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Abstract

For space missions of future, completely autonomous robotic machines will

be required to free the astronauts from routine chores of equipment maintenance,

servicing of faulty systmes, etc. and to extend human capabilities in hazardous

environments full of cosmic and other harmful radiations. In places of high

radiation and uncontrollable ambient illuminations, T.V. camera based vision

systems cannot work effectively. However, a vision system utilizing directly

measured range information with 4 *,me of flight laser rangefinder, can

successfully operate under these environments. Such a system will be independent

of proper illumination conditions and the interfEring effec,s of intense

radiation of all kinds will be eliminated by the tuned input of the laser

instrument.

Especially important is the capability of the laser based vision system

to afford a 3-dimensional description of the environment. Known objects can

be recognized and their correct spatial locations and orientation can be dater-

mined with respect to the sensing instrument, and the robot, which can thus

perform its tasks in a three dimensional space. Vision systems using 2 dimen-

images as the primary input have not met much success in 3-dimensional scene

description because of the difficult problems associated with indirect range

calculation methods.

Processing the range data according to certain decision, stochastic

estimation and heuristic schemes, the laser based vision system will recognize

known objects and thus provide sufficient information to the robot's control

system which can develop strategies for various objectives.

ii
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I. INTRODUCTION

Various schemes for data acquisition, edge detection, plane surface extrac-

tion by clustering, and noise removal from the raw input data were discussed

earlier in [5]. This report extends the previous work of surface description.

A procedure is developed for defining the surfaces by regression planes passing

through the three dimensional points clustered by the Hierarchical Clustering

Scheme using orthogonal surface slopes along orthogonal directions.

Continuous inner edges are calculated by calculating the possible lines of

intersections of the planes found from the surface description procedure. This

procedure for calculation of edges of objects can be applied only if the two

surfaces forming it are visible from the location of the laser sensor. The

edges detected by the Rapid Estimation Scheme, [1], are in the form of scat-

tered points on both sides of the edges and some of the edges especially the

inner edges, may be missed, therefore a more elaborate procedure than the

Rapid Estimation Scheme alone was required. Thus the inner edges are calcu-

lated here from the intersection of best fitted planes. The calculated edges

are verified in the case of inner edges also detected by the Rapid Estimation

Scheme.

For the description of a scene in terms of meaningful objects, heuristic

rules are developed for combining planes and edges found above into consistent

subjects so as to define meaningful objects, known or unknown. Based on the

convexity properties of plane faceted objects different planes are linked to-

gether if there is a convex edge between them. Similarly, half edges with one

end on a virtual vertex are linked together if the unit vectors along them are

colinear. Heuristic rules are also developed for linking half planes resulting

from an occlusion.
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Noise removal from the raw data and estimation of range slopes and, in

turn, actual surface slopes is achieved by the applicaton of a two-dimensional

smoothing algorithm, [2]. The smoothing algorithm used three different

smoothness measures which were reduced to a quadratic form in the state vector

consisting of the function values, two first partial and the first mixed partial

derivatives at each node point of a uniform two-dimensional grid. The weighting

matrix was, however, derived by a complex reduction procedure.

To simplify the derivation of the results, the weighting matrix form of

the smoothing integrals was avoided and the two-dimensional smoothing problem

was formulated as an optimal control problem by incorporating a control term in

the recursive model of the spline functions. Essentially the same results were

obtained for the smoothing algorithms as in, [2], thus providing mathematical

rigor and verification.

To employ different spline function with certain interesting smoothing or

edge enhancement properties a general method for the calculation cf bases of

different spline functions wp.s developed. By using this approach, it is hoped

that the derivation of different spline functions will be simplified.
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II. SUMMARY OF PROGRESS

The first part of this report presents a scene analysis/object recognition

system that utilizes directly measured rd nge information from the scene of

interest and provides a three-dimensional description of the scene in terms of

known and unknown objects in their true relative positions and orientations.

The range to a large number of points in the scene is measured by using a time

of flight laser rangefinder in which range is obtained from the phase difference

between the transmitted and reflected laser beams. The rangefinding system,

in fact, measures the spherical coordinates of various points on the surfaces

of objects by scanning in the elevation and azimuth directions in a suitably

defined coordinate system, Figure 1. The range readings are corrupted with

measurement noise.

By uniform increments of the two pointny angles of the laser beam over

suitable intervals, a matrix of range values is obtained, the rows and columns

of which are indexed with co:.stant values of elevation and azimuthal angles.

Range slope in the inpath, i.e., by the variation of elevation angle only, and

in the crosspath direction, i.e., by the variation of azimuthal angle only, is

defined as the first difference of ranc , e divided by the corresponding increment

in pointing angles Sand 6 respectively. The range data is processed along

columns and rows to detect the presence of edges in the scanned scene which

manifest themselves as sudden changes in range or range slope between adjacent

points. The edges are thus extracted by a Rapid State Estimation Scheme (RES),

[1], that uses Kalman filters and decision trees.

The observed range data is uniformly spaced in elevation and azimuthal

angles, but if pro;;icted onto any of the planes xy, yz, or zx shown in Figure 1,

the regularity of data spacing is lost. Thus the range and two range slopes
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Fig. 1.	 Coordinate Systems of the Laser Rangefinding System
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are smoothed in the original spherical coordinates before any scene analysis

procedure is applied. This is accomplished by using a two-dimensional smcothing

scheme [2], in the region free of the edges of objects detected above.

The smoothed range and two range slopes are transformed to the actual slope of

the surfaces of the objects at their observed data points.

Using the fact that the slopes of a plane along any two orthogonal directions

and with respect to a reference plane are constant at all of its points, the

data points belonging to plane surfaces can be separated. Using the two slopes

along orthogonal directions as the two components of a feature vector, the plane

surfaces are extracted by using a hierarchical agglomerative clustering procedure,

[3], [4]•

The continuous edges of a plane faceted objects are then obtained as tie

intersections of their plane surfaces found above. Using heuristic rules, tha

edges and planes belonging to individual objects are grouped in an ordered and

consistent manner so as to facilitate the object reconstruction.

