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ABSTRACT

The estimation of planetary magnetic fields from observations of the
magnetic field gathered along a spacecraft flyby trajectory is examined with
the aid of generalized inverse techniques, with application to the internal
magnetic field of Jupiter. Model non-uniqueness resulting from the limited
spatial extent of the observations and noise on the data is explored and
quantitative estimates of the model parameter resolution are found. The
presence of a substantial magnetic field of external origin due to the
currents flowing in the Jovian magnetodisc is found to be an important source
of error in estimates of the internal Jovian field, and new models explicitly
incorporating these currents are proposed. New internal field models are
derived using the vector heliwn magnetometer observations and the high field
fluxgate observations of Pioneer 11, and knowledge of the external current
system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.

INTRODUCTION

Four spacecraft have thus far encountered Jupiter and permitted in situ
investigation of many aspects of the Jovian system, including detailed
observations of the inner magnetosphere, These Spacecréft hayve explored
different regions of the inner magnetosphere by virtue of their unique
trajectories, The near-equatorial approach of Pioneer 10 to within 2.8 Jovian
radii permitted the first observations of what has become known as the
magnetodisc (Smith et al.,, 1974; Van Allen et al., 1974), a thin annular disc
of tenuous plasma and charged particles encircling the giant p;anet to
distances approaching 100 Jovian radii, Large scale azimuthal currents
flowing in this magnetodisc, subsequently observed by the Voyagers 1 and 2
spacecraft (Ness et al., 1979a; Ness et al., 1979b; Bridge et al., 1979) lead
to a substantial magnetic field of extsrnal origin throughout the entire inner
magnetosphere, The high-inclination retrograde approach of the Pioneer 11
spacecraft yielded measurements of the inner magnetosphere at high latitudes
spanning a wide range of Jovian longitude. In addition, the close approach of
w1,6 Jovian radii (RJ) made this trajectory the most favorable for the
purposes of estimating the internal magnetic field of Jupiter. Thus, models
of the internal field based on the Pioneer 10 measurements (Smith et al.,
1974) were quickly supplanted by models based on the Pioneer 11 observations
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(Davis and Smith, 1976; Acuna and Ness, 1976). The near equatorial approaches
of the Voyager 1 and 2 spacecraft, at the close approaches of «5 and 10 RJ.
have permitted more detailed studies of the external azimuthal current system
(Connerney et al., 1981) but have thus far udded little to the present
understanding of the internal magnetic field of Jupiter (Ness et al., 1979b).

As the number of available Jovian internal field models grows it becomes
increasingly important to evaluate the model non-uniqueness inherent in the
estimation of planetary magnetic fields from flyby observations, While some
of the proposed mogals represented an intermediate stage of data processing
and analysis, in general differences between the proposed mnodels reflect
differences in the number and kind of coefficients used in the hasic models,
differences in the actual observations, data intervals clusen for analysis,
and the choice of weights appiied to the observations in the least squares
minimization process., A recent summary of the magnetic field observations of
Jupiter (Smith and Gulkis, 1979) lists six spnerical harmonic models nf the
Jovian magnetic field; five based on the Pioneer 10 and 11 vector helium
magnetometer (VHM) data (Smith et al., 1974; Smith et al., 1976) and one
derived from the Pioneer 11 fluxgate magnetometer (FGM) observations (Acuna
and Ness, 1976). These mcdels (with the exception of P10-11 combined models,
e.g.,, Smith and Gulkis, 1979) all represent a 'gcod' fit along one trajectory
in the sense of minimizing the weighted or unweighted model residuals, but
lead to substantially different mcdel fields in other regions of space.

The model non-uniqueness we refer t¢ arises from the spatial limitations
of the available observations and the noise on the data, In the usual
spherical harmonic representation of planetary fields, there exist certain
linear combinations of the model parameters which lead to a very small
magnetic field along the spacecraft trajectory, but a large magnetic field
elsewhere (e.g., at the planet's surface)., That is, observations along a
single flyby tr:zjectory are insensitive to certain combinations of parameters.
This basic lack of information, inherent in the available observations, leads

to an unavoidable model non-uniqueness,

This paper concerns the estimation of planetary magnetic fields from
flyby observations, in particular from the Pioneer 11 flyby of Jupiter in
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December 1974, The non-uniqueness of derived models will be examined
utilizing the generalized inverse techniques that have been developed during
the last decade in other branches of geophysics, notably, seismic data
inversion (Wiggins, 1972), gravity and magnetics (Pedersen, 1977), and studies
of the electrical conductivity of the earth (Johansen, 1977). The generalized
inverse techniques are of wide applicability in studying the often peculiar
properties of linear (o linearized) systems and provide a framework for the
evaluation of various models, The method underscores the uniqueness problems
associated with the derivation of spherical harmonic expansions for the
internal field and facilitates a systematic study of model parameter
resolution, As the inevitable comparisons between models derived from
different spacecraft flybys are made (e.g., Hide and Malin, 1979), it is
important te evaluate the observations for consistency and develop models
which are applicable to all of the flybys. The ultimate goal is to find one
model, or field description, which is appropriate to all the observaticns,
allowing integration c¢f and sensible comparisons among the individual flybys.
Thus, we will in addition examine the basic models chosen to represent the
data and ‘the validity «f assunptions required by the conventional spherical
harmonic analysis of these data. In this regard we will assess fhe importance
of the magnetic field contribution due to external currents in the Jovian
magnetodisc and propose improved models which explicitly incorporate these
effects, For this purpose, models of the inner magnetosphere resulting from
an analysis of Voyager 1, Voyager 2, and Pioneer 10 observations (Connerney et
al., 1981) will be used to supplement the conventional spherical harmonic
analysis.

The primary purpose of an internal field model is to provide an accurate
description of the magnetic field throughout all space, not just along a
single trajectory. Thus the ultimate test of a derived field model is how
well it predicts the field in regions of space far removed from the locus of
observations to which the model was fitted. Correlative data can be used to
test various models, as well as additional in situ magnetic field
observations, Comparison of predicted charge particle satellite absorption
with observations (Acuna and Ness, 1976) is a powerful test of field models,
since the trapped charged particle population reflects a global magnetic field
topology rather than a localized observation, Indeed, satellite charged



particle absorption signatures can be used (Acuna et al., 1980) to constrain
the initial field models, Other field topology diagnostics which have been
applied to the Jovian field with varying success include ultraviciet auroral
observations (Broadfoot et al., 1980), the polarization of Jovian decimetric
radiation (Birmingham, 1980; de Pater, 1981) and the frequency and beaming
pattern of decameter radio emission (Alexander et al., 1975). These
observations can also in principle be used to constrain possible field models.

