN}} = 1500 \, \Omega \)

Accepted and Suggested Human Tolerance Levels

- **Voltage (1978 NEC)**

<table>
<thead>
<tr>
<th>Wave Form</th>
<th>Dry</th>
<th>Damp</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>30 V RMS</td>
<td>15 V RMS</td>
</tr>
<tr>
<td>Interrupted DC</td>
<td>24.8 V PEAK</td>
<td>12.4 V PEAK</td>
</tr>
<tr>
<td>Continuous DC</td>
<td>60 V</td>
<td>30 V</td>
</tr>
</tbody>
</table>

- **Current/Duration (UL)**
 - **Sinusoidal AC**
 - 5 mA RMS is considered non-hazardous regardless of duration
 - From experiments on sheep and dogs,
 \[I_{\text{MAX}} = 20t^{-0.7} \, \text{mA RMS}, \ 0.00833 \, \text{sec} < t < 7.25 \, \text{sec} \]
 is safe
ENGINEERING AND OPERATIONS AREAS

Minimum Fibrillating Current vs Shock Duration for Human Beings (After UL)

AC RMS CURRENT (mA) vs SHOCK DURATION TIME (sec)

- I_MAX SAFE
- I_MAX 20^(-0.7)
- I_MAX = 5 mA

SAFE
UNSAFE
ENGINEERING AND OPERATIONS AREAS

Accepted and Suggested Human Tolerance Levels (Cont.)

- **CAPACITANCE/VOLTAGE**
- **CIRCUIT**

![Circuit Diagram]

- **EQUIVALENCE OF WAVE FORMS**
 It is assumed that the two wave forms shown produce the same effect upon the human heart.

- **MAXIMUM SAFE CAPACITANCE (R • R_{HUMAN} = 500 \Omega)**

 \[C_{\text{MAX SAFE}} = \frac{0.0884}{V^{1.43} (\ln V - 1.26)} \]

 \[\cdot 0.0353 V^{-1.536}, \ 403.5 V < V < 40,000 V \]

 \[\cdot 0.0353 V^{-1.536}, \ 403.5 V < V < 40,000 V \]

 \[\cdot V \text{OLTS EXCEEDING 40,000 V ARE CONSIDERED UNSAFE REGARDLESS OF CAPACITANCE SIZE} \]
Maximum Safe Capacitance at Voltage (UL)

ENGINEERING AND OPERATIONS AREAS

Maximum Safe Capacitance at Voltage (UL)

VOLTAGE ACROSS CAPACITANCE BEFORE DISCHARGE (VOLTS)

10^0 10^1 10^2 10^3 10^4 10^5

C, pF

1 10 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^10 10^11 10^12

SAFE

UNSAFE

ENGINEERING AND OPERATIONS AREAS
Typical Measured Module Capacitance
And Insulation Resistance

<table>
<thead>
<tr>
<th>VENDOR - BLOCK</th>
<th>TYPE</th>
<th>(R_M) (M(\Omega))</th>
<th>(C_M) (pF)</th>
<th>(C_M/A) ((\mu)F/m(^2))</th>
<th>(\tau = 3 R_M C_M) (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST - II, III</td>
<td>MM</td>
<td>2500</td>
<td>1500</td>
<td>0.001350</td>
<td>11.25</td>
</tr>
<tr>
<td>SP - III</td>
<td>MM</td>
<td>(13 \times 10^6)</td>
<td>20</td>
<td>0.000017</td>
<td>780</td>
</tr>
<tr>
<td>SP - IV</td>
<td>M</td>
<td>200</td>
<td>1750</td>
<td>0.000361</td>
<td>1.05</td>
</tr>
<tr>
<td>SL - II</td>
<td>MM</td>
<td>1800</td>
<td>100</td>
<td>0.000087</td>
<td>0.54</td>
</tr>
<tr>
<td>SX - II, III</td>
<td>MM</td>
<td>80,000</td>
<td>475</td>
<td>0.000455</td>
<td>114</td>
</tr>
<tr>
<td>AS - III</td>
<td>MM</td>
<td>1500</td>
<td>100</td>
<td>0.000111</td>
<td>0.45</td>
</tr>
<tr>
<td>MOT - IV</td>
<td>M</td>
<td>50,000</td>
<td>1260</td>
<td>0.000345</td>
<td>189</td>
</tr>
</tbody>
</table>

