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INTRODUCTION

This report covers work done on NASA Contract NAS8-33691, "Investi-
gation of Electrodynamic Stabilization and Control of Long Orbiting Tethers."
* In addition to the original topic of studying how electric currents could
be used to control the motion of a long wire in space, the report also in-
cludes some new techniques for control1ing instabilities during retrieval
and an investigation of how the tether can be used for launching satellites
from the Space Shuttle. The appendices to this report present derivations

and analyses of a general nature used in all of the areas studied.



1. Stabilization

1.1 Introduction to Electrodynamic Stabilization
The objective of this study is to devise an algorithm for using electric

currents to control pendular oscillations of the Skyhook wire induced by

. various perturbing forces. The electrodynamic force is perpendicular to the
wire and the earth's magnetic field. The principle 1imitation of this techni-
que is that the sign of the wire current {positive or negative) and the
direction of the earth's magnetic fieldvcénnot be controlled so that the
methcd offers less flexibility .nan thrusters. Methods have been devised for
taking best advantage of favorable geometries for electrodynamic damping of

tether oscillations.

1.2 Electrodynamic Equations

-

->
A wire of length d1 moving at velocity v with respect to a magnetic field

- -+ > ->

B experiences an electromotive force V given by v x B : [d]. The current I
generated by this electromotive force causes a force ; = ; x E |J3| on the
wire, This force is always a drag force unless the orbit is so high that the
rotational velocity of the magnetic fieid 1s greater than the orbital velocity
of the wire. The maximum current that can flow is V/Z where Z is the total
impedance of the circuit, including the wire resistance, the contact resigtance
of the electrodes with the plasma, and the effective impedance of the external
circuit in the plasma. The damping algorithm assumes that the desired current
is within the maximum possible current. In situations where it is not, the

effectiveness of the damping would be reduced.

1.3 Transverse and Vertical Forces on the Tether

The problem of controlling tether oscillations arises from the fact that

the Shuttle has direct control over the tether system only through reeling or



unreeling the wire, Apart from accompanying Coriolis forces, this method
allows control of only the vertical position of the subsatellite, Coriolis
forces cause the subsatellite to move in the direction of the orbital motion
when the subsatellite moves closer to the earth, and to lag behind the Shuttle
‘when the motion is to higher altitudes. There {s also weak coupling between
the vertical and out-of-plane movements. However, damping occurs only on
deployment, and reeling in the tether causes negative damping. Other forces
acting transverse to the wire are the restoring force of the gravity gradient,
and atmospheric drag. One can, of course, have active contro! of subsatellite
motion using small rockets. If the wire is an electrical conductor, and cur-
rents are allowed to flow, there will be an electrodynamic force on the wire
which {s perpendicular to the wire and the direction of the earth's magnetic
field. The electrodynamic force has the attractive property of allowing trans-

verse forces to be applied to the wire without the expenditure of fuel or

energy.

1.4 Tether Instability Modes and Causes

Tether instabilities can result during rapid retrieval as a result of
Coriolis forces and residual angular momentum of the tether system with respect
to the Shuttle, During station keeping, variations in atmospheric drag can
excite pendular oscillations particularly when there is resonance between the
natural frequency of tether oscillation and the frequency of the drag varia-
tions. The drag variations of principle concern are the diurnal bulge caused
by solar heating of the atmosphere, the equator to pole variation in density
arising from earth oblateness, and the corotation of the atmosphere as the
earth rotates,

In an equatorial orbit, the diurnal bulge can excite in-plane oscillations.

Since the perturbing force is at orbital frequency and the natural period for

30



in-plane oscillations i. /3 times the orbital frequency, the tether oscillation
cannot stay in phase with the driving force and beats result. In-plane oscilla-
tions can also result from orbital eccentricity since the drag on the sub-
satellite is larger at perigee than at apogee,

In a polar orbit, in-plane oscillations can result from the diurnal bulge
which causes a perturbation at orbital frequency, and the equator to pole varia-
tion from earth oblateness which causes a perturbation at twice the orbital
frequency. Beat phenomena would result since neither perturbation is at the
natural frequency for in-plane oscillations.

Out-of-plane drag forces will act on a subsatellite in a polar orbit as a
result of the corotation of the earth's atmosphere. The force occurs twice per
orbit in an easterly direction at the equator crossings. Since the out-of-plane
natural oscillation frequency is twice the orbital frequency, this case must be
examined in detail because of the possibility of resonant excitation of oscilla-
tions. To do this, let us use an x-y-z coordinate system with the z axis at the
Northpole, the x axis in the equatorial plane, and the y axis directed to form
a right handed coordinate system as shown in Figure 1.

Let us start the Shuttle and subsatellite on the x-axis with a velocity
in the z direction. Since the transverse force due to corotation of the atmo-
sphere is in the +y direction, let us assume the subsatellite has a pendulum
velocity in the +y direction in addition to the orbital velocity in the z
direction. Let the angular position 8 of the system along the orbit be
measured north from the x axis. Table 1 1ists the out-of-plane position and
velocity of the subsatellite in the y direction and the magnitude of the
transverse drag force for the first half orbit. At & = 0, the out-of-plane
velocity 9 is in phase with the perturbing force F, by design in the initial

y

conditions. At e = 180° & is out of phase with Fy' If the magnitude of the




Figure 1. Coordinate system for study
of out-of-plane oscillation.



Table 1. Out-of-plane position and
velocity of subsatellite
and gerturbing force vs.-
angular position along
the orbit.

] y y Fy

0 0 9" Fy
45 ¥y 0 Fw/ 72
90 0 -9" (]

135 “Yu 0 -F"//2

corotation force 1s the same at the equator crossings on opposite sides of
the earth, the perturbations oppose and tend to cancel each other. In general
the forces will not be equal because of the diurnal bulge or orbital eccen-
tricity. In this case there will be a resonant build-up of the out-of-plane

oscillation.

1.5 Damping of Simple Pendulum Motion

For small oscillations the horizontal motion of a mass m at the end of
a rod of length 2 with a vertical force Fv on the mass and a damping coefficient
b is

v . F x
mx + bx + -%— s0 .

The frequercy w of the pendulum is

-b £ \Jb7 - 4mF /1
2m




To obtain critical damping, the quantity under the square root is set to

zero to obtain the critical damping coefficient

The actual Skyhook system is a spherical pendulum oscillating in a
rotating frame of reference. If the electrodynemic drag force were in the
same plane as the pendulum oscillation one could use a damping algorithm
similar to the above case for providing'an electrodynamic damping force
during half of the oscillation cycle. The electrodynamic force cannot be
used over a full cycle unless it were possible to reverse the direction of
the current. In general, the electrodynamic force will not be parallel to

the velocity and the pendulum oscillation will not be confined to a plane.

1.6 Vector Damping

-+ ->
In Figure 2 an object with velocity v is acted on by a force F. In

Figure 2a, the angle o between the velocity vector and the force vector is less

->

than 90°, The velocity v can be resolved into components v, and v, which are
perpendicular and para11e1 respectively to the force F The force F cannot

-
change the magnitude of v1 Since 6 is less than 90°, v, 1is in the same
- >

->

direction as F. The force F will increase the magnitude of v, and therefore

{ncrease the velocity and kinetic energy of the object. In Figure 2b, 6 is
- ->

<>
greater than 90° and v, is anti-parallel to F. The force F will decrease the
->

magnitude of v, and reduce the kinetic energy of the object. The mngn1tude of

-

vu can be reduced to zero at which point the angle between v and F is 90°,

+ -+ >

1f F continues to act on v, v will acquire a component of velocity v, which is

-+ -+

parallel to F and the angle between v and F will be less than 90°, The situa-
-
tion then reverts to the case in Figure 2a. If the direction and sign of F



-

b)

- ->

Figure 2. Force F acting nn an object moving with velucity v.



are fixed but the magnitude of F can be controlled, the force can be used to
remove energy from the object by setting the mngnitudc of F proportionaI to
the mlgnitude of v, as long as v, is ant1-para11e1 to F. and setting ? to
Zero when v, is in the same direction as F An algorithm such as this will
not add energy to the object and will remove energy whensver the geometry is
favorable. The discussion above also applies in three dimensions since ; can
‘be resolved into components parallel and perpendicular to ;. Figure 2 can be
used for three dimensional vectors by choosing axes that 1ie in the plane

-+ >

determined by v and F.

1.7 Damping of Spherical “endulum Motion

Stabilization of the Skyhook tether requires removing any velocity of the
tother with respect to the equ111br1um velocity of the tether. In Figure 3,
Vz is the velocity of the Shuttle, v1 is the velocity of the subsate‘\ite. and
v1 is the velocity of the equilibrium position of the tether. The vector v1 is
obtained from ;; by the equation

- ->
LI r=- L
v1 vz v
where r {s the distance of the Shuttle from the center of the earth and 1.

is the length of the tether. The velocity to be damped s av given by
- - ’
Ay = \Il - “'1

The direction of the electrodynamic force on the wire s

> > >

FelxBe

The vector damping a\gfrithn described in the previous section can be applied
to the vectors ; and Av using a¢su1tlble damping coefficient bc as described in
Section 1.5. The magnitude of F can then be controlled according to the
equation:

-

-
Fu 'bc AV'

-+ -> ->
where Av, is the component of aAv paraliel to F.



