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Introduction

Under the terms of this contract we proposed to develop two tests of
vestibular functioning in the rat. The first test we developed was the water
maze. In the water maze the rat does not have the normal proprioceptive feed-
back from its 1imbs to help it maintain its orientation, and must rely
primarily on the sensory input from its visual and vestibular systems. By
altering lighting conditions and visual cues we were able to assess vestibular
functioning without visual cues, and determine whether there was visual
compensation for some vestibular dysfunction,

The second test that we proposed to develop to measure vestibular func-
tioning was the rat's behavior on a parallel swing. In this test we attempted
to assess the rat's postural adjustments while swinging on the swing and the
otoliths were being stimulated. We were less successful in developing the
parallel swing as a test of vestibular functioning than we were with the water
maze. The major problem was cur incorrect initial assumptions of what the
rat's probable behavior on the parallel swing would be,

In the report that follows we present the results of the water maze first.
The section on the parallel swing describes the subjects, apparatus and
procedure, the problems that we have encountered with the rat as an experimen-
tal subject, and the results that we have obtained to date.
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General Introduction

In primitive animals the vestibular system evolved to provide information
about body orientation. Then, as higher animal forms evolved and the head
became detached from the bory and was connect:d to it by a neck, the
vestibular system provided information about the orientation of the head.
Informatign about the orientation of the head then resulted from the conver-
gence of sensory information from neck muscles, the visual and proprioceptive
systems with the vestibular system. The neck and vestibular systems appear to
cooperate to provide a stable visual image while equilibrium, or maintenance
of balance appears to be an integration of all thase systems with the motor
system (Howard & Templeton, 1968). Higher organisms use input from all of
these systems to orient themselves in space {Parker, 1980), with most being
able to tolerate the removal of one of these sensory modalities and still
maintain adequate orientation as long as they are not stressed or required to
perform complex tasks (Hawkins & Preston, 1975). The ability to maintain body
orientation with one of these systems absent was seen in the early clinical
studies with streptomycin, an ototoxic antibiotic (Glorig & Fowler, 1947;
Northington, 1950). Patients receiving large dajly doses of streptomycin
initially reported problems of equilibrium and difficulty in focusing their
eyes on objects, with the objects under visual focus appearing to jump. The
problems with equilibrium subsided within a few weeks only to reappear when the
patients were in the dark. The cause of the problem was subsequently identi-
fied as vestibular in origin.

The reasons for not observing these difficulties in the rats and mice,
upon which streptomycin was first tested, is not apparent. Molitor, Graessle,
Kuna, Mushett, and Silber (1946) stated that the only animal that shows the
toxic effect of streptomycin, comparable to the effect seen in man, is the dog.
They specifically excluded the frog, mouse, rat, and guinea pig as being
susceptible to streptomycin. A number of ototoxic drugs have now been identi-
fied and many are routinely administered to research animals on a daily basis.
A behavioral test of vestibular functicning, particularly the otoliths, would
be useful for drug screening, as well as for behavioral evaluations of sensory
integration. Such a test would be useful, particularly for the rat which is a
gide]y used research animal that frequently receives ototoxic drugs on a daily

asis.

The drugs that have been reported to be toxic to the inner ear structures
including the vestibular apparatus include the aminoglycosidic antibiotics and
arsenical compounds. Among those drugs that appear to be more toxic to the
vestibular apparatus than to the cochlea are streptomycin (Duvall & Wersall,
1964), neomycin (Hawkins & Lurie, 1953), vicmycin (Kanda & Igarashi, 1969),
and sodium arsanilate (atoxyl) (Anniko & Wersail, 1977). These drugs appear to
damage mainly the peripheral vestibular end organ, particularly the secretory
epithelium of the crista, macula, and the types I and II sensory hair cells.
Specifically, Lindquist (1973), and Hawkins and Preston (1975) have suggested
that destruction of the marginal secretory cells of the crista and macula,
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that are associated with melanin containing melanocytes, leads to a disruption
of the osmolarity of the system and that leads to a secondary destruction of
types I and II hair cells. Many species, contrary to the report of Molitor
et al. (1946), are reported to be sensitive to these ototoxic drugs besides
man and dog., These species include monkey, cat, guinea pigs, pigeons, and
mice (Hawkins & Preston, 1975; Anniko & Wersall, 1977; Causse, Gendet, &
Vallancian, 1948). Rats are not frequently used in investigations of vestibu-
lar functions and appear to be refractory t¢ the systemic action of strepto-
mycin (Riccio, Igarashi, & Eskin, 1967). The supposed refractoriness of rats
to these drugs may be due to a highly resilient vestibular system, it may be
due to an efficient excretory system that quickly excretes these drugs, or it
may be due to the lack of a sensitive behavioral measure to assess vestibular
dysfunction.