The characteristics of an object which are important for this purpose are

found to be the convexity and colinearity of edges. Methods for determining if

an edge is convex or concave and if two edges are colinear are developed. These

methods are consistent, regardless of the viewers point of observation. If parts

of the image of the workscene in the input information exhibit certain proper-

ties, then these parts will be grouped together as an object.

For recognition of known objects, three-dimensional models in the form of

ordered li s ts of features of objects are stored in the computer memory. The

essential contents of these models are the specification of number and lengths

of edges meeting at a vertex, the spatial angles between these edges, the edges

bounding a face,etc. This stored information can then be utilized to recognize

known objects and determine their positions and orientations.
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The second part of the report deals with the problems of two-dimensional

filtering and smoothing of data by using spline functions. A number of ap-

proaches to the 2-D data processing problem have been proposed in the literature

recently. These algorithms typically fall into two classes, those based on

original image model [6-8], and those found by minimizing objective function

without explicit model [2], .[9-12]. The approach taken here is closer to the

technique of numerical spline analysis, that is, no prior image model is

assumed. However, the focus here is on achieving a recursive algorithm which

can be implemented on-line.

The purpose here is twofold: a) along the same line as developed in [2],

the results were extended to a wider class of possible signals, b) the funda-

mental principles and limitations on recursive smoothing splineL are explored,

which were not discussed in the previous research.

The state space notation of signal is used for it not only keeps the nota-

tion simple, compact, and unique, but also provides the crucial point in the

recursive processing. Another factor involved in the formulation of recursive

computation is the proper selection of the objective function.

In particular, it is hoped that the expositions will shed some light on the

peculiar probmes of recursive algorithms for 2-D smoothing splines, which do

not appear in 1-0 data processing.

In order to get better data fitting, p.1i.p.'s of continuity greater than

the first derivatives are desirable. However, the derivation of high order p.H.p.

using direct method is quite complex in general. A method using cardinal bases,

[13], is also described which results in a systematic, simple, and straight-

forward calculz.tion procedure.
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III. DETAILED PROGRESS REVIEW

The progress made during the past year in the ongoing research is described

here. There are essentially two major phases of research, the first one dealing

With the three-dimensional scene analysis probee;^ and the other is on the

processing of two-dimensional signals.

TASK A. Scene Analysis Based on Laser Rangefinder Data

Processing for Space Robotics.

This part of the report deals with the development of a possible vision/

environment sensing system that can be used by autonomous robotic systems of

future, especially in space probes where proper illumination for T.V. camora

based vision systems will be difficult.

1. Feature Extraction and Surface Description

Application of the two-dimensional smoothing algorithm [2], using spline

functions, in the regions between the discrete edges, detected by the Rapid

Estimati r,n Schur,-, r l ], yields smoothed values of range rij and the two range

	

ar• •	 3r•
slopes •3s & ae and the measured pointing angles Sij and e ij , at an observed

	

tj	 ij
point P ij , Figure 2a, the actual slope of the surface at P ij with respect to

some coordinate planes xy, yz, zx of the laser rangefinder and the three pairs

of reference directions employed are as shows by l^ , 
dzTy- J , Idy , x I

and { z , g} .
a. Segmentation of Range Data: Recursive Hierarchical Cluste ring

The idea behind the transformation from range slopes to the actual surface

slopes of the objects is that the data points belonging to a plane surface will

show some slopes along two fixed orthogccr.l directions and thus can be separated

from the rest of the points. Hence, for all of the observed data points, two
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slopes along any two fixed directions w•r•t a reference plane cnan serve to

separate the total observed data into plane surfaces. However, there can arise

a serious problem due to some slopes becoming singular or achieving arbitrarily

large magnitudes. This will happen when the corresponding unknown plane has a

high inclination w•r•t the reference plane (Figure 2b).

Thus for avoiding the problem of singularities in the transformed surface

slopes it was decided to calculate the same along six different directions,

Figure 2a. For a particular observed point only a pair of surface slopes w•r•t

one of the coordinate planes is calculated. Possible pairs of slopes are:

dfidyi j

d
, i^d
	 d	

and d—i ^-	 d	 {1)
dx

in	 i	 i	 yi '	 i J	 J	 J	 J

As can be noted, only three of the above quantities are unique. Denoting the

range sloe?s ae by V i c and 
2S 

by Vii three of the above surface slopes
iJ	 iJ

may be written in terms of the measured and smoothed quantities:

S o	 dZ	 - -- [tans) V - r	 _	 (2)

	

1A ddyy 	 [cose - r tan a sine /Vc 3 V - r tans cose

	

dZ	 -[Lane + r/V]Vc

S2	 ax	 r cose + sine	 - r tan s/V	 (3)

Q ^X _ [tang + r/Vc ] V + r tang tans 	 (4)

	

3 = dx	 [1 - r tan g /VC ] v - r tan s

where each of the above expressions connect all the quantities at a single point.

The remaining three surface slopes in Equation 1 may be obtained as the recip-

rocals of these quantities.

