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ABSTRACT

This document develops transfer matrices which permit analysis and computer evaluation of
certain series-type microwave antenna circuits associated with an L-Band microwave radiometer
(LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several
diverse instrument designs to be used for the determination of soil moisture, sea state, salinity,
and temperature data. Four-port matrix notation is used throughout for the evaluation of LBMR
circuits with mismatched couplers and lossy transmission lines. M-’rix parameters in examples
are predicated on an impedance analysis and an assumption of an array aperture distribution.
The notation presented here is easily adapted to longer and more varied chains of matrices, and

to matrices of larger dimension.

il

i

SERP T




TABLE OF CONTENTS

GLOSSARY OF NOTATION .
INTRODUCTION .. . . .

----------

......

TRANSFER MATRIX CONVENTIONS AND REDUCTION . . .

MATCHED DIRECTIONAL COUPLER . . .
TRANSMISSION LINE THEORY .

MISMATCHED DIRECTIONAL COUPLER. . . . . . .
CONVERSION MATRIX . . . . . . . e e e e e

ATTENUATION MATRIX . . . . . .
PRACTICAL CIRCUITS (LBMR) .

PARAMETERSOF CIRCUITS . . . . . . . . . . ..

CONCLUSION . . .

ACKNOWLEDGMENTS . . . . . . .

REFERENCES . . .

APPENDIXA . . . . . . . . . . ..

APPENDIXB. . . . . . e e e e e e e e e

APPENDIX C .

PRECEUING PAGE BLANK NOT Fiaep

........

. . .

.....

--------

.....

il

vii




LIST OF ILLUSTRATIONS

; 1. Transfer-Matrix Conventions. . . ........viii it iiiiiinennnenennnn. 2
2 Matched Directional Coupler. . ... .. .. i i i i e i 3
\ 3. Lossy Transmission Line. . ... oot 3
| 4, Lossy Transmission Lines . ... ... ... ittt ittt 5
5. Mismatched Directional Coupler. . ... ... .o i i v 6
0. Physical Circuit. . ... .. o i e e 8
7. Equivalent Gircuit, . . ... ... o i e e 9
8. Representative LBMR Circuit . ... ... ... . . o 10
9, Power Disn;ibution ofRadiators . . ..., i i it 13
10, Equivalent Circuit. . . ..o e e 16
1L Amended Power Distribution . .. ......... ... ... ... i, 16

vi



GLOSSARY OF NOTATION
Elements of a column matrix
Elements of a column matrix
Phase shift (radians)
Transfer matrix
Right, left (in context)
Coupler voltage coefticients
Transmission line length
Characteristic impedance of line
Standing-wave voltage and current

Propagation constant

Attenuation constant, nepers per unit length, proportional (in context)

Phase constant, radians per unit length
Incident and reflected wave amplitudes
Complex r:fection coefficient (generic)
Complex transmission coefficient (generic)
Complex reflection coefficient at termination
Termination impedance

Standing wave voltages at input and output of line
Attenuation constant (mismatched line)
Array ¢lement current

Array element power

Electncal far-field

Radiated power (density)

Radius

Intninsic impedance of free space
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(1
dB

LC

Wave number

Complex radiation pattern
Traveling wave voltage

Input impedance to LBMR net
Generator impedance
Resistance, conductance
Increment of P,

Matrix superscript for transpose
Matrix superscript for complex conjugate
ldentity matrix

Decibel

Inductance, capacitance
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TRANSFER MATRICES FOR SERIES-TYPE MICROWAVE
ANTENNA CIRCUITS

INTRODUCTION

This document records some of the preliminary work which has been done to analyze the
series-ty pe circuit associated with the L-Band Microwave Rudiometer (LBMR) design at Goddard
Space Flight Center., The matrix formulation presented here is not restricted to the LBMR, and
may be utilized in a general way. Furthermore, additional parallel paths may be obtained by
increasing the dimensions of the matrices. A relevant example may be found in Ref. 1.

