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ORDERED GROUND STATES OF METALLIC HYDROGEN AND DEUTERI

N. W. Ashcroft

Laboratory of Atomic and Solid State Physics 	 ^^3

Cornell University, Ithaca, N.Y. 14853^^-1^,

Metallic hydrogen and metallic deuterimn are both predicted to be liquids in their
ground states over a wide range of densities. They may be described as quantum
liquid metals, but since the proton and deuteron fluids obey Fermi-Dirac and Bose-
Einstein statistics, respectively. their physical properties can be markedly differ-
ent. In both there is the likelihood of superconductivity thorugh the usual coupling
via the density fluctuations of the ions. But in addition the deuteronic fluid admits
of the possibility of Bose condensation and may develop superfluid order. Finally,
the protons may themselves pair at extremely low temperatures.
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1. INTRODUCTION

Under conditions of modest compression and tem-
perature hydrogen and deuterium form diatomic-
ally ordered insulating states. This familiar
situation changes radically at very high densi-
ties where the dense phases of these systems
undergo an insulator-metal transition to con-
ducting states. Though this is expected on
very general grounds, what cannot yet be fore-
told with any degree of certainty is the nature
of the resulting high density phases, where the
many possibilities that might be expected dif-
fer in energy by exceedingly small amounts.
Perhaps the most interesting aspect of both
metallic hydrogen and metallic deuterium is
that they seem to fall securely within the
class of quantum solids any' liquids [1]. Com-
bined with their specifically metallic charac-
ter, this places them in the somewhat rare
category of quantum metallic solids (or as we
shall see later, liquids . This in itself is
noteworthy: however, at low temperatures
there can be long-range ordering in both the
electronic and ionic systems, and these too
are imbued with unusual characteristics.

The purpose of this article is to discuss the
physical attributes of some of the more physi-
cally distinct ordered states of metallic
hydrogen and metallic deuterium at T - 0 and
nearby. In many respects the experimental
fabrication of these metals still represents
one of the major goals of high pressure
physics. As noted by Ginzburg [2], the produc-
tion of and understanding of new materials and
substances is a fundamental challen ge. In this
context the metallization of hydrogen has been
and continues to be as difficult as it is fund-
amental. The conditions required for its
attainment involve serious problems associated
with the ultimate strengths of materials. Thus
the spirit of this report is very much directed
to 'what might be' and in cataloging the remark-
able properties below one is nevertheless very
conscious of the fact that the ease of theoret-

ical conjecture bears here, apparently, an

inverse relationship to difficulty of experi-
mental reality. With this cautionary remark in
mind, we shalt see the: the inferences that can
be made from relatively well accepted principles
lead to some interesting predictions. These
depend in a striking way on the quantum statis-
tics of the systems under consideration and for
this reason, among others no doubt, both common
isotopes of hydrogen are worthy of detailed
experimental examination in the high pressure
content.

2. THE FUNCAMENTAL HAMILTONIAN

We begin by considering a neutral assembly of
electrons (e) and protons or deuterons (i - p
or d), under conditions of density that span,
on the one hand, the normal condensed insulating
phases of identifiable molecules and on the
other high density phases exhibiting metallic
properties. This range of densities can be con-
veniently expressed in terms of the familijrl/3
linear measure rS , defined by r s - (3/4npeao)

where a is the single-particle density for the
electrons averaged over the system. From the
known density of condensed hydrogen and deuter-
ium at 1 atmosphere, we find r - 3.07. The
states we shall be describing below, however,
are characterized by r s ;^- 1 ^. (Observe the
experimental requirement of volume compressions
approaching an order o` magnitude: the conven-
ience of the linear measure of density is
entirely theoretical.)

Let the electrons in the system have a set of
coordinates {re ), and the protons or deuterons
(which we refer to as ions) have the set tRi).
Then all of the phases that we will consider
are described by a fundamental Hamiltonian

H n H({'re),{4i)) ,	 11)

