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SHOCK-FREE CONFIGURATIONS 

IN 

TWO- AND THREE-DIMENSIONAL TRANSONIC FLOW 

R. SEEBASS 

I. INTRODUCTION. 

MRC Symposium on Transonic, Shock 

and Mu1t-dimensiona1 Flows 

Madison, Wisconsin, May 13-15, 1981 

This paper addresses the rather narrow subject of find

ing airfoil and wing shapes that are free from shock waves 

even though the local flow speed exceeds the speed of sound. 

This research stems directly from an invitation we made to 

Helmut Sobieczky of the Deutsche Forschungs- und Versuchsan

stalt flir Luft- und Raumfahrt in G~ttingen, West Germany, to 

spend the academic year 1977-1978 at the University of 

Arizona. My specific proposal to Sobieczky was that we 

collaborate on replacing his complicated analog computations 

of solutions to the hodograph equations by a fast elliptic 

solver in order to generate shock-free airfoil designs more 

effectively. The first part of this paper addresses this 

study. The second part addresses a much rnoreefficient pro

cedure that we now use to the same end. This second method 

is a result of Sobieczky's brilliant idea of a fictitious gas 

for finding shock-free airfoils directly in the physical 

plane. 

The aerodynamic efficiency of turbojet-powered aircraft 

is proportional to the flight Mach number times the lift-to

drag ratio, viz., Moo.L/D. In addition, the amount of return 

an aircraft provides on the investment in it is proportional 

to the flight speed, and hence, to the flight Mach number. 

At supersonic Mach numbers shock waves are always present and 

give rise to a wave drag that adversely affects the aero- .' ~ ~ 

AJ 8/- d~() LJ ~ 



dynamic efficiency, and they are also the cause of the sonic 

boom. As Albert George and I showed some time ago [17J, the 

sonic boom has an irreducible minimum for a given aircraft 

weight and length, and this :Ls large enough to preclude com

mercial operation of supersonic aircraft over populated areas. 

The rapid rise of petroleum prices has driven the cost 

of fuel rapidly upward and it now comprises more than 50 per

cent of the direct operating cost of an aircraft. It air 

transportation is to remain affordable, we must draw on a 

number of technologies to provide a substantial improvement 

in thE~ efficiency of transport aircraft. Fortunately, there 

are a number of technologies that, when combined, should 

provide a 40 percent improvement in seat-miles per gallon 

[18J. For a single DC-lO size aircraft, each 1 percent 

improvement in MooL/D saves about $100,000 per year in fuel 

costs at present prices [9J. Indeed, by the year 2000, we 

should achieve 90 seat-miles per gallon for intermediate 

range flights. 

One, albeit small, element of this improvement is better 

aerodynamic efficiency through special airfoil and wing 

designs that allow flight at supercritical Mach numbers (i.e., 

subsonic flight Mach number high enough that local regions of 

the flow are supersonic) without shock-waves. This avoids 

the drag associated with this shock wave and, more impor

tantly, the boundary-layer separation that occurs if such 

shock waves become very strong. 

This goal was once thought unattainable. In the mid-

1950's Morawetz [llJ showed that smooth, i.e., continuous, 

flows with embedded supersoni.c regions were mathematically 

isolated from one another. That is, any small change in the 

Mach number, or any arbitrary change in the airfoil surface 

embedded in the supersonic region, would result in the 

appearance of a shock wave in the flow. This led a number of 

people, including the author, to conclude that such flows 

would be of no practical interest. Others were more wise. 

Wind tunnel studies by Pearcey [14J, and by Whitcomb [26J 

showed that such flows did exist and were of practical im

portance. Subsequent theoretical studies by Nieuwland [13J and 

Bauer, Garabedian and Korn [lJ led to techniques for finding 



shock-free airfoil shapes. Boerstoel [2J later improved this 

technique. Sobieczky [19J developed yet another method that 

employed a rheo-electric analog computer to solve hodograph

like E:quations. These earlier contributions are not reviewed 

here. 