Thus, with each observed point of the scene, a two-dimensional slope vector

is associated indexed by the particular plane w•r•t which the two slopes were

calculated. Processing the whole data in this manner, 6 two-dimensional arrays

corresponding to six different slopes are obtained. These arrays contain blank

entries for points at which the particular slope was not calculated.

i
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Fig. 2b	 Singularities in surface slopes

dx
dz
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dA
-----------------„	 dy
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i

^i	
i Pii

dx	
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y

--- -8^	
i

dz
— — —

dz	 dy
--	

dy

X
dx

Fig. 2a	 Reference directions L,11 six different surface slopes at
a point
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The observed data points are separated into different groups for different

planes surfaces by using a recursive hierarchical clustering scheme reported

earlier, [5].

b. Surface Estimation: Least Squares Plane Fitting

The output of the recursive clustering algorithm [5], consists of three

different sets of clusters, depending on which pair of surface slopes was used

to group the data points. For a cluster of three-dimensional points using

surface slopes 
dz 

and 
dy 

a linear relation z = a + bx + cy, (a plane) is

supposed to exist between their rectangular coordinates (x,y,z). Given 'n'

number of points, the best values of the parameters a,b, and c are obtained by

n
minimizing the squared error 	 (z . - z) 2 = E (z . - a - bx. - cyi)	 (5)

i=1	 i=l

Differentiating this error w•r•t a,b, and c, three euqations are obtained:

as = E	 (zi - a - bxi - cyi ) ( -2)	 (6)
i=l

	

= E	 (z i - a - bxi - cyi) (-2x i)	 (7)
i=1

aE	 n

ac 
= E	 (z i - a - bx i - cy i ) (-2y i )	 (8)

i=1

Setting all derivatives equal to zero for a = a, b = 5, and c = c, the so-called

normal equations of the least squares plane are:

Ez i =	 na +b Exi +cEyi	(9)

2
E x 

i 
z i = a E x2 + b E x i + c E xiy i	(10)

E yi z i = a E y i + b E x i y i + c Ey i 2	(11)

where all summations are from i = l ...... n. Solution of this set of linear

equations defines the best fitting plane as the triple (a,
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c. Continuous Edges: Calculation and Verification

The edge points detected by the Rapid Estimates Scheme, [1 ], are widely

spaced, the spacing being dependent on the distance from the laser sensor and

the increments of pointing angles used. Also because of measurement noise in

the range readings there occur some false detections at few points. From

Figure 3, it is clear that the outer edges will be detected easily, however,

some of the inner edges may be missed for which the change of slope is small

or gradual. Thus R.E.S. alone is not completely sufficient for extracting edges

of the objects.

Having described the surfaces in the scene by the least squares regression

planes, the continuous and exact inner edges can be obtained by calculating

their lines of intersections. It is to be noted that this approach can be

applied only for the inner edges where both the intersecting planes are visible

to the laser sensor. For outer edges the best estimate is a straight line

passing through the edge points lying in a three-dimensional space.

In Figure 4, the plane ^ has been defined uniquely by its unit normal

vector n = pi + qj + rk and its distance from the origin, shown as d. i, j,

k are the unit vectors and p, q, r are the components of n along these directions.

The equation of the plane is written as n•r = d + px + qy + rz

n•r=d+px+qy+rz	 (12)

which can be put in the form

z = d - px - gy	 (13)

a+bx+cy
	

(14)

where z=d ,.b=-b,c=-r

i



edge

edge
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Fig. 3	 Inner and outer edges of an object

z

Si, \6i+1

Y

Fig. 3a	 Laser beam following a flat surface
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Fig. 4	 A plane defined by its normal vector and distance from
the origin
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In Equation 14, parameter a = d is a measure of the distance of the plane P
from the origin. The equations of the planes obtained from the least squares

AA A
method of surface estimation are in the form of triples [a, b, c].

Thus two planes [a l , b l , c l ] and [a 2 , b2 , c2 ] will intersect if

bl # cl
2	 2

bl - 11 indicates that the two planes in question are parallel to each otherK - c2
and hence do not intersect. All the inner edges can, therefore, be obtained by

the above procedure after the equations of the two planes forming it have been

obtained.

2.	 Object Reconstruction and Recognition

In a paper on two-dimensional scene analysis [14], Guzman used heuristic

rules to decompose a line drawing into objects. These heuristic rules were.based

on the types of vertices which occur in a line drawing.

Here we present a heuristic scheme for object reconstruction and formation

based on input data containing depth information. This scheme will reconstruct

plane faceted objects from a workscene described as edges, faces, and vertices

in Cartesian coordinates.

a. Object Reconstruction Using Heuristic Rules

Planes will be collected into the same object if they satisfy these rules:

1. Intersect at a convex edge.
2. Contain colinear half edges which have adjacent coplanar faces.
3. Intersect at a concave edge where one of the vertices of the edge

is on the outside edge and the concave edge is not colinear with
the outsidE edge.

These heuristics are pictorially described in Figure 6, where

indicates that the two faces connectf are grouped into the same object. Figure
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A
	

B

Link grouping
faces

Figure 6

Heuristic Rules

A. Faces linked because they 4ntersect at a
convex edge

B. .Faces linked due to coplanarity

C. Faces lined because they intersect at a
concave edge where one of the edges vertices
fall on an outside boundary
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6A shows faces which are grouped because of the convex edge between them.

Figure 6B shows faces which are grouped because they contain colinear edges

with adjacent coplanar faces. Figure 6C shows an example of grouping according

to Rule 3.

Rule 3 is included in the set of rules because a laser rangefinder, which

measures only depth, will not see an edge between objects which are aligned. In

Figure 7, Part C will be grouped into the main body when viewed from the right

because it contains part of face 1, and face 1 has convex edges which link it

to the rest of the main body. Face 1 contains vertices A, B, C, D, E, and F.

If this object is viewed from the left, we want the same grouping to occur so

that the description of the scene will be consistent. When viewed from the left

Part C can be grouped into the main body by Rule 3. Part A exhibits the same

characteristic. Part B is not grouped with the main body since the concave

edge is colinear with the outside edge of the main body.

Using the real world as an example, objects on a table are considered

separate objects unless they are aligned with an edge of the table.

b. Convexity of Edges

One of the most important features of the object reconstruction scheme is

determining whether or not an edge is convex or concave.

To determine if an edge is convex or concave, we define the unit normal

vector L 1 and L 2 for the edge in both planes intersecting at the edge, Figure 8.