METHOD OF ANALYSIS

Incfeasingly more sophisticated models of the inte¢rnal Jovian magnetic
field have been proposed as the quantity and quality of available data
increased, The Pioneer 10 data were initially modeled as a centered, tilted
dipole and an offset, tilted dipole (Smith et al., 1974; Van Allen et al.,
1974). Ultimately, data were interpreted utilizing the spherical harmonic
analysis (Chapman and Bartels, 1940) conventiornally used in studies of the
earth's magnetic field. In the usual spherical harmonic analysis it is
assuned that the data were obtained in a source free region of space (such
that u,J = ¥ x B = 0)., The magnetic field B can then be expressed as the
gradient of a scalar potential function

B s -V = -V(Ve * Vi) (1)
which can be written as a sum of two potentials, representing sources internal
and external to the region of interest. The potential is expanded in terms of

spherical harmonics

Vevieviz=a?f® (r/a)® Tne + (a/r')m"I Tni (2)
n=1

where r is the distance to the planet's center, a is the planetary radius, and
the Ten and Tni are given by

T i, ¥ pnm(cose) [gnm cos mo + hnm sin m¢] (3)
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T®= % an(cose) [Gnm cos m¢ + Hnm sin m¢] (4)

where @ and » are co-latitude and east longitude, respectivaly, the an are
the associated Legendre functions with Schmidt normalization, and the snm.
hnm. Gnm. Hnm are the internal and exteirnal Schmidt coefficients., The series
(2) is terminated &t a suitable n = n . and the coefficients gnm, hnm, Gnm.
Hnm are chcsen to minimize, in a least squares sense, the differences between
the model field and the observations, This is accomplished by solution of an

overdetermined linear system

"
]

>
<

(5)

where ¥ is a column matrix of the N magnetic field observations, Risan Nx M
matrix relating the observations to the model parameters, X, arranged as a
length M column matrix of the g, h ", G, H coefficients, The details of
the usual least squares procedure in this application are summarized in Acuna
and Ness (1976b).

The shortcomings of this usual spherical harmonic analysis as applied to
the magnetic field observations at Jupiter have been discussed by both teams
of investigators invoived (Davis and Smith, 1976; Acuna and Ness, 1976b).
Briefly, these shortcomings fall into two distinct areas which will be
discussed separately. The first involves inadequacies of %7e basic model and
the second involves the often peculiar properties of linear systems,

EXTERNAL FIELDS

Inadequacies in the basic model include the assumption that the data were
obtained in a source-free space and the inefficiency of modeling fields due to
external currents as an expansion of the form (2) with a limited number of
terms. In the spherical harmonic analysis of Voyager 1 and 2 magnetic field
data (Ness et al,, 197%9a,b) the reduced g1o terms were attributed to the
repeated passage of these spacecraft through an annular current sheet (i.e.,
the magnetodisc) circling Jupiter. It is now clear (Connerney et al., 1981)
that Pioneer 10 and Voyagers 1 and 2 were repeatedly immersed in a current-



carrying region even as they traversed the innermost Jovian maghetosphere,
Azimuthal current densi*ies in the magnetic equatorial plane of v 5 x 10
A/RJ2 at a radial distance of 5 R; were typical of models considered for both
Voyager and Pioneer 10 encounters, Consequently, it is necessary to analyze
these data in the context of a model which is applicable in a region of space
containing sources. While it is quite possible that Pioneer 11 remained in
source-free space during encounter, it is most probable that the magnetic
field observations include a sizeable contribution from the external current
system, Some of the 'systematic effects' in the residual (cbserved minus
calculated field) noted by Davis and Smith (1976) in their analysis of the
Pioneer 11 vector helium magnetometer data attest to the presence of this
sheet perturbation field, For this encounter tu& problem is one of 'leakage'
or aliasing of the field due to exterual currents irnto coefficients describing
the internal field (g, s h,").

A reasonable starting point in the effort to construcr improved models is
to concatenate a spherical harmonic expansion of the type (2) containing only
internal terms with an explicit model »f the current system in the Jovian
magnetosphere, While several models of the Jovian mmagnetosphere and external
current system exist (Barish and Smith, 1975; Goertz et al., 1976; Jones et
al. (1980); Beard and Jackson, 1976; Engle and Beard, 1980; Connerney et al.,
1981) only the model of Conneéney et al, (1981) represents a detailed vector
fit to magnetometer observations in the innemost magnetosphere (< 20 RJ), the
region of importance here, The other models represent qualitative fits (Beard
and Jackson, 1976; Engle and Beard, 1980; Barish and Smith, 1976) or are
applicable in the more distant magnetosphere (Goertz et al., 1976) and often
match only scalar magnitude. The Euler potential models of Goertz et al.
(1976) and Jones et al, (1980) are valid only in the near equatorial region of
the distant (R > 20) magnetosphere, while the Biot-Savart model of Jones et
al. (1980) was compared only with observations obtained at radial distances
exceeding 20 RJ. Thus the Connerney model, particularly the analytical
approximations discussed in the Appendix to Connerney et al. (1981), will be
utilized to describe the external field. In a combined model we write

ol
1]
wj
+
ol



where B is the total field, b the perturbation field due to external currents,
and Ei 1s the internal field, 51 is derivable from a scalar potential (1) and
b is computed as the curl of a vector potential X due entirely to external
currents, 1The paramecters of the model external current system and model
internal field can then be simultaneously determined by inversion of the
magnetic field data, In this paper we treat the parameters of the modeled
external current system as fixed constants, determined by the V1, V2, and P10
encounters. Thus we assune at present that the near axis field due to
external currents in the Jovian magnetosphere is time invariant, such that the
medel field fitted to the V1, V2 and P10 observations is appropriate to the
P11 flyby as well, The magnetic field of the magnetopause and tail current
systems is estimatad to be only a few gamnas in magnibtude in the inner
magnetosphere (Engle and Beard, 1980; Ness et al.,, 1979¢c) and is neglected in
the computation of b.

