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INTRODUCTION

The promise of filamentary compositc materials, whose
development may be considered as entering its second genera-
tion, continues to generate intense interest. Such interest
is well founded, since it is based on the possibility of
using relatively brittle materials with high modulus, high
strength, but low density in composites with good durability
and high tolerance to damage and which, when they do fail,
do 8c in a non-catastropnic manner. Such fiber reinforced
composite matcrials offer substantially improved performance
and potentially lowe: cosats for aerospace hardware.

Much progress has been achieved since the initial de-
velopments in the mid 1960's. Only a very few applications
to primary aircraft structure have been made, however, and
those arc¢ in a material-substitution mooe and - with the
exception of experiments only just now being conducted on
large passenger airplanes -on military aircraft.

To fulfill the promise of composite materials more com-
pletely, requires a strong technology base. NASA and AFOSR
have realized that to fully exploit composites in sophisti-
cated aerospace structures the technology base must be im-
proved. This, in turn, calls for expanding fundamental
knowledge and the means by which it can be successfully ap-
plied in design and manufacture. Not tue least of this
effort is to learn how to design structures specifically to

capitalize on ths unique properties of composite materials.
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It also calls for expanding the body of engireers and scien-
tists competent i* these areas. As part of their approach
to accumplishing this, NASA and AFOSR have funded the current
composites program at Rensseiaer. The purpose of the RPI
composites program is to develop advanced technology in the
areas of physical propertier, structural concepts and analy-
sis, manufacturing, reliability and life prediction. Con-
commitant goals are to educate engineers to design and use
composite materials as normal or conventional materials. A
multifaceted program has been instututed to achieve these
objectives. The major elements of the program are:

1. CAPCOMP (Composite Aircraft Program Component).
CAPCOMP is primarily a graduate level vproject being conducted
in parallel with a composite structures program sponsored by
NASA and performed by a private, aerospace manufacturing con-
tractor. The first component redesign is being done in con-
junction with the Boeing Commercial Airplane Company. The
main spar/rib region on the Boeing 727 elevator, near its
actuator attachment point, was selected, with Boeing's advice
and the concurrence of NASA/AFOSR, for study in CAPCOMP. The
magnitnde of thL. project - studying, designing, fabricating
and testing of a relatively small but highly stressed region
on the elevator - is both consistent with Rensselaer's capa-
bilities and a significant challenge. The selection of a
portion of a full-scale flight hardware structure assures

relevance to this project's direction.
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Visits to Boeing were conducted by Professor Hoff and
several of his students, and the first serious design work
began on two alternative designs. Each was pursued to the
point of preliminary analysis and testing. One of these was
selected for more detailo-d analysis, redesign, complef’.: fab-
rication and testing. Successful completion of the test of
the first CAPCOMP structural pirts is reported in Part I,
as well as progress on additional test specimens and choice
of a second possible aircraft component for redesign, as
CAPCCMP Phase I1I.

2. CAPGLIDE (Composite Aircraft Program Glider). This
undergraduate demonstration project has as its okjectives
the design, fabrication and testing of a foot=-launched,
ultralight glider using composite structures. A flight ve-
hicle was selected to maximize student interest and to pro-
vide the students with a broad-based engineering experience.
For those students continuing with graduate work at RPI,
CAPGLIDE is intended to provide natural progression to CAP-
COMP. The progress on the CAPGLIDE project to caate has been
very gocd. Seven professors and approximately 46 students
were actively engaged in the project during this period;
that is, the Fall 1980 and Spring 1981 cemesters. High
point of the project tu date was initial flight testing of
the glider, dubbad "RP-1", and first public flight demon-
stration on September 16, 1980. Since then, desigr and con-

struction of the RP-2 has begun. A description of the status



of the CAPGLIDE project at the end of the current reporting
period is given in Part Ii.

3. COMPAD (Computer lLiided Design). A major thrust of

the composites program is to develop effective and efficient
tools for the analysis and design of ccmposite structures.
Rensselaer and NASA Langley have jointly implemented the use
of the SPAR code on minicomptters, and th¢ work at Rensselaer
has made "virtuval memory" available to those using SPAR.
Special RPI software has been developed to make existing
programs more useful, particularly as regards graphics. At-
tention for the past year has focused on interactive graphics
preprocessor and postprocessor capabilities for use in fi-
nite element analyses. During the zurrent period efforts
have begun on finite element applications to investigate
moisture effects and the micromechanics of failure in compos-
ites. Details are reported in Part III. ~

4. Compu.ites Fabrication and Test Facility. Struc-

tural design engineers, educated only by course work and
design projects limited to paper, often fail to sense or
appreciate problems involved in fabrication. The actual fab-
rication and testing of composite structural components pro-
vides this training and the final validation for the designs
in our CAP projects. RPI's Composites Fabrication and Test
Facility is located in the laboratory and high bay areas of
the Jonsson Engineering Center. Equipment is available for

compression molding parts as large as 19" x 19" and vacuum



bagging parts of much larger size. Panels, approximately

4' x 20', have been made by vacuum bagging. A pressure ves-
sel for long narrow parts, such as spars, has been designed
and built. All of these techniques and facilities have been
used in the CAPGLIDE part of the project, described in Part
II. A second vessel capable of fabricating shorter but wider
parts at higher pressures has been designed and used in the
CAPCOMP part of the program. Special loading devices and
other test equipment were used on CAPCOMP in the current
period. More information is contained in Part I.

5. INSURE (Innovative and Supporting Research). The
criteria for selecting research projects to be conducted
under this program include the following: (a) they must
anticipate critical problem areas which may occur in the CAP
or NASA/AFOSR programs or (b) solutions to existing problems
are not yet satisfactorily in hand. During the reporting
period six such projects were conducted as part of the
program. Results from the ongoing projects are reported in
Part 1V,

6. Curriculum Revisions. The goal of educating engi-

neers to think of composites as normal or conventional mate-
rials has required changes in curriculum. Since the initi-
ation of this prograr, almost all Rensselaer engineers take
introductory courses which incorporate the concepts of ani-
sotropy and composite materials. In addition, six special-

ized courses in composites have been offered during the past



three years to develop those special skills raquired of
students involved in the composites program. A new course
was introduced in the Fall of '78 semester on composite de-
sign and analysis using programmable hand calculators, a
central mini and full frame computers. A new graduate level
advanced topics course with the title "Advunced Finite Ele-
ments" was offered for the first time in September 1979.

The additions of the SAP and SPAR computer codes and
the growing availability of interactive computer graphics
under our COMPAD program element have reached the point
where our engineering students are using these facilities
as everyday working tools for design, analysis and visuali-
zation purposes. We have thus achieved one of the principal
goals of the curriculum development activities.

7. Technical Interchange. Technical meetings, on- and

of f-campus, provide important opportunities for interchange
of technical information. Because of the large number of
composites meetings, a central catalog with all upcoming
meetings is being maintained and distributed periodically.
In this way we help assure that a Rensselaer staff member
will participate in important meetings. The calendar for
this reporting period is shown in Table 1. Meetings attended
by RPI composites program faculty/staff during the reporting
period are shown in Table 2. Sone meetings particularly

relevant to composites, held on-campus with special
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TABLE 1
CALENDAR OF COMPOSITES-RELATED MEETINGS
(September 30, 1980 through April 30, 1981)

1980

10/6-8 Symposium on Compnitational Methods in Nonlinear
Structural and Solid Mechanics, Washington, D. C.
"Sponsored by George Washington University and
NASA Langley."

10/7-9 12th National SAMPE Technical Conference, Seattle, WA.

10/13-16 1980 SAE Aerospace Congress and Exposition, Los
Angeles, CA.

10/20-23 Flywheel Technology Symposium, Tamarron, CO.
"Sponsored by ASME."

10/22~-24 National Specialists Meeting "Rotor System Design",
Philadelphia, PA. "Sponsored by AHS."

10/28-30 Mechanics of Composites Review, Dayton, OH.
11/5-7/80 Ultrasonics Symposium, Boston, MA.

11/12-13 Mechanical Testing for Deformation Modeling Devel-
opment, Bal Harbour, FL. "Sponsored by ASTM."

11/13-14 Damage in Composite Materials: Basic Mechanisms,
Accumulation, Tolerance and Characterization, Bal
Harbour, FL. "Sponsored by ASTM."

11/18-19 Large Space Structures Conference, Hampton, VA.

12/2-3 Technology Conference: Reinforced Plastics, E1l
Segundo, CA.

12/15-17 1980 SES National Meeting, Atlanta, GA.

1981

1/12-15 19th Aerospace Sciences Meeting, St. Louis, MO.
"Sponsored by AIAA."

1/19-23 Gordon Research Conference, Ventura, CA.

1/22 Society for Experimental Stress Analysis, Schenec-
tady, NY.

1/27-29 5th Conference on Fiber Composites and Structural
Design, New Orleans, LA. "Sponsored by DOD and NASA."

2/16-20 SPI Reinforced Plastics/Composites Institute Con-
ference, Washington, D. D.

2/22-24 DOD Manufacturing Technology Composites Review,
Orlando, FL.

e AR SRR SRR I TR ST e o
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1981
2/23-25
3/9-12

3/9-13

3/17

3/27
3/29-4/3
3/30
4/6
4/6-17
4/6-8
4/9-10

4/28-30

TABLE 1 (continued)

Society for Rheology Meeting, Williamsburg, VA.

lnternational Technology Status and Export Control
of Composite Materials and Technology, Washington,
D. C.

2nd USA/USSR Symposium, Fracture of Composite Mate-
rials, Bethlehem, PA.

Nondestructive Seminar, Schenectady, NY. "Sponsored
by American Society of Nondestructive Testing and
Schenectady Community College."

26th Annual Structural Engineering Conference,
Lawrence, KS.

5th International Conference on Fracture, Cannes,
France.

National American Chemical Society Meeting, Atlanta,
GA.

Southeastern Section Meeting of ASEE, Chattanooga,
TN.

Interfaces in Composite Materials, Liverpool, UK.

22nd Structures, Structural Dynamics and Materials
Conference, Atlanrta, GA. "Sponsored by AIAA, ASME,
ASCE and AHS."

Dynamics Specialists Conference, Atlanta, GA.
"Sponsored by AIAA."

26th Annual SAMPE Symposium and Exhibition, Los
Angeles, CA.
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TALLE 2
COMPOS ITES-RELATED TECHNICAL MEETINGS ATTENDED OFF-CAMPUS
for the period September 30, 1980 through April 30, 1981

1980

10/6-8 Symposium on Computational Methods in Nonlinear
Structural and Solid Mechanics (Prof. Shephard),
Washington, D. C.

10/28-30 Mechanics of Composites Review (Students 7. Vinopal,
S. Ward, A. Alksninis and C. Ellis), Dayton, OH.

11/5=7 Ultrasonics Symposium (Prof. Das, Students R. Veb-
gter and R. Werner), Boston, MA

Professor Das presented the paper, "Ultra-
sonic Imaging for Nondestructive Evaluation
of Composite Material with Digital Image
Enhancement"”.

11/13-14 »PSTM Meeting on Damage in Composite Materials:
*asic Mechanisms, Accumulation, Tolerance and
Characterization (Prof. Krempl), Bal Harbour, FL.

Professor Krempl presented the paper,
"The Role of Servocontrol Testing in the
Development of the Theory Viscoplascity
Based on Total Strain and Overstress".

11/18~19 Large Space Structures Conference (Student C.
Rubeiz), Hampton, VA,

12/15-17 1980 SES National Meeting (Profs. Brunelle and
Scarton), Atlanta, GA.

Professor Brunelle presented the paper,
"The Use of Affine Transformations in
the Solution of Composite Structures
Problems".

Professor Scarton presented the paper
"Acoustic Emission from Bovine Tibia".

1981

1/19-23 Gordon Research Conference (Profs. Diefendorf, Vice-
Chairman and Sternstein, Discussion Leader), Ven-
tura, CA.
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1981
1722

1/26-27

2/22-24

2/23-25

3/9-12

3/17

3/27

3/30

4/6

TABLE 2 (continued)

Society for Experimental Stress Analysis (Prof.
Scarton), Schenectady, NY.

Professor Scarton presented the paper,
"Acoustic Emission in Composite Mate-
rials".

NASA/DOD sponsored 5th Conference on Fiber Compos-
ites and Structural Design (Prof. Loewy), New
Orleans, LA.

DOD Manufacturing Technology Composites Review
(Prof. Diefendorf), Orlando, FL.

Society of Rheology Meeting (Prof. Sternstein),
Williamsburg, VA.

Professor Sternstein presented the paper,
"Delamination Failure in Carbon-Epoxy
Laminates".

International Technology Status and Export Control
of Composite Materials and Technology (Prof.
Diefendorf), Washington, D. C.

American Society of Nondestructive Testing and
Schenectady Community College sponsored Nondestruc-
tive Seminar (Prof. Scarton), Schenectady, NY.

Professor Scarton presented the paper,
"Acoustic Emission Testing: Theory and
Application".

26th Annual Structural Engineering Conference
(Prof. Shephard), Lawrence KS.

Professor Shephard presented the paper,
"Computer Graphics in Structural Engi-
neering".

National American Chemical Society Meeting (Prof.
Sternstein), Atlanta, GA.

Professor Sternstein presented the paper,
"Viscoelastic Characterization of Solids".

Southeastern Section Meeting of ASEE (Prof.
Shephard), Chattanooga, TN.

Professor Shephard presented the paper,
"Computing at RPI - A Case Study" (with
L. J. Feeser).
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speakers, are listed in Table 3. A list of composite-related
visits to relevant organizations by RPI faculty/staff/stu-
dents, with the purpose of each visit outlined, is presented
in Table 4.

