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SUMMARY 

TWO-BOUNDARY GRID GENERATION FOR THE SOLUTION OF THE 
THREE-DIMENSIONAL COMPRESSIBLE 

NAVIER-STOKES EQUATIONS 

Robert Edward Smith 

xv 

A grid generation technique called the IItwo-boundary technique ll is 

developed and applied for the solution of the three-dimensional com­

pressible Navier-Stokes equations describing laminar flow. The Navier­

Stokes equations are presented relative to a xyz cartesian coordinate 

system and are transformed to a ;ns computational coordinate system. 

The grid generation technique provides the Jacobian matrix describing 

the transformation. 

The "two-boundary technique" is based on algebraically defining 

two distinct boundaries of a flow domain and joining these boundaries 

with a IIconnecting function" which is proposed to be linear or cubic 

polynomials. The algebraic boundary representation can be analytical 

functions or numerical interpolation functions. Control of the distri­

bution of the grid in the physical domain is achieved by embedding "con­

trol functions" which redistribute the uniform grid of the computational 

domain and concentrate or disperse the grid in the physical domain. The 

computer program to solve the Navier-Stokes equations is based on a 



MacCormack time-split technique and is specifically designed for the 

vector architecture and virtual memory of the CYBER 203 computer. The 

program "Navier-Stokes solver" is written in the SL/l language which 

allows 32-bit word arithmetic operations and storage. The program can 

run with 5 x 104 grid points using only primary memory, and the compu­

tational speed is 4 x 10-5 seconds per grid point per time step. 

Using the "two-boundary technique," grids are developed for two 

distinctly different flow field problems, and compressible supersonic 

laminar flow solutions are obtained using the Navier-Stokes solver. 

Grids and solutions are obtained for a family of three-dimensional 

corners at Hach number 3.64 and Reynolds numbers 2.92 x 105/m and 

3.9 x 106/m. Also, grids are derived for spike-nosed bodies, and solu­

tions are obtained at Mach number 3 and Reynolds number 7.87 x 106/m. 

Coupled with the Navier-Stokes solver, the "two-boundary technique" 

is demonstrated to be viable for grid generation associated with com­

puting supersonic laminar flow. The technique is easy to apply and is 

applicable to a wide class of geometries. The "two-boundary technique" 

can serve as the foundation for generating grids with highly complex 

boundaries and yield grid pOint distributions that can capture rapidly 

changing variables in a flow field. 

xv; 
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1. INTRODUCTION 

In recent years, the availability of large scale scientific com-

puter systems has resulted in rapid progress in the field of Computa­

tional Fluid Dynamics. There is now the capability to calculate many 

complex unsteady two-dimensional and steady three-dimensional flows. 

MacCormack and Lomax [1]* summarize the "state of the art" for the 

computation of compressible viscous fluid flow. For a heat conducting 

compressible fluid acting near body surfaces with large separation 

regions or inviscid-viscid interactions, the numerical solution of the 

Navier-Stokes equations is the preferred approach [1]. An emerging 

problem, however, i~ the generation of grid systems on which solutions 

can be obtained when there are complex boundary geometries. This prob­

lem is compounded in three dimensions. This study addresses the solu­

tion of the three-dimensional compressible Navier-Stokes equations, 

the generation of grids, and the solution algorithm-computer relation­

ship. The emphasis is placed on grid generation. 

An algebraic grid generation technique applicable to the Navier­

Stokes equations is developed, and a three-dimensional Navier-Stokes 

solver (compressible laminar flow) based on a proven numerical tech­

nique (MacCormack time-split algorithm [1-4]) is developed for the CDC 

CYBER 203 vector computer [5]. Also, flow visualization techniques have 

been developed in conjunction with this research but will not be dis­

cussed in detail. In order to evaluate the overall system for computing 

viscous compressible flow, and in particular the grid generation 
*The numbers in brackets indicate references. 



technique, grids are determined for a family of three-dimensional 

corners and two spi ke-nosed bodi es .. 

2 

The gri d generation technique is called the "two-boundary tech­

nique." It is applicable in two and three dimensions and is a method­

ology for direct computation of the physical grid as a function of a 

uniform rectangular computational grid. The Jacobian matrix of the 

transformation can be obtained by direct analytic differentiation. This 

is in contrast to the indirect approach where an elliptic partial dif­

ferential equation system is solved for the coordinates of the physical 

grid relative to the computational grid, and in which the Jacobian 

matrix must be obtained by numerical differentiation. The indirect 

approach is popularly known as the ITH4method" [1,6-10]. In the 

"two-boundary technique, II two separate non-intersecting boundaries are 

defined by means of algebraic functions or numerical interpolation 

functions. These functions have as independent variables, coordinates 

which are normalized to unity. Another function with an independent 

variable defined on the unit interval connects the boundaries. 

The "two-boundary technique" is based upon concepts found in the 

theory of surface definition [11,12]. Gordon and Hall [13] postulate 

the essentials of the technique and emphasize finite element grids. 

Also, Eiseman [14-16] uses a form of the technique in generating grids 

for multiconnected two-dimensional domains. In this investigation the 

"two-boundary technique" is developed and is analyzed for finite differ­

ence solutions for fluid flow applications. Low order polynomials 

(linear and cubic) are used for connecting functions. For the cubic 
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connecting function, orthogonality can be enforced at the boundaries 

through knowledge of the normal derivatives there. Control of the grid 

(grid spacing in the physical domain) is achieved by the superposition 

onto the independent variables algebraic or transcendental functions 

with desirable characteristics. Splines under tension [17-19J are pro­

posed for approximate boundary defi nition. The II two-boundary techni que" 

is used to algebraically generate grids for a family of three-dimensional 

corners and to generate a combined algebraic-numeric grid for spike­

nosed bodies. The derivatives composing the Jacobian matrix for the 

three-dimensional corners and spike-nosed bodies are presented for 

obtaining numerical solutions of the Navier Stokes equations. 

The CDC CYBER 203 is a large scale computer with vector processing 

architecture and virtual memory. Generally efficiency using a vector 

computer increases with increasing vector length, however, considerable 

attention must be given to the algorithm-machine architecture relation 

and balancing the vector length with practical limits of primary memory. 

A MacCormack time-split solution algorithm is programmed for the 

CYBER 203 computer and is called the "Navier-Stokes solver." The 

MacCormack technique is used because of its robustness and adaptability 

to vector processing. Another primary consideration when developing a 

"Navier-Stokes solver" on a large complex computer is the capability to 

solve a wide class of problems with a minimum of programming changes. 

This has been accomplished by programming the complete transformed 

equations of motion and storing all nine elements of the Jacobian 

matrix of the transformation at each grid point (transformation data). 
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Supplying the transformation data from a grid generation technique and 

programming the boundary conditions "for a given problem (separate sub­

routine) allows the program be applied to virtually any laminar fluid 

flow problem. Since the split MacCormack technique is used, two­

dimensional solutions can be obtained without unnecessary computations. 

The operator for the third dimension is bypassed. A final important 

point relative to the Navier-Stokes solver is that the MacCormack tech­

nique is written in the SL/l language [20J and uses the 32-bit arithmetic 

option of the CYBER 203. By using 32-bit words, twice the in-core stor­

age is available and approximately twice the computational speed is 

achieved compared to the use of normal 64-bit words. There are approxi­

mately two million words of primary memory and the computational speed 

is 4 x 10-5 seconds per grid point per time step for the 32-bit word 

length. For the explicit technique, no significant degeneration in 

accuracy is observed using the smaller word size. The Navier-Stokes 

solver is independent of the grid generation technique, and the trans­

formation data from any technique can be used by the code. 

Using the IItwo-boundary technique ll grids are developed for two 

distinctly different flow field problems, and compressible supersonic 

laminar flow solutions are obtained using the computer program based on 

the MacCormack technique. A set of algebraic grid generation equations 

are developed using the IItwo-boundary technique ll for a family of three­

dimensional corners consisting of wedge-cylinder, plate-cylinder, 

approximate wedge-plate, and approximate rectangular corners. It is 

also shown that exact grids for planar intersecting corners can be 
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derived with the "two-boundary technique." Corner flow solutions are 

obtained on a 20 x 36 x 36 grid and a 12 x 64 x 64 grid. The solutions 

obtained on the 12 x 64 x 64 grid are compared with physical experiments 

and other numerical experiments. The Mach number used is 3.64 and the 

Reynolds number is 2.92 x 105/m and 3.9 x 106/m. 

Also, algebraic grids are derived using the "two-boundary technique" 

for spike-nosed bodies. In particular, grids for a one-half inch spike­

nosed body and a one and one-half inch spike-nosed body are obtained. 

Supersonic flow solutions at Mach number 3 and Reynolds number 

7.87 x 106/m are obtained about these configurations. Unlike the flows 

about the three-dimensional corners, the flow about the spike-nosed 

bodies is unsteady. The amplitude of the oscillations about the one-half 

inch nose body is quite small, however, the one and one-half inch spike­

nosed body flow field oscillates with a large amplitude. The high 

amplitude solutions are compared with physical experiments. The flow 

fields are two-dimensional axisymmetric, but are solved with a three­

dimensional Navier-Stokes solver resulting in considerable savings of 

development time for a specialized axisymmetric code. 

For flow visualization. a relatively novel approach has been 

developed where a color spectrum is used to display a scalar variable 

such as density, Mach number, etc •• on a two-dimensional slice of a flow 

field. Sequences of pictures can show the history of a developing flow 

or a scan of the flow field in a three-dimensional domain. The Diccomed 

Digital Display/Film Writer system which is normally used for environ­

mental image processing is used for the flow visualization. 
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In summary, the main objectives of this study are the development 

of an algebraic grid generation procedure, the development of software 

to solve the compressible three-dimensional Navier-Stokes equations on 

a vector computer using the results of the grid generation technique, 

and the application of the grid generation technique and software to 

solve specific supersonic flow problems. The organization is as 

follows. In Chapter 2 the three dimensional compressible Navier-Stokes 

equations are presented relative to a Cartesian coordinate system and 

are transformed to a uniform grid computational coordinate system. 

This introduces the information that must be determined by the grid 

generation technique. The "two-boundary technique" is developed and 

applied to generate grids and Jacobian derivatives for a family of 

three-dimensional corners, spike-nosed bodies, and an airfoil configura­

tion. In Chapter 3, the MacCormack technique is presented, and its 

compatibility with the CYBER 203 is described. In Chapter 4, supersonic 

flow solutions about three-dimensional corners and spike-nosed bodies 

obtai ned with the "two-boundary technique" and Navi er-Stokes solver 

are described. 

2. ANALYSIS 

This chapter develops the equations of motion and the "two­

boundary technique" for grid generation. Grids and boundary conditions 

are developed for a family of three-dimensional corners and for spike­

nosed bodies. Also, grids are developed for airfoil boundaries using 

splines under tension. 
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2.1 Navier-Stokes Equations of Motion 

The governing equations which describe the motion of a viscous 

compressible heat conducting fluid are the continuity equation, momen­

tum equations, and energy equation. These'equations are derived from 

the concept of continuum mechanics. The continuum concept and deriva­

tion of the Navier-Stokes equations of motion are found in several 

references, of which Schlichting [21] is the most notable. 

