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INFRARED RADIATIVE TRANSFER THROUGH

A REGULAR ARRAY OF CUBOIDAL CLOUDS

Harslivardhan and James A. Weinman

ABSTRACT

A study has been made of infrared radiative transfer through a re gular array of cuboidal clouds

which considers the interaction of the sides of the clouds with each other and the ground. The theory

is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream

(VATS) approximation (Harslivardhan et al., 1981). It is shown that geometrical considerations of-

ten dominate over the microphysical aspects of radiative transfer through the clouds. For example,

the difference in simulated 10µm brightness temperature between black isothermal cubic clouds and
a

cubic clouds of optical depth 10, is less titan 2° for zenith angles less than 50° for all cloud fractions

when viewed parallel to the array. 	 .

The results show that serious errors are made in flux and cooling rate computations if broken

clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy

and clear sky radiances are in error by V-8 ° 7C in brightness temperature for cubic clouds over a wide

range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly

affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.
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INFRARED RADIATIVE TRANSFER THROUGH

A REGULAR ARRAY OF CUBOIDAL CLOUDS

1. Introduction

Radiative parameterization of clouds is required for climate and general circulation models be-

cause clouds represent the most variahle quantity that affects radiative fluxes. To date, all general

circulation models have utilized plane parallel theory to construct cloud parameterizations even

though it has been realized that a significant portion of the total cloud field is broken and individual

cloud elements have horizontal dimensions of the same order as their height. In these cases, the

assumption of infinite horizontal extent in solving the radiative transfer equation is invalid and

parameterizations based on plane parallel theory must be regarded as suspect.

The particular case of monochromatic radiative transfer through single cuboidal clouds has been

studied in both solar and infrared wavelengths -(McKee and Cox, 1974; Davies, 1978; Liou and Ou,

1979 and Harslivardhan et al., 1981). However, each element- in a broken cloud field cannot be

considered independently as there is cloud-cloud interaction. The problem of infrared transfer

through an array of black clouds has been dealt with extensively in the Estonian literature (Ohvril

and Epik, 1978). Ellingson ard Kolczynski (1980) have computed infrared heating rates in the

atmosphere in the presence of an array of black cylindrical clouds. Interpretation of infrared radi-

ances measured by satellite borne sensors also requires an understanding of the effects of the finite

horizontal extent of clouds.

The present study considers a regular array of identical cuboidal clouds, as in Aida (1977), over-

lying a non-reflecting surface embedded in a non-participating atmosphere. Only infrared radiative

transfer k, considered. The theory of transmission through the array and emission from the cloud

field is first developed for black isothermal clouds. The work is then extended to 1 U µm radiation

interacting with a field of clouds which scatter and absorb radiation. Th rt VATS solution to the
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single cloud problem employed by Harshvardhan et al. (1981) is used. Computations to derive both

fluxes and radiances are developed as a function of the cloud fraction.

2. Radiative Transfer through an Array of Black Clouds

Consider an idealized broken cloud field in the form of an extended regular array of cuboids.

A portion of this array is illustrated in Fig. 1. Note that all elements of the array are identical and

lie in one plane. Also, the horizontal dimensions of all clouds areassumed equal, although this con-

straint may, in principle, be relaxed. In general, the height of each element, z*, is different from

the horizontal dimension, s. From the figure, the area of the top and bottom face is A O = s2 and of

each side face, A l = sz*. We define the aspect ratio of each element as

Z*	 Alaa_=_
s	 AO

If the spacing between each element is equal in the x- and y-directions as shown in the figure,

then the fraction of the field covered by clouds when viewed normally, henceforth referred to as

thta cloud fraction is

	

N Cs+d)r	 (2)

Consider a radiatively black cuboid at uniform temperature, T o . The monochromatic power

(Wµm" 1 ) emitted to space by the top face is rtB O A0 where Bo is the Planck emission at T o . The

monochromatic power emitted by each side face is 7rB O A 1 and for a single cloud, half escapes to

space and half goes to the ground. It is assumed that the atmosphere does not interact with the

radiation field. This would be reasonably true in the atmospheric window centered around 10 µm.