In summary, the NASA/AFOSR Composites Aircraft Program
is a multi-faceted program whereby aeronautical, mechanical
and materials engineers must interact to achieve its goals.
"Hard-nosed" engineering of composice aircraft structures is
balanced against research aimed at solving present and future
problems. In the following sections, detailed descriptions
of the CAPCOMP, CAPGLIDE, COMPAD and INSURE programs are pre-

sented.
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TABLE 3

COMPOSITES-RELATED MEETINGS/TALKS HELD AT RPI

(September 30, 1980 through April 30, 1981)

Topic

Wavefront Analysis in the
Nonseparable Elastodynamic
Quarter Plane Problems

Nonlinear Optimization of
Framed Structures

Analysis of Steady State
Elastic Wave by CGlobal-
Local Finite Elements

Materials Behavior - 1Its
Role in Life Prediction

Properties of the Strength
Distribution for Composite
Materials

Continuum Modeling of
Large Space Structures

Advanced Composites Ac-
tivities at Boeing Aero-
space

Laser Speckle Doppler
Velocimeter Technique Ap-
plied to Measure Tor-
sional Vibrations of Ro-
tating Surfaces

Dynamics and Control of
Flexible Spacecraft:
More Appropriate Tech-
niques

Date

Speaker (s)

10/9/80

11/6/80

11/11/80

1/27/81

2/3/81

2/20/81

2/24/81

3/4/81

3/24/81

Julius Miklowitz

Prof. of Applied Mechanics
California Institute of
Technology

C. S. Krishnamoorthy
University of Southern
California

Daniel B. Goetschel
Research Engineer
California Research and
Technology

Louis F. Coffin, Jr.
General Electric Research
and Development Center

David G. Harlow

Prof. of Mechanical Engi-
neering and Mechanics
Drexel University

Taft Broome

Visiting Professor of
Civil Engineering
Rensselaer Polytechnic
Institute

Herbert Voss

Manager, Structures Depart-
m:mnt and

Dominic Reilly

Research Engineer

Boeing Aerospace Company

Seetha R. Mannava

Doctoral thesis dissertation
Department of Mechanical
Engineering, Aeronautical
Engineering and Mechanics
Rensselaer Polytechnic
Institute

Hari B. Hablani
Research Associate
Johnson Space Center
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TABLE 3 (continued)

Speaker (8)

Topirz Date
The Next Generation of 4/7/81

Cormercial Aircraft - The
Technological Imperative

Recent Development in Com- 4/14/81
putational Methods for
Structure-Medium Interac-

tion Problems

Polyhedral Chain Space 4/17/81
Trusses

The Use of Affine Trans- 4/17/81
formations in the Analysis

of Stability and Vibra-

tions of Orthotropic

Plates

Molecular Orientation in 4/20/81
Polymers: A Study of Hot-

Drawn Polymethylmethacryl-

ate

Fracture Mechanics Appli- 4/28/81
cation to Problems in In-
dustry

John Swihart

Vice President, Domestic
and Canadian Sales

Boeing Commercial Airplane
Company

K. C. Park

Staff Scientist
Lockheed Palo Alto Re~-
search Laboratory

Martin Rooney

Professor of Civil Engi-
neering

Rensselaer Polytechnic
Institute

Gabriel A. Oyibo

Doctoral thesis dissertation
Department of Mechanical
Engineering, Aeronautical
Engineering and Mechanics
Rensselaer Polytechnic
Institute

Jay Rosenthal

Dortoral thesis dissertation
Department of Chemical and
Environment Cngineering
Rensselaer Polytechnic
Institute

Kenal Arin
General Electric Company
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TABLE 4
CCMPOSITES-RELATED VISITS TO RELEVANT ORGANIZATIONS

by RPI raculty/staff/Students
(September 30, 1980 through April 30, 1981)

Visited Date By Purpose
Lockheed Califor- 11/12/80 Prof. R. G. To discuss possi~
nia Co. Loewy ble CAPCOMP rede-~

W. Stauffer sign projects
M. Melcon
Peckert Boatworks 1/8/81 Student C. To discuss new
Bennington, VT Muser fabrication tech-
niques
NASA Langley 2/26/81 Prof. S. S. To discuss long
Sternstein range planning
Dr, N. Johnston for advanced com=-
posites
BASF 3/8/81 Prof. R. J. Presented a Semi-
Ludwigshafen, Diefendorf nar in "High Per-
Germany formance Compos-
ites"
NASA Langley 3/31/81 Prof. S. S. Presented two
Sternstein seminars: "Visco-
elastic Properties
of Composites" and
"Delamination
Failure in Compos-
ites"
General Motors 4/2/81 Prof. M. S. To present the
Research Labs., Shephard talk "Finite Ele-
Warren, MI ment Grid Optimi-
zation - An Over-
view"
University of 4/10/81 Prof. R. J. Presented a Semi-
Massachusetts Diefendorf nar in "Discotic

Polymer Science
and Engineering
Division

Liquid Crystals"
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PART I

CAPCOMP (Composite Aircraft Program Component)

R LT AN R SRR Ao R



19

CAPCOMP (Composite Aircraft Program Component)
(D. Goetschel, N. Hoff, R. Loewy, H. Scartcon)

CAPCOMP is a program to design flight critical struc-
tures to take the maximum advantage of composite materials.
By combining the efforts of experienced faculty with bright
and well trained but inexperienced graduate students in an
environment relatively free of traditional design and manu-
facturing processes, we intend to devise new and hopefully
useful design concepts.

There is sufficient information available to prove that
many structural elements can be made lighter by using ad-
vanced composites today than by using metals. But if such
elements have to be joined by methods other than adhesive
bonding, difficulties and uncertainties arise which can be
eliminated only through conservative designs with their at-
tendent penalties in weight or by extensive and expensive
programs of "cut and try". This stands as one important im-
pediment to full adoption of composites by the aerospace in-
dustry.

On the basis of these considerations Rensselaer Poly-
technic Institute began, as the first task aimed at new
structural concepts, the design using composites of a joint
used in an airplane elevator. To make the design realistic,
an existing metal airframe component was chosen for redesign
in composites. The existing design chosen was that of the

Boeing 727 elevator actuator attachment. We conceive of

PRECEDING PAGE BLANK NOT 7o
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this work as carrying forward a Structures Demonstration
Program using the actuator attachment jcint of the 727 ele-
vator, paralleling that of NASA and its aerospace contractor,
the Boeing Commercial Airplane Company. Our design, fabri-
cation and test effort emphasizes designs using advanced
composite construction for the purpose of minimizing the
weight of the structure, but on a scale consistent with the
university context and funding level. The staff of RPI is
very grateful to the Boeing Company and its engineers for
their wholehearted support of this work at RPI.

One of two different designs was reported previously
(July and December 1979) as suitable for replacing the large-
ly metal attachment produced by Boeing. This so-called
"Berg Design" makes use of quasi-isotropic, graphite-epoxy
laminates and was selected for further analysis, redesign,
fabrication and testing. The second design, called the
"Muser Design", which made a deliberate attempt to use uni-
axial graphite-epoxy tape to as jreat an extent as possible,
was suspended. It led, however, to more generic research ef-
forts to maximize the load carrying ability of pin-loaded
holes in composite membranes and plates. These efforts are
directed at improving the design c¢f the attachment of the rib
flanges to the elevatoir skin through mechanical (i.e., pin-
type) fasteners and at maximizing tb_. efficiency of the mov-
able, heavily loaded, actuator attachment points in CAPCOMP.

In addition, however, these generic effects were, and continue
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to be motivated by the general and widespread utility that
will result from improvements in pin-loaded hole designs for
composites.

These efforts have been jointly directed by Dr. Nicholas
J. Hoff, in part-time arrangement and by Drs. laniel

Goetschel, Robert Loewy and Henry Gcarton.

1. The Elevator and Its Attachment

To place the progress reported here in proper context,
some descriptions used in earlier reports are repeated. The
conventional aluminum alloy elevator of the Boeing 727 is
shown in the upper half of Figure I-1. The lower half of
the figure is the new version of the elevator redesigned Ly
Boeing in graphite epoxy; it is evident from the pictures
that the latter is composed of fewcr parts than the former.
However, the actuator fitting of the new design is still
manufactured of aluminum alloy. This fitting is shown in
Figure I-2., The fitting is attached to outboard and inboard
portions of a new graphite-epoxy spar and to a graphite-
epoxy Nomex-honeycomb rib as indicated in Figure I-3.

The attachment was designed by Boeing to carry loads up
to 19,000 pounds. The direction of the load varies as the
elevator rotates over an angle of 28 degrees from the full-
down to the full-up position.

2. Berg's Design (CAPCOMP 1I)
(R. Loewy, H. Scarton) ~

Berg's design for the elevator rib is shown in Figure I-4
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and I-5. The first of these figures compares the Boeing com-
posite design with Berg's design; both are shown. Figure I-5
shows both how the spar and new actuator rib would be assem-
bled and also the build-up of thickness in the lug areas an-
ticipated as needed to provide the required bearing strength.
These ribs are fabricated from Fiberite HY-E 1048 AE/104 Gra-
phite-Epoxy Composite (6.9 um dia. fibers). Note that the
edges of some of the layers are bent 90° to form flanges to
which the upper and lower skins of the elevator can be at-
tached. Attachment of flanges to elevator skins is by means
of titanium Hi-Loc fasteners. The right~hand and left-hand
graphite-epoxy webs are stabilized by a layer oi Nomex-honey-
comb between them to form one complete rib.

The design analyses described in the previous reports
led to an elevator attachment rib with a variable thickness
web. The distribution of thickness was chosen using succes-
sive finite element calculations to produce a relatively
uniform stress level. It is shown in Figure I-6.

The Berg design, composite 727 aircraft elevator actua-
tor attachment rib is shown in —various stages of assembly
in Figures I-7a, ~-7b and -7c. It was fabricated by under-
graduate student Francis DeTaranto. The laminate stacking
sequence and thicknzsses were given in Reference [l]*. They
consist of integer multiple layers of (0°,+45°,-45°,90°)Zs
laminates.

As noted in earlier reports, the Boeing Commercial

*
References in this sectionrefer to the list on page 54.
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Figure I-7c¢

Elevator Attachment Rib Assembly Mounted and
Instrumented for Testing
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Airplane Company provided a full description of the testing
procedures they used to qualify their 727 elevator actuator
attachment structure. Figure 1-8 shows the Boeing test set-
up; note that two hydraulic cylinders (mounted horizontally)
provide the actuator load and reaction through a vertical
bar whicii is bolted to the two elevator actuator attachment
points. In the absence of such mobile hydraulic load gener-
ators at RPI, the equivalent loadings were generated in an
Instron testing machine through linkages as shown in Figure
I-9. In the campus test set-up, loads were applied verti-
cally to a bar oriented horizontally which transmits the
loads through two bclts to the elevator actuator attachment
lugs. Equilibrium analysis of this linkage arrangement was
reported in Reference [2]. Also shown in Fiqure I-9 is the
“strong-back" structure (items 9, 10 and 11) and the rein-
forcements of the elevator rib (items 12 and 13) to ensure
reaction-load transfer to the "strong-back" structure. These
test fixtures (i.e., items 9, 12 and 13) and the aft elevator
skin reinforcements (item 14) are essentially those used in
the Boeing test.

The first proof load test to failure of the Berg de~
sign actuator attachment rib was conducted on December 12,
1980. Both strain gage and acoustic emission data were
taken during this test. Those conducting the test and
monitoring the instrumentation were protected from the pos-
sibility of failed parts, such as rivets, being propelled

away from the structure by the strain energy stored in it
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near maximum load. This protection was provided by a trans-
perent Plexiglas and wire-mesh barrier.

In virtually all respects this was a completely suc-
cessful test. The design, which was intended to he conser-
vative, failed at approximately 120 per cent of design ulti-
mate load. Failures occurred close to where they were
expected and were multiple in nature.

The instrumentation used to test our specimen is shown
in Figure I-10 without the personnel protection barrier and
in Figure I-11 with the barrier. A list of the instrumenta-
tion follows:

a) For strain gage analysis, we used six 45°
strain rosettes wired into an FX Data Logger

(31

Strain Monitor

b) For acoustic emission monitoring, three acous-
tic emission transducers were installed and
used i:: conjunction with the AET 5000 Acoustic

(4]

Emission System provided for this test
through the courtesy of the Acoustic Emission

Technology Corp.; namely;

R:sonance Preamp. Gain Bandwidth
Sensor Type __(kHz) Model No. (dB) (kHz)
1 AC 175C 175 160 60 125-250
2 AC 175C 175 160 60 125-250
3 AC 375L 375 160 60 250~-500

c) Load application was performed using an Instron
1333 machine, with maximum capacity of 251.68 kN

(56,500 1bs) (5],

T DITEIR SRR LR T ¢ SRR SIGERRE it
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Figure 1I1-10

Elevator Actuator Attachment Rib Test Fixture and
Instrumentation (without personnel protection barrier)

Figure 1I-11

Elevator Actuator Attachment Rib Test Fixture and
Instrumentation (with personnel protection barrier)
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The conditions of loading (Figure I-12) can best
be described as continuous loading with discontinucous slope.
Initially, load was applied at a constant rate of approxi-
mately 0.19 kN/sec (43 1lbs/sec). At each ten per cent
increment of the full scale Instron load, 125.84 kN (28,250
lbs.), the loading condition was held constant for a peri-
od of about 45 seconds. This was done so that two acoustic
emission amplitude distributions for sensors AE1l and AE 2
could be obtained from the line printer. Visual inspection
of the specimen also was accomplished during these periods.

Strain gage output and acoustic emissions were both
monitored continually and cumulatively beginning with the
initiation of load on our composite specimen. The functions
monitored were:

a) Strain as a function of time for the six 45°
rosettes.

b) Applied load as a function of time.

c) The number of acoustic events versus acous-
tic emission amplitude for sensors AE1l and
AE 2 .

d) The total number of acoustic emission events
versus load for sensors AE1, AE2and AE3 .

Locations for all strain gage and acoustic emission
sensors were chosen by ~tudying the principle stress contour

[6:7] and shown

map developed using finite element analysis
in Figure I-13,
Strain gage analysis at the failure site C, by graduate

student Chi-~Min Chang, revealed a non-symmetric loading

PR SLAR  AERE T
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condition. The strain in the y direction varied by 18.75%
from one side of our composite specimen to the other (Figure
I-14). Considering the source of this dissymmetry led to
the following analysis. If the line of action of the applied
load were off-center a distance ¢, as shown in Figure I-15,

equilibrium of moments requires

Equilibrium of forces, however, states

P = Rl + R2.

So that

|

) v —
T Y5 T RTTF RO

From our tests

el
R2

1l - 18.75%, so that Rl = R2(0.8125).

