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Abstract

Newtonian flow theory for unsteady flow past oscillating bodies of revolu-

tion at very high Mach numbers is completed by adding a centrifugal force

correction to the impact pressures. Exact formulas for the unsteady pressure

and the stability derivatives are obtained in closed form which require only

numerical quadratures of terms involving the body shape. They are applicable

to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and

either sharp or blunt noses. The centrifugal force correction arising from

the curved trajectories followed by the fluid particles in unsteady flow is

shown to be very important. It cannot be neglected even for the case of a

circular cone, for which the centrifugal force contribution in steady flow is

zero. With the inclusion of this correction the present theory is shown to be

in excellent agreement with experimental results for sharp cones and for cones

with small nose bluntness; however, the theory gives poor agreement with the

results of experiments in air for bodies having moderate or large nose blunt-

ness. Finally, the pitching motions of slender power-law bodies of revolution

are shown to be always dynamically stable according to Newton-Busemann theory.

Index categories: Nonsteady Aerodynamics; Supersonic and Hypersonic

Flow; Entry Vehicle Dynamics and Control.

*Visiting Professor. Permanently Professor of Applied Hathematici.,



I. Introduction

This paper continues the study of unsteady Newton- gusemann flow theory

begun by the authors in Part I (Ref. 1) by extending it to cover the case of

bodies of revolution as well as airfoils. Specifically, we consider high Mach

number flow past a body of revolution of arbitrary thickness and shape having

a sharp or blunt nose, which is performing a combined pitching and plunging

oscillation of low frequency. The aim is to calculate the resulting unsteady

flow on the basis of the Newton-Busemami flow model. In this model we conceive

of the surface pressure as being composed of two parts: the Newtonian impact

pressure and a centrifugal-force correction owing to the curved trajectories

that fluid particles follow along the surface subsequent to their impact.

In Sec. II the Newtonian impact pressure is derived, and in Sec. III the tra-

4ectories of the fluid particles are determined. These are used in Sec. TV

to find the steady and unsteady centrifugal force corrections. Ir. Sec. V

these general results are applied to study the dynamic stability of classes

of bodies of revolution, including the effects of the unsteady centrifugal

force and of nose bluntness. Comparisons with experimental results are also

shown, and, finally, conclusions are presented in Sec. VI.

II. Newtonian Impact Pressure

Consider a body of revolution in a uniform hypersonic flow Um which

performs a harmonic pitching oscillation with zero mean angle of attack about

the pivot axis C. Simultaneously, the pivot axis undergoes a harmonic plung-

ing oscillation, so that the body is in a combined pitching and plunging

motion (Fig. 1). The body may have a sharp or blunt nose, but cannot be

flat-nosed. Let a fixed system of Cartesian coordinates OXYZ (with corre-

sponding unit vectors denoted by 1, 1, and 1) be such that 0 is at the

mean position of the nose and OX is along the direction of the free stream
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Um. Let the body-fixed system of Cartesian coordinates O'xyz (with corre-

sponding unit vectors denoted by	 and k) be such that 0' is at the

nose and 0'x is alcing the axis of symmetry of the body. Concurrently, a

body-fixed systea of cylindrical coordinates (x.r,#) (with corresponding unit

vectors denoted as is ar , and a#) will be used which is related to (x,y.z) by

x - x ,	 y - r cos ,	 z - r sin	 (1)

In the following, all the lengths X, Y, 2, x, y, z, r, h, etc., are

scaled by the length of the bnd-► 1, velocities v by U®, density p by

P., pressure p by pmU., L w the time variable t by 1/16. Thus, for

example, pm . U„ - i - 1.

The harmonic pitching oscillation of the body with frequency w may be

represented by the displacement angle of pitch 8 (Fig. 1)

6(t) - 8 eikt	 (2)

where

k = A
	

(3)
U.

is the reduced frequency and 8 is the amp l itude of oscillation. Likewise,

the harmeiic plunging oscillation of the body at the same frequency w may

be represented by the linear displacement Yc (Fig. 1) where

Yc (t) - yc eAt
	

(4)

which is related to the flightpath angle y(t) by

Yc (t) - ikYc aikt 7(0 Y eAt	 (5)

It will be assumed that 8	 and k are all «1, and all terms of

0(P. Y 2 , 8Y, W. Yk2 ) and higher will be neglected.