The total power emitted to space by a single cuboid is

P = TrBO AO (1 + 2a)	 (3)

where a is the previously defined aspect ratio. We define the quantity in parenthesis as the power

ratio, However, if the cloud is part of the array shown in Fig. 1, some of the energy emitted by

the side faces will be intercepted by neighboring clouds. If the fraction of energy diffusely emitted

(1)
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by one side face that is intercepted by all these clouds is L, then the power emitted to space by each

side face is irB Q A I (1 - 5)/2 and the total power emitted to space by each cuboid is

P = fflJ O A O [ I + 2a(l - 3)l	 (4)

so that the power ratio is

pa 1 +2a(t -3)	 (5)

We now introduce the concept of effective emittance fo the cuboidal array on the same lines as the

emittance ir plane parallel theory. Here we use power rather than flux because the emitting areas

have different dimensions. We define the effective emittance of a broken cloud array as the ratio of

the power emitted by a region containing the array in the absence of ground emission to the power

that would be emitted if the entire area was covered by a black surface at the same temperature. If

there are n identical clouds of tops A. as in the present model, then the effective emittance is

nP

TBOAt

where At is the total area; but the cloud fraction is N = nA o/At and therefore from (4), (5) and (6),

we have

F = Np
	

(7)

Consider some limiting cases of the above equation. When a ., 0, p - ► 1 and E = N and the problem

reduces to the planiform case. When N -+ 1 the clouds in the array approach each other and all the

energy emitted by the side faces is intercepted, so 3 -► 1 and p I; here, E = N = 1. It can be seen

that E plays the role of an effective cloud fraction, N e , and the two can be used interchangeably for

black isothermal clouds.

The effective transmittance through the array of black cuboidal clouds is

0-1-F = 1-Ne	(8)

Thus ;, the power emitted to space from a broken cloud array at To over a black ground at tempera-

ture 'T I is

(6)
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Pout = 1rBo At e + irB 1 At 0
	

(9)

where B 1 is the Planck emission corresponding to T t . Further, the flux per unit area of the field is

given by

Fout = O t = 7rBoNe + irB 1 (1 - Ne)	 (10)
At

and the cuboidal black isothermal -loud problem takes the form of the planiform cloud model for

which

Fout z vBo N + trB 1 (1 - N)
	

0 1)

a. Effective Cloud Fraction

If the sides of the clouds are black emitters and the clouds are isodwmial, the races will radiate

diffusely and uniformly. The fraction of energy emitted by each side face that :s intercepted by all

the neighboring faces can be computed using the angle factors described by Sparrow and Cess (1978).

A top view of the regular array is shown in Fig. ?. Due to symmetry we need only consider one side

face, such as the hatched face on cloud 00 marked in the figure. A fraction of the energy emitted by

this face is intercepted by the opposite face (hatched on cloud 01). All of the other hatched faces

(as well as their mirror images) also intercept some fraction of this emitted energy. These fractions

can be computed using angle factor tables and related equations given in the Appendix of Sparrow

and Cess (1978), as long as the faces are not partially obscured. Even when there is some obscura-

tion, the faces can be divided into smaller strips so that only the irradiated areas contribute to the

total configuration factor. This is best accomplished graphically for the different cloud spacings

corresponding to different cloud fractions. This method of obtaining r3 and hence, N e , is prone to

considerable error as N increases so an alternative technique was used.

The effective cloud fraction, Ne , was deduced experimentally from the transmission of a diffuse

Tight source through an opaque array. This is the optical analog obtained by setting B o = 0 in (l 0). For

this, an array of black blocks was placed on a light table covered with a diffusing sheet. The flux
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passing through the array was measured with a Tektronix Model J 16 digital photometer with a cosine

corrected remote illuminance probe. The probe was translated above the blocks and the mean of a

number of readings was used to compute the transmission, (1 - N.), from (10). As a check on the

accuracy of the experiment, the measured results for an array of infinitely long bar clouds was com-

pared with theory which is readily available in Sparrow and Cess ( 1978) for this configuration. This

is shown in Fig. 3 for bar clouds of unit aspect ratio. The measurements were taken by lining up a

large number of black blocks in a parallel array to simulate the infinite extent `n one horizontal

dimension. Four sets of measurements were taken and they are shown in the figure with their re-

spective uncertainties. Correspondence is good for N < OA, but for higher values, grazing light re-

flected from the side walls of the blocks which were not perfectly biack. This produced higher values

of the measured transmission which gave an underestimate of NQ , Figure 3 also shows the curve N . = N

corresponding to planiform clouds with a - 0.