The perturbation field, b, is computed using the approximate formulas
given in the appendix to Connerney et al, (1981) for the near-axis region of
the Jovian magnetosphere (in magnetic equatorial ccordinates):

poI P
B = (22 _ [1/F, = 1/F,]
e 2 2
and
Wl -
Bz = ( o] o) (2D <22 . a2) 1/2
2
e
A G fj;> - acz® + 89713
3
4 F1 F2
where
F1 s [(z-D)2 + a231/2
F2 =z [(z+D)2 + a2]1/2

p and z are the radial and vertical coordinates, D is the annular current
sheet half-thickness, and a (b) is the inner (outer) radial extent of the
current annulus. For the V1 sheet model used in this paper, we adopt (K I,/2)



3225, a=5R;, b=50 Ryo and D = 2.5 RJ, the resulting field quantities
eXxpressed in gammas., Magnetic field quantities in the usual System III (1965)
coordinate system are obtained by the appropriate coordinate transformation.
The magnetic field topology in the magnetic equatorial plane of the field due
to the V1 model current is illustrated in Figure 1. :The magnitude of the
field due to the sheet currents at the origin is «» 200v.

GENERALIZED INVERSE THEORY

The analysis of a linear system of the type (5) is conveniently
accomplished using the generalized inverse theory that has been successfully
utilized in the last decade in a number cof branches of geophysics (Jackson,
1972; Pedersen, 1977; Wiggins, 1972). Instead of proceeding directly with the
linear system (5), however, we will present the methodology in a form
applicable to non=-linear problems, in anticipation of non-linear relationships
between the observations and the model parameters, For example, field
magnitude coservations (obtained while the spacecraft traversed Jupiter's
shadow and lost orientation information) are non-linear in the parameters of
the usual spherical harmonic models, Vector field observations are
non-linearly related to model parameters in the context of the kind of models
suggested in the previous section, Indeed, should correlative cbservations be
included in the inversiosn process, it is likely that they too will be
non=linear in the model parameters,

We assume that the i-th observation, Yoo i1s related to the mecdel
parameters by the function Fi(xj)' The functions Fi(xj) may be expanded in a
Taylor series about some initial parameter set, xjo.

oF, |
o] i
Y1=Fi(xj)+ {
jo ©
A4

ij + e,

Qs

Neglecting zll but terms of order 1, and letting AYi = Yi - Fi(xj°).
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which has the sate form as the matrix equation

727

If we let the column vector ¥ pepresent the med

(5)

el residuals (observed minus

modeled field), the vector X represent the parameter corrections required to
bring the model into closer agrsement with the data, and the A matrix, a
matrix of partial derivatives of the model field with respect to the model

parameters, i.,e,,

1. g al-'1 aF1
X, 3?;
3Fy a”N

We will proceed with (5) with the understanding

.

-

that non-linear problems are

accommodated by considering them to be locally linear and iterating to a final

solution,

The matrix formulation of the generalized inverse method utilizes the
singular value decomposition of Lanczos (Lanczos, 1961) to rewrite (5) as

7 R

(6)

where U i3 an N «x M matrix consisting oi the M qrthonormalized eigenvectors
associated with the M largest eigenvalues of KKQ. V is the M x M matrix

consisting of the orthonormalized eigenvectors of KTz as columns, and
M x M diagonal matrix consisting of the eigenvalues, Ao of KTK- The
is by convention assembled with the largest A, in the upper left, all

positive nand in order A, 2> Ay > vee Ay i.e.,

1

10

A is an

A matrix

elements
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Operating on the left with UT, we write

@' = TR 1)

Since X is an M x M diagonal matrix (7) can be regarded as M independent
egquations relating 'eigendata' (on the left), through the eigenvalues Ay to
eigenvectors of parameter space, the linear combination of the original
parameters V X. The solution to (5), that is, the parameter vector X
minimizing in a least squares sense (Lanczos, 1961) the differences between
the model and observations, is given by

T=77 0% ¢ (8)

writing 8 = UT ¥, the solution can be constructed by a summation over the
orthonormal 1 zed Vi of parameter space:

]
=1 (31/)\1) V,i (9)
i=1

Considerable insight into the estimation problem can be obtained by an
examination of (9).v Assume that in the original statement of the problem
(equation 5) the data are (by suitable transformation--see Jackson, 1972)
normal random variables of zero mean and unit variance. 1In (9) the B, are
then of unit variance, The variance of the parameter vector (solution) is
largely due to just a few of the Ai's of the A matrix corresponding to the
directions in the parameter space (Vi’s) along which the solution is poorly
determined, The singular value decomposition yields not only a method of
constructing solutions but a characterization of both parameter and data space

11



as well,

We stated earlier that magnetic field observations along a flyhy trajec-
tory are insensitive to certain linear combinution of parameters, One
advantage of the singular value decomposition is that these parameter vectors
which are poorly constrained by the available observations are explicitly
identified, i.e,, they are the eigenvectors assoclated with the small
eigenvalues of KTK. To illustrate this, we show in Figure 2a a surface
isointensity contour map of a maliciously constructed, hypothetical Jovian
magnetic field, Illustrated in Figure 2a is the surface expression of a
particular combination of internal field parameters (eigenvector of parameter
space) which leads to a virtually unobservable magnetic field along the
Pioneer 11 trajectory, but a significant field elsewhere. Had Jupiter's
internal field been so constructed, the Pioneer 11 fluxgate magnetometer would
not have detected it, We have in this example assumad observations within 5
RJ at v .5 minule intervals and a random noise component of ,005 G everywhere;
the parameter set for this example is just the appropriately scaled
eigenvector associated with the minimum eigenvalue, In Figure 2b we show the
surface isointensity contour map ¢f an internal field which would be
undetectable assuming measurements with a random noise component of 1% of the
amblent Jovian field magnitude rather than a constant noise component as in
2a. Cbservations within 5 R; of Jupiter at v 1 minuce intervals are assuned,
Note that in this example the field magnitude is smaller but comparable to the
previous example, and that the eigenvector is considerably different,
reflecting a difference in information content in the two data sets.