Typical tests to assess vestibular integrity in species other than rats,
include changes in the interaction of the hand and eyes in lateral gaze
shifts (Dichgans, Bizzi, Morasso, & Tagliasco, 1973), loss of post rotational
nystagmus (Jongkes & Hulk, 1950), increase in incidence of ataxia (Hawkins
et al., 1969), loss or delay of righting reflex (Watt, 1976), balance on a
rotating rail (Igarashi, 1968;, spontaneous activity levels during lateral
rotation (Riccio et al., 1967), and morphological examination of the labyrinth
(Anniko & Wersall, 1975). There have been a few reports of swimming being
used to assess vestibular integrity. These include swimming by infant monkeys
following streptomycin intoxication or exposure to manganese deficient diets
(Riolpella & Hubbard, 1979), by toads following labyrinthectomies (Gray &
Lissman, 1947), by rats following unilateral or bilateral labyrinthectomies
(T'ang & Wu, 1936; 1937), by tadpoles following labyrinthectomies and blinding
(Horn & Rayer, 1978), and by mice following streptomycin injections (Causse
et al., 1948). These swimming tests appear to have only determined the
organisms ability to find or remain on the surface of the water without
engaging in other goal directed behavior, Since orientation of the head
results from the integration of sensory input from neck muscles, and proprio-
ceptive, visual and vestibular systems with the motor system, it would appear
that restriction or elimination of sensory input from some of these sensory
systems may offer a behavioral means of evaluating the integration of the
systems involyed i orientation. For this reason, swimwing behavior holds
promise as a sensitive index of the degree of vestibular disruption. With the
rat swimming or floating in the water, the effectiveness of proprioceptive cues
will be reduced and increase the animal's reliance upon vestibular and visual
stimulation for its orientation. Visual and vestibular sensory input can be
altered, vestibular input by administering ototoxic drugs, and visual input by
changing locations of light sources or by eliminating light altogether; it
should then be possible to evaluate the contributions of each of these sensory
systems to the rat's orientation in a swimming task. In addition, small degrees
of vestibular dysfunction that are not normally detected by other swimming
tests may be identified.



The Water Maze Test

Vestibular dysfunction was induced in Long-Evans and Wistar rats--previously
thought to be refractory to the effects of ototoxic drugs--by tubcutaneous or
intratympanic injections of sodium arsanilate (atoxyl). Three measures of
swimming behavior were taken to assess the degree of vestibular dysfunction.
These measures were: escape latencies, errors, and underwater swimming times.
Subcutaneous injections of sodium arsanilate that resylted in no behavioral
impairment of previously trained rats resulted in less efficient learning of
the maze my naive racs. Visual compensation for vestibular impairment was
detected by altering or removing the visual cues the rats used in their
compensation. A strain difference in sensitivity to subcutaneous injectionr
of sodium arsanilate was found between the Wistar and Long-Evans rats with the
Wistar rats much more sensitive.

General Method

Apparatus. The configuration of the water maze used in these experiments
is shown in Figure 1. It was constructed of clear glass with sides 1 m x 60 cm
X .7 cn. The alleys were located at the corners of the maze at a 459 angle to
the side of the maze and were 35 cm long and 12.5 cm wide. Edges were
reinforced with 1.8 cm angle iron that was painted flat black. Heavy black
drapes covered the bottom of the maze and the left side of the starting alley.
I;lumination was provided by a 4 watt light suspended 1 m above the center of
the maze,

1m

12.5¢cm

Figure 1. Configuration of the water maze, The water maze has sides
that are 1 m Tong, 60 cm high, and .7 cm thick. It is made of clear
glass. The arms at the corners of the maze are 35 cm long, 60 cm high,
and .6 cm thick. The width of the arms is 12.5 cm.
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Procedure. All rats were housed individually and maintained with ad 1ib
aci:ess to food and water throughout the experiments. Five daily training
trials were given for seven days for the rats to leari to swim directly from
the starting alley tc¢ the escape ladder, located in the diagonally opposite
alley. The positions of the starting alley and the escape ladder were kept
constant throughout the course of the experiments. Water in the maze was 38 cm
deep and was kept at 130 C to facilitate optimum escape conditions (Pusakulich
& Nielson, 1975), Between trials the rats were placed in a square metal tub
eated with a red heating lamp. Four items were recorded on each trial: the
latencies to swim from the start alley to the escape ladder, total underwater
swimming time, errors when the rat entered an alley other than the one with the
escape ladder, and the approximate path. Percentage of underwater time for
each trial was computed by dividing the amount of time underwater for the trial
by the total amount of time taken to swim the maze in that trial.

Swimming times in seconds were tonverted to log 0’ and errors and
percentage of-time underwater were converted into 1o 10(x + 1) to reduce
correlations between the means and variances.

Experiment I

Subcutaneous injections of sodium arsanilate (atoxyl) have been reported
to be toxic to the vestibular system in species such as guinea pigs (Anniko &
Wersall, 1975; 1976; 1977), however, little research has been attempted utiliz-
ing rats, The purpose of this first experiment was to determine the effects
of subcutaneous injections of sodium arsanilate on the swimming behavior of two
strains of rats, Wistars and Long-Evans.

Method

Subjects. Subjects were six male Long-Evans (Blue-Spruce Farms), and 12
male Wistar (six from Blue-Spruce, six from the Psychology Department colony)
rats that weighed between 330 and 375 grams at the beginning of the experiment.

