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ABSTRACT

This document develops transfer matrices which permit analysis and computer evaluation of

certain series-type microwave antenna circuits associated with an L-Band microwave radiometer

(LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several

diverse instrument designs to be used fcr the determination of soil moisture, sea state, salinity,

and temperature data. Four-port matrix notation is used throughout for the evaluation of LBMR

circuits with mismatched couplers and lossy transmission lines. M-'.rix parameters in examples

are predicat(A on an impedance analysis and an assumption of an array aperture distribution.

The notation presented here is easily adapted to longer and more varied chains of matrices, and

to matrices of larger dimension.
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GLOSSARY OF NOTATION

91
Elements of a column matrix

h t Elements of a column matrix

i
Phase shift (radians)

[T) Transfer matrix

R,L Right, left (in context)

c t , c 2 Coupler voltage coefficients

R Transmission line length

Zo Characteristic impedance of line

V, I Standing-wave voltage and current

y Propagation constant

Q Attenuation constant, nepers per unit length, proportional (in context)

Q Phase constant, radians per unit length

A,B Incident and reflected wave amplitudes

i' s Complex r Jection coefficient (generic)

r, Complex transmission coefficient (generic)

1'o Complex reflection coefficient at termination

Z L Termination impedance

V in , V Standing wave voltages at input and output of line

a t Attenuation constant (mismatched line)

K Array element current

Pi Array element power

E
t

E lecthczl far-field

Ptaa Radiated power (density)

r Radius

to Intrinsic impedance of free space

vii



ko Wave number

9(9 10) Complex radiation pattern

II I Traveling wave voltage

ZHET Input impedance to LBMR net

!r Generator impedance

R, G Resistance, conductance

SP i Increment of P,

T Matrix superscript for transpose

• Matrix superscript for complex conjugate

[I] Identity matrix

dB Decibel

L, C inductance, capacitance
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TRANSFER MATRICES FOR SERIES-TYPE MICROWAVE
ANTENNA CIRCUITS

INTRODUCTION

This document records some of the preliminary work which has been done to analyze the

series-type circuit associated with the L-Band Microwave Radiometer (LBMR) design at Goddard

Space Flight Center. The matrix formulation presented here is not restricted to the LBMR, and

may be utilized in a general way. Furthermore, additional parallel paths may be obtained by

increasing the dimensions of the matrices. A relevant example may be found in Ref. 1.

The transfer matrices in this document are defined over a field of complex numbers. They

are a direct consequence of the definition of a scattering matrix of some microwave component or

junction. See Ref. ?. The latter may be postulated or may be obtained by means of a direct

physical measurement on a "black-box."

A general or bilateral transfer matrix may be regarded, after appropriate rearrangement and

partitioning, as being composed of two null matrices and two unilateral ("transmission" and

"reception") matrices of equal dimension. This partitioning has been exploited throughout the

present document; only unilateral "transmission" matrices are used. In this manner 75-percent

of the matrix-element bookkeeping is eliminated. The notational conventions, conversion from

scattering to transfer matrix, and dimensional reduction are detailed in the beginning of this docu-

ment. The development is then carried to the design stage for the overall problem.

TRANSFER MATRIX CONVENTIONS AND REDUCTION

The conventions used in this document are those of Ref. 1, and are made clear by means of

a simple example: two unequal lossless line -lengths in parallel.

g,	 e^^ l 	 0	 0	 0	 ►^t

92	
0	 ejl,1	

0	 C	 112

93	 0	 0	 e j02	 0	 h3

gi	0	 0	 0	 ei 0 2 ha



An output column matrix () results fro-n the product of a transfer matrix (T) with an input

column matrix (E).

--^► ht g  40-
1	 ^

i
3

^--^ h2 g2 f..^^

h 3 93 ^^♦.2

y2

4

h4 94-0--

Left (L)	 ^'	 0 Right (R)

Figure 1. Transfer -Matrix Conventions.

