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COMPUTING AERODYNAMIC SOUND USING

ADVANCED STATISTICAL TURBULENCE THEORIES

Arthur M. Hecht, Milton E. Teske and Alan J. Bilanin

Continuum Dynamics, Inc.
Princeton, New Jersey 08540

SUMMARY

The Lighthill theory of aerodynamic sound requires a knowledge
of the spatial and temporal variation of the two-point, two-time
turbulent velocity correlations. The feasibility of determining
these correlations based on extending closure models for one-point,
one-time turbulence correlations is demonstrated. The procedure is
based on a spatial moment integral formulation of the governing equa-
tions using approximate, parameterized trial functions for the two-
point, two-time velocity correlations. Solution of the equations
results in a set of anisotropic length scales and the separation-time-
dependent decorrelation of the ensemble averaged turbulent velocities.
The analysis was simplified using the assumption of homogeneous sta-
tionary turbulence and a constant shear, unidirectional mean flow.

It is shown that the anisotropic behavior of measured turbulence
correlations can be characterized by this technique. Using the
Proudman formulation of the Lighthill integral and the assumption of
normal joint probability, measured sound power directivity can be re-
produced for the compact acoustic limit by assigning a specific sep-
aration-time behavior to a decorrelation function (which becomes the
viscous dissipation in the limit of zero separation).

It is concluded that the present approach is a viable technique
for the prediction of turbulence generated aerodynamic noise. It is
recommended that further effort should be concentrated on extending
the theory to noncompact sound generation, developing a theory for
the behavior of the decorrelation function, and to investigate more
fully the effect of the anisotropic scales on sound generation.



I. INTRODUCTION

The theory of aerodynamic sound generation by turbulent flows,
under certain simplifying assumptions, is based upon the avail-
ability, either experimentally or theoretically, of two-point, two-
time Eulerian velocity correlations. Theoretical analyses of the
sound generation problem have generally adopted an isotropic form
for these correlations.

In addition to the form of the spatial and temporal variation
of the velocity correlations, accurate predictions of sound genera-
tion are dependent upon an ability to specify the one-point, one- 0
time limit. The success of modeling efforts to close the turbulent
rate equations for velocity correlations at second-order has pro-
vided the means to predict these one-point, one-time correlations
with greater confidence than previously. Bilanin and Hirsh I have
used such a model to predict the sound radiated from a turbulent
swirling jet. Since only the one-point, one-time behavior of the
velocity correlations could be predicted by their method, it was
still necessary to adopt an assumed form for the characteristics of
the velocity correlations in separation space and time. For this.
the Ribner 2 fomnulation was used.

The feasibility of developing a more general representation of
the two-point, two-time turbulent velocity correlations is explored
in this study. If a Gaussian joint probability density function is
assumed, the turbulence statistics required to predict aerodynamic
sound are the two-point, two-time turbulent velocity correlation_
Qi_(_,_,t,T) where _ and t are absolute space and time and $
an@ T are the separation in space and time. Qij(_,_,t,T) is de-
fined by

Qij(_'_'t'_) = ui(_,t)u j(x + _,t + _)

where the bar denotes ensemble time average. If the turbulence is
assumed to be homogeneous and stationary, the velocity correlation
functions are dependent only upon separation space and time.

The equations governing Qi_(x,_,t,_) contain higher order cor-
relations in two-point, two-time-triple velocity correlations, as
well as correlations between turbulent pressure and velocity fluctu-
ations. The closure problem is again the fundamental obstacle to
the solution of the equations, as it is in the determination of
single-point, single-time turbulent correlations. In recent years,
however, methods of modeling the higher order terms in the one-point, _
one-time problem have been developed, resulting in significant im-
provement in zero separation turbulent predictions compared to pre-
vious mixing length models, as pointed out above. Successful
application of these modeling techniques to the zero separation °
problem suggests that they may be extended to encompass two-point
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correlations in space and possibly in time.

Such en application presents numerous difficulties. The addi-
tional variable in relative time-separation as well as relative

- spatial separation increase the difficulties in the solution to the
governing equations many fold. Even this is no fundamental barrier
to obtaining solutions, however. Higher order closure is again the
basic problem, compounded by the additional spatial and temporal
independent variables.

In this study a new approach to the two-point, two-time turbu-
lence problem has been attempted. Certain simplifying assumptions
have been made to reduce the complexity of the problem for this ini-
tial study since testing the feasibility of the approach is the
first priority. Therefore the turbulence is assumed to be homogene-
ous and stationary everywhere; conditions which later can be relaxed
fairly simply in the absolute space variables under certain condi-
tions. The governing differential equations are simplified by as-
suming a constant unidirectional mean shear flow. The complexity of
the equations is finally reduced to manageable proportions by employ-
ing an integral technique. Approximate forms of the velocity cor-
relations are chosen which are capable of reproducing the main
features of experimentally observed correlations, each containing a
set of separation-time-dependent parameters which are essentially the
anisotropic scaling factors. These approximate forms are substituted
into the governing momentum equations and a family of moments in
powers of the separation coordinates is taken over all space. The
result is a set of simultaneous separation-time-dependent ordinary
differential equations which may be solved for the time variation of
the scale parameters. A set of subsidiary equations or constraints
are employed which are derived from an integral form of the contin-
uity equations.

Once the scale parameters, as well as their time dependence, are
found, enough information is available to determine the aerodynamic
sound associated with this type of turbulent flow. Since the source
term for the sound power is proportion_' to the fourth derivative of
separation time, a method must be devised to determine the fourth
derivatives of the scale parameters. In this initial study we exam-
ine the compact limit of sound generation and the theory will be
applied at zero separation time. Thus, we avoid the necessity of
integrating the governing differential equations and instead expand
the parameters in powers of _ , the separation time, and determine
the coefficients of these expansions for small • .

Although a number of simplifications have been introduced into
the analysis during this initial study, they may be removed with
varying amounts of difficulty once the feasibility of the technique
is demonstrated. Adoption of a working hypothesis that under special
circumstances the turbulent behavior of a flow can be inferred from
the analysis of simpler flows reduces this difficulty substantially.
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For instance, if the characteristic size of the biggest eddies is
smaller than the characteristic length of the flow over which the
mean and turbulent variables may be considered homogeneous suggests
that we may assume the flow to be homogeneous locally. Even if this
condition is not precisely met, the homogeneous solution may serve
as the first approximation to the actual solution. This point of
view is adopted in this analysis. Thus, for instance, we shall as-
sume that the velocity gradient is constant, and the solution for a ~
varying gradient is obtained by a local application of the present
analysis.

This report is organized as follows:
w

Section 2 is a synoptic of the approach taken.

In Section 3 the equation defining the sound power inten-
sity is introduced.

In Section 4 the equations governing the two-point, two-
time velocity correlations are derived.

In Section 5 the models to be used for the pressure-velo-
city triple-velocity, and dissipation terms are developed.

Section 6 summarizes the one-point, one-time turbulence
closure model used to determine the zero-separation
velocity correlations which are the limit for the two-
point correlations.

In 7 the correlation function required to represent the
approximate spatial and temporal variations of Qij is
selected. This is introduced into the governing equations
in Section 8 and the appropriate equations are obtained.

In 9 a qualitative comparison between theoretical results
and experimental data is presented.

In Section I0 the model is incorporated into the sound
power integral and theoretical results calculated for an
annular shear layer are compared with acoustic intensity
data taken with an axisymmetric jet in Section II.

In Section 12, conclusions and recommendations are offered.

NOMENCLATURE

A proportionality constant relating turbulent intensity
to integral scale and shear, Eq. (6.7)

directional factors in azimuthal (1) and latitudinal
Aij'BijPq (1) direction for sound power, Tables 5a and 5b

- - directional factors averaged in i-direction in axisymmetric
Aij'BijPq flow, Tables 6a and 6b
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a low Reynolds number constant in isotropic microscale
equation, Eq. (5.6)

b dissipation factor at high Reynolds number at zero
separation; decorrelation parameter averaged over space
for two-point, two-time viscous effects

c!_k ) integral moments defined by Eq. (8.7)
lj

ck scale factor in kth direction

c ambient speed of soundO

D!mk) integral moments defined by Eq. (8.8)
13

G2,G 4 series expansion functions defined by Eq. (9.13)

gij(T) memory function for ij correlation

I!_k) integral moments defined by Eq. (8.6)
lJ

I(@) total sound power intensity for axisymmetric flow per
unit area in _ direction at observer distance x

L reference lengthm

N Vc/A

P mean pressure

p fluctuating pressure

P.. pressure-velocity correlations, defined by Eq. (4.19)
lj

P(_,i,y) sound power intensity per unit volume

P(i,y) i average of sound power intensity per unit of volume

P(_'Y) c5x2L P(_ _'Y)/(Po )o m '

q turbulent intensity

Qij two-point, two-time turbulent velocity correlation

R.. defined by Eq. (8.4)
13

• r vectorial distance from origin of separation coordinates

Rj axisymmetric jet radius to middle of annular shear layer

S.. triple-velocity correlations, defined by Eq. (4.20)
ij
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Sk ½(xk + xk) , absolute space coordinate

T.. quadrupole strength density, Eq. (3.2)
10

t absolute time

Uk mean velocity in kth direction

UI° mean velocity in xI direction at _k = 0

Uk fluctuating velocity in k th direction

(uiuj)° one-point, one-time turbulent velocity correlation

u.. (uiUj)o/q 2lj

VF integration volume

v triple-velocity correlation modeling constantc

mean plus fluctuating velocity in kth directionvk

total velocity in direction of x
V x

Wij,Wijpq defined by Eq. (10.7)

Xij,Yij defined by Eq. (10.13f) and Eq. (10.13g)

Xk absolute coordinate in kth direction

_ij 'Bij 'Yij '_ij correlation function separation time dependentscale parameters

^ ^ ^ 2c2 , o. 2c2 02 2 2CLC2_ij'Bij'_ij'_ij _ij°ij Bij lj ' Yij ijc3 ' _ij°ij

_.. Kronecker delta
lJ

A shear layer thickness
S

_.. dissipation of ij correlation _
lj

n.. defined by Eq. (4.5)
lJ

_.. defined by Eq. (iO.II)
lJpq.^

K..,_.. defined by Eq. (I0.13c), Eq. (10.13d) and Eq. (10.13e)
lj lJpq



A isotropic form of integral length scale

A!_ ) anisotropic integr_l length scale of ij
13 correlation in k_LL direction

turbulent microscale

viscosity

kinematic viscosity

_k separation coordinate; (xk - x_)

_(mk) moment function defined by Eq. (8.5)

0,0° density, ambient density

o.. decay length scale of ij correlation
13

r.. viscous compressive stress tensor
lj

separation time

i,_ angular spherical coordinates

Superscripts :

(+) vector quantity

( )' quantity at x' and t'

( )" quantity at x" and t"

(-) ensemble average

Subscripts :

( )m reference quantity

( ) index of coefficients in Taylor series expansionn

( )k value in kth direction



2. SYNOPTIC OF THEORY

The length and complexity of the theoretical turbulence and
acoustic developments contained in the following pages make it de-
sirable to summarize the approach more fully at this point. Lacking
this, there is some danger that the objectives of the present study,
and its important lines of approach, might be lost in the details of
the analysis.