The transfer matrices in this document are defined over a field of complex numbers. They
are a direct consequence of the definition of a scattering matrix of some microwave component or
junction. See Ref. 2. The latter may be postulated or may be obtained by means of a direct
physical measurement on a “‘black-box."”

A general or bilateral transfer matrix may be regarded, after appropriate rearrangement and
partitioning, as being composed of two null matrices and two unilateral (*transmission” and
“reception”) matrices of equal dimension. This pattitioning has been exploited throughout the
present document; only unilateral “‘transmission’ matrices are used. In this manner 75-percent
of the matrix-element bookkeeping is eliminated. The notational conventions, conversion {rom
scattering to transfer matnx, and dimensional reduction are detailed in the beginning of this docu-
ment. The development is then carried to the design stage for the overall problem.

TRANSFER MATRIX CONVENTIONS AND REDUCTION
The conventions used in this document are those of Ref. 1, and are made clear by means of

a simple example: two unequal lossless line-lengths in parallel.
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An output column matrix (§) results fron the product of a transfer matrix (T] with an input

column matrix (h).
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Figure 1. Transfer-Matrix Conventions.

It follows that the reduced matrix for transmission from (L) to (R) is
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MATCHED DIRECTIONAL COUPLER
The scattering matrix (S) of the matched directional coupler of Ref. 2, p. 301, is rewritten,

before reduction, as

[0 0o ¢ g

0o o0 j, C
I e et R 3
S] <R T T 3)

in vicw of the port designations of the previous discussion. By inspection, the reduced transfer

matnx for “‘transmission” is

(T = 4)
i, €

and represents the four-port junction shown below.
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Figure 2. Matched Directional Coupler.
Since the matched-coupler matrix is both symmetrical and unitary,
C,2+C1=1 . (5)

See Ref. 2, p. 301, and Appendix A of this document. Other [T] forms may be written for the
matched coupler as there is arbitrariness in the phases of the signals at the output ports, depending
on the choice of output reference planes.
LOSSY TRANSMISSION LINE

The transfer matrix for the lossy transmission line is predicated on equations found in Ref. 3,

p. 13. Signal flow is assumed to be from left (L) to right (R) in Fig. 3, below.

18>0 12=0
| |
! |
| |
L) ¢, Vi, l, ! ' 2, V., ®
Figure 3. Lossy Transmission Line.
\VJ -y Yz
Zz=—=Zer +Be ' )
I Ae™ - Be
where
z2=-f @)
and
Yy=a+p. (8)

A voltage reflection coefficient at a generic point on the line is now defined, using
= L
vi.nc =A e'Y

and
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as

The line voltages at ¢ # 0 and £ = 0 may then be written as

Z - Zo) 1R = 2A(Z coshyf +Z, sinh )

= 72-}
Vi S Ac A(z ¥z Z, +Z,)

L 0,

and

Z, -1
Vo=A+BeR=A+BrA+A| —0),
Z, +¢,

respectively. From these, after some algebra, the useful form

Z, -1
V, = |coshyR+ Z: sinhy®] V

is obtained.

9

(10)

(1Y)

(12)

(13)

(14)

An alternative to equation (14) is obtained more casily by writing the line voltages at £ # 0

and¢=0as

V,=Aerar, A
and

Vo =A+T,A=(14T)A ,

respectively. From these, the useful forin

(14rpertv,

VL
(1 +r, 278

(15)

(16;

amn



is cbtained. Equation (17) is now incorporated into a unilaterai transier matrix for a pair of lossy
lines since two lines will be associated with the coupler output and since the entire series-type
microwave circuit for the LBMR is cast in four-port notation.

li is noted that both (V,,) and (V, ) above are, in general, standing-wave voltages on the

transmission line. When 'y = 0, only a single (traveling) wave is present.