Expressed in symboic form the Navier-Stokes equations of motion 

are: 

Continuity: .£Q. + 'V at 
. (pUJ = 0, (2.1a) 

Momentum: a(pu) + 'V • (puu 
at - T) = 0, (2.1b) 

Energy: a(pe) + 'V • (peu + q - U • T) 0. (2.1c) at = 

The stress tensor, dissipation function, and heat conduction for a 

rectangular cartesian coordinate system are: 

TXX Txy TXZ 

T = Txy Tyy Tyz - stress tensor 

TXZ Tyz TZZ 

where 

T = _p + 21I~ + (.' 2) (au + av + aw) 
xx ax liB - Jll ax ay dZ' 

.. " ~ 



and 

T = _p + 211 aV + (llQ _ Jll2 ) (E.!! + av + aWl 
yy ay I-' ax ay az 

_ (au + av) 
T xy - II ay ax' 

_ (aw + au) 
TXZ - II ax az' 

_ (av + aWl 
Tyz - II az ay' 

<P = X 

U . T = <P = y 

<P = Z 

-aT q = -K-x ax 

. -aT q = q = -K-y ay 

-aT q= -K-z az 

UTxx + VTxy + WTXZ 

UT + VT + WT xy yy yz - dissipation 

UTXZ + VTyz + WTZZ 

- Heat flux vector, 

8 

function, 
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The viscosity coefficient ~ is a function of temperature and is 

adequately approximated by Sutherland's semiempirical equation: 

with 

The bulk viscosity coefficient ~S is set equal to zero. This is 

a reasonable assumption for a monatomic gas where the molecules has no 

internal degree of freedom. For a polyatomic gas the bulk viscosity is 

not always zero and can be the same order of magnitude as the molecular 

viscosity in sound propagation and shock structure. A detailed discus­

sion of bulk viscosity is given by Vincenti and Kruger [22]. 

At this point there are five coupled partial differential equations 

and one algebraic equation with eight .unknowns: p, u, v, w, P, e, 

T, and ~. In order to have a complete system, there must be two addi­

tional equations relating the unknowns. The equation of state is 

P = P (p,T), 

and for a perfect gas P = pRT and e = CVT where Cv is the specific 

heat at constant volumn, and R is the gas constant. For compatible 

boundary conditions this system of equations is solvable. 
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2.2 Transformed Equations of Motion 

The equations of motion in Section 2.1 are expressed in terms of a 

Cartesian coordinate system. If an object is defined in this coordinate 

system and a flow is to take place about the object, it is desirable to 

perform the computation in a coordinate system which conforms to the 

boundaries of the object. There are two primary reasons for wanting the 

coordinate system to be boundary-fitted. Boundary-fitted coordinates 

afford the ability to apply boundary conditions exactly avoiding inter­

polation error, and they minimize the logic that is necessary to apply 

boundary conditions. The penalty for these advantages is added com­

plexity of the equations of motion. Another consideration is that when 

the domain of the flow field is discretized, it is desirable to have 

grid points concentrated in certain regions where high rates of change 

are likely to occur. For instance, in the boundary layer region more 

grid points are necessary to resolve the rapid change in the state 

variables. If the cartesian coordinate system where the object is 

defined is called the physical domain, the coordinate system relative 

to the boundaries of the object is called the computational domain. The 

relationship between the physical domain and the computational domain is 

a unique single-valued transformation with continuous derivatives such 

that if the coordinates in the computational domain are ~, n, ~: 

then 

~ = ~(x,y,z), n = n(x,y,z), and ~ = ~(x,y,z). 
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Conversely, 

where x, y, and z are coordinates in the physical domain. Since 

the equations of motion in terms of the Cartesian coordinate system of 

the physical domain are advantageously solved in terms of the coordinate 

system of the computational domain, the equations must be transformed. 

This is accomplished by expressing the derivatives of the state variables 

with respect to the xyz components of the physical domain in terms of 

the ~ns components of the computational domain as follows: 

au 
ax 

av 
ax 

aw 
ax 

au 
ay 

av 
ay 

av 
az 

aw 
az 

= 

au 
a~ 

av 
~ 

au 
an 

av 
an 

aw 
an 

aw 
~ 

Notice that u, v, and ware the velocities along the x, y, 

and z axes in the physical domain. 
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is called the Jacobian matrix of the transformation whose elements are 

the nine derivatives specifying the" rate of change of the computational 

coordinates with respect to the physical coordinates. The equations of 

motion (Eq. (2.1)) are in conservation form [3J and can be expressed as 

E.!! + aF + aG + aH = a 
at ax ay az ' (2.2) 

where 

pu 
p 

puu - T pu xx 
U = pv F = puv - T xy 

pw Puw - T 
pe xz 

peu + q - 4> . x . x 

pv pw 

puv - Txy puw - TXZ 
G = pvv - Tyy H = pvw - Tyz 

pvw - TXZ pww - TZZ . 
pev + q -y <P' Y 

pew + qz - 4>z 
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Equation (2.2) written with respect to the transformed variables of the 

computational domain becomes: 

au + aF a~ + aF E.!l + aF ~ + aG a~ + aG an 
at ~ ax an ax ~ ax ~ ay an ay 

+ aH a~ + aH an + 
a~ az an az 

This can be written compactly as: 

3 3 

aH az;; = 
~ az o. 

au + L:L: ax. 
1 = 0, 

at j=l i=l ay. 
J 

where 

xl ~ Yl x 

x2 = n Y2 = Y 

x3 z;; Y3 z 

F, 

F2 

F3 

aG az;; 
+ ~ ay 

{2.3a} 

(2.3b) 

F 

= G 

H 

Given the Jacobian matrix at each grid point and initial and boundary 

conditions, the transformed governing equations of motion are in a form 

to be numerically solved. It is noted at this point that the equations 

of motion are in weak conservation form relative to the Jacobian 

derivatives. 
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2.3 Definition of a Computational Domain and Transformation Data 

In the previous section the Navier-Stokes equations are transformed 

from a Cartesian coordinate system to a computational domain. In so 

doing nine additional unknowns, which are the elements of the Jacobian 

matrix, are added to the problem. When the finite difference technique 

described herein is applied to Equation (2.3), the Jacobian matrix 

must be known at each grid point. The objective of a grid generation 

technique is to provide the Jacobian matrix which is henceforth called 

transformation data. The computational domain is defined in this sec­

tion along with the formulas necessary for computing the transformation 

data based on known functional relations between the computational domain 

and the physical domain. The next three sections concentrate on deter­

mining functional relations between the computational and physical 

domains. The computational domain is defined to be a rectangular 

parallelepiped and a uniform grid is superimposed onto the domain 

(Fig. 1) such that: 

!::J.E., = constantl , 

!::J.n = constant2, 

!::J.7;, = constant3• 

(2.4) 
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A fUnctional relation between the computational domain and the physical 

domain can be expressed as 

Further, these functions must map boundaries in the computational 

domain onto boundaries in the physical domain such that 

(2.5) 

where xB' YB and zB define the boundaries of the physical domain 

and ~B' nB' and ~B define the boundaries of the computational 

domain. The transformation data is composed of the rates of change of 

the computational coordinates with respect to the physical coordinates. 

If the inverse functional relations 

~ = ~(x,y,z), n = n(x,y,z), and ~ = ~(x,y,z) (2.6) 

are known, the transformation data can be directly found by differ-

entiation. It is not necessary, however, to know the inverse functional 

relations to determine the transformation data. The Jacobian matrix 

can be evaluated by differentiating the functional relation (Eq. (2.5)). 

That is 

r ax 
a~ 

ax ax 
an a~ 

J-1 = ~ 
a~ 

~ ~ 
an a~ 

az az az 
~ an ~ 
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and then 

J = Transposed of Cofactor (J-') 
I J-'I ' 

-, 
where IJ I is the Jacobian determinate and J-1 is the inverse 

Jacobian matrix. 

ax ax ax 
at,; an as 

IJ-'I = ~ ~ ~ 
at,; an as 

az az az 
~ an ~ 

= ax (~ az ~ ~) ax (~ az ~ ~) 
~ - - an at,; an as an at,; as as at,; 

+ ax (~ az ~ ~) -as at,; an an at,; 

and 

-, 
at,; at,; at,; ax ax ax ax ay az a~ an ~ 

an an an = J = ~ ~ ~ ax ay az at; an as 

as as as az az az 
ax ay az at,; an ~ 



_(~~ _ ~ OZ) 
oF; or;; or;; ol; 

(~~-~~) 
ol; on on ol; 

-(~~-~~) on 01'; 01'; on 

(ox oZ _ ~~) 
oF; 01'; 01'; oF; 

_(ox ~ _ AX OZ) 
ol; on on ol; 

-(~~-~~) 
aF; ar;; or;; ol; 

(~~ _ OX~) 
ol; on on ol; 
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(2.7) 

provided IJ- l I r O. 

The transformation data can be pre-evaluated and stored or it can 

be computed as needed. The trade off is the additional computation 

cost versus the storage cost. For the Navier-Stokes solver discussed 

in this study, the transformation data is precomputed and stored for 

later use. 

2.4 Two-Boundary Grid Generation 

A computational domain is postulated by Equation (2.4). It is a 

rectangular parallelpiped in three dimensions and a square in two 

dimensions. The physical domain is a subdomain of a Cartesian coordi­

nate system. A transformation between the physical domain and the com­

putational domain is a mathematical relationship mapping one domain 

onto the other. Similarly a grid in one domain is mapped onto a grid 

in the other domain. When the transformation maps boundaries in the 

physical domain onto boundaries in the computational domain the term 

"boundary-fitted coordinate system" is used to describe the 

transformation. 
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An indirect (differential) approach for finding the relationship 

between the computational and physical grids described by Thompson 

et al. [6-10] has been highly successful. In this approach the 

elliptic system of partial differential equations which must be satis­

fied by the mapping between the two domains is numerically solved by an 

iterative technique such as Successive-Over-Relaxation (SOR). The 

numerical solution is the grid in the physical domain corresponding to 

the grid in the computational domain. The transformation data is 

obtained by numerical differentiation, and a grid change requires a 

new solution of the elliptic system. 

A direct (algebraic) approach, where an explicit functional rela­

tionship between the computational domain and the physical domain is 

known, has the advantages that changes to the grid are direct, rapidly 

obtained, and transformation data is analytically available. 

A direct algebraic approach called the IItwo-boundary technique ll 

is described in the present paper. The technique has a wide variety 

of applications in both two and three dimensions. A preliminary 

description of the technique is presented in [23]. Symbolically, the 

relation between the computational domain and physical domain can be 

written as 

x = X(l=;,n,z;), 

y = Y(i;,n,z;;), 

z = Z(i;,n,z;), 

(2.8a) 

(2.8b) 

(2.8c) 



O~~~l, 

O~n~l, 

O~r;~l. 
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Equation (2.8) is equivalent to Equation (2.5). For a boundary-fitted 

relationship between the two domains, boundaries in the computational 

domain should map onto boundaries in the physical domain as shown in 

Figure 2. For instance, for the boundaries n = 0 and n = 1 in the 

computation domain, Equation (2.8) becomes 

Xl = X(~,O,r;) = Xl(~,r;), 

Yl = y(~,O,r;) = Yl(~,r;), 

zl = Z(~,O,r;) = Zl(~,r;), 

x2 = X(~,l,r;) = X2(~,r;), 

Y2 = y(~,l,r;) = Y2(~,r;), 

z2 = Z(~,l,r;) = Z2(~,r;)· 

Here, xl(~,r;), X2(~,r;), etc. are boundaries in the physical domain 

and, as such, are functions defined only at the boundaries. An approp­

riate explicit expression for Equation (2.8) would separate one 

variable (n) to be independently varied with parameters dependent on 

position and derivatives on the boundaries. Since the boundaries are 



X2(F;,r;;) 

Y2(F;,r;;) 

Z2(F;,r;;) 
I , 

I / , I 
/ 

. 
I I 

I 

I : 
I 

I 

T) I 

Xl (F;,Z;;) 

~C 
I 

Yl(~'Z;;) I 

Y . , 

~Z 
Zl (~,Z;;) 

Fig. 2 Boundary mapping from the computational domain to 
the physical domain. 
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themselves functions and can be determined independently, Equation (2.8) 

can be rewritten as 

(2.9a) 

(2.9b) 

(2.9c) 

The explicit forms of Equation (2.9) proposed herein are simple para­

metric linear and cubic polynomials. 