2.1. Sound Intensity

The Lighthill theory of aerodynamic sound 3,_ requires a know-
ledge of the spatial and temporal variation of the two-point, _o-

time turbulent ensemble averaged velocity correlations Qij (_,_,t,x) .
The sound intensity generated by the velocity fluctuation and radi-
ated in the spherical coordinate direction (_ , i), at distance x
from the source, is

Po fffd_ fff _ v2v,2 d_ (2.1)

16_ co

Vx(X,t) and Vx(X + _,t + T) are the velocity components at (_,t)

and (x + _,t + _) in the direction of the radiated power and con"
tain the mean plus fluctuating turbulent velocities. The assumption
of a normal joint probability distribution permits expressing

v2V'xx2 in terms of Qik , QijQpq and QiqQpj , plus other noncontri-

buting terms. Obtaining Qij is the objective of the turbulence
analys is.

2.2. Governing Equations for Qij

Developing the governing equations for Qi_ yields a set of
differential equations having higher order correlations uiuju_ and
pressure velocity cross-correlations, uiP r . Equations ior the
third-order terms contain terms in fourtH-order velocity correlations.
This is the so-called closure problem where equations for any order
include correlations one order higher. An infinite hierarchy of
equations result, each level of which does not contain sufficient
information to obtain a solution.

This problem is avoided by modeling the third-order and pressure-
velocity correlations in terms of second-order correlations. Exten-
sion of an established second-order closure technique is used for

this, yielding a consistent set of (solvable) equations for Qij "

The equations governing the two-point, two-time correlations,

Qij , which are derived in this study, are
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,
2 _t + _ + Qjk _xkm+ Qik _x_ + l[Uk + Uk] _sk

+ [Uk - U_] _ =
I

_k" 2 _sk [uiujuk'' + UiUkUj]

in,minku u u31- +_ --- , , _ uiP

where

_k = x_ - xk (2.3a)

sk = l[x k + x_] (2.3b)

i

= t' - t (2.3c)

Assuming that the turbulence is homogeneous and steady eliminates
derivatives in Sk and t and assunptionof a constant, unidirec-

tional mean velocity gradient in the x 2 direction

dUI ]= + _2 _2J (2 4)Uk _Ik UIo

affords considerable simplification. The following turbulent models
are then introduced. For the triple-velocity correlations

_vcqAV2Qi j[uiu_ - ui_ u._] = (2.5)K j

The pressure velocity correlations are modeled as Rotta tendency_
towards-isotropy terms



u-_ a_i u_ = _A Qij - ½_ijQ_ (2.6)

The dissipation model (high Reynolds number limit) is

2_V2Qi j = -2b _AQij (2.7)

Here A is a global macroscale set by the local flow and q2 = u.u.
The equations then take the form i i

aQij + Ul + $2 = - +
aT o ax2 _I ilQ2j 6JIQi2 dx2

- qA Qij - 16ijQ_ + vcqAV2Qij A Qij (2.8)

b and v c are modeling constants. The form of the modeled terms
are adapted from Donaldson's second-order closure technique, s

2.3. One-Point, One-Time Correlations

The limit of Qifi for $ and • equal to zero are the one-
point,one-time velocity correlations. The equations governing

Qij (0,0) may be solved to determine the one-point,one-time valuesof
uiu j in a constant shear flow. The results are

UlUl/q 2 = ½[I + 4b] (2.9a)

u3u 3
u2u2/q2 = 2 - I[I - 2b] (2.9b)

q

u!u---'_/q 2 1= _-_ [i - 2b] (2.9c)

f _

A = _ I - 2bIBb (2.9d)

where A = q/(AdU1/dx2)__
Q
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The one-point, one-time solution used in this study is for con-
venience only. The one-point, one-time correlation canbe obtained
from any turbulence model, or from numerical solutions of shear flow
turbulence.

2.4. Two-Point, Two-Time Correlation Functions

This study employs an integral approach to determine the behavior
- of Qii($k_) . An analytical form is selected for Qii which is

capabl_ of approximating the two-point, two-time behaviBr of velocity
correlations seen in available experimental data. This form contains
a set of separation-time-dependent free parameters which are deter-
mined using the governing differential equations together with an
integral approach. Here, we have chosen the following form to approx-

imate Qij

Qij = uijRijgij (T)

Rij = [I - _ij($! - UIT) - Bij$2 - Yij$ 2 - _ij($ I - UIT ) $2]

•exp-[o_j2{ I-- 2 __$2 $21]

where uiui is the zero separation, one-point, one-time result.
Rii contains the parameters _i , Bii , Yii , Hii , Oil , Cl , c2

an_ c3 which are separation, ti_@.depe_dent. '__i'j% Bi'.j_ Yi" and.
_ii serve to provlde zero crosslngs of the correlatlons, t_e anl-
so_ropic analog of the isotropic velocity correlation function g(r)
zero crossing. The asymmetry in the $2 direction due to shear is
accounted for by the presence of _ij . cI , c2 and c3 are an-
isotropic scaling functions to provide variations in spread in the

three coordinate directions, g.-(_) is a memory function which
decorrelates Qii at Sk = 0 _ = coordinate system following the.
flow at velocity- U_ . In order to evaluate the anisotropic be-±O
havior of the turbulent scales, we define

A(k)(r)ij= gij(_)/Rij($k - _ikUlo_)d($ k - _ikUlo _) , k = 1,2,3
o (2.11)

which becomes a function of the correlation function parameters.
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2.5. Continuity

The continuity equations governing Qij($k,T) are

= 0 (2.12)

These equationsserve to add constraints on the parameters and pro-
vide continuity in an integral sense as will be demonstrated shortly.

2.6. Integral Moments

The correlation functions are substituted into the governing
equations and a set of integral moments of the equations are taken
over all space. The moment function

oO Oo co

is defined where _ (mk) is a function of the _k coordinates

= $22_33 (2.14)(ml,m 2,m3) _I m m

A sufficient number of moments are taken to provide enough equations,
together with the continuity constraints, to allow solution of the
set for all the unknown free parameters. The governing equations
become total differential equations in T in the separation time
dependent parameters. Since experimental data indicates that
_Qii/_T = 0 at zero separation time, the initial conditions are
found by an algebraic solution of the equation set for the parameters,
with zero rate of change at • = 0 . The characteristic length of
the flow is specified by independent selection of one scale of the

set A(k).. •
lJ

Continuity is satisfied in an integral sense by integrating
the continuity equation over half the separation space domain as
follows

co oo
O

/ qf_ d_r = 0 , pqr =123,231,312d__j (2.15)
--OO --CO

--OO
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2.7. Decorrelation Function b(T)

Decorrelation of Qi_ with separation time is provided for in
this study by a separation-time dependence of the turbulent dissipa-
tion function b(_) . At zero separation in space and time, b is
a modeling constant. The one-point, one-time value of b = 1/8 is
probably no longer adequate when considering a space integrated dis-

- sipation of Q
a_iid. Instead a time varying form b(T) is hypothe-sized. b(O) the time dependence is selected to provide

agreement between the theoretically calculated sound generation and
measured sound intensity data.

2.8. Solution of Time Dependent Equations

The resulting equation set may be solved numerically.
However, for this first effort the compact acoustic limit
is assumed. This permits expansion of the parameters in power series
in • about T = 0 . The zero-order solution is the initial con-
dition now known. Higher-order coefficients are found by substitu-
tion of the expansions in the differential equations and ordering of
terms. The result is a set of algebraic equations for coefficients
of order n + I in terms of coefficients of order n . The decor-
relation function b(_) is specified by selection of b(0) and the
higher order coefficients to provide agreement between measured and
calculated sound intensity distributions.

2.9. Calculation of Sound Intensity

Having the behavior of Qij for the selected shear flow con-

sidered, the results can be used to evaluate v_v_ 2 (uiuj ,

•dUI
_o ' xl ' x2 ' x3 ' _ ' i) and the fourth-derivative is then takenx2
with respect to T . Then • is set equal to zero and the integra-
tion taken over separation space. Since Q_i is an explicit func-
tion of Sk this is done analytically. We-Jthus have the compact
limit of the locally radiated sound intensity, which is a function
of the local gradient dU1/dx ? and the one-point turbulence corre-
lations _iu_ . A final _ume£ical integration over a specified mean
velocity profile and turbulence distribution provides the sound inten-
sity radiated in the (_,i) direction.

This has been a very brief overview of the theoretical approach.
The analysis is presented in considerably more depth in Sections 3
to II.

13



3.0 ACOUSTIC SOURCE TERM MODEL

The sound pressure radiated to a point x in the far field in
a localized unsteady or turbulent flow was shown by Lighthill to be
given by °

+ x.x. rr_2T..1.
,n 23

CoX _L _t-J

T.. is a quadrupole strength densitylj °

= + T.. + (P- c20)
TIJ'" PViVj lJ _ij

(3.2)o

where PViVj is the unsteady momentum flux, vi the velocity, T..
the viscous compressive stress tensor, P the local pressure, Coz3
the ambient speed of sound, p the density, and 6i_ the Kronecker
delta. Equation (3.2) is normally dominated by the _nsteady momentum
flux PViV i . The symbol [ ] in Eq. (3.1) denotes retarded time.
The indices i, j and k are equal to I, 2 or 3 and repeated indices
are summed. Figure I presents a schematic diagram of the coordinates
employed here.

The sound power generated by the velocity fluctuations and radi-
ated in the directions (_,_) in spherical coordinates is the ensemble
averaged pressure fluctuations at the point of observation divided
by poCo . Defining this by I(_,_)

x'x'XkXl r[ 32( 'v'v' 2( "v"-""
P kVlJ d_ (3 3)I(_,i) = i L] P i i) _ 'dy"

162 56 JJ _t2 _t2
PoCo x

+

where the first.term of the integrand is evaluated at y',t' and
_W! I!

the second at y ,t and the bar denotes an ensemble average.
t' - t" is the difference in time of travel to x from y' and+
y" . Ribner 6 expressed Eq. (3.3) as a function of the midpoint y
and the separation in space and time using

I.+, _,,)= _y + (3.4a)

+ -- _tt $= _' (3.4b)

T = t' - t" (3.4c) i

14
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Figure I. Coordinates of acoustic analysis
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and the assumption that the observer distance x is large compared
to the flow dimensions, i.e.,

coT _ :-:/x (3.5)

giving

l(_J,_) = (_,_,y) d_ (3.6)

where °

PoXiXj XkX I f _4

P(_,_,y) = 16_2c_V--j- _ vivjv_v I d_ (3.7)

Proudman 7 expressed Eq. (3.7) in the very convenient form

. - 0° f84 v2v '2 d_ (3.8)

xx
where Vx. and v_ are the components of the velocity fluctuation at
_' and v" in the direction of _ .