Measurements were then made for the regular array of cuboids shown in Fig. 2 with two differ-

ent aspect ratios; the resulting N. values are shown in Fig. 4. For comparison, the values derived from

summing up the angle factors is shown for small 14 when there is not much obscuration and the tlieor;

is still quite accurate. If the blocks are arranged such that their corners are t-aching in a checkerboard

pattern, then N a 0.5 and N. can be obtained exactly from the expression for angle factors because

each side face sees only three other faces. The comparison for this case is also shown on Fig. 4.

Finally, a series of curves are empirically fitted through the available data points to represent N.,

The empirical expression

[1 + 2a(1 + 0.1 5 N)) N

N° s I + 2aN(I +0.15 N)	
(12)

is shown in Fig. 4. The curves follow the general pattern of the results presented in ®hvril and Epik

	

(1978) and Ellingson and Kolczynski (1980). It may be noted that as N -,. 0, Nd -► (I + 2a) N, which	 ji

is the correct limit for a single cuboid (see Eq. 3). Note that simulations of various geometrical cloud

configurations can be constructed so that N. can be empirically derived as a function of N.
s

.	 1i
5	 i
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b. Fluxes

A consr.quence of the finite nature of each cloud in the array is to increase the effective  cloud

fraction because N. is always greater than N. This implies that energy loss to space from a broken

cloud array s less than that computed using the cloud fraction without considering the sides of the

clouds.

The effective black body emission temperature at 10 um from a region containing the model

cloud array at 255°K overlying a black ground at 290°K is shown in Fig. S. The curve marked a a 0

is the planiform case. It is evident that errors in flux of 5°-10' cquivalent temperature can be made

for clouds of unit aspect ratio. This significantly affects the radiation balance because radiative models

incorrectly weight clear and overcast fluxes as in (11). If a significant portion of the global cloud cover

is broken, then (Foudcuboidai < (Fout )plutifon„ • This is especially important for simulations of the

Earth Radiation Budget Experiment.

c. Net Flux Divergence

Of possible impact in dynamic models is the fact that the cooling rate across the cloud layer is

different from the planiform case because of the radiation intercepted by the sides of the cloud

(Ellingson and Kolczynski, 1980). If a regular array of black isothermal clouds at To is embedded

do a non-participating atmosphere over a ground at T i , then the difference in net flux between the

top and bottom of the cloud layer is

Ofnet = irE Mo BI)
	

(13)

where F is the effective emittance of the layer and B o and B 1 are the Planck functions at To and Tl

respectively. It follows from (13) that the cooling rate across the layer, calculated for the cuboidal

cloud model is related to that obtained using the planiform assumption by

(AFnet)cuboidal Ne

(AFnet)pludorm N
(;4)
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This quantity is plotted in Fig. 6 for various aspect ratios as a function of" the cloud fraction, N. It

is evident that for cumulus cloud fields with N as 0.3, which is a typical value, the cooling rate in the

atmospheric window could he two to three times that derived from the planiform cloud assumption.

d. Radiances

If the array is composed of black isothermal cubic clouds, the radiance in any direction depends

on the field of view obscured by th6 clouds. When viewed from above, only the cloud fraciion .r1 ob-

scures the ground, whereas from any lower observation angle, the sides of the cloud also obscure the

ground. This effect is shown in Fig. 7 for two viewing directions; 0 s 0°, in which the observer views

parallel to the array seeing only the top and one side face of each cloud, and 0 = 45°, which is a diag-

onal view in which the top and two adjacent side faces are seen. Individual curves are marked with

the cloud fraction; the aspect ratio is utaii;y . The cuboids are at 255°K while the ground is at 290°K,

The radiance profile is governed exclusively by geometry; the sharp kink in the individual curves

is at the angle beyond which the underlying ground is completely obscured in the viewing direction.