Figure 3. Velocity of the subsatellite, Shuttle, and
equilibrium position of subsatellite.
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In general, the electrodynamic force T and the relative velocity av will
be cuntinuously changing along the orbit of the Shuttle. The geometry will
be favorable for damping at some times and not at others. The vector damping
algorithm is designed to take the best advantage of opportunities for damping

on a dynamic basis.

1.8 Current Generation and Control

Generation and control of currents in the Skyhook tether can be accomplish-
ed in different ways. In a completely passive mode electrons in the wire are
subjected to a force arising from the tether's velocity through the magnetic
field such that they are driven to the botoom of the wire (if the orbit is
easterly). Assuming the wire is coated, and there are terminating electrodes,
the electrostatic potential developed at the ends of the wire attracts charged
particles from the plasma setting up a current loop. The current can be con-
trolled by inserting a variable resistance between the wire and the electrode.
An alternative to a collecting electrode is a plasma contactor. This would be
a device that emits electrons or ions for completing the circuit to the plasma.
The current could be limited by controlling the emission of electrons or ions.
Such a device might be especially useful at the lower end of the wire, which
collects positive fons, since collection efficiencies are low for a passive
negative electrode. If the orbital geometry is such that the voltage re-
sulting from orbital motion is small, it may be possible to drive currents
with a plasma contactor that accelerates charged particles with a high voltage.
This could allow electrodynamic control in cases where the electrodynamic force
F=Tx B |2 s non-zero, and in a useful direction, but the driving potential
vxB .1 is Tow either because v x B 1s small or the component along T is
small, As an example, consider the case shown in Figure 1. If we neglect the

offset of the magnetic pole, the magnetic field is parallel to V and therefore

n.




there is no natural driving potential. However if a current could be forced
in the wire, the electrodynamic force F=Tx8 IEI would be non-zero and
parallel to the y axis.

The maximum current that can be obtained depends on many factors,
particularly in a passive mode. The collection efficiency of electrodes depends
on the size and potential of the electrodes and the ion density in the plasma.
Collection of electrons is much more efficient than positive ion collection
because of the high thermal velocity of electrons. The resistive 1imit to the
current is the potential difference acrdss the wire divided by its resistance.
The potential difference from orbital motion depends on the direction of the
magnetic field with respect to the orbital veloctiy.

There are various engineering considerations such as the insulation
required to withstand the voltages developed in the wire, and methods of pro-
tecting payloads sensitive to high voltage. Coating the wire is necessary for
accurate control of electrodynamic forces since an uncoated wire would allow

uncontrolled charge collection along the wires.

1.9 Computer Program for Heuristic Study

A computer program has been written for numerical integration of the in-
plane (8) and out-of-plane (¢) displacements of the tether vs. time. The
vector damping algorithm is included in the program.

The program is designed to run in three modes. In the first mode, there
is no electrodynamic force and the tether oscillation results only from atmos-
pheric drag. In the second mode, the current in the wire is computed as the
induced voltage V divided by the tether resistance R. In the third mode, the
current I is determined by the damping algorithm. This last mode assumes that
the required current can be obtained and is designed to study what can be done

in principle with the electrodynamic force.

12.
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When the product I x B becomes very small as a result of the magnetic
field E being nearly parallel to ;, the damping algorithm calls for unreasonably
large currents to compensate. To avoid this, a maximum current parameter was
added to the program. The damping is still effective with the current limited

to a reasonable value since the problem occurs only at certain points in the

.orbit. A feature is included in the program to allow the damping algorithm

to operate on the vector
-+ -+ -+

v' = feve + f¢v¢

where f, and f° are weighting factors for the velocity components Vo and Ve

in the 8 and ¢ directions.

If the damping algorithm is applied to the out-of-plane component V¢ of

the pendulum velocity of the tether, the total velocity VT may be either in-
creased or decreased depending on whether the cosine of the angle ar between

->

the electrodynamic force F and the velocity V}, given by

P
S GT =
1119,

is positive or negative. The damping force is proportional to the cosine of

the angle between F and V, given by

'F <>
+ Vv
CoS a =—-—?-

b OIRI

$

Some runs were done setting IFI = 0, when cos ar > 0. This reduces the
opportunities for the damping force to be applied but guarantees that V} will
not be increased. In certain situations this condition on cos a; causes an
oscillation to be set up which forces the numerical integrator to take extremely
small steps, in effect halting the integration. The application of the damping
force causes cos oy to become more positive. If cos ar is passing from a posi-

tive value through zero because of changes in the direction of the magnetic

13.



field ;. and a damping force is suddenly applied when cos ar £ 0., a feedback
loop is created which causes the damping force to be turned on and off rapidiy.
The phenomenon is analogous to the cycling of a thermostat. The problem can

be corrected either by having a proportional controller, or by introducing a
time lag in the feedback loop to prevent rapid oscillation, The basic damping
algorithm is a proportional controller since the damping force is proportional
'to the cosine of the angle between F and the velocity being damped. A time

lag has been introduced by setting IFI = 0. for cos ay 3-c0FF and setting |;| N

cos a, for cos ar S-CON‘ By choosing values such as CON = -..1 and COFF = +.1,

¢
rapid cycling of the damping is prevented.

Another problem causing very small integration steps occurs in near polar
orbits. The induced voltage in the tether is very low and can pass through
zero slowly as the orbital geometry changes. The damping algorithm was written
to apply a current which ignores the value of the voltage but turns on or off
as the sign of the voltage changes. The integrator takes very small steps as
it approaches a change in sign of the voltage. Setting separate voltage cutoff
values VON and VOFF for turning the damping on and off solves the problem. The
difficulty appears to be one of integrator accuracy in a grazing incidence

approach to a discontinuity. No feedback oscillation was observed.

1.10 Atmospheric Model

The atmospheric density p is given by the equation

DE 6‘.
0’004‘-2—(14'(:05 21)+DD-7—T—
Ip « pgl

where Po is the constant part, PE is the equatorial bulge factor, A is the
latitude, op is the diurnal bulge factor, p is a unit vector pointing from the
center of the earth to the Shuttle, and ﬁs 1s a unit vector pointing to the
diurnal bulge. The positions of the diurnal bulge and magnetic pole, and the

constants Pge PE» and pp are input parameters to the program.
14,



1.11 Magnetic Field Model

->
In the case of the earth, we can write the magnetic field B to a fairly

good approximation in terms of a dipole field centered in the earth's center.
In reality, the dipole is displaced from the center (by 300 km). Therefore,

we can assume that

3M - N M -
B2 x(yj + zk) + <% (3x2 - r2)1
S rs

M . .M )
+ =L y(zk + xi) + <L (3y2 - r2)j
rs rs

3Mz . - MZ ) -
+-'?2(X1 + yj) +?5(3Z - r3)k ,

where
X =3 Cos a

y =a sin a cos 1

Z=asinasint

a = semi-major axis of the orbit

Also, with reference to Figure 4,

Mx =M sin 11° cos A

My =M sin 11° sin 2

"z = M cos 11° = (0.98M

15.
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Figure 4,

Reference system for the
earth's magnetic field.
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1.12 Cases Run in Heuristic Study

Runs have been made for equatorial, inclined, and polar or near polar
orbits. In an equatorial orbit, neglecting the offset of the magnetic pole,
the tether oscillation and the electrodynamic force ; are both in-plane. With
no damping, the in-plane oscillation due to drag perturbations show beat

_phenomena and there is no build-up of the ampiitude with time since there is

no resonance. When the damping algorithm is activated, a current is applied

on the forward swing of the tether. This reduces the ampl{itude of the
oscillations and keeps the tether closer to the equilibrium position determined
by the average value of the drag force., Oscillations cannot be completely
eliminated since there is always a perturbing force present.

In an inclined orbit, the drag force and electrodynamic force both have
in-plane and out-of-plane components. Without damping, the in-plane oscillation
shows beats as expected. The out-of-plane component is initially much smaller
than the in-plane component but grows with time because the drag perturbations
are resonant with the half orbital period of the out-of-plane oscillations.

If the damping algorithm is applied immediately to the total velocity Vv of the
subsatellite, the in-plane oscillation is reduced but the out-of-plane oscilla-
tion is made larger than it would be initially without damping. I1f the out-of-
plane component is given an amplitude comparable to the in-plane oscillation,
both the in-plane and out-of-plane oscillations are reduced by applying damping.
If there is no initial oscillation amplitude and the damping algorithm is

applied only to the out-of-plane component V., the out-of-plane oscillation is

prevented from building up with time and th: damping currents are small, since
the driving force in the out-of-plane direction is small. If the out-of-plane
amplitude is initially large, and da ing is applied only to VO, the out-of-
plane oscillation is reduced to a small value, but the in-plane amplitude may

be made larger than it would be without damping. This can be prevented by

17.
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applying damping to V¢ only when the angle between F and the total velocity v
is greater than 90°, Since this reduces the opportunities for damping by
about a factor of two, the damping takes about twice as long and the final
amplitude obtained for the out-of-plane oscillation is about a factor of two
larger than that obtained with full time damping.