The A matrix is a function of the trajectory, the model, and the
transformation utilized to condition the data, If the model chosen is
sufficiently accurate, or descriptive of the magnetic field environment, the
Yi (observed minus modeled field) will be of zero mean, Each observation, Yy
and correspondingly, @ach row of the X matrix is divided by the estimated
standard deviation of that observation, Gy such that the standardized
variable Yi/ci has a unit standard deviation. Thus the residual for each
cbservation is scaled with the width of the population from which it was
drawn, its expected error, For independent observations, the & matrix assumes
the form

12



1 3F1 1 3F1 ‘
K' s o009 »
T, X, T, Ak,
o NOTH (10)
o aFN 1 aFN |
aN 8)(.l aN axM
correspcnding tn a least squares minimization of
F-ADTB(T-F 0 (1)

where the matrix D is the diagonal matrix with elements D, = 1/0,%,

For data which are not statistically independent, the inverse covariance
matrix of the observations replaces D in (11) (Jackson, 1972). In either case
the choice of weights relates to the statistics of the noise on the data, and,
by modification of the A matrix (10), alters not only the final model but the
orthogonalization of data and parameter space az well. Thus care must be
taken to insure that the weights chosen reflect some real knowledge of the
noise statistics of the data,

We have thus far assumed that the M eigenvalues, ki' of the matrix KTK
are non-zero, in which case (9) represents the classical least squares
solution, The Lanczos inverse also leads to a solution when only K of the M
gigenvalyes are non-zero, The non-zero Ai are arranged in the diagonal matrix
A as before with A;» £ > K =z 0. Equation (9) becomes

K
T () = ¢ (ei/xi> Vi (12)
i=!

i.e., only the eigenvectors corresponding to non-zero eigenvalues are allowed
in the solution. Those parameter combinations which, by (6), do not

contribute to the observations are ignored in the construction of the solution.
The minimum length solution (12) is unique in the space spanned by the K
eigenvectors Vi. 1 =1, K, and has no projection along the remsining M-K

eigenvectors (corresponding to the zero 2igenvalues) which define the region
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of paraneter space that is inaccessible to the present linear system, This
inaccessibility reflectes a basic lack of information inherent in the
available observations. The unavoidable consequernce of such a deficiency is a
lack of parameter resolution, that is, the existence of linear combinations of
parameters (V,, i = K+1 ,.. M) which may be added to the solution oi' the
linear system without change to the model response,

Eigenvalues which are non-zero but small lead to a similar loss of
resolution when noise on the daa is considered, The projection of the
solution vector onto the Vi corresponding to the large A; will be well
constrained; the projection cnto ths V; associated with the small Ai will be
relatively poorly constrained, by virtue of the factor (ei/xi) in (12).

Errors in the parameters resuiting from noise upon the observations will
appear predominently in linear combinations corrasponding to the poorly
determined eigenvectors. A vivid and perhaps more fam!liar example of this
effect occurs in the gecmagnetic field models derived from scalar
observations, Stern and Bredelamp (1975) have shown that errors in field
models derived from scalar data are enhanced for certain sequences of terms,
first derived by Backus (1970). This 'Backus effect', subsequently observed
(Stern et al., 1981) in models derived from Magsat observations, suggests the
nedr-singular nature of the A matrix for this problem, and the presence of
eigenvectors (related o the Backus series) which have small associated
eigenvalues., Again assuming the data have been transformed such that the Y
are stavistically irdeperdent and of unit variance, the variance of the jth
model parameter is

KMo v, 2

2 - Jvi

S j (K) = g (13)
i=1 A

In constructing a solution vector, we are free to restrict the solution to K <
M eigenvectors, reducing the parameter variance to an acceptable level. In so
doing one avoids z large contribution to the paraumeters due entirely to a
small noise component on the data, at the expense of an unavoidable loss of
model parameter resolution.
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Paranmeter resoclution is conveniently described by the resolution matrix,
R, (e.g., Jackson, 1972) relating the K eigenvector parameter estimate X(X) to
a solution of the linear system (5),

R = TR OTY

]

\TKK" T OrT X

L]
3
<
-3

The subscript K to a matrix denotes the matrix obtained by setting each column
i for 1 > K of the original matrix to zero. An element Xi(x) of the estimated
solution is the convolution of the ith row of the resolution matrix with a
solution of (5). For K = M, the R matrix is the identity matrix; as fewer
eigenvectors are admitted in the construction of the solution, the R matrix
off-diagonal elements grow at the expense of the diagonal elements, reflecting
a8 loss of parameter resolution, An example illustrating the trade-off between
parameter standard deviation and resolution is given in Figure 3. 1In this
example we assume an internal spherical harmonic field model of order 3 and
500 vector magnetic field observations along the Pioneer 11 trajectory within
5 RJ of Jupiter, the observations including a noése component with .005 G
standard deviation. The RMS model residuals, g, parameter resolution
(diagonal element of R) and the 310 parameter standard deviation are shown as
a function of the number of eigenvectors admitted in the construction of a
solution, The very modest improvement in model fit (RMS) attained by using
the last two eigenvectors is accompanied by a large increase in parameter
standard deviation and only a small gain (2%) in; parameter resolution. 4n
estimate for 310 of 4,35 G, based on the 13 ev fit, may be more appropriate
than the estimate of 4.18 G resulting from the 15 ev solution. With 13 ev,
the off-diagonzl terms of the resolution matrix are sufficiently small that
'leakage' from the higher order parameters (which are presumably small in
magnitude) inco the 310 estimate should not be important, i.e., 310 is

expected to be adequately resolved at R11 = .98,
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The advantages of obtaining additional magnetic field information far
removed from the observations available along the flyby trajectory can be
understood by considering only the poorly determined parameter vectors., Such
information may include the correlative observations referred to carlier as
well as additional in situ magnetic field observations. The additional
observations will in general be in regions where the poorly determined
eignevectors lead to relatively large fields (e.g., Figure 2)., These new
observations effectively limit the range accessible to the previously poorly
determined eigenvectors, acting as a constraint on the solutions, This can be
quantitatively explored by forming a combined system of all the observations
(e.g., equatiocn 10) and comparing the new eignevalues with the old, or in an
approximate way (Jackson, 1972) by estimating the (larger) eigenvalues of an
augmented A matriy of N + 1 rows, The potential benefits in terms of improved
model parameter variance and resolution are great since they depend criticaliy
upon the minimum eigenvalue.