Procedure. After the seven daily training sessions, performances were
stable,  Six hours prior to the eighth session all rats received their first
40 mg/kg (20 mg/ml, saline vehicle) subcutaneous injection of sodium arsanilate
éPro Gen W, Abbott Lab.). Two additioral injections of sodium arsanilate

40 mg/kg, s.c.) preceded the ninth and tenth sessions after which injections
for the Wistar rats were discontinued because their escape responses were
disrupted, When this occurred, only 2 daily trials were given with a five
minute rest period between trials. The six Long-Evans rats continued to
receive daily injections of sodium arsanilate (40 mg/kg, s.c.) for seven days
until the dose was increased to 60 mg/kg (s.c.) for an additional 10 days,
followed by three days of 80 mg/kg (s.c.). Sodium arsanilate injections were
discontinued but testing in the water maze continued for 36 days for the 12
Wistar rats and 16 days for the six Long-Evans rats.

Results

Two-way analysis of variance with repeated mcasures indicated that ali
three measures: swim times [F{2, 15) = 6.512, p < .01], errors [F(2, 15) =
7.267, p < .G1], and underwater time [F(2, 15} = 6.672, p < .01] were different
for strain of animal. Additionally, effects across days were found for swim
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times [F(39, 520) = 6.82, p < .001}, errors [F(39, 520) = 5.29, p < ,001], and
underwater time [F(39, 526% = 6.83, p < .001]. Sodium arsanilate disrupted
the swimming behavior of both Wistar and Long-Evans rats. However, not only
were the individual daily doses to dysfunction different, but their total
cumulative doses were greatly different (120 mg/kg for the Wistars compared to
1,400 mg/kg for the Long-Evans). In addition, the Lonhg-Evans rats recovered
from or compensated for the dysfunction while the Wistars never did completely
recover, The swim %imes for the two groups are shown in Figure 2.
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Figure 2. The mean log 0 swimming times (sec) in the water maze.

The twelve Wistar (soHd1 circles-Blue Spruce, and solid triangles-
Psychology Department) rats received daily doses of 40 mg/kg of sodium
arsanilate for Days 1-3 and nothing thereafter. The six Long-Evans
(open circles) rats received daily doses of 40 mg/kg sodium arsanilate
for Days 1-10, 60 mg/kg for Days 11-20, 80 mg/kg for Days 21-23, and
nothing thereafter.

Discussion

It seems unlikely that vendor differences can account for the effects
reported here. The Wistars were obtained from two different sources, and one
of those also supplied the Long-Evans rats. Other factors that might explain
the difference can be suggested but the present data do nct allow choices among
them. One possible explanation of the strain difference is that the kidneys do
not excrate the sodium arsanilate well in the Wistar stock, leading to higher
drug Tevels or more longer retention of it. Anniko and Ljunggvist (1977)
demonstrated that sodium arsanilate damages the secretory cells of the renal
tabules. Another possibility may be that the vestibular tissue is more
sensitive to the drug in the Wistars. Or perhaps, the albino Wistar rats are
Tess able to visually compensate for the failing vestibular system, although
this last speculation becomes strained when the abruptness of difficulty in
swimming the maze, manifested by both strains, is considered.



Experiment Il

In order to produce graded vestibular dysfunction and to minimize side
effects produced by large systemic doses of sodium arsanilate, a procedure
similar to the one developed by Riccio et al. (1967) was used. A solution of
sodium arsanilate was injected directly into the middle ear cavity through the
tympanic membrane, In this way, the amount of the ototoxic drug could be
varied to induce immediate graded levels of vestibular dysfunction, and elimi-
nate the side effects of long-term systemic injections.

Method

Subjects. The subjects were 18 male Long-Evans and 12 male Wistar rats,
weighing between 350-400 grams at the onset of the experiment.

Procedures. After the initial seven daily training sessions in the water
maze, the 30 rats were diyided into six groups of five rats, each with three
Long-Evans and two Wistar rats, and anesthetized with sodium pentobarbital
(40 mg/ka, i.p.). The five rats in the control group received an injection of
.14 m1 normal saline into cach middle ear cavity. The experimental rats
received the same volume of injections. The rats that received the 1, 2.5, and
5 mg/kg sodium arsanilate received it in a normal saline vehicle (20 mg/mi),
while those that received 10 or 20 mg/kg sodium arsanilate received it in a
dose utilizing 100 mg/ml concentration of sodium arsanilate in normal saline,
After each injection, the external auditory meatuses were packed with Gelfoam
(Upjohn Co.). After the intratympanic injections, rats were returned to their
home cages to recover from anesthesia. Testing in the water maze began the
following day. Test sessions were reduced to two trials each test day with
15 minutes between trials to minimize fatigue within each session. All rats
were tested on days 1, 2, 6, 9, 13. 16, 25, 35, and 45 following the intra-
tympanic injections.

Results

No strain differences were found. Comparisoh of the performance measures
between the Wistar and Long-Evans rats within each treatment group revealed no
differences in sensitiyity to sodium arsanilate through middle ear injections.