Linear 

(2.1Da) 

(2.1 Db) 

(2. 1 Dc) 

Cubic 

(2.11a) 
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(2.11b) 

(2.11c) 

where: 

f1 (n) 
_ 3 2 
- 2n - 3n + 1 , 

f2(n) 3 2 = -2n + 3n , 

f3(n) 3 2 = n - 2n + n, 

f4(n) 3 2 = n - n , 

A function such as Equation (2.10) or Equation (2.11) is topologically 

referred to as a homotopy [24J. Blending-function [llJ is another 

name that has been given to such equations for problems in surface 

design. Herein, because of the context in which they are used, they 

are defined as IIconnecting functions. 1I 
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Applying a cubic connecting function implies that the physical 

grid can be forced to be orthogonal" at the boundaries since the deriva-
dX dX 

tives ~(s,~), ~s,~), etc. can be computed from the cross product 
n n dXl dXl dYl dY l of the tangential derivatives ~(s,~), ~(s,~), ~(s,~), ~(s,~), 

etc. That is, 

dX dY 
--.! (s,Z;) i + --.! (s,~) r dZ R, .,r 

+ - (s,~)1< = 
dn dn dn 

+ + j( 1 J 

dX dY dZ 
K ~ (s,~) ~ (s,~) ~ (s,~) R, = 1,2 

ds ds ds 

dX 
~ (s,Z;) 

dY 
--.! (s,d 

dZ 
2 (s,d 

d~ d~ d~ 

+ + + 
where i , j, and k are unit vectors and K is the magnitude of the 

normal vector. Applying this procedure will force the grid to be 

orthogonal at the boundaries but not necessarily anywhere else. For the 

linear connecting function, the physical grid will seldom be orthogonal. 

Given the connecting function and parametric boundary functions, 

a uniform computational grid can be mapped onto the physical domain 

forming a physical grid. Concentration of grid points in the n direc­

tion is accomplished by choosing a function n = n(n) such that 
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O~n~l, - dTi ( ) o ~ n ~ 1, and dn > 0 Fig. 3 . For example, contracting 

the physical grid towards one boundary or the other can be accomplished 

by 

1\ 

ekn _ 1 

n= ~ ; O~n~l. 
e - 1 

(2.12) 

"-

where k is a free parameter whose magnitude dictates the degree of 

contraction. Embedding this exponential function in the linear con­

necting function, Equation (2.10) becomes: 

x = X2{~,~)n + Xl{~,~){l - nL 

y = Y2{~,~)n + Yl{~,~){l - Ti)' 

z = Z2{~,~)n + Zl{~,~){l n) , 

o < n < 1. 

Once the connecting function has been chosen, the remaining prob­

lem is the determination of the boundary functions which are independ-

ent of n. For the "two-boundary technique" the approach is to choose 

parametric variables sand t associated with the boundaries such 

that 

xl (~,l;) + Xl (s,t), 



1 

-
11 

o 

n = ri(l1) 

dn > 0 
dl1 

11 

Fig. 3 Grid control function. 
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s. <5<5, mln - - max 

t. <t<t . mln - - max 
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The choice of parametric variables can vary from problem to problem. 

A relationship between (~,~) and (s,t) is 

This is a linear relation which maps the unit interval onto the 

parametric variables. Control of the physical grid at the boundaries 

is accomplished in the same manner as for the connecting function. 

That is, 

d~ > 0 
d~ , 

~ = ~(r;), ~~ > 0, 



Since the connecting function is dependent on the boundary position, 

control of the entire grid is accomplished. 

2.4.1 Approximate Boundary-Fitted Coordinate Systems 

Using Tension Spline Functions 

31 

It is often the case that boundaries in a physical domain are 

described by discrete sets of points. The boundaries may be open or 

closed (Fig. 2). An approximate boundary-fitted coordinate system can 

be obtained using the IItwo-boundary technique ll and a tension spline 

function interpolation to the discrete data defining the boundaries. 

Tension splines [17-19] are chosen because standard cubic splines [25] 

and other higher ordered interpolation techniques often result in 

wiggles in the approximation. Wiggles on a boundary using the IItwo­

boundary technique ll propagate into the interior grid. The tension 

parameter embedded in the tension spiine interpolation allows control 

of the IIcurvednessll of the approximation. A very large magnitude of 

the tension parameter corresponds to a linear interpolation whereas a 

very small value corresponds to cubic splines. Tension splines can 

be applied in two and three dimensions. A two-dimensional example is 

presented. 

Using the tension spline technique, a point set on boundary one 
i-n j=m 

is defined by {xi 'Yi}i=l and on boundary two by {xj'Yj}j=l. 
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Approximate arc length is used as a parametric independent variable. The 

approximate arc length is: 

s· = [(x i+1 1 

s. = [(Xj +1 J 

i = l ... n 

j = 1. .. m 

s - 0 1 -

o < s. < s 
- 1 - n 

o < s. < s . 
- J - m 

x.)2 + 
1/2 

(Yi+l _ y. )2] + s. l' 1 1 1" 

2 1/2 
- Xj ) + (Yj+1 _ y.)2] + s. l' J J-

From the computational coordinate system the unit interval (0 ~ ~ ~ 1) 

must be mapped onto each boundary; that is: 

s = s(~), 

This is accomplished by letting 

s = ~sn on boundary one and 

s = ~sm on boundary two. 
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The tension spline function is a piecewise continuous set of trans­

cendental functions where x and y between the ~ and ~ + 1 points 

are defi ned by 

II 
sinh[a( s~+l - s)] 

x = 9 (s ~) -:2~'~---';'':''-;''---
a sinh[a(s~+l - s~)] 

(2.13) 

sinh[a(sn+l - s)] y = h" (s ) --;:;-__ ..::.N:.:...!. ___ _ 

~ a2sinh[ (s~+l - s~)] 



s = s(~) = ~,smax' 

~ = i on boundary one, 

£ = j on boundary two, 

a = tension parameter. 

The unknowns in these equations are 

are second derivatives at the data points 

gll(S£) and hll(S£) 
£=N 

{x£'Y£}£=l where 
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(2.14) 

which 

N = n for 

boundary one, N = m for boundary two, and are obtained through enforce­

ment of the continuity of the first derivatives at the data points and 

the specification of two end conditions. A tridiagonal system of 

linear equations results for each set of unknowns. The solution of the 

tridiagonal systems yield gll(S£) and h"{s£). 

The cubic connecting function (Eq. 2.11), and the exponential 

function (Eq. 2.12) provide the relationship between the computational 
dX£ dY£ 

domain and the physical domain. The derivatives dn and an- are: 



ds 

dY.e dX.e 
= -K-. 

dn ds 

By defining a grid with constants ~~ and ~n in the computational 

domain a corresponding grid is explicitly defined in the physical 

domain. 
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An example of a grid about a Karman-Trefftz airfoil is presented 

using the spline under tension approximation to the boundaries and a 

cubic connecting function. Table 1 contains the data describing the 

airfoil boundary and outer boundary. Figure 4 shows the approximation 

to the airfoil boundary and Figure 5 shows the grid. A tension parame-

ter value of 2 is used. Transformation data have not been computed 

for this example. 

2.4.2 Transformation for a Wedge-Cylinder Corner 

An application of the two-boundary technique using analytical sur­

face functions is a family of three-dimensional corner geometries which 

occur in many aerodynamic situations (Fig. 6). Supersonic flow about 

these geometries is characterized by strong visid-inviscid interactions 

which are adequately analyzed only through the numerical solution of 

the Navier-Stokes equations. When solving this system of equations 

with a finite difference technique, a grid must be designed to capture 

the interactions and allow for accurate application of the boundary 

conditions. 



Table 1. Data description for an airfoil grid 

Ins i de boundary Outside boundary 

x ft. y ft. x ft. 

. 49950 -.000031 0.0 

.49860 -.001400 2.12 

.49600 -.002760 3.0 

.48620 -.005550 -2.12 

.47060 -.008510 0.0 

.39010 -.028590 -2.12 

.26960 -.029970 -3.0 

.12270 -.040790 -2.12 
-.03480 -.048450 0.0 
-.18750 -.050520 
-.32110 -.045590 
-.42390 -.0377390 
-.48650 -.016530 
-.50270 .003820 

I 
I 

-.47110 .026640 I 
-.39690 .048640 I 

-.28790 .066100 
-.15380 .075290 
-.00560 .074530 

.14400 .064350 

.28230 .04750 

.39580 .028260 

.47200 .011300 

.48710 .006810 

.49510 .003040 

.49880 .001430 

.49950 -.000031 

Y ft . 

3.0 
2.12 

. 0.0 
-2.12 
-3.0 
-2.12 
0.0 
2.12 
3.0 

I 

'...v 
Q) 
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cC:_eo_O_-Eo:r-°_-e:'-~_-I:r-

Fig. 4 Boundary definition for Karman-Trefftz airfoil. 



Fi g. 5 Gri d for Karman-Trefftz ai rfoil obtai ned with the IItwo-boundary techni quell . 

w 
co 
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~z 

Rectangul ar corner Wedge-plate corner 

Plate-cylinder corner Wedge-cylinder corner 

Fig. 6 Three-dimensional corner geometries. 
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The "two-boundary technique" is app 1 i ed to the wedge-cyl i nder cor­

ner with the aid of Figure 7. The other corner geometries are derived 

from the wedge-cylinder definition. The physical domain is the region 

enclosed by the circular cylinder with radius rO' an outer surface 

defined by the wedge angle and a second cylinder radius, and two planes. 

The left plane (wedge surface) is oriented at an angle cp (wedge angle) 

with the longitudinal axis of the cylinder but parallel to the vertical 

axis. The right plane (symmetry plane) is oriented with angle 82 

relative to the vertical axis of the cylinder and includes the longi­

tudinal axis. The upstream and downstream boundaries are cross sections 

of the region defined by x = Xo and x = xL and are perpendicular to 

the longitudinal axis. The "two-boundary technique ll is applied to this 

geometry by considering the inside cylinder surface as boundary one and 

the outside surface as .boundary two. It is desired that ~, n, and ~ 

map into the region described above and that 

The boundaries are defined by 



y 

~------------------------------------------------ z 

x -----------t ... _ ~ 

-==============£f =S<pC==JI h 

Fig. 7 Projection of wedge onto the x-y plane and cross section 
of grid in the y-z plane. 
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Boundary one: 

(2.15a) 

(2.15b) 

(2.15c) 

Boundary two: 

(2. 16a) 

(2. 16b) 

(2.16c) 

Where: 

e = sin-1 (X(~) tan p) 
1 r' a 

e = sin-1 (X(~) tan p) 
3 r' 1 
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A linear connecting function is used to generate the internal grid. 

The function is 

z = Z2{~,~)n + Zl(~,~)(l - n), 

k2n 
e - 1 

n = ---;----
k2 

e - 1 

(2.l7a) 

(2.l7b) 

(2.l7c) 

(2.l7d) 

An exponential function is used on both n and ~ to concentrate the 

grid in the corner. Figure 8 shows the grid at x = xL for cor­

responding corner surfaces shown in Figure 6. The planar corners are 

closely approximated by letting the radii be very large. 