The correlation vx_ x can be expressed in terms of the quad-

rupole correlations viviv vi and the coordinates x,_,@ . Assump-
tion of a normal joint probability distribution for ui and u_
permits expressing the fourth-order correlation in the terms of_"

Qij and Qkl This will be done in Section I0.

4. DEVELOPMENT OF TWO-POINT, TWO-TIME,
TURBULENT CORRELATION EQUATIONS

Here we develop the equations governing the ensemble averaged
_wo-point, two-time correlations of turbulent velocity components
that are required to predict aerodynamic sound. As we shall see the
equations for the two-point, space-time velocity correlations con-
tain triple-velocity and pressure-velocity correlations which cannot
be solved for exactly without recourse to an infinite hierarchy of
equations, each containing successively higher-order correlations.
This is the so-called closure problem. It will, therefore, be neces-
sary to model these terms in a way which will meet certain criteria.
Now, in the limit of zero separation in space and time the exact
equations governing the correlations reduce to the equations des-
cribing the Reynolds stresses at a point. We shall model the two-
point, two-time equations such that at zero separation and time they
reduce to an established theory of higher-order closure for the

16



Reynolds stresses. Such closure theories have been developed by
Donaldson s, Hanjalic and Launder _, Wolfshtein, Naot and Lin 9 and
Lumley and Khajeh-Nouri I°, among others. Closure theories generally
specify numerical values of coefficients in their modeled terms
chosen to optimize agreement between theory and experimental data.
It is considered undesirable to require changes in these coefficients
for various flow conditions. The coefficients in our modeled terms,

. which as we shall see are the viscous, pressure-velocity and triple-
velocity comrelations, will be assigned those values selected by
Donaldson _nd his associates and employed in their technique of in-
variant modeling. 5'11 (Henceforth this technique will be referred
to as (I) for convenience.)

4.1. One-Point, One-Time Equations

The equations governing the conservation of momentum and mass
in an incompressible uniform density fluid with constant viscosity
are

_U. _U. I _p _2Ui

i + Uj i _ + _ _ (4.1)_t _xj 0 _xi _x

_U.
I _ 0 (4.2)

_X.
3.

The velocity U i is now written as the sum of mean and fluctuating
components, U i + u i , introduced into the governing equations, and
an ensemble average is taken. The results are

_U. _U. _u.u. _2U.
i + U. _ = - i i I _P + _ I (4.3)"

t 3 _xj _xj p _xi _x2
J

_U.
l_ 0 (4.4)

_X.
l

These are the equations governing conservation of the mean mass and
momentum at one-point and one-time. The equations for the Reynolds

" stress are developed from Eq. (4.1) and Eq. (4.2) by introducing the
mean and fluctuating components for the velocities ui and uj and
before ensemble averaging, multiplying the respective equations by

and u . Addition of the equations, subtracting out the mean
_ing Eq. _4 3) and Eq. (4.4) and averaging lead to the equations
for the ensemble averaged Reynolds stresses uiu j at a point .

17



Du.u. _u.u. _U. _U.

i .1+ Uk i j = ___i _ UjUk -_kt _Xk - UiUk _Xk

i _p__

_xk (UkUiUj) o _xj (4.5)

8U.
U. 8p__ _2h.u. 8ui i_ 3. + _ _ 3 -2_
0 8xi 8x _xk _xk

These equations are the counterparts of the equations governing
the evolutionof the two-point,two-timevelocity correlations,which
will now be derived in more detail. Initiallywe do not assume homo-
geneous turbulence,but for simplicitythis assumptionwill be made
later, as well as that of a constant gradientmean flow along one of
the coordinate axes.

4.2. Two-Point,Two-Time Equations

Now define the meanand instantaneousturbulentfluctuatingveloc-
itiesat point xk and time t as Ui and ui , and their counter-

t' as Uj and ui introduce them in-parts at point x_ and time ' ' ,
to Eq. (4.1) and subtractout the mean equations_ This leaves

8u. _U _u.

_ui + Uk i + i + Uk i _ uiu---_
_t _xk Uk _xk _xk _xk

_2u.
_ i _p__+ _ • (4.6)

0 8xi _x_

_u'. _u'. _U'. _u'.

_t' + U_ + u_ _xk _xk

_2u_
____i (4 7)_ 1 8P'_+, o

Now multiply Eq. (4.6) by u[ and Eq. (4.7) by ui . Since primed
dependent variables are not Tunctions of unprimed independent vari-
ables, and vice versa, they pass through the partial derivatives.

18



Adding the two equations and taking the ensemble average gives

au.u: au.u.r a5.-TdT au.u.r aU.

• + k u:" at a Uk---!--I + + 3Uk-_-_k

8U[ 8UiUkU i auiuju _---_+ , + (4 8)
+ ui_ axk axk ax_

t

a u.u_ a2_

_ 1 a Uip 1 a , 11 1 1
0 ax 0 a_'_ uiP + v _ +• ax ax_2 ,

New independent variables are now introduced to differentiate
between the effects of absolute position and time and separation
distance and time. Define

gk = X'k - Xk (4.9a)

sk = -12[xk + x_] (4.9b)

= t' - t (4.9c)

The derivatives become

a$k a 1 a a
a _ aSk a + _ (4.10a)

axk axk as k axk agk 2 as k agk

a _ aSk, a agk, a _ 1 a + ___a (4.lOb)
ax_ 8x k as k + 8x k agk 2 as k 8gk

: a2 1 a2 a2 2
__ = + a (4.10c)

2 aSka_k

a2 I a2 a2 a2

= g --'-'_as_+ 2 + aSkag k (4.10d)ax_2 aSk
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_t-'-r = _t' 3-r + _t' _t _'r + 3t (4.10e)

Taking the ensemble average we arrive at _

_u.u'. _u.u'. _U. _U_

2 _ + _ + _ ---_ UiUk _x__t _ 3 _ _xk +

8u.u' _u.u_

I , ___!_.l+ [Uk _ Uk ] i 3
+ [Uk + Uk] 8Sk ' 85k

- 2 8Sk [uiujuk + UiUkUj] -'_k [UiUi_ - u._u']lm3

[ ],[, ,i 3 uiP + _ ' - _ _ uiP' _i 3- _ -_i _-_7u_

+ I v 22 32-- u.--_.+ 2_ u.u'. (4.11)

_Sk2 z 3 7_ z J

4.3. Simplifying Assumptions

We now invoke the assumption of homogeneous and stationary tur-
bulence, and all derivatives with respect to the absolute coordinates
sk and _bsolute time t vanish. Defining Q_(_I,_2,_3, ; T) as

ui-(Xl'X2'X3't)uj (Xl + _I ' x2 + _2 ' x3 +_3 ; t + _)
we obtain

_ /5
+ ---!l+ [Uk- Uk] 35kT Qjk axk Qik _x_ + '

- , ,Sk [uiu_ u_ - _ uiP 8_i

_2

+ 29 _ Qij (4 12) ,
_$k
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°o

Figure 2 summarizes the coordinates systems in absolute and
separation coordinates.

One of our basic working hypotheses is that the behavior of more
complex flows may be inferred from the analysis of simpler flows,
specifically here that locally the turbulent correlations can be cal-
culated from knowledge of the local velocity gradient. This gradient
is taken to be constant over the Volume of separation coordinates

" within which uiui becomes completely uncorrelated. The convective
velocity in Eq. (_.12) is assumed to be along the _I coordinate '
with a constant gradient in the _2 direction. Then

[ d 1]= + _2 _2J (4.13)Uk 61k U1 °

dUI
(4.14)

Uk U' =
- k ik_2 dx2

so Eq. (4.12) becomes

dUI dUI
+ (6 + 8 ) -- + _2 _Qii

at ilQ2j jlQi2 dx2 dx2 a_l

_k [uiujUk _ aSj uip

a2

+ 2_ --2 Qij (4.15)
_k

This equation describes Qii with respect to a coordinate system
_k convected with the local velocity within the shearing flow. If
we wish to write the equations for a flow moving at a velocity Ulo ,
with respect to the coordinate system, then we have

r

dul(u+ (_j + 6 iQi2 ) + + _2 _27 aS1_ at IQ2j j dx2 io

_ a_ka [uiuju_ _ u_] + _ _ _ a_j u--_

_2
+ 2v _ Qij (4.16)

a_k
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u_+u_
I

u3.u>i ui+u_

x2 U2 + u2 /

- __ E1

3 Ul + ul
v fff4 _ 1 jl_

UI _3
x3

Figure 2. Absolute and separation coordinates for two-point,
two-time turbulent velocity correlations
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Now, for homogeneous turbulence in the coordinate system adopted
and since the turbulence is stationary, the correlations will not be

changed if we replace _k by -_ and • by -T . From the con-
dition of invariance under translation, for any homogeneous flow
field*

" _I 3 (_I'$2'_3;_) = u.u_3l (-_I'-_9'-_3;-x)_

uiu_u j (_i,_2,_3 ;_) = ul---UkUj (-_I,-_2,-_3;-T)

($I,_2,_3;T) = p'uj (-_I,-_2,-_3;-T)

From the condition of invariance under reflection for this co-
ordinate system

u--_ ($i,_2,_3;_) = ui_ (-_i,-_2,-_3 ;-_)

U "lUl
UiUk"'u'j(_i,_2,_3 ;T) = - iUk j (-_i '-_2'-_3 ;-T)

UiUkU j (_I,_2,_3 ;_) = _ UiUkU j (-_i,-_2,-_3 ;-_)

pu i (_I,$2,_3;T) = - pu_ (-_i,-_2,-$3;-_)

The triple-velocity correlations are symmetric with respect to the
indices referring to the same point so that

u. _u'. = UkUiU _IK 3

U " 'U' = U-_.U_-'_----__"
iUk ] i jUk

*The following symmetry arguments can be found for _ = 0 in Hinze, _z
p. 332,
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The term in Eq. (4.17) containing the triple-velocity correla-
tion term gives

_k3 [uiu3u'k - UiUkUjl _k = 0 = 0
T = 0

From continuity, contraction of the pressure-velocity correla _

tion term gives _

' ui-=o
_k uip 3_i

Contraction of Ea. (4.16) then yields

3Qii dUl \_U + _2 _/dUl_ 3_13Qii3r + 2Q12 _2 + Io

3 32Qii
- u u"' - UiUkU i] + 2_ 2 (4.17)

35k [ i iUk 3_k

Now at zero separation 32Qii/352 can be written

__32 _ 32 .u.r _ 3ui 3U'.i

3_2 Qii 3Xk3X_ ul i 3xk 3x_O

so thst for Sk = 0,_ = 0 , Eq. (4.17) reduces to

Du.u. dUI 3u.u. 3u. 3U.

i i UI° i i= _ 2_ 1 l3_ + 2UlU2 d_22 + 3_I 3Xk 3Xk

= .u.(-_k ; -r)Since uiui(_ k ; T) uz i

dUI _ Du. 3u.