In a polar orbi%, the electrodynamic force is in the out-of-plane
direction if the offset of the magnetic pole is neglected. The induced voltage
in the wire is small and exists only as result of the rotation of the magnetic
field with the earth. The vectors ; and ; are perpendicular at the equator and
parallel at the poles. If a current can be made to flow in the wire either
using the naturally induced voltage in a very low resistance wire, or by using
voltage sources, the electrodynamic force can be used to control the out-of-
plane oscillatfon. This is significant since it is the out-of-plane oscilla-
tion that is subject to resonance phenomena.

Monthly Reports 3 and 4 dated December 1979 and January 1980 give the
details of the runs described above. Figure 5 shows a sample plot from
Monthly Report No. 4. The Shuttle is in a 220 km altitude orbit inclined 45°
with respect to the equator. The tether is 10 km long and deployed upward.
The out-of-plane angular velocity is initially 1.5 x 10~* radians/sec. and the
damping algorithm is applied to the out-of-plane component. Atmospheric drag
is not included. Part (a) of the figure shows the in-plane angle, part (b)
the out-of-plane angle, and part (c) the current. The first column in each
graph is the time in seconds. The orbital period is 5333 seconds. The second
colum is the angle (in radians) or current (amps). The out-of-plane oscilla-
tion is quickly damped out by the damping algorithm.

In all cases described above, the damping algorithm assumes that the
desired currents can be obtained by some means. The next section discusses

practical considerations in generating tether currents.
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Figure 5(a).

Figure 5(b).

Figure 5(c).

FIGURE CAPTIONS

In-plane angle (radians) vs. time (sec.).

Out-of-plane angle (radians) vs time (sec.).

Damping current (amps) vs. time (sec.).
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1.13 Limits to the Tether Current

In assessing plausible values for the tether current we must take into
account, a) the collection of the end electrodes of the tether (conducting
surface of the Shuttle at the one end and conducting balloon or subsatellite
at the other end); b) the internal resistance of the tether; c) the impedance
of the "circuit" external to the tether,

a) Collection of the end electrodes of the tether

An analysis of current and potentials in a coated tether configuration is
contained in Reference 1 (p. 30). The numbers quoted there have taken into account
only the collection properties of the electrodes. All other resisiences were
supposed negligible. Furthermore, a maximum electromotive force AV = VBL was
supposed to be available (aV ~ 20 kv for L = 100 km).

Table 1, Reference 1, contains a summary of limiting cases. Here
by configurations A and B, we mean the cases with the Shuttle upward or
downward respectively. S stands for Shuttle, b for balloon, the currents

110 (§ = 1, e for fons and electrons respectively) are thermal currents
defined by
i =ln |@|v A (M)
e0 B e'"'Vthe
150 = 7 "2lelVA (2)
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where A {s the collecting area., These are essentially the currents collected
by an electrode (of .ppropriate polarity) when its potential with respect to
the plasma is small in comparison with particle thermal energies, i.e., %% <

[in the opposite case (e¢/KT >> 1), the collection efficiency can increase

very much].

Finally, for the numbers reported in Table 1, the conducting part of the
Shuttle has been chosen as equivalent to a radius re ® 2.78 m. Looking for
example at configuration A, L = 105m and with all the available potential on

the balloon (or subsatellite) we see that the current
1 = 0.19 amps (3)
corresponds to the thermal current of the Shuttle.

Increasing the balloon radius does not serve to increase the current
unless very large radi{ are reached; where all the available potential has

been displaced to the Shuttle, a situation which one clearly wants to avoid.

Notice that the same current value is also obtained (always in configura-
tion A) for the tether of L = 10°km. The only way to increase current, with
respect to the value (3) would be that of using an fon gun at the Shuttle end,
either increase accordingly the balloon dimensions or (in the case of a sub-

satellite), put an electron gun on the subsatellite.
Let us evaluate the current for a situation where, because of the orbit

inclination, the driving e.m. force is very much decreased. In this limit
both electrodes can be at very low potentials, so that they are only able to
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draw their thermal currents. In this case we see that, for reasonable
balloon or subsatellite dimensions (1.2 m radius in Table 1), the current is

determined by the lower electrode and it is much smaller:
1~ i5(b) v 2.1 x 1072 amps . (4)

. Unreasonable balloon dimension would be needed to draw a current comparable
to the Shuttle thermal currents. (This is because the oxygen ions are
collected, at the lower electrode, at thg Shuttle velocity v, whereas the
electrons are collected, at the Shuttle, at their thermal velocity which is

much higher).

An electron gun at the lower electrode, would allow reaching the current
value of 0.19 amps determined by the Shuttle. To have more than that, again,
an ion gun at the Shuttle would be necessary.

Similar considerations apply to configuration B (i.e., with the Shuttle

below). In this case, referring to L = 100 km and always the Shuttle at
h = 220 km, we find that

Teo(h) ., ;
Yi0(s)

for balloon radius of

rb'\.lcm,

25,



(as, this time, it is the balloon that collects electrons). Thus, for
reasonable balloon (or subsatellite) dimensions (rb ~ 1 m, for example), in

a passive system and with an orbit inclination reducing drastically the e.m.
force, the current in the tether is determined by the Shuttle collection and,

hence, it is given by
1~ 1,657 x 102 amps . (5)

Notice that this same current, as written in Table 1, is also obtained
with all the available emf (2 x 10% volts) on the balloon for very small

balloon dimensions.
To increase the current over the value (5) (taking advantage of the fact
that for ry > 1 cm, the balloon can drive higher currents then the Shuttle),

one needs, for configuration B, an electron gun on the Shuttle.

b) Limitation due to internal tether resistance

An upper limit for the tether current, which we call resistive current

iR’ is given by

where 4V is the potential difference (due to ¥ x B) between the eiectrodes and
R the electrical resistance of the tether. Figure 1 gives curves of 1R versus
wire radius "’ for steel and aluminum tethers, in the hypothesis of a

maximum electromotive potential AV = VBL. Then, for example, for a steel
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tether of radius z, * 0.5 mm, we get

o = 1.047 amps . , (7)

In comparing with the current values quoted above (valid for R = 0) we
must however take into account that, for inclination of the orbit, such that
4V becomes very small, the resistive current can also become very small. For
example, (again for a steel tether of 0.5 mm radius) the resistive current
goes to the value 1.5 x 1072 amps, quoted above for a passive configuration A,

for an angle o between V and B
¢ v 0.82 . (8)

Thus, for high inclination orbit, one may be prevented, even using guns
as explained before from reaching current values i ~ 0.1 - 1.0 amps, useful
for electrodynamic control. The only way out of this for cases where the
V x B electromotive force becomes very small, is to use guns which also
accelerate particles, thus acting as voltage generators. Essentially, in this
 case, the aV of equation (6) is supplied by the gun's acceleration with the

result of avoiding the resistive limitations.

c) External impedance

The question of the external impedance or, more generally, the coupling
of the tether with the lower ionosphere through magnetic flux tubes, has still
to be considered quantatively (see Dobrowolny et al., 1979, for preliminary
comments). In this context one must recall the early work by Drell et al., 1965,

where the successive excitation of a series of transmission lines by the
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motion of a large body in space was considered. We note only that the
impedance of the "Alfven wings" in Drell et al. (1965) is much smaller than

any reasonable tether resistance.
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1.14 Conclusions

The study of electrodynamic stabilization has shown that electrodynamic
forces can be used to damp pendular oscillations of the tether. The damping
can be applied to the total oscillation, or to a component of the oscillation.
The most useful approach appears to be to use electrodynamic forces to control
the out-of-plane oscillation. The perturbing forces out-of-plane are small,

. but there is a resonant build-up of the amplitude, and tension control is

only weakly effective on the out-of-plane component. Relatively small currents
can control the out-of-plane oscillation. There is less need to control in-
plane oscillations even though the perturbing force is larger because of the
lack of resonance. When necessary, tension control can be used effectively

for the in .lane oscillation.
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2. Retrieval

2.1 Introduction to Retrieval

One of the potential sources of unstable tether behavior is retrieval
of the subsatellite. This operation can induce or amplify pendular oscilla-
tions of the tether. A study has been done to see how electrodynamic forces
could be used to help stabilize the retrieval process. Some new control laws
. using the reel motor have been devised which can be used together with electro-

dynamic forces to damp oscillations of the tether.

2.2 Negative Damping of Out-of-Plane Oscillations

The coupling between the radial and out-of-plane variables introduces an

acceleration ;r given by

If ; is positive (deployment), the coupling always gives positive damping since

the acceleration and velocity are of opposite sign. If ; is negative (retrieval),
the damping is always negative except when ; is zero. The so-called "yo-yo"
approach reels in the tether at the ends of the swing while ; is small and lets

out line while ; is large and ¢ is small. This is,of course, a time consuming method
of retrieval. Electrodynamic forces can provide a way of damping this out-of-

plane oscillation that is so awkward to deal with using just the reel motor.