- MODULE LEAKAGE RESISTANCE IS SO HIGH THAT DISCHARGE CURRENTS WILL PASS ENTIRELY THROUGH HUMAN
- FOR SOME MODULES, CHARGE BLEED-OFF TIME CAN BE QUITE LARGE - SEVERAL MINUTES
Conclusions

- Charges stored in modules just extracted from an active array do not pose a safety problem for present array designs (module unit capacitances and array voltage levels)
ENGINEERING AND OPERATIONS AREAS

HOT-SPOT ENDURANCE TEST
DEVELOPMENT AND RESULTS

JET PROPULSION LABORATORY
J.C. Arnett
C.C. Gonzalez

Hot-Spot Study Objective

DEVELOP TEST PROCEDURES FOR EVALUATING HOT-SPOT ENDURANCE CAPABILITY OF A MODULE UNDER A SEVERE HOT-SPOT FIELD CONDITION:

- 100 mW/cm²
- 40 °C AIR
- MODULE AT SHORT CIRCUIT
- WORST-CASE CELL REVERSE I-V CHARACTERISTICS
- WORST-CASE CELL CURRENT MISMATCH
 - CRACKS
 - SHADOWING
 - INTERCONNECT FAILURE
 - SHORTED CELL

Secondary Study Objectives

- TO DETERMINE THE RELATIONSHIP OF \(T_{\text{CELL}} - T_{\text{AIR}} \) VS HOT-SPOT POWER DISSIPATION (mW/cm²) FOR SEVERAL MODULE CONFIGURATIONS AND CELL SIZES

- TO CORRELATE ABILITY TO WITHSTAND HOT-SPOT HEATING WITH MODULE CONSTRUCTION AND CELL SIZE

- DEVELOP DESIGN GUIDELINES FOR MODULE AND CELL CONFIGURATIONS TO IMPROVE HOT-SPOT ENDURANCE
ENGINEERING AND OPERATIONS AREAS

Approach

• DETERMINE FACTORS AFFECTING HOT-SPOT HEATING LEVELS
• DEVELOP HOT-SPOT TEST PROCEDURES
• IDENTIFY AND/OR DEVELOP AND TEST REQUIRED EQUIPMENT AND INSTRUMENTATION
• INVESTIGATE CELL REVERSE VOLTAGE (2nd QUADRANT) I-V CHARACTERISTICS
• INVESTIGATE RESPONSE OF MODULES AND CELLS TO POWER DISSIPATION AND PERFORM SUPPORTIVE DIAGNOSTIC TESTS
• CORRELATE RESULTS AND DEVELOP RECOMMENDATIONS

Hot-Spot Test Considerations

FACTORS INFLUENCING HOT-SPOT HEATING LEVEL

- REVERSE VOLTAGE (2nd QUADRANT) CELL I-V CHARACTERISTICS
- MODULE SERIES-PARALLEL CONFIGURATION
- NUMBER OF CELLS PER DIODE STRING
- OVERALL MODULE CURRENT LEVEL
- AMOUNT OF CURRENT LIMITING IN Affected CELL
- IRRADIANCE LEVEL

CRITICAL TEST CONSTRAINTS

- SELECTION OF CELLS WITH APPROPRIATE 2nd-QUADRANT I-V CHARACTERISTICS
- APPROPRIATE TEST VOLTAGE AND CURRENT SELECTION
- CONTROL DEGREE OF REVERSE BIASING BY MEANS OF ILLUMINATION LEVEL
- TEST CELL SELECTION AND INSTRUMENTATION
- DETERMINE CURRENT AND VOLTAGE TEST LEVELS
- ESTABLISH TEST THERMAL ENVIRONMENT
- EVALUATE PERFORMANCE
Test Cell Selection Based on 2nd-Quadrant Dark I-V Characteristics

Selection of Module Evaluation Criteria

- SAFETY CRITERIA
 - VISUAL INSPECTION: NO DETERIORATION THAT WOULD IMPAIR PERFORMANCE
 - HI-POI: SATISFY INITIAL ELECTRICAL ISOLATION REQUIREMENT

- PERFORMANCE
 - ELECTRICAL POWER \geq 95% OF PRETEST
ENGINEERING AND OPERATIONS AREAS

Selection of Test Voltage and Current for Type A Cell

Illumination Level Selected to Control Degree Of Reverse Biasing (Type A Cells)
Selection of Test Voltage and Current for Type B Cell