UlU 2 dx 2 _ 3xk 3xk (4.18)

at Sk = 0 , _ = 0 .

To facilitate writing equations let

Pij = uiP 35i (4.19)
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- _ [u.u'_' - UiUkU _] (4 20)Sij _k i 3_

Written out in full Eqs. (4.16) now appear as

IU dUl ) _qll dUl !p
- _QII + + _2 - 2QI2 sI + 2vV2Ql (4 21a)

_ Io _2 _I dx2 I - p II i "

IU dUl_ _Q22 __Q22 + + $2 _2/ _I - s22 - l_p + 2vV2Q (4 21b)_T io p 22 22 "

u !edUlh _Q_33_ - $33 - p 33 + 2vV2Q33 (4.21c)
_Q33 + _2 d-_l/_7 + i°

U dUlh _QI2 _ dUl Ip_QI2 + + _2 _2J _ Q22 dx2 S12 - _ 12 + 2vV2Q12 (4.21d)_ io I

Although equations may be written for the QI3 and Q23 correla-
tions (which are equal to zero at zero separation), they may be found
from continuity, given the remaining correlations. We shall neglect
QI3 and Q23 in this initial study for simplicity, concentrating
only on the correlations which are explicitly required to compute the
energy components QII , Q22 and Q33 •

Although it is not possible to define precisely the character-
istic physical behavior of each term in the governing equations for
the two-point, two-time velocity correlations, they may be identified
by analogy with the one-point, one-time equations as follows. Write
the equations as

dUl_ _QiJ = - _ilQ2j + _jlQi dx-_+ I° + _2 _2J _EI ,_
I

.] .- - D_k [uiuJ_- UiUkU ]
P uiP _i I _ -- "

II III
2

+ 2v ----gQij
_ (4.22

%

IV
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I is a production-like term, where interactinn__ith the mean
flow generates a net increase in the UlU I and UlU 2 correlations.
II, the pressure-velocity correlations, disappear upon contraction.
This term transfers correlations between components. In one-point,
one-time theory it is the"tendency-towards-isotropy" term. Since
production of energy-containing eddies occurs in the i=j=l equa-
tion, this term transfers energy to the 22 and 33 components which
in turn may exchangeenergy among themselves and the 12 correlations.
Deissler 13 and Fox I_ have studied this transfer for low Reynolds
number turbulence. A summary of their results appears in Hinze _2 .

III is the triple-velocity correlation and is a diffusion-like
transfer of Q_ by turbulence gradients. Finally, IV is a dif-
fusion-like te_ which serves to decorrelate Q_= through the action
of viscous stresses. At zero separation it red_6es to the dissipation,

_u. _u.
-2_ ! _ I , and the triple-velocity correlation term is zero. Thus,

dX_ OX_

the c_ntr_cted form of the equation, for which the pressure-velocity
terms sum to zero, shows that the dissipation must be balanced by the
production for stationary turbulence.

5. MODELING OF PRESSURE-VELOCITY, TRIPLE-VELOCITY
AND DISSIPATION CORRELATIONS AT SECOND-ORDER

In this initial study, intended to test the overall validity of
our approach, it is desirable to provide closure of the governing
equations using the simplest possible model consistent with physical
principles. The philosophy here is to extend the form of one-point,
one-time modeling to the two-point, two-time correlations such that

the latter reduce to the former for _k = 0 , T = 0 .

5.1. Modeling of Triple-Velocity Correlations

The triple-velocity correlations at zero separation in space
and time have usually been modeled as gradient diffusion terms in
previous closure techniques. The form adopted here and which has
been used in (I) is

_ (uiujuk) = _ iv _u.u. )_Xk _Xk cqA __!_i_xk (5.1)

where _ = uiu i and A is a turbulent length scale. In anisotropic
turbulence we should expect that A is dependent upon direction.
Indeed, this would be the natural extention of Eq. (5.1) to a more
sophisticated model. Later, we shall define a set of directionally
dependent turbulent scales. In the present turbulent diffusion model
A will be assumed independent of direction, although we might expect
A to be dominated by the assumed unidirectional mean velocity gra-

dient in the x2 direction.
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Equation (5.1) satisfies the tensor symmetry of the triple-
velocity derivatives _/_Xk(UiUjUk) but not the symmetry of uiuiu k .
The model coefficient v c was assigned the value of 0.3 in
(I). Thi_del is extended to a two-point, two-time modeling by
writing uiuj in place of the one-point, one-time correlation• Due
to homogeneity the turbulent diffusion coefficient vcqA is assumed
uniform in space and so

= _ vcqAV2QijSij (5.2)

where

V2 _ __2 _2 _2

+
5.2. Modeling of Pressure-Velocity Correlations

As noted previously, contraction of the governing equations re-
suits in elimination of the pressure-velocity correlations since

_$i = 0 in homogeneous turbulence. For one-point, one-time correla-
Ions these terms redistribute energy between the velocity components,
tending to decrease anisotropy and decrease the turbulent shear
stress According to Deissler and Fox, P=. may actually p=omote•

anisotropy in two-point correlations underJsome circumstances.

From the governing equations for i = j we see that the pro-
duction term appears only in the QII equation. Pii must therefore
increase Q22 and Q33 at the expense of QII • Notta Is modeled
the pressure-velocity correlations as a tendency-towards-isotropy
term for one-point, one-time calculations as

_[ i_xj

where C is an order one constant. Taking C = I , the form of
Eq. (5.3) is extended for the present analysis to

"" = q[Qij 15 Q%_] (5.4)_P lJ A - ij

which reduces to Rotta's form at zero separation. Note that Q_could be transferred unequally among components by writing Eq. .4)
as

l_p..0lj = RA[Qij- nijQ_] (5.4a)
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where we must set nii = I to make Pi" = 0 . For simplicity in
this initial study we shall use Eq. (5._)

5.3. Modeling of the Dissipation Term

Term IV of Eq. (4.22), +2_2Qij/_2 , is a diffusion-like trans-
fer of correlations due to viscous effects. At one-point, and one-

time this terms becomes -2_ -_ and under contraction of the -_Xk '
indices balances total production. For large Reynolds number the
magnitude of this dissipation forces a high rate of decorrelation in

Qij near zero separation, and therefore the second derivatives of
Qij are large in this region. If we express Qij near zero separ-
atlon as

Qij = (uiUj)o I x2 + .... (5.5)

where 1 is the turbulent microscale, then the dissipation is pro-

portional to -(U_)o/X2 . As suggested by Rotta15, 16, the micro-
scale is modeled as

2 A2
= (5.6)

a +bqA

Therefore, in the high Reynolds number limit the dissipation term
will be

2Qij

2v _ = - 2_i j (5.7)

where (u--_) has been generalized to Qi_ • The one-point, one-
time limit _f the contracted form of this Model is -2bq_/A .
Donaldson in (I) has used the isotropic form of this model, (i.e.,

2/36i_bq3/A) , with b = 0.125. For non-zero spatial separation we
mightJexpect a smaller value of b since the viscous decorrelation
occurs over a larger characteristic length than % . For increasing
separation in time it is reasonable to suppose that decorrelation
will increase. For this study we shall assume that b is some aver-
age value over separation space and a function of T . A prelimin-
ary value will be assigned at some point as well as coefficients in
the separation-time expansion. These values will be chosen to pro-
vide physically realizable behavior of the correlations and,to match
experimental acoustic measurements.
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5.4. Modeled Form of Equations

Equations (4.22) now take the form

dUl _ _Qi_i + _jlQi2 dx2_+ Ulo =- _ + _2 _2J _I - il Q2j

i ] 2bq- qA Qij - 3_ijQ_ + vcqAV2Qij A Qij (5.8)

Written out in full these are

_QII + Ul° =_T + _2 dx2_I - 2Q12 dx2 3_A 2QII-Qmm-Q3

2b_ (5.9a)
+ vcqAV2Qll A QII

dUI

_Q22 +IUlo_ + _2 _2 _$Ii" - 3_A [2Q22-QII-Q33

_Q22

VcqAV2Q _ 2bq+ 22 A Q22 (5.9b)

_Q33 dUl

_ +(UI + _2 _2) _Q33 -

2b¢i
+ vcqAV2Q33 A Q33 (5.9c)

( du1  Q12du!_QI2 + UI°_T + _2 dx2 _I Q22 dx2 A 2

2bq
+ vcqAV2QI2 A QI2 (5 9d)
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6. ONE-POINT ,ONE-TIME TURBULENT VELOCITY
CORRELATIONS FOR STATIONARY, HOMOGENEOUS
SIMPLE SHEAR FLOW

In applying the present theory to calculate turbulent acoustics
the values of q and A in Eqs. (5.9) would be obtained from full
numerical solutions of the flow being studied. For convenience, and
to provide a consistent set of one-point, one-time velocity correla-
tions that will be required in order to evaluate the shear flow model
we are developing here, let us examine the limiting form of the

governing equations for (uiui) at th_ke=0 , • = 0 . These correla-tions are the initial conditi6ns for two-point, two-time correla-
tions. Khatfollows is adapted from Donaldson's superequilJbriumtheory in (I).

Since the flow is homogeneous and stationary, derivatives of
(uiui) o with respect to absolute space and time are zero. At the
limi_ of zero separation in space and time, Eqs. (4.5) define the
one-point, one-time turbulent velocity Correlations for this flow.
The left hand sides of the equations vanish. The viscous term trans-
forms to a dissipation term at zero separation, dependent upon the
curvature in separation space, of the two-point velocity correlations
at zero separation. The equations at zero separation become

dUl I. 2
0 = - (_ilU2Uj + _jlUiU2 ) d-_2 qA [u.u.z3 - _ijq ]

_u. Buj
- 2_ l (6.1)

_xk _xk

where the modeled form of the pressure-velocity correlations is used.

The contracted form of this equation yields

dUI Bu. Bu.
_ _ l I = _ (6.2)

UlU2 dx2 Bxk 3xk

or production exactly balances dissipation, where a is the total
dissipation rate of the turbulent kinetic energy per unit mass,
I/2q 2 . If we define the dissipation terms in general as

• 3uj
a.. = _ (6.3)
lJ _xk _xk
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then the equations may be written
.

2_ -_L_ [2UlUl _ u2u2 _ u3u3 ] _ 2_ii = 0 (6 4a)3A "

- 3_A [2u2u2 - UlU I - u3u 3] - 2s22 = 0 (6.4b)

- 3_A [2u3u3 - UlU I - u2u 2] - 2933 = 0 (6.4c)

dUI

- u2u 2 d--x2 RA UlU 2 - 2_12 = 0 (6.4d)

and the contracted equations show, of course, that

E = Eii = Ell + €22 + _33 (6.5)

Equations (6.4a), (6.4b) and (6.4c) are, therefore, not independent
since any one can be derived from the other two.