To define the entire range of values a parameter may assume, we use the
concept of an extreme parameter set as develcped by Johansen (1977). Because
of correlations between the parameters, the extreme value of any parameter is
achieved for a specific parameter vector--its extreme parameter set. This
represents e direction in parameter space along which the model response
(RMS change) is minimized for a change in a specified parameter, This
direction is found by considering the change in the model response, AQ, due
to an excurcion, €, in parameter space from the model minimum

Q=T TR S (14)
In the coordinate system defined by the eigenvectors Vi, AQ is given by
AQ=¢'"" A € (15)
describing an M dimensional hyperellipsoid with axes parallel to the Vi's of
length o 1/Ai. The extreme parameter set associated with the extreme values

of the ith parameter is determined by requiring the gradient of the error
surface to have only a component along the ith parameter.
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=2 T -
Taev Ei = sa,

where 31 is the column vector with the ith element equal to one and all others
zero, resulting in

E, =5 T2 7 3, (16)

i

where S is a constant and E, is the extreme parameter set for the ith
parameter, Any linear combination of the mcdel parameters may be extremized
in this fashion, In actual practice one perturbs the solution in the
direction given by (16) until 4Q appropriate to a specified significance level
is achieved to find the magnitude of the extreme parameter sets, as suggested
by Johansen (1977). This procedure requires that the problem be sufficiently
linear in the neighborhood of the solution such that the basis vectors of
parameter space (Vi's) are not appreciably altered in the process. The
problems considered here are sufficently linear that we may use for S the
value obtained from the linear approximation, resulting in

— ———

RTINS &

T | (1)
for 4Q = 1, corresponding to a 68% confidence limit.

One additional practical consideration relating to the non-linearity of
the problem has to do with the method (9) of constructing solutions at each
iteration, If the A matrix is close to being ill-conditioned in the sense
that some of the Ay are very small, the solution vector will require a large
step in parameter space which may well be greater than the region in which the
linearization is appropriate. The iterative process may then diverge unless
some method of limiting the iterative step size is employed. In such cases
the stability of the iterative procedure is improved by limiting the step size
(noteably in the directions corresponding to the small eigenvalues) by using
(e.g., Lawson and Hanson, 1974, Chapter 25)

K 8, A,
R = _ ' 7 (18)
2 . 2
i=1 (A% + o)
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Wwhere a is chosen approximately equal to the smallest eigenvalue included in
the inversion. This technique (known as Marquardt's algorithm) is invoked
only as convergence problems arise and is quite unnecessary in the context of
the present nearly-linear problems considered here.

APPLICATION TO PIONEER 11 OBSERVATINNS

The Pioneer 11 spacecraft had onboard two magnetic field experiments
(Smith et al., 1976; Acuna and Ness, 1976), each ¢f which recorded the
magnetic field along the Pioneer 11 trajectory. The vector helium
magnetometer (VHM) has been described by Smith et al., (1975) as accurate at
the 1% level (at low field values) whereas the high field fluxgate (FGM) is
essentially a constant noise instrument with a quantization uncertainty of
.006 gauss (Acuna and Ness, 1975). The high field instrument would be
expected to provide a better estimate of the Jovian field near close approach
(|Bf » 1.13 Gauss at the inbound occulation) while the vector helium
magnetometer would out perform the fluxgate in a low field enviromment, In
either case the random noise component assumed in what follows is a sum of all
noise sources, including, for example, instrumentation noise and local
magnetospheric noise. A single least squares fit to the combined data sets,
each observation appropriately weighted as discussed in the previous section,
would result-in the optimal model. Unfortunately, the two data sets are
incompatible in the sense that the systematic differences in the observed
field as measured by the two instruments are larger than expected on the basis
of the instrument descriptions. This is illustrated in Figure U4, which shows
the differences between the VHM and FGM measurement, for each component of the
field during encounter as a percentage of the total field magnitude. Rather
than produce a model which fits neither set of data, we will of necessity
continue the practice of considering each data set independently. Resolution
of the differences between the two data sets is beyond the scope of the
present work.

The FGM observations have been analyzed by Acuna and Ness (1976a,b) in
the traditional least squares fit to a spherical harmonic expansion of order 3
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including internal terms only. They obtained the GSFC O“ internal field model
as the unweighted least squares solution to 685 vector observations at radial
distances of R < 6 RJ. Details of their analysis are given in Acuna and Ness
(1976b), We will first present the results of a similar analysis, assuming an
expansion of internal harmonics to order 3, but within the framework of the
generalized inverse methodology. A model explicitly including the effects of
the field due to external currents will then be considered.

Our FGM data set consists of 499 vector observations obtained
approximately every 35 seconds along thkes Pioneer 11 trajectory within 5 RJ
radial distance, and 20 fiel: magnitude observations obtained near closest
approach when the orientation of the spacecraft is uncertain. Inclusion of
the magnitude observations along this part of the trajectory increases the
information content of the data set at the expense of introducing some
non-linearity in the estimation problem and requiring an iterative solution.
Since the FGM is essentially a constant noise instrument (Acuna and Ness,
1975), and the FGM observations are limited by instrument noise, we choose for
each observation equal weights (Eqn. 10) of g; = .005 Gauss, The use of equal
weights iptroduces only a scale factor as compared with an unweighted least
squares and does rnot effect the orthogonalization of parameter space or the
final model. Assuming as a model a Schmidt normslized spherical harmonic
expansion of order n = 3 (internal terms only) we find after two iterations a
15 eigenvector fit (Eq. 9) very similar to the GSFC 0y model, differences
between the two sclutions due only to a difference in observations used. The
salient features of the singular value decomposition are illustrated in Figure
5, at the final iteration. In this figure the eigsanvalues of the A matrix,
and the associated eigenvectors of parameter space are listed, in addition to
the sclution vector, parameter standard deviations (Eq. 13) and extreme
parameter sets (Eq. 16). A diagnostic parameter 'lin' is also indicated: this
is the cosine of the angle between the parameter vector and the local normal
to the error surface. A change in the value of an individual parameter with
lin = 1 results in a comparatively large model response (RMS increase) since
that parameter vector is nearly perpendicular to the error surface, that is,
it is oriented in the direction of the maximum model response (RMS change).
The weighted RMS residual is computed at each iteration assuming internal
consistency (Birge, 1932)
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essentially a prediction of the probable error based on propagation of errors,
and also assuming external consistency

N 2
5 ) z(ei/ai)
EXT ~ | Sa—
2
z 1/01
based on the realized differences, €+ A comparison of these two estimates is

S

often useful in identifying the presence of systematic effects in the data.