I 

'I 

I 

• ~ ~ 

Rectangular corner 60 wedge-plate corner 12.20 wedge-plate corner 

Plate-cylinder corner 60 wedge-cylinder corner 12.20 wedge-cylinder corner 

Fig. 8 Grids for wedge-plate and wedge-cylinder corners at x/xL = 1. 
of::> 
of::> 
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Information needed for the equations of motion (Eq. (2.3)) is the 

transformation data which is obtained from Equation (2.7). The deriva­

tives in Equation (2.7) are obtained by analytic differentiation of x, 

y, and z (Eq. (2.17)) with respect to ~, n, and s. These deriva-

ti ves are: 

ax _ 
an - ° 

~ = n ~~ (s,l,s) + (1 - n) ~ (~,O,s) 

El.= anY(s,l,s) - ~~ Y(s,o,s) 
an an 

El.--£.l( ) ( ::l£.l( ) as - n as s,l,s + 1 - nJ as s,o,s 

az - az ( ) ( -) az ) a[ = n ~ s,l,s + 1 - n ~ (s,O,s 

az _ an ( ) an an - an Z s,l,s - an z(s,l,s) 

az - az ( ) ( -) az ( ) az = n az s,l,s + 1 - n az s,o,s 



\'Ihere 

a8 n- (c;,Q,r;;) = -r
1 

sin[~82 + (1 - ~)81J(1 - rJ _1 
a~ 

az a8 1 at (~,O,r;;) = r 1 cos[~e2 + (1 - ~)81 J[l - U -
a~ 

-
az - - J k ~ (~,o,r;;) = r 1 cos[~e2 + (1 - r;;)8 1J[8 2 - 81 ar;; 

-

~~ (~, 1 ,r;;) = r 2 sin[~e2 + (1 - ~)83J[82 - 83J ~ 
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1 

_dr_2 _ l x tan ¢ ~ 
r 2 d~ 

The application of this technique in the Navier-Stokes solver is 

found in Chapter 4. 
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2.4.3 Transformation for a Spike-Nosed Body 

The "two-boundary technique" is applied to generate grids about 

spike-nosed bodies (Fig. 9 and Fig. 10). Supersonic flow about these 

bodies is unsteady and separation occurs in the nose-shoulder region. 

Consequently, grids must be concentrated in the nose-shoulder region 

and be ~dequately spaced to define the shock and the boundary layer on 

top of the shoulder. A linear approximation to the inner boundary and 

a circular arc outer boundary are used in the two-boundary technique. 

Concentration of the grid is accomplished by superimposing an exponen­

tial function onto the connecting function and a combined exponential 

and parabolic algebraic function is superimposed onto the parametric 

variable along the boundaries. The grid is cast in three-dimensions by 

rotating the two-dimensional description about the axis of symmetry. 

The inside boundary ;s defined by the set of points 

The parametric variable associated with this boundary is accumulated 

cord length where 

'" tl = 0, and 
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Fig. 9 One-half inch spike-nosed body. 
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Fig. 10 One and one-half inch spike-nosed body. 
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\~ith the parametric variable defined, two data sets are formed. They 

are: 

A linear approximation to the inside boundary for a spike-nosed body is 

accomplished by linear interpolation of the above data sets. The trans­

formation data requires the derivatives of the boundary definition with 

respect to the parametric variable and the derivative sets are formed 

and saved for later use. The derivative sets are: 

( 
dx I M-l 

dyI 
o.=M-l 

la' 
A 

t , 
dto. 

a 
dto. 

0.=1 0.=1 

where 

"I A A "I "I dx xa+l - x a-l dyI = Y a+ 1 - Ya-1 
= 

A 

- t dt " " dt ta+l a-1 ta+1 - t a-l a a 

a = 2 . . . . M-l. 

The linear interpolation to the point sets can be symbolically written 



-= 
dt 

dt ( 

"I 
A dy 

Li ndy" t'-A 
a dt 

where Lin denotes a linear interpolation. 

a=M-1)< . 

a=2 

The outside (top) boundary is a circular arc defined by 

xO = -R cos 0 + ~ 
o 

"0 y = " R sin 8 + Yo. 

The physical domain in two dimensions is the region between the 
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inside and outside boundaries. A rectangular region can be mapped onto 

the physical domain based on information from the boundaries and a 

linear connecting function. The transformation is 

""0 I 
Y = Y n + y (1 - n). 



j=m 
. }k=m Given the computational grid {sJok' nOk 

J j=l 

where 

j=n 
r. j=m 
y ok} 

J j=l 
k=l 

k=l 

the physical grid is 

Concentration of the grid near the inside boundary and in the nose-

shoulder region is accomplished by intermediate transformations 

ern - 1 
n = ---- , 

e k - 1 

and 
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The parameters ~, ~l' and B govern the concentration of the grid 

pcints. The above derivation for the transformation between a computa­

tion domain and a physical domain is for a two-dimensional slice of a 

flow field. A three-dimensional representation is 

(2.l8a) 

(2. l8b) 

(2.l8c) 

The elements of the Jacobian matrix are: 

ax = 
at 



A 

~ = [COS(~[~max - ¢min] + ¢min)] ~ , 

az 
a( = 0, 

"'-az ax = an an' 

az 
a I;; = 

"'-

ax 
~' 
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'" "'0 ax - ax = n 3Z dO 
ae as + (1 _ ~) 
as az;; 

'" a-n dV _ "'0 an "'I frl - Y an - Y an ' 

~ = - ayo ae a~ + (1 _ n) a? at a~ 
as n ae as ~ at as ~, 

kn 
an 

_ e 
= k an 

eK -

a~ _ ~1 __ 
~ - k1 

e - 1 

axO 

1 

ae = R sin e, 

ayO = 
ae R cos 8, 

(1 + 8s - 8s2)k1 (e
kg - 1)(8 - 2Bd 

(1 + Bs - Bs2)2 
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Fig. 11 Grid generated with the "two-boundary technique" 
for a one-half inch spike-nosed body. 
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Fig. 12 Grid generated with the "two-boundary technique" 
for a one and one-half inch spike-nosed body. 
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Table 3. Data description for a one and one-half inch spike-nosed body 
Inside boundary 

Pt x y Pt x y Pt x 

1 0.0 0.0 21 .01042 .01804 41 .12475 
2 .00003 .00109 22 .01138 .01856 42 .12494 . , 3 .00011 .00218 23 .01236 .01903 43 .12500 
4 .00026 .00326 24 .01337 .01945 44 .12500 
5 .00046 .00433 25 .01440 .01981 45 .12500 
6 .00071 .00539 26 .01544 .02012 46 · 12500 
7 .00102 .00644 27 .01650 .02038 47 .12506 
8 .00138 .00747 , 28 .01757 .02058 48 .12525 
9 .00180 .00847 29 .01866 .02072 49 .12556 

10 .00227 .00946 30 .01974 .02080 50 .12597 
11 .00279 .01042 31 .02083 .02083 51 · 12649 
12 .00336 .01135 32 .02163 .02083 52 · 12708 
13 .00398 .01225 33 · 12000 .02083 53 · 12774 
14 .00464 .01311 34 · 12083 .02083 54 · 12844 
15 .00535 .01394 35 · 12156 .02090 55 .12873 
16 .00610 .01473 36 .12226 .02108 56 · 12883 
17 .00689 .01548 37 .12292 .02139 57 .25000 
18 .00772 .01619 38 .12351 .02181 OutSide Boundary 

19 .00859 .01685 39 . 12403 . 02232 ~o = .43333 ft . R = .52208 ft • 

~2 = .0001 YO = ·.07500 ft . 

20 . 00949 .01747 40 · 12444 .02292 kl = 2.2 B = 2 

y 

.02357 

.02428 

.02500 

.02667 

.07417 

.07533 

.07606 

.07676 

.07742 

.07801 

.07853 

.07894 

.07925 

.07944 

.07948 

.07949 

.09929 

8f = 69.5° 

80 = 8.295° 

I 

0) 
o 



Pt 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Table 2. Data description for a one-half inch spike-nosed body 

Inside Boundary 

x y Pt x y Pt x y 

0.0 0.0 21 .01042 .01804 41 .04142 .02397 
.00003 .00109 22 .01138 .01856 42 .04161 .02428 
.00011 .00218 23 .02136 .01903 43 .04167 .02500 
.00026 .00326 24 .01337 .01945 44 .04167 .02667 
.00046 .00433 25 .01440 .07981 45 .04167 .07417 
.00071 .00539 26 .01544 .02012 46 .04167 .07533 
.00102 .00644 27 .01650 .02038 47 .04173 .07606 
.00138 .00747 28 .01757 .02058 48 .04192 .07676 
.00180 .00847 29 .01866 .02072 49 .04223 .07742 
.00227 .00946 30 .01974 .02080 50 .04264 .07801 
.00279 .01042 31 .02083 .02083 51 .04316 .07853 
.00336 .01135 32 .02163 .02083 52 .04375 .07894 
.00398 .01225 33 .03666 .02083 53 .04441 .07925 
.00464 .01311 34 .03749 .02083 54 .04511 .07944 
.00535 .01394 35 .03822 .02090 55 .04550 .07948 
.00610 .01473 36 .03892 .02108 56 .04549 .07949 
.00689 .01548 37 .03958 .02139 57 .16687 .09929 
.00772 .01619 38 .04018 .02181 

Outside Boundary 
.00859 .01685 39 .04070 .02232 Xo = .4333 It. Radius = .52208 It. 01 = 51.550 

.00949 .01147 40 .04111 .02292 
~2 = .0001 Yo = .07500 It. Or) = 8.2950 
kl = 2.2 B ~ L t.-' 

I.D 
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A I (I A I t1= 
1 
) ax . A dx 

-,,- = L lndx t a , (j7f 
at a a=2 

" at --

Grids generated with this application of the IItwo-boundary technique" 

to the bodies shown in Figures 9 and 10 are shown in Figures 11 and 12. 

Tables 2 and 3 give the data used to generate the grids. The use of 

the grid in the Navier-Stokes solver is discussed in Chapter 4. 

2.5 Initial and Boundary Conditions 

Initial conditions are free stream conditions except at solid 

boundaries where no slip is imposed on the velocity. Free stream con-

ditions are established from the Mach number = Moo, Reynolds num-

ber = Re = Re, characteristic length = L, and free stream tempera-
00 

ture = T. The speed of sound is 
00 
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where y = 1.4 and Cv = 4290 (~)2 ---dl for air which is considered sec· eg 
a perfect gas. The free stream velocity is 

v = 0 , 
00 

and 

w = 0 . 
00 

The free stream viscosity is 

lloo = 

-8 3/2 
2.27 x 10 Too 

Too + 198.6 

The free stream density, pressure, and energy are 

and 
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No slip boundary conditions are imposed on the velocity at solid 

walls. A solid wall is considered to be isothermal and the tempera­

ture TW is fixed. The boundary condition on energy is eW = CVTW 

The solid wall boundary condition for density = pW is obtained 

through a condition on pressure at the wall and the relation of density 

to pressure in the equation of state. The wall pressure boundary con­

dition is obtained by approximately satisfying the momentum equations 

at the wall. Assuming that the gradient of the shear stress is zero 

at a solid wall implies that ;~ = 0 where N indicates the normal 

direction. 

In general, the zero pressure gradient boundary condition at a 

solid surface can be enforced given the direction cosines (Yx' yy' yz) 

of the normal vector on the surface. Then 

an "\ ap\ 
ax ax aE; 

api 
aE; an 

~) 
ap 

= o. (2.19) = (\YyYz) ay ay ay an 
aN w 

an a I:; ap 
az az ~ 



2.5.1 Boundary Conditions for Supersonic Flow About 

Wedge-Cylinder Corners 

64 

For wedge-cylinder geometries the transformation between the com­

putational domain and the physical domain is given by Equation (2.17). 

The upstream boundary conditions at ~ = 0 are the free stream condi­

tions. Solid walls occur at n = 0 and s = 0 for ~ > O. For n = 0 

the condition ~ = 0 + ~ = 0 where r is the radial direction from aN ar 
the center line of the cylinder. 

~I = 
ar n=O 

ap .£l. + ap az + 
ay ar az ar 

ap ax 
ax ar = O. 

From Equation (2.17) 

~ 
A 

= COS(s82 + (1 - ~81) = cos 8 
ar 

az sin(s82 + (l - ~)el) 
A 

= = sin e ar 

ax O. = ar 

Therefore, 

api ap 9 + ~~ sin 
A 

= ay cos e 
ar n=O 

and 

api (~ ~ + ap an + ~~) cos A 

= e 
or n=O o~ oy on oy os oy 

(~~+ ~ on + ~~) A 

+ sin e 
o~ az on oZ Os oZ 
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where 

_ elements of the Jacobian matrix at n = O. 