These unit normal vectors lie in the planes forming the edge, are perpendicular

to the edge, and point to the inside of the plane. Then we form the unit vector

pointing from the rangefinder eye to the midpoint for the edge in question and

A

call this vector R. If the dot product of R and the sum of L l and L2

R i (L 1 + L2)
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Part" B	
Part C

Main Body	
D

Figure 7

Rule No. 3
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B

Figure &

Determining Convexity

If a is less than 1800 edge AS
is convex.
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is greater than zero, a convex edge is indicated. If this dot product is less

than zero, a concave edge is indicated. Examples of how convexity is determined

are shows in Figures 9, 10, and 11, where R l is the projection of R into the

plane formed by L 1 and l2.

c. Colinearity and Coplanarity

All half edges are searched to see if any apirs are colinear. For two half

edges to be colinear, three of the possible six unit vectors formed by pairs of

the four vertices must be equal (Figure 8). We choose to use the pairs (A,B),

(A,C), and (A,D) and say if:

2 - ABS	
AB o AC	

-ABS	
ABoAD	

< K	 (16)
11A811 FT-ACTT

where K is a small number depIndent on the amount of noise, then the half edges
a	

are colinear.

Half faces which are coplanar will have equal unit normal vectors E;sociated

with the colinear half edges.
A	 A

If	 JIL1 - L2 )I < K2	(11)

where K2 is another constant based on measurement noise, then the half faces

are coplanar.

If Rule 2 is satisfied, then the half edges are merged and the adjacent

coplanar half faces are merged. In Figure 12, L 1	L2 indicating that the half

faces are coplanar. Also AB is colinear to CE, and both B and C are virtual

vertices. satisfying Rule 2. Hence, F2 will be merged with F1 and AB will be

combined with CD to form AD.

d. Results

Computer simulation was performed on an IBM 3033 computer in a program

written in LISP. A sample workscene is pictured in Figure 13, where O
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Figure 9

Acute Convexity
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R
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Figure 10 Obtuse Convexity
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p virtual vertex
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signifies the position of the laser rangefinder eye, which is the origin of the

cartesian coordinate system in which the input data is recorded.

The input is in the form of lists of features. A face is defined as the

list of edges which bound it; an edge is defined as a pair of vertices and con-

tains the information on the unit vectors, and a vertex is defined by this list

of its coordinates. For example, face F1 is defined as (EF DF CD CE) in the

sample workscene. Also, edge OF is defined as ((Fl 0 -1 0) (F2 0 0 1)) where

(1 -1 0) is the direction of the unit normal vector associated with F1 at edge

DF. Vertex A is defined as (-6 -20 12), its coordinates relative to the range-

finder eye location. Which vertices are virtual is determined using the fact

4	 that virtual vertices are the endpoints of only one edge while other vertices

are formed by the intersection of more than one edge.

The output contains the description of the scene upon completion of the

object reconstruction scheme.

The output was:

VERTUAL VERTICES:	 (L S T M R Q)
NE'EDGES:	 (HN BO AP)
CONCAVE:	 (CD DH)
CONVEX:	 (DE KV BO)
OBJECTI:	 (Fl F2 F3 F4)
OBJECT2:	 (F5 F6)

The scheme actually worked as follows:

eVirtual vertices were found

l Colinear half edges were fixed creating NEWEDGES HN BO AP and merging
races F7 and F8 into faces F3 and F4 respectively.

I F1 and F2 were linked across convex edge FD

I F3 and F4 were linked across convex edge BO

I F5 and F6 were linked across convex edge KV

'F1 and F3 were both linked with F3 based on Rule 3 at edges CD and DH
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No other links were possible so that the groups of faces were then considered

objects. Note that F7 and F8 do not appear in any object list since they have

been merged away.

e. Conclusions

A heuristic scheme for three-dimensional object reconstruction has been

presented above which used heuristic rules based solely on three-dimensional

geometric considerations. We found that given three-dimensional input describing

a work scene, the objects contained in the scene can be reconstructed using these

heuristic rules. In cases where enough information is available, parts of the

scene which are masked by occlusions can also be rebuilt. The reconstruction

is consistent and allows for error due to measurement noise.

TASK B. POLYNOMIAL SPLINE APPRAOCH TO TWO-DIMENSIONAL SIGNAL PROCESSING

A state space appraoch to 2-D data processing using spline function is

reported in the following pages. The state space notation of splines not only

keeps the notation simple, compact, and uniform, but also it provides the crucial

point in the recursive data processing. The fundame,ital principles and limita-

tions on recursive smoothing splines are explored, which are neglected in the

previous research. One special case which results in forward on-line recursive

algorithm is presented.

1.	 The State Space Approach to 2-D Vector Processing Using Splines

The 2-D spline smoothing problem is defined as follows. A set of noise

corrupted 2-D data Z = {z ij ; i = 1,2,---M, j = 1,2,---,N} is given, we wish to

estimate the original function values and its derivatives from these discrete

noisy measurements.

The measurement process is described by

zij 2 f (^ i  ni ) + V ii '	 j = 1,---,N	
(18)
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where f(; i , n i ) is the sample value of original function which is assumed of

(mi ed partial) derivatives up to certain order. V ii is random noise with zero

mean and finite variance Rij.

The approximating function adopted here is the 2-D spline function which

is defined in wide sense, a piecewise function of continuous derivatives up to

certain order and each piece is defined only in one grid, for example, the regular

square grid as shown in Figure 14.

The reason for using spline function is that the approximating error

analysis has been well developed in the numerical mathematics [9, 101. Another

advantage of this approach is that under certain conditions the recursive compu-

tation can be realized, which makes the real time operation possible.