The eigenvalues for this system range from v650 to «10. The classical
measure of the condition, or stability, of a linear system is the 'condition
number', v, defined as the ratic of the largest and smallest eigenvalue
(Lanczos, 1971),

M

or sometimes the square root of the above. 1In the present example, a
'condition number' of v = 65 is interpreted in the following way: errors in
the 15th generalized parameter (15th eigenvector) can be expected to be w65
times larger in magnitude than errors in the 1st generalized parameter. The
'condition number' is thus a useful tool in diagnosing the need for a singular
value analysis, but it cannot address individual parameter errors or

resolution, or correlations among the model parameters.

Inspection of the eignevectors associated with the eigenvalues of the A
matrix is useful in visualizing the characteristics of the problem solution.
For example, in Figure 5, the eigenvectors associate with the small eigen-
values are the linear parameter combinations which are poorly constrained by
the observations, The parameter with the smallest absolute error (J = 2;
parameter 811) has only small components among the last (poorly determined) 5
eigenvectors, that is, it is well approximated by a linear combination of the
first (well determined) 10 eigenvectors. Conversely, the parameters with the
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largest absolute errors (J = 11, 832, and J = 13, h31) are those which are
neavily represented in the last few eigenvectors. Furthermore, these two
parameters are equally represented in the 15th eigenvector but with opposite
signs, indicating a strong negative correlation between these two parameters.
A change in the parameter 832 will most likely be accompanied by a nearly
equal and opposite change in the parameter h3 A similar relationship exists
between the parameters 831 (J = 10) and 83 (J = 12), as evidenced in the 14th
eigenvector,

The extreme parameter sets are listed in Figure 5 for each parameter,
computed using (16), These are the parameter combinatjons which may be added
to or subtracted from the optimal solution to achieve the extreme values of
each individual parameter., The error surface chosen here is 2Q = 1
corresponding to a 68% confidence limit,

A useful illustration for the purpose of emphisizing the differences
between internal field mocdels is a surface isointensity contour map such as
that in Figure 2a. Figure 2a, the 'undetectable planet' was constructed by
selecting the internal field coefficients to be proportional to the 15th
eigenvector, that combination of parameters to which the observations are
least sensitive, It is perhaps more instructive to compare the surface
isointensity contour map corresponding to the best fitting model (Figure 6)
with the surface isointensity contour maps that result when this parameter
vector is added to (Figure T7a) or subtracted from (Figure 7b) the least
cquares solution, These two extreme models lead to differences in the surface
field magnitude of 1 G.

Wnile this example is representative of the differences in field
topology and magnitude appropriate to the range of models consistent with the
observations, it is by no means unique. Any linear combination of the poorly
determined eigenvectors, consistent with the constraint (14) and some chosen
significance level (4Q), can be added to the least squares solution with
similar results. The surface isointensity contour map corresponding to the
least squares 15 eigenvector solution, is practically identical to that af the
GSFC Oy model of Acuna and Ness (1976), reflecting only differences in the
radial extent of observations included in the analysis and the inclusion of
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additional magnitude obsarvations near close approach. Thus, the model

uncertainties illustrated in Figure 7 can also be regarded as typical of the
04 model.

For some applications a model constructed of only 13 eigenvectors,
ignoring the last two (poorly determined) eigenvectors, may be preferable to
the 15 eigenvector solution, 1In Figure 3 it is clear that the 15 eigenvector
fit is only marginally better than the 13 eigenvector fit in terms of the RMS
of the residuals (although the 14th and 15th parameter vectors are statisti-
cally significant, in that 8,, and 8,; > 1). The loss in parameter resolution
that results in constructing the solution with only the first 13 eigenvectors
is illustrated in Figure 8, which lists the resolution matrix as well as the
quantities discussed in the context of the 15 eigenvector fit. All of the low
order terms (n = 1, n = 2) are well resolved, since the corresponding diagonal
elements of the resolution matrix are near unity. Additionally, the 530 term
(J = 9) is well resolved, and the h33 term (J = 15) somewhat less so. The
remaining 3rd order terms are rather poorly resolved, The surface
lsointensity map of this model field, illustrated in Figure 9, is more dipolar
than that of the 15 eigenvector fit as a result of the concentration of higher
order parameters in the unused eigenvectors. While the 13 eilgenvector model
may provide a better estimate of the well resolved parameters, it is unique
only in a subset of parameter space. We are free to add linear combinations
of the excluded eigenvectors to the solution, subject to some maximum
allowable RMS increase corresponding to a chosen significance level,

Two observations remaining to the mcdel residuals for the FGM data se®
are of importance in regard to the significance level corresponding to the
choice of 4Q = 1. The first is that the RMS of the residuals, ¥500 v, is
largely due to the quantization step size of the instrument; the true
instrumentation noise is a fraction of that. The second is that the
quantization noise is not random, rather, it exhibits a positive correlation
at small lags and a negative correlation at larger lags. The correlation
length is several sampies (minutes) at large radial distances (5 RJ) where the
field is comparatively small. At small radial distances the correlation
vanishes, The quantization errors, however, do not seriously affect the
model, as they are as often positive as negative. In constructing solutions
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(9) only the quantity 8 = oTe is important, and the sun over the quantizat.ion
errors is likely to be small since each positive rasidual is paired with a
nearly equal negative residual in the immediate vicinity. The quantization
errors contribute substantially to the RMS of the residuals, but not
appreciably to the model misfit, Thus the correlation among the residuals,
effectively decraasing the number of independent observations, is largely
offset by the decrease in the estimated noise upon the data (disregarding the
quantization 'noise'). For this reason we regard the choice of @ = 500 ¥,
corresponding to » 68% confidence level of a Gaussian distribution as a
conservative estimate,