The first part of this paper deals with the inverse 

problem: given an airfoil pressure distr~bution, find the 

airfoil that has that pressure distribution. And it also 

deals with the extension of this procedure to airfoils with 

an embedded supersonic region. This we call indirect design. 

The results are a direct consequence of Sobieczky's rheo

electric analog design method where the emphasis was on find

ing shock-free airfoils. This extension was conceived and 

used by Sobieczky [20J and furtheF dev~loped by Hassan [5J. 
The second part of this paper treats Sobieczky's gener

alization of this process [21J; it provides a tool for the 

routine design of shock-free airfoils and wings. 

II. INDIRECT DESIGN OF AIRFOILS. 

~~he basic problem we address here is to find an airfoil . 
in two-dimensional, irrotational, flow that has a prescribed 

pressnre distribution. This flow is described by a stream 

function, ~, that guarantees the conservation of mass,. that 

is, 

so that 

div(pq) = 0, 

where 

and the symbols have their usual meanings. Because the flow 

is irrotational there is a velocity potential, ~, such that 

:1 = grad ¢. 

In the direct problem we seek solutions of 

( 1 ) 

where 



on the airfoil and, ~ is asymptotic to the potential for a 

free·sfream flow past a vortex, of strength equal to the jump 

in ~ at the airfoil's trailing edge, located inside the air

foil. Or we may solve a similar equation, viz., 

( 2 ) 

.. with 

tp = 0 

on the airfoil and with similar asymptotic boundary condi

tions. Here Q
l 

and Q
2 

are simple quasi-linear operators of 

second order. If we interchange the dependent and indepen

dent variables in (1) and (2), then we will have linear 

equations for the coordinates. It is much simpler to intro

duce the hodograph variables q, the flow speed, and e, the 

flow deflection angle as independent variables. This leads 

to (see, e.g., [25J) 

or ( 3) 

where Ll and L2 are linear, second-order operators. But we 

do not know the airfoil boundary in the q,e-plane. However, 

in our approach we wish to specify the pressure, or equiva

lently q, and find the airfoil. Figure la is a sketch of a 
, 

supercritical flow past an airfoil that has lift. In this 

case the hodograph image of the flow will be two-sheeted and 

appear like that sketched in Figure lb. Actually, it is 

mathematically convenient to introduce the variable 

f
q 

III 
i 

\) = _M2
1 

dq 

q* q 

in place of q in equations ( 3 ) 

their canonical form. For the 

K' (\)) 
1J;\)\) ± 1J;ee - K (\)) 1J;\) = 0, 

to reduce equations (3) to 

stream function we have 

where ± is appropriate if M 5 1, and 

/ 
2' 

K(v) = 11 - M I/p. 

(4 ) 

The subscript ( )* refers to the sonic state where q = a = 
a* and M = 1. The variable \) is the usual Prandtl-Meyer 

function for M > 1. Sobieczky refers to these variables, 

viz., \), e, as the rheograph variables because equation (4) 
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Figure 1. The physical plane (a) and its hodograph image (b). 

can be solved by electrostatic means if one supplies a con

ductor of varying conductivity, as he did by punching holes 

of varying size in conducting paper. But the general form of 

e~uation (4) is invariant under a conformal mapping and we 

can clearly map the subsonic region of the flow (see Figure 

lb) in the q,9 or v,9 planes into a unit circle. This simple 

device, suggested by Sobieczky [20J, and followed by Hassan 

rSJ, provides us with a simple boundary value problem that 

may be solved efficiently with a fast direct solver. Thus, 

we map the subsonic portion of Figure lb into the unit circle 

of Figure 2 with an unknown mapping of the form 

~ = re
iw = f(v + i9). 

We insist that this mapping be conformal and hence v(r,w) and 

8(r,w) are harmonic: 

2 2 
\j v = \! 9 = O. 