For the in-plane variable, the coupling term is -2(é+;);cos¢. Unless the

magnitude of é is larger than the orbital angular velocity ; the acceleration

is always in the same direction so that either negative or positive damping

is possible using the reel motor.
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2.3 Control Laws for Retrieval

In order to study electrodynamic control ducing retrieval, the general
equations of motion given in Appendix A have been included in the small com-
puter program used for the heuristic study of electrodynamic stabilization.
The variables included are the in-plane angle (6), the out-of-plane angle (¢)
and the radial variable (r). The radial variable can be controlied either by
. a tension control law, or a rate control law. If the tension is controlled,
the program integrates six quantities, o, 6. é, ;, r, and ;. The second
derivatives of each variable are given by the equations of motion. If a rate
control law is used, only five quantities are integrated. The sixth quantity
r is specified by the rate control law. A rate control law does not guarantee

positive tensfon. Runs done with the tension control law,
= 2 p - 2
TENSION 7Ho L+ 4“02 4“0 LC

(eq. III-1 of NASA TMX-73314) show the expected behavior, namely a slow stable
retrieval. The fastest possible retrieval is one where the tether is retrieved
at a constant angle 8, and the retrieval rate is controlled such that the
coriolis forces exactly balance the restoring forces in the in-plane direction.

The equation of motion for 8 is
Fe/m = rcos¢§+2(5+;)(;cos¢-r;sin¢) + 3r;2cos¢cosesine.
Setting 8= ; = ; = é =4 = Fe = (0 gives
.o ) .
Zyro + 3ry< cos er sin er 0
or
ros- 3 r ; cos 8_ sin @ (9)
0 Z r r

This is the rate control law for maintaining a constant retrieval angle 8.
in the absence of any perturbing forces. A run done with the computer program

using this rate control law with an initial angle o, shows an exponentially
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decreasing value of r with 6 = L and ¢ = 0.
A rate control law can also be used to provide damping in the in-plane
direction. For small angles, the equation of motion for & is
mro+3mry2e s F

In order to have critical damping we would 1ike to add a term bé to the
equation where b is given by

b= 2 v{mr) (3mry2)

= 2 Vg-mr;

The coriolis term in the full equation of motion for e is

(10)

2m (o+y) rcose % 2m (e+y) r

for small values of ¢. The value of r required to maintain a constant retrieval
angle is given by equation (9). To this value of r can be added an increment

A}I defined by the equatfon
b o= 2m (6+) ar
In this way the coriolis force can be adjusted to provide the necessary damping.

The damping part of the rate control law is

be

A;'l B —
2m (o+y)

Substituting the value of b from equation (10) gives

ar w Brye (11)
2m (8+y)

A run has been made starting with 6 = 0, and applying a rate control law

=pr +
re=r, +ar
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The tether angle increases from 6 = 0 to 6 = 8, smoothly, approaching o,
exponentially. The retrieval remained stable to the end of the run. The above
runs indicate that a rate control law can control the in-plane behavior in the
absence of any out-of-plane oscillations or any perturbing forces.
The rate control law in equation (9) does not take into account drag or

other forces on the tether. In an analytical computation, the control law
'could take into account the computed forces. In actual practice the forces

may not be well known. The control law can include a "restoring" force to
counteract deviations of the tether in-plane angle from the desired value 8,
The restoring force should be the same order of magnitude as the restoring

force,
3 ,;z cos ¢ cos 8 sin o,

in the general equation of motion for the in-plane angle 6. A factor k can
be included to provide additional stiffness. A term A;z in the rate control

law can be computed from the equation
2 (5+;) A;z cos ¢ = -3 r ;2 cos ¢ cos 6 sin @ k (e-er)

which gives
. 3 . k(e-ﬁr)
ary = -3r Y2 c0s 6 sin §
(6+v)

Adding all the rate control terms we have a rate control law given by

;";'O*A;‘I‘FA;'Z .

In order to maintain critical damping, the damping part of the rate control
s increased by the factor vk+T. The restoring force from A;z has the effect
of speeding up the retrieval in the case where the subsateliite is above the

Shuttle, and slowing down the retrieval for downward deployment.
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2.4 Cases Run

In runs done for downward deployment, the restoring term halts the
retrieval a few hundred meters from the Shuttle. For the upward deployment
case, drag can be counteracted longer, but the dynamic eventually becomes un-
stable. For either case, alternative techniques must be used to control the
subsatellite close to the Shuttle., Reasonable values of current in the wire
(a fraction of an ampere) appear to be capable of controlling the out-of-
plane oscillations in an inclined orbit. Special considerations apply to
equatorial orbits or orbits passing near the magnetic pole.

Details of the cases described above are given in Monthly Reports 6 and
7 dated April and May 1980. Figure 6 shows a sample plot from Monthly Report
No. 6. The Shuttle altitude is 220 km, the orbital inclination is 45 degrees
and the tether length is 10 km deployed upward. The initial in-plane angle
is .4 radians (lagging the Shuttle) and the out-of-plane angle {s .035
radians. A rate control law with damping is used for the in-plane angle, and
electrodynamic damping is used for the out-of-plane angle. There is no
atmospheric drag. Part (a) of the plot is the in-plane angle, part (b) is the
out-of-plane angle, part (c) is the radial distance, and part (d) is the damp-
ing current. The first column in each plot is the time in seconds and the
second column is the variable being plotted. The behavior is reasonably

stable at 12,000 seconds when the distance is about 5 meters.

2.5 Conclusions

It appears that electrodynamic damping can be useful for controlling the
out-of-plane oscillations during retrieval. The in-plane angle can be con-
trolled using a rate control law which includes damping and restoring terms.
Differential drag between the Shuttle and the subsatellite will eventually de-
stabilize the retrieval process when the tether length becomes too short.

Other techniques must be used to cuntrol the subsatellite during the last stages

of retrieval,
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FIGURE CAPTIONS
Figure 6{(a). In-plane angle (radians) vs. time (sec.).
Figure 6(b). Out-of-plane angle (radians) vs. time (sec.).
'Figure 6(c). Radfal distance (cm) vs. time (sec.).

Figure 6(d). Damping currrent (amps.) vs. time (sec.).
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3. Launcher

3.1 Introduction to Tether Launcher

The objective of this study is to develop techniques for using the tether
to launch satellites from the Shuttle. Satellites could be launched either by
simply releasing them at the end of the tether or releasing them after acceler-
ation by a rocket. The principle problem that must be studied in the dynamics
of the tether itself. The techniques must be such as to avoid breakage of the
tether, or loss of tension or dynamic instabilities that could lead to loss of
control of the tether. Acceleration of the payload by a rocket induces various

tether motions that must be carefully studied.

3.2 Subsatellite Thruster Model

The SA0 Skyhook software package has been modified to include thrusters
on the subsatellite. We have adopted a model with three independent thrusters
in the in-plane, out-of-plane, and radial directions. The directions of the
thrusters are shown in Figure 7. The Shuttle is at the origin 0. The x axis
is parallel to the vector from the center of the earth to the Shuttle, the z
axis is normal to the orbital plane, and the y axis is perpendicular to the

x-z plane in the direction of the orbital motion. The vector [ goes from the

>

3>

e

Figure 7. Coordinate system for thiruster or subsatellite.
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Shuttle to the subsatellite. The in-plane angle is 8 and the out-of-plane
angle is ¢. The in-plane thruster is in the direction of 8, the out-of-plane
thruster is in the 3 direction and the radial thruster is in the r direction.
The Skyhook software computes the directions of the in-plane, out-of-
plane, and radial vectors for the Shuttle and components of the vector [ along
these directions. The sign convention is different from that used in Figure 7,
.50 that the in-plane direction is in the minus y direction (opposed to the
orbital velocity) and the out-of-plane direction is in the minus z direction.
Ths sign convention is the same in the radfal direction. The equations for

the unit vectors giving the directions of the three thrusters are:

-~

rs=s

13

where:
rs= /x2+y2+22
pz/x2+y2
The Skyhook software has been modified to read in accelerations to be
applied in each of the three directions and the time pe:iod over which the
accelerations are applied. Provision has been made for specifying the

accelerations during two time periods so that the system can be accelerated

and then decelerated.

3.3 Wire Oscillations Induced by Subsatellite Thrusters

The following two sections present analytic expressions for estimating
the transverse and longitudinal wire velocities that would be induced when the

subsatellite is accelerated by thrusters. For the transverse velocity a
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simplified model 1s used where the wire mass is represented by a lump halfway
between the Shuttle and subsatellite. In fact, the wire motion consists of

a transverse wave travelling down the wire. The present analysis was done for
the purpose of order of magnitude estimation of the dynamics of the wire. The
analysis of transverse oscillations assumes the duration of the acceleration
and deceleration is short compared to the natural period for transverse oscil-
lations. Transverse motion of the subsatellite introduces coriolis effects
.which can increase the wire tension. In the case of short tethers especially,
the coriolis effects may be many times larger than the equilibrium value of
the tension.