The day following the intratympanic injections, all groups except the
saline group had an increase of swimming times, errors, and percentage of time
underwater. Performance measures are summarized in Figure 3. Swimming times
of all groups except the control, were increased within 24 hours, and all but
the groups receiying the lower doses remained elevated thereafter. A two-way
analysis of variance with repeated measures revealed an effect due to the dose
of drug, F (5, 54) = 101.776, p < .001; to changes across days, F (5, 54) =
6.849, p < .001; and a dose across day interaction, F (40, 432) = 1.59, p < .01,
Simple main effects due to the doses of sodium arsanilate were all reliably
different at the p < .001 level for all nine test days, F (5, 200) = 27,556,
34,503, 30.310, 27.008, 31.513, 31.300, 37.480, 30.036. Similarly reliable
effects were found for both of the other measures, errors, and percentage of
swimming time underwater.
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Figure 3. A comparison of the mean 10910 (x + 1) percentage of time
ungerwater for 30 trained rats over a ~ 4b-day test period following
bilateral intratympanic injections ot sodium arsanilate. Rats
received saline injections (solid triangles), 1 mg/kg (solid squares),
2.5 mg/kg (solid circles), 5 mg/kg (open triangles), 10 mg/kg (open
squares), or 20 mg/kg (open circles).

Graded vestibular dysfunction was induced in rats by varying the dosage
and concentration of sodium arsanilate injected into the middle ear cavity.
Temporary damage or damage that was quickly compensated for, was induced with
1 mg/kg intratympanic injections with recovery in 16 days. More severe damage
and a longer compensatory period was produced by the 2.5 mg/kg dose and
required the longer time of 25 days for recovery. Both 5 and 10 mg/kg
injections produced long-lasting swimning deficits that showed only slight
recovery during the 45-day test period. The greatest and apparently permanent
deficits followed the 20 mg/kg injections. Severe disorientation and an
inability to find and remain on the surface of the water was common in this
group. The 20 mg/kg dose appeared to mimic the effects of bilateral
labyrinthectomies (T'ang & Wu, 1937; Gray & Lissmann, 1947; Igarashi, Watanabe,
& Maxian, 1970) and there was no recovery.

Discussion

The injection of physiological saline into the middle ear in volumes
closely approximating those of the treatment groups, did not affect the escape
behavior of the control group. Hence, it appears that the sodium arsanilate
was responsible for inducing the swimming deficits, probably by inducing
vestibular damage.

An advantage of the intratympanic injection method is that it induces
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vestibular dysfunction with only one injection and at low doses. The fact that
the intratympanic injections produced the same effect at the same dose, regard-
less of strain, strorigly suggests that the strain difference found in the first
experiment was not due to differential sensitiviiy of the vestibular apparatus
of the two strains, Rather, it seems more 1ikely that the strain differences
found in the first experiment result from systemic effects resulting from
differential renal clearance times of sodium arsanilate between the Wistar and
Long~Evans rats, especially since kicney damage has bean reported from
systemically administered sodium arsanilate (Anniko & Ljunggqvist, 1977).

Experiment III

Experience in the water maze may affect the degree to which vestibular
dysfunction is manifested because there may be some visual compensation. This
possibility was investigated,

Method

Subjects and Procedure. Eight male Wistar rats that weighed between 400
and 450 grams were divided into two groups of four. The experimental group
received two subcutaneous injections of sodium arsanilate (40 mg/kg) spaced
24 hours apart. The four rats in the control group received comparable volumes
of normal saline (s.c.) at the sam2 times as the experimental group.

_The day following the second injection, both groups received their first
session in the water maze and testing continued for five consecutive days.
Each rat received five trials each day in the water maze.

Results

The experimental group, treated with sodium arsanilate had increased
swimming times, errors, and percentages of time underwater when compared to the
control group. Repeated measures two-way analyses of variance revealed an
effect due to drug administration for all three measures: swimming times,

F (1, 6) = 22.89, p < .01; errors, F (1, 6) = 101.4, p < .01; and percentage

of time underwater, F (1, 6) = 27,857, p < .0l. Figures 4, 5, and 6 illustrate
the swimming times, errors, and percentage of time underwater, respectively.
Significant changes occurred across days for the swimming times, F (5, 30) =
25,52, p < .01; and errors, F (5, 30) = 22,333, p < .01; but not percentage of
time underwater. Analysis of simple main effects for individual sessions
between groups for swimming times showed that the differences between the
control group and the injection group were found on the first three sessions,

F (1, 30? = 22.613, 38.647, 12.475, p < .01. Errors were also different for the
first three sessions, F (1, 30) = 35,59, 60.692, 21,35, p < .01. The percentage
of time spent underwater were different between the two groups for: session
one, F (1, 30) = 19.761, p < .01; session two, F (1, 30) = 6.279, %.< .05;
session five, F (1, 30) =14.762, p < .01; and session six, F (1, 30) = 9.465,
p < .01,
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Figure 4. A comparison of the mean 10910 (x + 1) errors, during
the first six sessions of trajning in the water maze by four
saline injected (s.c,) Wistar rats (open circles), and four Wistar
rats (solid circles) pretreated with two injections of sodium
arsanilate (40 mg/kg; s.c.).
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Figure 5. A comparison of mean 10910 swim times (sec) during
the first six sessions of training ~ in the water maze by

four saline injected (s.c.) Wistar rats (open circles), and
four Wistar rats (solid circles) pretreated with two injections
of sodium arsanilate (40 mg/kg, s.c.).
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Figure 6, A comparison of the mean 10910 (x + 1) percentage of time
spent underwater, during the first six “~sessions of training in the
water maze by four saline injected (s.c.) Wistar rats (open circles),
and four Wistar rats (solid circles) pretreated with two injections
of sodium arsanilate (40 mg/kg; s.c.).