• at,; at,; 
Slnce ay = az = 0, 

ap 
an is approximated by the one-sided difference 

and, ~~ approximated by the central difference 

Then 

where 

ap P2,k+l - P2,k-l az= 

api (3Pl ,k - 4P2,k + P3,k) P2 k 1 - P2 k 1 - = C + ( , + , - ) C
2 

= 0, 
ar n=O 2~n 1 2M; 

Cl 
= an cos ay e + an sin A 

az e 

a I;; A dl;; A 

C2 = - cos e + az sin e. ay 
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Consequently, the pressure on the boundary n = 0 is approximated by 

_ lln C2 
-C (P2k1-P2,k-1L 

3llt;; 1 ' + 

The normal pressure gradient boundary condition a~1 = 0 for 
aN 1';=0 

the wedge surface of a wedge cylinder corner is 

aNP = ap (-sin cp ~) + EE. (an (-sin cp) + aanz cos cp) a a~ ax an ax 

+ ~ (~(-sin cp) + ~ cos cp) = 0 at;; ax . az 

where the directional cosines are: Yx = sin cp, Yy = 0, Yz = cos cp. 

The finite difference approximation for P at I'; = 0 is 

P .. 1 = 
1 ,J , 

4P .. 2 - P .. 3 l,J, l,J, 

3 

f1r;, D2 
- (P .. 1 2 - P .. 1 2) 

3lln D l,J+, l,J- , 
1 

D3 
- (P .. 2 - P. 1 . 2) D l,J, 1- ,J, 

1 
where, 

and 

D1 = ~~ (-sin cp) + ~i cos cp, 

D2 = ~~ (-sin cp) + ~i cos cp, 

D = 3 
. a~ -Sln cp -ax . 
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The far field boundary conditions (~= 1, n = 1, ,= 1) are 

~I = 0 ~I = 0, and 
a~ ~=l 'an n=l 

aUI = O. The condition ~~ = 0 
al;; 1;;=1 ." 

implies that there is no change in the state variables with a change 

in ~. The approximation is Ui = Ui _l . The condition ~~ = 0 implies 

that there is no change in the state variables with a change in y. For 

the wedge-cylinder corners, this implies two-dimensional flow on a flat 

plate and/or inclined plate. That is: 

au = au a~ + 
ay a~ ay 

au a I;; = 
~ ay o. 

Noting ~ = 0 and applying the finite difference approximation ay 

imp 1 i es 

a I;; 

"* (U j -1 ,k+ 1 - U j -1 ,k -1 ) • 
ay 

au The condition ~ = 0 implies that there is no change in the state 

variables at I;; = 1 or that symmetry is imposed. In either case 

I;;k = I;;k_1 for this study. 
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2.5.2 Boundary Conditions for Supersonic Flow 

About Spike-Nosed Bodies 

The transformation between a computational domain and the physical 

domain for spike-nosed bodies is given by Equation (2.18). In this 

case the solid surface is at n = 0, 0 ~ ~ ~ 1, and 0 S ~ < 1. No 

slip conditions are imposed on the velocity and the temperature is 

fixed. The pressure is found in a similar manner to that used for the 

wedge-cylinder geometries except a less accurate approximation to the 

zero pressure gradient is used. In this case a first order approxima-

tion is used and the pressure on the solid boundary is set equal to the 

pressure at the grid point next to the boundary. That is: 

Pi,l,k = P. 2 k' 1, , 

The density at the boundary is found by the application of the equation 

of state using the boundary temperature and computed pressure. 

At s = 0, 0 ~ n ~ 1, and 0 ~ ~ ~ 1 a symmetry boundary condi­

tion i.s imposed. The three-dimensional grid is obtained by rotating 

a two-dimensional slice of the grid about the axis of symmetry. The 

1 i ne ~ = 0, o ~ n < 1, and 0 < ~ < 1. is coincident with the line of - -
symmetry. The Jacobian matrix (Eq. (2.7)) is singular along this line. 

This does not create a problem, however, since the condition is imposed 

without using the transformation data from this line. The symmetry 

condition is 
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aUI a~ ~=o = 0 or U;,j,l = ~i,j,2' 

Free stream boundary conditions are imposed at n = 1, 0 ~ ~ ~ 1, 

and 0 < ~ ~ 1. At ~ = 1, 0 ~ n ~ 1, and 0 < ~ ~ 1 a no-change 

boundary condition is imposed. That is: 

aUI = 0 
a~ ~=l 

or U. . N = U. . N l' 
1 ,J , 1 ,J, -

3. COMPUTATIONAL ASPECTS 

The computational requirements for computing a grid and the 

Jacobian matrix associated with a grid using the "two-boundary tech­

nique" are relatively minimal. It is however, necessary to plot the 

grid to visually assure that the desired constraints are satisfied. 

Ultimately, this phase of problem solving should be in an interactive 

mode with high bandwidth communications between the computer and a 

graphics terminal. The transformation data for an acceptable grid can 

be stored on a permanent file for later use. An alternate approach is 

to program the equations for the Jacobian matrix within a program for 

the solution of a flow-field. In this manner only parameters for 

the grid generation must be supplied. 

The computational requirements for the solution of the three­

dimensional Navier-Stokes equations are extreme and tax the capability 

of any presently existing computer [1]. The approach taken in this 
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study is to adapt a viable numerical technique to the available large 

scale computer. The computer is the STAR-100 or its successor the 

CYBER 203. The computer architecture is based on vector processing 

with virtual memory storage. In addition to the vector architecture 

there are two aspects relative to the computer that have been very 

important in this study: (1) the capability of halfword arithmetic 

and storage; and (2) the effect of data transfer between secondary 

memory and primary memory. Halfword arithmetic has been used almost 

exclusively in the computations discussed later allowing for much 

larger grids than would be otherwise possible. Frequent transfers of 

data from primary memory to secondary memory and back have been 

minimized or avoided by' constraining the grid size on which a solution 

is attempted. The transfer of data to and from secondary memory is 

relatively inefficient and is discouraged by high cost to the user. 

Another computational aspect is that the "Navier-Stokes solver" 

is relatively general. The application of initial and boundary condi­

tions are performed in separate subroutines from the general solution 

procedure. Defining a new problem by initial and boundary condition 

does not require major programing modifications. 

In this chapter the MacCormack time-split algorithm is examined 

and vectorized for the CYBER 203 computer. Also, the program organiza­

tion and how it relates to the virtual memory is presented. 
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3.1 Computational Technique 

The computational technique used in this investigation is the 

MacCormack time-split predictor-corrector algorithm [2-4J which was 

proposed about 1970 and is a derivative of the MacCormack unsplit pre­

dictor corrector algorithm [26J. Both techniques are explicit which 

implies that they are time step stability limited [27J. Also, both 

techniques are second order accurate, and many investigators have been 

highly successful in applying them to a variety of fluid flow simula­

tions [1,3,4,28J. An advantage of the MacCormack techniques is that 

they are relatively easy to apply to the transformed equations of 

motion (Eq. (2.3)). The split operator algorithm has the added 

advantage that different time step magnitudes can be used in each 

operator. A third hybrid scheme [29J can be applied by subdividing 

the operators into implicit and explicit portions. This approach, how­

ever, is more complex and the success of its use is somewhat case 

dependent [30-31J. The explicit time-split technique has been chosen 

for this investigation because of its simplicity and vectorization 

characteristics for application on the CYBER 203 computer, however, 

both the unsplit and split algorithms are presented herein for contrast 

and clarity. 

3.1.1 MacCormack Technique 

The unsplit algorithm has the following two steps applied to the 

transformed equations of motion (Eq. (2.3)). 
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Predictor step: 

;-;flu +' Un .. k = l·,J·,k 1 ,J , 

(F. - F. ,) ~i; i + (G. - G. ,) ~~ i + (H. - H. ,) ~~ i 
1 1- oX 1 1- oy 1 1- oZ 

j,k 

i,k 

i ,j 



Corrector step: 

un+1 
i,j,k = 1 

2" (u~. + U~+~ 
1,J,k 1,J,k 

~t [{F F } a~. (G _ G.) ~ i + (H. +1 - H.) ~s i J - ~~ i + 1 - i ax 1 + i + 1 1 ay 1 1 Z 
j,k 

- ~~ [(Fj +1 - Fj ) ~~ j + (Gj +1 - Gj ) ~~ j + (Hj +1 - Hj ) ~~ j J. 
l,k 
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- ~~ [(Fk+1 - Fk) ~~ k + (Gk+1 - Gk) ~~ k + (Hk+1 - Hk) ~i kJ . . )' • 

1 ,J 
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This algorithm is applied for a time step by passing through a 

data base consisting of the state v'ariab1es (p, pu, pv, pw, pe) and 

the transformation data and applying the predictor step. The corrector 

step is applied with the output of the predictor step, and the old 

state variables in the data base are replaced with the new values. 

The algorithm is repeated until a steady state solution is reached or 

an otherwise chosen stopping point is reached. 

3.1.2 MacCormack Time-Split Technique 

The split algorithm consists of a predictor and corrector step 

for each coordinate direction. Consequently, a predictor and corrector 

step for a coordinate direction is called an operator for that direc-

t ion (i. e. , L
d

• t. (time step)). A time step is completed in 
1 rec lon 

this algorithm with the application of each operator applied sym-

metrically about the operator for the coordinate direction of primary 

flow. That is, for the corner flows studied herein 

un+1 
i ,j ,k = 

n u .. k 
1 ,J , 

where 
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For the spike-nosed body flow 

where 

Each operator is defined by an output state solution Uout for a 

given input state solution Uin • Therefore, 

where 

Predictor step: 

in t- tt;. ~ ) t-t;." (G G ) at;. " o - U 1" , J" ,k - -V F i - F i - 1 ax 1 + i - i - 1 ay 1 i,j,k - <, 
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Corrector step: 

uout = 1 luin + IT - !1Atf [(F'.+l - F.) a(. i 
i,j,k 2 ,i,j,k i,j,k us , ax 

L (!1t ) = Uout 
n n i ,j , k 

\'/here 

Predictor step: 

+ (H j - H j -1) ~i jJ 
i , k 
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Corrector s~: 

Uout = 1 u in + IT _ --1l (F F ) an . 
(

lit [ 
i,j,k 2 i,j,k i,j,k lin j+l - j ax- J 

Lr(lIt r } = uout 
~ ~ i,j,k 

where 

Predictor step: 



78 

Corrector step: 

uout = 1 (u in 
+ IT - ~~ [(Fk+l - Fk) ~xz; k i,j,k 2 i,j,k i,j,k u~ a 

The unsplit algorithm requires only one pass through the data base per 

time step while the split algorithm requires several passes through the 

data base per time step. When the data base exceeds the primary stor­

age capacity of the CYBER 203 computer a time penalty is imposed when 

data is called from secondary memory. However, a data management pro-

cedure has been implemented to minimize the penalties associated with 

the use of secondary memory. 

It has been noted that the MacCormack algorithms are second order 

accurate. Forward and backward differences are applied such that after 

the predictor and corrector steps are completed an effective central 

difference approximation is obtained [3J. This is demonstrated with 

derivatives of velocity components required in the viscous stress 

terms. Consider 

au au au 
a~' an and ~ 
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For a predictor step: 

Uj _1) , .£!! =(Uk+1 - Uk- 1) ; 
.. a~ . a6~ . . 
1 ,J 1 ,J 

Ln 

au _ (Uj +1 - Uj ) 
an - 6n i ,k' 

L~ 

~~ . (Uk+!,- Uk)i,j' ~~. (Ui+~fi~ Ui-1)j,k' 

For a corrector step: 

~ = (Uk+ 1 - Uk- 1) . 
a~ 26~ . .' 