Manipulation of Eqs. (6.4) yields the velocity correlations in
terms of the dissipation •

UlUl I 2A
2 - 3 + + (6 6a)-_ (g22 g33)

q q

u2u2 I 2A
- _ - --_ E22 (6.6b)

q2 q

u3u3 I 2A
= _ - _ _33 (6"6c)_

q q
dU1A

2 = q 22 _ E12 (6.6d)q q

We can solve for E1 in terms of the other dissipation components.
First let us define 2
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A-
dUl

A d_2 (6.7)

which for a constant value of A is a definition of A The ratio
q/dU1/dx 2) can be considered a characteristic length in a constant
shear turbulent flow. The inverse of A then defines the size of a

"typical" eddy in terms of this characteristic length.

€12 then becomes

_12 = A A _ + _22 ) q3 6 (6.8)

In shear flow we would expect s_ to be anisotropic. Past
investigation of shear flow have usually assumed isotropic dissipa-
tion

3
1 _ .b R_ (6 9)

sij = 3 ij A

For simplicity we shall also use this assumption and Eqs. (6.6) give

UlU 1
2 - _[i + 4b] (6.10a)

q

u2u2 u3u3 _ 1---_ - 2 [I- 2b] (6.10b,c)
q q

UlU2 _ _2 A[I - 2b] (6.10d)
q

For s12 = 0 , Eq. (6.8) gives A in terms of b

In (I), b was assigned a value of 0.125, and therefore •
A = ¢'2 . Table 1 presents a comparison between the results of experi-
mental investigations of nearly homogeneous, constant shear flow tur-

bulence. 18bY Champagne, Harris and Corrsln 1_," and Harris," Grah.am andCorrsJ.n and the nondimensional turbulent velocity correlatzons pre-
dicted by Eqs..(6.10) and Eq. (6.11) for b = 0.125.
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Table 1

Comparison Between Measured and Theoretical Turbulent
Velocity Correlations for Constant Mean Shear Flow

" DATA THEORY

Turbulent

Velocity Champagne, Harris
Correlation et al.r_ et al. 18 (b = 0.125)

UlUl/q2 0.47 0.50 0.50

u2u2/q2 0.25 0.20 0.25

2
u3u3/q 0.28 0.30 0.25

UlU2/q 2 -0.16 -0.15 -0.176

Agreement between theory and data is acceptable for our present
purposes.

Having an approximation for the zero-separation limit we now can
go on to select the functional representation for the two-point,
two-time correlations.

7. SELECTION OF TWO-POINT, SPACE TIME CORRELATION FUNCTION

One of the basic requirements of our analysis is that we can
select a functional form for Qij(_I,_2,_3;T) that is both versatile
enough to characterize the behavior of the two-point, two'time velo-
city correlations, yet be amenable to analysis. The trial function
that we select should be functionally explicit in separation space
(so that spatial integration can be accomplished analytically) and
contain a set of separation-time-dependent parameters. The form of
the selected function is based on examination of experimental measure-
ments of two-point, two-time velocity correlations, supplemented by
theoretical conditions which may be inferred from continuity, symmetry,
homogeneity and stationarity of the turbulence and the limiting form
of the correlations at zero and infinite separation in space and time.
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The method of solution then consists of forming a set of equa-
tions based on taking the (m,k)-fold spatial moments of the govern-
ing equations containing the selected trial function, where m
refers to the moments in the spatial coordinates and k the direc-
tional dependence and then integrating in separation space to form
equations dependent only on • . The product m × k must be chosen
such that the number of equations formed, in conjunction with con-
ditions derived from supplementary constraints such as continuity,
are sufficient to calculate the total number of parameters contained
in the trial function.

Since in any specific turbulent flow the characteristic size of
the energy-containing eddies is set physically, such as by the larges t
dimension of the flow, by t_e diameter of a jet, etc.,
we must leave one parameter of the analysis free to be specified. In
general, this should be one of the integral scales, and this is the
approach taken here.

7.1. Supplementary Constraints

The form of the two-point, two-time velocity correlation trial
function must conform to several conditions

I. Loss of correlation at large separation
in space and time

Qij($k . = ; _) . 0 (7.1a)

Qij (_k ; _ . _) . 0 (7.1b)

2. One-point, one- time limit

Qij(0 ; 0) = (uiuj) o (7.2)

3. Incompressibility

_Qii _ _Qii = 0 (7.3a,b_
_i _j

4. Symmetry with respect to the _ _2 plane for
unidirectional shear flow I '

o

_3 I = 0 (n odd) (7.4)
_3=0
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5. Homogeneity and stationarity of turbulence. In
coordinates convectedwith the mean flow

Qij(_k ; T) = Qij('$k ; -T) (7.5)

6. Taylor's hypothesis; temporal history at a
- fixed point is related to the convected spatial

structure by

ra_ ) _ Ulo _ a_l
(7.6)

The decay of Q_ with T in convected coor-
dinates makes tNis only approximate. A memory

function gij(T) will be used to account for
this decay in separation time in a convected
coordinate system.

7.2. Previous Approximate Functions

Frenkiel I_'2° evaluated a family of approximations for the iso-
tropic lateral velocity correlation g(_) of the form

g(g) = O(g) exp [-I l m] (7.7)

where

_($) = a° +_an cos (mnC_) (7.8a)

or

_(_) = I +_a n cnl_ITM (7.8b)

He found adequate agreement with wind tunnel data could be achieved
near _ = 0 only for m > 2 , but over the whole curve an adequate
approximation could be found for I < m < 2

For aerodynamic sound analyses, Ribner21, 22 approximated the
" fluctuating pressure correlation using the Gaussian form

" 7 = _o2 exp [-a2(gl - U_)2 2 2 2 2 2a2U2 2- a2$ 2 - a3$ 3 - ] (7.9)

where provision for different turbulent scales is made in the factors

aI , a2 and a3 .
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Several investigators have based their calculations on locally
homogeneous isotropic turbulence correlation models.l,22,23,24, 2s
Goldstein and Rosenbaum 26 treated a more refined model of axisymmetric
turbulence, using a zero time delay function similar to Eq. (7.7) with
m = I and ¢(x) = I .

7.3. Present Model

The trial function selected here combines some of the features
of the Frenkiel and Ribner models described above. The rationale
underlying its adoption is discussed below and its limitations will
be presented shortly.

The model we will use here is

Qij(_l,_2,_3;_) = (uiuj)° Rij(_l,_2,_3;_) gij(T) (7.10a)

Rij(_l,_2,_3;_) = [I- _ij(_l- UI T)2 - Bij_ 2 - Yij$ 2o

2

_ _ T)_2].exp[-(_I- Ulo T)_ij (_I UIO 02
_jI

o2 o2 (7.10b)
lj2 lj3

where there is no summation implied in Eq. (7.10a). The spread oiik
for the ij correlation in the ktn coordinate direction is simpli _"
field somewhat by writing it

oijk = oijck (7.11)

Thus, the anisotropy in spread is assumed equal among the different
correlations.

The model guarantees that the correlations approach zero at
large sRace separation since they decrease at least exponentially
with $_ - gii (_) , the memory function, may be calculated numeri-
cally but will-be evaluated near _^= 0 as we show later. Qij ap-
proaches zero exponentially with _z and with gi_ (T) unless we are -
translating with the flow at velocity U1o , in which case loss of
correlation is dependent primarily on gij(T) . The gradient of
U(_ 2) is neglected in the trial function for this initial study. It
will be added later if it appears that doing so can improve the pre-
sent model.
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The bracketed polynomial in Eq. (7.10) permits zero crossings
which are necessary to satisfy continuity. Equation (7.10) does not
do this in the differential sense (Eq. (7.2a or b)) but we force con-
tinuity in an integral sense as follows. From Eq. (7.3a) we integrate
the equation over half-space for each coordinate direction

" f_ f f_Q_m
d_2 d_3 _-_ d_I = 0 (7.12a)

co oo 0 •

fd_lfd_3_ _Q_m_ d_2 __ 0 (7.12b)_ _ _co

O0 CO O_A

d$ d_ -- d$3 = 0 (7.12c)! _£

The alternate statement of continuity, Eqs. (7.3b), is not independent
of Eq. (7.a) (see Batchelor 27, p. 27). The results of Eqs. (7.12) are
five independent equations in the model parameters.

The continuity constraintsrequire that no net fl_passesthroughthe
three perpendicular coordinate planes passing through _ = 0 . Since
we may translate these planes freely in the homogeneous flowfield
without effect, these conditions are met everywhere. Note that these
conditions are • dependent.

Qij is expressed in Eq. (7.10a) as the product of the zero sep-i
aration, one-point, one-time double-velocity correlation °(uiUj)o ,
a normalized function which we designate as Rij($1_2,$3,T) , and
the normalized memory function gij(T) Rij(0,0,0;0_ = I , and we
specify gij(0) = i

Taylor's hypothesis is satisfied by writing the flow direction
argument as (_I - Ulo_)2 • R_ is symmetric in this argument since
T changes sign with _i " In-%alculating the dependent parameters .
it is important to separate the variations that occur due to convec-
tive effects, i.e., separation coordinate changes, from variations
that occur in convected coordinates. It is the latter that consti-
tute:the actual variations that are of interest. Thus, in solving
for the time variation of the function parameters the convective

" velocity is set equal to zero. The decrease in Qij with con_ective
separation is accounted for by the convective argument (_i - UloT) •
gii(T) provides decorrelation in the coordinate system translating
with the flow.
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One of the _ functions is set equal to one both initially
and for _ > •0 . c_t T = 0 we specify one length scale in the same
direction. For T > 0 the memory function is used to provide the
remaining time •dependence of the length scale in the appropriate
direction. The oi" spread functions are not taken• to be time de-
pendent, being set _y specification of the initial conditions. -
These initial conditions are calculated from the governing equations
with separation time derivative equal to zero. ( Qi_/_T = 0 at

= 0 since the f!ow is assumed homogeneous and stationary). Note
that initially only one parameter is specified, the integral scale
of turbulence for one ij correlation in one coordinate direction.
The integral scales in the k = I, 2 and 3 directions are defined by
(no stmunation)

oo

Ai(_)(T) = gij(_)/Rij($1 - U_'0'0;T)d(_I - UT) (7.13a)
O--

A(2)ij(T) = gij(_)/Rij(0'_2'0;T)d_ 2 (7.13b)
o

A!3) (_) (_',/ (0 0 _3;_)d_3 (7 13c)13 = gij Rij ' '
O

One value of Aik) (0) will be specified by integrating a sel-
ected experimental measurement of Rii ($k;0) over Sk • Note that
this is not a universal specification-but must be done for each
individual flow analyzed.

The _i" , 8ii and Yij parameters, which are T dependent
serve to satisfy c%ntinuity In the integral sense discussed above.

Qij will have zero crossings dependent upon the determination of the
_ij , 8ij and Yij functions, (as well as on oijck) .