The ent.re spline function in domain R as dictated in Figure 14 would be

Soo( ,n)	 &o <	 < &1	 no < n < ni

S10(^,n)	 &i < 	 < Ez	 ,	 no < n < n1	 (19)
S	

Sij(,n)i <	 < i+l	 nj < n < nj+1

SM-1,N-1(&,n)	 &M-1 < < EM ,	 nN-1 << n << 'M

The objective function which we wish to minimize is

	

M	 N

	

J = E	 E 
pij 

[z ij - S(E i ,
n 
j )]T Rill [zij - S (s Vnj)]

i=1 j=1 

M-1 N-1	 Ei +1 nj+l	
(20)

	

+	 E	 E (1-p
ij )	 C(s)dEdni=0 j=0	 f y i	 nj

where p ij 's are weighting parameters and

0<pij<1,
C(s) is the smoothness measure function usually defined as function of

the high order derivatives of S(y,n).
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Figure 14 The region of 2-0 splines, R

28



29

The first term in Equation (3) represents the noise effect at the grid points

and the second term is a measure of smoothness of the approximating function.

The selection of C(s) and S(^,n) could be independent, but the optimum S(^,n)

_	 which minimizes a special ffC(s)dudX is often unique.

Notice that S(&,n) would act as an interpolation function when p i g approaches

to zero, and on the other extreme, when p i g approaches to one S(&,n) would become

a plane. Thus, the value of weighting parameter p i g controls the trade-off be-

tween the measurement error and the smoothness of the approximation function.

a. The State Space Model of Bicubic Spline

The most often used splines are polynominal splines because of its simplicity

in computation and the closed form solution. In general, a 2-D spline defined

in one grid is described by a partial differential equation. However, only few

of the solutions satisfying some restrictions could be represented by linear

discrete state space model defined on the grid points. The bicubic polynominal

spline is the one among them of particular importance.

The bicubic polynominal spline is the polynominal which minimizes the

4
smoothness measure C(s) =	 s	 2	 For convenience, new notations of

a^2an2

variables are introduced

u	 S - S i	 Si	 Si+l

a	 n - n;	 nj < n <— 
nj

+l
J

and thus,

0 << u << of
	 b 

c ^i+l -Si

0 < a < '1n	 on	 nJ+l -nJ

Fran the principle of calculus of variation, the optimum solution of

d, = Cy	 An	 a"S	 .ai^(u) 2	
dada	 (21)

	

0	 0	 au`aa2
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is the one satisfies the Euler equation,

aIsij(u,X)
= 0	 (22)

au"aa"

with proper boundary conditions [15].

If only polynominal solutions are of concern, then the solution satisfies

Equation (22) is equivalent to the one which satisfies the following equation,

U1j

a"S (u,a)	 U2ij	 _ 
5A 

^ 
u 11
	 ij	 (23)

Du 2W	 Ui j

Ui j

1

where U ij A [ Uij Uij Ui j U0.1T 	are under-determined parameters.

The general solution of Equation (23) is

i	 Sij(u,X)	 + "2 (X) + ^ 1 (u) + AY -P)	 (24)
r 3V
	 2P113x2	 2X2

+ t 	 72— 14
 
jU1J

where 0 1' ^2 1 ^11 and 1^ 
are aribitrary polynominal functions. If we define the

as	 as 2
"state" as the column vector [S, au
	 ax 	 au8a]T
	

then the exact linear

discrete model of Equation (24) defined on the end points of one grid can be

obtained.

X i+l , j+l	
Fo i X i , j+l + F01X

i+1, J + 
F o o X i 1i + ru i j	 (25)

where

Xi+9,j+,,,	 [S(u,a)	 au (u,a) as (u,a) auaa (u,a) ]Tl a3"on	 (25a)

z=0, 1;m = 0,1

j
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1	 A^	 0	 0

0	 1	 0	 0
F01 _

0	 0	 1	 0^

0	 0	 0	 1

1	 0 An 	0

0	 1	 0	 aFlo	 n

0	 0	 1	 0

0	 0	 0	 1

(25b)

1	 a	
^n 

aan

0	 1	 0	 a
F o o = _	 n

0	 0	 1

0	 0	 0	 1

(25c)

and

r=

G 3 Q 3

^n
L2Q3

Z
Q3Q2

 ^n
Q2Q2

En

36 12 12 4

LEPn L^ TI ^C^n ^E TI

12 6 4 2

L 3 Q 2 Q2Q2 Q3Q Q2Q
s'n En ^n

12 4 6 2

L2
A A2

n

L 2 Z
n

4 2 2

(25d)

The linear discrete state model for a general 2-0 spline is often not

available. Because of the restriction of the positions fo grid points, it only

allows the function S(y,X) propogates the variation along the lines parallel to

the ^ or n axis. Consequently, the arbitrary functions could only be functions

of only one variable, u or a, so that they can be cancelled. Linearization or

approximation may be used to derive the linear discrete model for those do not

meet above requirements.
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Since the finite state model is one of the essential condition for

recursive algorithm, the bicubic spline is the one, if not the only one, of the

members which can be implemented recursively.

b. Vector Processing Formulation

1-0 estimation theory is well developed, nevertheless, the corresponding

theorems in 2-D is not always possible. This complication occurs partially due

to the choice of the support defined for the 2-0 filters [16-18]. An estimator

'	 with support defined by Equation (25) usually does not have the optimum

solution either in the sense of least square or quadratic performance index.