All of the interactions in the system are
strictly Coulombic. We consider only charge
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neutral ensembles of fixed number so that the
thermodynamic functions are well defined. If
v c (k) - 47re /k then for a macroscopic ensemble

of volume S2,H takes the form

H = Te + N 
I vc (k)(N

- ' pe (k)oe ( k) -1}	 (2a)

k#0

+ Ti + M" 	 vc (k){N-1p i (k) p i (4)-1}	 (2b)

k'#0

- R E vc(k)pe('k)- (-k).	 (2c)

k#0

The first two terms (2a) of H represent a well-
known problem: they constitute the standard
Hamiltonian of N interacting electrons of mass
me and total kinetic energy T  whose single
particle density operators have Fourier compo-
nents p (k). They move in a uniform compensat-
ing background at average charge density
(0/2). Similarly (2b) represents the Hamil-
tonian of N protons or deuterons of mass mi,
whose kinetic energy is T i and whose density

components are p M. They also move in a uni-
form compensatin4 background with average
charge density -eN/S2. With appropriate boundary
conditions, (2a) and (2b) are themselves Hamil-
tonians for distinct and well-defined problems.
However, in the system under consideration they
are coupled, and coupled strongly, by the
attractive interaction described by (2c). In
the thermodynamic limit, which we ass'h"e, the
average of (2c) in states o f fixed N is removed
by the requirements of charge neutrality.
Unlike the Hamiltonians that one might imagine
writing down for other simple metallic systems,
(2) is exact. There are no residual uncertain-
ties stemming from the necessity of construct-
ing a pseudopotential, for example.

The Hamiltonian summarized in (2) .ias consider-
able symmetry.

3. NORMAL GROUND STATES

We are especially interested in ordered states
of the system described by (2). But first we
briefly describethe oexpected normal states and
their origin. Let 4 be the ground state wave-
function for the electron-proton or electron-
deuteron assembly. Then the determination of
the ground state energy requires us to evaluate

o
< -f U r e), i'Ri})IH((re},t^i})^,I.o((re}.{Ri})>• 	 (3)

Since (m /m )} = 0.153, and (m e/md ) i 	0.128 9 it

is a reaSonible starting point for such a goal
to factor the dependence on electronic and ionic
degrees of freedom the adiabatic form:

`Y°({re},{^ i ?) # { } ( {re
})Yi0({ki})	 (4)

i

where yeo is the ground state wavrtfunction for
the instantaneous configuration (R ) of the
ionic system (whose ground state, In turn, is
described by T10 ). If the electron system
remains in its ground state or close to it then
it follows that the motion of the protons, or
deuterons, is described by the Hamiltonian

})=<'l e

	

Hi((R	 o ((r' ))jH(('r }.{R })IT0 ((r ))>.
	i 	

(Ri} e
	 e	 i	 (1i) e

(5)

The electronic degrees of freedom are clearly
integrated out, but the result of this procedure,
and hence of the resulting ionic motion, very
much depends on the nature of these electronic
states (whether itinerant or localized, for
example). The characteristics of these states
deoend on density, as noted. Near r s = 3.1
hydrogen and deuterium form well-defined
diatomic molecular distance 2d(r ). (In prin-
ciple, these units should be distinguished
according to the states of the ionic spins. The
matter of ortho-pars differences will not con-
cern us further in the low density-̂ eehases.) A
physically acceptable choice for Yx" for such
states is a product of (N12) two-electron func-
tions each localized about the mean molecular
coordinate. The electron functions in this
choice are thus identified by site and this
form for Teo therefore conflicts with the basic
requirements of overall antisymmetry. This
difficulty is overcome in practice by introduc-
ing into (5) phenomenological short range poten-
tials which are generally taken as pairwise
functions of the relative intermolecular separa-
tions. At longer range, a product state based
on an assumption of little overlap leads, as is
well known, to fluctuating dipole forces in
lowest order. Thus when combined with the
Pauli repulsion (short range) terms we arrive
at the familiar picture of a system of interact-
ing molecules with pairwise interactions (not
necessarily spherically symmetric) between then.
The ionic Hamiltonian can therefore be recast in
the form

m,m

where m and m' denote molecular coordinates, and
t is a pair-potential.

If the density is such that the two-particle
functions seriously overlap, then terms beyond
simple pair interactions displayed in (6) will
become important, beginning with the dipole-
dipole-dipole term. At still higher densities
the overlap becomes so large that the very
starting point of the description, the assump-
tion of well-defined localized two-electron
states, ceases to have any physically ,justifia-
ble validity. Under such conditions the density
of electrons near the boundaries of the Wigner-
Seitz cells has become an appreciable fraction
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of the average density Pe , and in these circum-
stances it is more appropriate to characterize
the electron band states by band structure. In
a very general sense the details of the electron
band structure must still reflect the geometri-
cal arrangement of the protons or deuterons.
Thus, for example, we may think of a set of
bands which continue to display at high density
the basic diatomic ordering so characteristic of
the low density system. For crystalline arrange-
ments an integral number of bands are normally
filled, but this paradigm of insulating config-
urations can itself revert to metallic behavior
through the mechanism of band overlap. That
such overlap can occur with diatomic ordering
bein preserved has been known for some time
[3,41. The correspo.iding conducting state is a
forerunner of the more complete dissociative
transition to a metal which, in crystals, for
example, is expected to be represented by rela-
tively simple structures (Bravais lattices are
the simplest).

