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ABSTRACT

Frequency-domain methods are used to study the angles of arrival and
departure for multivariable root loci. Explicit equations ire obtained.
For a special class of poles and zeros, some simpler equations that are

generalizaticns of the single input-single output equations are presented.
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1. Introduction

The study of the angles of arrival and departure for multivariable root
loci began only recently, It has proceeded using two differert approaches:
the state-space approach used by Shaked, [3] which involves computationally
arduous spectral decompositions of matrices; and the frequency-domain approach
used by Pcstlethwaite [2], which involves the use of a Newton diagram to ob-
tain a series approximation of the loci near the pole or zero of interest.,

In this paper we take the frequency-domain metiiods of Postlethwaite and
develop them further to obtain more detailed results., It is shown that, sub-
ject to certain conditions, multivariable root loci depart from poles and
arrive at zeros in Butterworth patterns‘whose orders come frim the McMillan
indices of the transfer-function matrix G(s) at the pole or zero in question.
Explicit equations for these angles, requiring only the evaluation of poly-
nomials at the pole or zero in question, are obtained, We also define a
special class of higher-order poles and zeros for which much simpler
equations may be used, These simpler equations turn out to be generali-
zations of the single-input-single-output (SISO} root locus equations,

The problem considered is the standard root locus set-up, in which a
system represented by the transfer-function matrix G(s) is placed in a feed-
back loop with a scalar gain k multiplying all channels, As k varies from
zero to infinity, the closed-loop poles vary, and the plot of these vari-
ations in the complex plane is the root locus. G(s) is an mxm rational
matrix function of the complex variables, and is assumed to have full rank

and be strictly proper.
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2. Background

The closed-loop poles are given by the solutions to

LN

- i i i -?
A(g,s)=det{gl-G(s)) = g - trG(s) g™! +2(§§1’;§;§§12’“;2°g§5) g"F

- (217 get G(s) = 0 (0

wheré g = -1/k. The multivariable root loci are thus branches of the alge-
braic function s(g); however, éor the purpose of determining the angles of
arrival and departure we may regard the root loci as analytic functions of
g. Multiplying (1) through by Am(s), the least common denominator of the non-
zero principal minors of all orders of G(s), we obtain

2(g,5) = A ()g™A_  (s)g" Tt 4 .. e A (s)g+A (s)=0 (2)
where the Ai(s) are all polynomials., The Ai(s) will figure extensively
in the results to follow. It may easily be shown (see Yagle [S],p.19) that,
excepting single-point loci, the poles of G(s) are the zeros of AmCs) and

the finite zeros of G(s) are the zeros of Ao(s).

The Newton Polygon

The Newton polygon is a graphical device that can be used to find a
series approximation to the function $@g,s) in the vicinity of a zero of the
function. It is discussed in detail in Walker [4]; here we merely give in-
structions for constructing the polygon associated to the functivn ¢(g,s)
around s=0,

a

(1) Write Ai(§)=bis i + (higher-order terms) for i=0.,.m

(2) Set up u and v axes and plot the m+l points

Pi=(p,v)=Ci,ai) , 2=0,...m.
(3) Join Po to Pm with a convex polygonal arc each of whose

vertices is a Pi and such that no Pi lies below the arc.



(4) For each pair of points Pi, Pk forming the endpoints of
a segment, compute the slope z of the segment and solve the
equation chj<+ckbk=0 for ¢, If there is another point

Ph on this segment, solve instead the equation chbh+ chj+ ckbk=0.

(5) A series approximation to ¢(g,s) in the vicinity of s=0 is

then gxes 2,

After obtaining this series approximation to 2 branch of the root locus,
we ray then compute its angle from Arg Eﬁﬂ. This is the method used by
Postlethwaite [2]. Although construction of a Newton polygon is not neces-
sary to employ any of the results of this paper, the Newton polygon is the

basis for all of the proofs givern in the Appendix,

3. Main Results

In this section we state the main result of this paper.

n, (s)
Definition. Let the Smith-McMillan form of G(s) be diag (;1(5) ,
m————ta i.

and let p by an nth-order pole, Let ki be the largest integer
such that (s-p)kj [ des) , j=1,...m. Then the {kj} are the

structure indices associated with the pole p, Note that

1)) =
C)&kj n, (2) kpk>.. k.

Structure indices for zeros are defined analogously. We may

now state:
Theorem 1 The root loci departing from an nth-order pole depart
generically in Butterworth patterns whose orders are the non-zero
structure indices of G(s) at the pole., For a pole p with non=zero

structure indices [kl,k ‘kr] the angles of departure are:
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dcn"kl"kzpqvo-ki)
1 Tk -Kym oK) Apn ()
e . . ® = Arg ds 27T
depart’llj k' dﬁiklyvon'k lj
o (s) =
i ds(n k1 ey 1) m i+l H] P_
. 360° .
i ,J’Ol,'l‘k l,i’l’ anqr Cu’)
if and only if the following conditions are met:
(1) k1 E kz oo, B kr (4a)
wll(p) “ie wlj(P)
(2) det | : £0,3=1,,.r1 (4b)