At higher zenith angles, for 0 = 0% the radiance is

I= VN00 +(l-ON—)B 1	(15)

Only two cases are shown for 0 s 45° because the geometrical arrangement is very complex, but that

is sufficient to illustrate the effect of viewing direction. The radiance drops off much more rapidly

for this case. Figure 7 suggests that the brightness temperature measured by a satellite instrument

cannot be related to the cloud top temperature for broken cloud fields without considering the

geometry of the array and the viewing direction if the field of view includes a number of cloud

elements.

3. Monochromatic Radiative Transfer through an Array of Non-Black Clouds

a. Isothermal Clouds

Let- us now consider a re gular array as in Fig. 1 but we introduce the requirement that the cloud

is a cuboid of water droplets with a size distribution characterized as C-1 by Deirmendjian (1969).
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The radiative properties at 10 µm of such cloud droplets are computed from Mie theory, Unlike the

black blocks of Section , these clouds are partially transparent to 10,um radiation. It is also assumed

that the .clouds in the array are identical and isothermal while the ground below is non-reflecting. It

will be shown that the results of the previous section can be used to obtain fluxes and radiances

emanating from such an array,

The thermal radiation emerging from cuboidal clouds was determined by means of the VATS

technique of Harshvardhan et al. (1981). It is sufficient to note here that fluxes leaving the faces of

the cuboid may be expressed in terms of the mean radiance, to - 1 /4tr f; ^^ 1412, where $2 is the solid

angle. Io is obtained from the solution of

02 Io - A2 (I. - Ha )	 (16)

where

% n WO -ia) (1 -wa))^6

with k, w and g being the extinction coefficient, single scattering albedo and asymmetry parameter,

respectively.

b. Boundary Conditions

The boundary conditions for the problem are defined by the fluxes incident on each face. In

general, the flux in any direction is a function of position, say F (x, y, z) and in particular, the flux

exiting each side face is a function of position on the face. For a cloud of equal sides, s, and height

Z*, with the origin at the center of the base, we have (Fx+,x+)x- s/2 
s F(y, z). The flux nomenclature

used here is that of Davies (1978) and Harshvardlian et al. (1981). The first subscript identifies the

face whila the second subscript identifies the direction.

The flux boundary conditions at the top and bottom faces are as for the single cloud, i.e.

(Fz+,z-)ZUZO = 0
	

(17)

and

(FZ-,z+)Z-o = zrB, 	 (18)

8
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with li t the ground emission. The average flux exiting the side face at x = s/2 is

z •	 /2
(fix+, x+)x-s/2 

= 
Sz* fp f-45/2

 Fx+,x+ (y, z) dy dz

If the regular am- y is made up of identical cuboids, then by symmetry, (Fx*-,x-)x==s/2' (Fyt,y_)y=*s/2f

and this may now be used to specify the side boundary conditions.

The side faces receive radiant flux from neighboring clouds as well as that portion of the ground

that is rot obstructed by those clouds. If we assume that the flux exiting the side faces is isotropic

and uniform over the face, it is possible to compute the incident flux on each side face of the cloud.

Let A t be the area of each side face and A2 the total area of all the faces visible from this face for a

particular cloud fraction. Figure 2 shows that A2 varies with the configuration because of partial ob-

scuration by nearby clouds. The energy per unit area falling on A t that is diffusely emitted by A2

is (Fx+,x+)x.5/2 321 A2/A1, where 3 21 is the angle factor between A2 and A t defined as the

fraction of energy diffusely emitted by A 2 failing on A,. By reciprocity (Sparrow and Cess, 1978)

32t A2
312A,

and 312 is identical with 3 of Eq. (4) et seq. Therefore, to the extent that the cloud faces may be

approximated by isotropic emitters of uniform flux, the side boundary condition for the array prob-

lem is w„itten as

_	 aBt
(Fx+,x-)x=s/2 a 3 (Fx-, x-)x=-s/2 + ( 1 - 3 }

In (21), (Fx+,x-)x=s12 is the incoming flux at the x = s/2 face whereas (Fx-,x-)x=-3/2 is the mean

exiting flux out of the opposite face at x = -s/2.