- **A**
- **B**

SHADOWED CELL

CURRENT

POWER DISSIPATION IN B

V

TEST

V

L - MP** AT 100 mW/cm², NOCT

N - NUMBER OF SERIES CELLS PER DIODE

Selection of Test Thermal Environment
To Simulate 100 mW/cm², 40°C Field Condition

- **AIR TEMPERATURE** - 20°C, STILL AIR
- **IRRADIANCE** -
 - VISIBLE AT SELECTED LEVEL
 - IR TO ACHIEVE PPE-HOT-SPOT CELL AND BACKGROUND TEMPERATURE - NOCT
ENGINEERING AND OPERATIONS AREAS

Selection of Test Sequence

SCHEDULE:

- POWER CYCLED ON-OFF
- 1 HOUR, POWER ON: HOT-SPOT HEATING
- POWER OFF: COOLING TO INITIAL THERMAL CONDITIONS (NOCT ± 5 °C)

DURATION:

- 100 HOURS ACCUMULATED HOT-SPOT POWER ON-TIME

Selection of Module Evaluation Criteria

- VISUAL INSPECTION:
 - MUST MEET PRODUCTION MODULE ACCEPTANCE REQUIREMENTS

- ELECTRICAL PERFORMANCE
 - ≥ 95% OF PRETEST POWER WITH ANY DISRUPTED INTERCONNECTS RECONNECTED

- ELECTRICAL ISOLATION
 - MUST MEET INITIAL HI-POT REQUIREMENT
ENGINEERING AND OPERATIONS AREAS

Hot-Spot Endurance Test Summary

- TEST CURRENT –
 - TYPE A: \(I_L \cdot I_{MP} \) OF AVERAGE CELL AT 100 mW/cm\(^2\), NOCT
 - TYPE B: \(I_L \cdot I_{SC} \) OF AVERAGE CELL AT 100 mW/cm\(^2\), NOCT

- TEST VOLTAGE –
 - \(V_T = V_L \cdot N \times V_{MP} \) (100 mW/cm\(^2\), NOCT) FOR N SERIES CELLS/DIODE

- TEST CELLS –
 - 3 SELECTED REPRESENTATIVE OF RANGE OF 2nd-QUADRANT I - V CURVES

- THERMAL CONDITION –
 - CELLS AT INITIAL TEMPERATURE \(\cdot \) NOCT (IR SOURCE WITH LOW VISIBLE CONTENT)

- ILLUMINATION – (TYPE A ONLY)
 - UNIFORM SOURCE WITH LOW IR CONTENT (e.g., TYPE ELH)

- LABORATORY AMBIENT – 20°C, NO AIR CURRENTS
Hot-Spot Endurance Test Equipment Arrangement
ENGINEERING AND OPERATIONS AREAS

Typical Hot-Spot Test Results

- TIME TO ACHIEVE EQUILIBRIUM TEMPERATURE
- CELL THERMAL GRADIENTS UNDER TEST
- MEASURED CELL TEMPERATURE vs NUMBER OF SERIES CELLS PER DIODE
- HOT-SPOT TEMPERATURES FOR FIELD ENVIRONMENT (PREDICTED)
- VISUAL OBSERVATIONS AT INCREASING CELL TEMPERATURES

Characteristics of Modules Tested

<table>
<thead>
<tr>
<th>MODULE MFG</th>
<th>MODULE CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAREX</td>
<td>GLASS-FIBER-REINFORCED POLYESTER SUBSTRATE</td>
</tr>
<tr>
<td></td>
<td>SYLGARD 184 ENCAPSULANT</td>
</tr>
<tr>
<td></td>
<td>ALUMINUM FRAME</td>
</tr>
<tr>
<td></td>
<td>CELL SIZE: 3 in.</td>
</tr>
<tr>
<td>PHOTOWATT</td>
<td>ALUMINUM SUBSTRATE</td>
</tr>
<tr>
<td></td>
<td>GLASS SUPERSTRATE</td>
</tr>
<tr>
<td></td>
<td>RTV 615 ENCAPSULANT</td>
</tr>
<tr>
<td></td>
<td>ALUMINUM FINS</td>
</tr>
<tr>
<td></td>
<td>CELL SIZE: 2.2 in.</td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>GLASS SUPERSTRATE</td>
</tr>
<tr>
<td></td>
<td>PVB ENCAPSULANT</td>
</tr>
<tr>
<td></td>
<td>ALUMINUM FRAME</td>
</tr>
<tr>
<td></td>
<td>CELL SIZE: 3 in.</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>GLASS REINFORCED POLYESTER SUBSTRATE</td>
</tr>
<tr>
<td></td>
<td>SYLGARD 184 ENCAPSULANT</td>
</tr>
<tr>
<td></td>
<td>CELL SIZE: 4 in.</td>
</tr>
<tr>
<td>SPECTROLAB</td>
<td>GLASS SUPERSTRATE</td>
</tr>
<tr>
<td></td>
<td>PVB ENCAPSULANT</td>
</tr>
<tr>
<td></td>
<td>ALUMINUM FRAME</td>
</tr>
<tr>
<td></td>
<td>CELL SIZE: 2 in.</td>
</tr>
</tbody>
</table>
ENGINEERING AND OPERATIONS AREAS