7.4. Model Limitations

The most serious limitation of the model is its restriction to

only the integral scales of turbulence. Thus, although the behavior
of the energy containing eddies can be represented by the model,
there is no explicit dependence on the turbulent dissipation scale,
or microscale. Therefore, we must expect that the chosen double-
velocity correlation function will not provide a good representation
of data in the region of small spatial separation. This can be reme-
died by adding additional terms to our model which are scaled by

(k) where _!k) is the directional microscale
_!k) rather than by Aij 13•13
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for each Qi_ • Indeed, the ideal representation would be an inte-
gral functio_ which incorporated the entire spectrum of scales which
occur in the flow and which account for the behavior of the turbul-

ence in wavenumber space. However, for this initial study the
analysis will be based on an integral scale model only. Note that

better agreement could be achieved near _T°_ 0 by usin_ anexp (-l_kl) type dependence. A Gaussian a chosen here in antici-
. pation of adding the microscale dependence once our concept has been

proven valid.

8. MOMENTS OF GOVERNING EQUATIONS -

8.1. Convention for Nondimensionalization

Equations (7.10) are now substituted into Eq. (5.5) and inte_
gral moments are taken with respect to the coordinate directions.
Before doing this, it is convenient to nondimensionalize the vari-
ables by a length scale q/(dUl/dX 2) , a time scale (dUl/dx2)-I ,
and a velocity scale q

The definition of A , Eq. (6.7) is carried forward and we
define

V
_ C

N A (8.1)

The parameters used to nondimensionalize the variables of the
analysis are given below in Table 2.

With the understanding that all variables appearing henceforth
are nondimensionalized unless noted otherwise, the model equations

governing Qij appear as

_Q_$" + (U + $2) -_-_ = - (_ + _ iQi2 ) - A[Q - l_ijQ_]_I ilQ2j j ij

+ NV2Qi j - 2bAQi j (8.2)

where

Qij = uij Rij gij (T) (no summation) (8.3)

- and

Rlj [I _ij(_l UT)2 _2 _ _ - (_i - UT)_2]"" = - - - Bij Yij _ij

exp __ (_I UT --+ (no summation) (8.4)
°ij cI c2
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TABLE 2

Nondimensionalization of Variables

.

Variable Nondimensionalized Nondimensional
by: notation

2

Qij q Qij

UI q U
O

2

(uiuj) o q uij

2

_ij [q/(dUl/dx2) ] _ij

BiJ [ BiJY ij , Yij

A!k) q/(dU. /dx2) A(_k)lj _J

_k Sk

lj lj

(dUl/dx2 )-I T
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8.2. Summation Convention

Since it will be convenient from this point on to discard the
summation convention when denoting the velocity correlation sub-
scripts i and j and the direction subscript k , thesewill be
reserved exclusively for these purposes. Therefore_ whenever i ,
j and k appear as subscripts, no summation will be implied.

. Other subscripts denote the st_mnation convention as usual.

8.3. Moment Function

There are no set rules regarding which momentswill give an
optimum result when using this method to obtain solutions to any
given problem. Given the number of unknowns and the governing dif-
ferential equations determines the number of moments that must be
taken to obtain a sufficient set for solution. The philosophy used
during this analysis was to develop a family of rational moment
functions and to avoid a partial application of any subset of this
function. For instance, if the function were _ k , k would have
to range from I to 3, and not just from I to 2, etc.

The function chosen can be written as H(mk) where the argument
denotes the product of coordinates of subscript k each to the power
m k , k ranging from I to 3.

m m

H(mk) - _(ml,m2,m 3) - _iI$225_ 3 (8.5)

thus for example

012 2_(0,I,2) - $i$253 - $2_

The integrated moment of Qij with weighting function H(mk) is
then defined as

oo oo oo

lij = _ (mk)Qijd$1d_2d$ 3 (8.6)
--OO-- OO-- OO

2
with weighting function, $253 is

The integral moment of Q_jtherefore expressed i(0..° 2) .
ij

" Other integral moments that will be required are defined as

c(mrs).. = Ir(m k)[u + _2 ] _ d_ldg2dg (8.7)13 3
-- O0 --CO-- O0
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!

oo OO oo

fff= _ (mk)V2Qij d_id_2d_3 (8.8)Dij
__ OO__ OO_ OO

8.5. Family of Moment Equations

Taking the moments of Eqs. (8.2) with respect to the weighting
function H (mk) then leads to a family of equations of the form

d-_ I ij + ij - 6ii12j + 8jlIi2

- [I(mk) (mk)
A L ij -18ijl_ ] (8.9)

(mk) (mk)
+ ND.. - 2bAl..

z3 z3

(mk)
Integration by parts may be used to evaluate Cij , while

(mk)
Green's theorem is used to determine Dij rather simply. Over
volume V

V (8.10)

= n • g(mk) - Qijq H'(mk) dS

S

where S is the area bounding the volume of integration V and n
is the outward pointing unit normal to S Letting V go to in-

finity, the bounding integral_vanish since Qij approaches zero
exponentially. Then

oO (x)

-- 00--00--00 O0 O0 O0

= fff QijV 2 H (mk)d_id_2d_3 (8.ii)
--OO --CO --OO

42



Starting with mk = (0,0,0) the moments can be evaluated in
increasing order.

The lowest or zero moment mk = (0,0,0) is related to the
anisotropic scales A (k) , where the moments are taken along the

ij(o coordinates, see Eqs. 7.12). The first moments in each coordinate
direction mk = (I,0,0) ; (0,I,0) ; (0,0,I) are zero since the tur-
bulence is homogeneous and these are odd moments. The first mixed
moments, mk = (I,I,0) ; (I,0,I) ; (0,I,i) make a contribution due
to the skew symmetry produced by shear in the ($I,$2) plane (mani-
fested in the correlation function by the presence of _ij). The
family of moments required for this analysis ends with the second
moments mk = (2,0,0) ; (0,2,0) ; (0,0,2) giving a sufficient set
of equations to provide solutions for all parameters.

Before evaluating the integrals defining the moment functions
some definitions are made for convenience. Let

@lj = _ij °2 2•" ijCl (8.12a)

_ij = Bij°2 2ijc2 (8.12b)

^ = o2 c_ (8 12c)Yij Yij ij

^ o2
_ij = _ij ljClC2 (8.12d)

The correlation function, Eq. (8.3), is now substituted into
^(k) T(mk) c_k) -(_k)

the integrals defining _i_ _! _ij , vlj and _ij to relate
them to the correlation _unc_1on parameters. Note that these inte _
grals are to be evaluated for U = 0 since the parameters are being
calculated in a convected coordinate system moving with the mean
flow.

mk = (0,0,0) - Th_k_pecialized form of the zero moments are theA..
anisotropic scales 13

A(1) yr_ ^
ij =-4-- ClOij[2 - c_ij] (8.13a)
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A(2) _/_ ^
ij = _- c2oij[2 - Bij] (8.13b)

A(3) ,/_
ij = _-- c3oij [2 - Yij ] (8.13c)

mk = (I_0,0) ; (0rl,0) ; (0,0,I) - As noted above the first
moments are zero.

m k = (I,I,0) ; (I,0,I) ; (0,I,I) - Only the first of these
three mixed moments is non-zero and results in

(I,I,0) _3/2 05 . ^
Iij - _ uijgij ijClC2C3_ij (8.14)

(mk) (mk)
The associated values of C.. and D.. are

lj ij

<i,l,o)_ 3,2 o5 3 ½^ ^Cij 2 uijgij _jclc2c3 [I- (_ij + 3_ij + ¥ij)] (8.15)

(I,i,0)

Dij = 0 (8.16)

m k = (2,0,0) ; (0,2,0) ; (0,0,2)

(2,0,0) _3/2 5 3 _I2 ^ ^Iij - 2 uijgijoijClC2C 3 [i- (3_ij + Bij + Yij )] (8.17a)

(0,2,0) 3/2 I ^
= _ o5 3 ^ ^

lij 2 uijgij ijClC2C3 [i - 2(_ij + 3Bij + Yij )] (8.17b)

(0,0,2) _ 3/2 5 3 1 ^ ^ ^Iij 2 u13gijoijClC2C [I - (eij + Bij + 3Yij)] (8.17c)
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A

(2,0,0) _3/2 05 ClC 2 _ (8.18a)Cij - 2 uijgij ij c3_ij ik

(0,2,0) (0,0,2)
C.. = C.. = 0 (8.18b,c)13 13

(2,0,0) (0,2,0) (0,0,2)
Dij = Dij = Dij (8.19a,b,c)

23/2 03 I ^ ^ ^= uijgij ijClC2C3 [I - (_ij + Bij + Yij )]

The mixed moment (I,i,0) provides one set of equations in the
II,22,33,12 components. The second moments provide three equations
for each ij component corresponding to the three coordinate direc-

tional moments. Note that C (2'0'0) = 2Olk I(l'l'0) and C (I'I'0)ij ij

= 1!0,2, 0)
lj , coupling the mixed and second moments.

8.6. Integral Continuity Constraints

Substitution of the correlation function, Eq. (8.3) and Eq. (8.4),
into the integral constraints, Eq. (7.12), yields the following five
equations

^ ^

BII + Yll = 2 (8.20a)
^

_22 + Y22 = 2 (8.20b)

c_33+ B33 = 2 (8.20c)
^

_12 + YI2 = 2 (8.20d)
^

612 + YI2 = 2 (8.20e)

8.7. Method of Solution

The integral moment equations, the continuity constraints and
only one of the integral scales are sufficient to define the correla-
tion function parameters by integrating Eqs. (8.9). At • = 0 ,
_Qi_/_T = 0 is the initial condition required. Differentiation of
theJcorrelation function with respect to T yields the conditions

that _ij(°) = 0 , Bij(o) = 0 , etc., for this initial condition to
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be valid universally. With these conditions Eqs. (8.9) become a set
of nonlinear algebraic equations in the correlation parameters at
T = 0 which may be solved to determine their initial values. If it
is assumed that the acoustic sources are compact then a solution
derived by expansion of the variables about T = 0 can be determined,
which has the advantage of providing an analytical solution for the
higher derivatives in T . Since the fourth derivative with respect
to • is required to evaluate the acoustic integral, this approach
will avoid numerical evaluation of the derivatives.

Since the first derivatives are zero at T = 0 the correlation

parameters which are chosen to be functions of time in this simpli-
fied analysis are expanded in series in T as follows

^ ^ 2 ^ 4
e.. = _.. + g.. _ + _.. _ + .-. (8.21a)
lj 1Oo lj2 lj4

Bij = 6ii + Bij T2 + _ij 4 + ... (8.21b)Jo 2 4

^ = ^ ^ 2 + ^ 4T4 + .. (8.21c)Yij Yi_o_ + Yij 2 Yij "

2 4 + ... (8.21d)= T +

gij i + giJ2 giJ4

The decorrelation function b is • dependent, as it must be

for gij to vary from its initial value. Expressing b as a
series in T/TD , where _D is the characteristic turbulence time
A/q , the nondimensional expansion is

b = b° + blAT + b2A2_2 + b3A3_3 + b4A4T4 + .-.
(8.22)

where bn are specified constants. Nothing is known about this
function at the present time and definition of the physics and form
of this parameter is put off to a following study, bn will be
chosen by matching the results of the present analysis to the distri-
bution of measured acoustic data.