1 ,J 

~ = (Uk+1 - Uk- 1) . 
a~ 26~ " ' 

1 ,J 
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The unsplit and split MacCormack algorithms are time step stabil­

ity limited, and there is no complete stability analysis to indicate 

the maximum allowable time step. A conservative time step employed by 

Shang and Hankey [3-4] has been used. This time step is 

tJ.t < min [JQl + ~ + ~ + C - tJ.x tJ.y tJ.z 

where 

c - local speed of sound, 

_1_ + _1_ + _1_ 
tJ.i tJ.y2 tJ.z2 ]

-1 

A point that must be considered in the application of the 

MacCormack algorithms to viscous compressible flow with strong shock 

waves is the inclusion of terms to dampen oscillations in the region of 

a shock. A pressure dampening term suggested by MacCormack [31] is 

included in the finite difference approximation to the equations of 

motion. This term is 

-CintJ.tno~ ~~ 
JV JV JV OUR, 

where 

au 
a0R, 

R, = 1,2,3 
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3.2 Application of Vector Processing to the Computational Technique 

The MacCormack time-split algorithm has been programmed to run on 

the CDC STAR-lOa and CYBER 203 computers. The program called the 

fJavier-Stokes solver was first written in STAR FORTRAN and is described 

by Smith and Pitts [32]. The program has since been written in the 

SL/l language [20] where 32-bit arithmetic is used to increase the com­

putational speed and incore storage. 

3.2.1 Vector Processing Using the CYBER 203 Computer 

The CYBER 203 is a vector processing computer capable of achieving 

high result rates when a high degree of parallelism is present in the 

computation. When an identical operation is to be performed on consecu­

tive elements in memory, a vector instruction is issued to perform the 

operation. Each vector instruction involves a time penalty, called 

vector startup, regardless of the length of the vector. As the length 

of the vector increases, the operation becomes more efficient since the 

penalty becomes relatively less important. 

The CYBER 203 has about one million words of primary memory with 

virtual memory architecture. Memory is referred to as pages. The two 

page sizes on the CYBER 203 are IIsmallll pages which are 512 64-bit words 

and 1I1arge il pages which are 65536 words or 128 small pages. A user can 

have access to about 15 large pages in primary memory at anyone time. 

The movement of data from secondary memory into primary memory involves 

moving pages of data in and out of primary memory. This is called a 

IIpage fault ll and involves a startup time and transmission time just as 
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vector operations do. It then becomes important to make the most 

efficient use of the data when it is in primary memory in order to 

avoid a situation where the machine is spending more time moving pages 

of data in and out of primary memory than it is spending on actual 

computations. This is often referred to as IIthrashing." Storing the 

data for a large data base program, such as a three-dimensional 

Navier-Stokes solver, in a conventional manner could very possibly 

lead to this situation. If, however, you design an interleaved 

data base [33] where the variables that are currently being used are 

stored together then it could result in less movement of "pages ll of 

data. 

A capability of the CYBER 203 architecture is half-word arith­

metic. This means that computation can be performed with 32-bit 

words and approximately two million 32-bit words can be stored in pri­

mary memory. The speed of computation is approximately twice that 

achieved with 64-bit operations. A high level programming language 

SL/l [20] is used to access the half-word capability. It is shown in 

the next chapter that for the MacCormack time-split algorithm 32-bit 

arithmetic is quite adequate and the computational speed and primary 

storage are approximately doubled as compared to FORTRAN version which 

uses 64-bit words. 

3.2.2 Program Organization and Data Management 

The Navier-Stokes solver is a derivative of a serial FORTRAN 

code which operates on the CDC-CYBER 175 and 7600 computers [2-3]. 
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Seven of the nine elements of the Jacobian matrix are programmed into 

the serial code and some redundant computation is performed to coexist 

with available memory. The Navier-Stokes solver is written in SL/l and 

maintains the MAIN program logic and time step calculations found in 

the serial code (Fig. 13). The operator calculations are redesigned 

around the vector architecture of the CYBER 203 computer. Also, all 

nine elements of the Jacobian matrix are included in the new code. 

Normally it may be thought that vector lengths should be equal to 

the total number of grid points and vector operations sweep through the 

entire grid with each variable dimensioned to the number of grid points. 

However, for the number of variables involved and the large number of 

grid points this leads very quickly to the IIthrashingli situation 

described earlier •. Instead, vectors are computed in planes in the 

~ directions (Fig. 14) with vector lengths approximately equal to the 

number of grid points in a plane. Temporary reusable vectors are main­

tained for three local planes and a four-dimensional array S(I,L,J,K) 

contains the five state variables and nine elements of the metric 

coefficient for each grid point. 

Forming S(I,L,J,K) is the essence of interleaving the data base. 

The index L refers to the 14 variables. The index I refers to the 

plane in the ~ direction and the indices J and K refer to the 

grid points in a plane. In this manner all variables for each plane 

are stored in contiguous locations. Computation proceeds from the 

first plane to the last plane for each operator. 
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In order to minimize the sweeps through the data base S(I,L,J,K}, 

the corrector step for a plane is performed as soon as enough planes of 

the predictor step are available (Fig. 15). Consequently for the 

application of each operator, there is one sweep through the data base 

and five sweeps for a time step. 

Within a ~ plane, a vector sweep is from the lower left hand 

corner to the upper right hand corner. The exact length, starting 

point, and end point of the vector is dependent on the operator and the 

direction of the finite differencing. Vector operations include 

boundary points where erroneous values are computed during a vector 

computation. The boundary condition subroutine is called to compute the 

boundary conditions and overwrite the erroneous values. 

The transformation data which consist of the nine derivatives of 

the computational coordinates with respect to the physical coordinates 

at each grid point are computed in a separate program and stored on a 

disk file. Once a geometry is established, the transformation data 

remains constant. It is read from the disk file by the Navier-Stokes 

solver and stored in the S array (L = 6 •.• 14). 

Externally the Navier-Stokes solver operates like the serial pro­

gram starting with some initial conditions and integrating with the 

finite-difference algorithm until "steady state" is reached, or the 

program is stopped. A restart capability is included so that a solu­

tion can be obtained in several runs with intermediate observation of 

the solution. 
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4. RESULTS AND DISCUSSION 

Assuming that the equations of " motion (Eq. (2.3)) are valid and 

that a finite difference technique (MacCormack time-split algorithm) is 

used to numerically solve them, the physical grid and its relation to 

the computational grid form the foundation for a solution. This chapter 

is aimed at establishing the ap'plicability of the "two-boundary tech­

nique" for grid generation by obtaining solutions to complex flow 

fields using transformation data derived from the technique. Also, the 

robustness of the MacCormack technique and the computational capabili­

ties of the CYBER 203 computer are demonstrated. 

The IItwo-boundary technique" is applied to two distinctly differ­

ent supersonic flow problems. In Chapter 2, relationships between the 

computational grid and the physical grids for a family of three­

dimensional corners and spike-nosed bodies are derived. The derivatives 

for the transformation data are also presented. In this chapter the 

transformation data and boundary conditions for the flows are applied 

in the Navier-Stokes solver. The three-dimensional corner flow 

fields are extremely complex with shock-boundary layer interactions and 

three-dimensional separation. The grids are concentrated near the solid 

boundaries and in the corner. The flow about the spike-nosed bodies is 

characterized by a strong bow shock and a highly separated region 

between the nose and shoulder. The grid is concentrated in this region, 

and the solutions are unsteady. The two flow problems are considered 

separately, and the grid characteristics are pointed out. 



89 

4.1 Supersonic Corner Flow Using Two-Boundary Grid Generation 

Supersonic flow about three-dimensional corners occurs in many 

high speed aerodynamic situations. Over the years there have been many 

experiments to study this flow phenomenon [34-38]. More recently there 

have been numerical experiments to compute supersonic flow about three­

dimensional corners. Inviscid corr.pressible solutions about planar 

three-dimensional corners have been obtained by Kutler, Shanker 

et al. [39-40] and Marconi [41]. Inviscid solutions, however, do not 

account for the strong inviscid-viscid interactions which occur. 

Asymptotic viscous solutions havr. been obtained by Weinberg and 

Rubin [42] and Ghia and Davis [43]. These solutions require extensive 

assumptions about the flow and also do not adequately describe the 

inviscid-viscid interactions. 

The solution of the compressible Navier-Stokes equations is the 

most conclusive way to compute supersonic flow about three-dimensional 

corners, and there are several published solutions. Shang and Hankey [3] 

using a time split MacCormack technique for the solution of the Navier­

Stokes equations simulated the flow about an asymmetric 150 wedge-plate 

corner at Mach number 12.5. This numerical simulation corresponds to 

the physical experiment of Cooper and Hankey [38J. For this simulation 

the largest computational mesh was 8 x 32 x 36. In a later numerical 

study Shang and Hankey [4] computed a turbulent flow about a sym-

metric 9.480 planar corner at Mach number 3. 

Hung and MacCormack [44] computed supersonic laminar flow about 

a 100 asymmetric planar corner preceded by a rectangular corner. They 
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used a time-split MacCormack technique where the conventional two-step 

scheme is used in the Lx operator and in the Ly and Lz operators 

in the regions far from the solid boundaries. In the inner regions 

the Ly and Lz operators are further split into hyperbolic and 

parabolic operators for the inviscid and viscous terms. Later Hung 

and MacCormack [45] extended the code for the accelerated technique to 

compute turbulent flow, and Horstman and Hung [46] studied several 

planar turbulent corner flows. 

Most published discussion on supersonic flow about three-dimensional 

corners including that mentioned above has dealt with planar intersecting 

boundaries. This means that rectangular coordinates or a simple trans­

formation have been used. Herein, both planar intersecting and planar­

cylinder intersecting corners are discussed. In Chapter 2, Equa-

tion (2.17), derived using the "two-boundary technique," relates a 

physical domain with wedge-cylinder boundaries to a computational 

domain. A plane-cylinder corner is formed by letting the wedge angle 

be zero and planar intersecting corners are approximated by letting the 

radii be very large. The transformation data obtained by differen­

tiating Equation (2.17) is used in the Navier-Stokes solver along with 

the boundary conditions discussed in Chapter 2. 

During this investigation many solutions with varying Mach number, 

Reynolds number, and grid size have been obtained. Portions of the 

following discussion have been presented by the author in [47]. The 

initial numerical experiment is the solution of the flow about a rec­

tangular corner (Fig. 5a) with a 31 x 31 x 31 grid. The velocity 



solution u/uoo at x/xL = .554 where the flow is two-dimensional is 

shown in Figure 16 and is compared with that presented by Hung and 

MaCCormack [44J. The Mach number is 3 and the Reynolds number is 
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2.78 x 105/m (7 x 103/ in .). The concentration of the grid based on 

Equation (2.17a) has a value of kl = k2 = 3.8. The agreement of the 

velocity with that of the reference is good. This initial solution is 

obtained on the STAR-100 computer with the FORTRAN version of the 

Navier-Stokes solver. The computational rate is 1.5 x 10-4 seconds per 

grid point per time step. The remaining corner flow solutions to be 

discussed have been obtained on the CYBER 203 computer and the SL/l 

version of the Navier-Stokes solver. The computational rate for the 

largest grid used is 4 x 10-5 seconds per grid point per time step. No 

significant degradation of the solutions using the small 32-bit word 

size observed. 