Hence

R')

£ _ 2 €
"t = T.8125R, and g

= .052 .,

It is clear that positioning the line of action of the ap-
plied load is very important (D = 2") and considerable care
will be taken with that aspect in future tests.

The strain analysis results also showed, as expected,
that one of the regions of highest calculated principal
stress (see Figure I-13) exhibited the highest measured

principal strain (near strain rosette gage C; Figures I-1lGa
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Figure 1I-14

Strain Values in 2 Directions at C & C'
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and I-16b). It is a source of some satisfaction that strain
gage C was destroyed nearly at the precise moment of failure;
the crack went through the middle of it. The maximum prin-
cipal strain at strain gage C reached a value of 5,405 um/mm
roughly 910 seconds into the test, as shown by the plot of
strain versus time for strain gage C in Figure I-14. The
maximum strain was in the y direction, as shown in Figure I-16b.
Using the principle stress in gage C from Figure I-13 and

the principle strain value of Figure I-14 and assuming the
principle directions coincide, we are led to conclude that

the equivalent Young's modulus of this structure's material is

22,600 1 _ 6 \
35,000 x 15,000 x = 7.7 x 10 psi.

5405 x 10 °

This checks reasonably well with theoretical values of 8.3 x
10% psi for the laminate used.

Acoustic emission data near the failure site was ob-
tained from sensor AE 3. From the graph of Total Acoustic
Emission Events versus Load for sensors AE 1, AE 2 and AE 3
(Figure I-17), we can estimate the point of critical activ-
ity; i.e., the point at which the slope of the curve of
events increases sharply with increasing load. (ASTM speci=-

fication E 569 8!

). It occurs at an actuator pin load of
60.5 kN (13,600 lbs.) at 515 seconds, while ultimate failure
occurred at an actuator load of approximateliy 100.5 kN
(22,600 1lbs.). The design load was 84.6 kN (19,000 1lbs.)

at 890 seconds (see Figure I-12). It is interesting to
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Orientation of Rosettes and lLocation of Acoustic

Emigsion Transducers on Boeing 727 Elevator
Actuator Attachment Rib
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Figure 1-16b

Directions of Maximum Strain anc¢ Acoustic Emission
Sensor Locations for Boeing 727 Elevator Actuator
Attaciment Rib
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compare these results with those obtained with an earlier
Boeing designlg] that became critically active at 60,1 kN
(13,500 lbs.) and ultimately failed at 114.9 kN (25,800 lbs.).
A comparison of the acoustic emission amplitude distri-
bution data at sensor AE2 early in the test (Figure I-18)
with that at failure (Figure I1-19), shows the tendency to-
ward the anticipated multimodal ampli:tude distribution re-

ferred to in earlier AE work with compositesllo'll'lzl.

The
large number of low amplitude events occurring between 30 and
40 dB suggests matrixcracking. The higher amplitude acous-
tic activity at sensor AE1l occurring above 55 dB is, at
least retrospectively, a clear sign of fiber breakage occur-
ring even at a pick-up point where lower amplitude events
have been lost due to attenuation and transmission loss in
the titanium Hi-Loc fastener joint. Note that the break in
the sensor AE 2 curve (Figure I-19) was caused by the sudden
failure of the specimen in the middle of an amplitude distri-
bution updating in the 42 dB interval. It should also be
noted that the collection of all events whose amplitudes were
64 dB and above and displaying them as chough they occurred
at 64 dB took place because we chose to use a 60 dB gain
preamplifier. For example, a 40 dB preamplifier provides an
84 dB dynamic range. This might have been more appropriate
for use with these high amplitude signals and allowed s:par-
ation of the high ampl :ude events, rather than ccllecting

and showing them in the 64 dB "bin"lll]. Finally, the data
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from those collected at the lower number of AE eveats for
sensor AE 3, which is located closest to the failure site,
is a result of the high frequency band width of sensor AE 3
compared to sensors AE1l and AE2 and indicates that these
AE events have spectrum components largely below 250 Hz.

Post-test visual analysis of the failed specimen (Fig-
ures I-20 and -21) in the vicinity of strain gage C clearly
implicates the precise cause of local failure as tool marks
around the Hi-Loc fastener. A slight unevenness in that
region was induced by improper curing there. Attempts to
level the flange by sanding may have weakcned it, In addi-
tion, the bottom of the last fastener nut (Figure I-21) was
filed off in an attempt to contour its bottom with the com-
posite. This probably caused stress concentrations at the
fastener-composite interface in the vicinity of the sharp
transition between flats.

Figure 1-22 shows that the composite surface layers have
partially deiaminated in the vicinity of many of the fasten-
ers. It is noted that no washers were used beneath the
fasteners on this test. In one sense, multiple failures of
the structure are reassuring; a strong analytical effort was
made to achieve a constant stress level throughout the actu-
ator attachment rib. On the other hand, application of the
results of the work of graduate student, Wonsub Kim (see the
following sections), to this kind of fastening is clearly

indicated.
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Figure I-20

Failed Section and Strain Gage
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Figure I-21

Close Up of Failed Section
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In the period ahead, a second elevator actuator attach-
ment rib will be fabricated. 1In this effort, attempts will
be made to incorp rate some of the lessons learned in this
first test. Loadings to failure will be repeated, and strain
gage and acoustic emission instrumentation will again be

used,
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3. Lockheed L-1011 Engine Drag Strut (CAPCOMP II)
(D. Goetschel)

Following a visit by Dr. R. Loewy to the Lockheed Cali-
fornia Company on November 12, 1980 and subsequent meetings
and discussions in the NASA headquarters office of the Pro-
ject Officer, we have jointly selected the drag strut of the
wing-mounted, jet engine nacelles of the Lockheed L-101l1l
commercial transport aircraft for redesign in composites as
the second CAPCOMP project. A drawing of the strut, cur-
rently a steel forging, is shown in Figure I-23. The manner
of its installation is shown in Figure I-24. Both of these
drawings, along with the first of the considerable informa-
tion needed to perform this design, have graciously been pro-
vided by the Lockheed Company.

Material costs and test fixture costs may make it de-

sirable to actually build a strut that is shorter than
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Lockheed L-1

Figure 1-23

011 Engine prag Strut

(Schematic)
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required on the aircraft. This should be possible without
detracting from the substantial challenge of the prcject.

If the strut is of uniform cross-section over most of its
length, then St. Venant's principle would allow reduction of
the length of the uniform cross-section portions without al-
tering the stress distribution in the ends of the strut. To
justify this it will be necessary to quantify the rate of
decay of stress irregularities for the particular cross-~
sectional shape and anisotropic material properties employed.
To this end, a computer program has been written and is cur-
rently being debugged. This program models the cross sec-
tional shape with finite elements and assumes an exponential
form for the decay rate for self equilibrating end loads.

An eigenproblem analysis is then performed to determine the
values of the decay rates (eigenvalues) and cross-sectional
stress distributions (eigenvectors) for each mode.

Several preliminary design concepts have been explored
for the redesigned drag strut structure considering composite
materials. These preliminary designs suggest that a substan-
tial weight savings can probably be made.

A preliminary design has also been made of a test fix-
ture to be used in conjunction with RPI's electronically
controlled, 56,500 1lb. maximum load Instron machine. Hope-
fully this test fixture would allow both the static and fa-
tigue testing of the strut to be performed on the Instron

despite the fact that nominal ultimate load for the L-1011

Fow T san T -
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drag strut is 500,000 lbs.

Plans for the upcoming period include completing the
debugging of the prismatic St. Venant's computer program.
We then intend to perform analyses to determine how short a
candidate strut can be made without changing the essence of
the design problem and its supporting analysis. It should
also be possible to examine several candidate designs in de~-
tail and perform one iteration of detailed design and sup-
porting analysis. A detailed design of the test fixture

should also be possible.

4. Optimizing Fiber Orientations in the Vicinity
of Heavily Ioaded Joints

(N. J. Hoff)

A. Introduction

The purpose of this work is to find ways of arranging
fibers in a composite structure that lead to high load-
carrying capacity-to-weight ratios in the neighborhood of
discontinuities such as mechanical joints and openings. The
paucity of theoretical information of this kind and the
scarcity of long-time practical experience with composite
joints have ~ompclled designers to use metals for fittings
rather than composites in most highly-loaded cases. It is
believed that composites offer the possibility of saving
weight in such joints and, thus, merit a detailed investi-

gation.
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B. Status on September 30, 1980

A closed-form solution was found for the stress distri-
bution in a circular plate with a central hole of radius
r = 1 and an outer radius r = R under uniform tension o in
the x-direction when the material of the plate is cylindri-
cally orthotropic and the four compliances srr'sre = SerrSg
and S,,4re constant. This configuration and the associated
notation are shown in Figure I-25. The maximum value of the

circumferential stress o at the edge of the hole (r = 1)

09
was found and was expressed in terms of only two combined
parameters. The first of these is the ratio §rr = S:r/sea‘
and the second § = 2§r8 + §66 = 2(8_4/Sg4) * (S4./554) ¢

The results of the calculations indicate that the stress
distribution in the circular plate depends greatly on the
values of the parameters §rr and S. In some ranges of the
values the stresses are given by exponential functions of r
with real argument, in others by products of trigonometric
and exponential functions (all with real argument), and in
still others by pure trigonometric functions (with real arqgu-
ment). In addition, it turned out that the behavior at in-
finity, that is in the limit as R was made to increase be-
yond all bounds, also differed greatly in different ranges of
the parameters.

The numerical values of the stress concentration factor

were calculated for a small number of combinations of values

of the two compliance parameters. They were found reasonable



Figure 1I-25

"Notation"
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in comparison with known stress concentration factors for
isotropic and orthotropic (in a cartesian system of coordi-
nates) plates.

In addition, much work was done as part of the research
of graduate student C. Muser, to calculate the stress-con-
centration factor in plates whose compliances vary as func-
tions of the radius r. 1In the constitutive equation, the
constant compliance S;q was augmented by a radius-dependent

*
term S e r’h, where ei and h are constants. As a first ap-

pPq i
proximation to the solution of the new system of equations,

¥

the known solution of the system for which e; = 0 was chosen.
To correct for the error, an infinite series was added to
the solution and the cocefficients of the series were deter-
mined.

A few cases were worked out in full numerical detail.
In these, h was choseneither as 2 or as -2, and the values
of the constants e, were so selected as to approximate
roughly the values of the compliances of plates for which,
at r = 1, all the fibers run at angles '45°, and at R = 10,
the fibers are arranged so as to yield a quasi-i-~tropic
material.

The variation in compliance values and the variation
of the circumferential stress, both as functions of r, were
presented diagramatically in the last semi-annual report.

It can be seen from these diagrams that the stress distribu-
tions are quite different from those occurring in plates

with constant quasi-isotropic compliance values.



63

C. Progress During Report Period

The expressions obtained earlier for the stress coincen-
tration factors were evaluated for a wide range of the val-
ues of the parameters grr and S. The numerical work was
carried out for R = 6 and R = 10. The results differ little
in these two cases, and they appear to be satisfactory when
used for test specimens of finite size even though the spe-
cimens are not circular. If very accurate results are needed
for rectangular specimens, probably calculations by finite
element methous are unavoidable. Finite element analyses,
of course, give results only for the particular specimen
treated and lack the generality of the present treatment of
the problem.

In the present case, the formulas derived earlier can

be re-written in the following modified form:

Y
_ _ - - 2 _ -
G=oa+ B = [1 + Srr + h*“S + 2(n l)/srr]

)
- - = P 28 _ 2 _ /&
H=a B [1 + srr + n*“s 2(n 1) Srr]

aZ_BZ

]

GH (3)(G + H) =a (4)(G-H) =28

aB (%) (G2 ~ H?)

When the expressions in braces for both G and H are
positive, both G and H are real. In such a case, the circum-

ferential stress at the edge of the hole can be written as
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= (oR/4) (N/D) cos 26

0, - 1
with
N = GH{G/R%/? + rR™G/2) (gH/2 _ gH/2,
- u(rR%/2 - r7%/2) (gH/2 4 g7H/2,
- (9 (G2 - H?)(RS/2 - R7G/2) (gH/2 _ p-H/2y,
D = (262 - H?) + H2(R® + R™S) - g2 (r? + rR°H)

Since both G and H are real, the following relations

hold:

G

(1) (R + R™G) G log R

e—G log R

(%) (e + ) = cosh (G log R)

G

() (RG - rR°G GlogR _ e-G lggR

() (e ) = sinh (G log R)

and similar expressions can be written for combinations of
RH. (Here loy R stands for the natural logarithm of R.)
Similar formulas can be written for those regions of
the parameters grr and S in which the roots of the charac-
teristic equations are conjugate complex or pure imaginary.
Figure I-26 shows how the character of the roots varies
in the grr - S plane. With the aid of this information, it
was possible to calculate the stress-concentration factor
for all possible cylindrically orthotropic plates provided
the compliances were constant. The final results of the cal-
culations for the case when R = 10 are presented in Figure

I-27. The R = 10 case was shown by computations to be repre-

sentative of the behavior of specimens of finite size.
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One general observation can be made on the basisz c¢%
Figure I-27; for any fixed value of S, the stress concentra-
tion factor increases as grr decreases, and it becomes very
high as grr approaches zero.

In the cases in which compliances vary with the radius,

the variation was represented by the constitutive equation

() [ + _h * + _h ()
er Srr + srrr 5.6 + Srer 0 Or
_ * + _h * + _h
Eg| = Sre + Srer S66 + Seer 0 06
* + _h
‘Yrej i 0 0 866 + 566r_J\‘r6j

By selecting h properly {it can be either positive or nega-
tive), the actual variation of the compliances along the
radius can be approximated satisfactorily in most cases by
the powers of r shown. If higher accuracy of the represen-
tation is desired, terms with rzh, r3h,-o- can be added in
thc matrix, but, of course, the time needed for the solution
increases considerably.

The solution is started by assuming the known solution
for the case when all the S;q are zero. (This is the case
when the compliances are constant, i.e., independent of r.)
When this is done, the compatibility condition is satisfied
for all those terms in which the St do not appear. There
remains, however, a non-vanishing residue Rh which is multi-
plied by rh'-z. (In this residue the S;q appear.) To get

rid of this, one adds to the first solution a term multiplied
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h

by r "' and by a constant, Kh' Part of the residue in the

compatibility equation due to this term, which can be denoted
R;, again contains a multiplier rh"z. From the require-
ment that Rh + R; = 0, h = 0, one can calculate the neces-
sary value of Kh.