If metallization by band overlap is the correct
mechanism, then the most interesting question
concerns the density (and hence pressure) at
which this occurs. To address this question,
one requires a sequence of band structure cal-
culations as a function of density for various
separations 2d of the ions in the 'asis. Corre-
spondingly one also requires a sequence of total
energy calculations for both insulating and
metallic phases. The metallic phases have been
treated by a variety of methods including Wigner-
Seitz techniques [5-9], localized orbital tech-
niques [10-15], expansion methods [16-22] (in
which (20 (above) is treated as a perturbation)
and density functional techniques [23]. The
14tter have the particular advantage that, in
principle, they can treat metallic and molecular
phases on the same footing with the errors of
the method entering largely on a systematic
basis. The combination of the results of this

method with those of band structure calculations
[4] leads to a prediction fur band overlap metal-
lization at around 1.8 Mbar; complete dissocia-
tion in a static model does not appear to occur
until much higher densities (rs % 1.1), the
corresponding pressure being quite dependent on
the energies bound up in the ionic degrees of
freedom and determined by (6). The motion of
the ions is thus important. It is also extreme-
ly important in determining the possible states
of long-range order of the metallic state once
it is formed. This motion is again determined
by an effective ionic Hamiltonian obtained by
integrating out the electron degrees of freedom.
For itinerant states appropriate to the metal
the result is

H^	 Ti + Eo (rs ) +	 ^^	 ') + ••-	 (7)

where Eo (rs) is a term depending on volume aris-
ing from paramagnetic electron-gas energies, and
m is a screened pair-potential for the ions. We
note that provided rs is held fixed, the problem
of solving for the motion of the ions is not
essentially different from the equivalent pro-
blem in the insulating context.

4. ORDERED STATES

The description just given will determine the
major contributions to the total energy of the
system. The states we now discuss will
involve ordering energies that are trivial in
comparison. The states to be described are
summarized in Table I.

If hydrogen and deuterium are both in crystal-
line !tates in their high density metallic
manifestations then, with one possible excep-
tion, it is unlikely that the fact that one is
a Fermion system while the other a Boson will
lead to any mark.rd physical distinctions. The

Normal States Ordered States

System
Crystal Liquid Crystal Liquid

Electrons
Fermi- Fermi- Super Super-
Liquid Liquid conductor conductor

Protons
Quantum Fermi- („) Anisotropic-
-Crystal Liquid Superfluid

Deuterons
Quantum Bose- (*) Bose-Condensed
-Crystal Liquid Superfluid

Table I:	 States of order of electron, proton, and deuteron
systems resulting from equation (6) and broken symmetry. The entries
identified by'(*) might well include magnetically ordered states.



exception concerns ground state vacancies [24]
and defects that may occur in highly quantum
systems. The spectrum of vacancy waves might
then be quite different. However, the presump-
tion that the metals are indeed crystalline,
even in their ground states, is itself not at
all well founded [1]. One can see that this
might be the case by noting that a typical zone
bounda. •y phonon for the ions will have a fre-
quency typical of an ionic plasma frequency, or
an energy per ion of about

Ato
pi
 ;^ 2elr s

-3/2 (m/mi ) }
	Ry.	

(8)

For protons, for example, this amounts to 0.014
Ry at rs - 2.0 and 0.04 Ry at r - 1.0. These
energies are far in excess of tAe energy dif-
ferences per ion (typically milliRydbergs) char-
acteristic of different static structures [22].
Put another way, there is sufficient zero point
energy in the ionic degrees of freedom to cause
continuous rearrangement between a variety of
common crystal structures. lhough this argument
is qualitatively correct, in practice it is nec-
essary to treat electron and ionic degrees of
freedom self-consistent) [25]. Nevertheless, by
direct simu ation met ods [1], it can be esta-
blished that the conclusion to which one is
being led, namely that liquid-like ground states
may be energetically preferred, is in fact con-
firmed, at least over a specified range of den- .
sities. if the ground state is a liquid, how-
ever, thr.n the quantum statistical differences
between hydrogen and deuterium become extremely
important.