Substitution of the expansions, Eq. (8.211) and Eq. (8.22), into
the moment functions, Eq. (8.14) to Eq. (8.19), yields series

expressions for I (mk) C (mk) and D (mk) in powers of • withij ' ij ^ij ^

coefficients which are functions of _ij ' Oij , etc.
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(mk) (mk) (mk) 2 (mk) 3 i(mk) 4I.. = I.. + I.. + I.. T + .. + ... (8.23a)
iJ 13o 132 133 134

(mk) (mk) (mk) 2 (mk)T3 C (mk) 4C.. = C.. + C.. T + C.. + .. T + ... (8.23b)
lj 13o iJ2 133 134

. (mk) (mk) (mk) 2 (mk) 3 (mk) 4D.. = D.. + D.. T + D.. T + D.. + ... (8.23c)
13 13o iJ2 133 iJ4

Separation of Eqs. (8.9) into terms in powers of T then pro-
vides a set which may be solved for successively higher coefficients.

O
T :

C..m3o + 6ii12Jo + 6jlii2 + A I.._3o - -3°ijZ_o

(mk) (mk)
- ND.. + 2b AI.. = 0 (8.24a)

1j o o 1j o

1
T :

(mk) (mk) (8.24b)

liJ2 =_ blA211j °

2
T :

(mk) (mk) [ (mk) (mk)] [l(mk ) (mk)]31.. = - C - 6ii I + 6j - A - 16ijl_ 2 J133 ij2 2j2 Iii22 ij2

(mk) [b I (mk) 2 (mk)]
- 2A + (8.24c)

+ NDiJ2 [ o ij2 b2A liJo

#:

(mk) (mk) [6 (mk) (mk)] [ (mk) (mk)].. = - C.. - ilI2j + 6 - A I - 16ijI_ 3 J41134 _J3 3 jIii23 ij3

ND (mk) [ (mk) (mk) b A31 (mk)].... - 2A b I.. + blAlij ++ 133 _ o 133 2 3 iJo J
(8.24d)
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Solving the nonlinear algebraic set of zero-order equations,
Eqs. (8.24a), provides the initial conditions for the correlation
parameters at T = 0 The model constants that must be specified

bo , _ij and v c . The solution provides _ij ° _ijo ,
yareijoA,_ijo ' ijo and Cko . The initial value of gij iT is

specified as gij(o) = g_L]''_= 1.0. For now, we assume °ii , _ij
and ck do not vary witn-Neparation time, affording considerable
simplification without undue loss in generality.

Since the higher-order coefficient equations are linear in those
of lower order, Eqs. (8.24) provide the series expansion coefficients
needed to define the separation-time derivatives at T = 0 Using
elementary matrix algebra.

9. RESULTS AND COMPARISON WITH TURBULENT SHEAR FLOW DATA

Tables 3 and 4 present the zero-order coefficient solutions to
Eq. (8.24a) for model constant values A = /2 , Ull = 1/2 _ u22 = 1/4 ,
u33 = 1/4 , u12 = -1/(4/2) , Vc = 0.3 and three values of bo: 0.0,
0.02 and 0.05. Figures 3 and 4 are plots of the correlation function
Rii for bo = 0.0 and 0.05, respectively. Comparison of these
figures with measured two-point, one-time turbulence correlations
makes possible an evaluation of the qualitative aspects of the re-
suits. Such measurements in a two-dimensional constant shear flow
have been made and reported by Champagne, Harris and Corrsin I_,
Harris, Graham and Corrsin 18, and Rose 28. Figure 5 presents mea-
sured values of RII and RI2 measured along the coordinate direc-
tions at T = 0 as measured by Harris, et al. le The directional
behavior of these correlations are typical of those measured by
Champagne, et al.I_ and Rose et al. _° The measurements in the _3
directions, normal to the mean flow and velocity gradients, decrease
most rapidly with separation distance and exhibit extensive regions
of negative correlation. Those in the flow direction, _i ,.are
slowest to decorrelate. These characteristics are present in gen-
eral in the theoretical predictions, although the trends are some-
what exaggerated. Since Rij(_;0) ! Ri'(0,0) in a physical flow,
the theoretical behavior of R33(0,0,_3_0) in both Figures 3 and 4
is the most serious discrepancy in the model. It should be remem-
bered, however, that the present model is an integral representation
and as such may exhibit local inconsistencies with little serious
effect in its portrayal of overall behavior. Including the effects
of a turbulent microscale explicitly in the correlation function
would probably eliminate the undesirable overshoot in R33(0,0,$3;0).
Examination of the model also reveals that employing a directionally
dependent value of v c could reduce the negative overshoot in
Ri_(0,0,_3;0) while increasing the rate of decorrelation in
Ri=($1,0,0;0) with separation distance, thereby improving comparison
belween measurement and theory. This was not done for the present
until more empirical evidence can be found to justify this extension.
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TABLE 3

Trial-Function Coefficients at Zero Time Separation
A , _ A

"" Yij _ij °ijij _lJo _ijo o o o

b= 0.0

Ii 0.1227 0.1169 1.8831 -0.0990 i.1985

22 0.1746 0.1151 1.8254 -0.1495 1.1675

33 1.308 0.6916 -1.9082 -0.2216 1.0254

12 0.1186 0.1186 1.8814 -0.1028 1.1959

b = 0.02

Ii 0.1068 0.1028 1.8972 -0.0784 1.1896

22 0.1500 0.1015 1.8500 -0.1086 1.1687

33 1.3277 0.6723 -1.7699 -0.1730 0.9739

12 0.0037 0.0737 i.6768 -0.0237 1.2882

b = 0.05

ii 0.0743 0.0721 1.9279 -0.0386 1.1706

22 0.1006 0.0718 1.8994 -0.0493 1.1624

33 1.3726 0.6274 -1.5060 -0.0572 0.8522

12 0.0728 0.0728 1.9272 -0.0382 1.1700

52



TABLE 4

Scale Factors at Zero Time Separation

b(o) 0.0 0.02 0.05

k

I 3.6313 4.4728 6.8162

2 1.0000 1.0000 1.0000

3 0.3028 0.2830 0.2358

I0. RADIATED ACOUSTIC POWER BASED ON
TURBULENT CORRELATION FUNCTION

From Eq. (3.8)" the acoustic power radiated in direction (_,$)
from a unit volume element at y is, in the Proudman formulation
and in dimensional form

. 0o _4 2 ,2

vvx
where vx and v_ are the components of total velocity at y' .
and y" in the direction of _ , see Figure I. Since _ and r.

are nearly parallel for x in the acoustic far fiel_, we shall.. .

approximate x by r Let the total velocity at _ = 0 be v
and at _ , _' . The mean flow is along _I so that the compon-
ents of total velocity are

vi = ui + 61kU (10.2a)

Vi'= U'.I+ 61kU' (I0.2b)
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where u i and ui are the fluctuating components. The velocity
components v_: and v_ in terms of v i and v i are, to a first• • _

approxLmatzon _

vx = v I cos _ + v2 sin _ cos i + v 3 sin _ sin i (10.3a)

V'x = Vl cos _ + vl sin i cos i + v_ sin _ sin i (lO.3b)

2,2
The correlation VxV x is found by substituting Eq. (10.2) into
Eq. (i0.3); squaring Eq. (10.3a) and Eq. (10.3b) and forming their
product and taking the ensemble average. The result is an2expres_

u'.u' UU'u.u_ U2U '2 U2_.- , U2_. _
sion containing terms in UiUp 3 q ' i J ' ' l 3

Uuiu j'Z , and U'u 1'.u.[j . The first two of these will contribute to
the flow noise. The following three are constant with T and will
vanish upon differentiation. The last two terms are triple-velocity
correlations. For homogeneous, stationary, turbulence, these are
odd functions by invariance with reflection of coordinates. Change
of sign of coordinates must be accompanied by change of sign of
separation time. Since we have assumed the correlation function
may be expressed as the product of separation space and separation
time variables, the triple-velocity correlations will integrate to
zero over separation space•

In order to provide a tractable analysis for the fourth-order
correlations, normal joint probability of ui and u_ is assumed.
This is done based on Batchelors 27 argument that the _art of the
joint probability distribution of the velocities associated with
the energy containing eddies is approximately normal at a fixed time
and at points sufficiently separated in space. This assumption has
been used by numerous investigators. Z, _,2_,23,2s,26,2_,29 Goldstein
and Rosenbaum 26 extended this argument to time separation by arguing
that the correlations will be subject to even more random influences
from the neighboring flow when they are separated in time. Thus,
their joint probability should be even closer to normal.

Using the assumption of normal joint probability the fourth-
order velocity correlations may be written (see Batchelor 27)

* The effect of _ on the components of v. and v'. in the direction
of _ is of order _/X << I and will b_ neglected in this analysis.
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Uipjuu u=q uiup  u u+ + uiu   upuj

--Qip(0)Qjq(0) + QijQpq + QiqQpj _ (10.4)

The first term on the right will vanish upon differentiation with
respect to • .

!

The other nonvanishing term is of the form UU'uiu j , where
U' = U + $_ nondimensionally. For simplicity the _ariation in U
with _2 is dropped and only the leading term in Uz is retained.
This leaves terms of the form U2_.u ,. .

The noise associated with the fourth-order turbulent correla-
tions has been designated self-noise, while that generated by terms

of the form U2uiu_ is known as shear noise. These contributions

will be written separately_ in what follows.

. .

P(_,i,y) , the sound power radiated along x in the direction
(_,i) per unit volume of shear flow per unit area at x may be
expressed as

_(_,_,_) = I Lm dUl[q(_)]7 {Urn . _416_ 2 Um dxmL um J (Y)IAijuij.. _ (gijWij)
ij

I _4 (g)}+ Bij pqUijUpq _ ijgpqWij pq (I0.5)
xJpq

Although not explicitly stated, ui- and u,_ are functions
of absolute space when a real flow is treated usi_ the "locally
homogeneous" approximation.

Aij and Bi_pq are functions of _ and _ as derived by ex-

pansion of v2v '2 The summation sign indicates summation over allX X
correlations that contribute to the souna power, P(_,_,y) is non-
dimensionalized as follows

5X2Lm .. ^ + c P(_,i ,y)
P(_'I'Y) = 8 (10.6)

PoUm
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W.. and W.. are the integrals of R.. and R..R over sep-
13 13Pq 13 13 Pq

aration space

OO oO Oo

--OO-- CO-- O0

O0 O0 O0

Um is a reference velocity and Lm a reference length. Neither of
these is a function of y .

2 ,2 _
The values of A_j and Bii derived by expandin$ v v- mor

the correlations whicK have beena_cluded in this analysls anXd_which
contribute to the sound power are shown in Tables 5a and 5b. The co-
efficients in these tables include the permutations of the indices of
the correlations to include all contributing terms.

