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ABSTRACT

Frequency-domain methods are used to study the angles of arrival and

departure for multivariable root loci. Explicit equations .ire obtained.

For a special class of poles and zeros, some simpler equations that are

generalizations of the single input - single output equations are presented.
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1. Introduction

The study of the angles of arrival and departure for multivariable root

loci began only recently. It has proceeded using two different approacres

the state-space approach used b y Shaked, [3J which involves computationally

arduous spectral decompositions of matrices; and the frequency-domain approach

used by Postlet:hwaite [2], which involves the use of a Newton diagram to ob-

tain a series approximation of the loci near the pole or zero of interest..

In this paper we take the frequency-domain methods of Postlethwaite and

develop them further to obtain more detailed results, It is shown that, sub-

ject to certain conditions, multivariable root loci depart from poles and

arrive at zeros in Butterworth patterns whose orders come fr-= the McMillan

indices of the transfer=function matrix G(s) at the pole or zero in question.

Explicit equations for these angles, requiring only the zvaluation of poly-

nomials at the pole or zero in question, are obtained, We also define a

special class of higher-order poles and zeros for which much simpler

equations may be used. These simpler equations turn out to be generali-

zations of the single-input-single-output (5ISO) root locus equations,

The problem considered is the standard root locus setrup, in which a

system represented by the transfer-function matrix G(s) is placed in a feed-

back loop with a scalar gain k multiplying all channels, As k varies from

zero to infinity, the closed-loop poles vary, and the plot of these vari-

ations in the complex plane is the root locus. G(s) is an mxm rational

matrix function of the complex variables, and is assumed to have full rank

and be strictly proper.
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2. Background

The closed-loop poles are given by the solutions to

	

m	 m-1	 rinci al minors	 m-20(g,$)=det gI- G(.3)	 g - txG ( s) g	 *^(of order 2 of G(s)) g

	

+-1) m det G(s) = 0	 (l)

where g = -1/k. The multivariable root loci are thus branches of the alge-

braic function s(g); however, for the purpose of determining the angles of

arrival and departure we may regard the root loci as analytic functions of

g. Multiplying (1) through by Am (s), the least common denominator of the non-

zero principal minors of all orders of G(s), we obtain

,D(g,$)	 m (s) gm+Am-1 (s)gm-1 + ... + A1 (s) g+A0 Cs) =0 	(.2)

where the A i ls) are all polynomials. The Ai (s) will figure extensively

in the results to follow. It may easily be shown (see Yagle [5],p.19) that,

excepting single-point loci, the poles of G(s) are the zeros of %(s) and

the finite zeros of G(s) are the zeros of Ao ( ' s).

The Newton Polygon

The Newton polygon is a graphical device that can be used to find. a

series approximation to the function M(g,:,) in the vicinity of a zero of the

function. It is discussed in detail in Walker (4]; here we merely give in-

structions for constructing the polygon associated to the function ^(g,$)

around s=0.

(11 Write A(s)=b i s a  + (higher-order terms) for i=O...m

(2) .Set up u and v axes and plot the m+l points

	

Pi=(u,v) =(i,ai)	 =0,...m.

(3) Join Po to Pm with a convex polygonal arc each of t.vhose

vertices is a Pi and such that no Pi lies below the arc.

r
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(4) For each pair of points P i , Pk forming the endpoints of

a segment, compute the slope z of the segment and solve the

equation c^b j + ckbk-0 for c. If there is another point

Ph on this segment, solve instead the equation c hbh+ ci b j + ckbkno.

(5) A series approximation to ^Cg,$) in the vicinity of s-0 is

then gucs Z.

After obtaining this series approximation to a branch of the root locus,

we r°ay then compute its angle from Arg rids . This is the method used by

Postlethwaite [2). Although construction of a Newton polygon is riot neces-

sary to employ any of the results of this paper, the Newton polygon is the

basis for all of the proofs giver. in the Appendix.