The unit vectors of the coordinate systems introduced above are obviously

related by

t-I -61.	 I - A+I.	 I - k	 (6)
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ar • ^ Cos 4 + t sin ® 	 e1   -j sin 4 + t Cos	 (7)

Also, due to the notion of the body we have
i

7- • g^ ,	 - -@  , A. 0	 (8)tdt
i

Equations (6)-(8) will be used freely throughout the paper. Let the equation

of the surface of the body of revolution be given by

r - f (x)	 (9)

where, evidently, f(0) - 0 in the chosen coordinate system. Then the unit

normal vector n on the surface is

n m U(x)(er - lf'(x)]	 (10a)

or

	

n M o (x) (-If' (x) + I cos 4 + t sin	 (10b)

where

V(x) - 11 + f i2 (x)] -1/2	 (11)

The position vecto7 • of a fluid particle P on the body surface can be

written as

pX + JY +1Z
	

(12)

where

X - x - of Wcos d	 (13a)

Y a Yc (t) + @(x - h) + f(x)Cos 	 (13b)

Z - f(x ) sin #	 (13c)

in order to obtain the Newtonian impact pressure was need to find the normal

component of the particle velocity immediately before and after impact. The

normal component of velocity before impact is

(vn)before	 n	 U(x)[f'(x) + 6 cos dj	
(14)
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After impact, a fluid particle moves along the surface and the normal cov-

ponent of its velocity 
(vn)after 

at a point (x,®) is equal to that of the

body surface velocity *vb itself. Since

\
vb 

td; 
1	 a lY + 6[-If(x)cos 4 + J(x - h)]	 (15)
x,® fixed

we get

(vn)after a vb' n a v(x)cos m{b[x—h+f(x)f'(x)]+ Y) 	 (16)

Accordingly, the Newtonian impact pressure is

p(x '0't)impact ^ ^(vn)before -(vn)after^2 	
v 2 (x){f i2 (x) + 2f'(x)cos #[e(t)

	+ y(t)] + 2f' (x)cos # 6(t)[x - h + f(x)f'(x)])	 (17)

III. Particle Trajectories

As remarked in Ref. 1 (Part I of this study), the Newtonian impact pres-

sure represents the pressure at the outer edge of the Newtonian shock layer,

but the pressure at the body surface must contain an additional centrifugal-

force correction owing to the curved trajectories followed by the fluid par-

ticles subsequent to their impact. In this section we determine the particle

trajectories due to the unsteady motion of the body based on the Newtonian

assumption that the tangential components of acceleration are zero. We choose

two mutually orthogonal unit tangential vectors T 1, and i2 as follows:

T1 - v(x)[1 + erf' (x)] - v(x)[l + #f'(x)cos m + kf'(x)sin ®]	 ( 18a)

T2 - e® - sin ® + k cos O
	

0 8b)

The velocity of a particle may be obtained by taking a time derivative of

Eq. (12) with the use of Eq. (13). We have

v I[* — b f(x)cos #] + T[ Y + ®(x — h) + icf'(x)cos 0
- ®f(x)sin ®] + k[*f' (x)sin 4 + ;f(x)cos m]	 (19a)
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or

v il ^v + 6 1(x - h)f' - fjcos 4 + yuf' cos +^ + T2[-6(x - h)sin 4

- y sin 4 + if) + nOP (ff' + x - h )cos 4 + yu cos 41	 (19b)

The velocity u of a particle relative to the body may be obtained from

Eq. (19b) with	 - y - 0. Thus,

The acceleration a of a particle may then be obtained by taking a time

derivative of velocity, yielding

a M TO
T1 

+ TTO
t2 + nan	 (21)

where

a	 d i	 um2ff' + 26u® f sin ¢ + Yuf' cos 4	 (22a)
T 1	 dt %u

aT	 fd	 (
f24) - (y + 26i ) sin 4	 (22b)

2

an - u i2 f" - ^ 2f + 26 ( L cos ^ iff' sin 4^ + YV cos 4	 (2?c)
u

The equations governing the motion of the particle are thus

d (t)x	 fluff' + 26muf sin ^ + Yuf' cos m 0	 (23)
dt \u 

d (f 2 4) - (y + 26ic) f sin m - 0	 (24)

The initial condition required to determine the particle motion is its velocity

immediately after impact. Before impact, a particle's velocity is #:

T I O G - ef' cos 0) + i2 6 sin 0- nu (f' + 0 cos	 (25)