Discussion

While we cannot rule out the possibility that these results reflect a
generalized illness produced by the sodium arsanilate, there was no evidence
that the rats were distressed. There were no drops in body weight to suggest
that ferod had not been eaten. Furthermore, after 4 days, the latencies of the
two groups were not different, what was different was the swimming styles of
the two groups, Throughout all six sessions the experimental rats continued to
swim parts of the maze submerged, perhaps reflectiny a difference in how the
two groups learned to escape from the water., Finally, the rats in the first
experiment that also received two subcutaneous injections of 40 mg/kg sodium
arsanilate did not have slower swimming latencies until after the third
injections., For these reasons then, no disruption of eating, no changes in
swimming latencies in experienced swimmers, and different swimming style with
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more underwater swimming, we bejieve these results reflect swimming experience
and vestibular functioning rather than a generalized illness,

Experiment IV

Clinical studies (Glorig & Fowler, 1947; Fregly & Graybiel, 1970) have
demonstrated that persons with bilateral vestibular dysfunction are normally
able to maintain their equilibrium as long as their vision is not occluded.
However, once visual cues are removed, they typically are unable to maintain
their balance. This was originally demonstrated with persons receiving
streptomycin treatments (Glorig & Fowler, 1947; Northington, 1950) for
tuberculosis. Hawkins and Preston (1975) indicated that compensation was
achieved through increased reliance upon visual and proprioceptive cues, and
that walking in the dark presented special difficulties even after other
equilibrium problems had subsided.

Experiment II indicated that rats with smaller doses uf scdium arsanilate
(1 mg/kg and 2.5 mg/kg) recover swimming efficiency. This may indicate either
a recovery of vestibular function or visual compensation for any vestibular
impairment that remained. If visual compensation occurred, it would be likely
that the rats would come to show a greater reliance upon visual cues to help
maintain a dynamic equilibrium in the water. In this experiment we investigated
the effects of visual stimuli by introducing visual cues that were incongruous
with the cues the rats had previously encountered in the maze or by eliminating
visual cues by having the rats swim in the dark.

Method

Subjects. Eight rats, five Long-Evans, and three Wistar, from Experiment I1I
that had reguined their water maze performance following injections of sodium
arsanilate served as experimental subjects. Ejght additional rats, five
Long-Evans, and three Wistar, served as controls.

Apparatus. The water maze was again utilized in the same physical
conformation as in the previous experiments. Light conditions were varied by
placing the four-watt partially shieldzd 1ight at two positions other than
directly overhead. The 1ight was placed one meter below the bottom of the maze
with the black drapes over the top of the maze and the right side of the start
alley, or the Tight was placed one meter from the center of a side of the maze
adjacent to the start alley, and the top and right side of the start alley were
draped. The rats were also tested under dim red illumination.

Procedures, The experimertal group was selected from among those rats used
in Experiment 11 that had recovered swimming performance. The criteria for
selection were: (a) no errors made in the last three sessions; (b) no underwater
swimming occurred in the three previous sessions; and (c) each rat had an
average swimming time of less than 10 seconds for the three previous sessions.
Five rats from the 1 mg/kg group and three rats from the 2.5 mg/kg group were
selected for this study.

A control group composed of the same ratio of Wistar to Long-Evans rats
were selected and received the same number of total trials in the water maze.
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, A11 rats were then tested under three conditions of altered lighting:

(a) total darkness; (b) 1ight source from beneith the maze; and {(c) light
source from the side of the maze. Order of presentation of the three condi-
tions was randomized, Rats received two trials in each condition and only one
Tighting condition per day with the other two conditions being presented on
successive days.

Results

The alterations of lighting affected the "recovered" rats more than the
controls. The mean swimming times, errors, and percentage of time underwater
are presented in Table 1 (below),

Repeated measures two-way analyses of variance indicated that the two
groups differed in their swimming times, F (1, 30) = 19.909, p < .01; errors,
F (1, 30) = 13.182, p < .01; and percentage of underwater time, F (1, 30) =
6.665, p < .01. Analysis of simple main effects indicated that the experi-
mental group differed from the contrcl group in the swimming times for the
bottom illumination, F (1, 120) = 12,235, p < .01; and the dark condition,

F (1, 120) = 24.837, p < .01. Simple main effects for errors between the two
groups 1in the four conditions indicated differences for bottom 1lighting,

F (1, 120) = 10.194, p < .01, and for the dark, F (1, 120) = 16.373, p < .01.
A1 three variations of lighting showed effects for percentage of time
underwater: side, F (1, 120; = 8,517, p < .01; bottom, F (1, 120) = 6.150,

% < .05; and dark, F (1, 120) = 7.54, p < .01. There were no significant
ifferences between the experimental and control groups in the initial over-
heag illumination condition, due to the selection factors for inclusion in the

stuay.