S. Main Results

In this section we state the main result of this paper.
n. (s)

Definition. Let the Smith-McMillan form of G(s) be diag 
dl(s)

and let p by an nth-order pole, Let k  be the largest integer

such that (s-p) kj ( dj (s) , j=l,...m. Then the ( kj I are the

structure indices associated with the pole p, Note that

(l) -7k. - n,.(2) k l >k2> ... >km.

Structure indices For zeros are defined analogously. We may

now state.

Theorem 1 The root loci departing from an nth-•order pole depart

generically in Butterworth patterns whose orders are the non-zero

structure indices of G(s) at the pole. For a pole p with non-zero

structure indices [kl,k2,,.,kr] the angles of departure are:

-3-
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d(n-kl-k2^... -ki)
^	 (s)

Qde art i	
Arg	 ds nrk

1 -kl) -	 -ki) m-i

P	 ,j	 k i	 d n- 1 -	 - -1
ds n-k1	 ki-x) Am-z+1 (s)	 s'P

. a7 600

+ k i 	, j = O,l,.. . ki-1 , i = 1,?,...r	 (3)

if and only if the following conditions are met;

(1) ki	 k 2	 k 	 (4a)

wil (p) . , , w lj (g)
M det

	

	 # 0 , j = 1. „r	 (4b)

wj i (p) ... wj - Cp)

where WCs) A V(s)U(s) and U(s) are unimodular matrices that trans-

form G(s) in its Smith-McMillan Form, i.e.,,
n (s)	 nm(s)	 ^,

G(s) U(s) dag ^.V - - . dm s	 vas) 	 (5)

For the angles of arrival we have;

Theorem 2 The root loci arriving at an nth-order zero arrive generi-

cally in Butterworth patterns whose orders are the non-zero structure

indices of G(s) at the zero. For a zero z with non-zero structure

indices Ckm-r' " ' km-1' km] the angles of arrival are:

d(n-km-km-1- ... - km-i)
O	 _ 1	 ds(n-km-km-1- .-km-i )	 Ai+l (s)

arrival,i,j	 k -	 g	 (n-k.-	 -k -i+l)
m i	 . d	 m	

-km	
) A i Cs)	 Is=z

ds^n- m ,..	 m-i+1 

km	 i60	 9=0,1p	 km- -1 , i=0 0 1, I.. r	 C6)

•z. ,^ ,	 'rte.,.:,-„^,
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if and only if the following conditions are met:

(1) km # km-1 # ... # 
km-r	 (7a)

wl1 (x) . , , wl j (z)
(,2,) det	 0 , j wmrl,m-2, , , , m-r - 1 	 (7b

wj l (z) ... wj j (z)

where km+l 10.

Proofs: See Appendix.

It should be noted that whether or not the conditions (4a) and (7a) hold,

the orders of the Butterworth patterns are given by the structure indices as

long as conditions (4b) and (7b) or similar conditions ( see Appendix) hold.

It is not clear that these conditions hold generically; however, it has been

shown (Byrnes and Stevens ( 1]) that a necessary and sufficient condition for

the Butterworth pattern orders to be given by the structure indices is for

certain matrices arising in the block-diagonalization of G(s) to have simple

null structure. This imples that the conditions (4b) and (7b) are generic.

The following example illustrates the application of Thoorems 1 and 2.

Example: Compute the angles of dep ,.trture for the root locus of

s2 + 8s + 17	 s' + los 2 + 33s, + 34

G( ) _	
1	

s'+9s2+25s+17 2s^4+21x3+78s2+117s
s4+4s3+8s2+8s•+4

+ 68

It is straightforward to compute

(D(g,$) _ (s6 + 6s 5 + 18s 4 + 325 3 + 36s 2 + 24s + 8)g2

-(2s 6 + 25 s5 + 125 s4 + 325 s3 + 493 s2 + 420 s + 170)g

+(s 4 + 16s 3 + 98s 2 + 272s + 2891 = 0

and to obtain (from A2 (s)) the third-order poles -1
	

The structure
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indices for these poles are X2,11, and the condition (4b) is indeed