After impact, the pe-ticle loses the normal component of its velocity; hence

its velocity vi immediately after impact at (xi , 4i , t i) is

V • i l y(xi )[1 - e (ti)f'(xi )
cos #i) 

+ T2e(ti)sin 
4i	

(26)
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Comparing Eq. (26) with the general expression Eq. (19b) for velocity of a

particle in the tangent plane, v - av • n, we get the following initial condi-

tions# at	 x - xi ,	 - 4 1 , t - ti:

* - ui 2 (1_ {(8 + -f)fi + 6 [(xi - h)fi - f I ])cos 4i> (27a)

if - He + Y) + 6(xi - Wain 4i (27b)

In the special case when 9 - Y - 0, the flow is axisymmetric and we get

4 - 4i • 	For small	 8 and Y, we have

4 - 4, + 00,Y) (28)

We therefore look for solutions to Eqs. (23), (24), and (27) in the form

x - A(x) + [8E (x) + 6C(x) + YD(x) + YE (x)]cos 4i (29a)
U

^f - [8F (x) + 6G(x) + YH(x) + YK (x)}sin 4 i (29b)

Substituting Eq. (29) into Eqs. (23), (24), and (27), using the relation

	

d 
(-

 Q' (x)ic	 - UQ' {A + [8B + 6C + YD + YE}cos 4i }	 (30)dt

and equating like terms in 8, 8 9 Y, Y, etc., we obtain the following set of

ordinary differential equations:

	

AA' - 0 ;	 A(xi) - pi	 (31a)

	

(AB)' - 0 ;	 B(xi) - -U ifi	 (31b)

	

(AC)' + u - 0 ;	 C(xi) - -Ui[(xi - h)f i - f it	 (310

	

(AD)' - 0 ;	 D(xi) - -u ifi	 (31d)

(AE)' + D + f 	 0	 E(xi) - 0	 (310
U

#Subscript i will denote the value of a function evaluated at

X - xi , e . 9. 9 f i = df (x
dx tx-x

i
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(fF)' - 0 ;	 r (xi) - 1 (310

M) 	 + A^ - 2f - 0 ;	 G(xi) - xi - h (31g)

(fH)' - 0 ;	 H(xi) - 1 (31h)

UK)' + f H - i	 - 0 ;	 K(XI) -
AV

0 (311)

The solutions to Eqs. (31) are

A - u (xi)

B = D - -y (ai) f' (xi)

c (x,xi) - A (xi) t f (xi) - (xi - h) f' (xi) ] + f' (xi) So (x,xi)

E(x,xi)
_ - f (x) - f (xi) + f' (x )S (x ,x)

u(xi)	 i	 o	 i
(32)

f (xi)
F(x,xi) - H(x,xi

) - f (x

1	 f (xi) x
G(x 'xi) - f(x [(xi - h)f (xi) - ^x	 So(x,xi) + Z fxi

 f (^)dd

1	 x	 f (E) - f(xi)
K(x ' xi) y	 i f W fx  

i	
V	 dEx

where

d
Sn(x,xi)

fxi,,J(E)fn(E)x
n - 0,2 (33)
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1V. Centrifugal Force Correction

An in Ref, 1. the centrtfuRii pressure is given by

=

f1P
pcentr i C- 	 an t,dn	 It, I

where p is density, P is the point on the body surface where pressure is

evaluated, and P' is the point at the outer edge of the shock layer across

from P. While an expressior for an, the normal component of acceleration,

is readily found from Eq. (22c) plus Eqs. (29) and (32), we need an expression

for pdn. This is obtained from the law of conservation of mass. In a frame

of reference fixed with respect to the body, the continuity equation reads

a (pdn d+) + V (u pdn d+) - 0 	 (35)

where do and d+ are constants fixed with respect to the body and u is the

particle velocity relative to the body. With

u - U
	

T. + T2 4f (x) + n - 0	 (36)

and dt l - dx/u, dT 2 - fd4, Eq. (35) reduces to

a 
(pdn) + u x a rf x x pdn

]

 + 1 a [if	 - 0	 (37)
at	 fx ax Lux	 fx ao

where the velocity components x/;+(x) and jf(x) are functions of x, ¢, and t

as given by Eq. (29) (in which Oi is freely replaced by m) with xi appear-

ing as a parameter. Equation (37) is thus a first-order linear partial differ-

ential equation for pdn.