If the wire tension is nearly constant during the acceleration and de-
celeration of the subsatellite, the amplitude of the transverse wire oscilla-
tion is approximately equal to the distance travelled by the subsatellite.
This may be the case when the tether is long,the velocity is Tow, or the tether
does not have enough time to stretch in response to the coriolis forces. In
cases where the tensfon increases by a large factor during acceleration and
then drops again at the end of the deceleration period, the wire may be given
a large velocity which cannot be restrained by the remaining tension in the
wire. If the transverse velocity acquired is larger than the velocity for a
large amplitude oscillation, instability will result.

The formulas derived in the next two sections have been compared with the
results of numerical integrations done with the Skyhook computer program. The

details of the comparison are given in Monthly Report No. 10 dated July 1980.

3.4 Transverse Wire Velocity Induced by Subsatellite Thrusters

Approximate analytic expressions have been derived for estimating the
magnitude of the transverse wire velocity that will be induced during the

acceleration and deceleration of the subsatellite. In the diagram below, the
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wire is represented by the mass m halfway between the Shuttle at the bottom

and the maneuverable subsatellite at the top.

F m |¢ Figure 8.

--Y

The force F accelerating the wire mass is
F=Tx/ (2/2) =27 x/2

where T is the wire tension. The velocity imparted to the mass is

t2 2Tx
Avw'f AL (12)
t,

The wire tension T for an in-plane launch using equation A32 with r=0 and

r = 2 is given by
’ .2 02 LN
T = 3may? + meo? + 2m soy (13)

where ; is the orbital angular velocity, me is the mass of the subsatellite,
é is v/2, and v is the subsatellite velocity.

Let us assume that the subsatellite is subjected to a linear acceleration
or deceleration lasting from t; to t; and that the initial velocity at t; is
vi. We can then derive an analytic expression for Avw that can be used for
the acceleration, coast or deceleration period. The velocity of the sub-

satellite as a function of time is



v ey +a(t-t;) = (v;- at;) + at = v; + at

where

Vi vy - at,

The angular velocity needed for equation (13) is

V; + at
2

é.%-

The position as a function of time is

t
X'X14’f vdt-x1+/t(vl+at)dt

t t

where x; is the position at time t,. Performing the integration gives

X'Xo+xlt+X2t2

] 2
X1 -V t-5at

where X
X; = V)
X, = % a

Substituting equation (16) into equation (13) gives

TeT +T1t + T, t2

"5 l’I‘ls 2 .
when To H 3mszy 4 Vy +2 mg Viy
. mg .
T1=ZTaV1+2msay
m
TzE _zS_ 32

Multiplying equations (18) and (20) gives

T‘X'Co"’clt+C2t2+C3t3+Cgt“
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(14)

(15)

(16)

(17)

(18)

(19a)

(19b)

(19¢)

(20)
(21a)

(21b)

(21¢)

(22)



where
¢, * To X,
Ch=T Xy +Ty X
ComT Xp # Ty X + T X
C3=T1 X+ T2 Xy
Cy =Ty Xz
Integrating equation (22) from t; to t, gives
ftz Tx dt = C_(ta-t)) 4921_ (t2-t3) + %1 (ty-t3)

B1C, v, C 505
+ 13- (ta-t) + '5“- (t2-t1)

Substituting (24) and (12) gives the desired expression for the velocity
increment av,.

In the special case where t; = v; = x; = 0., the integration of the

(23a)
(23b)
(23¢)
(23d)

(23e)

(24)

product Tx can be done easily. The velocity, position, and angular velocity

as a function of time are
v=at,

=1a¢2

X zat

and

é = v/2 = at/2 .
The tension given by equation (13) becomes
. 3m 202 at 2 aty
T = 3m 2y "“‘s"(z’ +2ms!.(l)y
- 2 242 y
3mszy +ma té/ z+2msaty .

Multiplying by x gives,
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Tx = %-msaz;ztz + %-msa3t“/z + msazt3; .
Integrating with respect to time we have

fodt = 1} msaz-}zﬁ + 110- msa3t5/z + %-msaz-.{t"
0
Substituting this into equation (1) gives

mo . .
av,, * Es- (ay2t3 + % adt3/32 + %- alyth/s (25)

Since av,, in equation (12) 1s proportional to the integral of Tx, it is
desirable to minimize the amount of time the subsatellite spends at high velocity

in order to reduce the excitation of transverse wire oscillations.

3.5 Radfal Velocity Induced by Transverse Thrusters

Transverse velocity of the subsatellite produces a radial acceleration

because of coriolis forces. From equation A32, we have for ; =Qandr= ¢,
r = Fe/m + 262 + 208y + 32y2 (26)

If the system 1s close to equilibrium the first and last terms in (26) nearly

cancel each other so that
P 202 + 2207 (27)

If the velocity is given by equation (14) we have, substituting equation (16)
into equation (27),

R+ Rt + Ryt? (28)
where

R, = Vi2/e + zv,} (29a)

Ry = 2a(Vy/t + v) (29b)

Ry = a2/s (29¢)
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Integrating equation (28) we have

2 ..
av,, -f r dt

t1
= R (to-ty) + B (t5-t}) + B (¢-t]) (30)

The radial velocity av,, can be minimized by having the subsatellite spend as
1ittle time as possible at high velocity.
The analysis in this section can be applied to an out-of-plane launch by

using the equation
2 12
Ts= 3mszy + msz¢

instead of equation (13). Note that there is no cross term ;; in an out-of-

plane launch.

3.6 Tension Variations Caused by Transverse Wire Osciliations

The acceleration of the subsatellite by thruster induces transverse wire
oscillations. These wire oscillations cause tension variations at the natural
frequency for transverse oscillations by causing an acceleration r in the
radial direction. The corresponding tension variation is m; where m is the
mass of the subsatellite. In Figure S below, the wire mass is represented by

2 Tumped mass halfway between the Shuttle and the subsatellite.

Figure 9.




The distance r between the ends of the wire is
re=2(3-7cos8)=1-2coso
The radial velocity is
; = ¢ sin @ 3,
And the radial acceleration is
rea(cos 6 82 + sin 6 8) .
If we assume
8=, sthwt

from which we have

GieowCOSut ’

and

@ 3
]

-Oowz sfihwt ,

then

-:
.

t(cose e§ w? cos? wt - sin 9 8, w? sin wt)

Lo, w? (eo cos 6 cos? wt - sin 8 sin wt)

For small values of 9, the factor in parentheses can be simplified.

Making the substitution ¢ = 8, sin u t we have
re 28 u? (6 cos[e sinut] cosZut
- sin [e°s1nwt] sin wt)
% 18 0? (8 cos?ut - 6 sin?ut)
Using the identity cos2ut = cos2ut-sinZut we have the approximate equation

rxtoe2wcos2ut .

From the equation of motion for transverse oscillations,
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m, % o = -2Te .

we see that natural fregquency is w = /1T7mwz where m, is the wire mass and T

is the wire tension.

3.7 Tension Variations Due to Longitudinal Oscillations

The dominant source of tension varfations in generally longitudinal
oscillations of the subsatellite at the end of the tether. The natural

frequency w of the oscillations is
w= JE/m

where m is the mass of the subsatellite and k is the stiffness of the tether.

The stiffness k 1s
k = EA/2

where E is the elasticity of the tether material, A s the cross sectional
area and ¢ i{s the tether length. Neglecting tether mass, the oscillations occur
about the center of mass of the Shuttle plus subsatellite, so that one can use

for ¢ the distance from the subsatellite to the center of mass.

3.8 Transverse and Longitudinal Propagation Velocities

Transverse acceleration of the subsatellite at the end of the tether
generates a transverse wave which travels down the wire at a speed determined

by the tether tension and mass per unit length. The propagation speed vr is

VT s v I;D‘
where T {s the tension, o is the density of the tether material, and A the
cross sectional area. When there are substantial coriolis forces due to
acceleration of the subsatellite, the tension may be much greater than the

equilibrium value, After deceleration or payload release, the tension may be

very low.
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The velocity v, for propagation of stress along the tether is
vy ® o
where E iz the elasticity of the tether material and o is the density. For
kevlar with density 1.44 g/cc and Young's modulus 7 x 10" dynes/cm? the speed of

sound 1s about 7 x 105 cm/sec. There will therefore be a delay in propagating

tension changes from one end of the tether to the other.

3.9 Coriolis Forces In-Plane and Qut-of-Plane

For small angles, the equilibrium wire tension is given by
T =m (re? + re2 + 2rey + 3my2) .

There is an asymmetry between in-plane and out-of-plane launches when the pay-
load 1s accelerated by thrusters. There is a term 2r§; which arises because
the in-plane angular velocity is parallel to the orbital angular velocity.

There is no corresponding term for the out-of-plane angular velocity.