It follows that the reduced matrix for transmission from (L) to (R) is

	

61	
e	

t	 0	 h t 	 Ttt	 T,3 ht

	

g=IT] h= 9
3	 0	 e

-1^2 h
3	 T3 t	

T33 h3

	 (2)

MATCHED DIRECTIONAL COUPLER

The scattering matrix (S) of the matched directional coupler of Ref. 2, p. 301, is rewritten,

before reduction, as

	

0	 0	 C1	 j('2

	

IS1 = c,	 --

	

0	 0	 jC2	 Ct

	

-- ^c2	
U

	

-- - - - U	 (3)

	

jC2	Ct	 0	 0

in view of the port designations of the previous discussion. By inspection, the reduced transfer

matnx for "transmission" is

	

C1	 jC2

	

(T)
	

(4)

	

jC2 	 C,

and represents the four-port junction shown below.

2



1	 3

	

(L)	 (R)
2	 4

Figure 2. Matched Directional Coupler.

Since the matched-coupler matrix is both symmetrical and unitary,

C 1 2 +C2 2= 1.	 (5)

See Ref. 2, p. 301, and Appendix A of this document. Other IT] forms may be written for thw-

matched coupler as there is arbitrariness in the phases of the signals at the output ports, depending

on the choice of output reference planes.

LOSSY TRANSMISSION LINE

The transfer matrix for the lossy transmission line is predicated on equations found in Ref. 3,

p. 13. Signal flow is assumed to be from left (L) to right (R) in Fig. 3, below.

1 Q>o	 1 Q=0
1	 I

I

I	 I

(L)	 Lin I Vin  lin	 I	 1 Zt.I 
VI., IL (It)

Figure 3. Lossy Transmission Line.

Zz =
V	 A e-7Z + B e7z	 (6)
1 = Zp A e

-7z - B e7z

where

z = -Q	 (7)

and

7=a+jQ ,	 (8)

A voltage reflection coefficient at a generic point on the line is now defined, using

Vona = A e7Q

and

3



Vrei. ` B e-7	 , (9)

as

r = 
Vre f. B C -2  yQ

Vinc. A

At the special point Q = 0. this reduces to

$ = ZL -ZOro = A 
ZL+L°	

(I .)

The line voltages at Q # 0 and Q = 0 may then be wr. ' tten as

V = A eyQ + 
AN  - Zo a yQ = 2 A (L L cosh yQ + Z,) sinh yQ)

h,Z
t + Zo 	 (Li. + Zu)	

(12)

and

V =AOR + Be'I'Q=A+B-A+A Z
L - Z°

i	 ZL + Z°
	

(13)

respectively. From these, after some algebra, the useful form

z^	 ",
VL = cosh yQ +	 sinh yQ	

Vin	
(14)

is obtained.

An alternative to equation ( 14) is obtained more easily by writing the line voltages at Q # 0

and Q=0as

Vin = A OQ + ro A c-'Y'
	

(15)

and

	

V L =A+r°A=0 +ro )A	 (ib)

respectively. From these, the useful forin

(1 { ro) a"yQ V,

V L =	 (17)0+r.C2yQ)

4
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is obtained. Equation ( 17) is now incorporated into a un0aterai transfer matrix for a pair of lossy

lines since two lines will be associated with the coupler output and since the entire series-type

microwave circuit for the LBMR is cast in four -port notation.

1. is noted that both (V,,) and (Y above are, in general, standing-wave voltages on the

transmission line. When r. = 0, only a single ( traveling) wave is pre; r.:.

Q
(1 +fot) e^t t

0

(1 +rot e-
27tRt)

(T) =

0 + r02) a
-72 Q2

0

(1 + rn, a'Y2R2)

where subscripts (1) and (2) refer to the upper and ;ower lines, respectively, and the (Ld used

previously goes over to (Z i 3 ) and (ZL4 ) for ports (3) and (4).

	

t >0 1	
yt = at +jpt	 3	 =4 0

i	
t 

(L)(R)

	

>0 '	 y2 
=a 2  + j 62	4 Q =0

2

Figure 4. Lossy Transmission Lines.

The input impedance at any point (ft) on the transmission line, as given by equation (6), is now

rewritten as

z =z
ZL +Z 0  tanh 7Q

m = z u Zo + Z  tanh yu

See Appendix A of this document for conditions under which equation (18) represents a unitary

matrix.