The next step in this experiment is to obtain the solution of a 

family of wedge-cylinder and wedge-plate corner flows using a 

20 x 36 x 36 grid. There are three planar corners with 0, 6, and 

12.20 wedge angles and three wedge-cylinder corners with the same 

wedge angles. Equation (2.17) has been used to define the grids and 

transformation data. The physical dimensions of the domain are shown 

in Figure 17, and the grid at x/xL = 1 are shown in Figure 7. The 

concentration parameter in Equation (2.17a) is 3.8. Two additional 

solutions for a planar 180 corner have been obtained--one with the 
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Reynolds number used in all other solutions, and the other with a 

Reynolds number equal to 3.9 x 106/m (1 x 105/ in .). The physical posi­

tion of the right boundary is moved further to the right because the 

effects of the shock are too close to the original position. The Mach 

number is 3.64 and the Reynolds number except for the one 180 planar 

wedge corner is 2.92 x 105/m (7.42 x 103/ in .). The free stream and 

body temperatures are respectively 217 K (390 R) and 607 K (1092 R). 

The fluid properties are for air. Solutions are started impulsively 

except for the one high Reynolds number solution and are run for 

approximately eight characteristic times for a steady state solution. 

For the high Reynolds number case, the initial state is that of the 

lower Reynolds number solution. A steady state is obtained through 

several increments until the higher Reynolds number is reached. 

Flow visualization is presented in the form of continuous tone 

density distributions and a combination of continuous tones and con­

tours for the temperature at x/xl = 0.83. These distributions are 

made for this document from color distributions obtained on the Dicomed 

Graphics System mentioned in the introduction. Velocity vectors (uxw) 

at the first grid point above the flat plate and cylinder surface are 

shown to indicate the direction of flow near the base surface. 

Velocity vectors (vxw) at x/xL = .83 are shown to indicate the cross­

flow velocity field. 

The primary observation from this experiment and others is that 

the flow is basically conical. Also, the wedge-cylinder flow fields 

for the cylinder radius used are very similar to the planar corners 



96 

for the same wedge angle. For the 0 and 60 wedge angle solutions, the 

zones of flow (Fig. 18) described by Charwat and Redekopp [34] are 

readily seen (Figs. 19, 20, 21, 22, and 23). That is, for a traverse 

plane of a symmetric planar corner, there is Zone I (a region of 

conical flow bounded by slip lines and the corner shock), Zone II (a 

region of complex flow bounded by slip lines and a strong internal 

shock), Zone III (an outer interaction region characterized by a com­

pressive fan centered at the triple shock intersection point), and 

Zone IV (undisturbed wedge flow). Figure 18 depicts the flow situation 

in a symmetric traverse plane. Charwat and Redekopp [34J also concluded 

that the flow structure remains qualitatively similar with change in 

Mach number for symmetric planar corners, and is distorted without 

losing its identity for asymmetric planar corners. The rectangular 

corner solution (Fig. 19) shows the zones of flow in a symmetric 

pattern. The plate-cylinder corner solution (Fig. 22) is very similar 

to the rectangular corner flow. The base surface curvature modifies 

the symmetry to some extent, but close to the corner the flow is 

almost identical. The temperature distributions for the rectangular 

corner and plate-cylinder are very orderly and follow the zones of flow. 

As predicted by Charwat and Redokopp [34] the 60 wedge corners 

show the zones of flow somewhat distorted (Figs. 20 and 23). Again the 

60 wedge-cylinder corner solution is very similar to the 60 planar 

corner solution. Also, the 60 corner solutions show two interesting 

characteristics that are observed in the larger wedge angle solutions 



but not observed for the 00 solutions. The crossflow velocity 

separates on the wedge surface about the internal shock. 
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The crossflow velocity separation is observed in all the non~zero 

wedge angle cases computed at Reynolds number equal to 2.92 x 105/m 

(Figs. 10,21, 23, 24, and 25). The second characteristic is the high 

crossflow velocity near the flat plate or cylinder surface under the 

internal shock. This phenomenon is observed on all the non-zero wedge 

angle solutions. 

Cooper and Hankey [38] performed experiments on a 150 asymmetric 

planar corner at Mach 12.5. They observed one triple point instead of 

the two observed by Charwat and Redekopp [34]. The numberical experi­

ment by Shang and Hankey [3J basically confirmed the one triple point 

observation. The 12.2 and 180 wedge angle solutions obtained at the 

low Reynolds number and described herein appear to show two triple 

points although highly distorted. The corner shocks are almost 

vertical. The high Reynolds number solution for the 180 wedge angle, 

however, indicates that there is only one triple point. In fact, the 

high Reynolds number solution is qualitatively very similar to that of 

Shang and Hankey [3]. The relevance of Reynolds number is discussed 

further at a later point. 

Korkegi [48J has described supersonic flow in three-dimensional 

corners and associates separation with the shock strength which is a 

function of the wedge angle. Both laminar and turbulent corner flow 

display the separation phenomenon, however, a larger shock strength is 

required to cause separation in a turbulent flow. Korkegi [48] 
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describes three-dimensional separation as a line along which the flow 

lifts off a continuous solid surface and three-dimensional reattachment 

as a line of flow impingement on a continuous solid surface. Further, 

secondary separation can occur when the shock strength is sifficient 

for the reverse flow region to separate. The convergence and divergence 

of the uxw velocity vectors close to the surface indicate separation 

and reattachment. The 0 and 60 wedge angle corner solutions (Figs. 19, 

20, 21, and 23) show no strong indication of separation on the plate or 

cylinder surfaces. The uxw velocity vectors align themselves with 

the direction of the wedge inside the shock and align themselves some­

what with shock in the shock region. The 12.20 wedge corner solution 

(Figs. 21 and 24) show evidence of convergence of the uxw velocity 

vectors or separation, but divergence is not clear. 

The 180 wedge corner solution at the lower Reynolds number 

(Fig. 25) displays both the convergence and divergence of the uxw 

velocity vectors. Figure 26 shows the solution of the 180 wedge corner 

at a Reynolds number of 3.9x 106/m (l x 105/in.). The plate surface 

pressure (Fig. 27) shows the trough-like pressure variation described 

by Korkegi [48J as an indication of secondary separation. The 

interesting point about the 180 wedge corner is the effect of 

increasing the Reynolds number. Starting with the steady state solu­

tion for the low Reynolds number 180 wedge corner solution, the 

Reynolds number is gradually increased and a new steady state achieved. 

The velocity vectors are rescaled since the velocity is much greater 

in magnitude at the same relative position as the low Reynolds number 
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case. The grid is coarse for defin'ing the boundary layer, but the 

solution correlates better with physical experiments than the low 

Reynolds number solutions. Only one triple point is observed and 

separation, reattachment, and secondary separation are readily seen in 

Figure 26 and the surface pressure in Figure 27. Obviously the Reynolds 

number is a key parameter in the inviscid-viscid interaction in a three­

dimensional corner. 

From a qualitative point of view it is apparent that the grids 

generated with the "two-boundary technique" perform well for the low 

Reynolds number solutions. The surface pressure for the 0, 6, and 12.20 

wedge-plate and wedge-cylinder solutions are shown in Figures 28-29. 

The surface pressure for the 12.2° wedge-plate corner is later compared 

with a solution obtained for the same boundary geometry with a finer 

grid. 

4.1.1 High Resolution Grid Solutions 

It is implied in the above section that more grid points are 

needed to resolve the fine structure of supersonic flow about three­

dimensional corners at high Reynolds numbers. In this section three 

solutions at a high Reynolds number and one at a low Reynolds number 

are described where a 12 x 64 x 64 grid is used. The objective of the 

section is to present the most highly defined solutions within existing 

computational capabilities and further validate the use of the "two­

boundary technique." The coordinate transformation presented by Shang 

and Hankey [4J is used to compute the solution about a 12.20 symmetric 
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wedge-wedge corner (Fig. 30) at Mach 3.64 and Reynolds number 

3.9 x 106/m (1 x 105/ in .). The soiution is compared with the experi­

mental data obtained by Charwat and Redekopp [34J. Using the Shang-

Hankey transformation which can also be derived with the IItwo-boundary 

technique ll and letting one of the wedge angles be zero, the solution of 

the flow about a 12.20 asymmetri c wedge corner oj s obta i ned wi th the 

12 x 64 x 64 grid. A 12 x 64 x 64 grid is generated using Equation 
o 

(2.17) and a solution is again obtained for the flow about the 12.2 

asymmetric corner. The procedure for obtaining solutions at the high 

Reynolds number is to first start the solution at a low Reynolds number 

and increment to the larger value. The flow conditions are changed on 

the upstream plane and are integrated downstream. 

The transformation used in [4J is 

E;, :: x/xL (3.1a) 

n :: 1 ,Q,n [1 + (ek - l)(.l - tan 1 (3.1b) ow) y] 
k x L 

c: :: 1 ,Q,n [1 + (ek - 1)(~ - tan 1 (3.1c) 8) z] . 
k x L 

This transformation can be derived with the "two ... boundary technique ll 

where 
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Equation (3.1) is the inverse of Equation (3.2). This transformation 

applies only to corners formed from planar intersecting boundaries, and 

the transformation data is derived directly by differentiating ~, n, 

and ~ with respect of x, y, and z. 

The solution obtained with a 12 x 64 x 64 grid and Equation (3.1) 

for a 12.20 symmetric wedge corner is shown in Figure 31-34. The 

density and temperature distributions show the zones of flow described 

by Charwat and Redekopp [34J. In this solution, the slip lines are 

very well defined. The line contour plot (Fig. 32) and the surface 

distribution of the density (Fig. 33) also shows the zones of flow and 

the rapid change in density associated with the slip lines. The slip 

line definition is not ~s apparent for the rectangular corner solution 

shown in the previous section. No crossflow separation is observed, 

which is the case with the rectangular corner. The position of the 

shock structure from [34J is superimposed on the density contour plot 

(Fig. 32) and the agreement is good. In [34J the shock structure is 

not perfectly symmetric, and only the upper half is used for comparison. 

The surface pressure in Figure 34 shows the comparison of the Navier­

Stokes solution with Charwat's experiment [34J. The plateau, dip, and 

overshoot described by Korkegi [48J occur at nearly the same position. 

There is, however, some disagreement in the pressure magnitude. The 

Navier-Stokes solution is on the low side. There is pressure dispersion 

in Charwat1s data [34J but the pressure magnitude is still larger than 

that obtained in the Navier-Stokes solution. Two possible sources for 

this difference are (1) the Reynolds number may not be exactly the same 
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in the numerical and physical experiments~ or (2) the pressure damping 

in the numerical technique may be retarding the pressure magnitude. 

The plateau region (Fig. 34) is associated with the relatively low uxw 

velocity vectors in Figure 31 and the separated region. The separation 

line is under the plateau near the undisturbed flow and reattachment 

occurs at the high pressure rise and where there is corresponding large 

velocity vectors. 

The dip in the pressure curve is associated with secondary separa­

tion as described by Korkegi [48J. This secondary separation region is 

shown in the density contour plot (Fig. 32) and there are closed con­

tour lines which indicate vortical motion as described by Watson [37J. 

However, the author has 'not observed vortical motion in the velocity 

data. 

It is evident that the 12 x 64 x 64 grid derived from Equation 

(3.1) allows for the definition of the fine structure of the flow. The 

solution obtained with the Navier-Stokes solver is in good comparison 

with the corresponding experiment. The possible concentration of more 

grid points in the secondary separation region may be desirable but 

would not work well with Equation (3.1) because of its exponential 

characteristics. 

Following the solution for a symmetric planar corner flow, super-

sonic flow about an asymmetric corner is obtained by letting the wedge 

angle ~w in Equation (3.1) on the bottom surface be zero. The wedge 

angle 8w remains 12.2° and the 12 x '64 x 64 grid for this corner is 

generated with Equation (3.1). The Navier-Stokes solver is applied 
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with the transformation startj 5i with a low Reynolds 

number and incrementing to 3.9 x 10b/rn. The solution is shown in Fig-

ure 35-38, but is not compared to a physi experiment. The solution 

obtained with a grid generated using Equation (2.17) is compared to 

this solution. 