Wji(p) vee wjé(p)

where W(s) A V(s)U(s) and U(s) are unimodular matrices that trans-

form G(s) in its Smith-McMillan form, i.e.,

() on 8\ |
G(s) = U(s) diag E'TT . ""C'T V{s) (s)

For the angles of arrival we have;

Theorem 2 The root loci arriving at an nth-order zero arrive generi-
cally in Butterworth patterns whose orders are the non-zero structure
indices of G(s) at the zero. For a zero z with non-zero structure

indices [km-r’ . km-l’ km] the angles of arrival are:

d(n-km-km-l_ e -km-i) A (s) ]
arrival,i,j kg _; an-ky < .km'l*l) A, (E)
ds(n'ﬁn- .. =K e l+l) i s37
2 - [}
. j360 ‘ ;
kmqi » JSO,l, XX} km'-'i-l » 1‘30,1, ey T C.6)
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if and only if the following conditions are met:

() Ky Bk Fo F R (73)

wll(z) N wl.(z)
(2) det '

wjl(z) ces wj.(z)

£0, jmmel,m-2, ,., m~r-1 (7h)

- e =03

o

where km+1 40,

Proofs: See Appendix.

It should be noted that whether or not the conditions (4a) and (7a) hold,

the orders of the Butterworth patterns are given by the structure indices as
long as conditions (4b) and (7b) or similar conditions (see Appendix) hold.
It is not clear that these conditions hold generically; however, it has been
shown (Byrnes and 3tevens [1]) that a necessary and sufficient condition for
the Butterworth pattern orders to be given by the structure indices is for
certain matrices arising in the block-diagonalization of G(s) to have simple

null structure. This imples that the conditions (4b) and (7b) are generic.

The following example illustrates the application of Thoorems 1 and 2.

Example: Compute the angles of depurture for the root locus of

‘52 + 8s + 17 53 + 1052 + 33 +
6(s) = L > s> + 9s% + 255 + 17 25% + 2157 + 78s°
s’ + 45 + 85° + 8s + 4
L
It is straightforward to compute
8(g,s) = (s° + 65> + 18s% + 3257 + 365° + 245 + 8)g°
~2s% + 25 s° + 125 s* + 325 3 « 493 §% + 420 5 + 170)g

2
+(s* + 1655 + 9852 + 2725 + 289) = 0

and to obtain (from AZCS))the third-order poles -1 £ j, The structure

R N N 7 UL Y SR PP TP Ar O CEPR: - UE s b S sl SR R )
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indices for these poles are [2,1], and the condition (4b) is indeed
satisiied. Thus loci depart from the pole -1+j in a second-order and a

first-order Butterworth patterns with angles

1265 + 1255 + 500s° + 9755% + 986 + 420]

o] s HArgl— =
depart, 1 Sary 120s° + 3608 + 4325 + 192 ls--1+j
- [-]
+ ni?O , n=0,1
= 61.8° , 241.8°
o v gl st 168® ¢ 98s% + 98s® 4 2725 + 289
depart,? el 5 4 3 2 .
128 + 1255 + 500s” + 975s8° + 986s + 420|s= =-1+j

= 33.7°,
By symmetry, the angles of departure from the pole -1-j are -61,87,

118.2°, and -33.7°.

4, Simple Poles and Zeros

For a special class of poles and zeros the angles of arrival and depar-
ture may be computed more readily using the following theorems instead of
Theorems 1 and 2.

Definition: An nth-order pole is said to be simple if its structure

indices are [n,0, ... 0].

A similar definition applies for nth-order zeros. We now have:

Theorsm 3 Let the Laurent expansion of G(s) at an nth-order pole

p be .

1 1
G(s) = G, * ovs * === G_ + G+ 4, (8)
(s_p)n n (s-p) 1 0

Then, the pole p is simple if and only if tr G_n is non-zero, and the

angles of departure from p are

1 i360° . ]
Gdepa_.rt = EAI; [-tr G-n]+.JJ_n._. H J=O’1) vy o fl=
s wzn0
= %Arg ['(S'P)n tr G(S)‘ - ]-&-liép—- , j=0,1, ,.n-1, (9)
s=p n
-6
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Theorem 4 Let z be an nth-order zero of G(s), and let the

Laurent expansion of G'l(s) at z be

67Hs) meghpyn Mo+t ey Myt H Y (10)

Then, if and only if tr H-n is non-zero, the zero z is simple and
the angles of arrival at z are

' me 10
"ago ,» j=0,1, ., n-l

1
Oarrival ™ 7 T8 [tr H-n] *

f - YL
= %Arz L(s-z)n tr G 1C5)ls-z]"£6_0- .

n

j=0,1, ... n-1, (11)
Proofs: See Appendix.
For the case of me=2, we may simplify (11) by noting that in this

case we have

-1 tr G(s
tr G 7 (s) = et G(s) (12)
so that (1l) becumes
1 n tr G(s) jSéO“
Oarrival = & T8 [(5'21 det G(s) s-z] * 4 ’
j=0,1,,.n-1. 3)

Although Theorems 3 and 4 are easier to employ than Theorems 1 and 2,
the most interesting thing about them is that they are striking generali-
zations of the SISO root locus equations for computing the angles of arrival
and departure. The only difference is that the trace of the multivariable
transfer function matrix is substituted for the SISO scalar transfer function.
Note that this generalization is observed only for simple poles and zeros,
since in the SISO case all higher-order poles and zeros are simple, while in
the multivariable case only some ave.