The boundary condition required nay be obtained by applying the law of

conservation of mass across the shock at the outer edge. Thus, the mass-flow

sate of the free stream passing tbrough dT 1 dT 2 at (xi . # i) is

dim - p.(T - * ) • (-n dT 1 dT2 ) - f i (fi + (8 + Y)cos !i

+ A(x i - h + fifl)cos `ijdxi d4i	(38)

9



whereas the assn-flow rate issediately behind the 

]xMxi

shock is

dm 2 - p(xi ,`i)Iu`f i do d`i	 N f pdd; 1 	(39)

Conservation of was demude di i - dA2 and this yields the required boundary

condition that at x - xi ,	 #i, t - ti:

N pdn - [ti + (A + Y)cos 4 1 + 9(xi - h + f if 1)cos oijdxi	 (40)

The solution to Eq. (37) with boundary condition Eq. (40) is sought in

the form

pdn - f(x {A(x) -i- (®B(x) + 9CW + YD(x) + YL(x)jcos ®)dxi	(41)

Substituting Eq. (41) into Eqs. (37) through (40), and equating like terms in

8 0 9 0 Y. Y, etc., we obtain the following set of ordinary differential equa-
w

tions for the determination of A to E:

(AA)' - 0 :	 (AA)i - f
i fi	 (42a)

(BA + AB)' + ;—f  - 0 ; (BA + AB) i - f l. (42b)

(CA + AC)' +	 + v •a 0 ; (CA + AC) i SO fi (xi - h + f i fi] (42c)

(DA + AD)' + Aullfi
	 0 ; (DA + AD) i - f i (42d)

(EA + AE)' + T +u - 0 ; (EA + AE) i - 0 (42c)

Equations (42) can be solved successively, yielding

f (x )f' (x )
A -	

v(x1)	
i	 (43a)

f (x )
B(x,xi ) - D(x,xi ) - u (;x

i 
11 - UN)t(xi ) f'(xi )S 2 (x.xi 	 (43b)

10
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f (x) x - h	 (x - h)
C(x'xi)	

u(xi )	 1	
- i --T-_ f(xl)f'(xi)Sz(x,xll

i	 u'(xi )	 7xxi

2f' (x ) x_
	

11 + f ,2 (x ) N '(x M
- u(x-i	

d	
f(a)de - --	 ^ 	 So(x,xi)

u(E)f 2 (E)	 u (xi)

	

xi	fx

f(x )f'(x )

+ y2 (x ) i 
So (x,xi ) S 2 (x,xi )	 (430

i

f(x) f'(x )	 11 + f' 2 (x )u 2 (x )j

E(x 'xi ) ^ u(x ^ u2(^) If(x) - f(x
i)) -	 u2( i )	 i So(x.xi)

f(xi)f'(xi) 	f'(xi)x
	
d 	 f s

+ 	 2	 So(x.xi)S2(x.xi) - ?^- 	--^ —	 u—^^ da (43d)
u (x)	 u {:t)	 u(E)f(E)

xi	 fX'!

We are now in a position to calculate the centrifugal pressure correction.

The normal component of acceleration is, from Eqa. (22c), (29), and (32),

an (x,m,t;xi ) - K(x)A 2 + 2(eK(x)AD + b[K(x)AC + A]

+ YK (x)AD + y [K (x)AE + 2-(X=V 
cos f	 (44)

where

K(x) - uI (x)f"(x)
	

(45)

is the curvature of the body surface along direction i t (the curvature of the

body surface along direction I. 	 is, of course, equal to -11f (x) for the

body of revolution). Putting Eqa. (41) and (44) into Eq. (34), using the

solution Eq. (43), and expanding and neglecting terms of 0(8 2 , Y 2 , 8y), We

get the centrifugal pressure correction:

11



arm

pcentrif
(x,O,t)

f(X) 
rX 

u(t)f(t) f ' (.:dE + (e + y)cos 	f(x) f-

x
wom)( 1 - f'2 m]

+
x

- f 2
(t)f' ( t)S 2 (x .t ) ldt + 6 cos m 

f(X)f
o

[u2(t)e(X.t)

x

+ 2f(t)f'(t)C(x,t)ldt + 8 cos 	 f(x) + Y cos f f(Xj	 (u2(t)E(x.t)0
x

+ 2f(t)f'(t)E(x.t)ldt + Y cos 	 f(X)Ifo f u(t)	 dt	 (46)

Adding Eq. (46) to Eq. ( 17), we get for the surface pressure

F	 p(x,$,t) - Po (x) + cos w8(t) + Y(t)lp,(x)