MISMATCHED DIRECTIONAL COUPLER

A unilateral or -transmission" transfer matri x 1' , )r  the mismatched directional coupler is now

predicated on the refection coefficients at coupler output ports (3) and (4). The conditions of

Figure 5 arc assumed; ZL 3 * Zo , and ZL4 * Zo in general. The unitary tran sfer matrix of the

(18)

(19)

g2
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matched coupler is retained in he development. It is also assumed that them will be only a single

input h t # 0 at port (1). and a termination L, 2 = to at port (2) of the coupler.

h, # 0 1	 r''	 3 7 t 3

2	 r,2	 4 Z
h3 0 L4

(L) ZL2 = Z 	
(R)

Figure 5, Mismatched Directional Coupler.

The voltages across (L, 3 ) and (Z, A ) are the result of an incident and reflected wave super-

position identical to that at the load-end of a mismatched transmission line (z = 0). I'.yuation (Ih)

suggests that an auxilliary matrix should follow the classical unitary transfer matrix of the coupler,

and Owt it should have the form

(1 +r)	 0

lTl =
	

(_'0)
0	 ( 1 +rr2)

to effsct a conversion from tr.:vcling to standing-wave voltage. This not:.tion provides for indepen-

dent complex-valued reflection coefficients at ports (3) and (4) which will in general differ from

(ro ,) and (r02 ) associated with a pair of transmission lines ho the right (R) of a coupler. Equation

(30) may also be obtained by a fundamental argument based on energy conseriation and may be

displayed graphically on a Smith impedance chart.

In the evert that a, = a 2 = 0 ,

► r,, i = Ir., i

and

111f 2 1 = 1r0 2 I .

but complex equality is obtained only when Q, _ {t 2 equals some integer multiple of a half-wive

length.

Since matrix products are not commutative the order of matrices for the case of mismatch

must be as shown.

('_1)

(22)

6



gll _ r'1 +r,t)	 o I rc,	 jc:t
—	 (23)

1;3j 	 0	 (1 +rr 2	C2 	 C1 0

That is

{Teq 1 = [Tn 1 [ Tn-1 1 ... [ Tl 1	 (24)
3

when the matrix subscripts increase in going from (L) to (R) in traversing a circuit.

It is note ,: that (23) serves for the unilateral (L) to (R) " transmission" under h 3 = 0 whereas

matrix (4) allowed h3 * 0. A brief discussion of the consequences of multiplying the two square

matrices of (23) with a view toward obtaining an equivalent matrix under h 3 = 0 and an inquiry as

to whether or not the result is unitary, may be found in Appendix A.

It is also noted that (h l ) above is not a standing-wave voltage, but (g l ) and (93 ) may be

standing-wave voltages.

CONVERSION MATRIX

Equations (15) and (16) show that (Vin ) and (VL ) are standing waves. Equation (23) shows

that (h l ) is a single incident wave. If a self-consistent chain matrix is to be developed, an auxilliary

matrix will be required to convert (VL ) across the input impedance (Zin ) to a coupler to an ( h l )

implicitly across an impedance (Z,,). Since ( Zin ) for the coupler at port (1) gives rise to a re3ection

coefficient,

Z. - Z

	

►n	 0

	

rr1 
= Zin 

+z0 	 (^5)

the inverse of the process leading to equation ( 20) results in a matrix of the form

	

(I +^t t ' )-'	
0-

[T1 =	 (26)
0	 0

which effects a conversion from standing to traveling wave voltage. It remains to develop an equa-

tion for (Zin ).

In analogy with transmission line theory, three waves superimpose at port ( 1) so that

^_	 7



3

	

^ Z A+$ t +13 2 = 1
+C t

2rrt rC2 f2 Z 	
?7(- )in	

A—BI —B 2 1 —C 1 2 rtl +C2 2 rt2

The power into (Z, n ) obviously equals the total power appearing at points (1), (2), (3), and (4)

upon taking all internal coupler reflections into account. On the left side of the coupler, the

relative power may he assessed using the equations

If l2 rrt - ( 2
2 rr2 12 •	 port (1)	 ('_8A)

u C 1 (" 1 2 Ir r I + (,r 2 1 2	 port ('_)	 ( -HM

On the right side of the coupler relative power may be assessed us i ng the equations

III + 1' t r 1 2	 1 ` 1 (Re L t. 3 1IL t. 3 I2) .	 port (3)	 (20A)

	l i 1 + P1r l'- C,21 (R,zl.all1t.a I2)
	 port (4) 

Energy conservation is easily verified b^ the preceding, and absolute power division may also be

determined.