If the shear flow is axisymmetric the sound power may be aver-
aged over i , since the nonaxisymmetric power from individual volume
elements of the flow will mutually cancel on a time average basis. 22
Define

-- _ I ffAij 2_ Aijdl (I0.8a)d
O

2_

-- I f (i0 8b)Bijpq = 2-F Bijpqdl
O

The results of these averages are shown in Tables 6a and 6b. The
!-averaged sound power is expressed as

I L dgI I_ m U2(_)_ijuij _ (gijWij)
Y 1672 Um dx2 L Um J ij

+ I B.. u..u 84 )lzJPq z0 Pq _ (giJgPqWijPq (10.9) "
ijpq
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Sound Directivity of ij and ijpq Components

TABLE 5a

ij A..
13

4
Ii 4 cos

22 4 cos2 _ sin 2 _ cos 2

33 4 cos2 _ sin2 _ sin2

12 8 cos3 _ sin _ cos

TABLE 5b

ijp.q ijpq

IIii 2 cos 4

2222 2 sin4 _ cos4

3333 2 sin4 _ sin4 "_

1212 8 cos 2 _ sin2 _ cos 2

1122 4 cos 2 _ sin2 _ cos 2

1133 4 sin 2 _ cos2 _ sin 2

2233 4 sin4 _ sin 2 _ cos 2

1112 8 sin _ cos3 _ cos

2212 8 sin3 _ cos _ cos3

. 3312 8 sin 3 _ cos _ sin 2 _ cos
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Q-averaged Sound Directivity of ij and ijpq Components

TABLE 6a

ij A..
Ij

II •4 cos4

22 2 cos 2 _ sin2

33 2 cos 2 _ sin 2 _2

12 0

TABLE 6b

ijpq Bijpq

iiii 2 cos4

2222 3/4 sin4

3333 3/4 sin4

1212 4 cos 2 _ sin2

1122 2 cos 2 _ sin2

2 2
1133 2 cos _ sin

2233 ½ sin4 _

1112 0

2212 0

3312 0

i
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Integration of R.. and R..R over the separation volume
yields lj l] pq

.. = 3/2ClC2C303 1° WIJ ij[I - (_ij + Bij + Yij )] (10.10a)

Wijpq = _3/2c c c K3 1 2 {( +"" 1 2 3 ijpq [I -2Kijpq _ij pq)

A A

+ (Bij + _pq) + (Yij + Ypq)}

+ K4.. {3 a + + Yij13Pq pq

A A A A A A A

+ (eijBpq + epqBij) + (_ijYpq + epqVij)

A _ A A

+ (BijYpq + BpqYij) + _ijUpq}] (10.10b)

where

. 2 02 ]

2 | °iJ Pq J (I0.Ii)K.. =[2 2IJpq oij + Opq

The fourth-derivative of these functions at T = 0 are obtained
by substitution of the series expansions for the correlation para-
meters, Eqs. (8.21), taking the derivatives and setting • = 0
The results of these operations are

4 24_3/ 3 r s(O)s! 0)]

--_T4 (gijWij) = 2ClC2C3Oij[gij 4 13o.. 134] (10.12a)
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_T4 gijgpqWijp q = 24o_3/2ci 3 I + 1^4 G4-- c2c3<ij pq _KijPq_ij_Pq

I A A _ 1
1^2 <_ijG> + <BijG> + <YijG >- _<ij

( Bpq <;pqG> )
- !<2 <_ G> + < G> +

2 pq pq

I I<^ _pqG> ^ 8pqG> ^ ^ >)+ -_Kijpql^43 _ij + <Bij + <YijYpq G

^ ^ ^ ^ ^ ^

+ <_ijBpqS > + <epqBijG> + <_ijYpqG >

...... I]+ <epqYijG> + <_ijypqG> + <Yij_pqG> (10.12b)

where the various functions in these expressions are defined by

= + 8ij + Yij (i0.13a)•. i - ijo o oSz3o

• = _ + + (10.13b)
Si34 2 ij4 4 YiJ4

^2 ] (i0.13c)<ij = I + (_ij/Opq)2 I

= (10.13d)
-2

^4 = Opq/ )2 /Opq)2]Kijpq Oij + (Oij (I0.13e)

• G4 + Xij G2 + X.. (10.13f)<XijG>= XiJo 2 134

<Y G> = Y G4 + YPq2 G2 + YPq4 (10.13g)Pq Pqo
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G> Y G4 +IX . Y + X.. Ypq21G2
<XijYPq = XiJo Pqo iJ2 Pqo 13o

• Y + X.. Y + X. 4Ypqo (I0 13h)+ Xi32 Pq2 ijo Pq4 lj

+ (I0.13i)
" G2 = giJ2 gPq2

+ + (i0.13j)
G4 = giJ4 gij 2gpq2 gPq4

A

Xij ^takes on the values of the expansion coefficients^ _''13n" BiJ-n

andn Yijn where appropriate, while YPqn symbolizes _Pqn ' BPqn

and YPqn

The sound power intensity 1(4) for axisymmetric flow may now
be found by integrating Eq. (10.9) over the volume of absolute space
containing the turbulence. Since ui_ , uD_ and q2 may be func-
tions of _ for "locally homogeneous _ turbulence, it is more con-
venient to nondimensionalize the one-point, one-time correlations by
the reference mean velocity Um Thus, 1(4) can be written

16_2 C5oX2Lm _m dx2/
VF

. z1_ Um / ..Aij L--Um2 _ (gijWij) (10.14)lj

+_k Um ,,] BijPq U4 -_ (gijgpqWijpq) dy
ijpq

where the integral is taken over the flow volume Vf and (uiuj) o ,

(UpUq)° , q and the gradient dUl/dX 2 may be functions of y .

This completes the equations necessary to compute the sound
power, given the one-point, one-time turbulence velocity correlations
and the mean shear flow distribution. In the next section the theory

is applied to a shear flow and the acoustic power emission is
calculated.
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ii. PREDICTED ACOUSTIC POWER FOR SIMPLE SHEAR FLOW

The sound power intensity equation, Eq. (10.14), requires the
spatial distribution of turbulence and shear. The test case selected
to evaluate the model developed here is an axisymmetric, annular shear
layer. The three-dimensional turbulence in this annular layer was
calculated based on a one-dimensional shear. Figures 6 and 7 illu-
strate the geometrical details. Figure 6 shows a one-dimensional
velocity profile schematically with boundary conditions U(-_) = 0
and U(+_) = U The turbulence was calculated using the second-order
closure model of Donaldson, with the mean profile allowed to evolve
to a self-similar distribution. The shear layer was treated as axi-
symmetric as shown in Figure 7, where the annular layer is treated as
thin, As << R , thus justifying the one-dimensional mean profile
calculation. The core velocity is uniform and equal to Uc .

The resulting turbulence and mean velocity gradient was then used
to calculate 1(4) as given by Eq. (10.14), with Um/Uc = ½ • Since
the T dependence of the decorrelation function b is unknown, the
test case provided the opportunity to empirically assign values to
the expansion coefficients bn This was done by choosing those
values of the coefficients which provided agreement between the cal-
culations and an actual sound power intensity measurement in decibels.
The test data selected were those reported by Lush. 3° These measure-
ments were carried out using an axisymmetric subsonic jet as the
sound source. The annular shear layer assumption of the present
analysis precluded a direct comparison of the actual magnitude of
sound intensity. Therefore, the coefficients were assigned to pro-
vide agreement with the measured _ dependent directivity. This was
done by referencing the intensity to a selected value at _ = 0

/I(4))dB(_) - dB(o) = i0 lOgl01I--_ (ii.I)

Figure 8 presents the comparison obtained for the following b(T)
expansion near x = 0

b(x) = 0.02 [I + 16At - 6A2r 2 - 2A3T 3 .... ] (11.2)

i.e., bo = 0.02, and specifying dB(o) = I00 for Vi , the measured
jet velocity, equal to 300 m/sec. The predicted distributions for ;
Vj = 195 and125 m/sec, were obtainedbydecreasingtheintensityusingthe
ratio of jet velocities to the eighth power. Note that the predic-
tions contain no convection or refraction effects.

The separate contributions of the self noise and shear noise
may be seen in Figure 9. For the values of bn selected to match
the measured directivity the self noise is nine times as large as the
shear noise along the jet axis. Although the total sound power dis-
tribution is in agreement with measured values, this ratio and the
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Figure 6. One-dimensional shear layer model
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Nozzle

U=O _ _

Figure 7. Configuration of axisymmetric flow used for
acoustic calculations, with the assumption

that As << Rj . Flow is laminar in the core
region and outside the jet
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relative contributions of the self and shear noise predicted here
are only a preliminary assessment. Several factors which have a
large influence on the results require further study. The QI3 and
Q23 correlations have not been included at this point and the value
of b = 0.02 was chosen arbitrarily. Further effort is required to
define the behavior of b(_) It should be noted, however, that

- there appears to be a unique set of coefficients in the expansion of
b(_) which guarantees a decay in gij(_) (i.e., the second derivative

• of gij(_) less tha_._ero) for a glven choice for b(T) and the
selected value of A!_ j , which also correctly predicts the measured
directivity distributlon. The nondimensional !engtn scale

A_ )(0) = 1.0 , calculated using the data of Champagne, et al. 17 was
used._

Additionally, the spatial integrals over the jet volume are
based on an approximate velocity profile. Finally, as shown by
Goldstein and Rosenbaum, 26 the ratios of the correlation scales have
a profound effect on the distribution of sound power. The values of
the scales for the present results appear to be too large in the flow
direction and too small in the direction perpendicular to the mean
velocity and the velocity gradient. No information on the integral
scales exists for the Lush tests and, therefore, the use of the non-

dimensional scale length ^(2) = I 0 "was continued. Investigation'_II
of the decorrelation function b(_) and the influence of the ani-
sotropic scales in the generation of the sound power should be part
of the next phase of study.

12. CONCLUSIONS AND RECOMMENDATIONS

The feasibility of computing aerodynamic sound using a new
approach for the prediction of Qij , the two-point, two-time velo-
city correlations, has been demonstrated for a certain class of flows.
The agreement between measured and theoretical sound power emission
directivity and the ability of the technique to predict the behavio_
of Qij in spatial separation indicates that one-point, one-time tur-
bulence models can be successfully extended to the two-point, two-
time problem. The chosen form of the correlation function is vindf-
cated by the favorable comparison between theoretical results and
measured turbulent correlations in three directions in separation •

space. The results provide confidence that the present approach is
correct, although further effort is required. Three areas which are
recommended as subjects for the next phase of study are: extension
of the theory to noncompact sound generation; investigation of the
decorrelation function toprovide a physical basis for the specified
variation of its separation-time behavior; and further consideration

- of anisotropic scale length effects. An axisymmetric counterpart to
the one-dimensional shear layer calculation presented in this report
should be developed to permit application of the technique to axi-
symmetric jets.
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