- Q ﬂ
(14T,)e "0
0
27, ¢
(14T, e Ty
(T) = (18)
¢
0 (14022
.
(1+T, ¢ %)

where subscripts (1) and (2) refer to the uppes and iower lines, respectively, and the (£, ) used

previously goes over to (ZL ;) and (Z ,) for ports (3) and (4).
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Figure 4. Lossy Transmission Lines.
The input impedance at any point (£) on the transmission line, as given by equation (6), is now
rewrnitten as
Z +Z tanh9t
L “o
Z =2

=7 19
t n 0 Z,+Z tanhyt a9

See Appendix A of this document for conditions under which equation (18) represents a unitary
matrix,
MISMATCHED DIRECTIONAL COUPLER

A unilateral or “‘transnission”” transfer matris or the mismatched directional coupier is now
predicated on the reflection coefficients at coupler output ports (3) and (4). The conditions of

Figure 5 are assumed; Z, ; # Zj, and Z, , # Z in general. The unitary transter matrix of the



matched coupler is retained in the development. 1t is also assumed that there will be only a single

inputh, # 0 at port (1). and 4 temination Z, , = £, at port (2) oi the coupler.

1 r
hy #0 em—gp—r - < 4,
hjgo %— rl2 g ZL‘
) ZLI.ZO (R)

Figure 5. Mismatched Directional Coupler.
The voltages across (£, ) and (Z“) are the result of an incident and reflected wave super-
position identical to that at the load-end of a mismatched transmission line (X = 0). Equation (16)
suggests that an auxilliary matrix should follow the classical unitary transfer matrix of the coupler,

and that it should have the form

(+7) 0

IT)= (20)
0 (1+T,)

to effect a conversion from treveling to standing-wave voltage. This novation provides for indepen-
dent complex-valued reflection coctlicients at ports (3) and (4) which will in general differ from
(Fy,) and (I ,) associated with a pair of transmission lines to the right (R) of a coupler.  Equation
(20) may also be obtained by a tundamental argument based on energy conserzation and may be
displayed graphically on a Smith impedance chart.

In the event thata, =ay =0,
IF, 1= 10,1 2n
and
P 1= 10,1 (22)
but compiex equality is obtained only when ¢, = ¢, equals some integer multiple of a half-wave
length.

Since matnx products are not commutative the order of matrices for the case of mismatch

must be as shown.
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g] fier ) 0 c, iC
1 - 1 1 1™ (23)
53_' 0 a+rllic, ¢llo
That is
(T, 1=(T,) [T, ,1...[T,] (24)

when the matrix subscripts increase in going from (L) to (R) in traversing a circuit.

It is note< that (23)serves for the unilateral (L) to (R) *‘transmission’’ under h; = 0 whereas
matrix (4) allowed h; # 0. A brief discussion of the consequences of multiplying the two square
matrices of (23) with a view toward obtaining an equivalent matrix under h, = 0 and an inquiry as
to whether or not the result is unitary, may be found in Appendix A.

It is also noted that (h, ) above is not a standing-wave voltage, but (g, ) and (g,) may be
standing-wave voltages.

CONVERSION MATRIX

Equations (15) and (16) show that (V, ) and (V) are standing waves. Equation (23) shows
that (h, ) is a single incident wave. If a self-consistent chain matrix is to be developed, an auxilliary
matrix will be required to convert (Vl_) across the input impcdance (Zin) to a coupler to an (h,)
implicitly across an impedance (Z,). Since (Z;) for the coupler at port (1) gives rise to a reilection
coefficient,

Z -7,

’ 1
I &, (25)
‘l Zin + Z0
the inverse of the process leading to equation (20) results in a matrix of the form

a+r,)’ o

(T} = (26)
0 0

which effects a conversion from standing to traveling wave voltage. It remains to develop an equa-

tion for (Z,).

In analogy with transmission line theory, three waves superimpose at port (1) so that



A+B +B, 1 "Caz r, "sz' T,,

z, . (¢3)!