ATTINUATION MATRIX

A four-port coupler with one input port terminated in its characteristic impedance is

sometimes regarded as a three-port junction, leading to certain conformability problems regarding

matrix multiplication. One convenient means of removing one of the coupler outputs on a chain-

matrix calculation is to construct an attenuation matrix,

Figure b. Physical Circuit,

1	 0

	

T =
0 0	

(30)



which may be regarded as a specialization of a general attenuation matrix

rat	 rt2

T =	 ,	 (31)

r2t	 r22

with r, t = 1, and r2 2 = r l 2 = r2 t = () .

h t 	---► B
4

zo L-6=
Figure 7. Equivalent Circuit.

Four-port notation may then be used throughout the analysis. The attenuation matrix may be

introduced immediately after the coupler or some other component, such as a length of trans-

mission line, may precede it, in any event, the order of equation (24) must be preserved since the

matrix products are, in general, non-commutative.

PRACTICAL CIRCUITS (LBMR)

A restricted example is now given to illustrate the type of circuit associated with an LBMR

antenna array. Only four radiators and three couplers are considered. See Fig. 8. All transmission

lines are assumed to be lossy, and the loss parameter (a) may be different for each line of arbitrary

length. Both antenna impedances and loss parameters may he functions of frequency. In the event

that antenna impedances depart from the characteristic impedance (Z o ) of the lines, the loss

parameter is redefined, in the presence of standing waves, as

(I+iro12)	
(32)

where am = a in Ref. 3, p. 31. Also see Appendix B of this document for a relationship between

decibels and nepers when a - a , . In equation (32), the magnitude of the reflection coe:'ficient is

taken to be

	

Iro I = 

1ZL +Z	
(33)

 o

9



jC2

F 2 , Q2)Q2
ZA3 

10

It is tacitly assumed here that all lines have the same characteristic impedance (Z.) although

the restriction may be lifted it necessary. A common notation is employed for all couplers, lines,

etc. The values associated with tnc upper and lower feed system are designated (1) and (2),

respectively. It follows that toil ) and (V i ) of one matrix may therefore be different from ta i ) and

(V, ) of some other matrix. The circuit is now represented by 00 matrices and the pr(Muct

► '	 j1 Vo l 1t '	i1 ., iII ..^ Ij1 ..	 i.	 II,i11 2 1II,I î 	 (.t f ►

Here n = I.S. Output ►nay In: obtained at any circuit interface by truncating the chain of matrices at

the appropriate matrix IT.-d1

11 11 1 0 1 , Qt	
CI	

at , 4 I	 CI	 aP C I	 CI	 IleQi

Z o = .s
Coupler 1	 Coupler	 Coupler 3

7c	
X2	

Lo	 jt,	 o
2

(1)	 a2' 
Q2	 a2' Q2

ZA,	 ZA2

Figure 8. Representative LBMR Circuit.

The Individual matrices are now written explicitly

(1 +Co,
}e7, t

0

IT11

0	 0

11 +I'll ,0	 0

IT 21=

0	 0

C 	 jt 2

l^.31

lic 2	 C,

(35)

IT71. IT, 21

1T81, 1T1 31

(36)

(37)



(l t rrI >	 o
[T4 1 	

0	 (I t r)	 [T91, [TI 41(38)
r2

R

(I +rol)e^l I 0
(I +role , I)

[T51=	
^' IT IO I, [T ts 1	 (39)

(I t r02) e^2R2

0

(I +roe a-Y2R2)

1	 0

[T6 1 =	 —[Till 	 (40)

0	 0

It is noted that [T 2 1 is similar (^-) to [ T7 1 1 [T I 2 1, etc., and not identical since the matrix values are,

in general, distinct.

PARAMETERS OF CIRCUITS

A procedure is now outlined for obtaining the parameters of a circuit such as the one shown in

Fig. 8. The procedure begins at the extreme right (R) of the network, and works progressively

toward the left (L), with an impedance analysis. A discussion of parameter determination unaviod-

ably infringes on system design, which is beyond the scope of this document. Certain simplifying

assumptions are made, however, it will be shown that these are realistic, not particularly restrictive,

and may be lifted if desired. Further, it appears that a multi-stage procedure is expedient for

sophisticated problems.

Initially, assume the following:

(1) All line characteristic impedances are equal to the value (Zo ), which is taken to be real.

See Appendix C of this document.