We have clemonstrated that a sizeable parameter vector can be found (e.g.,
Figs. 2a, 2b) which leads to a small field along the Pioneer 11 trajectory.
In much the same way a small field (systematic 'error’) along the Pioneer 11
trajectory can lead to a large error in the estimated parameters, The
magnetic field of the large scale azimuthal currents produce a large (v200y)
correlated 'error' along the entire Pioneer 11 trajectory under consideration
(Conne.ney et al., 1981), This 'error' contributes substantially to 8 = 0Ty
due to the large positive correlation (no cancellation) and thus results in a
significant bias in the derived internal field models. The best way to remove
such a bias is to include explicitly the magnetic field produced by these
currents in the physical model chosen to represent the observations. A 15
eigenvector fit to the FGM observations, assuming a N = 3 internal spherical
harmonic expansion and the V1 model external field, results in a modest RMS
decrease to 492 y but a significant change in many of the model paraneters
(Table 1). Comparison of the surface iscintensity contour map of this model
field (Figure 10) with that of the earlier 15 eigenvector model (Figure 6)
indicates surface field magnitude errors of w1 Gauss result from neglect of
the external field in the earller model. Differences in the internal field
parameters resulting from inclusion of the sheet field are as large as v ,12 G
(Table 1) and often larger than the corrésponding parameter standard
deviations, Thus the presence of an unmodeled field of external origin is at
least as important as the noise on the data in this examaple, Since no
additional free parameters have been introduced (the parameters of the current
sheet regarded as fixed, determined by the more advantageous Pioneer 10 and
Voyager flybys) the singular value decomposition remains unchanged. A

23



formulation of this problem in which the sheet parameters are treated as

variables would show more clearly the interdependence of the internal
coefficients and the current sheet parameters,

The VHM observations have been analyzed (Smith et al., 1976; Davis and
Smith, 1976; see also Smith and Gulkis, 1979) in the traditional least squares
fit to a spherical harmonic expansion, Noteable differences in their
analysis incluce a larger radial range of observations used (r < 8 RJ), the
use of external spherical harmonics in the expansion (2), and the use of a ru
weighting scheme whereby all observations are weighted with some power of the
radial distance of the observation, For reasons discussed in Davis and Smith
(1976) this group prefers a r3/2 weighting of each observation, In addition,
they use (Davis and Smith, 1976) 5 minute averaged values of the observed
field along the trajectory in their analysis.

Qur VHM data set consists of 324 vector (v 1 minute averages)
cbservations within R = 5 R; of Jupiter as obtained from the National Space
Science Data Center at Goddard Space Flight Center, In contrast to the
uniform weighting appropriate to the FGM observations, we adopt for the VHM
observations weights proportional to the local field magnitude, gy = .01 |B|.
The constant of proportionality adopted here (.01) enters only as a scale
factor in the error analysis. This particular weighting, appropriate for
observations with a noise component of 1% of the local |B|, results in a more
heavily weighted (in r) system than any of the r® schemes proposed by Davis
and Smith (1976). (The weights, W, , defined by Smith et al. (1976) and Davis
and Smith (1976) appear linearly in their formulation of the least squares
problem., Therefore these Wy must be compared to the s;uare of the weights
(1/01) appearing in this work.) The resulting model (listed in Table 1) leads
to a surface isointensity contour map, illustrated in Figure 11, that is much
more similar to that of the FGM (or GSFC 04) model than previous analyses of
these data (using P3/2 weights) would suggest. The choice of weights
proportional to |B| affects not only the final model but the orthogonalization
of parameter space as is illustrated in Figure 12. We have assumed in this
example a model field of internal terms to order 3 so that the VHM and FGM
inversions can be directly compared. Comparing the sigenvalues of the two
inversions, we note that the FGM observations lead to & slightly better
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determination of some eigenvectors and a poorer determination of others. Yet
individual parameters would be better determined by the VHM inversion since
they require a summation over many eigenvectors, The 'lin' diagnostic
parameter demonstrates that all of the dipole parameters i. the VHM inversion
lie closer to the eigenvactors of parameter space in this problem and
therefore are more easily estimated independently of the other parameters, A
detailed study of the remaining features of this singular value decomposition
is similar to the FCM example and thus will not be repeated; instead we will
address an additional concern of systematic errors present in the VHM model
residuals.,

The fact that the model residuals are characterized by an extremely large
correlation length precludes any attampt to quantify the parameter errors.
For this reason the extreme parameter sets have been omitted and the quoted
parameter standard deviations are to be disregarded, These systematic errors
include the presence of an unmodeled external field, which we shall return to
shortly, and systematic errors associated with instrumental range changing and
other effects (see Davis and Smith, 1976, Figure 1 and accompaning
discussion). While these effects are only as large as v .5 or 1% of the total
field they do dominate the observed residuals. Another systematic effect in
previous analyses of these data involves the use of S5 minute averages of the
field as instanteous values. Near close approach, the 5 minute averaged field
differs by as much as 0.6% from the instantaneous field at the midpoint of the
data averaging interval (which is used as the model field). Since this effect
is comparable in size to the observed residuals it seems appropriate to use 1
minute averages instead or compute the model response as the averaged field
over the measurement interval, We have chosen to use 1 minute averages as
supplied by the NSSDC for computational convenience,

Inclusion of the magnetic field contribution due to the external currents
in the analysis of the VHM observations leads to a much improved fit to the
observations. The resulting parameter set, listed in Table 1, leads to a
Surface isointensity contour map (Figure 13) that still resembles the previous
map but differs in field magnitude by w1 G at the surface. Differences in the
internal field parémeters are as large as v ,2 G, occurring predominently in
the quadrapocle and octopole terms. A more dramatic decrease in the RMS of the
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residuals from 93 y to 57 y results from the use of the V1 current sheet model
in the inversion, in contrast to the relatively modest improvement (504 y to
492 y) noted in the FGM fit., It is worthwhile to note again that this
improvement in the RMS residuals is not gained at the expenss of additional
free parameters, i.e,, the sheet field is regarded as a known (based on the
other Pioneer 1C and Voyager 1, 2 flybys) quantity. A relatively modest
further improvement in the RMS of the residuals (to 56y) is obtained by
assuming either a closer inner radius of 4 R; rather than 5 as in the Vi
model, or a constant u I /2 = 250 rather than 225 as in the V1 model. Again,
a simultaneous inversion of the internal and external field parameters would
yield more information, but must await further analysis of the Voyager
observations, The kind of correlations existing between internal and external
fleld parameters that would be avident in a singular value decomposition of a
cemhined internal/external system are already implied in the present analysis.
Note that the internal field parameters have been able to 'absorb' most of the
external field, which averages 200 v along the trajectory. The ability of
the external field to partially masquerade as internal coefficients, leading
to the large parameter changes indicated in Table 1, portends such an
interplay of internal and external field parameters,