It should be evident that the second term in the solu-
tion will leave a residue Ron which can be eliminated by ad-
ding a term with a factor r2h to the solution, and the pro-
cess can be continued ad infinitum. This process was car-
ried out and expressions were derived for the constants Kh.
The convergence of the process was investigated and the
limits were stated within which convergence is found. Of
course, the analysis had to be carried out both for terms
multiplied by functions of 8 and for those independent of 9.
Also, a number of special cases had to be treated (for in-
stance, when grr =1).

Numerical results were obtained for many cases and a

report on the work is now in preparation.

D. Current Publications or Presentations by
Professor Hoff on this Subject

"Stress Concentrations in Cylindrically Orthotropic Compos-
ite Plates with a Circular Hole"

Accepted for publication in the Journal of Applied
Mechanics.

Presented at the Joint ASME/AGCE Mechanics Confer-
ence, Boulder, Colorado, June 23, 1981.
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5. Supporting Research on Lightly Loaded Mechanical Joints

(R. Loewy)

A. Introduction

The work of graduate student Wonsub Kim continued to
concentrate on stress distributions around pin-loaded holes
in composite membranes and plates with no special fiber ar-
rangements around the hole) and the associated bearing
strength and failure mechanisms.

The general stress analysis problem of composite plates
joined mechanically in this way cannot be solved with any
single known analysis method. The difficulties arise because
of the variability of contact between the loading pin and
hole. Any real join% usually has clearance hetween the pin
and hole. (See Figure I-28 for parameter definition.) Ex-
ceptions include "shrink" or interference fits. When clear-
ance exists, it reduces the initial contact region to less
than half the perifery of the hole. Since the most critical
area in the domain is the area close to the hole, and since
the stress distribution depends highly on the contact area,
a proper stress analysis should use boundary conditions
based on the correct contact region. On the other hand,
where there is clearance, the angle of contact cannot be
known at the outset.

To overcome this frustrating sictuation, a semi-empirical
stress analysis method was employed which we call a "mixed"

method. The method is based on the fact that the isochromatic
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fringes in photoelasticity depict the maximum shear strain
distributions. These same distributions can also be repro-
duced by a finite element analysis, if a contact region is
assumed. If the contours produced by the finite element
method match well with the isochromatics, then it is reason-
able to believe that the assumed contact region is correct.
All of the corresponding stress analysis results, in fact,
can then be assumed to be correct within the limitations of
finite element theory. This "mixed" analysis approach can
be used to analyze a clearance-fit joint as well as tight-
fit cases.

Considering the deformation of the part of the surface
of the hole which is contacted by a pin under load, it seems
clear that any attempt to predict the ultimate strength of a
joint based on a stress analysis with the assumption of half
circle contact - as is often done - is unlikely to yield

usieful results.

B. Status

In the previous progress report, the development of com-
puter programs to implement the "mixed" method was reviewed
in some detail. The first attempt to draw the maximum shear
strain contours was also reported and discussed. It was
pointed out that the values of the maximum shear strain con-
tours were almost twice as high as the values indicated by
the corresponding isochromatics. Subsequently, it was founa

out that an input error was responsible for that result. 1In
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the finite element analysis, we took advantage of symmetry
and analyzed a model that is half the width of the photoe-
lastic specimen; we therefore should also have uged one-half
the applied load. As a result of using the total load ep-
plied to the photoelastic experiment, the analysis predicted
stresses two times too high, since the material properties

are linear.

C. Progress During Report Period

The work to check the adequacy of this method as applied
to the joint problem has been continued. The sample examined
was the plate with fiber arrangement {+45/-45/90]6S, where
the angles are measured from the direction of the applied
load. The mesh used in the finite element analysis is shown
in Figure I-29. Fiqure I-30 is a photograph of a photoelas~-
tic experiment showing the isochromatic fringes at 3,000 lbs.
load. The diameter of the loading pin was measured as 0.5001
inch, while the maximum diameter of the drill bit used was
0.499 inch. To assemble, a very hard hand push was necessary
to put the pin through the hole; i.e., clearance was quite
small. 1In Figures I-31 through -33, maximum shear strain
distributions are shown, as predicted by finite element anal-
ysis for contact angles (6C in Figure I-28) of 80, 50 and 40
degrees, respectively. The strain values per fringe are the
same for both methods; finite element analysis (Figures I-31

through -33) and photoelasticity (Figurs I-30). Comparing
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Figure 1I-30

Photoelastic Fringes (Isochromatic)
(Applied Load 3,000 1b.)
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these diagrams, it appears that the 50 degrees contact angle
assumption is the best among the three. It should be noticed
that even 10 degrees variation in contact angle resulted in
substantial differences in stress distributions. (Compare
fFigures I-32 and -33)

Although fine adjustments to complete this sample prob-
lem rewmain to be done, even at this point it satisfactorily
establishes the principles involved. It would appear that
in this case of very small clearance, the actual contact
angle is closer to 50 degrees than the 90 degrees of a half
circle contact assumption.

The finite element model shown in Figure I-29 is changed
slightly from that reported for the last period. The density
of element population was increased near the hole and de-~-
creased in remote areas to improve accuracy while keeping
costs at the same level.

A more sigrificant change was in the constraint equa-
tions employed in the houndary conditions for the finite ele-
ment analysis. The previous constraint equation set the ra-
dial displacement to zero at nodes on the loaded edge of the
hole. This put points on the locaded part of the hole into
contact with the pin reyardless of the load state. The new
constraint equation simulates more closely the actual behav-
ior in that area. That is, a point within the contact region
does not touch the pin initially, but its final location is

on the surface of the loading pin at the equilibirum state.
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Rather than setting radial displacements to zero, this simu-
lation imposes precalculated values of radial displacement
on individual nodal points to bring them into contact with
the pin within this region. A description of the way this
restriction was calculated from the geometry follows.

The schematic drawing of the clearance fit joint prob-
lem at zero load state is shown in Figure I-28. P(x,y) is
a representative point on the hole boundary within the soon-
to-be-ccntacted region, and, x and y are the location of
point P in a global cartesian coordinate system with origin
at the intersection of the plate center line and the loaded
edge. The allowed radial displacement of this point is L in
@ polar coordinate whose origin is located at the center of
the loading pin. L can be expressed in terms of components

of the displacement at P as,
-L = ucos¢ + vsing¢ (1)

where, u and v are x and y displacements, respectively, in

terms of global coordinates, and y is given by

(Y0~

¢ = arc tan (2)

where Yo is not shown in Figure I-28 but is the distance, in
the loading direction, between the center of the hole and

the loaded edge. From the geometry of Figure I-28,

L = ccos¢ + (y-ﬁ-yo) sin¢ - r (3)
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where, r is the radius of the loading pin. Equation (1) is

the new constraint equation.

When the clearance, §, is zero, r R, § = 6 and equa-

tion (3, becomes,

L =xcosf +vsing - R =0 (4)
so that equation (1) becomes
0 = ucos® + vsin®g (5)

This is the old constraint equation. Significantly, this
new constraint equation enables the clearance-fit analysis
of a mechanical joint as well as tight-fit analysis.

Now it appears that the semi-empirical),6 "mixed" stress

analysis method is completely established and ready for use.

D. Plans for Upcoming Period

To attack real joint problems, we will test several
more photoelastic specimens. Grid meshes will be engraved
on the pl.octoelastic coating materials of all future specimens
to improve accuracy. This technique has already been tested
and the results were satisfactory. The pin/hole clearance
of future specimens will also be carefully controlled in the
fabrication process. (ASTM D1602-60, pp. 156-159, 1979)
Analyses will be performed for five to six loading steps
for each specimen to determine the relations between the con-
tact angle and applied load. After that, if time aliows, we
will try to link the results of our stress analyses to the

fracture strength of the specimens.
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CAPGLIDE (Composite Aircraft Program Glider)
(R. J. Dienfendorf, H. J. Hagerup, F. Bundy)

l. RP=2

The design work on the RPF-2 all-composite, high per-
formance, ultra-light sailplane has been completed, and con-
struction of the aircraft is well advanced. The preliminary
design configuration described in the last semi-annual re-
port was not significantly altered in the final design phase.
The aircraft will have a wing zpan ot 13.5 m (44 feet), wing
area 11.1 m? (120 square f{cet), aspect ratio 17, (L/D) max.
of 30 and the total empty weight with the auxiliary (launch-
ing) engine installed is expected to be less than 82 kg
(180 1lbs.). Performance estimates cn the final design are
for a stall speed of 47 kp* (2€ krnots), miunimum sink rate of
0.5 m/s (1.7 f£ps) and best glide ratio of 30. It is expected,
however, that some tailoring of the wing-fuselage intersec-
tion as well as some fine tuning in general will be necessary
to achieve this glide ratio. The final wing design incorpor-
ates all-graphite split flaps for glide path control, and
the aircraft is structurally designed for a maximum nominal
load of 5.5 g's at a diving speed of 160 km/h (85 knots).
Additional information on the aircraft is given in Table II-1.
The glide polar for the entire range of aivspeeds is shown in
Figure II-1.

In addition to designing for maximum air loads, problems
of aerovelastic instability were also investigated. Two such

e o
OPTOE 2 rng g

ce . g
e SR :u"“z{)



84

4

(AVQ G¥VANVLS - 13A371 v3S)
gl4/59N7S 22€200 =A1ISN3Q ¥V
'S8 2SE=LHOIIM SSOHO G3NNSSV

Ovya 31ISVYVd

ALNIVLY3IONN 40 S1INS3Y

3H1 S31VIIANI ON

091 0S! Obl
I

-y ay3 103 zetod Yo/To pue e3ey wurs  1-11 @anbl4

3H1 NI

IHOLVH SSO¥D:310N

osl 0zl Ol OOl 06 08 OL ©9 08

T A I [ N N N B

31VY MANIS

(O3S/N)

~
|

>

s¢

0¢

Sl

Ol

001 06

o8 oL 09 0S ob o€
(yaw) A 11D013A

R



TABLE II-1

AIRCRAFT CHARACTERISTICS DATA FOR THE RP-2 SAILPLANE

Overall:
Span m (ft) 13.5 (44.25)
Length m (ft) 6.6 (21.65)
Height m (ft) 1.25 (4.1)
Wing:
Area m? (ft?) 11.1 (120)
Aspect Ratio -- 17
Section Profile - BOAF-63

Vertical Stabilizer:

Span m (ft) 1.25 (4.1)
Area m?2 (ft?) 0.5 (5.4)
Section Profile - FX-1L-III-142

Horizontal Stabilizer:

Span m (ft) 2.50 (S.2)
Area m2 (ft?) 1.00 (10.8)
Section Profile FX-L-I11-142

Performance at a Gross Weight of 160 kg (353 1lbs):

Stall Speed w/o Flaps kph (mph) 47 (29)

Minimum Sink Rate m/s (ft/s) .53 (1.7)

Maximum Glide Ratio at Vkm/h (mph) 30/61 (30/38)
Empty Weight (estimated), kg (lb): 78 (172)

Tail Effectiveness:
V/V* Horizontal Surface .42
V/V* Vertical Surface .052
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instabilities were examined; namely, torsional divergence of
the wings and coupled torsion-bending flutter of the aft
fuselage-tail assembly coupled with tail control surfaces
rotation. The torsional divergence calculation was performed
using a computer program package which applies matrix methodc
(for example, Reference 1*) to determine aerodynamic loading
and deformations of composite wings. This program package
was developed during the last reporting period and is general
enough to account for double tapered planforms, two rates of
linear built-in twist, dual skin thicknesses and arbitrary
airfoil sections. it also accounts for the effects of fi-
nite span and load redistribution due to deformation. The
theoretical torsional divergence speed was calculated using
this method as 130 m/sec (290 mph).

The further analysis of the fuselage tail-boom assembly
was done using the method of Reference 2. Natural vibration
modes were used as generalized coordinates in the analysis.
The structure was first modeled, therefore, as a discrete
parameter, mass-spring system and a matrix Holzer procedure
(Reference 3) was programmed for RPI's digital computer, the
IBM 3033. By this means the natural mode shapes and fre-
quencies of the fuselage aft of the wing were determined for

both vertical bending .'nd coupled side-bending-torsion cases.

*
References in this section ~-e listed on page 92.
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Tt 3 information was then used in conjunction with the asso-
ciated unste ady aerodynamics of the tail, to investigate the
possibility of flutter with free control surface rotations.
The assembly was shown to be flutter free within the flight
envelope of the glider.

Status of construction at the close of the reporting
period saw rib-stringer frameworks for empennage and both
wings completed (Figures .I-2 ana -3). In addition, skins
have been prepared, and the bottom skins installed both on
wings and horizontal tail. Kevlar-cloth/foam/Kevlar-cloth
double-sandwich lay-ups are used for the center section wing
skins, and Kevlar-cloth/foam open-sandwich construction is
used for the skins of the tapered outboard wing sections.
After inspection of the partially compieted structure by the
FAA, as required by Federal Air Regulations, the upper sur-
face skins will be installed. Meanwhile, the tapered graph-
ite tube which constitutes the aft two-thirds of the fuse-
lage, the torque-box wing-fuselage connection and the main
framework for the forward portion of the fuselage have been
completed. The last of these consists of an "elephant tusk"
type structure stabilized by cross beams at the pilot seat
and cockpit flight control positions. Construction details
can be seen in Figures II-4 and -5. The fuselage shell will
be carved out of lightweight foam, reinforced with Kevlar/
epoxy for strength, and covered with glass/epoxy for surface

finish.



Figure 1I1-2
Wing-Spar-Rib Assembly in Construction

Figure 1I1I-3

Empennage Rib-Spar-Stringer Assembly to Aft Fuselage
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Figure 1II-4

Rib-Stringer Frameworks for Empennage and Side Frame
("Elephant Tusk") of Fuselage Structure Before Assembly

Figure 1I-5

Fuselage and Empennage Structure In Assembly

89
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The need for molds has .een eliminated throughout, in
the construction of the RP-2. 1. is expected that the main
airframe will be completed and proof-tested structurally at
the end of summer, with some detail work primarily on instru-
mentation and engine installation remaining for the fall.