3.10 Coupling Between In-Plane and Qut-of-Plane Oscillations

Out-of-plane launches using thrusters to accelerate the payload produce a
component of motion in the in-plane direction because of coupling between the
variables. In-plane launches produce no out-of-plane motion as long as there
is no initial out-of-plane oscillation. The reasons for this behavior can be
seen from the equations >f motion. The coupling terms for the out-of-plane

acceleration (s) are
r sin ¢ cos ¢ [5 + ;]2

and
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If ¢ 1s zero, then the first term is zero for ail values of 3 because of
the sin ¢ factor. If ¢ is zero then ; 1s of course also zero so that the term
Zro causes no out-of-plane motion. The coupling terms for the in-plane
acceleration (o) are

2 (o+y) r cos ¢
and

2(8+v)rssine

The second term will produce an in-plane acceleration, whenever there is
an out-of-plane velocity except at the point where the out-of-plane angle is
Zero. In addition if there is a radial velocity, the first term will contribute

to the in-plane acceleration.

3.11 Reel Control Algorithms for Payload Release

The algorithms described in this section cre designed for releasing a
payload at the end of a long tether in a stable manner. We assume that the pay-
load has been deployed to the desired distance from the Shuttle and stabilized
in a vertical configuration. The objective is to release the payload in a
manner that will not cause recoil of the remaining mass and loss of tension in
the tether. A relatively simple approach is to use the reel motor to induce a
Tongitudinal osciilation of the end mass, and release the payload when the ten-
sfon is at its minimum and close to the equilibrium value vor the remaining mass.

The initial study of this technique was done using & small program which
integrates the motion of two bodies connected by a massless tether. The action
of the reel motor is simulated by having the natural length t of the elastic

0
wire be a function of time according to the equation
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2,0 L tety (31a)

o
£, * 2. - AL sin o (t - to), to <t < te (31b)
By * % - A2 sin w (tf - to). t>te (31¢)

The constant w is chosen to be the same as the natural frequency for longitudinal
oscillations of the end mass in order to maximize the induced oscillation. By
choosing tf - to equal to one half cycle, the effect is to pull the end mass
toward the Shuttle during the first quarter cycle and then return the wire to
its original length during the second quarter of a cycle before the end mass
has a chance to return to its original position.

Equation (31) has discontinuities in the wire velocity at t, and t. which
tend to excite wire oscillations. An alternative to specifying length vs. time

is to specify tension vs. time. We can use a tension control law of the form

T = To, t < to (32a)

Ts= TO + AT sinw (t - to) to <t < tf (32b)

T = TO + AT sin w (tf - to) t>t (32¢)

f

When equation (31) is used, the minimum tension occurs at one half cycle. For
equation 32, the minimum tension occurs at 3/4 of a cycle. Therefore, w in
equation (32) has been set so that the period is 2/3 of that used in equation
(31). There is considerably less excitation of wire oscillations using tension
control. This should make it possible to predict and control the tension at
the time of release of a payload more accurately.

More work needs to be done to develop algorithms for damping wire oscilla-

tions during reeling operations and payload releases.
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3.12 Other Methods for Avoiding Loss of Tension After Payload Release

Section 3.11 describes a maneuver for avoiding loss of tension due to
rebound after release of a heavy payload. In addition to the longitudinal
oscillation of the payload after release there will be stress waves propagating
along the wire. It should be possible to develop a control algorithm for the
reel motor which will damp out these oscillations. When the end mass is
accelerated by thrusters, coriolis effects will tend to stretch the wire,
increasing the tension and causing energy to be stored in the wire which can
cause rebound when the payload is released and the remaining mass decelerated.
The direction of the thrust could be controlled so as to provide a longitudinal
component to cancel the coriolis forces. This longitudinal component could
also be used to compress the wire to the point where the wire tension is at
the value anticipated after payload release. Deceleration after release will
again reduce the equilibrium tension value. Th~ thrust could be directed so
as to bring the wire to an equilibrium condition without loss of tension.
Additional work would be required to develop algorithms for controlling the
thrusters so as to avoid loss of tension in the wire.

Another possibility is to have a reel on the subsatellite that could
deploy some wire to reduce the tension when a payload is released. The amount
of wire required would be on the order of the stretch in the wire which could
be a kilometer or more. The >huttle could also release wire to reduce the
tension. It would be necessary to anticipate the release because of the

propagation delay along the wire.

3.13 Long vs. Short Tether Launcher

In a short tether, the equilibrium tension due to the gradient of the
gravitational and centrifugal forces is small. If the end mass is accelerated

in order to launch a payload the centrifugal forces generated may be large
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compared to the equilibrium tension so that the tension goes through a
large dynamic range. The angular velocity and angular displacement during
the acceleration and deceleration phases may also be large. Therefore the
velocities that can be achieved without generating instabilities are rather
limited. Only a small velocity is required to start the end mass circling
around the Shuttle.
. In a Tong tether the equilibrium tension is larger and the centrifugal
forces are smaller so that the dynamic range of the tension is smaller. The
stretch of the wire is larger so that more radial displacement can be accomo-
dated without loss of tension in the tether. The angular displacement corre-
sponding to a fixed lateral displacement decreases with tether length. The
linear displacement and velocity of natural pendulum oscillations of the
tether is larger, so that larger subsatellite velocities are required to
generate instabilities. The mass of the tether itself is larger compared to
the mass of the subsatellite, and tends to be a stabilizing factor since more
energy is required to excite motions of the tether.

Considering all of the above factors, it would appear that long tethers
are more effective and stable than short tethers. A short tether would

probably have to circle the Shuttle to achieve large launch velocities.

3.14 Cases Run

Various cases have been run to study the use of the tether as a launcher.
These have been done with andwithout thrusters, with short and long tethers,
for in-plane and out-of-plane launches, with slack tethers, and with techniques
for keeping the wire in tension. The details of the runs are described in
Monthly Reports 8 through 13 dated June through November 1980.

Some initial runs were done with damping between all of the mass points
representing the wire. The behavior of such a system is significantly differ-

ent from a purely elastic wire because longitudinal oscillations of the wire
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and end mass are suppressed. In practice, damping could be impiemented at
one or both ends of the wire. Therefore, most runs have been done with
purely elastic forces or special control laws or damping at the ends.

Because of the representation of the wire by discrete masses, the
Skyhook program is not well suited to studying slack tethers. In a test run
where the thrusters were fired in a direction such that the wire goes slack,
tension spikes resulted when the individual mass points came back into tension.
Increasing the number of mass points might help give more reasonable results
but it is difficult to conceive of any good way of modelling a slack tether.
Effort has been concentrated on devising method; of avoiding loss of tension
in the wire.

Runs have been done to verify the formulas and principles discussed in
the previous sections. The expression for tension variations due to transverse
wire oscillations is easily verified only when damping is used to suppress
longitudinal oscillations. Without damping, longitudinal oscillations of the
subsatellite at the end of the wire dominate the behavior of the tension.
Launches using in-plane thrusters show no out-of-plane motion and larger
coriolis forces because of the addition of the tether and orbital angular
velocities. OQut-of-plane launches have lower coriolis forces and a slight in-
plane motion developes because of coupling terms in the equations of motion.
The excitation of longitudinal oscillations of the subsatellite and transverse
wire oscillations is in reasonable agreement with the formulas developed.
Runs using thrusters with short tethers show the large range of tension varia-
*ion and potential problems with unstable wire dynamics discussed in the section
on long vs. short tethers.

Test runs indicate that the release of a heavy payload, either in the
static case, or after acceleration by thrusters, results in loss of wire ten-

sion due to rebound unless special techniques are used to deal with the problem.
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Transverse acceleration of the payload induces a radial oscillation because
of coriolis forces. In one test run, release of the payload was delayed
until the minimum of the tension cycle caused by the radial oscillation.
This procedure avoided loss of tension, but larger transverse Qire motion
resulted because of the longer distance travelled by the end mass.

In order to investigate the behavior of the wire when thrusters are used
some simulations have been done with five masses, three of which represent the
wire. A two metric ton subsatellite at the end of a 200 km wire is accelerated
to 200 m/sec in 20 seconds and decelerated from 20 to 40 seconds. Figure 1la
shows the behavior of the tension in eacﬁ of the wire segments vs. time. Fig-

ure 10 shows the numbering of the mass points.

4 Figure 10.

The tension plotted for each mass point is the tension between that mass and
the next higher numbered mass point. For the last mass, #5, it is the tension
to the Shuttle which is mass #1. The initial conditions are set up so that
the tension is equal between all the mass points. This is not an equilibrium
condition since the tension is greatest near the Shuttle and smallest near

the subsatellite. The long period variation of the tension is due to the
longitudinal oscillation of the subsatellite induced by the coriolis forces

during acceleration and deceleration. The short period variation results
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from longitudinal oscillations of the wire masses. The damping coefficient
has been reduced to a negligible value fn this run so that the longitudinal
oscillations are not suppressed. There was no release of the subsatellite

and no loss of tension in the wire.

Figure 11b shows the in-r"ane motion of the wire. The in-plane axis is
expanded by about a factor of 50 relative to the radial axis. As the sub-
;ate11ite at the top is accelerated it generates a transverse wave which
travels down the wire to the Shuttle at the bottom.

Runs have been done to study the release of a heavy paylaod without
thrusters using reel control algorithms to avoid loss of tension in the tether.
The simulations use 5 mass points, three of which represent the wire. Equili-
brium initial conditions are set up for a 10 metric ton payload at the end of
an 80 km wire. The length control algorithm described in Section 3.11 is used
with t = 10 sec and t, = 195 seconds.