If we give the pressure on the mapped airfoil where the flow 

is subsonic, then we know v there. And on the sonic line 

v = O. So v is known on the unit circle and we can find v 

and e to within an arbitrary constant by Fourier series. We 

must be careful to take.into account the behavior of v as 



q ~ 0, viz., v ~ log q. Given the flow conditions at infin

ity, we know voo ' 8
00

, and this locates the point at infinity, 

I. The stream function is singular there, and hence we use 

the bilinear transformation to map I to the origin of the a 

plane 

iw' 
~;' = r' e 

Now on the airfoil boundary ~ = 0 and we may provide a guess 

for ~(w') on the sonic line. Thus, we iteratively solve 

2 n K, n-l Kw' 1 n-l 
V ~ == [~ vr'~r' + -r<- vw' (rr- ~w, )], 

with ~(E,W') as E ~ 0 and ~(l,w') known, using a fast Poisson 

solver. Hassan [5J employs the sixth-order solver of Roache 

[16J. Because on the sonic line ~ ,(l,w') ~g(w') (1 - r,)-1/3, 
r 

Hassan uses the isotach for Moo = 0.99 in place of the sonic 

line and finds the sonic values by Taylor series. The 

physical plane image of the airfoil and sonic line combina

tion is simply found by integration around the unit circle 

using (see, e.g., [16J) 

i8 (w' ) 
d z = e ( ') [ ¢ ,( 1 , w ') - i ~ ,( 1 , w ' ) J dw ' . q w w r 

This does not necessarily provide a closed airfoil 'and the 

input must be adjusted to obtain a satisfactory solution [6J. 

Now the given pressure distribution is associated with known 

points on the airfoil and the input pressure distribution may 
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Figure 2. The (r,w) plane image of the subsonic portion of 
the airfoil surface and the sonic line. See 
Figure 1. 



have to be adjusted to achieve a satisfactory pressure dis

tribution on the airfoil. 

For supercritical flows the data on the sonic line is 

integrated using the method of characteristics to find the 

airfoil shape consistent with the sonic line data. To be 

specific, 

dCP + K(\!)dlj! = 0 (Sa) 

on 

\! + 6 = const, (Sb) 

and the sonic line data cp(e) and lj!(e) are integrated to find 

the locus lj! = 0, that is, the airfoil. Now the Jacobian of 

the map back to the physical plane may vanish before the line 

lj!(\!,6) = 0 is reached because M > 1, in which case a limit 
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Figure 3. Comparison of the design pressure and sonic line 
with that computed for the designed airfoil. 



line [25J may appear in the physical plane. This means that 

the sonic line data is not compatible with shock-free flow, 

and new input data must be given. 

One typical result of the process is shown in Figure 3 

(from [20J). While this method is effective in finding 

shock···free airfoils, a more direct procedure for doing so is 

described in the next section. The main virtues of this pro

cedure are that it is an effective tool for finding sub

critical airfoils with desirable pressure distributions, and 

it led Sobieczky to his clever idea [21, 22J for the nearly 

direct design of shock-free airfoils and, more importantly, 

wings. 

III. SHOCK-FREE AIRFOIL DESIGN. 

Recall that in the previous section we used a fast 

Poisson solver iteratively to solve for the subsonic portion 

of thE~ flow past an airfoil. For supercri tical Mach numbers' 

this provided data on the sonic line and the supersonic flow 

was computed using the method of characteristics. If the 

sonic line data was inconsistent with shock-free supersonic 

flow, then the input was modified. Sobieczky [21J observed 

that this process could be mimicked in the physical plane by 

changing the equation relating the density to the flow speed 

when the flow was supersonic in such a way that the governing 

equation remained elliptic. Thus we solve 

div(p'il¢) = 0 (6a) 

where 

[1 + y-l M2(1 _. q2)Jl/y-l, 
2 00 

q < a 

o/p oo = (6b) 

Pf/poo ' q > a. 

If we wish equation (5) to be elliptic, and we limit our 

attention to fictitious densities of the form P
f 

= Pf(q), 

then we must: have 

d (p f q ) 

dq > O. 