4.1. Liquid Metallic Hydrogen

Even if the density is such that metallic hydro-
gen is a (quantum) crystal, the melting point is
expected to be very tow [1]. It has been point-
ed out that crystalline forms of metallic hydro-
gen are likely to be superconductors with high
transition temperatures [26-28]. Consequently,
for crystalline states we can also imagine that
metallic hydrogen will be a superconductor at
leastunto its melting point. If we now assume
that the lack of crystallinity is not inimical
to superconductive pairing (and the existence of
amorphous or glassy superconductors certainly
gives support to this view) then we can conclude
that metallic hydrogen will order, even as a
liquid, into a superconducting state. The ques-
tion is whether the transition temperature is
lower or higher than in the corresponding crystal
and whether the standard theory can be applied.
The answer to the latter is that it can: to
obtain Tc we need to solve the Eliashberg equa-
tions for the gap function and to find the tem-
perature at which the gap is just suppressed by
a pair breaking term. To carry2out this proce-
dure, the Eliashberg function a F must be
obtained from a description of density fluctua-
tions which is more general than that used for
crystals. In turn, this requires some knowledge
of the frequency dependent density-density

response function X qq,w) whose imaginary part
appears explicitly ^29] in the Eliashberg func-
tion. This can be obtained from memory func-
tion techniques, for example, but is most easily
given by a generalization of the RPA like form:

X( q .w) • — o (q,W)	 (9)
-f ( q .w)X (q.w)

where XO (q,w) is the response function for non-
interacting protons and f( ,w) is the so-called
polarization potential (30^. It can be obtained
from the reasonable assertion that it is a con-
tinuous function with the appearance of a
screened Coulomb interaction at long range, and
taking a constant value at short range. The
constant is fixed by the calculated sound speed
as q + 0. From (9) and from the electron-proton
interaction ve i (q) we obtain the Eliashberg
function according to

k

a2 F(w) - N (0)	 Fdq(q/2kF)lvei(q)2X`^(q.w)/ir.

(10)

This is the required input for the gap function
A(4,): the solution of the Eliashberg equations
[31] is relatively straightforward The result-
ing transition temperature is ti 102°K and is a
fairly strong function of density [29]. These
temperatures do indeed exceed the melting tem-
perature in certain density ranges so that the
assumption that a liquid superconducting state
exists appears to be substantiated.

It is worth noting that if the density is such
that metallic hydrogen is in a liquid state,
but the temperature is such that the system is
normal, the properties of this 'normal' state
are still rather remarkable. For it then con-
stitutes a two-component Fermi liquid with one
component (the electrons) in the high density
limit and the other (the protons) in the low
density limit. Both Fermi liquids have identi-
cal Fermi surfaces but yjery different Fermi
temperatures (TF ti 10' TFe). From the stand-
point of experimintal detection of a(static)
pressure generated phase of metallic hydrogen,
it is also important to understand the proper-
ties of this phase. This can be achieved most
easily through a straightforward generalization
of Landau Fermi liquid theory to two (charged)
components, both for equilibrium properties
[32] and transport properties [ 13]. One of the
most striking equilibrium properties is the
appearance of a giant linear specific heat at
low temperatures. It is a manifestation of the
high density of states of the proton Ferm liquid
and is in marked contrast to the normal T
phonon behavior, expected when the system freezes.

The transport properties are no less dramatic.
To study these one begins with a two-component
generalization [33] of the Landau Silin trans-
port equations describing the momentum, space,
and time development of the electron and



proton quasi-particle distribution functions.
It is possible to obtain closed form expressions
for the electrical conductivity, thermal conduc-
tivity K. viscosity n, and spin diffusion coef-
ficients. As T • 0 all of these quantities
diverge because of the phase-space considerations
controlling the scattering. The electrical
resistivity, in particular, vanishes as T ,
again in marked contrast to the solid where, in
the absence of impurities, it would vanish as
T . Most importantly, the transport coeffi-
cients of the liquid are found to be at least a
factor (me/m )4 smaller than in the correspond-
ing solid meal (and in the case of the resis-
tivity, the inverse of the conductivity, the
factor can approach 108i).