Time to Reach Equilibrium Temperature

<table>
<thead>
<tr>
<th></th>
<th>TIME (MINUTES)</th>
<th>TEMPERATURE, °C</th>
<th></th>
<th>TIME (MINUTES)</th>
<th>TEMPERATURE, °C</th>
<th></th>
<th>TIME (MINUTES)</th>
<th>TEMPERATURE, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAREX CELL TYPE A</td>
<td>0 5 10 15 20 25 30 35</td>
<td>0 50 100 150 200</td>
<td>NOCT</td>
<td>SOLAR CELL TYPE B</td>
<td>0 5 10 15 20 25 30 35</td>
<td>0 50 100 150 200</td>
<td>NOCT</td>
<td>SPECTROLAB CELL TYPE B</td>
</tr>
</tbody>
</table>

Observed Module Response vs Cell Temperature

<table>
<thead>
<tr>
<th>MODULE MFR</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAREX</td>
<td></td>
<td></td>
<td>CELL BREAKDOWN</td>
<td>CRACKED CELL</td>
<td></td>
</tr>
<tr>
<td>PHOTOIWATT</td>
<td></td>
<td></td>
<td>CELL BREAKDOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO SOLAR</td>
<td>ONSET OF CARBONATION</td>
<td>CARBONATION OVER HALF OF CELL</td>
<td>ENCLOSANT DISCOLORED AND SMOKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td></td>
<td>MULTIPLE CELL CRACKS AND ENCAPSULANT DELAMINATION</td>
<td>ONE CELL SURVIVED TC 180 °C BEFORE CRACKING AND SMOKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECTROLAB</td>
<td>ONSET OF CARBONATION</td>
<td>CARBONATION OVER ENTIRE CELL AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hot-Spot Temperature Above Ambient vs Power Into Cell (Field Environment)

![Diagram showing the relationship between hot-spot temperature and power dissipation for different solar power systems.](#)
ENGINEERING AND OPERATIONS AREAS

Measured Hot-Spot Temperature
vs Number of Series Cells per Diode

![Graph showing measured hot-spot temperature vs number of series cells per diode for various solar panel brands such as SOLAREX, ARCO SOLAR, SOLAR POWER, SPECTROLAB, and PHOTOWATT.](image)
Calculation of Expected Hot-Spot Temperature

- **Key Module and Cell Parameters**
 - 4 in. Cells, 103.2 cm² of area
 - 36 cells, 1 diode per module
 - $V_{MAXP} (NOCT) \approx 0.42 \text{ V}$
 - $I_{SC} \approx 2 \text{ A}$
 - Type A cell
 - $V_L \approx 15 \text{ V}, I_L \approx 2 \text{ A}$

- At 0 illumination, current at 15 V is 0.25 A

<table>
<thead>
<tr>
<th>CELL TEMPERATURE: LABORATORY ENVIRONMENT</th>
<th>20 °C AIR TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_e (UNIT AREA) = 30W/103.2 cm² = 291 mW/cm²</td>
<td></td>
</tr>
<tr>
<td>$P_{ILL} = \frac{I_L}{I_e} \times 100 \text{ mW/cm}^2 = 87.5 \text{ mW/cm²}$</td>
<td></td>
</tr>
<tr>
<td>NOCT EQUIVALENT = 80 mW/cm²</td>
<td></td>
</tr>
<tr>
<td>$P_T = P_e + P_{ILL} = 458.5 \text{ mW/cm²}$</td>
<td></td>
</tr>
<tr>
<td>$T_{CELL} = 120 \text{ °C}, T_{AIR} = 140 \text{ °C}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CELL TEMPERATURE: FIELD ENVIRONMENT</th>
<th>40 °C AIR TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_T = 100 \text{ mW/cm²} + 391 \text{ mW/cm²}$</td>
<td></td>
</tr>
<tr>
<td>$T_{CELL} = 140 \text{ °C}, T_{AIR} = 140 \text{ °C}$</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- Test procedures developed
- Experimental verification
- Determination of module and cell response to hot-spot heating
- Critical aspects and problem areas identified
ENGINEERING AND OPERATIONS AREAS