It is necessary to examine the two assumptions made in deriving (21). The assumption of iso-

tropy can be justified to a certain extent if the cloud is sufficiently thick, kz* > 10, so that the up-

ward and downward components of the mean side flux are nearly equal. This is because the radiant

9
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flux is emission dominated. Moreover, the p goblem would become far more intractable if the angu-

lar distribution were to be accurately cons;dered.

The assumption of uniform flux over the side face is not correct for single clouds (see Harshvard-

han et al., 1981). As the cloud fraction increases and the spacing decreases, an error will be introduced

by assuming that the mean flux is incident on the neighboring cloud. In the limit that the cloud sides

touch each other, the input to one side face is the output of the opposite face, point for point, i.e.

(Fxt,x-)xis/2 i (Fx-,x-)x.-S/2
	 (22)

Note that if we set 3 = 1 in (21), the R .H. S. of the equation contains the mean flux and not

the flux at each point.

Figure 8 illustrates the exchange geometry. We merge (21) and (22) such that it i.-P, applicable

over the entire range of cloud fractions. the weighted boundary condition is

_	 1rB1

	

(Fx+,x-)x.sl2 : ((I - ^) (Fx-,x- )x. 12 *' (Fx-,x-)x.-s/2i 3 +0 - 3) ^	 (23)

0 is chosen to weight the incident flux; it is the ratio of two angle factors,

3Ai^Ai	 d2
+y =	 _	 4rG (a,N)	 (24)

3dAi-dAi sz*

where the funct`on

G(a,N) = 1
	 (a /2R)	

tan-1 + (I/2R)
2Ir	 I +(a/2R) . 	1 +(a/20)

+
	

(1/2R)	
tan-1	 (a/2,R)	

(25)
1 +(1/20) -1^2R

with R a d/s = 1 /-N/—N - 1 and a = z*/s, the asprct ratio (This expression is given in the Appendix of

Sparrow and Cess, 1978). An infinitesimal rrea dAi receives flux F from an element dAl exactly op-

posite it and flux F from the whole opposite face Ai . Figure 9 shows that ^ tends to unity as N be-

comes small and tends to zero as the faces approach each ether. The precise weight in boundary con-

dition (23) and choice of ^ is somewhat arbitrary but is physically reasonable. The contribution to
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the flux arriving at a point on the sides of the clouds from any point on the opposite facie rIwpends on

the angle factor between the points. In an approximate sense, the mean flux may thus be identified

with the angle factor between the opposite face as a whole and the receiving point. The angle factor

3A,-dA
i

 depends on the location of dAj but the center of the face has been used to position dAi.
^

For the special case which exhibits uniform flux emission, F	 and (23) reduces to (2l ).

c.	 Fluxes

The total flux emanating from the array and underlying ground can now be obtained using the t

tingle cloud solution obtained with the boundary condition (17), (18) and (23). If (FrE•, z+)zuz* is

the mean flux out of the top face of each cloud, then the power emitted is Ao(Fz+ , z+)z=z+ and if

(Fx+, z+)x=s/2 is the upward component of the mean flux out of each side face, then the power

emitted to space by all four sides is 4A 1 (F z+)x n 312(1 - 
3). Therefore, the upward flux averaged

over this array may be written as

	

Fout = N(Fz ',tjzsz , + 4a(l. -3) N (Fx+,z+)x=3/2 + (I - Ne) " 1	 (26)

If the clouds are considered black, (Fx+, z+)x-s/2 = 1/2 (Fx+, x+ )x=3/2 = Bo and (26) reduces to (10).
I

Computations have been made for a = 1 (cubic cloud) and the radiative model mentioned earlier

for which the single scattering albedo, " = 0.6 38 and asymmetry parameter, g o 0.865 at 10µm. Fig.

ure- 10 shows the average upward flux from a regular array of cubes of optical thicknesses on each

side varying from 0 . 5 to 20. Results are presented as an effective black body temperature. These

results may be compared with the curve marked a = 1 in Fig. 5 to note the departure from the black

case. It is evident that an optical depth of 10 or greater may be approximated quite well by black

cuboids.