DISCUSSION

The internal Jovian field models presented here differ substantially from
the models of Acuna and Ness (1976) and Smith et al. (1976). In the first
case the difference arises almost entirely out of a consideration of the
fields of external origin, while in the =<2cond both the weights applied to the
observations and the inclusion of the fields of external origin contribute to
the difference, The resulting models are found to be inore similar than
previously thought., The large differences in the models of Table 1, based on
the VHM observations, and the models of Smith et al., (1976) bears witness to
the effects of the weighting scheme utilized to condition the observations,
and to the increased importance of external fields in this data set. Indeed,
the weights utilized in this gjpper as appropriate to the VHM observations have
in fact made the model more sensitive to small fields at greater distances and
elevated the importance of unmodeled external fields,
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The differences between the internal field models advocated here (GSFC 15
evs and JPL 15 evs, outlined in Table 1) and previous models are more readily
apparent in Figures 14 and 15, In Figure 14 we compare the GSFC 15 evs and 04
models on the (oblate) Jovian surface by contouring the difference in field
direction and the normalized difference in field magnitude resulting from each
model, These differences are greatest in the northern hemisphere, where the
local field angle differs by up to uo and the local field magnitude differs by
as much as 8%. In Figure 15 the same comparison is made between the JPL 15
evs model and tihe SHA 23 model, Here again the differences appear greatest in
the northern hemisphere, where the local field direction differs by up to 30°
and the local field magnitude differs by as much as 50%. A similar comparison
between the JPL 15 evs and the more recent P11A model (Smith et al., 1976)
leads to differency contours much like those illustrated in Figure 15 but with
maximun differences of 18° in field angle and 20% in field magnitude. The
P11A model is a it to observations obtained by both Pioneer 10 and 11,
however, and therefore is not directly comparable to the JPL 15 evs model.

But the inclusion of additional observations along another trajectory in the
P11A model fit apparently results in an internal field model that more closely
resembles the JPL 15 evs model presented here,

The generalized inverse technique described here should prove valuable
not only in the estimation of planetary magneic fields and the study of
non-uniqueness problems encountered in geomagnetic models based on scalar
observations (e.g., Stern et al., 1981), but in a variety of other
multivariate problems as well, The methodology has been widely used in
related geophysical disciplines in the past decade and has proven to be a
powerful analysis tool. Indeed, some (e.g., Wiggins, 1972) consider
multivariate inversion studies without such resoluti=n analyses to be
incomplete at best, and uften misleading. In such cases the magnitude of the
condition number of the (appropriately weighted) matrix to be inverted can be
diagnostic of the need for a singular value decomposition.

The kind of model advocated here, combining an internal spherical
harmonic expansion with an explicit model of the field due to external current
gystems, is regarded as essential to understanding and integrating the
magnetic field observations of each of the spacecraft that have thus far
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encountered Jupiter, Perhaps one model will ultimately enable meaningful
comparisons of the various flybys and a more detailed description of the inner
magnetosphere of Jupiter, Further progress can be expected from analysis of
the Voyager observations and also possibly from further analysis of the
Pioneer 10 and 11 observations, At the present level of analyfis, the small
instrumental and other systematic effects present in the VHM observations are
the most important remaining source of errors, For the purpose of eliminating
or reducing these effects (and quantization errcrs in the FGM data as well)
further analysis, conducted in payload coordinates, would he extremely useful.
Analysis of the data in payload coordinstes, while cumbersome, enables the
modeling of quantization errors, axis non-orthogonality, and range sensitivity
or gain errors, Such an analysis is not curiently possible with the reduced
data available at the NSSDC.
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FIGURE CAPTIONS

Figure 1, Magnetic field topology in the magnetic equatorial plane of the
field due to large scale azimuthal currents in the Jovian magnetosphere
(V1 model of Connerney et al., 1981). The current flows eastward in an
annulus 5 RJ thick extending from 5 to 50 R;.

Figure 2. 'Invisible planet': Surface isointensity contour map of a Jovian
model magnetic field which would not have been detected by a magnetometer
on Pioneer 11 (a) (upper panel) assuning observations with a .005 G
random noise component; (b) (lower panel) with a noise component
proportional to the local field magnitude (see text). A dynamical
flattening of 1/15.4 is assumed in the determination of the surface
equipotential (all surface maps).

Figure 3. Pioneer 11 FCM inversion example illustrating the trade-off between

parameter resolution and parameter standard deviation of the main dipole
coefficient (31 term) .

Figure 4, A comparison of the Picneer 11 FGM and VHM measurements of the
Jovian magnetic field within 6 RJ. Quantization effects are evident at
large radial distances, but the systematic differences between the two
measurements are clearest near close approach.

Figure 5. Pioneer 11 FGM inversion example at the final (third) iteration.

Figure 6. Jovian surface isointensity contour map illustrating a 15
eigenvector solution using the Pioneer 11 FGM observations.

Figure Ta,b. Jovian surface isointensity contour maps obtained by perturbing
the FGM 15 ev solution by a parameter set (proportional to the 15th ev)
to which the observations are least sensitive. These maps illustrate the
differences in surface field magnitude appropriate to the range of

internal field models consistent with the observations.

Figure 8. Pioneer 11 FGM inversion example illustrating a 13 eigenvector
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solution,

Figure 9, Jovian surface isointensity contour map of the 13 ev solutioh using
Pioneer 11 FGM observations.

Figure 10, Jovian surface isointensity contour map of the 15 ev solution
model, obtained from the Pioneer 11 FGM observations and a model magnetic
field in which external sources are explicitly included.

Figure 11, Jovian surface isointensity contour map of the 15 ev solution using
Pioneer 11 VHM observations,

Figure 12. Pioneer 11 VHM inversion example.

Figure 13. Jovian surface isointensity contour map of a 15 ev solution using
Pioneer 11 VHM observations and a model magnetic field in which external
sources are explicitly included.

Figure 14, Comparison of the GSFC 15 evs magnetic field model and the Ou
model at Jupiter's surface. In the upper panel the difference in field
direction (degrees) is contoured. In the bottom panel the normalized
difference in local field magnitude (percent) is contoured.

Figure 15. Comparison of the JPL 15 evs magnetic field model and the SHA 23
model , differences contoured as in Figure 14,
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NIICR OF EIGOWECTORS = 13
PARAYER VECTOR ¢
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1 2 3 4 S ) 7 8 9 10 {1 12 13 14 13
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