RP~1, meanwhile, has been modified by the installation
of a landing wheel to facilitate launch by winch-tow and
operation from a hard-surface runway. It is expected that
flight operations will resume in early to midsummer 1981,
aimed at securing additional perforﬁance data for this air-
craft.

Activity in the Composites Fabrication Laboratory during
the present reporting period involved completion of individ-
nal student projects begun in the fall semester, and with
the spring semester has been focused almost exclusively on
fabrication of the RP-2. A total number of 45 undergraduate
students are directly involved in this work, with the major-
ity spending ten hours per week in the laboratory. Students
new to the project started tre semester by completing a
series of basic lay-ups of the types typical of the RP-1 and
RP-2 structure and were subsequently assigned to RP-2 working
teams according to preference, e.g., wing group, fuselage
group, etc. Fach working team is headed oy a student with
one or more semesters of experience in the laboratory, ari
working schedules were prerared so that new students are al-

ways paired with sufficient rumbers of experienced hands.
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Large enrollment notwithstanding, the laboratory has contin-
ued to function smoothly under the management of Mr. Volker
Paedelt, assisted by Mr. Steven Winckler who serves as chief
designer of the RP-2., Individual student projects, follow-
ing this procedure, will again be introduced in the fall.
Two projects carried over from the previous reporting period
are described below.

Project 1 - Tapered Graphite Tube. Using data obtained

in the fall, an all-graphite fuselage boom was designed and
built. The design is stiffness-limited, due to the require-
ment that the natural frequency in the bending-torsion mode
be high enough to avoid flutter. The boom was constructed in
two pieces because of autoclave limitations; and the two
pieces are joined by a graphite inner sleeve. The lay-up
consisted of twelve plies of prepreg at the root, tapering

to eight plies at the tail, with four plies !45°, and the re-
mainder lined up with the tube axis.

Project 2 ~ Graphite-Kevlar Leading Edge. This project

was not developed to the point where it could be used on the
RP-2. A successful prototype was fabricated, however, for a
small typical wing section. The main problem in scaling
this up for the full-size aircraft is the need for sheet

metal leading edge molds of very high precision.
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COMPAD (Computer Aided Design)
(M. S. Shephard)

The objective of the computer aided design portion of
the composites project is to provide computer "tools" for
the analysis and design of composites structures. COMPAD's
major thrust has been in the finite element area with effort
directed at implementing finite element analysis capabil-
ities and <-»veloping interactive graphics preprocessing and
postprocessing capabilities. Recent efforts have been di-
rected at completing the interactive graphics programs in
the POFES* system making up a complete two~dimensional sys-
tem. that can be used effectively to solve a wide range of
structural analysis problems. In addition, efforts have Le-
gun to develop the additional analysis capabilities reguired
to employ finite element techniques in the investigation of
both the moisture effects on carbon-epoxy composites and the
micromechanical failure of composites.

The next three sections describe the progress made to-
ward the completion of the two-dimensional portion of POFES
and development of analyses capabilities for the two appli-
cations area. The last section discusses plans for the up-

coming period.

*
POFES (Peopie Oriented Finite Element Software) is RPI's
finite element software system.
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l. Two-Dimensional POFES Progress

Effort during the current reporting period has concen-
trated on the addition or improvement of the following fea-

tures:

a) Development of a link between the attribute
*
editor and FEPROQ .

b) Addition of a general triangulation algorithm
to the preprocessor.

c) Generalization and improvement of the point
load and boundary condition segment of the
attribute editor.

d) Restructure of the material property segment
of the attribute editor.

The link from the attribute editor to our in-house
analysis program FEPROQ is a simple set of Fortran routines
that takes the geometric information generated by the pre-
processor along with the load, material property and bound-
ary condition information specified with the attribute edi-
tor and formats it as required for the analysis program.
This process is performed as the last step before the user
exits the attribute editor. It is important to note that
the preprocessor and attribute editor information is stored
in general form, so it is a straightforward task to format

it for any analysis program.

*
FEPROQ is one of RPI's in~house finite element analysis
programs.
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Although a simple task, creating the link between the
attribute editor and an analysis was an important step be-
cause it completed the integration of all the two-dimen-
sicnal portions nf the POFES software. It is now possible
to interactively generate, analyze and view the results for
finite element models in minutes, using a software system
that is easy to learn to cperate,

The basic mesh generators in the preprocessor are based

*
on linear blending functions[l]

and afford the user a pow-
erful means of generating a wide variety of element meshes.
However, they do require that opposite sides of the mesh
patch have the same number of nodes. Since this does not
allow for convenient mesh grading, some form of general tri-
angulation technique is desirable. Therefore, in additicon
to the one element deep transition generator discussed 1n a

[2) has

previous report, a general triangulation generator
been added. Although this type of mesh generator is not
satisfactory as the basis for an entire preprocessor, it is
useful in performing more complex transitions where each
side of a mesh patch can have a different number of element
edges. Figqure III-1 shows how this capability can be used

to fill a three-sided patch that has a different number of

element edges on each side.

*
Bracketed numbers in this section refer to the references
listed on page 106.
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a) Transition Mesh

b) Complete Mesh

Figure III-1

Use of General Triangulation Capability to

Generate a Transition Mesh
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Minor changes have been made to both the point load and
boundary condition segments of the attribute editor. Modifi-
cations were made to improve the features that allow the
user to check the conditions he has specified. 1In addition,
a feature has been added so that the user can specify the
number and type ~f nodal unknowns used. This enhances the
generality of the prugram by allowing for the use of non-
standard nodal unknowns.

After a short period of operation it was determined
that the mode of operation of the material property editor
described in the previous report could be improved by chang-
ing the way the material properties are displayed. 1Instead
of attempting to generate and display material properties on
the structure, a special display page is used to construct
a table of material properties which are then applied to the
structure. This allows the user to see much more material
information presented in a clear tubular form at one time.
In addition, it makes the operation of property duplication

and modification features much easier for the user.

2. Numerical Investigation of Moisture Effects

Efforts toward the numerical analysis of moisture ef-
fects on carbon-epoxy composites has led to the deveiopment
of a nonlinear finite element code by graduate student
Frida Lumban-Tobing. The moisture effects are iatroduced
into the problem through the nonlinear constitutive rela-

tion[3]
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Starting from this point, there are two possible ways
to proceed in the formulation of the set of nonlinear alge-
braic equations to be solved on th¢ computer. One approach
involves the use of the principle of virtual work, and the
other is a weighted residual approach. The first method
tried was a weighted residual approach employing Galerkin
criterion operating on the equation of equilibrium[4]. This
method involved a substantial amount of manipulacion and re-
quired the use of several approximations in order to carry
out the required integration by parts.

The virtual work principle[sl

, which equates the varia-
tion in the internal work to the variation in the external
werk, is more straightforward to apply. 1Its anplication, in
the form of virtual displacements, operates on an assumed
displacement field and the final set of algebra‘c equa-

tionslG].

(k' o+ kMh) e kS () = (PP 4 %)+ (EMY) 4 (R
(4)

where the various terms are;

[Kzl is the linear stiffness matrix,
[K?Q] is the first nonlinear stiffness matrix,
[KQQI is the second nonlinear stiffness matrix,

{A} is the vector of unknown nodal displacements,
{FP} is the body force vector,

{F%} is the distributed load vector,
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(ri"1%) ig an initial stress vector, and

{F"E} is a nonlinear load vector.

A complete definition of each of the terms is given in
Reference [6). Equation (4) is written as a linear function
of the unknown displacements; two o: the stiffness matrices
and one of the load vectors, however, are functions of the
displacements, thus making the entire system nonlinear.
Therefore, it must be suvlved iteratively.

The ronlinear solution approich selected is a modified
Newton method classified as a quasi-Newton method[7]. The
advantages of this approach are:

a) it avoids the reformation and solution of new
sets of stiffness equations,

b) it tends to converge quickly and

c) it appears to be quite stable.

At the conclusion of the current reporting period, both
the virtual work and Galerkin approaches had been formulated
and implemented, for plane 3train, into a nonlinear, finite
element analysis code. Currently, the program's element
library consists only of the constant strain triangle. How-
ever, the generil design will allow for the addition of
other element types including thre~r-~dimensional elements.
The formulation and quasi-Newton solution approaches have
been tested by several simple sample problems. The program

is now ready for testing using some realistic test problems.
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3. Numericg}flnveltx%ation of
Micromechanical Fracture o omposites

In order to better underrtand the mechanisms of failure
in composites it is necessary to understand the interaction
of the matrix and fiber as the load increases from zero to
total failure. The finite element method provides a means
whereby this process can be simulated on the computer. Sev-

eral investigatorsla'lo]

have employed such an approach:
however, the modeling procedures that have been used can be
greatly improved.

Backgrouad work on this investigation has been carried
out by gradua-e student Nabil Yehia. He has alsn carried
out some desired modifications to the postprocessor. The
postprocessor mo ifications allow for the generation of
stress contours that can be discontinuous at the material
interfaces, in contrast to the usual procedure which smooths
stress distribution everywhere. This feature is important,
since much of the understanding to be gained from this work
will be based on visual displays such as contour plots of
stresses, and stresses are, in general, discontinuous at
material interfaces. As an example, Figure I111-2 shows a
maximum principal stress and maximum shear stress plot for a
simple plate made up of two different materials. The plate
is fixed at the left end and loaded with a uniform load

parallel to the interfaces at the right edge. Since the

plate is made up of a soft material at the top and bottom

W S R T
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and a stiff material in the middle, the majourity of load
transfers to the stiffer middle fiber as indicated by the
contour plots. Stress discontinuities at the material inter-
faces are apparen“. To exploit fully this new view of con-
ditions at the interface is likely to require some proper
represcntation of fracture mechanics for material interfaces.

These matters are still under consideration.

4. Plans for the Upcoming Period

Work on the general finite element software during the
next reporting period will concentrate on completing the at-
tribute editor, making minor improvements to other parts of
the software system and adding more extensive user documen-
tation.

Continued efforts on the nonlinear finite element pro-
gram for moisture effects in composites will concentrate on
testing and debugging the program further, followed by a
series of two-dimensional plane strain analysis studies ex-
amining the effects of moisture on carbon-epoxy composites.
inegse analysis studies will investigate various conditions
including fiber spacing, epoxy properties, moisture contents
and loading conditions.

The majority of the effort on the micromechanical analy-
sis of composite fracture during the next period will be on
the desiyn and initial development of a nonlinear finite
element analysis code that i:* able to track the failure pro-

cess. This program will require the use of nonlinear
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congtitutive relationships and must possess ability to de-
fine and propagate cracks through the element mesh. Although
some of the features of the moisture effects program and
other available piograms can be used, this program will re-
quire a more complicated data base and several sophisticated
checking capabilities. Based on the tentative timetable

that has been worked out, approximately half of the next

year will be spent on tracking down most of the basic compo-

nents required for t!'= program an! designing its data base.
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PART 1V

INSURE (Innovative and Supporting Research)

Advanced Structural Analysis Methods for Composites,
E. J. Brunelle

Ultrasonic Non-Destructive Testing of Composite Struc-
tures, P. Das and H. F. Tiersten

Transverse Properties of Composites with Anisotropic
Constituents, R. J. Diefendorf

Fatigue in Composite Materials, E. Krempl

Acoustic Emission of Composite Materials, H. A. Scarton

Viscoelastic Characteristics of In Situ Resins and Neat
Resins, S. S. Sternstein
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IV-A ADVANCED STRUCTURAL ANALYSIS METHODS FOR COMPOSITES

Senior Investigator: E. J. Brunelle®

The effort to understand the behavicr of an individual
orthotropic lamina in as concise a fashion as possible con-
tinues. When this understanding is substantially completed,
a rational investigation of laminate assemblages is pos-
sible. The present methods of analyzing a particular com-
posite structure (by laborious, though straightforward
means) yield numerical results, but are poorly posed to do
meaningful parametric studies and are even less helpful in
trying to obtain a stated optimum result with modest con-
straint conditions. A primary difficulty is that of too
many variables in any particular problem. Besides the ge-
ometry and mass variables, and the stacking sequence of N
laminae, there are 6N elastic constants for the laminate
assemblage (This number is reduced by symmetry, anti-symmetry,
multiple plies with the same orientation; however, the number
is rarely small.). Thus, methods that allow solutions in
terms of significantly fewer combinations of constants
should be very valuable. These methods, which are being
pursued for the individual lamina, will eventually be ap-

plied to the laminate assemblage.

1. Status

The principal results of the last period culminated in

a generalized solution of the moisture diffusion problem

*
RPI graduate student G. Oyibo and undergraduate student
D. Kunstmann
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associated with a three dimensional rectangular slab, a
solution for the buckling of a simply supported plate with
a core, a solution for the frequency spectrum of a simply
supported plate with uniaxial compression, and a large
series of generalized curves for the buckling coefficients
ko = ko(m,ao/bo,D*) of (all except one) rectangular plates

with various boundary conditions and various applied loads

(shear, compression and bending).

2. Progress During Report Period

Effort in four areas has produced the major results as

discussed in the following.

Result (i). On the basis of roughly thirty actual materials
the range of D* seews to be 0 < D* < 1, where D* = 1 is the
quasi-isotropic case (if in addition ao/bo = a/b then it is
the isotropic case). Appealing to the simplest microme-
chanics description of D* = D*(Vf,Ef/Em,vf,vm) it is seen,
referring to Figure IV-A-1l, that D* = 1 when V_ = 0 and when

f

Vf = 1 (these are the limits of an all-matrix isotropic mate-
*

rial and an all-fiber isotropic material), and that for all

other values of Vf in the open interval 0 to 1, D* is indeed

less than unity. The minimum values of D* are seen to occur

at roughly Vf = .55. For given values of Ef/Em, Ve and V!
say Ef/Em = 50, Ve = .2 and Vo = .35, Figure IV-A-l1l shows
*

Assuming, of course, that the fibers are themselves isotro-
pic, which in practice is not always the case.