(2) All load impedances are also equal to (Zo ).



e 
11?e

0

(T 1 1 =
0 0

1 0

(T2 1 = [T, 1, [T121
0 0

C1 jC2

1 T3 1 = (Ts1, [T131

1C', C1

1 0

[T91, (TI 4 1
0 1

-iRR f 0

e102
— [T 10 1, 1T 1 s 1

0

—[T11]

0

(41)

(42)

(43)

(T41 _
(44)

e

[T51
0

1

(T^ s =

0

(45)

(4h)

(3) The loss parameters (a) are equal to zero.

(4) The current distribution is known for the array radiators.

(5) The phase distribution is known for the array radiators, and is taken to be a constant

here for convenience.

(G) Coupler values (C 1 ) and (C,) will be predicated on the current distribution magnitude,

ignoring line loss (set a = 0), standing wave loss (set a, = 0), and reflection loss (set

r, = 0).

Under the preceding assumptions, the individual matrices simplify to

12



L
Suppose that a current distribution ( K i ) is desired for (i) radiators, and that (i-1) couplers

are to be used. See Figure 9.

(L)	 1	 2	 3	 4...	 i	 (R)

Figure 9. Power Distribution of Radiators.

Under impedance -match conditions (ZA t = z  2 = - • • = z  i = Zo), the radiated power of each

antenna is proportional to the square of the input current,

Pi a IKi12 = K i 2	 (41)

A rule can then be improvised to determine the coupler values for the initial set of assumptions,

i
C  2 a 

Z 
K i t 	(Coupler 1)	 (42)

2

C22 a K t `	 (Coupler 1)	 (43)

C 1 2 a V K^(Coupler2 	 2)	 (44)^
'`.	 3

f	 C22 a K 2 '`	 (Coupler 2)	 (45)

C 1 2 a Ki t	 (Coupler i - 1)	 (46)

C 2 2 a Ki2-r	 (Coupler i - 1)	 (47)

As an example, when the current distribution is uniform, and

Ki t = Cis pant = 1 .	 (49)

and i = 4 as in Fig. ti, the coupler parameters are obtained via

C  2 = 3 C1 2	 (Coupler 1)	 (49)

13
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C 1 2 = 2 C 2 
2	 (Coupler 2)	 (50)

C t 2 = C2 2	 (Coupler 3)	 (51)

and

Ct2+C22=1
	

(5)

Since a = 0, matrices [ T i 1, ITS 1, (Tt o 1, ( T t S ] behave as simple phase shifters and the line lengths

(ft) are selected to obtain a zero phase gradient (or any other) across the array aperture by regarding

the complex operator of the coupler matrix as a phase advance:

j
^/2

= ei

Next, assume the following:

(1) All line impedances are equal to ( Zo), taken to be real.

(2) Load impedances Z  t , ZA 21 ... ZA ► are complex values not necessarily related to (Zo).

(3) The loss parameters (a) for each line are not equal to zero. For convenience assume (a)

is the same for all lines.

(4) The square root of the radiated power will be regarded in the subsequent array analysis,

and will replace the antenna current distribution used earlie*. See Ref. 4, p. 142, which

represents the electrical far-field as

kreed.	 e
E _	 —	 g(o,m)	 (53)

2A	 t r
0

(5) The design power distribution will be retained, but will be modified to account for ohmic

or joule power loss due to standing -waves on transmission lines with a # 0.

(6) Th.- phase distribution is known for the radiator and is taken to be a constant for

convenience.

(7) Coupler values wit! be predicated on amended power distribution which anticipates line

loss (ad, but not on reflection loss Wd In practical situations where the Z A i may vary

with frequency, rcllcction loss is ordinarily just accepted since it would be impossible to

(52)

14



design couplers to compensate over a band. In fact, the assumed coupler properties of

equation (4) are a narrow-hand approximation at best. Wide-band and single-frequency

match are heyond the scope of this document.