Z =12 =
in "0 A-B, -B, l-(‘lzl‘“+szl‘,2

The power into (Z, ) obviously equals the total power appearing at points (1), (2), (3), and (4)
upon taking all internal coupler reflections into account. On the left side of the coupler, the
relative power may be assessed using the equations
IC,20,, -C,2T,,1* , port(l) (28A)
HC, G N, +1,17 . port () : (28B)
On the right side of the coupler relative power may be assessed using the equations

40, 2 CAT R ZGNZ 1), port (3) (29A)

U1+, % G TR, Zy 2 1Y . port (4) . (29B)
Energy conservation is easily ventied by the preceding, and absolute power division may also be
determined.
ATTENUATION MATRIX
A four-port coupler with one input port terminated in its characteristic impedance is
sometimes regarded as a three-port junction, leading to certain conformability problems regarding
matrix multiplication. One convenient means of removing one of the coupler outputs on a chain-

matrix calculation is to construct an attenuation matnx,

Figure 6. Physical Circuit.
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which may be regarded as a specialization of a general attenuation matrix

ry, I
T= . 3

Figure 7. Equivalent Circuit.
Four-port notation may then be used throughout the analysis. The attenuation matrix may be
introduced immediately after the coupler or some other component, such as a length of trans-
mission line, may precede it. In any event, the order of equation (24) must be preserved since the
matrix products are, in general, non-commutative.
PRACTICAL CIRCUITS (LBMR)

A restricted example is now given to illustrate the type of circuit associated with an LBMR
antenna array. Only four radiators and three couplers are considered. See Fig. 8. All transmission
lines are assumed to be lossy, and the loss parameter () may be different for each line of arbitrary
length. Both antenna impedances and loss parameters may be functions of frequency. In the event
that antenna impedances depart from the characteristic impedance (Z)) of the lines, the loss
parameter is redefined, in the presence of standing waves, as

(1 +10 1%

o =a RN

IURIINEY
where o, =aiin Ref. 3, p. 31. Also see Appendix B of this document for a relationship between
decibels and nepers when a = a . In equation (32), the magnitude of the reflection coellicient is
taken to be

-Z

ZL 0
Z +1

33)

INE
0
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It is tacitly assumed here that all lines have the same characteristic impedance (Zo) although
the restriction may be lifted if necessary. A common notation is employed for all couplers, lines,
etc. The values associated with tae upper and lower feed system are designated (1) and (2),
respectively. It follows that (&, ) and (€, ) of one matrix may thercfore be different from (a; ) and
(£, ) of some other matrix. The circuit is now represented by (n) matrices and the product
I

P Pr T d e (RE))

w i [T

Here n = 15, Output may be obtained at any circuit interface by truncating the chain of matrices at

the appropriate matrix [T 1

oy, & ¢, o)., ¢ .8, ¢, o .8,
; Coupler | [Coupler 3
® -
(L) %2 \(R)
ZA4
Figure 8. Representative LBMR Circuit.
The dividual matrices are now written explicitly
- e -
(1+1, )¢
29, ¢ 0
(141, ¢ 00
iT,1= 35)
0 0
GEIE 0]
(T,1= ~ 1T, LT, (36)
| 0 0
¢, i,
‘13i: . . ~|T8]sl’r|3] ‘37)
LJLZ ¢,

10
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(+r,)) 0
[T, = ~[Ty), [Ty, (38)
4 0 A+T,) 9ir1014
B
(14T et W
- i 0
(14T, ¢ 1y
1%
(1+T,)e
0
(1+1,, 72
1 0 ]
[T} = ~T),) (40)
0 0 ]

Itis noted that [T, ] is similar (~) to (T,1, ['l'l »}, etc., and not identical since the matrix values are,
in general, distinct.
PARAMETERS OF CIRCUITS

A procedure is now outlined for obtaining the parameters of a circuit such as the one shown in
Fig. 8. The procedure begins at the extreme right (R) of the network, and works progressively
toward the left (L), with an impedance analysis. A discussion of parumeter determination unaviod-
ably intringes on system design, which is beyond the scope of this document. Certain simplifying
assumptions are made, however, it will be shown that these are realistic, not particularly restrictive,
and may be lifted if desired. Further, it appears that a multi-stage procedure is *xpedient for
sophisticated problems.,

Initially, assume the following:

(1) All line characteristic impedances are equal to the value (Z,), which is taken to be real.