Discussion

Vestibular dysfunction can be visually compensated for and is not observed
except under altered lighting conditions. It appears that the rats that had
apparently recovered vestibular functions had visually compensated for the
sodium arsanilate inducer vestibular dysfunction. When visual cues were altered
or absent, the swimming of the maze became erratic compared to normal animals
exposed to the same conditions and to their own swimming performance before
lighting conditions were altered. This readily corresponds to observations on
human beings, with marginal vestibular dysfunction, who have difficulty in
maintaining adequate orientation in the dark (Glorig & Fowler, 1947; Brown &
Hinshaw, 1949),

The most sensitive measurement of vestibular dysfunction appears to be the
percentage of time spent underwater in that the control and experimental grouns
differed between all three lighting conditions. Both dark and bottom lighting
conditions appear to be sensitive indexsc of marginal vestibular dysfunction
because they reliably differentiated the swimming behavior of the two groups on
all three measures: swim times, errors, and percentage of underwater time.
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General Discussion

Results from all four experiments confirm that sodium arsanilate (atoxyl)
is o§otoxic to rats, as it is to guinea pigs (Anniko & Wersall, 1975; 1976;
1977).

The underlying assumption of these experiments is that the sodium
arsanilate injections are inducing vestibular damage even though we have not
attempted to identify that damage by histological means. This assumption is
supported by the work of Riccio et al. (1976? who produced histologically
identified damage by intratympanic injections of streptomycin, and Anniko and
Wersall (19756) who produced histologically identified damage by subcutaneous
injections of sodium arsanilate. Furthermore, the contention that these
behavioral deficits are due to vestibular dysfunction is supported by the fact
that saline-injected rats do not show these deficits--either by subcutaneous
or intratympanic injections.

Escape from the water maze was found to be a sensitive jndex of vestibular
functioning. It was especially sensitive when vestibular damage was produced
before the animal learned to escape from the water maze. The rats in
Experiment III were impaired in acquiring the escape response by a dose of
sodium arsanilate that had produced no discernable vestibular dysfunction in
rats in Experiment I that had received two injections after learning the
escape response. Furthenmore, the rats that received two 40 mg/kg doses of
sodium arsanilate before acquiring the escape response differed qualitatively
from rats without any dysfunction in that they swam more of the maze submerged.
For these reasons, testing for vestibular dysfunctien before swimming
experience would appear to be a sensitive measure of vestibular dysfunction,
with the most sensitive index being the percentage of time spent underwater.
Normal animals seldom swam under the surface of the water while rats that had
marginal dysfunction had significant periods of underwater swimming throughout
most of the sessions.

Altered lighting also was a sensitive test of vestibular dysfunction, with
the best being 1ight coming from the bottom of the maze or by having the rats
swim in dim red light. It appears that rats increase their reliance on visual
cues following damage to the vestibular system and by removing or giving
contradictory visual cues, it was possible to reveal vestibular deficits that
were previously concealed.

An unexpected finding was that sodium arsanilate has a differential effect
upon two different strains of rats. Lindquist {1973) and Hawkins and Preston
(1975) speculated that the effects of streptomycin and other ototoxic drugs
were to destroy the dark secretory cells of the vestibular epithelium and that
this destruction leads to a disruption of the microhomeostasis of the fluids
in the inner ear and to a secondary destruction of the type I and II hair cells.
Lindquist (1973) proposed that albino animals, which Tack melanin in their
inner ear structurs (Wolff, 1931), would be more resistant to the action of
these ototoxic agents than pigmented animals. However, in Experiment I, just
the opposite effect was found. The pigmented animals (Long-Evans rats) were
much more resistant to the action of sodium arsanilate than albino animals
(Wistar rats). The reasons for this are not clear. The lack of strain
differences following intratympanic injections suggests that the differences are
not due to differences in the vestibular sensitivities.
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The Parallel Swing

Method

Subjects. The subjects were approximately 50 male Wistar rats ranging in
age from to 160 days, and weighing between 220 and 450 grams.

Apparatus. The apparatus was a parallel swing, shown in Figure 7. The
rats were trained to stand on the four round pedestals, 2.54 cm in diameter,
that were each mounted on the plunger of a 10 cc B-D Yale glass syringe. The
top of the plungers were coated with plastic and the surfaces roughened so
they were not slick. T.e center to center distance of the pedestals is 10 cm
front to back and 6.3 cin laterally. The syringes themselves were filled with
brake fluid and connect:d to a Micro Switch PK 8761 4 pressure transducers
whose outputs were fed Into an IMSAI microprocessor for analysis. The lines
from which the swing was suspended were separated by 33 cm front to back and
17.8 laterally when hooked onto the swing. The lines were hooked into the
ceiling with the same separations. The distance from the ceiling to the four
pedestals upon which the rats stood was 2.13 m and the distance from the top
of the pedestals to the bottom of the platform from which the pedestals were
suspended was 15 cm, The swing itself was suspended 15 cm above a water trough
(not shown) filled with ice water 15 cm deep into which the animals fell if
they fell off the pedestals.

Figure 7. A drawing of the parallel swing.