To avoid this fundamental restriction, a vector processing model is

constructed as follows. Define the glcbal state quantity to be the vector

along the column of region R,

XOj

Xlj

X	 =	 X2j I	 (26)

jj=0,1,2 .... N

XMj f

The state equations along the column strip are

X o,j+l =	
Fio 

X
O,j	 + rU-i>j

X 1,j+l = F 01 X O,j+
, 
+ F 1O X l'j + F oo X O1j + FUOJ	

(27)

XM'j+l _ FoiX
M-1,j+1 +F10XM,j + FooXM- 1,j +rUM -l1j

or

Xj+1 = F 01 Xj+1 + F 1O Xj + F OO L + r°U.	 (27a)
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which could be rewritten as

XJ+l	 FXj+rUj	 (28)

where

F	 [I - Fol]-
1 	[ F io + Foo]

r = (I - F0 I
- 1 ro

and

0 0

F" 0
F oi	 =

0 Fol

O • • • F01	 0

0 0 0
F 0 ° 0

Foo
0 Foo 0

•• '. F oo 0

Flo 0	 0
0	 Flo

F	 =
•.0	 0

O	 Fio

r 0	 0
0 r

ro :	 0

%0 ' .0 r

To simplify the calculation and deduce the recursive solution, only the

quadratic smoothness measure is considered, that is from Equation ( F) assume

 °n	 C(s)duda =	 nC
f((
	 f o

fA rl
	 C

4	 -2

-a	 ^ dudX (29)
J0 	0 0

au—z

=
T	 -1UT

	 Q iJ U iJ (29a)
t

'~ [ua Xwhere	
Q-1	 A

fo
u 

1]T [ua X u 1 ]duda (29b)
1 0

for bicubic splines.	 However, the result of above problem can be easily extended

to the general quadratic form, U
i,j

f
C ("n	 C(s)dudX = [U iJ Xi,7	 X i

+1 .,1 Xi .J+1l = 1
Xi J

(30)0 0

Xi +1.J

Xi ,J+1
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Let zj a [o z lj z2j ..... zNj]1

then the objective function (Equation 20) can be expressed in the global state

form,

J - ( Xo - X^) $o l (^ - -X-O ) + z [ zj - HX.] T R- 1 [zj-HXj^
j=1

N-1	 T	 1+	 U Q'

J.0 3 j J	 (31)

where X—o is the initial guess.

H 0	 O
H =	 0	 H	 0	 (31a)

O	 0' ' H

-1	 r-1
poi ROj	 O	 0

Rjl -	
0	 pij R i j	 0	 (31b)
0	 O	 0	 -1

pMj RMJ

(1-QOJ )QOj 0	
0

Q^ 1 -	 0	 0-p1j)Q-	 0	 (31c)

0	 CD	 0	 (1-P) QMj

The first term in Equation (14) is added to reduce the effect of initial guess.

C. Smoothing Algorithms

We now turn to the development of the estimation algorithms. The closed

form recursive formula for the problem described in the previous sections does

not always exist. There are some significant special cases that provide simple

recursive computations as discussed below.

__
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For the sake of forward real time recursive computation, the unknow

	

coefficients Uj can only be the function of previous states
 Xi
can 	 and parameters

U i 's, i<j. Therefore, the minimization procedure of Equation (31) can be

expressed as

n 	 Minn ^	 i
Min	 Jo = X

j 	 Mi [ 
Jo + U [jl +	

Mn
i 	 ....	 ^ Zj	 (32)

1

I	 where	 Zi A {z R :	 < X < j)	 (32a)

J Z	( zR - 
H id, 

it (z, - H X ) + U
Q-1 14-1 -UZ-1	 (32b)

k	 1929....j

Jo a (^_ ^ )
T P-1 (X0 - Xo )	 (32c)

w

and	 J^ _	 Ji	
ksi

The notation IZi emphasizes that the measurements are up to j th stage.

z	 Let us denote the optimum estimate of X i which minimize J oi s X ilj , that
A

is, X ilj is the optimum estiamte of X i using the data z l , z
2 
....... zj . The

	

A	 A

relation between X i1j and X 1+11j comes from Equation (25)

A	 A

X i+11j = F X iIj + I'UiIj	 (33)

where the index i/j indicates the quantities are the optimum solution using Zi.

A

In order to obtain Xj`j , we must compute all U iij 's and Xo1j via Equation

(32). The whole procedure of computation is dictated in Figure 15. First, we

compute U i1j 's from j th stage backward to oth stage, and then the smoothed

estimate S
i 

i 's are calculated forward by using Equation (33).

At the j th state, U 	 is obtained by minimizing Jj with respect to Uj_l.

L.--
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^
x010

^	 ^
x 1'1	 x212

011	 u112

^	 ^
xJ-11i -1 	

xi 
1i

lij

xill, 

x2 19

u0li

Figure 15 the Computation Scheme

x01J
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Jj = (zj - H Xj)T 
41 

fzj - H Xj ) + ^T Q-1 Uj-1

	

= (z. -HFX.	 -HrU. ) T R-1 (z•
J -HFX.	 -HrU. )— —J-1 = 	 —-1	 =-1

+ u.i-1 Hj l l 1j-1,	 (34)

since i = F Xj _ 1 +	 Uj _ 1 . Then taking the gradient of Equation ( 17), we

obtain the expression,

-rTH R-1 (zj - H F Xj-1 - H r U
j-1 ) + Qjll U

j _ 1 = 0	 (35)

or	 U.	 = T. r HT 
R-1 

(z. -HFX. )	 (36)
j _ = J-1

where Tj°
 Ii-I

1 	
rT E' r R^ 1 H r	 (36a)

Because the preceeding solution is solved by using data Z^ 	 Uj _ 1 , and X j _ 1 should

be denoted as U._ ljj and Xj _ llj respectively.

To compute the U j _2 Equation (36) is substituted into Equation (34), and

Jj is simplified as function of X j _ l only.

Jj = (z j - H F 
Xj_1) T HJl 

(zj- 	 H F X)	 (37)

whereWj = R  + H Qj-1 7T HT 	(37a)

At j-l th stage, the problem to be solved is:

min	 J^-1 = min	
(J j -1 + Jj)

-2	 j-2

= min [zj-1 - H X
j-1 )T Rj-1 (z 

-1- 
H 2j-1)

	

+uT	 Q 1 U.	 + (z - H F X. )T W-1 ( z : - H F X.
J-2 —j-2 J-2 j = = J-1 j _j

(38)
The resultant Uj _ 2Ij is

U j-21j
T-j^l 

rrT 
HT Rj

1
l (zj _ 1 - H F xj

- 2 ) + 
rT FT HT W^ 1 (zj - H F FXj-2)}

(39)
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where	 T.	 = {rTHTR- 1 H r + R 1	 +F F
T HT-1

H F r)	 (39a)
=3-1	 ===3-2 == j-2 a==	 _--

Observing Equation (36) and (39), it seams that there is no simple closed recursive

formula to compute Uilj's.