Given the second set of assumptions, it is then possible to begin with the antenna impedances

(ZA 4 ) and (Z :, 3 ), evaluate the reflection coefficients (1' o 1 ) and (i'o 2 ) and mismatch line

parameters (a, I) and (a,2)1 using equations ( 11), (33), and (32). From equation ( 19) the imped-

ance values at ports (4) and (3) can be determined. These, in turn, lead to evaluation of reflection

coefficients 0 'r 1 ) and (('r2 ). From equations ( 27) and (25) the reflection coefficient (t'r 1 ) at

port ( 1) is easily obtained using the (ZIn ) resulting from trple -wave superposition. Since

Pt ° X0 1
	 (54)

for the transmission line matrix 1T10 1 at coupler port (! ), and since parameters -f,, u 1 , 72 1 R2 for

the line matrix are already known, all parameters of 1T 15 1 through 1T , o 1 are known with the

exception of those in 1T1 31

From the relation

(P. + S P. )
dB =) 0 log '	 = 8.686 ar R	 (55)

10	 (PI)

the power loss due to standing waves may be assessed, and the design power distribution value for

the ith feeder amended. The coefficients of the rightmost coupler (3), may then be set using logic

similar to that leading to equations (46) and (47) once the losses of the lines ( 1) and ('_) of matrix

1T1 S 1 have been deiennined. Since equation ( 19) may be used again to determine impedances

( Z L 3 ) and (Zt 4 ), with their associated reffection coefficients ( C, t ) and 0' ^ 2 ) at ports ( 3) and (4),

respectively, of the next coupler ('_), the indicated process may be continued until matrix 1T 1 1 is

reached.

The standing-wave voltage ( Vin ) at the left end of the transmission line descritxd by matrix

1T 1 1 is given by

h

Vin 
_	

1ZN 1 1	 (5o)
 )Zu +jNi I
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z  = z 
.

ZNET

(L) 1	 2	 3	 4 ...	 i (R)

a Pi

where (ZN is T ) is the input impedance to the entire network as seen to the right of the generator

terminals. See Fig. 10.

Vin

Figure 10. Equivalent Circuit.

The driving function for the entire problem is, therefore, a column matrix

	

r

in]	
(57)

0

which operates on matrix IT, ) in the non-commutative sequence

V;'1

Tn	T2 TI	(58)

0

Returning to the discussion of coupler coefficients, suppose that an amended power dis-

tribution such as the one depicted by Fig. I 1 has been developed by means of equation (55) and

the original design distribution.

Figure 11. Amended tower Distribution.

a
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ohmic feeder loss in the presence of standing waves. Due to uncompensated reflection loss, the

actual power arriving at the ith radiator may be less than or equal to the design distribution value

(P = ). Reflection losses maybe at ports (1) and (2) of the couplers, depending on values (Z t 3 ) and

(Z L 4 ).

Equations analogous to (46) and (47) can then be written as

C t (1 +,1) 
Z

Z 
1'
	 RL 3 'a 	 + SPi	(59)
L3

C2 (I +rr1) 
2

Z	
RL 4 a Pi. I + 6 Pi. t	 (60)

L4

The system of equations is solvable, using equation (5), and the summing process is carried out as

before.

CONCLUSION

This document presents an approach to retaining transfer or chain-matrix methods in the

presence of standing waves of voltage. An impedance analysis preceded the multiplication process

to establish the matrix parameters. Current was not carried explicitly in the development.

The analysis of the mismatched coupler was predicated on the notion that its classical

scattering-matrix properties are invariant with respect to impedance mismatch. On this premise,

reflected signals were described in terms of complex reflection coefficients and superimposed in

analogy with standard transmission line theory. Energy conservation was verified for the coupler.

The analysis was restricted to a single input to the coupler. It was found that for the general mis-

match case, two waves superimposed at each output port and three waves superimposed at the

input port.

A brief discussion addressed the problem of determining the coupler coefficients for an

assumed antenna array power distribution. The radiated design power from each antenna was

17



used in the calculations since antenna input impedance was not necessarily identical among the

array elements. Line losses were compensated in the determination of the coupler coefficients.

Impedance mismatch losses over a frequency band weif: not compensated.

18
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APPENDIX A

UNITARY MATRICES

The term "unitary matrix" appears from time to time in the discussion on scattering and trans-

fer matrices. In Ref. 2, p. 301, the author states that the coupler matrix is unitary. In an abstract

mathematical sense any matrix which satisfies

[A] [A]•T = [ 1 1
	

O -A)

is unitary when (*) implies "complex conjugate" and (T) implies "transpose." See Ref. 6, p. 229.