Future Work

• CONTINUE INVESTIGATION OF CORRELATION OF MODULE AND CELL CONFIGURATION AND PHYSICAL PARAMETERS WITH HOT-SPOT HEATING ENDURANCE, AS NEW MODULES BECOME AVAILABLE

• REFINE TEST PROCEDURES AND ACCURACY BASED ON INDUSTRY RESPONSE AND FEEDBACK

• DEVELOP DESIGN GUIDELINES FOR HOT-SPOT ENDURANCE

• PREPARE TASK REPORT
ENGINEERING AND OPERATIONS AREAS

AR COATING DEGRADATION STUDIES

CLEMSON UNIVERSITY

H.A. Walker
J.W. Lathrop

Visually Estimated % of AR Coating Removed vs. Measured % Decrease in Isc and Pm for Lots G-14 and G-19 after 500 Hours Pressure Cooket
Spectral Distribution of Solar Radiation Received Outside the Atmosphere and at Sea Level

1976 CIE L*A*B Color Space
<table>
<thead>
<tr>
<th></th>
<th>X (RED)</th>
<th>Y (GREEN)</th>
<th>Z (BLUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE FOR ILLUMINANT A</td>
<td>0-110</td>
<td>0-100</td>
<td>0-35</td>
</tr>
<tr>
<td>1-CELL RANGE</td>
<td>1.5-10.5</td>
<td>1.2-9.5</td>
<td>0.4-4.0</td>
</tr>
</tbody>
</table>
New Cell Color Data

CELL 1-87 AREA 1 MEAS

<table>
<thead>
<tr>
<th>Wave</th>
<th>Sample</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>7.64</td>
<td>7.58</td>
</tr>
<tr>
<td>410</td>
<td>6.62</td>
<td>6.56</td>
</tr>
<tr>
<td>420</td>
<td>5.63</td>
<td>5.57</td>
</tr>
<tr>
<td>430</td>
<td>4.64</td>
<td>4.58</td>
</tr>
<tr>
<td>440</td>
<td>3.65</td>
<td>3.59</td>
</tr>
<tr>
<td>450</td>
<td>2.66</td>
<td>2.60</td>
</tr>
<tr>
<td>460</td>
<td>1.67</td>
<td>1.61</td>
</tr>
<tr>
<td>470</td>
<td>0.68</td>
<td>0.62</td>
</tr>
<tr>
<td>480</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>490</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>500</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>510</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>520</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>530</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>540</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>550</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>560</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>570</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>580</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>590</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>600</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>610</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>620</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>630</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>640</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>650</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>660</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>670</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>680</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>690</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>700</td>
<td>0.69</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Samp: ILLUM=A CRIV=10

TRIST: X Y Z

SAMP 1.79 1.73 2.01

CHROMA: X Y

SAMP 0.3230 0.3133

COLOR COORD: L* A* B*

SAMP 14.04 -3.17 -25.29

Stressed Cell Color Data

CELL 1-87 AREA 1 MEAS

<table>
<thead>
<tr>
<th>Wave</th>
<th>Sample</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>7.64</td>
<td>7.58</td>
</tr>
<tr>
<td>410</td>
<td>6.62</td>
<td>6.56</td>
</tr>
<tr>
<td>420</td>
<td>5.63</td>
<td>5.57</td>
</tr>
<tr>
<td>430</td>
<td>4.64</td>
<td>4.58</td>
</tr>
<tr>
<td>440</td>
<td>3.65</td>
<td>3.59</td>
</tr>
<tr>
<td>450</td>
<td>2.66</td>
<td>2.60</td>
</tr>
<tr>
<td>460</td>
<td>1.67</td>
<td>1.61</td>
</tr>
<tr>
<td>470</td>
<td>0.68</td>
<td>0.62</td>
</tr>
<tr>
<td>480</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>490</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>500</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>510</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>520</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>530</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>540</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>550</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>560</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>570</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>580</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>590</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>600</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>610</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>620</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>630</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>640</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>650</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>660</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>670</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>680</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>690</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>700</td>
<td>0.69</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Samp: ILLUM=A CRIV=10