Thus we compute the flow past a baseline airfoil which has 

been seleated on the basis of its subcritical performance. We 

may wish to alter it slightly in advance of our calculation, 



using equation (6) to give it more thickness to compensate 

for a subsequent reduction in thickness. This fictitious 

solution iatisfies the boundary conditions and the correct 

equations where q < a. We take the data, viz., ¢ and S, that 

the solution provides on the sonic line and generate ~(e) 
from the known relations between ~ and ~. We then recalculate 

the supersonic domain using equation (5). Of course, if a 

limit line intervenes we must alter our baseline airfoil, the 

free stream Mach number, the angle of attack, or the ficti

tious density relation (6b) and repeat the process. 

Figure 4a compares the pressure on an NACA 64A4l0 air

foil before and after it has been subjected to this design 

process; it also shows the s6nic line (and shock) on the 

original 64A410 computed using the correct density law, and 

the sonic line computed using the fictitious density law (6b). 

The calculation of the supersonic flow by characteristics 

with the correct density-flow speed relation defines a new 

MACH = .720 ALPHA = 0.40 

DESIGN ( ~ J ORIGINAL ( 0 I 

eL 0.7029 0.7799 
eo o .OOOCI 0.0064 
el1 -.1397 - .1601 

Comparison of the ptes~ure coefficients and .~o"ic lines for the 
baselineNACA 64A41O and the shock·free airfoil obtained from it b) 
the direct design procedure. 
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DESIGN ( " ) 
CL 0.7012 
CO 0.0001 
el1 - ·1395 
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Comparison of the pressure cnefficient and the sonic line 
obtained by the desilln calculation that modifies the airfuil shape with 
those ubtained b)· cnmputinJlthe nuw past the modified airfnil. 

Figure 4. Airfoil designed using the fictitious gas Pf = P*. 



airfoil shape in the supersonic zone and predicts the in

dicated pressure on this new shape. A recalculation of the 

flow past the resulting airfoil is compared with the pre

dicted pressures in Figure 4b. The algorithm used is 

Jameson's FL06 [7J which has proved to be very reliable for 

inviscid flows. Of course the lift coefficient and thickness 

of the designed airfoil are less than those of the original 

airfoil. We may find additional designs by fixing the lift 

coefficient and varying the Mach number, by fixing the Mach 

number and varying the angle of attack, or by changing the 

gas law. Frequently we have used 

= 
a* p 

(--) 
q 
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Shock-fr~ airfoil shapes for fixed lirI coefficient C/ = 0.70 
and nryin!l Ma~h number. The ficlilious !IllS has a conSlanl de'nsHy in 
Ihe su~rsonic domain (P = 0). The baseline airfoil is an IIIACA 
64A410. 
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Shock·free airfoils for fixed Mach number Moo = 0.72 and lifl 
coefficient C/, = 0.70. varyin!l Ihe exponenl P of Eq. (Ie) and .hus 
chanlilinrc .he density's dependence on now speed. The baseline airfoil 
is an IIIACA 64A410. 
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where P < 1. The results of such a study are shown in Figure 

5. They indicate the wealth of solutions available by this 

technique. It also depicts shock-free designs found in P, 

CL,Mco space. 

IlIa. VISCOUS EFFECTS. 

Real flows are of course viscous and even for very 

large Reynolds numbers we must: take the boundary layer dis

placement effect into account. In the main, such effects are 

weak and we may caiculate the inviscid flow and use its pres

sure to compute the boundary displacement thickness, 8*. 
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Figure 6. 
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Comparison of C 's and sonic lines for two 11.7% 
thick airfoils. P Airfoil (a) is a thinned GA(W)-2; 
airfoil (b) is a shock-free design. 



There are local, strong inviscid-viscous interactions at the 

foot of a shock, at the trailing edse, and when the boundary 

layer separates from the airfoil, and in these regions we 

must couple the computation of the inviscid flow field with 

that of the boundary layer. The strong interaction that 

occurs at the trailing edge has been coupled with Green's lag 

entrainment model of the integral boundary layer equations by 

Melnik and his co-workers at Grumman [lOJ in the Grumfoil 

algorithm. If we make the not so brash assumption that the 

boundary layer displacement thickness for a shock-free design 

will grow in much the same way as it does for the fictitious 

gas we may try to find shock-free designs in the piesence of 

viscous-inviscid interactions, even when they are strong. 