It can be seen that the coupler transfer matrix of equation (4) is unitary since

• r
C, jC2 	jC2

jC2 C, [

C1

C2	
C,

The notion of "reactive" or "lossless" is sometimes associated with the unitary matrix of a

microwave junction, and reciprocity is evidently not a consideration. See Ref. 7, p. 273. It will be

recalled that the objectives of the present document were restricted to "unilateral" transfer

matrices, with the possible exception of energy conservation verification for the mismatclied

coupler.

It is interesting to test the transmission line transfer matrix of equation (18) to detennine

whether or not it represents a unitary matrix for certain special terminations after considering

the general termination. Furthermore, it appears that the "unitary" test may include "reflect ionless"

as well as "lossless" for a given junction.

In Ref. 8, p. 7, it is stated that the operation of taking conjugates is distributive with respect

to addition, subtraction, multiplication, -md addition. Relying on this, the condition

I 
_} 
ro t e

10, R,

I + 11	 a 2iP, R,
of

I + F 
of 

• etRR^

= 1
2i^3R,1 

+ 1'of

O-A)

would have to be met under a, = 0, and a similar expression for line (2) would result for of = 0.
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An impedance match (Z L = Zo ) results in a zero reflection coefficient (1' o t = 0) so that

equation (3-A) is satisfied upon introducing a resistor. Conversely, a perfect short-circuit (Z L = 0)

results in a non-zero reflection coefficient (Co t = -1) so that equation (3-A) is not satis led upon

introducing a lossless termination.

Matrix multiplication is valid under an associative law, raising the possibility of forming

equivalent matrice-,, and inquiry about the unitary character of the result. Combining the two

square matrices of equation (23) into an equivalent unilateral matrix is admissible, but the result

will not he a unitary matrix. The introduction of (r, , * 0) and (P r 2 * 0) into equation (23) is

an admission that energy will to reflected at the output end (1t) of the coupler. The discussion on

transmission lines and unitary matrices new becomes relevant here as reflection was associated with

a non-unitary matrix (L t = 0, rr = -1) previously.

Another example of a non-unitary equivalent matrix can be generated even when the reflec-

tion coefficients at the coupler output ports are equal to zero (r,t 11r2 = 0). If an attenuation

matrix such as that of equation (30) is placed between the generator and the coupler,

C t	jC2 1	 0	 Ct	 0

jC,	 Ct 0	 0	 jC2	0

which is not unitary due to power dissipation within the combination.

A-2
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APPENDIX B

LOSSES IN MISMATCHED LINES

When Z L = Zo , equation (14) or (17) leads to

dB = 20 to
it 

I  

VS = 20101 V' = 20 to e°CQ
R	 2

0-B)

(2-B)

(3-B)

le',Q1= eaQ

lWhen Z L * Z0 , and standing waves exist on the transmission line,

01-+ It

as given by equation (32). Then

dB = 20 log eaQ - 20 log eof	 (4-B)
io	 to

A convenient relationship may be derived relating decibels and nepers. In an abstract sense, if

log N = M	 (5-B)
e

and

log N = P	 (6-B)
to

then

em = IOP 	(7-B)

Taking the logarithm to the base ten of both sides,

log N tog e = to x N	 (8-B)
e	 t8	 i^

It follows that

dB = 20 log eaQ ^ 20 (.434) log eaQ = 8.686 aQ -► 8.686 a^Q	 (9-B)
e

when 21. * Zo .

B-I
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APPENDIX C

CHARACTERISTIC IMPEDANCE OF LINES

The theory underlying transmission lines can be found , n many standard texts. See Ref. 3 and

5. When series capacitance and shunt inductance are neglected, which is commonly done, the

characteristic impedance is written as

Z  =	
+^' L	

0_0
G+jwC

When the series resistance (R) is small with respect to OwL), and the shunt conductance (G) is

small with respect to OwL), the above is often simplified to

Z  ft	 C f	 (2-C)

which implies a purely resistive characteristic impedance when

R = G = 0 .	 (3-C)

The propagation factor (y) is usually written as

y = I(R + jwL) (G + jwC)l /̂2	 (4-C)

which simplifies to

y=a+jR= 0+jw(LC)l^Z	 (5-C)

when equation (3-C) holds. For lines with small losses, a binomial expansion (Ref. 3, p. 20) leads to

R	 G
a= 2 L + 2 fneper/meter.	 (6-C)

In practice, a purely resistive (Z o ) and a non-zero (a) are assumed even though this may appear

paradoxical.
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