TRIST: X Y Z

SAMP 8.08 7.30 3.03

CHROMA: X Y

SAMP 0.4370 0.3978

COLOR COORD: L* A* B*

SAMP 32.49 -0.75 -4.74
Data for Three Stress Levels X, Y, Z, and L Color Parameters vs. Percent Change in Isc.
Stress 1 Data - Group I Cells
X, Y, Z, and L Color Parameters vs.
Percent Change in Isc.
Conclusions (I Cells)

- 3-7% DECREASE IN Isc (4-9% Pm)

- TOTAL % DECREASE IN Isc IS DUE TO MORE THAN JUST AR COATING LOSS

- POSSIBILITY OF RELATING FIELD RESULTS TO COLOR MEASUREMENTS
MINIMODULE ACCELERATED WEATHERING
DSET LABORATORIES, INC.
E. Zerlaut

Technical Approach

- **REAL-TIME WEATHERING**

- **Exposure of Micromodules on EMMA(QUA) Test Machines**

- **Long-term exposure of minimodules on SuperMag Test Machine (Equivalent to 10-20 years)**

- **Regular, periodic inspections and I-V measurements**

Objectives

- **Gain experience in the application of accelerated aging techniques to photovoltaic modules**

- **Accurately simulate encapsulation system designs of full-scale modules deployed in the field**

- **Provide a test bed for performing aging tests with samples which can be scaled to full size**

- **Obtain basis for correlation of accelerated degradation modes to real-time field experience**
ENGINEERING AND OPERATIONS AREAS

I-V Testing of Photovoltaics

- Reference cell preferred for measurement of I_T.
- If reference cell not same as test cell, global pyranometric measurement preferred.
- Direct normal "beam" measurement not desirable.
- DSET uses outdoor pulse method.
- IV data taken in 1 sec.

Pulse Testing in Direct Natural Sunlight

SCAS = Solar Cell Array Scanner (Dynamic Load)
- 25 V/ 4Amps (100 watts)
SCAS Controller = Dynamic Load Ramp Generator

GP = Global Pyranometer

NIP = Normal Incidence Pyrheliometer
DSET LABORATORIES, INC.
BOX 1850 BLACK CANYON STAGE
PHOENIX, ARIZONA 85029

DATE: 07/28/79, SOLAR TIME: 08:50:00
DSET SP SYSTEM SOFTWARE VERSION 91A

COMPUTER GENERATED
I-V PLOTS IN 3 QUAD
(QUAD I SCAN TIME ~ 1/2 sec)
NORMALIZED TO 28°C
AND 1000 W/M²

NORMALIZED DATA

DSET #1

NAME: MRRNET
COMPANY: QUALITY CONTROL, INC

VOC: 4050.0 MV
I SC: 365.4 MA
V CP MV: 9974.0 MV
T CELL: 57.00 °C
T AIR: 20.00 °F
P NKI: 2698.8 MW
Series Resistance

GOOD FILL FACTOR

VERY HIGH

HIGH

V

I
Degradation Modes That Have Correlated Well With Field Experience

- Cracked cells
- Delamination
- Encapsulant carbonation
- Glazing failure
- Contact corrosion
Exposure Response History of Block II Modules to Super-Maq Testing