See Appendix C of this document,

(2) Allload impedances are also equal to (Z).

]



(3) The loss parameters (o) are equal to zero.

(4) The current distribution is known for the array radiators.

(5) The phase distribution is known for the array radiators, and is taken to be a constant

here for convenience.

(6) Coupler values (C, ) and (C,) will be predicated on the current distribution magnitude,

ignoring line loss (set a = 0), standing wave loss (set o = 0), and reflection loss (set

r,=0).

Under the preceding assumptions, the individual matrices simplify to

[T,1=

[T, =

[T,] =

(T,] =

it

(T,]

-p%

e]ﬁ \
0
1
0

Cl

C

LJ 2
1
C

C-’B 1
0
1
0

~{T,1,[T,,]

~ [T, 1, [T,,)

~[Ty),1T,,]

~[T,o), (T}§)

(41)

(42)

(43)

(44)

(45)

(46)
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Suppose that a current distribution (K,) is desired for (i) radiators, and that (i-1) coupiers

are to be used. See Figure 9.

— K, 12

11

(L) 12 3 4. i (R)

Figure 9. Power Distribution of Radiators.
Under impedance-match conditions (Z, | =Z,, =...=Z,, = Z), the radiated power of each

antenna is proportional to the square of the input current,
2y 2
P, a [K|® =K,

A rule can then be improvised to determine the coupler values for the initial set of assumptions,

C|2 a E l(i2 (Coupler 1)
2
(‘22 a Kl2 (Coupler 1)
2 2
C* a Z K, (Coupler 2)
3
sz a Kz2 (Coupler 2)
C,? a K? (Coupler i - 1)
sz a Kiz_l (Coupleri- 1)

As an example, when the current distribution is uniform, and

and 1 = 4 as in Fig. 8, the coupler parameters are obtained via

C,r=3¢?2 (Coupler 1)

13
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and

c,2=2¢,? (Coupler 2) (50)

C?=¢,? (Coupler 3) €1))

C,2+C,2 =] )

Since a = 0, matrices [T, 1, [T}, [T, 1, [T, ] behave as simple phase shifters and the line lengths

(V) are selected to obtain a zero phase gradient (or any other) across the array aperture by regarding

the complex operator of the coupler matrix as a phase advance:

j=e™? (53)

Next, assume the following:

(h
(2)
)

4)

(%)

(6)

All line impedances are equal to (Z,), taken to be real.

Load impedances Z ALY Z,5,... Z Aj are complex values not necessarily related to (Z0 ).
The loss parameters (a) for each line are not equal to zero. For convenience assume (a)
is the sume for all lines.

The square root of the radiated power will be regarded in the subsequent array analysis,
and will replace the antenna current distribution used earlicr. See Ref. 4, p. 142, which

represents the electrical far-field as

(53)

The design power distribution will be retained, but will be modified to account for ohmic
or joule power loss due to standing-waves on transmission lines with a # 0.

The phase distribution is known for the radiators and is taken to be a constant for
convenience,

Coupler values wil! be predicated on amended power distribution which anticipates line
loss (@), but not on reflection loss (I')) In practical situations where the Z,, may vary

with frequency, reflection loss is ordinanly just accepted since it would be impossible to
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design couplers to compensate over a band. In fact, the assumed coupler propertics of

equation (4) are a narrow-band approximation at best. Wide-band and single-frequency

match are heyond the scope of this document.

Given the second set of assumptions, it is then possible to begin with the antenna impedances
(Z, ) and (Z ,), evaluate the reflection coefficients (T ) and (T'y,) and mismatch line
parameters (a, ) and (@,,), using equations (11), (33), and (32). From equation (19) the imped-
ance values at ports (4) and (3) can be determined. These, in turn, lead to evaluation of reflection
coefficients (I' | ) and (r;,). From equations (27) and (25) the reflection coefficient (l‘:I ) at
port (1) is easily obtained using the (Z,, ) resulting fron: trple-wave superposition. Since
rl'l =T 54

for the transmission line matrix [T, ,] at coupler port (1), and since parameters v, , .7, %, for
the line matrix are already known, all parameters of [T, ;] througl: [T, o] are known with the
exception of those in [T, ; ].