Nebeck [12J has conducted such a study with the Grumfoil 

algorithm and markedly improved the design of the Va-2 air

foil designed by the German aerospace industry. A subsequent 

study by Cosentino (private communication) using the GA(W)-2 

airfoil provided an 11.7 percen~ thick airfoil that he 

estimates to have 73 less counts of dra~than an 11.7 percent 

thick version of the GA(W)-2. His airfoil and the pressure 

distribution computed using Grumfoil are compared with the 

thinned GA(W)-2 and its pressure distribution in Figure 6. 

IV. SHOCK-FREE WING DESIGN. 

When this airfoil technology is applied to wings, 

especially swept wings, the results are not very satisfactory. 

Indeed, typical results are sketched in Figure 7, which shows 

that three-dimensional effects will lead to shock waves 

unless they are explicitly taken into account in the design 

process. Conceptually, at least, we can imagine the process 

of Section II extended to three dimensions where we tackle a 

problem like that sketched in Figure Sa. But we must recall 

the sketch of Figure Sb. In two dimensions we cannot dis

tingui.sh the forward facing Mach lines, PA, PC, emmanating 

from point P, from the upward facing Mach lines PC, PB that 

also originate at P. But once we consider the flow to be 

three-dimensional, we surely can distinguish the fore Mach 

cone PAA'C'C from the surface PCC'A'ADD'B'BP. In other words, 

while we cannot distinguish the time-like direction for 

-¢ + q) = 0, xx yy 
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Figure 7. Three-dimensional effects on a wing constructed 
from shock-free airfoils. 
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Sketch of shock-free now past a lifting wing depicting the 
sonic surface obtained by introducing fictitious behavior inside this 
surface that results in eiliptio: equations. Sketch of Mach conoids for a two-dimensional flow. 

Figure 8. Ill-posed boundary-value problem that arises for 
wings. 

clearly only x is time-like in 

_rt. + rt. + rt. = O. (8) 't'xx 't'yy 't'zz 

When we extend Sobieczky's fictitious gas concept to three 

dimensions we are essentially trying to solve equation (8) by 

giving data on the x,y-plane as sketched in Figure 9, and 

trying to find the solution for negative z. This problem is 

clearly ill-posed. The modal solution to equation (8) is 



Mach cones or the linear wave equation and their intersection 
with the plane where the initial values are given. 

Figure 9. Boundary-value problem for equation (8). 

and if the wave numbers of interest in the y direction, k2' 

exceed those of interest in the x direction, k l , the solution 

will grow exponentially. Indeed, L. E. Payne (private com

munication) has shown that for any initial data the solution 

will eventually grow exponentially in z. But for most prac

tical solutions the wave numbers of interest in the x, or 

chordwise, direction are much higher than those in the y, or 

spanwise, direction. One can, of course, precondition the 

initial data to suppress the instability associated with this 

ill-posed problem, but we have not found this to be necessary. 

One of the frequently used algorithms for three-dimen

sional wings is FL022, which was developed by Jameson and 

Caughey [8J. It is a nonconservative code and will not cap

ture shock waves correctly. But for our purpose of shock

free wing dE~sign it is perfectly adequate. Here we must 

introduce a fictitious sound speed rather than a fictitious 

density. Such sound speed laws and their relation to the 

fictitious density laws may be found in [4J. We compute the 

supersonic 

(a
2 

flow by considering the conservation of mass, 

u 2 )u + (a 2 v 2 )v + (a 2 _ w2 )w 
x Y y 

- 2uvv - 2uwv = 0 
x z 



and two of the three irrotationality conditions, viz., 

= 0 and w - v = 0, y z 

as a system of three equations for the vector U = transpose 

(u, v, w), viz., 

AU + BU + CU = O. -x -y -z 

Figure 10. Three-dimensional shock-free flow over a rec
tangular wing of aspect ratio 10 at M = 0.70. 

co 
The NACA 64A410 airfoil section was used as a 
baseline for the wing. 