<table>
<thead>
<tr>
<th>MODULE</th>
<th>.SN</th>
<th>INITIAL</th>
<th>955</th>
<th>1,245</th>
<th>1,418</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILICONE RUBBER</td>
<td>021</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>YELLOWING OF INTERCONNECTS & SUBSTRATE. MODERATE WATER SPOTTING</td>
</tr>
<tr>
<td>ENCAP., POLYESTER</td>
<td>024</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>SLIGHT DIRT RETENTION.</td>
</tr>
<tr>
<td>SUBSTRATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILICONE RUBBER</td>
<td>002</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>MODERATE DIRT RETENTION & WATER SPOTTING. SLIGHT HAZE OF ENCAPSULANT.</td>
</tr>
<tr>
<td>ENCAP., ALUMINUM</td>
<td>058</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>TERMINAL DISCOLORATION.</td>
</tr>
<tr>
<td>SUBSTRATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILICONE RUBBER</td>
<td>826</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>EXTENSIVE DELAMINATION (SWELLING); CRACKED CELLS</td>
</tr>
<tr>
<td>ENCAP., MOLDED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DELAMINATION OF ENCAPSULANTS; YELLINGOW</td>
</tr>
<tr>
<td>POLYESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRACKED CELL, WATER SPOTTING.</td>
</tr>
<tr>
<td>SUBSTRATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLASS SUPERSTRATE</td>
<td>028</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>(TERMINATED 8/7/78) SEVERE CARBONATION; CRACKED GLAZING,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WHITE & YELLOW HAZE EXTENSIVE</td>
</tr>
<tr>
<td>PVB/ MYLAR LAMINATE</td>
<td>042</td>
<td>Lsc</td>
<td></td>
<td></td>
<td></td>
<td>CARBONATION; SLIGHT WATER SPOTTING; YELLINGOW OF INTERCONNECTS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXP.</td>
<td>807</td>
<td></td>
<td>1.098</td>
<td>1.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIVALENT YEARS =</td>
<td></td>
<td>5.5</td>
<td>6-1/2</td>
<td>7-1/2</td>
<td>6-3/4</td>
<td>YEARS</td>
</tr>
<tr>
<td>EXCEPT (V) =</td>
<td></td>
<td>4-1/4</td>
<td>5-3/4</td>
<td>6-3/4</td>
<td></td>
<td>YEARS</td>
</tr>
</tbody>
</table>
ENGINEERING AND OPERATIONS AREAS

I-V CHARACTERISTIC CURVE

DATE: 4-30-79
DSET # 19360
MODULE: C58
EXPOSURE DATA: SUPER MG
FROM: 2-2-79 TO: 4-30-79
LANGLEY: 1,411,860
TEMP: 21.2 °C
INTENSITY: 1074 W/m²
NORMALIZED Isc = 0.440 Voc = 13.33

MAGNITUDE OF VOLTAGE (V)

0.600
0.480
0.360
0.240
0.120
-0.120
-0.240
-0.360
-0.480
-0.600

MAGNITUDE OF CURRENT (A)

1.60
-1.60
-0.76
-5.84
-2.92
2.92
5.84
8.76
11.60
14.60

- MODERATE DIRT RETENTION
- ENCAPSULANT HAZING
- TERMINAL DISCOLORATION
ENGINEERING AND OPERATIONS AREAS

ORIGINAL

$I_{sc} = 1.48$
$V_{oc} = 6.77$

I-Y CHARACTERISTIC CURVE

DATE: 4-20-79
DSET# 19260

MODULE: 1214
EXPOSURE DATE: SPRING MARS
FROM: 2-2-79 TO: 4-20-79
LANGLEYS: 1,141,660

TEMP: 28.1°C
INTENSITY: 1070 W/M²
NORMALIZED $I_{sc} = 1.305$ $V_{oc} = 6.60$

- YELLOWING OF INTERCONNECTS
- WATER SPOTTING
- SLIGHT DIRT RETENTION
ORIGINAL: $I_{sc} = 0.610$

$Voc = 13.53$

AFTER 1,640,000 LANGLEYS

- CELL/ENCAPSULANT HAZE
- SLIGHT DARKENING OF METALLIZATION AND ENCAPSULANT
DSET LABORATORIES, INC.
90X 1950 BLACK CANYON STAGE
PHOENIX, ARIZONA 85029

DATE: 01/08/81. SOLAR TIME: 10:29:00
DSET SP SYSTEM SOFTWARE VERSION 01E

ORIGINAL: I_{SC} = 0.619
V_{OC} = 13.46

AFTER 1,640,000 LANGLEYS
- SLIGHT CELL/ENCAPSULANT HAZE
- SLIGHT DARKENING OF ENCAPSULANT
 AND METALLIZATION

NORMALIZED DATA

<table>
<thead>
<tr>
<th>ID</th>
<th>CO2</th>
<th>I (FUSE)</th>
<th>V (FUSE)</th>
<th>I_{SC}</th>
<th>V_{OC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>162002</td>
<td>1839.1</td>
<td>13.66</td>
<td>828.5</td>
<td>492.2</td>
<td>5.76</td>
</tr>
</tbody>
</table>
ENGINEERING AND OPERATIONS AREAS

Conclusions

- Field failure modes have been duplicated
- Acceleration factors of 6x to 8x are attainable
- Test method is feasible as a predictive tool for PV lifetime durability assessment

SOLAR SPECTRAL MEASUREMENTS

DSET LABORATORIES, INC.