.	 d.	 Radiances

Figure 1 I shows the radiance at 0 = 0° for various cloua fractions for a regular array of cubic

clouds of optical dimensions (ks, ks, kz*)= (10, 10, 10). The ground and cloud temperatures are

the same as before and the plot may be compared with Fig. 7 which is the black case. It should be

11
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stressed here that these solutions are not exact but VATS approximations. However, Harshvardhan

et al. (1981) have shown that the approximation is good, especially for large optical depths and these

non-black cuboidal cloud results appear to be reliable. The black assumption is very good for zenith

angles less than 60° as can be seen from Fig. 12 wWch shows the difference between the brightness

temperature f%°- black and non-black clouds with a = 1. The maximum error in radiance is less than

2°K when 9 < 60° for all arrays of optically thick clouds. This situation is frequently encountered

in remote sensing problems.

The simulated radiance from partly cloudy fields is of the form

I = Ip N + B (1 —N)	 (27)

where I  is the planiform solution, B t the ground contribution or clear sky solution and N represents

the cloud fraction. If N is taken to be the cloud fraction when viewed normally, (27) will be erron-

eous for non-planiform clouds. To illustrate this, we have computed I according to (27) and com-

pared it with the present solution for an array of cubic clouds of optical dimensions (10, 10, 10).

The value of Ip used in (27) is the correspond ing planiform solution for optical depth 10. The dif-

ference is plotted in Fig. 13. The cloud is isothermal in both cases at To = 255°K while the ground

temperature is T 1 = 290°K. It is evident that (27) is not valid for any zenith angle and cloud fraction

with errors of 4°K in brightness temperature for a typical field of N = 0.3 viewed at 8 = 30°. For

fair weather cumulus, with a — 1, the geometry is more significant than the detals of the radiative

transfer microphysics and good results can be obtained with the black block assumption.

e. Non-Isothermal Clouds

We have only considered isothermal clouds so far; however, it can be demonstrated that iso-

thermality is not a serious drawback for fair weather cumulus and other cloud formations that are

not extensive in the vertical direction. Consider a cuboidal cloud array with a = 1 and optical dimen-

sions (10, 10, 10). A ver',ical optical depth of 10 at IO um corresponds to a maximum vertical dimen-

sion of about 1 km (Deirmendjian, 1969), so the temperature difference between cloud top and base

would be about 5°K. We therefore compute the radiance at = 0° from a non-black array of cuboids

12



(w = 0.638, g= 0.865) with cloud top temperature, Tot = 255 °K, cloud base temperature, T oa = 260°K,

overlying the ground at T^ = 290 ° K and compare this with the isothermal black cuboid radiance with

To = 2900K.

The difference curves are shown in Fig. 14, which is very similar to Fig. 12, the isothermal com-

parison. Again, thr; maximum error is only a little more than 2°K for 9 < 60°. One reason that the

lapse rate is not very important for sufficiently opaque clouds is that for small values of 9, the 'sulk

of the radiation is emitted from the top and for larger zenith angles, only the upper portion of the

sides are vis,.5le, the rest being obscured by neighboring clouds. In so far as clouds a re optically thick,

replacing a broken cloud array by black emitters at the same temperature as the cloud top is superior

to the use of (27) in computing exiting radiances.

4. Summary

The results presented here show that it is possible to model the infrared radiation emanating

from a broken cloud field if only the geometry of the array and the cloud top temperature are de-

fined. Although a very simple regular array of cuooids was considered, this study compares a

black cloud and a scattering -absorbing water cloud with appropriate radiative properties. The non-

black problem was solved by extending the single cloud solution as obtained by a two-stream

approximation to an array solution with mutual interaction. One conclusion of this study is that

clouds may be approximated by black opaque finite emitters in the infrared if the optical dimensions

exceed 10 on each side. This will ba particularly useful in modeling irregular arrays of non -uniform

sized clouds. It was also shown that a simple area -weighting of overcast and clear sky radiances for

broken cloud field radiative simulations is highly erroneous when the aspect ratio of the cloud ele-

ments is about 1 or larger.
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Figure 1. Schematic showing regular array of cuboids.
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