: er,‘..,
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the minimum value to be 0.28. If ore wishes to increase D*
to .4, it is seen that Vf = _885 and Vf = ,145 will accom-
plish the task. Since Pg > Py 2 lighter plate (Vf = ,145)
will have the same buckling parameter (ko), the same non-
dimensional static deflections and higher frequencies than
the heavier plate (Vf = ,885). Since buckling criteria pro-
duce (in general) a thicker plate than needed for tensile
criteria, it appears that very low fiber volume composites
may be very attractive new materials. The dimensional as-
pects are being investigated. If this confirms the non-
dimensional indicators, it seems that appropriate experi-
ments should be conducted to see if the theoretical advan-
tages of very low fiber volume composites are confirmed and

to see if there are any kinds of practical manufacturing or

fabrication difficulties.

Result (ii). The generally orthotropic plate equation
L Y4 4 4
p,, >¥+4p 2¥ +2p, + 20 )2 4 4gp AW
%" ax?dy 7 ax?3y? axdy?
[N
+ Dzz_a_._w. 4+ oo = p(x'y)
dy"*

has been transformed into the rotated (thru an angle 6) and

affinely stretched coordinates to yield

W L p_R'wW L .F 3'w , g.d'w 3w L,
bl v 332G o 215 2 v O 3 o M
3x0 axo ayo axo ayo axoyO ayo

= p(xo,yo)
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where

Ll

o

= B(D*,Dll/Dzz,G)

o1

- ﬁ(o*,oll/n 8).

227

The values of L, D, R are easily found with modest
amounts of computation and, as a separate operation, a Ritz-
Galerkin solution (or any othzr weighted=-residual method)
may be obtained in which a_/b_, I, D and R appear as generic
constants. Short of finding an exact, closed form solution
for the above partial differential equation (efforts will be
made towards such a possibility), this is a very attractive
scheme for performing paramet:ic studies on any given type
of problem (static, dynamic, instability).

It is interesting to note that B = ;%% = B(Dll/D22,D*);
where it is remembered that B governs the rotational behavior
of all Gij(e) - 6ij(0) terms. Values of B for various com-
binations of D* and the ratio EI/E2 are shown in Figs. IV-A-2

and -3. This relation will be examined for possible descrip-

tional advantages.

Result (iii). The von K&rmén plate equations for a specially

orthotropic plate, due to Rostovstev,

2
13'F , |1 _ 21| a'F 1 3'F _ | 32w 32w 37w
E.. . T |6° E t B = |3%3 TN
2 3% 1 9x2ay? 1ay" Y ax? 9y?
4 N Y 2 2
DllB LA 2(D , + 2066)—3L11— + 022-3-—E = p(x,y) + |3 E3 W
ax" a3x2ay? ay" dy? ax?

_,3°F 3w _ 3%F3’w
0XJy aX3y ax28y2
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have been affinely transformed by the relations

w=nh — Y
822 o
1l 1]
F=h "D.. e F
22 822 (o]
D -~
o -1 22 4 )
X h "Dy /B % a D._,"®
22 [ 22| a
note: B—-‘ —— -b-
0 11
D
4 -1 11
y' =h "D, -_—y
22 E11 (o}
to yield:
ah ) [} 2 2 2 2
Fo . 2 ] Fo . 9 Fo ~ 3 wo ) ] wO 3 wO
& 23 2 3 [ - ax ay ') 2 2
axo 8xo Yo Yo o ‘o IXS ayo
3w A'w d'w
“° + 2D*— °2 + 0
a b
Xq axoayo Byo
3%F_ 3%w
= h l’p(xO.y ) + ——2__ 0
°© dy ? sx?
o o
2 2 2 2
_, 3 Fo 9 wo . ) Fo 3 wo
onayobxoayo 8xé ayé

Thus only D* and H* appear as constants (the thickness h
modifies the loading only) and it has been noticed that

H* = H*(D*,c) where ¢ is the generalized Poisson parameter.
These relations are shown in Figure IV-A-4. Hence

any solution technique available in the isotropic
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literature may be used to solve these equations. This
positive attitude towards solution possibilitias is in

*
sharp contrast to Lekhnitskill]

who states (referring to
the original untransformed equations), "Their integration
is accompanied by great difficulties ...; their exact solu-

tlon is unknown for ceven one simple case of bending.".

Result (iv). The similarity laws for the orthotropic plate

(with the two compressed sides simplvy supported)*' buckling
problem have been found, and related rules for the corres-
ponding deflection and vibration problems are being cast in
their final form for presentation to the academic community.
The similarity laws are stated by demanding that the number
pair mb

—2/5¥ and B

a O
(@]

be constants associated with any one ko versus ao/bo curve
for any one value of m (the number of half-waves in the Xq
direction) and any one value of D*. A more concrete (but

more restrictive statement is that "given a buckling curve

* kW
ko versus ao/bo for m = 1 and D* = 1, any other buckling

*
The bracketed number in this text refers to the refer-
ence found on page 123,

* ok
The case of two parallel sides simply supported and the
perpendicular sides being compressed has alsc been in-
vestigated.

* %
For the same y, = o,b, boundary conditions as the origi-
nal curve. Note, however, that the form of the similar-
ity laws are independent of the Yo = o,bo boundary con-
ditions.



121

curve Ko versus ao/bo may be found for any desired values of

m and D*". The second similarity parameter Bo is given by

a )2
- o - . -2
BO [S:ﬁ ko 1{«(D*%)
% |
and thus by defining 60, = for states 1 and 2 we write,
i mb J
°J3
- 2 - 2
D; D; 1+ (61) (ko)1 1+ (8,) (ky),
2 = 2 and wy 2 - ) 2
(8,) (02) (oY) (D%)

The D* = 0 case is excluded from the similarity sets since
the similarity rules were obtained after a division by D*
(which is a valid operation only if it is not zero). How-
ever, once a single point is known on (say! the ko ver sus
ao/bo curve for m = 1, the entire m = 1 buckling curve may
be constructed, as well as the complete curves for m = 2,
3,... . Therefore, for D* = 0 we may write a single degen-

erate similarity statement,

2 -
PR B Ly .i

tko)y = 2 1 4
(8,) (6.,) J

o'l

These corcepts are put into perspective by writing the highly
non-linear buckling determinant in implicit torm for various

levels of sophistication.



122

*
(1) Basic P.D.E. : f(k'011'022'°12 + 2066,a/b,m) = 0;
6 parameters.

D,, D._, + 2D
. 22 T12 66

11

,a/b,m) = 0;
5 parameters.

(3) Affinely Transformed P.D.E.: j(ko,D*,ao/bo,m) = 0;
4 parameters.

(4) The Similarity Laws: 0vD¥ and B, are a constant num-
ber pair; 2 parameters.

Form (3) reduces all possible calculations to a small fi-
nite set with D* as a parameter, 0 < D* < 1. Form (4) pro-
vides another nearly infinite compression of calculations
w.nd provides the necessary insight into the fundamental
mathematical structure of the solutions. Form (3) was de-
veloped by the principal investigator in June of 1979 and
Form (4) was developed by the principal investigator in
April of 1981, both while working under the present NASA/

AFOSR grant.

3. Plans for Upcoming Period

The principal thrust for the next few months is ex-
pected to be computational. The numerous theoretical ad-
vances described in Section 2 of this text need to be ex-
amined in terms of the solutions they produce, and the

various equation parameters (such as L, D, R, etc.) need to

*
P.D.E.: "partial differential equation”
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be calculated and carefully studied. Many specific problems
are currently underway; they also will be completed and the
numerical results presented. The material pertaining to
uniaxial plate buckling (loacded sides simply supported,
other sides with arbitrary support) will be written up and
submitted for publication; a tentative title is "Stability
of Specially Orthotropic Plates Using an Affine Transforma-
tion and Similarity Laws".

After the above matters are substantially completed
it may be finally the right time to begin a systematic study

of symmetric (and/or anti-symmetric) laminates.

4. References

1. Lekhnitski, S. G., "Anisotropic Plates", Gordon and
Breach, 1968.

5. Current Presentations by E. J. Brunelle on this Subject

"The Use of Affine Transformations in the Solution of Compos-
ite Structures Problems"

Presented at the 17th Annual Meeting of the Society of
of Engineering Science, Inc., December 15-17, 1980,
Georgia Institute of Technology, Atlanta, Georgia.
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IV-B  ULTRASONIC NON-DESTRUCTIVE TESTING OF COMPOSITE STRUCTURES

Senior Investigat.r: H. F. Tiersten*
P. Das
Ultrasonic waves are being exploited both in research
and, increasingly, in routine non-destructive testing as a
promising means of discovering and assessing manufacturing
flaws and load-induced damage in composites. Our efforts in
ultrasonic NDE are three fold: improving image quality
through data processing and display techniques, transducer

development and material flaw image identification.

1., Status

As of the beginning of the reporting period, the hard-
ware and software components of the ultrasonic imaging sys-
tem had been developed to the point that creating a pseudo-
colored, high resolution ultrasonic image is now a well
established and routine procedure. A variety of samples of
different materials have been imaged to further develop and

L2
refine the imaging and computer processing systems!l]

2. Progress During Report Period

Imaging and studies of composite samples similar to
those discussed in the previous report (39th S:mi-Annual
Report, January 198l1) have continued. To aid in this pro-

cess, a Conrac high resolution color video monitor is now

*
RPI graduate student R. Werner
ok

Bracketed numbers in this section refer to the references
listed on page 129.

T R % S AR s <
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in the lab, providing the capability to immediately display
and, if necessary, modify the ultrasonic image data. Soft-
ware has been written to made the pseudocoloring and scroll
and zoom capabilities of the Deanza image processor avail-
able for use with the monitor.

A sample of the images obtained during the reporting
F.riod is presented in Figures IV-B-1 through 3. These
were chosen since they show the effects of repeated loading.
Table 1V-B-1 describes the construction and loading of the

samples.

TABLE IV-B-l
ULTRASONIC TEST SAMPLE CONSTRUCTION AND LOADING

Figure Number Construction Loading
IV-B-1 [0/30/60/90/120/150]s 0-?5 kg, } cycle
(first failure)
1V-B-2 [0/30/60/90/120/150]s 0-95 kg, 50 cycles
IV-B=3 [0/30/60/90/120/150]s 0-55 kg, 50 cycles

Figure IV-B-1 shows a well-defined damage area centered
around the loading point at the center of the sample. Con-
trasting this with Figure IV-B-2 shows that the repeated
loading has caused the damage to spread out from the center.
Figure IV-B-3 shows a sample loaded to a maximum of 53 kg
for 50 cycles, as opposed to 95 kg for Figures IV-B-1 and -2.
Although an image is not presented here, it is of interest
to note that a sample loaded 0-55 kg for one cycle showed

[2]

no damage

T R TS RN T T RN, A

e



Figure Iv-B-1

Figure 1v-B-2

(See Table IV-B-1)
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Work to implement further digital image processing of the
data using the Image Processing Laboratory Prime 750 is now
in progress. The mathematical process involved is deconvo-
lution, and a theoretical discussion follows.

The spot size of the ultrasonic beam at the focal point

is given approximately by:

b f.c
1.;\=

A = 5 Dv

where 4@ is the diameter of the spot, f, is the focal length

1
of the transducer, D is the diameter of the transducer and
A, v, and ¢ are the wavelength , frequency and speed of
sound in water, respectively. Substituting the character-
istics of the transducers currently in use yields:

1.0 in. 1500 m/sec.
1.5 in. 5 x 10% Hz.

4 = = 4500

The distance between each sample point is currently
1l60v. It is readily apparent that the spot size is larger
than this, causing some overlap in the sampling of adjacent
points. The maximum resolution of the stepping motors is
3.2v, so by reducing the distance between sampled points,
the overlap would be increased. Thus, deconvolution to
account for the effects of the spot size becomes applicable.

The theoretical basis for the deconvolution is as fol-
lows:

The image data that is recorded by the system can
be represented as:

PRECEDING PAGE 3LANK NOT FILMED
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gix,y) = i(x.y)*f(x.y)+

where i(x,y) is the true image data and f(x,y) is
the impulse response of the system. By taking the
Fourier transform of the above equation, we get
G(i,j) = I(i,3) x F(i,]j)
and so the true image data can be recovered by di-
viding G(i,3j) by the Fourier transform of the im-
pulse response of the system and then taking the
inverse Fourier transform.

The impulse response of the system can be easily deter-
mined by imaging a sufficiently thick sheet of steel or
other material with a very small hole drilled in the center,
so that all but a negligible portion of the ultrasound sig-
nal will be attenuated except at the hole. The Fourier
transform of this data will then be stored by the computer
and used for deconvolution.

Since the actual impulse response of the system has not
yet been determined, it has been assumed for testing of the
computer programs to be a narrow Gaussian function; that is,

of the form
f(x,y) = Aexp [-a(x? + y?))

and a Fortran program has been implemented to perform the
deconvolution using the technique described above.
One problem that must be taken into account is that

f(x,y) may contain zeros. To account for this, a small,

Tw is the symbol representing the mathematical process called

convolution, that is i(x,y)*f(x,y) is i(x,y) convolved with
f(x,y).
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positive offset is added to prevent errors caused by at-

tempting to divide by :zero.

3. Plans for the Upcomimg Period

Plans for the future include continuing improvement
and application of the deconvolution algorithms to image
data. In addition, phase data will be included with the
amplitude data now being recorded in the imaging process.

We intend to apply the refined computer aided image proces-
sing to a wide range of types of damage in composite mate-
rials. It is expected that this will provide additional in-
formation about the characteristics of the material and the
damage being imaged.

A second objective will be to use linear and possibly
two-dimentional arrays in place of the single transducer
used to date to obtain ultrasonic images. In addition to
application of conventional linear arrays, this will involve
fabricating mosaic monolithic arrays using the energy trap-
ping principle. Although we have fabricated some monolithic
arrays before, in the coming year the emphasis will be to
apply them to obtain ultrasonic images at a very fast rate
compared to what is obtainable by the single transducer

method.

4. References

l. Composite Structural Materials, 39th Semi-Annual Progress
Report, January, 1981, pp. 116-123.
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1)

2)

3)

Das, P. and R. Werner, "Digital Enhancement of Ultra-
sonic Images and Its Application to Non-Destructive
Testing of Composite Materials", Acoustical Imaging,
Vol. II, to be published.

5. Current Publications or Presentations by
Professors Das and/or Tiersten on this Subject

Das, P. and R. Werner, "Digital Enhancement of Ultra-
sonic Images and Its Application to Non-Destructive
Testing of Composite Materials.

To be presented at the 1llth International Sym-
posium on Acoustical Imaging, May 4-7, 1981,
Monterey, California.