R. Whitaker

Scanning Spectroradiometer

- Materials Durability
- Energy Availability
- Site Specific Spectral Characteristics
- Efficient Data Acquisition, and Measurement Analysis
- Contract Essentials
ENGINEERING AND OPERATIONS AREAS

Capabilities

- **Solar Spectrum 280 - 2500 nm**

- **Global Normal, Global Fixed, and Direct Normal**
 - **Azimuth:** ± 90°
 - **Elevation:** Horizon to 90°

- **Accuracy**
 - **Intensity:** Better than ± 5%
 - **Wavelength:** Better than ± 1 nm

- **Operation**
 - **Measurement:** 10 minutes
 - **Data Reduction:** 30 minutes
 - **Outdoor/Indoor**
 - **Transportable**
ENGINEERING AND OPERATIONS AREAS

Software

- Read
- Interface to and Control of Instrument Amplifier
- Computational
- Application of Calibration Values to Raw Signal Data
- Formatting/Analysis
- Data Scaling and Detector Data Combination, Band Irradiance Calculation
- Presentation
- Generation of Spectral Plots and Tabular Hardcopy
- Magnetic Storage Archival

Calibration

- Wavelength
 - 5 Lamps 185 - 1050 NM
 - Argon
 - Krypton
 - Neon
 - Xenon
 - Mercury - Argon
 - 3 Filters
 - Didymium - vis/near IR
 - Holmium Oxide - vis/near IR
 - Trichlorobenzene - near IR

- Intensity
 - NBS 1000 Watt Quartz Iodine Lamp
 - Eppley Laboratories (Cal./Trans.)
 - 250 - 2500 NM
 - 214 Discrete Calibrations, 280 - 2500 NM
Solar Spectral Irradiance: New River, Arizona
(July 9, 1979)

Air Mass 1.05

A Global, normal incidence
B Direct beam, 6° fov
C Spectral bandpass
Hemispherical and Direct Spectral UV: New River, Arizona
(July 9, 1979)

(A) GLOBAL, NORMAL INCIDENCE

(B) DIRECT NORMAL (~6° FOV)

Air Mass: 1.05
ENGINEERING AND OPERATIONS AREAS

TOTAL IRRADIANCE
106.9 MW/m²

WAVELENGTH

492
ENG (EERING AND OPERATIONS AREAS

Spectroradiometer Total Spectrum Plot

DSET LABORATORIES, INC.
BOX 1950 BLACK CANYON STAGE
PHOENIX. ARIZONA 85029

DATE 11 IX 1980
MODE GLOBAL
TILT NORMAL
SOLAR TIME 13:54 - 14:04
GEOMETRIC AIR MASS CIRROCUMLUS
SLIT WIDTH 2 MM
SITE NEW RIVER
LATITUDE 30 DEG 50 MIN
LONGITUDE 112 DEG 10 W
ALTITUDE 2031' OF POOR QUALITY

ORIGINAL PAGE IS

ORIGINAL PAGE IS

OF POOR QUALITY

493
ENGINEERING AND OPERATIONS AREAS

Selected Band Energy Analysis

<table>
<thead>
<tr>
<th>DATE</th>
<th>11 IX 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>GLOBAL</td>
</tr>
<tr>
<td>TILT</td>
<td>NORMAL</td>
</tr>
<tr>
<td>SOLAR TIME</td>
<td>13:54 - 14:04</td>
</tr>
<tr>
<td>GEOMETRIC AIR MASS</td>
<td>CIRROCUHULUS</td>
</tr>
<tr>
<td>SLIT WIDTH</td>
<td>.2 MM</td>
</tr>
<tr>
<td>SITE</td>
<td>NEW RIVER</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>33 DEG 50 MIN</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>112 DEG 10' W</td>
</tr>
<tr>
<td>ALTITUDE</td>
<td>2034'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WAVEBAND</th>
<th>14.677</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM TO</td>
<td></td>
</tr>
<tr>
<td>280.000 315.000</td>
<td>126.548</td>
</tr>
<tr>
<td>315.000 330.000</td>
<td>485.761</td>
</tr>
<tr>
<td>330.000 350.000</td>
<td>4191.672</td>
</tr>
<tr>
<td>350.000 400.000</td>
<td>46553.987</td>
</tr>
<tr>
<td>400.000 750.000</td>
<td>55578.973</td>
</tr>
</tbody>
</table>

Near-Term Future Capabilities

- Increased Operational Efficiency
 - Measurement: 5 minutes
 - Data Reduction: 15 minutes

- Improved Accuracy
 - Increased Intensity Resolution, especially in Ultraviolet
 - Increased Band