+ 6(t)[P 2 (x) - hP I (X)) + Y(t)P 3 (x))	 (47)

where

K (X)foX
(X)Po(X) - uz (x)f,z(x) + f	 u(t)f(t)f'(t)dt

 
x

P 1 (x) - 2u 2 (x)f'(x) + f (X) 	{u(t)f(t:[1 - f' 2 (t)] - f2(t)f'(t)S2(X't)}dt
fo

K 
(X)	

x

P 2 (X) - 2u 2 (X)f , (X)[ X + f(X) f ' (X) l + f (X ) + f (X) f tf
(t)u(t)[1 - f'2(t)l

0

+ 2u(t)f 2 (t)f' (t) - f ( t)So(X,t) + f 2 (t)f' (t) So(X , t)S2(X,F)
u(t)

(48a)

(48b)

- tf 2 (t)f' (t)Sz(X,t) - 2f(t)f' (t) j x	 d 2
t	 u(n)f (n)

f (O d tf n	 dt
t

(48c)

P3(X) - u x)
 f xf (x)	 o

f(t)f'(9)dt +!^ Ux
f(x) fox

[u 2 (t)E(X.t)+ 2f(t)f'(t)E(x.t)l d t (48d)u(t)

The expressions in Eqs. (48) may be further simplified by elementary operations

on the integral terms, yielding

P1(x) - 2p2(X)f'(X) + .1 1-x
 fo

x u(t)f(t)[1 - 2 fi2 (t)ldt	 (49a)3 f (x) 

P 2 (x) = u 2 (x)[f(x) + 2xf'(x) + 3f(x)fi2(x)]

K(X)
 [J 1 (x)	 J (x) - J (x) + J (x) ]+ 	 - z	 a	 v (49b)

12



x
P'(x)	 f(x) J ' (x) + f(x -JaW + J 4 (x) - f J;(E)tf(x) - f(Oldf,

0

-
 f

xf
Js(E)S 2 (x.E)dE	 (49c)

0

where

x
J 3 (x) - 3 fo u(E)f (E){Et t - 2f"(E) )

+ 3 (E)f' (E) W

fox
J 2 (x) - 	 f(E)So(x.E)dE

x
J S (x) a 3 f Oms2(x.E)dE

0

J " (x) - f x f 2 (u(E) w S0 (x.E)S 2 (x.&W
O

1
JS(x) - f f u E)	

dE
0

In summary, with the shape function f(x) of a body of revolution given,

the Newton-Busemann surface pressure in unsteady flow can be obtained by quadra-

ture. The function P I (x) in Sq. (49a), which represents the perturbation

pressure at small incidence in steady flow, is identical with that given by

Hayes and Probstein 2 (when a misprint'in Ref. 2 is corrected: tLz upper limit

of the integral (3.8.17) of Ref. 2 should be x x instead of 1). The functions

P2 (x) and Pq(x) are new, giving the out-of-phase pressure components arising

from unsteady motions in 0 and y, respectively.

(50)
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V. Stability of Oscillating Bodies of Revolution

The general results for unsteady surface pressure obtained in Sec. 1V

will now be used to study the dynamic stability of bodies of revolution. As

In Ref. 1, the principal motion variables are taken to be the angle of pitch

9(t) and the angle of attack a(t), where a(t) - e(t) + y(t). Equation (47)

is then recast as

p(x,O,t) - Po (x) + cos O{a(t) P1(x)+ b(t)[P2(x)

	

- P,(x) - hP,(x)J + a (t)P S (x))	 (51)

The normal force and pitching-moment coefficients are again defined as usual

N	 M

b	
Cm - 

(1 2)p„USb RCN - (1/2) P-U	 (52)

where Sb is the base area of the body, N is the normal force, and M is the

moment of surface-pressure force about the pivot axis C. The various stability

derivatives are defined as in Ref. 1. Thus,

	

CN - ^rf-- (i)	
a^ p(x,o,t)cos 0 dS ,	 ^y - 8,a,a

'^	 S
(53)

2	 8

	