To be published in Acoustical Imaging, Vol. 1l.

Das, P., R. Werner, J. F, McDonald and H. F. Tiersten,
"Mosaic Array Transducer Based on Energy Trapped Modes
and Ultrasonic Imaging of Composite Materials".

To be presented at the 6th International Sym-
posium on Ultrasonic Imaging and Tissue Char-
acterization, June 1-3, 1981, National Bureau
of Standards, Gaithersburg, Maryland.

Das, P. and R. Werner, "Ultrasonic Imaging for Non-
Destructive Evaluation of Composite Material".

To be presented at Ultrasonics International 81,
June 30-July 2, 1981, Brighton, UK.

Proceedings to be published.
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IV-C TRANSVERSE PROPERTIES OF COMPOSITES WITH ANISOTROPIC
CONSTITUENTS

*
Senior Investigator: R. J. Diefendorf

Composites are multiphase materials that often exhibit
properties superior to tiwe characteriatics possessed by each
constituent. However, in order to more efficiently utilize
composites to their full potential and to accurately pre-
dict overall ccrnposite performance from its constituent
properties, the effect of fiber anisotropy on the physical
properties of the reinforcement must be considered.

In the case of the longitudinal direction (parallel to
the fiber axis), the properties of fibers alone and in com-
posites are both predictable from theory and are easily
measured. The rule of mixtures predicts longitudinal modulus
as represented in Equation (1) and shows good agreement with
experimental results.

E, = VeEg + (1 = Vo)E; (1)

C
L2

(1]

Schapery has formulated an expression for the longitu-

dinal coefficient of thermal expansion (CTE), Equation (2).

mthm + foEf
+

= = =3 (2)
E (1 -V EVe

The equation relates composite CTE to constituent properties

*
RPI graduate students J. Helmer and C. Uzoh.

* &
Bracketed numbers in this section refer to the references
listed on page 143.
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such as modulus, CTE and fiber volume fraction. The theory
assumes that both fiber and matrix are isotropic and homo-
geneous. There is good agreement between the formulation
and experimental results, even for the case of anisotropic
fibers. This is due in part to the packing of the fibers in
the matrix. The axial properties of composites are not
strongly dependent on the type of packing of the fibers,
either square, hexagonal or random, as depicted in Figure
1V-C-1, thus accounting for the good agreement. The value
for all has been determined to be zero at room temperature,
which has been confirmed in the literaturelz]. While there
exists a substantial amount of information on the properties
in the longitudinal direction of fibers and composites, the
information on the transverse direction is not similarly de-
veloped, particularly for anisotropic fibers. This was due
in the past to the difficulty in predicting transverse prop-
erties of anisotropic fibrous composites and also in the
direct measurement of these properties on the isolated fiber.
This information is essential in predicting the fatigue
and thermal cycling behavior of composite laminates. The
data on transverse coefficients is also indispensable for
predicting the thermal shock behavier of carbon/carbon com-
posites. Similarly, the transverse data may have a signifi-
cant impact in the area of carbon/aluminum composites. 1In
the case of carbon/aluminum matrix composites, poor trans-

verse properties impose a major limitation even after fifteen
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years of effort and may be inherent to the transverse prop-
erties of the constituents.

The transverse properties depend to a high degree on
the geometry of fiber packing, and local variations produce
significant property differences. This is one reason for
the variations in properties predicted by existing theories.
The problem is well suited for a finite element analysis
technique (Khan et al.[3]), with results falling in between
the rule of mixture's lower bound and an upper bound formu-
lation proposed by Schapery‘ll.

A second reason for differing predictions among ex-
isting theories is the anisotropy of the fiber. A transverse
cross section of the structure of a single carbon fiber is
shown in Figure IV-C-2. The transverse structure is seen to
be similar to that of an onion, while a different structure
with different properties results when a longitudinal cross

(4] (5]

section is made . A theoretical prediction that ac-

counts for fiber anisotropy has been proposed by Levinls]
which relates the transverse composite CTE to the appropri-
ate coefficients of the phases as well as their respective

compliances, Equation (3).

= (2) _ (1) v e

Byp = ap + (o) % ' ProrsSraza” Spgaa! (3)
(2) (1) =

Pkﬂrs(srsij - srsij) = Txoiy

and
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FIGURE IV-C-2

Schematic of Carbon Fiber Section
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a = effective trans. CTE of composite

22

Et = volume fraction etc.
82822 = effective elastic compliancies
grszz = average compliance over the composite
aég) = CTE of the qth phase
S;z;j = elastic compliance of the qth phuse
Ikiij = fourth rank symmetric unit tensor

The equation, as is the case with almost all theories pre-
dicting transverse behavior, has not been extensively evalu-

ated against experimental data.

l. Status

Several anisotropic fibers are being evaluated so as to
establish the overall effectiveness of the Levin theory to
generally anisotropic constituents. The fiber types chosen
for study are: Thornel pitch 50 million modulus, Thornel
33 6K, Courtauld's HMS 10 K fibers, AS~4 and Kevlar. All

fibers were supplied in a prepreg form that consists of

fibers in an epox!’ resin film twelve inches wide that is only

/

partially cured to insure tackiness. Strips é" x 12" were
cut from the prepreg rolls and laid up into laminates con-
sisting of between 12 and 32 plies. 1In some cases extra

matrix material was added in the form of resin films so as

F
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to vary the filament content. The variation of the resin
content enables a plot of CTE versus fiber volume fraction
to be cunstructed, from which the transverse coefficient of
the fiber can be determined by extrapolating to 100 per cent
volume fraction. Resin films were chosen over resin in bulk
form for a variety of reasons. First, the reproducible ap-
plication of neat resin in uniform thickness is difficult.
The resin films are more consistent in thickness than could
pussibly be attained with bulk resin. Also, there are addi-
tional problems in the application of the neat resin. The
bulk resin nhas a very high viscosity which must be reduced
for easy application. A heat source can lower the viscosity
but the resin can become partially cured. A second alterna-
tive is to reduce viscosity with solvents. Unfortunately,
the solvents are difficult to completely remove and they
volatili.~e off upon curing, leaving voids in the laminate.
The utilization of resin films reduced the void content to a
more acceptable Jevel.

The cure is accomplished by heating up to 250°F at a
controlled rate in an hour, applying pressure for consolida-
tion, and then heating at 250°F for two hours. The pressure
and bleeders (cloths that absorb excess resin) were varied
so as to alter the volume fraction. Table IV-C-1 lists the
various fiber types and the cure process parameters. By
carefully controlling the number of bleeders, applied pres-

sure and amount of excess resin, differences in thicknesses
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between plates of different volume fraction can be minimized.
This reduces problems with the poor thermal conductivity of

the samples during CTE measurements. All lay-ups were cured
under a vacuum to avoid the problem of air entrapment in the

cured product.

2. Progress During the Report Pericd

Material was trimmed from each of the fabricated plates
using a steel carbide blade to eliminate edge effects such
as uneven matrix distrikation and nonuniformities in thick-
ness. Twelve samples were then cut from each uniaxial
plate; six parallel to the fibers and six transverse to the
fibers. The specimens were cut to a length of four inches
and a width of one-half inch. A high blade speed with a
slow feed rate with slight pressure was used when cutting to
minimize edge damage. When the cutting was complete, the
group of specimens were identified and stored in a dessicator
to minimize moisture absorption. Extra specimens were cut
for preliminary mechanical testing. Some of the extra sam-
ples were dry sanded by hand with 600 grit sandpaper, while
others were sanded on an automatic belt sander with medium
grit. Also, a few samples were hand-sanded with 600 grit in
addition to belt sanding. A fourth group was cut and not
polished in any manner. The motivation behind the prelimi-
nary tensile testino was to determine the <2ffect of the var-
ious surface finishing techniques on strength and modulus

measurements. Testing revealed that all results were well
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within the experimental scatter, and it was concluded that
transverse strength measurements are independent of the sur-
face polishing technique when cut as described. Belt sanding
was chosen as the mode of surface treating for the sake of
expediency. Supplemental sanding by hand was performed

where required.

For each of the cver 400 samples, seven dimensional
measurements were performed. Fifty per cent of the the
values cluster around the design thickness of 125 mils with
only a few exceeding this value.

An appropriate heating rate has been determined for CTE
measurements, and the temperature range for obtaining the
data is being established. The upper limit of the range may
be limited by the glass transition of the epoxy matrix, but
it may be possible to extend the range. Cured neat resin
was tested in a differential scanning calorimeter to obtain
the glass transition temperature (Tg) of the matrix. The
thermal dimensional stability was found to be lost at
T > 130°C.

A further cause for concern in establishing the experi-
mental limit is the effect of fibers on the glass transition.
Table IV-C-2a shows a comparison of filled and unfilled
resins for a constant heating rate. Also of importance is
the fact that several different heating rates were run with
the unfilled sample to investigate the effect of scanning

speed. As can be seen, there is an appreciable variation
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TABLE IV-C-2A
HEATING RATES USED FOR Tg SAMPLES

Scan Speed Tg Additional

°C/min °Cc Comments
10 -- filled

10 140 unfilled™"

20 100 unfilled™”

5 140 unfilled™”

*Filled samples: AS-4/1908-1
**Unfilled samples: Hercules 1908-1

TABLE IV-C-2B
Tg VS. VARYING CURE PROCESS PARAMETERS

Plate* Tg
Number °C
11 140
12 140
17 140
21 -——
25 140
36 140

*
Plate numbers refer to Table IV-C-l



) LA

for different heating rates. The logical extension of this
concept is the investigation of Tg for a heating rate close
to that of the actual heating rate for CTE experiments.
This rate proved too slow for valid results.

As previously mentioned, filled samples have been tested
for Tg, A possible correlation between volume fraction (Vf)
and 'I‘g (Table IV-C-2b) was not observed, with most of the
glass transitions occurring around the same temperature.

Glass transition is not the only possible source of
dimensional fluctuation. During testing for CTE, a specimen
will be in the atmosphere for a few hours; thus time and
humidity effect could be important if not controlled. Using
a worst-case situation, one filled and two unfilled resin
samples were submerged in water. One unfilled sample was
removed after 48 hours and was found to have increased in
weight .068 per cent while undergoing no change in any dimen-
sion. After 200 hours, the remaining specimens were removed
from the water and weighed and measured. The increase in
weight for the filled and unfilled samples was .038 per cent
and ~-.013 per cent, respectively. As in the case of immer-

sion for 48 hours, dimensional stability was retained.

3. Plans for Upcoming Period

Future work will be devoted in general to finishing the
preliminary studies so that the CTE measurements can be im-

plemented. Investigations are being made to:
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a) establish any possible correlation between

Tg and Vf or heating rate,

b) determine how these factors influence the
range intended for testing and

c) extend the range, if possible, for thermal
testing.

The test apparatus is being analyzed for error and finally,

techniques are being developed and tested for eliminating

noise due to temperature differentials along the test ap-

paratus.

1)

2)

3)

4)

5)

6)
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IV-D FATIGUE IN COMPOSITE MATERIALS

*
Senior Investigator: E. Krempl

The deformation and failure behavior of graphite epoxy
tubes under biaxial (tension, torsion) loading is investi-
gated. The aim of this research is to provide basic under-
standing and design information on the biaxial response of

graphite-epoxy composites.

1. Status

Tests in the elastic range and to failure on thin-walled
graphite-epoxy tubes of four layers of [t45]s showed the
following;

For static axial loadings:
« The same.effective elastic modulus in tension and
compression.

« Equal tensile and compressive strength.

+ Time-dependent, nonlinear behavior above 25% of
the ultimate strengtb.

»  The development of a hysteresis loop during load
controlled, completely reversed loading at a load
amplitude of 55% of the ultimate load. Under
these conditions, rate of loading is a parameter
of significant influence.

For static torsional loadings:
+ Departure from linearity of the torque versus
angle of twist diagram at approximately 50% of
the ultimate torque.
It was further found that the effective elastic and shear

modulus were unaffected by combined, completely reversed

proportional cycling.

*
RPI graduate student T.-M. MNiu
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The deformation behavior can therefore be characterized
as quasi-isotropic for the relatively small elastic range
(25% of tensile ultimate), followed by significant time-
dependent behavior. 1In addition, the time dependence is
more pronounced on the tensile than on the torsion axis, as

might be expected for a [145)s laminate.

2. Progress During Report Period

Completely reversed, load-controlled fatigue tests were
performed at three different frequencies for axial loads.
In addition, ultimate strength and elastic properties tests
of the tubes were ccnducted for torsion. All tests were run
on an MTS servocontrolled hydraulic tension-torsion testing
machine. The results are as follows;

In Axial Fatigue:

The axial fatigue behavior of the tubes at i, .1 and
.01 Hz was studied using a sine wave forcing function. An
axial (1" or 25.4 mm gage length) and a diametral extenso-
meter were used. The test was terminated automatically when
one of the following three limits was exceeded:

axial strain > |4g|
diametral strain > |3.5%]
stroke > |6.35 mm]| .

Depending on tlie location of the failure, any oune of these
limits could have been the trigger for the end of the test.
Tue fatigue tests results are shown in Figure IV-D-1.

The ordinate is the stress amplitude normalized by an average
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value of the ultimate tensile strength, obtained from Table
IV-D-1l in Reference 1.. The number of cycles, N, are the
cycles~-to~failure defined previously. This figure shows

the axial fatigue resistance of these tubes under completely
reversed, load-controlled loading to be poor. At 10° cycles
the allowable amplitude is only 30 per cent of the ultimate
strength. Clearly, the deformation of these axially loaded
tubes is matrix-dominated as evidenced by the rate-dependent
hysteresis loops (see Figure IV-D-4 in Reference 1). The
fatigue strength at 10° cycles for R = .667 of uniaxial
laminates, shown in Figure 62 in Reference 2, was above 85
per cent of the ultimate tensile strength, and their defor-
mation is fiber dominated. 1In addition, however, a compari-
son must includ. the fact that the tubes were also loaded
into compression whereas only tension-tension loading was
used for the laminates.

It appears, therefore, that the low fatigue resistance
of the tubes in axial loading may be caused by the matrix
domination of the deformation and by the compressive loading
of the specimens. Another possible manifestation of the
influence of matrix deformation is the effect of frequency
of loading on the fatigue resistance. As the frequency is
reduced the fatigue resistance is also reduced. The effect
of frequency is not very pronounced but noticeable (see

Figure IV-D-1).