For the asymmetric corner and the 12 x 64 x 64 grid only one 

triple point is observed. However$ the internal shock from the wedge 

generates a very similar flow pattern as in the symmetric corner near 

the bottom surface. The pattern is, however, closer to the wedge sur­

face since there is no corner shock. The crossflow separation is 

observed at the high Reynolds number but is relative weak compared to 

the lower Reynolds number solutions. 

Equation (2.17) is used to'generate a 12 x 64 x 64 grid with the 

previously used physicalrlirOOtlstons and contraction parameters 

kl = k2 = 2.9. The transformation data for the grid is applied in the 

Navier-Stokes solver in the same manner as before. The surface pressure 

for the solution at Reynolds number 2.92 x 105/m is shown in Figure 39 

and compared with that obtained with the 20 x 36 x 36 grid. The agree­

ment is good where the grid is dense and the solution at Reynolds 

number 3.9 x l06/m is obtained through a series of increments. This 

solution is presented in Figures 40-43. The surface pressure in 

Figure 43 is compared to that obtained with the grid defined with 

Equation (3.1). Overall the agreement is good. One point that is 

noticed, however, is that the shock i.s more smeared in the solution 

obtained with the transformation data from Equation (2.17). This is 
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Fig. 35 Flow field description for a 12.20 asymmetric corner 
(12 x 64 x 64 grid-exact boundaries) 
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Fig. 37 Perspective view of distribution of density for 
12.20 asymmetric corner x/xL = .8 (12 x 64 x 64 grid -
exact boundaries). 
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Fig. 40 Flow field description for a 12.20 asymmetric corner 
(12 x 64 x 64 grid - approximate boundaries). 
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Fig. 42 Perspective view of distribution of density for 
12.20 assymmetric corner x/xL = .8 (12 x 64 x 64 grid -
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attributed to the growth of the transverse mesh distribution in the 

windward direction. Using Equation' (3.1) there is a very fine grid 

upstream and the grid becomes coarser with the expanding flow down­

stream. Using Equation (2.17) the grid is coarse upstream and is finer 

at the downstream positions. 

It is concluded that the "two-boundary technique" in viable for 

computing grids about three-dimensional corners where the Navier-Stokes 

equations can be applied to compute supersonic flow. It is noted, how­

ever, that if only planar intersecting corners are of interest, Equa­

tion (2.17) is not the optimal application of the technique. Planar 

intersecting corners are approximated using Equation (2.17). Neverthe­

less, the "two-boundary.technique" is highly versatile and affords a 

great deal of flexibility. 

4.2 Supersonic Flow About Spike-Nosed Bodies 

Spike-nosed configuration occurs in many supersonic flow situa­

tions. Unlike the three-dimensional corner flows that are studied 

herein, the flow fields about spike-nosed bodies can be highly unsteady. 

The unsteadiness manifests itself as self-sustained oscillations which 

have been observed for a wide variety of shear-layer impingement con­

figurations [49J. Two spike-nosed bodies are examined in this section: 

(1) a body with a small nose length to should height ratio (0.71); and 

(2) a body with a large nose length to shoulder height ratio (2.14). 

These two configurations have been examined by Shang, Hankey, and 

Smith [50J. The first two authors posed the problem and this author 
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applied the IItwo-boundary technique" to generate the grids and obtained 

the initial solutions with the Navier-Stokes solver. The emphasis 

herein is on the application of the "two-boundary technique" for grid 

generation about the spike-nosed bodies. The "two-boundary technique" 

has been used to generate grids using a linear approximation to the 

body surface, a circular arc outer boundary, and a linear connecting 

function. A parabolic algebraic function and an exponential function 

are used to concentrate the grid in the nose shoulder region. The 

details of the application of the "two-boundary technique" to these 

geometries are developed in Chapter 2 along with the derivatives for 

the transformation data. The three-dimensional Navier-Stokes solver 

is used to obtain the numerical solutions to the flow fields. For 

these solutions the z-coordinate direction is the windward direction. 

An axisymmetric solution is obtained by the rotation of the grid about 

the z-axis and solving the three-dimensional equations of motion. The 

argument for this approach rather than developing an axisymmetric 

solver is the considerable time savings compared to the programming a 

specific code for this problem. These solutions demonstrate the versa­

tility of the Navier-Stokes solver. 

4.2.1 One-Half-Inch Spike-Nosed Body 

The spike-nosed body with the small ratio of nose length to 

shoulder height has a nose length of 12.5 mm (0.5 in.) and a shoulder 

height of 19.05 mm (0.75 in.). The boundary surface for this body is 

shown in Figure 9 and the grid generated with the "two-boundary 



132 

technique" is shown in Fi gure 11. The data used to generate the gri d 

is found in Table 2. Figure 44 shows the density distribution of the 

developing flow. A relatively low density region compared to the sur­

roundings develops at the top of the nose and later sheds off the 

shoulder. After this point only low amplitude oscillations occur in 

the nose-shoulder region. Plots of pressure along three lines of the 

grid (Fig. 45) are shown after 4000 time steps in Figures 46-48. 

Two modifications to the data for generating the grid for the one­

half-inch spike-nosed body are performed and the solutions recomputed. 

The objectives of the modifications are to assure the validity of the 

grid generation technique. 

The first modification is a change in the concentration of grid 

points. The new grid is obtained by making the constant k = 3 instead 

of 2.2 in Table 2. This means that there are fewer grid points to 

define the shock in the radial direction and more points near the inner 

boundary. Figures 49-51 show the pressure comparison with the original 

case at the 4000th time step for the three lines. The second modifica­

tion moves the outer boundary closer to the inner boundary concentrating 

more points in the shock region. The radius of the circular arc defining 

the outer is changed from 13.26 mm (0.522 ft) to 12.55 mm (0.494 ft) and 

the constant k is set equal to 1.75 so that the distance of the 

nearest grid point to the inner boundary is approximately the same as 

that in the original case. Figures 52-54 show the density comparison 

with the original case and the first modification. It is seen from the 

plots that there is overall good agreement. The differences that exist 
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are due to the grid spacing in the shock region and inner boundary 

region. The shock is more smeared when there are fewer grid points in 

that region and the placing of grids points closer to the inner boundary 

affects the accuracy there. No attempt is made here to analyze the low 

amplitude oscillation for the one-half-inch spike-nosed body_ It is 

seen that the perturbed grids produce good agreement with the original 

case and, this is an indication that the grid generation technique is 

viable for this application. 

4.2.2 One and One-Half-Inch Spike-Nosed Body 

The spike-nosed body with the large ratio of nose length to 

shoulder height has a nose length of 38.1 mm (1.5 in.) and a shoulder 

height of 19.05 mm (0.75' in.). The body surface for this configura­

tion is shown in Figure 10 and the grid generated with the "two­

boundary technique" is shown in Figure 12. Table 3 contains the data 

used to generate the grid. Table 3 is the same as Table 2 except the 

nose length is one inch longer and the outside circular arc is longer. 

The Navier-Stokes solution for this grid and initial conditions pro­

duces high amplitude oscillation. The characteristics of the oscilla­

tion can be seen from experimental observation. Figure 55 shows a 

sequence of shadowgraph pictures [51J of a spiked-nosed body flow 

field in one cycle of oscillation. After the initial transient, the 

bow shock interact with the shock from the shoulder near the top of the 

shoulder. A strong reverse flow occurs between the shock and the 

boundary forci ng the shock to bul ge ou't. Wi th the shock bul ged out, 
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Fig. 55 Shadowgraphs of oscillating flow field. 
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the high energy fluid behind the shpck along with shock is forced 

downstream by the outer flow until the bow shock again interacts with 

shoulder shock. The cycle r'epeats itself. This phenomena is also 

shown by Harney [52J for blunt nosed bodies which is approximated by 

the one and one-ha1f-inch spike-nosed body. Widhopf [53J has shown 

the oscillating phenomena over indented nose tips while numerically 

solving the Navier-Stokes equations. Figure 56 shows a sequence of 

density distributions for one cycle taken from the numerical solution. 

The phenomenon described above is observed in the numerical solution of 

the flow about the one and one-half-inch spike-nose body. The cycle 

repeats itself and maintains its form. The oscillation phenomenon is 

independent of Reynolds number [50J but is dependent on the speed of 

sound which in turn depends on the free stream temperature. The pri­

mary frequency is 3100 cycles/sec where the free temperature is 217 K 

(290 R). In [51J using a Reynolds number of 7.78 x 106/m and free 

stream temperature of 111 K (200 R) a lower primary frequency of 

2665 cycles/sec is observed. The pressure at approximately point 29 

(Fig. 48) and the observed pressure from an experiment conducted at the 

Wright-Patterson Flight Dynamics Laboratory are shown in Figure 57. It 

is seen in the figure that the wave form and frequency from the experi­

ment and the numerical solution are in good agreement. 

The IItwo .. boundary technique" for grid generation has been success­

fully applied for two spike-nosed bodies. The Navier-Stokes solver has 

produced unsteady numerical solutions for several initial conditions 
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with Reynolds numbers up to 7.78 x 106jm. Overall, the solutions that 

have been obtained simulate the observed phenomena very well. 

5. CONCLUS IONS 

An algebraic grid generation technique has been developed and 

explored in conjunction with the solution of the compressible three­

dimensional Navier-Stokes equations. The technique called the "two­

boundary technique" is simple to understand, easy to apply, and has a 

high degree of generality for the finite difference solution of complex 

flow field problems. The "two-boundary technique" allows direct control 

of a grid and direct computation of the Jacobian derivatives. 

The viability of the grid generation technique is demonstrated 

through the development and application of a Navier-Stokes solver which 

operates on the CDC CYBER-203 vector computer. The computer program is 

based on a MacCormack time-split technique which is chosen because of 

its compatibility with vector computer architecture. The finite differ­

ence algorithm is written in the SLjl programming language, and the 

32-bit word length arithmetic and storage option is used. This option 

doubles the number of grid points that can be used for a given amount 

of memory and approximately doubles the computational rate as compared 

to the normal 64-bit words. Using SLjl and the halfword option the 

computational rate is 4 x 10-5 seconds per grid point per time step, 

and solutions with 5 x 104 grid points can be obtained without using 

secondary memory. It is concluded from the numerical experiments 

presented in the present study that the 32-bit word length is adequate 
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when solving the Navier-Stokes equations for supersonic laminar flow 

using an explicit MacCormack technique. 

Complex supersonic flow field solutions are obtained for two dis­

tinctly different geometries using the IItwo-boundary technique ll for 

grid generation and the Navier-Stokes solver. First, supersonic flow 

solutions about a family of three-dimensional corners are obtained . 
. , 

These flow fields reach a steady state but are characterized by strong 

shocks and three-dimensional separation. The Mach number is 3.64, 

Reynolds numbers are 2.72 x 105/m and 3.9 x 106/m, and the fluid proper­

ties are for air. It is shown that the solutions obtained agree well 

with physical experiments and other numerical experiments. Also, 

corner flow solutions with 5 x 104 grid points are among the most 

refined Navier-Stokes solutions obtained to date. The second flow 

situation is supersonic flow about spike-nosed bodies. In this case, 

the flow is axisymmetric, unsteady, and characterized by a strong bow 

shock and massive separation. The Mach number is 3 and the Renolds 

number is 7.78 x 106/m• The numerical solutions show dramatically the 

oscillating flow generated by the interaction of the bow shock and 

shoulder wall of the body. The surface pressure and oscillation fre-

quency compare very well with corresponding wind tunnel experiments. 

The successful numerical solution of the flow fields support the primary 

conclusion that the IItwo-boundary technique ll is viable for generating 

grids for complex flow field solutions. Also, for the spike-nosed 

bodies, considerable development time for a specialized axisymmetric 

code is saved. 
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Plans for the use of the "two-boundary technique" include develop­

ment of grids with wing-fuselage boundaries, analysis of non-orthogonal 

grids, development of additional spike-nosed body grids, and the 

development of numerical grid control functions. 
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