satisfied. Titus loci depart from the pole -1+j in a second-order and a

first-order Butterworth patterns with angles

_ 125 5" + 12Ss + SOOS 3 + 975s 2 + 986s + 120_

depart, 1ArB	 120s' + 360s 2 + 432s + 192

+ n360°
Z , n=0,1

= 61.8° , 241.80

g _ s4 + 1633 + 9832 + 983? + 272s + 289

Adepart,2	 '_	 1235 + 12534 + SOOs3 + 975s 2 + 986s + 420 s= -1+j

= 33.7°.

By symmetry, the angles of departure from the pole -1-j are 61,80,

118.2 °, and -33.7°.

4. Simple Poles and Zeros

For a special class of poles and zeros the angles of arrival and depar-

ture may be computed more readily using the following theorems instead of

Theorems 1 and 2.

f
Definition: An nth -order pole is said to be siia le if its structure

indices are [n,0, ... 0].

A similar definition applies for nth-order zeros. We now have:

Theorem 3 Let the Laurent expansion of G(A) at an nth-order pole

p be

G(s)	
l 
n G -n + ... + ^s1P) G 1 + Go + ,,,
	 M

(S-p)

	 G.

Then, the pole p is simple if and only if tr G-n is non-zero, and the

angles of departure from p are
0

depart	
n Ar- [ - tr G_n 3 J360 - > ]=0,1, ,,,n-;

0

nArg (-(s-p ) n tr G (s)Is=p]+^ n , 7=0,1, ,.n-1, 	 C9)
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Theorem 4 Let z be an nth-order zero of G(s), and let the

Laurent expansion of G' 
1

(s)at z be

G -1 (s)* 1 n H	 +	 +	 1	 H	 + H +	 (10)
(s -z)	 -n	 (s	 -1	 0

Then, if and only if tr H-n 
is non-zero, the zero z is simple and

I	 the angis5 of arri,

0	 1 Arg
arrival n

i
* n Arg

tal at z are

Ir H-n' + '̂ n̂  j*O,i,	 n-1

^(s-z^ n tr G-1(s)(	 3b0°
 n

j*0,1, ... n-1.
	

(11)

Pr_ oofs: See Appendix.

For the case of mn2, we; may simpl ify (11) by noting that in this

case we have

tr G-1
(s) ' etGG(;s)

so that (l) becumes

0	 1 Arg (s-z)n tr GCs)	 + j-3600
	arrival n	 _et G s s 	 n

j*O,l,..n-1.

Although Theorems 3 and 4 are easier to employ than Theorems 1 and 2,

the most interesting thing about them is that they are striking generali-

zations of the SISO root locus equations for computing the angles of arrival

and departure. The only difference is that the trace of the multivariable

transfer function matrix is substituted for the SISO scalar transfer function.

Note that this generalization is observed only for simple poles and zeros,

since in the SISO case all higher-order poles and zeros are simple, while in

the multivariable case only some are.

Further results are available for the case of first-order poles. It is

easy to show (see [5],p.51) that the conditions for Theorems 1 and 3 are equi

	

valent, i.e., tr G 	 non-zero if and only if w ll (p) is non-zero. If this

-7-
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condition does not hold, we may use the following theorem:

Theorem 5 Let the Laurent expansion of G(s) at a first-order

pole p be (8) . Then if

(1) tr G-t - D ' (2) tr (G.1G0) # G

the angles of departure from p is

adepart . Arg[tr(G .1Go )]	 (14)

and the root locus branch departs as k 2 ('a h"order departure).

Proof: See [5], p.S2.