......
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Procedures, The rats were individually taken from their home cages and
placed on the four pedestals of the parallel swing. They were initially held
on the pedestals until they remained calm for a few seconds at which time they
were removed, When they had been piaced on the pedestal several times and had
remained calm for a few seconds, the experimenter would then release the
animal from his grasp. Within a few seconds the animal would usually begin to
look around, rear on its hind legs, etc. and usually fall intn the water
trough. The animal was quickly removed from the water trough, dried, and
placed under a heat lamp for a few minutes to warm. An animal was allowed a
maximum of three falls per day into the water trough before it was dried,
warmed, and returned to its home cage. After a fall into the water trough
the entire process of holding the animal on the pedestal until it was calm and
then releasing it was repeated. Within a few days, the rats would remain
calm on the platform and avoid falling. When this was achieved, the $wing was
pulled back a few inches and released. The distance the swing was pulled back
was gradually increased to one meter. Once an animal could remain on the
swing while it was swinging, it was given a series of three standardized swings
per day. A standardized swing was one in which the swing was pulled back one
meter, released, and the rat remained on the cwing for four consecutive, non-
stop swinging cycles. When an animal could reliably do this formal data
collection sessions were started and postural adjustments were recorded via
the pressure transducers. A data session consisted of three swinging trials
per day with each trial consisting of four consecutive non-stop swinging cycles.
The rat was taken from its home cage and placed on the swing, the swing was
pulled back one meter and released. At the time of release a switch was
tripped by the experimenter and the changes in pressure from the pressure
transducers were recorded for the four cycler. The swing was then stopped by
the experimenter, the rat removed and placed in a holding cage for five minutes
before another swinging trial was given. After three swinging trials were
given that day, the animal was returned to its home cage.

When stable performaices on the swing were recorded, the rats were
anesthetized with 40 mg/kg sodium pentobarbital and were given bilateral
intratympanic injections of sodijum arsanilate of 2.5 mg/kg. Larger doses of
sodium arsanilate were not given. Twenty-four hours later the rats were
retumed to the swing and their performance recorded. Whun changes in
performances were detected, the rats were tested on the swing on successiye
days until its performance had returned to normal or it was apparent that the
performance would not return to normal.

Results

The first finding was that rats do not distribute their body weight on all
four legs while on the parallel swing. The well trained rat rides the swing
with virtually all of its weight on its back legs. The amount of weight any
individual rat places on its front legs varied from trial to trial, swing to
swing, within swinging cycles and leg to leg. We could not find a pattern of
changes of weight distribution a rat placed on its front legs while swinging.

In most cases the rat kept its forelegs in contact with the front pedestals,

but the amount of weight on them was not consistently related to any single
variable we could identify. Consequently, we discarded foreleg weight shifts as
a variable that could be reliably measured.
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The second finding was that the pattern of weight distribution on the
hind legs was approximately the same., Consequently, we recorded weight shifts
from only the right hind leg, The shifts in we1ght distribution are i1lus-
trated in Figure 8 for rat 10. The bottom Vine of Figure 8 labeled "B" shows
the change in pressure recorded from the pressure transducer of the swing with
a one kg dead weight strapped to the transducer. The F and B represent the
tops of the swing arc. The F is the top of the arc of the swing when it is
moving forward with the rat on it, and the B is the top of the swing arc with
the rat swinging backward. The maximum pressure is recorded at the bottom of
the swing arc and the minimum pressures are recorded at the top of the swing
arc. The top lines labeled "A" show the changes in pressure recorded from the
right hind leg of the rat. The three tracings are from the three trials of a

single day.
/\A/
Figure 8. The changes in pressure recorded from the rat's right
hind Teg while swinging (lines A). Line B is the changes in

pressure recorded from a one kilogram dead weight. Increases in
pressure are up, decreases are down.

When the rat is swinging forward the weight it places on its hind legs acts like
a dead weight. At the top of the forward swing arc, when the rat begins to
swing backwards, it shifts its weight to its hind legs throughout the backward
swing, shifting its weight slightly at the top of the backward swing arc and
then sets down on its hind legs as it stops at the ton of the backswing arc and
then remains passively on the swing as it begins its swing forward.

Line A of Figure 9 shows the changes in pressure exerted by the right hind
leg of rat 10 twenty-four hours after bilateral intratympanic injections of
sodium arsanilate (2.5 mg/kg). Line B of this figure is the pressure exerted
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by a dead weight of one kilogram. This figure illustrates the major finding
from the parajlel swing., Following bilateral intratympanic injections of
2.5 mg/kg of sodium arsanilate the rats' performance on the parallel swing
resembled the pressure changes recorded from a dead weight more than their
pre-injection pattern.

Figure 9. Increases in pressure recorded 24 hours after bilateral
intratympanic injections of 2.5 mg/kg sodium arsanilate (1line A).
Line B is the changes in pressure recorded from a one kilogram dead
weight. Increases in pressure are up, decreases are down.