Further results are available for the case of first-order poles. It is
easy o show (see [5],p.51) that the conditions for Theorems 1 and 3 are equi-
valent, i.e., tr G-l is non-zero if and only if wll(p) is non-zero. If this
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condition does not hoid, we may use the following theorem:
Theorem 5 Let the Laurent expansion of G(s) at a first-order
pole p be (8). Then if
(1) ez G =0, (2) tr (G-lco) £0
the angles of departure from p is

edepart = Arg[tr(G_lGQD] (14)

and the root locus branch departs as kz (a M-order departure).

Proof: See [5], p.52.

§. Conclusion The behavior of the angles of arrival and departure for
multivariable root loci has been studied from a frequency-domain point of
view, and explicit equations for these angles have been obftained. Simpler
equation; are available for the case of '"‘simple"” higher-order poles and
zeros, and it was noted that these equations are generalizations of the'
SISO root locus equations for angles of arrival and departure, All of these
results depend on some genericity conditions, For first-order poles an
equation for the angle of departure was given for a case wherein these
conditions are violated. More work needs to be done in clarifying these
assumptions, interpreting them, and obtaining equations for angles in cases

where these assumptions are violated,
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Appendix

Proof of Theorem 1| We shall prove Theorem 1 by first cochstructing the

Newton polygon, and then using it to obtain the angles of departure. A more
detailed proof is given in [5].
From (1) and (5) we have

(s)
A(g s) = detQ;I G(s))ndet(gl UCs)diag(a-;-CiT) V(s))

ni(s) .
= detigl - diag B-;-C—)- W(s) (15

so that the coefficients of (2) may be written as

he principal minors of order
RORYROISIDY h, Cs)
h of diag TT"' W(s)

. _ n,(s) corresponding
= A,(5) C’l)hz(i )(princxpal , hal .. .m 16)

1 "'3’h j (s)/\minor of W(s)

where we have used the Binet-Cauchy Theorem in (16)
Now let p be an nth-order pole with non-zero structure indices

[kl,kz,...kr], and assume that p iIs not a single-point locus. Then we may

write
Ap(s) = (s=p)" K (s) , A (p) # 0 an
X, .
d;(s) = (s-p)'i aics), d;(p) #0, i=sl...m (18)

and substituting these into (16) we get

A p(s) = (e-p) MR R sy (- 1)h “1(5)-° ms) |
dhCS)
w,.(s) ... wo (s) higher-order terms a
det %l lh; .,.( in s-p ),hl,.,m

wep(8) .. Wi (5 as)
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(recall - that klgyzg_... gﬁm). Since niC}l and di(§2 ar2 relatively prime,
n, (p) # 0 for iml.,,r. It should now be evident from {19) that the Nswton
polygon will take the form given in Fig., 1 if and only if the conditions (4a,
4b) are satisfied. Noce, that if for example kl'kz’ then (4b) is replaced
by the concition

n, (p) Ny (P)
rg;- W1 (P) + == L® Wao (PIFO (2]

which we would still expect to be true in general,

From the Newton polygon we may approximate the root loci depart-

ing from p by the series

k ® ¢y (s-p)*i, dsl...x e

where the coefficients ¢y solve

('ci) t-1 bi-1+(-ci)i b, = 0 (22)
and where bi is defined from

| -ky-...-k,) , (higherord
Apoi(8) = by (s-p) (WKL7er oKy ( z eriﬁrsef;) (23)

It should be evident from (21) that the doparting loci are grouped into
Butterworth patterns with orders (ki, i=1,,.r}. The coefficients b; may be
obtained from (23) by taking repeated derivatives, and this yields (3),
proving Theorem 1,

Proof of Theorem 2 This is essentially the same as the proof of Theorem 1.

The only difference is that we now use i=m, m-l1, ... m-r instead of

i'l, 2, v Lo

-11-
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Proof of Theorem 3

Taking the trace of (8) and using (17), we have
L Apay(s) m -A(s) tr G(s)

= -(s-p)" R _(8) ((—-L—n tr G_ + ;-.)

S-p)

~ higher-order
= -A (s) tr G "'(terz.-ms in s-p)

(24)
and if tr G_n is non-zero Theorem 3 follows immediately from Theorem 1,
Proof of Theorem 4 The main diagonal elements of G'ICs) are the principal

minors ¢f order m-1 of G(s) divided by det G(s).

- ~(principal minors of _1ym-1
Al(_s) Amc‘ﬂz(order m-1 of G(s) ) (-1)

So we have

=A (s)det G(s) Z(main diagonal elements of G'l(s)) (-l)m'1
x -A (s) tr G (s) (25)
and the rest of the proof parallels the proof of Theorem 3.
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Figure 1, Newton Polygon for the Angles of Departure
in the Generic Case,

ORDER OF Am-j(s)
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