From the relation

(P, +8P)
dB=10 log ——— =8.686a_ % (55
lOg (PI) ' )

the power loss due to standing waves may be assessed, and the design power distribution value for
the i*? feeder amended. The coefficients of the rightmost coupler (3), may then be set using logic
similar to that leading to cquations (46) and (47) once the losses of the lines (1) and (2) of matrix
[Tl 5 ] have been deiemmined. Since equation (19) may be used again to determine impedances
(Z, ;) and (£, ,), with their associated relfection coefticients (I',, ) and (I, ;) at ports (3) and (4),
respectively, of the next coupler (2), the indicated process may be continued until matrix [T, | is
reached.

The standing-wave voltage (V, ) at the left end of the transmission line described by matrix

hl
= e | 7 5
Vm Zo +ZNL' lNl | (50)

[T, ] s given by




where (Zy ¢ 1) is the input impedance to the entire network as seen to the right of the generator

terminals. See Fig. 10.

ZNET

-
Figure 10. Equivalent Circuit,

The driving function for the entire problem is, therefore, a column matrix

V.
in (57)
0
which operates on matrix [T, ] in the non-commutative sequence
in
T - T T, . (58)

0

Returning to the discussion of coupler coefficients, suppose that an amended power dis-
tribution such as the one depicted by Fig. 11 has been developed by means of equation (55) and

the original design distribution,

—
] I SN
1| sn "N\
' P, +8 P,
/1/ N
v P,
— R e e, e 3
(L) b2 3 4. i (R)

Figure 11. Amended Power Distribution.
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The power (P, + GPi) is associated with the it" feeder, and the increment (GPi) is intended to offsct
ohmic feeder loss in the presence of standing waves. Due to uncompensated reflection loss, the
actual power arriving at the i*® radiator may be less than or equal to the design distribution value
(P,). Reflection losses may be at ports (1) and (2) of the couplers, depending on values (Z, 5)and
L))

Equations analogous to (46) and (47) can then be written as

2
C,(+T )

Z,

R, « P +op, (59)
3

2
CZ (l+rt2) R
ZL‘ 4

al

i tOP,, (60)

The system of equations is solvable, using equation (5), and the summing process is carried out as

before.
CONCLUSION

This document presents an approach to retaining transfer or chain-matrix methods in the
presence of standing waves of voltage. An impedance analysis preceded the multiplication process
to establish the matrix parameters. Current was not carried explicitly in the development.

The analysis of the mismatched coupler was predicated on the notion that its classical
scattering-matrix properties are invariant with respect to impedance mismatch. On this premise,
reflected signals were described in terms of complex reflection coefficients and superimposed in
analogy with standard transmission line theory. Energy conservation was verified for the coupler.
The analysis was restricted to a single input to the coupler. It was found that for the general mis-
match case, two waves superimposed at each output port and three waves superimposed at the
input port,

A brief discussion addressed the problem of determining the coupler coefficients for an

assumed antenna array power distributicn. The radiated design power from each antenna was

17



used in the calculations since antenna input impedance was not necessarily identical among the
array elements. Line losses were compensated in the determination of the coupler coefficients.

Impedance mismatch losses over a frequency band weir: not compensated.
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APPENDIX A
UNITARY MATRICES
The term “‘unitary matrix” appears from time to time in the discussion on scattering and trans-
fer matrices. In Ref. 2, p. 301, the author states that the coupler matrix is unitary. In an abstract
matﬁematical sense any matrix which satisfies
[A] [A]'T =11] (1-A)
is unitary when (*) implies “‘complex conjugate” and (T) implies “transpose.” See Ref. 6, p. 229.