Finally, in a fluid phase of metallic hydrogen,
the Fermi temperature of the protons is
ti (m /I )TF where Tfe is the Fermi tempest-
Of *lie lectrons. For r s . 1-2, TF? ^ 10 °K.

As noted above, there are effective (screened)
interactions m between the protons which have
a repulsive region at short range, and an
attractive and oscillatory region at long range
[1]. Given this form Sf the interaction and
with the e,:ample of He before us, it is possi-
ble that at extremely low temperatures the
protons may themselves je unstable toward pair-
ing. The temperature at which such a protonic
superfluid will form will be in the neighborhood
of 10' TF . Whether the potential is suffi-
ciently repulsive at short range to favor p-wave
over s-wave pairing has yet to be determined.

4.2. Liquid Metallic Deuterium

A possible low temperature liquid metallic phase
of deuterium represents a system with "mixed
statistics," the electrons constituting a Fermi
liquid, as before, but the deuterons belonging
to the class of spin-1 Bosons. Unlike helium
(spin-zero Bosons) the presence of the addition-
al spin degree of freedom leads to a new branch
in the quasi-particle spectrum even though
there are no explicitly spin-dependent terms in
the Hamiltonian (2). The dispersion of the branch
follows a k behavior at small k [35], and
therefore differs in an essential way from the
linear type of dispersions so characteristic of
phonon-like quasi-particle excitations. There
are thus 3 separate types of elementary excita-
tions: the "phonons," the spin excitations, and
electron-hole pairs. The system is quite
unusual [36] andCertainly contrasts markedly
with, sRy, He He4 mixtures.

At low temperatures we may certainly expect, as
with metallic hydrogen, that electron pairing
can occur through the density fluctuations of
thg ions. The crucial difference is that
X(q,.) (see equation (9)) now reflects the Boson
character of the ionic system. Again the
approach is very similar: X is constructed with
the polarization-potential model [30] and the
Eliashberg equations again solved. The resulting
transition temperatures are somewhat lower than

in metallic hydrogen [37], but sti,l in the
neighborhood of 10"K.

At even lower temperatures a potentially more
interesting ordering can occur in liquid metal-
lic deuterium. This is a superfluid transition
associated with the Bose-condensation anticipat-
ed for the spin-1 system. At rs n 1.5 an
estimate based on non-interacting Bosons gives
TgC ^ 30°K for this system. This suggests the
rather intriguing possibility that we have a
charged system in which the electrons display
superconducting order while at the same time
the deuterons display superfluid order. If it
exists it is difficult to imagine a more remark-
able state of condensed matter. At the very
least it raises a number of interesting theoret-
ical issues, for example, whether or not it is
valid to describe the system with a two-fluid
hydrodynamical picture, and whether or not per-
sistent deuteron currents will actually exist,
that is to say, whether combined superfluidity
and superconductivity is stable.

The transport properties of the system are
expected to be unusually r i .h in their possible
temperature dependences. This is because in
setting up the appropriate kinetic equations for
the three types of quasi-particles it is recog-
nized that their associated statistics have con-
siderable bearing on the standard phase-space
arguments determining the scattering character-
istics. To give but one example, if the tem-
perature exceeds both T c for the deuterons and
TD for the electrons. ten the low temperature
behavior of the electrical resistivity is expect-
ed to be linear in the temperature [36] rather
than quadratic as is the case for the normal
electron-proton fluid. The reason is that the
phase space limitation on the scattering cross-
section imposed by the Fermi-Dirac distribution
of the protons is essentially removed when the
protons are replaced by deuterons. A further
consequence is that the magnitude of the low
temperature resistivity of normal liquid metal-
lic deuterium should greatly exceed that of
liquid metallic hydrogen. As T falls below TBC
the deuterons will Bose condense and this tran-
sition should be manifested in the electrical
transport properties, both in critical behavior
near 

TBC itself and in the form of the transport
coefficients well below TBC [36]. In particular,
the manner it which electrons cause excitations
between the condensate (presumably in one sub-
space of the spans) and the excitation gas (in
the remaining subspaces)should be particularly
interesting.

It was remarked above that the Hamiltonian (2)
has considerable symmetry. In the macroscopic
manifestations of (2) this symmetry is broken,
the resulting states possessing physical proper-
ties that may be unique among the elements. The
states we have discussed are probably only the
simplest that can be imagined. There may be
more complex possibilities involving magnetic
order.
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