*
References in this section are listed on page 153.
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In Static Torsion:

Table IV-D-1 in Reference 1 lists one value of the ul-
timate shear strength obtained in torsion. Subsequently,
additional tests were performed whose resuilts show that the
ultimate shear strength depends on the direction of twist.

Figure IV-D-2 is a diagram of the shear stress versus
angle cf rotation of the loading ram in the two cases. It
is evident that the ultimate shear strength is significantly
affected by the direction of torsion. Table IV-D-1 lists
further results on the ultimate strength in torsion.

In Figure IV-D-2 and Table IV-D-1l, the direction of
torsion which stretches the outermost fibers is arbitrarily
assigned a negative sign. Under this direction of torsion
the average ultimate shear strength is =117 MPa. However,
when the outermost fibers are compressed (defined as posi-
tive torque) the average ultimate shear strength is 191 MPa.

These results were initially unexpected. However, they
are consistent with other data reported earlier (see Refer-
ence 3). They can be explained as fcllows. First, failure
is initiated by buckling, as evidenced by separate tests on
a model tube. Next note that when outer fibers are in ten-
sion, the inner fibers of a [145]S tube are in compression.
Finally, the bending rigidity, EI, of an element of will is
much greater for crc's sections with the outer fibers nor-
mal to the cross section. Thus, the rigidity against buck-

ling (the product of modulus and moment of inertia) is
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TABLE 1IV-D-1

TORSION TESTS (ultimate load)

Max. Torque Tmax
Tube Number (in-1b) (MPa) Remarks
12 +1,120 +180 = eemeeee-
37 +1,300 4213 meeeee-
38 - 700 =115 === eeemee-
39 +1,300 +213 2 eeeeme-
41 - 715 -117 loaded first to
+930 in-1lbs
42 - 260 - loaded first to
+600 in-1bs
43 - 725 -119 loaded first to
+1,000 in-lbs
48 + 960 +157 ——————
Positive outer fibers
AV. qorsion *+1,170 +191 compressed
av. Negative - 713 -117 outer fibers

Torsion

stretched
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higher when the outer fibers are compressed than when they
are stretched. Failures which occur when the outermost
fibers are stretched are, therefore, failures in buckling of

the inner fibers in compression.

Fracture Appearance:

Figure IV-D-3 shows a photograph of specimens failed in
static and fatigue loading (included are two specimens which
failed in completely reversed, load-controlled torsional
fatigue loading). It is seen that the fractures occur in
the gage section by splitting of the plies, and there is
some evidence of breakage along the ply bonds. However, no
striking differences in appearance are apparent when comparing
static with fatigue fractures, neither are there obvious dif-
diferences in the appearance of axial versus torsional fa-
tigue fractures. These apparent similarities would seem to
complicate failu '~ analysis of static and fatigue fractures

of composites.

3. Plans for the Upcoming Period

A new series of tubular specimens will be manufactured.
Torsional as well as combined proportional and out-of-phase
tests are scheduled. Deformation reasurements using the
Instron biaxial extensometer ar2 planned to determine the

time-dependent behavior of the tubes under combined loading.
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IV-E ACOUSTIC EMISSION OF COMPOSITE MATERIALS

*
Senior Investigator: II. A. Scarton

The Acoustic Emission (AE) technigue has been shown to
be useful in monitoring composite material fracture for both

* &k
[1,2] and fluctuating loads

monotonically increasing loads
with a large static component[3]. Monotonic and cyclic tests
both exhibit consistent acoustic behavior, with the lowest
signal amplitude arising from matrix cracking; the inter-
metidate amplitude with delamination, interfacial fiber ma-
trix debonding and fiber pullout; and the largest amplitude
from fiber breakage. The current research dealt with the
practical application of the AE technique to monitor the
failure process in an actual component part: the Boeing 727
Elevator Actuator Attachment. Discussion of this test

occurs in the CAPCOMP section of this report. The remainder
of this section deals with the other main activity imple-

mented during the reporting period - the selection of new

AE monitoring equipment.

l. Stetus

In the past, acoustic emission test and data analysis
have been performed successfully for composite materials

using Dunegan/Endevco 3000 series equipment.

"
RPI graduate students C.-M. Chang and G. Bobal and under-
graduate student J. Crowell

L]

Bracketed numbers in this section refer to the references
listed on page 156.
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2. Progress During the Report Period

Since the Dunegan/Endevco 3000 series equipment, al-
though reliable, is not as "state-of-the~art" as newer
acoustic emission equipment, a careful search for replace-
ment acoustic emission equipment was carried out. The sub-
sequent equipment acquisition was funded by a Sloan Founda-
tion grant. The major equipment vendors considered were
Dunegan/Endevco, Bruél and Kjaer Instruments , Physical
Acoustics Corp. and Acoustic Emission Technology Corp. The
latter three vendors were invited to participate in an
acoustic emission experiment at RPI. The first vendor was
not invited since we were in possession of, and have used,
a version of that equipment. Results of the successful AET
test are discussed in the CAPCOMP section of this report.

[1:2:3) yere carried out using Dunegan/

Our earlier experiments
Endevco equipment. Our final equipment selection was based
upon many factors including: cost, utility, speed, high and
"state-of~-the-art" technology, and adaptibility to other RPI
facilities. A Physical Acoustic Corporacion (PAC) Model 3400
Four-Channel Acoustic Emission/Analyzer/Locator was selected.
This sophisticated computer-based system represents the most
advanced instrument available for the cost. The unit can be

coupled to other computers such as the RPI Interactive Com-

puter Graphics System for additional data monitoring.
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3. Plans for Upcoming Period

When the new PAC AE equipment arrives, extensive tests
applying AE to the diagnosis of various composite materials
under load will be carried out. It is also anticipated that
the second Boeing 727 elevator actuator attachment, fabri-
cated using revised curing techniques, will be monitored

during its ultimate failure test.

4. References
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Semi-Annual Report, Composite Structural Materials,
January 1981, pp. 167-178.



157

IV-F _VISCOELASTIC CHARACTERIZATION OF IN SITU RESINS AND
NEAT RESINS

*
Senior Investigator: S. S. Sternstein

This project is concerned with those properties of high
performance composites which are strongly dependent on the
physical properties of the matrix resin. To date, the re-
gsearch has involved the precise viscoelastic characteriza-
tion of epoxy neat resins, interlaminar failuve of composites
and the inhomogeneous swelling of and the effects of mois-

ture on composites.

l. Status

The viscoelastic properties of carbon-epoxy laminates
(CEL) and neat resins have been studied as a function of
temperature, frequency and moisture content. Twelve=-ply
laminates of various stacking sequences were prepared from
prepreqg supplied by Fiberite and designated HY-E10408AlE.
Disc samples of one inch nominal diameter were cut from
master sheets of the laminates and tested in the centro
symmetric deflection (CSD) mode as described in the previous
report. Briefly, the disc is suppcrted around its perimeter
and a central load is applied via a ball bearing nosepiece.
Dynamic tests were performed on a Dynastic (T.M.) mechanical

spectrometer.

*
RPI graduate students C. Altman, P. Herbert, D. Taggart and
P. Yang
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2. Progress During the Report Period

The results reported here were conducted at a static
load of 3 kg with a superposed 1 kg amplitude load of vari-
ous frequencies, using the same techniques as developed and
described in the earlier periode.

The laminate stacking sequences reported here are as

follows:
Nominal Designation Stacking Sequence
90 degree [0/90/0/90/0/90]s
45 degree [0/45/90/135/0/45]8
30 degree [0/30/60/90/120/150]s

A typical temperature sweep at a constant frequency of
6.5 Hz is shown in Figure IV-F-1 for a 90 degree sample.
The storage (or in-phase) modulus M' and loss (or out-phase)
modulus M'' are shown versus temperature and indicate clear-
ly the matrix glass transition at about 160°C. Temperature
sweeps at various fixed frequencies from 0.1 Hz to 40 Hz are
shown in Figure IV-F-2 for M' and Figure IV-F-3 for M'’',
Defining the glass transition temperature as the temperature
of maximum loss (the peak of M'') for each frequency, then
one obtains Figure IV-F-4, 'I‘g changes linearly with log
frequency about 8°C per decade, and this emphasizes strongly
the necessity of obtaining dynamic data at fixed frequency.

The storage and loss modulii are shown versus frequency
at constant temperature in Figures IV-F-5 and -6, respec-

tively. When these curves are appropriately shifted



159

0-0
v-0

(ww/N ,01) N

0-¢

audctiela +UESUYY 4F JddilzEdodudy, SA TINPON SSOT pue abeiojlg

002

09l

1-3-A1 2an3yg

o ‘04nypniedwal

(0 X4

ZH 69
*%(06/0)

2bOEVD
139 as?

@- @ ®

0-0
c-0
=
w.OOE
<
~
3
3
Ol

1 A



160

satouanbaxy paxtrg snotaep e aanjeaadwsag ca snTnpow 9bexolzs

Z-3-A1 21n513

Y% ' 94nipiadwa)

002 08l ool ovl ozl
i | 1 L
—z.0
| - : mna 06/0) _ 2
. 2bo¢g Vo -
133 a4s) |gw.0 mnu
. (¥
P4
- ~
. 3
. 3
B ZH Op -® —°
_ ZHOI -v — |
ZHO:| -o il

ZH 10 -0 -




161

sotouanboii oxTi SLoTIE, e oanjpasfual SA SRINLEOW SSCL

UO ¢ 0.-:*0&@& E@n—v g-3-AI 2Inb1a

o8l 09| ovi 02l
| _

| O
- O
o

!
N
o

( Www/N z()' ) ¢ ..v“

S¢€

A ﬁvmw‘\ﬁv v IIH»V.—
1-0 -o 2¥0¢ VO
ZH 732 4s?

11 1 1 1 1T




162

Xousnbazg jo uor3idunj e Se aanjeiaduwa] uUOTITSURIL SSETD

«-3J-AI1 @2Imb13

ZH * 3 6o
_ 0 I-

0G|
1 -
—0916
$€(06/0) =
2v0E VO
132 4s? — 041




163
VS, FREQUENCY

)

G

.

(079139

CFL

EXPERIMENTAL AN

Csh

IN PHAGE STIFFNES

¢

ﬁ fa D,A.
VUYY f.,,...,._.ﬂ
e h ) \ ik
I\

\ o
< .ﬂ 8 .vpam

——— e B w— ————— —————

— Y
a3 taY] l\l)n
Lo s o
. ~ _— - N
[ (nl.v.l.l. .m —-_ =
(V2T YARR ¥ [ RN P -—

e M em——— G———e e 0

Q (H)

FRI

)

L. O(
Figure IV-F-5

..‘.




+

164

el
M
1

l
1

]
“

1
G m>» 33+ XINx o

OUT OF PHASE STLFENESS VS, FREUQUENCY
CSO  CFL (/30038
EXPERINENIAL DATA

FOEaw
uensse
~Nroasn

1'
|
i
}
{
.
|
!
‘
1
i
f

:

LOG FREQ (HZ)

Figure IV-F-6



165

horizontally on the log frequency axis, the master curves of
Figures IV~F-7 and -9 are obtained. These master curves
show clearly that time-temperature superposition is obeyed
by the in situ resin. The shift factor required to obtain
the master curves is shown versus temperature in Figure IV-
F-9. Below about 170°C, the independently obtained shift
factors for M' and M'' are identical in value. Above 170°C,
the shift factors for M' and M'' are distinct. This is due
to the micromechanics of the composite structure which al-
ters thie internal stress distribution when one phase (the
matrix) softens with respect to the second phase (the fi-
bers) w ‘ch is unaffected by temperature.

It is interesting to note that our preliminary studies
on neat resins show that the shift factors for M' and M''
are identical at all temperatures. Thus, the diverging
shift factors for M' and M'' is seen only in the composite.
This is one reason why torsional braid techniques for poly-
mer resin evaluation can lead to difficulties in interpreta-
tion of data. 1In the torsional braid method, the resin is
coated on a supporting glass braid. One would expect that
the micromechanics problem presented in this report would be
significant.

Experiments have also been performed on laminates having
the 30 and 45 degree stacking sequences. Master curves simi-
lar to Figures IV-F-7 and -8 have been obtained. When the

storage modulus master curves (e.g., Figure IV-F-7) are

R e
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"gscaled” such that the dispersion region low frequency asymp-
tote is set equal to unity, then it is found that all stack-
ing sequency samples (90°, 45° and 30°) fall on a single
curve as shown in Figure IV-F-10.

Similarly, when the loss modulus master curves (e.g.,
Figure IV-F-8) are scaled such that the loss maximum (M'')
is set equal to unity, then all samples fall on a single
curve as shown in Figure IV-F-11.

The similarly scaled <poxy neat resin results are also
shown in Figures IV-F-10 and -11. Except for the high fre-
quency side of the dispersion peak, it appears that the neat
resin behavior is equivalent to that of the in situ resin.
However, the neat resin data in Figures IV-F-10 and -1l were
superposed with respect to a reference temperature of 150°C
(i.e., the temperature at which the shift factor is unity)
whereas the composites were superposed with respect to a
reference temperature of 165°C. Thus, the dispersion char-
acteristics of the neat resin ard in situ resin are compar-
able, but the in situ resin has a glass transition tempera-
ture some 12°C higher than that of the neat resin.

Finally, the effects of moisture on the glass transition
temperature of in situ resin can be conveniently studied
using mechanical spectroscopy. The loss moduli (M'') for
samples containing 0.7% and 0.3% water as well as a dry sam-
ple are shown in Figure IV-F-12. The change in glass transi-

tion is very significant and has been found to be reversible.
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3. Plans for the Upcoming Period

Similar experiments to those reported here are being
conducted on other resins such as Narmco 5208 and will be
reported on during the next period.

4. Current Publications or Presentations by
Professor Sternstein on this Subject

1) "Delamination Failure in Carbon-Epoxy Laminates"
Presented at the Society of Rheology Meeting,
Williamsburg, Virginia, February 23-25, 1981.

2) "Viscoelastic Characterization of Solids"

Presented at the National A.C.S. meeting,
Atlanta, Georgia, March 30, 1981.
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