The tension as a function of time is shown in Figure 12(a). The tension
is constant for the first ten seconds. If the speed of sound is about 7 km/
sec in kevlar the propagation delay for stress along an 80 km tether {s about
11.5 seconds. This seems to be in approximate agreement with the delay time
seen in the plot. The maneuver sets up stress waves along the tether which
cause tension fluctuations, After release of the payload, although the
average tension 1s near the desired value, wire oscillations cause loss of '
tension at various points along the wire.

The potential tether materials being considered for the Skyhook system
all have low hysteresis, so that there would be 1ittle damping of stress waves
along the wire. However, since there is strong compling between the action
of the reel motor and the longitudinal oscillations, it should be possible to
damp longitudinal oscillations by a suitable tension or rate control law at

the end of the wire. A run has been done with the Skyhook program to test

58.



the principle that longitudinal oscillations can be controlled by introducing
damping at the end of the wire. The run described in Figure 12(a) has been
repeated with damping introduced between the subsatellite and the wire mass
adjacent to it. There was no damping in the other three wire segments, and
equation (31) was used to control the natural length of the wire segment next
to the Shuttle. The tension as a function of time is shown in Figure 12(b).

. The wire oscillations induced by equation (31) have been damped out, and the
oscillations induced by the payload release at 195 seconds are also reduced
with time. There is no loss of tension.

In cases where the tether length and mass are larger and the payload is
smaller, the effect of wire dynamics is increased. A run has been done using
equation (31) for a 200 km tether with a two ton payload. The tension vs.
time is shown in Figure 13(a). The tension is constant for the first ten
seconds. The propagation delay should be about 28.7 seconds for stress waves
along the tether. The tension variations along the tether are of larger
relative amplitude and longer period than in Figure 12(a).

Equation (31) has discontinuities in the wire velocity at t, and te which
tend to excite wire oscillations. An alternative to specifying length vs. time
is to specify tension vs. time. A run has been done using the tension control
law given in Section 3.11. The tension vs. time is shown in Figure 13(b).
There is considerably less excitation of wire oscillations than in Figure 13(a).
This should make it possible to predict and control the tension at the time of
release of a payload more accurately.

More work needs to be done to develop algorithms for damping wire oscilla-

tions during reeling operations and payload releases.
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3.15 Conclusions

The tether appears to be a useful device for transferring payloads be-
tween orbits in an economical manner. In the case of release of a payload
without acceleratfion by thrusters, the tether and the remaining mass at the
end recofl resulting in loss of tension. This tension loss can be prevented
and longitudinal wire oscillations can be damped using the tether reel motor.
In the case of acceleration of the end mass by thrusters, both longitudinal
and transverse wire motions are set up. Some techniques for avoiding loss
of tension have been tested and other possible techniques have been discussed.
Further work needs to be done to develop appropriate algorithms. Long tethers
appear to be more stable than short tethers. As a result of the elasticity
of the tether, the subsatellite is almost semi-free to maneuver at the end of

a long tether without loss of tension.
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Figure

Figure

Figure

11(a).

11(b).

12(a).

12(b).

13(a).

13(b).

FIGURE CAPTIONS

Tension ve. time for each wire segment when the payload is
accelerated by a thruster,

In-plane wire configuration vs. time when the payload 1s
accelerated by a thruster.

Tension vs. time in each wire segment using the length control
algorithm, The tether is 80 km long and the subsatellite is
10 tons.

Tension vs., time in each wire sezment using the length control
algorithm with damping in the wire segment next to the subsatellite.

Tensfon vs. time in each wire segment using the length control
algorithm., The tether is 200 km long and the subsatellite is
two tons.

Tension vs. time in each wire segment using the tension control
algorithm.
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Appendix A
General Equations of Motion

In this section, the general equations of motion are derived for a tether
system modelled as a mass m at the end of a massless straight tether which applies
a tension force on the mass m in the direction of the Shuttle. The Shuttle is

. assumed to move at constant angular velocity in the x-y plane as shown in Figure

Al.

©>
b B

>

-ls

~ >

The position of the Shuttle is given by the vector . In cases where the mass
m is not negligible compared to the mass of the Shuttle, the Shuttle does not

move with constant angular velocity. In this case, the vector ¢ can be used

A-1,



to define the position of the center of the system which does move at constant

angular velocity. The position of the mass m relative to the center of the

> -+

system is given by the vector r. The position P of mass m relative to the

center of the earth is

-> ->

->
P=p+r (A1)

The equation of motion of mass m is
) -+ 5
F=mP (A2)

-->
where F is the total force on the system. The force F is given by

<> > -+>
F= Fo * Fe (A3)

-> >
where Fg is the gravitational force and Fe is all other forces such as the

tension in the tether, atmospheric drag, etc. Differentiating equation (A1)
twice gives

> 3 3

P=p+r ‘ (A4)
Since o and vy are both constant, p is given by the usual expression fo. the

centrifugal acceleration, and we can write

e
->

P o | (x5)

where 8 is a unit vector in the direction of . The second part of equation (A4)

can be evaluated as

-> 2 N d . A H
r=L (rr)s S (Frerr)
dt2 dt
. - (A6)

srr+2fr+rr
In Figure Al, the unit vectors ;, 5, and ; form an orthogonal coordinate
system. The derivative of any of these unit vectors is perpendicular to that
unit vector and must therefore be in the plane defined by the other two unit

vectors. This fact can be used to simplify the evaluation of equation (A6).

From Figure A1 we have the following expressions for the unit vectors.

A-2.



~

rs= cosocoseg + cos¢sine; + sin¢ﬁ (A7a)
8 = -singp + cose; (A7b)
L]

= -sin¢cose$- sin¢sine; + cos¢ﬁ (A7¢)

We need to differentiate equation (A7a) to obtain an expression for r in equation

(A6). In doing the differentiation we use the relations

b=y (Asa)

y=-vp (A8b)
and

k=0 (A8c)

to obtain the result

>

r = -sin¢coseép - cos¢sinedp + COSOCOSOYY

-sin¢sineép + cosécossdy - cos¢sindyp

+cosok (A9)

Equation (A9) must be a linear combination of equations (A7b) and (A7c). By
inspection we see that the terms in each column of equation (A9) are multiples

of either 5 or ;. Therefore we have

L]
~

r

$6 + COS688 + COS$YO

46 + cose(d+v)e (A10)

Differentiating equation (A10) to obtain r needed in equation (A6) we nave
r= 6 + 66 -sTned(8+7)8 + cosees

+ cose(8+7)6 (A1)

To complete the derivation of equation (A11) we need 8 and ;. Differentiating
equation (A7b) with the help of equation (A8), we have



<D re
L]
]

cose8p - sineyy

sinedy - cosoyp

coso(8+y)p - sino(+y)y

(8+v)(cosep + siney) (A12)

*Equation (A12) must be a linear combination of equations (A7a) and (A7c). Since
equation (A12) does not contain k, the only possible combination is to multiply
(A7a) by cos¢, multiply (A7c) by sin¢ and subtract to eliminate K. Doing this

we have

cosér - singe =
cos2¢costp + cos2¢singy + cosesinek
+ sinZ¢cos8p + sin2¢singy + sinecosek

= cosép + sindy (A13)
Substituting equation (A13) into equation (A12) gives
8 = - (6+7) (coser - sines) (A14)

Next we evaluate 3 which is needed in equation (A11). Differentiating equation

(A7c) with the help of equation (A8) gives

$ = - coS¢cos8ép + singsingep - sinecoseyy
- cos¢sinedy - singcosesdy + sinesineyp

- sineek (A15)

Equation (A15) must be a linear combination of equations (A7a) and (A7c). By
inspection we see that each column of equation (A15) is a multiple of either
r or 6. Therefore equation (A15) can be written
&= - r - sinedd - sinev

r

- sine(8+v)6 (A16)



Using equation (A14) and (A16) to complete the evaluation of equation (A11)
we have
r= oo + ¢ [-br - sine(d+7)6] - sined(4+y)e
+ cos¢86 - cose(d+y)2(coser - sings)
= r [-42 - cos2¢(§+7)2]
+ 8 [-2ésine(B+y) + ocose]
+ ¢ [o + cosesing(847)2] (A17)

Equation (A10) and (A17) are the results needed to evaluate equation (A16)
for ?. Making the substitutions, we have
Farr
+ 27 (4o + cose(+y)e]
+r {7 [-42 - cos2e(41)2]
+ 6 [-2¢sine(d+y) + scose]
+9 6+ c05¢sin¢(é+§)2]}
= v [r - r$2 - rcos2e(d+y)?]
+ 6 [2rcose(B+y) -2résing(8+y) + orcoss]
+ ¢ [2M6 + re + rcosesine(8+y)2]

Equation (AS5) gives § in terms of 5. We must express 5 in terms of ;, 5,
and ;. The result can then be substituted along with equation (A18) into equation
(A4) for %. Equations (A7a, b, and c¢) form a set of simultaneous equations that
can be solved for 5. Part of the work has already been done by eliminating
K from equations (A7a, and c) to obtain equation (A13) which contains only o and

y. Multiplying equation (A13) by cose and equation (A7b) by sine gives

cosa(cos¢r - sineé) = cos28p + cosesiney
and

sinee = -sin20p + sinecosey

A-5.