It can be seen that the coupler transfer matrix of equation (4) is unitary since

T
iC,

= (1] (2-A)

The notion of “‘reactive” or “lossless” is sometimes associated with the unitary matrix of a
microwave junction, and reciprocity is evidently not a consideration. See Ref. 7, p. 273. It will be
recalled that the objectives of the present document were restricted to “‘unilateral’ transfer
matrices, with the possible exception of energy conservation verification for the mismatched
coupler.

It is interesting to test the transmission line transfer matrix of equation (18) to determine
whether or not it represents a uniiary matrix for certain special terminations after considering
the general tennination. Furthermore, it appears that the “unitary” test may include “reflectionless”
as well as “lossless’ for a given junction.

In Ref. 8, p. 7, it is stated that the operation of taking conjugates is distributive with respect
to addition, subtraction, multiplication. 1nd addition. Relying on this, the condition
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would have to be met under a; =0, and a similar expression for line (2) would result for @, = 0.
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An impedance match (Z, = Z,) results in a zero reflection coefficient (rm = 0) so that
equation (3-A) is satisfied upon introducing a resistor. Conversely, a perfect short-circuit (Z = 0)
results in a non-zero reflection coefficient (I'y, =-1) so that equation (3-A) is not satisiied upon
introducing u lossless termination,

Matrix multiplication is valid under an associative law, raising the possibility of forming
equivalent matrices, and inquiry about the unitary character of the result. Combining the two
square matrices of equation (23) into an equivalent unilateral matrix is admissible, but the result
will not be a unitary matrix. The introduction of(l"rl #0) and (T, # 0) into cquation (23) is
an admission that energy will be retlected at the output end (R) of the coupler. The discussion on
transmission lines and unitary matrices now becomes relevant here as reflection was associated with
a non-unitary matrix (2, =0, I', =-1) previously.

Another example of a non-unitary equivalent matrix can be generated even when the reflec-
tion cocfficicnts at the coupler output ports are equal to zero (I' = I’

2 = 0). If an attenuation

matrix such as that of equation (30) is placed between the generator and the coupler,
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which is not unitary due to power dissipation within the combination.



W ST

L g T

APPENDIX B
LOSSES IN MISMATCHED LINES
When Z; = Z,, equation (14) or (17) leads to
Vs

Vr

\%

1
v2

dB=20 l(l)%

=9 =1 of
20 lf)g 20 l% e

since
e %) = R

iWhen Z, # Z,, and standing waves exist on the transmission line,
I

a-a s
as given by equation (32). Then
al o f
dB=20loge** =20 1loge *
10 10

(1-B)

(3-B)

(4-B)

A convenient relationship may be derived relating decibels and nepers. In an abstract sense, if

logN=M ,
e
and
JogN=P ,
10
then
eM =10

Taking the logarithm to the base ten of both sides,
log Nloge =log N
eg 15 l&
It follows that

dB = 20 log ¢®! ~ 20 (.434) log ¢*® = 8.686 ok + 8.686 o ¢
(2

when 2.L # Zo.

(5-B)

(6-B)

(7-B)

(8-B)

(9-B)
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APPENDIX C
CHARACTERISTIC IMPEDANCE OF LINES
The theory underlying transmission lines can be found i1 many standard texts. See Ref. 3 and

5. When series capacitance and shunt inductance are neglected, which is commonly done, the

+jwl
Z,= ke (1)
G +jwC

When the series resistance (R) is small with respect to (jwL), and the shunt conductance (G) is

characteristic impedance is written as

small with respect to (jwL), the above is often simplified to

z,~ ‘/g : (2<0)

which implies a purely resistive characteristic impedance when
R=G=0 . 3-0)

The propagation factor (v) is usually written as
e
v=[(R +jwl) (G +jwC)] 4-0)
which simplifies to

y=a+jB=0+jw(LC)? (5-0)

when equation (3-C) holds. For lines with small losses, a binomial expansion (Ref. 3, p. 20) leads to

a=R 248 Jmet (6-0)
5 /1% 5/ neper/meter.

In practice, a purely resistive (Zo) and a non-zero (@) are assumed even though this may appear

paradoxical.
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