S. Conclusion The behavior of the angles of arrival and departure for

multivariable root loci has been studied from a frequency-domain point of

view, and explicit equations for these angles have been obtained. Simpler

equations are available for the case of "simple' higher-order poles and

zeros, and it was noted that these equations are generalizations of the

SISO root locus equations for angles of arrival and departure, All of these

results depend on some genericity conditions. For first-order poles an

equation for the angle of departure was given for a case wherein these

conditions are violated. More work needs to be done in clarifying these

assumptions, interpreting them, and obtaining equations for angles in cases

where these assumptions are violated,
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A Dondix

Proof of Theorem 1 We shall prove Theorem 1 by first ;.;nstructing the

Newton polygon, and then using it to obtain the angles of departure. A more

detailed proof is given in [51

From (1) and (S) we have

n. (.$)
4(g s) - det(91 -G(3)) adet gI-U(s ) diag^ ^`s ; V(S)

i

(

rii (s)
- dot gI - diag

	 3 
W(s)	 (1S]

so that the coefficieltt

Am-h (s) • Am (.$) ('-1) h E

ATn is) G-1)hL

,s of (2) may be written as

principal minors of order
(ni Cs) l

h of diag .T7s)! W(s)

II	 n (e) corresponding
principal	 , hal	 m

iI ... ih ^ s) minor of W(s)	 (I )

where we have used the Binet-Cauchy 'Theorem in (16)

Now let p be an nth-order pole wi*.h non-zero structure indices

tk1,k2,...kr], and assume that p is not a single-point locus. Then we may

write

Am (s ) - (s-p) n Xm (s) ► Am (p) # 0	 (17)

dl (s) - (s -p) ki ai (s), a1 (p) # 0, i-l...m	 (18)

and substituting these into (16) we get

^m-h(S)	
(.s-pj (n-k....-kh) Amts) (.-1)h nl (.$) ..nh(s)

l CS)	 (S)

ll
(s) ... w 

lh 
('s)	 h

+	 in s-p	

sigher-order term
det 

w	 h=1 ,., m
^

Wahl (S) • .. "
vhh (y)	 G9)	

.

Q
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(recall that k l>k2> ... ?km). Since njt'j and d i (pl are relatively prime,

ni (p) f 0 for	 It should now be evident from (19) that the Newton

polygon will take the form given in Fig. 1 if and only if the conditions (4a,

4b) are satisfied. Noce, that if for example kick„ then (4b) is replaced

by the cone°tion

nl (P)	 n2 ^P)
w11 (P) + 

d^(P) 
w22 (P) #0	 ti ""' )

which we would still expect to be true in general.

From the Newton polygon we may appTOximate the root loci depart-

ing from p by the series

k a ci Cs-p) ki, in 1. , . r	 C21)

where the coefficients c  solve

(c ) -1 b l+ 
(ci)i 

bi - 0^,_	 (22)

and where b  is defined from

'gym-i(s) - bi(s-P)-k1-..,-ki) + terms riors p)	 (23)

It should be evident from (21) that the departing loci are grouped into

Butterworth patterns with orders (k i , i-1, r). The coefficients b i may be

obtained from (23) by taking repeated derivatives, and this yields (3),

proving Theorem 1,

Proof of Theorem 2 This is essentially the same as the proof of Theorem 1.

The only difference is that we now use i xm, m-1, ... m-r instead of

i-1, 2, ..• r.
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Proof of Theorem 3	 'Taking the trace of (§) and using (lr), we have

+	
Am-1 (s) n -Am C's ) tr G('s)

tr
m	 (5;1, PJ.n 	 -n

• - (s) tr G,
higher -order

m	 _n terms in s 	 C24)

and if tr G-n is non-zero Theorem 3 follows immediately from Theorem 1,

Proof of Theorem 4 The main diagonal elements of G -l (s) are the principal

minors of order m-1 of G(s) divided by dot G(s), So wo have

7,1principal minors of	 m-1
A1(p) -Am (s)	 order m-1 of G(s)	 C..

nAm (s)det G(s) DMain diagonal elements of G-1(s)) (-l)m-1

-Ao (s) tr G-i Cs)
	

(25)

M:

and the rest of the proof parallels the proof of Theorem 3,
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