which can be subtracted to yield
cosecos¢; - cosesin¢$ - sinee = 5 (A19)
Putting equation (A19) into equation (A5) gives

- g .2
p = - rpyc COosSécosé
+ 8py2 sinsg

+ 4072 cososine (A20)
Adding eqdat1ons (A18) and (A20) gives for equation (A4)

-> Ao - e o °
P = r[r-ré2-rcos¢(6+y)2-py2cosecoss]
+ a[orcose+2(8+7) (Fcose-résing) + cy2sine)

+ s[re+2ritrcosesing(8+v)2 + py2cosesine]  (A21)

Substituting equation (A21) into equation (A2) completes the derivation of
the equations of motion for the variables r, 3, and ¢. Al1 forces F must be
resolved along the unit vectors ;, 5, and 3. The tension force is in the -r
direction and needs no further discussion. Atmospheric drag and other forces
such as radiation pressure are not in a fixed direction and must be evaluated at
each integration point. Equation (A7) gives the directions of the unit vectors

;, 8, and $ as a function of ;. :r. and E From Figure Al we see that

5 = cosyl + siny j (A22a)
and

; = -sinyi + cosyj (A22b)

Using equations (A7) and (A22), forces qiven in the 3. 3, k coordinate system
can be resolved along ;, 5, and 5.
->
Neglecting higher harmonics, the gravitational force is always in the -P
* -~

direction. Therefore it is useful to express the vector ? in terms of ;, 8,

and 4. Substituting equation (A19) into equation (A1) gives



* ~
P = r(r+ pcosecoss)

- st1ne
- ;pcosesin¢ (A23)
The gravitational force is
Fg .. .;G':.z'. 4 (A24)

‘where P is the magnitude of 3. From equation (A23) we have

P2= r242rpcos8cose + p2c0s20€052¢
+ p2sin2e + p2cos2esin2g
= r242rpcosecos¢é + p2sin2e + p2cos2e
or

P3 = (r2+2rpcosecoss + 02)3/2 (A25)

Substituting {A23) into (A24) gives

- a
F = . GMm [r(r+pcosecoss)
9 p3 R
- gpsine
- $pcosesin¢] (A26)

Combining equations (A26), (A20), and (A3) into equation (A2) gives
F =
€ mrlr-ré2-rcos2e (8+y)2-py2cos0c0sé + GMP=3(r+ocosocoss)]
+ mo[orcose+2(8+v) (Pcose-résing)+oy2sine-GMP~3psine] (R27)
+ me[re+2ré+rcosesing(é4y)2+o72c0s051n0-GMP™ 2pcosesing]
with P given by equation (A25).
In cases where the tether length r is small compared to the radius of the
orbit p, the exact equatfons of motion given in (A27) can be simplified by

expanding the term P~3. From equation (A25) we have



GMP=3 = GM(p2 + 2rpcosecoss + rz)'3/2
= -3 L r‘2 ‘3/2
GMo=3(1 + 2 5 cosecose + ;f)

XGEMp-3(1 - 3 § c0s8¢0S4) (A28)

Using the relation GMo=3 = y2 for a circular orbit, equation (A21) be-
comes

GMP=2 = y2 - 3 E- ¥2¢c086C0S¢ (A29)

Substituting (A29) into terms containing GMP~3 in (A27) and neglecting terms

containing r/o, we have the relations

GMP=3(r + pcosecoss) ¥ ry2 + y2pcosecoss - 3Iry2cos2ecos?e (A30a)
GMP=3ps1ne % py2sine - 3ry2cosecosésing (A30b)
GMP=3pcososing X y2pcosesing - 3ry2cos28cosésing (A30c)

Substituting equation (A30) into (A27) gives the approximate equations of motion

->
F, %
mrlr-ré2 - rcos2e(8+v)2 + rv2 - 3ry2cos26cos2s)
+ mo[orcose + 2(8+)(Fcose-résing) + 3rv2cosecosesing]  (A31)

+ molre + 2rp + rcosesing(8+y)2 + 3ry2cos2ecosesing]

In equation (A31), o does not appear explicitly. It is used in calculating
v, and it {s assumed that r, 6, and ¢ are measured from a point at distance o
from the center of the earth moving at constant angular velocity y. It is useful

to derive the equations of motion for small values of 6 and ¢. The result is

-
“v
Fe n

mrlr - re2 - ré2 -2rby - rv?2 + rv2 -3ry2)
+ molre + 2(8+7)(P-rée) + 3rv2e]
+ malre + 2Mh +ro(32428v472) + 3ry2e]



= mrr - r ($2+82) - 2rdy - 3ry2]
+ molre + 2(8+y)(F-rée) + 3ry2e]
+ melre + 2r6 + ro(82+428Y) + 4ry2e) (A32)

If 6, 4 and r are also small, we obtain the simplest form of the equation namely,

* -

Fe ~ mr(r - 3ry2)
+ me(re + 3ry2e)
+ ma(re + 4rv2e) (A33)
From equation (A33) we see that the equilibrium tension is 3mry2, the

natural frequency for in-plane oscillations is /3 y and the natural frequency for

out-of-plane oscillations is 2y.



Appendix B
Orbital Coordinate System

2 4

\+

XX

Figure B1
In Figure Al, the x and y axes are taken to Le in the orbital plane, and

the z-axis is the normal to the orbital plane. The unit vectors 3 and ; are
given by equations (A22) in terms of the unit vectors along the axes. In

Figure Bl, the x'-y' axes are in the equatorial plane of the earth with the x'
axis taken along the ascending node of the orbit. The two coordinate systems
are related by a rotation about the x' axis through {1 where i is the inclination
of the orbit. The unit vectors i. 3 and i are related to the unit vectors i'.

j', and k' by the equations

ERE (B1a)
3 = cos | 3' + sin 1 k' (B1b)
k= -sin i 3' + cos 1 k' (Blc)

B-1.



Substituting equations (Bla and b) into equations (A22) gives

"~

P = COS Y '+ sin vy (cos 1 3' + sin { i')

= cos y i* + sin y cos 1 3' +siny sin 1 k' (82a)
y=-siny i' + cos v (cos 1 3' + sin { ﬁ')

= . siny i+ cos y cos 1 3' + cos v sin 1 k' (82b)

Equations (B2a, B2b and Blc) define the unit vectors used in equation (A7) for

an inclined orbit,



Appendix C
Initial Conditions

Figure C1

In Figure C1, the Shuttle is located at a distance x° from the center
of the earth along the x-axis. The masses representing the subsatellite and
wire elements are located at distances L from the Shuttle along a line defined

by the angles 6 and ¢. The coordinates of each mass are

Xy xo + 1, cosécose (Cla)
yq = ¢y cos¢sing (C1b)
2y * 8y sine (Ciec)

Assuming the system is rotating with constant angular velocity » about the 2-
axis, the velocity of each mass is proportional to the distance R1 from the

z-axis given by

Ry = 7T ey

c-1.



The velocity of a mass point {s
V1 = wR1 (C2)

The components of the velocity are

re Vi IRy

nevi X,/
.0 (¢3)

In order for the system to be in equilibrium in circular orbit, the angular
velocity « must be such that there is no radial acceleration of the system.
One condition of equilibrium is that the sum of the gravitational and centrifugal
forces on the total system must be zero. In addition, the sum of the tension,
centrifugal and gravitational forces on each mass nust be zero. The first condi-

tions is given by the equation

GMm4
2D R
{

where r, is the distance of each mass m, from the center of the earth, and u is
orbital angular velocity. Given the positions and masses of each poirt, the
equilibrium angular velocity can be computed. The point in the system which is
at a radial distance o defined by the equation

-lpuz

02
which can be solved to give

1/3
o= (Eg) (c5)

experiences no net radial acceleration. Points ahove and below o experience a

net acceleration away from the center.

c'zo



The condition for equilibrium of the tension forces can be computed using
the expression for r given in equation (A27). Setiing r=gs= ; = 0,, and
using the exact cxpression for the gravitational force since the tetker length

is appreciable, we have
Fo/m = GM (pcosecose+r) P-3 - y2pcosecosé - ryicns2¢  (C6a)

"where

P= ,éz + 2prcosdcosé + r2 (céb)

and r is the distance from the center of the system.

Using equation (C6), the forze on each mass in the Skyhook system can be
computed. The tension in each wire segment is equai and opposite to the sum of
the forces on all masses which the segment supports. Starting at the end of the
system, one can successively compute the tension in each wire segment. Once this
tension is known, the natural length 20 of the wire segment can be computed from

the equation

g, = ar / {1+ E%) (c7)

where Ar is the distance between the masses, E is the elastic modulus, and A the
cross sectional area of the wire. Since the mass of each wire segment depends on
the natural length which is a function of the tension, the solution for the

equilibrium must be iterated to obtain a precise equilibrium configuration.

Cc-3.
NASA—MSFC—C
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