There were behavioral changes following the bilateral intratympanic
injections of sodium arsanilate that were readily apparant in the rats that
tested on the parallel swing that were not in rats tested in the water maze.
When these rats were picked up in their home cages to be weighed, they
appeared to be normal and acted as normal as did the rats tested in the water
maze. However, when we attempted to place these rats on the parallel swing
they would struggle vigorously, and resist all efforts to do so. They were not
mears and did not try to bite, but they were clearly distressed. When the
experimenter covered their eyes they immadiately calmed down, and would then
allow their feet to be placed on the pedestals of Lie swing. Once in place on
the swing, the animals looked straight ahead and remained nearly motionless on
the swing. It was our impression that before the injections of sodium
arsanilate the animals merely rested their feet on the roughened plastic cap of
the pedestal. After the injections, it was our imprassion that the rats were
trying to grip the pedestal and "hang onto it" rather than simply stand on it.
Nevertheless, to successfully place these animals on the parallel swing their
eyes had to be covered before they would calm down and allow themselves to be
placed on the swing.

The pre-injection behavior on the parallel swing returned for 70% of the
rats. The behavior during recovery was first preceded by a reduction in

AR TR 8 T
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struggling when being placed on the swing, then an elimination of the necessity
to cover their eyes to place them on the swing. Usually the struggling was
gone 48 hours after the intratympanic injections and the necessity to cover
their eyes had disappeared by the third trial of the second post-injection day.
As the rats progressed through the recovery sequence of reduced struggling

and reduced need to cover their eyes, they also changed their pattern on the
swing from that of being a "dead weight" to a pattern that was essentially
normal and 1ike that shown in Figure 8 for rat #10.

Discussion

There are three basic findings from the parallel swing. The first of these
was that the rats did not systematically place weight on their forelegs.
Consequently, no reliable recordings could be obtained from them. A second
finding was that weight distribution on the hind legs could be recorded and
followed as measures of postural adjustment while the rat was swinging on the
parallel swing. A third finding was that the rats' performance on the parallel
swing, following bilateral intratympanic injections of sodium arsanilate,
resembled that of a "dead" weight 24 hours after the injection. In 70% of the
rats, the performance of the swing had returned to the preinjection pattern by
the third trial of the second post-injection day.

When this proposal was made, we had anticipated that a rat would distribute
its weight on all four legs while it was swinging on the parallel swing. That
it would shift its weight ontn its forelegs when it was swinging forward and
onto its backlegs as it swung backwards. In fact, that rat only shifted its
weight as it was swinging backwards. In retrospect, the rat's failure to
regularly place any weight on its forelegs while on the parallel swing might
have been anticipated. When a rat walks alongside a wall and encounters a
corner, it changes direction by rearing on its hind legs, rotating its upper
body to face in the direction it is turning, then places its forepaws on the
walking surface and proceeds to walk in that direction. The rat changes
direction not by crossing its forepaws as it walks but by rearing on its hind
legs and rotating its body. The rat's fighting posture also suggests that
rats prepare for quick changes in direction of movement by rearing on their
hind legs. Fighting rats face one another sitting on their hind legs. Similarly,
on the parallel swing, where the rat is changing direction of movement fre-
quently, its body weight is shifted to its hindlegs with only one or the other
of its forepaws touching a pedestal.

The finding that rats resembled a "dead weight" 24 hours after the
bilateral intratympanic injections of sodium arsanilate is difficult to inter-
pret. One interpretation would be that the intratympanic injections induced
transient vestibulay dysfunction that interfered with the rat's ability to make
postural adjustments. Hence, performance on the paralle! swing provides a
measure of vestibular functioning. A second explanation js that the rats feel
that something is "wrong" when they are being placed on the swing, and once on
the swing they freeze, as they might in an open field test of emotionality., If
this is the case, the rat's freezing behavior could have its performance
resemble that of a "dead weight" and we could be measuring the rat's emotional
response rather than vestibular dysfunctioning. We have no way at the present
time of separating these two interpretations, or any others. Despite this, and
because of the rapid recovery, we believe that we are measuring some aspects of
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the rat's integration of proprioception and vestibular senses.

This inference is based upon the comparisons that can be made from both
the water maze and the parallel swing., The water maze task is one in which the
rat relies heavily upon the vestibilar anhd visuai systems, and one for which
there 1s visual compensation for vestibular dysfunction. The visual compensa-
tion develops slowly, requiring 16 days following bilateral intratympanic
injections of 1 mg/kg sodium arsanilate, 45 days for partial recovery following
injections of 2.5 mg/kg. On the other hand, the visual system does not appear
to be significantly involved in performance on the parallel swing. The rats
were distressed on the first day, but by covering their eyes, we were able to
place them on the swing, and they were able to remain on it., At the end of the
second post-injection day covering their eyes was not necessary, and their
performance on the swing had recovered. We do not believe emotional responses
would have disappeared this quickly. Furthermore, we believe that the rapid
loss of the necessity to cover the eyes suggests that the ability to perform
on the parallel swing is not as heavily dependent on visual-vestibular inter-
actions as the water maze. Rather, performance on the parallel swing is more
d2pendent upon the interaction of the proprioceptive and vestibulapr systems
and this interaction 1is more resistant to mild vestibular dysfunction than
visual vestibular interactions. The visual-vestibular intaractions, as
measured in the water maze, appear to be more sensitive to vestibular dys-
function than the proprioceptive-vestibular interactions measured on the
paraliel swing. Intratympanic injections of 2.5 mg/kg sodium arsanilate dis-
rupted water maze performance more, and for a longer period of time than it
did performance on the paraliel swing.
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