We then spline fit the initial data to compute U and Uy -x - and 

find U to calculate the data of the next z-level. In 
-z th 

general, then, at the k -level 

[C-lAU --I J 
!:!k = !:!k-l - -x + C B!:!y k_l/2 6Z , 

where [ ... Jk - l / 2 indicates a suitable average. 

may not exist, indicating the intervention of a 

-1 
Of course C 

limit surface 

in the supersonic domain. We continue until we find U on the 

wing surface. For small changes in wing shape a linear, 

first-order partial differential equation can be solved to 

find the new wing shape. Further details may be found in [3, 

4, 15 and 22J. Yu [27J has also applied this method to wing 

design using a finite volume code. 

Figure 10 shows the results of this design process for a 

simple rectangular wing with a half-span to ch9rd ratio of 5. 

The basic wing section was an NACA 64A4l0. Th~ predicted 

pressures on the original wing and those on the wing designed 

to be shock free are the result of the wing section changes 

indicated below the wing. 

IVa. VISCOUS EFFECTS. 

We have been able to include viscous effects through 

the Pablim algorithm of C. L. Street (private communication), 

which couples the three-dimensional boundary layer code of 

Stock [24J with FL022. When we compute the flow past the 

oriqinal wing, we use the displacement thickness computed 

using the shock-free design. This is done to suppress the 

separation of the boundary layer and favors the original air

foil. We find that the new design, at least at its design 

point, has an "aerodynamic efficiency" or range factor that 

typically exceeds a non-shock-free design of the same thick

ness by 5-15 percent. Such gains are of great practical 

importance and achieved with minimum effort. A study we have 

made on improvements to the Learjet Century series aircraft 

is given in Ref. 3. The GA(W)-2 airfoil used here is 

probably already superior to the present Learjet airfoil 

section. Certainly the redesigned wing provides an improve

ment in supercritical performance and, because it is based on 

the GA(W)-2 airfoil, should have good low speed performance 

as well. 



V. THE DESIGN PROCESS. 

The design process for shock-free wings must begin with 

an airfoil and wing plan form that provides good low speed and 

subcritical performance. The art of the designer is in 

choosing a baseline airfoil and fictitious gas law that will 

maximize M L/D without compromising the established subsonic 
00 

performance. Here experience is important, as the designer 

must know what changes in the baseline airfoil and fictitious 

gas law will produce the desired effects. But current compu

tational tools provide this knowledge at little computational 

expense. Indeed, an undergraduate student is conducting the 

investigation of an improved wing for the Learjet Century 

series aircraft. 

VI. CONCLUSIONS. 

While the flows we seek represent mathematically iso

lated solutions, there is a great wealth of such solutions 

and they are easy, and inexpensive, to find. Spee [23J has 

shown that in two dimensions if the local Mach number 

exceeds 2//(3 - y) = 1. 58 then the flm" must be unstable to 
• 

small unsteady disturbances. Perhaps such shock-free solu

tions Elxist with higher local Mach numbers, but we have not 

found them yE:t and the condi tion M = 1.58 could be a goal the 
co 

designer should try to achieve. We don't know yet how the 

drag depends on the flight Mach number at a shock-free design 

point, nor have we established any theoretical limits on the 

Mach number, lift coefficient and thickness, beyond which 

shock-free designs cannot be found. Such theoretical limits 

could be most useful to the designer. 

LE~t me note in closing that while the ideas fundamental 

to this investigation are simple, they are mathematically 

motivat.ed, and they draw upon a wide body of traditional 

applied mathematics. Also, their implementation depends on 

computer algorithms carefully constructed to comply with 

established mathematical principles. And so, it is the 

author's contention that successful engineering research fre

quently requires a good appreciation of mathematical prin

ciples. And these needs will increase, not: decrease, as we 

rely more and more on computational tools. 
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