However, if the state Equation (33) satisfies certain conditions, the closed

recursive formulas for U ilj 's or X ilj 's are possible. Substituting Equation (22)

to Equation (21), J 	 becomes function of X.
7-2 

only. Repeat the above procedure
^-1	 -

backward down to 0 th stage, we will have Jo which is a function Xo only. Then

XoIj can be obtained by minimizing J o with respect to XO . After that, Xllj,

X2Ij9 ... are then computed forward via Equation (33). This nonrecursive computing

procedure can be applied to the general state model on which no restrictions are

posed.

There are two special cases which save the computation and/or memory storage

significantly. The first case is that the calculation of U ilj could be recursive,

if H is invertable. However, in many practical applications, this may not be

true.

The second case is that we can compute X ilj directly from X j-11j-1 without

computing all the U i`j 's, i= 0, 1,..., j-2, if 	 is invertable. The second case

is much more important not only because it is true for the splines defined in

Section a , but also it results in a true forward recursive on-line algorithm.

Assume r is invertable, U i = r-1 (X.	 - FX.). Because all U.'s are inde-

pendent variables, the X i 's can be considered as independent variables. There-

fore, J  can be rewritten of the form

J i	=	 (z i	-	 H X i ) TR-1 (z i - H Xi)

+	 (X i
- Xi-1)T

r-T Q111	
r 1	 (X i	-	

Xi-1)	
(40)
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Thus

min JD =	 min JD

XO 200'''' Oj-1 X01	
X19...,Xj

= min	 Jj + min	 Jj-1 + ..., + min J O 	(41)

Xj ' Xj -1 	 Xj -1, Xj -2	 X0

Noted that every term in Equation (41) is a function of two variables only, and

every indpendent variables X i 's are involved in two terms only. In comparison

with Equation (32), Equation (41) has a significant decoupling structure which

enables the direct forward recursive algorithm.

To illustrate this feature, let us see the following example. Assume the

optimum filter estimate Xj`j is already available, which is the solution of

min

XO

Now, we

min

XO'

A = min

X1,....Xj	
X0,

Nish to estimate Xj+1

Jj+l =
0

X1 ,....Xj2x j +l

Jj +

Xj-1

j+1 , that

min	 J

Xj+l'Xj

min	 Jj-1 + .... + min JO	 (42)

Xj-l'Xj-2	 X 

is, we want to find the X; . , 1 such that
J

+1 + min	 Jj + .... + min J O 	(43)

XPXj-1	 X 

Compare Equations (42) and (43), it is evident that

min	 Jj+l	 = min	 Jj+1 + min	 A	 (44)

XO,X1....,Xj+1	 Xj+11Xj	 XO,X1,....,Xj

Consequently, the present estimate Xj+lIj+l would equal to the previous estimate

Xjlj plus a correction term which depends on zj+1 only.

After some derivation, filtered estimate is given by

X.+l+j+1 = F X. 	 + P^+1 HTR^+1 (zj+1 - H F Xj`j )	 (45)

^-A
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here	 Pj+l = 
(HT Rj+l H + Mjl)-1	

(45a)

Mj+l = r Ij r  + F Pj FT 	(45b)

Similarly, the 1-lag smoothing equation can be obtained,

T T	
z.	 - H X.	 )XjIj+l = XjIj + P

j
 F H R6+1 (—j+l	 = — + lIj+l	 (46)

which can be extended to m-lag smoothing equation,

Xj -mij	 Xj -m j-m + !j-m FT HT Rj lm+l (Zj-m+l - H Xj-m+llj) 	 (47)

d. Conclusions

The general properties of 2-D smoothing splines problem has been discussed

in this paper. The principles and restrictions on forming a recursive algorithm

of 2-D vector processor using splines are tA-11-red. It is found that the recursive

on-line structure for general splines is not always possible. One special case

which result in forward on-line recursive algorithm was developed.

The adoptation of state space model clarifies the crucial point of recursive

spline smoothing algorithm, which were neglected before. However, the adjustment

of weighting parameter p ij is not included in thisreport. The development of

adaptive algorithms and the extension to nonregular grid splines will be presented

in the future.

2.	 Basis Functions For Piecewise Hermite Polynomials (p.H.p)

A systematic method for deriving the bases of piecewise Hermite polynomials

is reported here which can be extended for the general cases of 2-D and higher

dimensional p.H.p.'s. Among the polynomial splines, piecewise Hermite poly-

nomials are of particular importance because they have the following attractive

properties: (i) The p.H.p. requires data in only a finite local area around the

point of approximation, hence it can be implemented recursively (finite local
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support). (ii) The continuity of p.H.p. can be prespecified which results in

a smooth function for curve fitting. (iii) p.H.p. is of finite error bounds and

the error behavior can be z.ialyzed accurately. We denote nCn+m the collection

cf all piecewise 2-D functions that have continuity up to nth order partial
s

derivatives on the first variable (t), mth order partial derivatives on the

second variable (n), and the n+mth mixed partial derivatives on these two variables.

Because of the requirements of continuities on the boundaries of every piece (grid),

the order for the polynomial which meets these boundary conditions are 2(n+l)

for the first variable and 2(m+l) for the second variable, which is the so-called

"piecewise Hermite polynomial (p.H.p.)."

a. Cardinal Method

Consequently, the p.H.p. of order 2(n+l) of polynomials of the first variable

and order 2(m+l) of the second variable would form a basis of the linear space

nCn+m . The total number of the p.H.p. bases is 4(n+l)(m+l) in each grid.

If a 2-D partition n(^,n) called observation region is given as shown in

!= igure 16, with (N-1) intervals in the variable ^, and (M-1) intervals in the

variable n, the p.H.p. of each grid defined by

[s i <	 < ^ 1+1 , nj < n < nj+1	 (N-1),	 J= 1,2, ... (M-1)

can be constructed by the following procedure.

(i) Because of the independence of the first and the second variables, the

p.H.p. basis can be formed by the tensor produce [61 of the 2(n+l) p.H.p. basis

factors (polynomials of degree, 2n+1) in the first variable ^,H2(n+l) (0, and

the 2 ( m+l) p.H.p. basis factors in the second variable n, H2(m+l) (n). Hence,

the general p.H.p. basis in one grid can be expressed by the combination of

H2(n+l) (d 
and H2 (m+l) (n)•



	

1	 1	 T

	

f i ,j (^,n) = I	 I	 [4,Z]	 Xi+k, j+Z
k=0	 Z=0

/ A A
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_	
(ii)	 According to the continuity requirements along the boundaries (4 end

points of the grid),a set of 4(n+l) (m+l) equations are posed on these p.H.p.

basis factors.

_	 (iii) Each of the p.H.p. basis factors is obtained by using the boundary

and normalization conditions.

b. Bases for Twice Differentiable Continuous Functions in Both Directions

To illustrate the above procedure, an example for consturcting the p.H.p.

bases of 2
C2 

is given in the sequel.

If a function f(^,n) is constructed by using the p.H.p. bases from the given

data vector 

a 2 f	 a 
2 
f a 2 

f _ a 3	 a 3 f	 a 4	 T = XT
a^ an '5z—an  aj2 an t g2 an a^ a4 g2 3r12

at every grid end point, the resultant function f(^,n) will satisfy the continuity

requirement of 2 D4 and thus belong to 2C4.

(i)	 The whole function can be expressed as the summation of piecewise

functions in every grid,

N-1	 M-1

I	 f	 (,n)	 (48)

i-1	 j=1

where	 f(^,n) i <	 ^i+1 , n	 nj+l
f i ,j (^,n) _

0	 otherwise

And in turn every piecewise function f i'j U ,n) E 2C4 ca n be represented in terms

of the p.H.p. bases,
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where

W ,k = 100k (E) . v OQ (n), 6lk
(E) • v O Jnl ,^OK(^)•v1Q(n),^lk(^) •v^1Q(n), ^2k (0 - v OZ n)

^Ok(^)-VU (^) , 02k(E)'^19,(n) , ^lk(^)'^21(n) , 021 (^)' V U (n)J	 (50)

Xi +k, J+Z = 11 
=^i+k, n=nJ+R

^Ok (" 4 k(^)' 
^2k (V and ^'Ok (n)' 1Q ( n)' ^ 2t ( n ) are the p.H.p. basis factors of

variablesE and n, respectively. Each of these is a polynomial of degree 5. The

complete p . H.p. bases are shown in Equation (50).

The next step is to determine every p.H.p. basis factor mentioned above.

Each p.H.p. basis factor is a fifth degree polynomial, hence, there are six

undetermined coefficients for each factor and a total of 72 parameters to be

calculated for these 12 basis factors.

(ii) From the given boundary conditions, these coefficients are determined.

This results in 12 sets of simultaneous equations corresponding to 12 factors

DP 
^qk 

( ^i+d ) = dpq • Skd	 (51) and DP Vg k (nj +d
) = Spq • d kd	 (52)

where Dp = d p/d&p and DP = dp / dnp , daub is Kronecker d function

p = 0,1 ,2	 ; q = 0,1 ,2	 ; and k = 0,1	 d = 0,1.

(iii) By solving the simultaneous Equations ( 51) and ( 52), every undetermined

coefficient can be obtained. Because only one term is nonzero for each basis

factor ( for a fixed q and k in Equations ( 51) and ( 52)),it is easy to obtain all

the six coefficients of this particular fifth degree polynomial.

It can be written without difficulty that

` Oo w = ( ^-^ i +1)
3
 Ca0 (E-^

i ) 2
 + bO (^-^ i ) + col
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t The unknown parameters a09 b0 , and c0 can be calculated by the equalities

^00 (^ i ) = 1, X00 (& i ) = 0 and 000i ) = 0. For simplicity, let a& 	 i+1 -	 i = 1

and X a &- ;' i , then the foregoing equation becomes

O00 (a) = ( X-l) 3 (-6X2 -3X-1) = 1-10X3+15x4-6X5

By the same token, all the other basis factors can be derived similarly.

010 (X) = X - 6X 3 + 80 - 3X5	 ^00(v) = 1 - lOv3 + 15v4 - 0

X	 1 2	 3 3	 3 4	 1 5	 3	 4	 5
X20( ) = 

i x - 2X - tx - 
tx	

^10(v) = v - 6v + 8v - 3v

001 (x) =	 10x3 -15x4 + 6x5
^'20 (v) = 1 

2' 3 3 + 3 4 - 
1 5

11 (X)	 _ - 4X3 + 7X4 - 3X5

21(X)
1x3 -

X4 +
1X5

^01(v) =
	 lOv3 - 15v4 + 0

^ 11 (v) =	 - 4v3 + 7v4 - 3v5

^21(v) _	
v3 -
	 v4 + 2v5

where An	
li +1

 - ni = 1 and v	 n- ni-

After obtaining all the 12 basis factors, the p.H.p. bases are readily

obtained by combining these factors as indicated in Equation (50).

c. Conclusions

A systematic method for deriving the bases of p.H.p.'s has been described.

This approach can be used either for high order polynomials or high dimensional

functions. As can be observed from the example, the derivation procedure and the

calculations are simple. Consequently, this procedure is suitable for practical

applications. For example, the piecewise Hermite polynomials of 2C4 
can be used

to estimate the second derivations of 2-D image. Because of the smoothness pro-

perty of piecewise Hermite polynomials, they can also be used to filter out the

noise of a stochastic signal.
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