-CM - nf q-( 1)	 a^ p (x,^.t) [x- h+ f(x)f' (x) jcos m dSffs
where S is the lateral surface of the body of revolution. The stability

derivatives introduced above are also related through the axis -transfer rules

given by Eq. (59) of Ref. 1. In this paper we shall study in detail the

stability of the pitching motion of classes of bodies of revolution in recti-

linear flight [y(t) - 0, e(t) - a(t)J. In this case the stiffness derivative

-Cme and the damping-in-pitch derivative -Cmb take the form

1

-Cm9 - f
-z(1) f P 1 (x)f (x)[x - h + f (x)f'(x)Jdx	 (54a)

0

-Cm - 
	 f [P

2 (x) - hP l (x)Jf(x)[x - h + f (x)f'(x ) Jdx	 (54b)

o

14
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Circular Coned

For a cone

f 	 - x tan T
	

(55)

where the constant T is the semivertex angle of the cone. From Eq. (49),

we get

Po - sin2 T , P1 - 2 sin T cos T , P2 - 3x tan T	 (56)

whence from Eq. (54)

-Cme - 2 -1 h cost t) = F(h)	
(57a)

-CM
6 - co2 T 14- 3 h cos t T + (h co9 2 02] = cos T	

(57b)

The stiffness derivative formula (Eq. (57a)) according to Newtonian theory

has been extensively demonstrated (cf. Figs. 8-11 of Ref. 3) to yield very good

agreement with the results of experiments for a 10° cone in air flows at Mach

numbers greater than 5. Equation (57b) for the damping-in-pitch derivative of

a cone is, on the other hand, new and heretofore unverified. It contains the

centrifugal force correction due to the curved paths followed by fluid particles

in unsteady motion and generalizes the result of Mahood and Hui a to include the

dependence on pivot position h.

Although, for a cone, a centrifugal force correction is not required for

steady flow, such a correction is required for unsteady flow and, in fact, is

fully as important as the impact pressure contribution. This is clearly demon-

strated in Fig. 2, in which the full damping-in-pitch coefficient with centri-

fugal force correction included (Eq. (57b)) is compared with the coefficient

that results from consideration of the impact pressure alone, namely (from

Eq. (17)),
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(CM10	 a eons 'i C2 - 3 h cos t t + (h cos t t ) 21	 (58)
impact	 J

The difference between the two results in Fig. 2 is a direct measure of the

centrifugal force contribution, which, analytically, takes the form

(-Cm')centrif 
_ 2 r 11h cos 2 T,
 

cost t ``4 3	 (59)

It will be seen in Fig. 2 that the centrifugal -force contribution (Eq. (59))

can be of the same order of magnitude as the impact pressure contribution

(Eq. (58)). This result casts doubt on the validity of various unsteady

Newtonian flow theories that are based on the Newtonian impact pressure alone.

For example, Ericsson's theory , 7 in which -Cm is calculated from the
q

Newtonian impact pressure alone and then added to an estimate of -Cm to

give the equivalent -Cm 6 , must be incorrect in at least the separate com-

ponents, if not the sum, since both components contain centrifugal-force

contributions. These separate contributions can be deduced from the results

presented in Eq. (49). Thus, the centrifugal -force component in -Cm. (which,
a

for this coefficient, is also the total since there is no impact pressure com-

ponent) is calculated from P 3 (x) alone, and takes the form

(CM.- 	 co—s "i
 R ' 3 h cu^ 2 t]	 (60)

centrif

which is seen to be exactly one half of the total centrifugal -force component

in -Cm6 (Eq. (59)). It may be easily verified that the centrifugal-force

component in -Cm contributes the other half. This result, which is also
q

true for the wedge airfoil (cf. Eq. (51) of Ref. 1) may be summarized as

follows: the centrifugal force components in -Cm and -Cm. are equal (for
q	 a

canes and wedge airfoils), and therefore each coefficient contributes exactly

one half of the centrifugal -force component in -Cm..
8
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There is yet another aspect of this result that warrants consideration.

The fact that -Cmq has a significant centrifugal -farce rtmponent means that

even in the Newtonian limit, an accurate estimate of -Cs cannot be derived
9

on the basis of a local analysis, such as impact theory, or in fact any theory

in which local pressure is said to depend solely on the local flow velocity.

On the contrary, the presence of a centrifugal -force term is an indication of

the influence of flow history on the local pressure. Since a local analysis

for -Cm is inadequate even in the Newtonian limit, this should give pause
q

to those proposing to predict aerodynamic stability derivatives at lower speeds

on the basis of similar local analyses.

Also plotted in Fig. 2 are the results of measurements for the damping-

in-pitch coefficient carried out in air flow at a free -stream Mach number of

10 by Hobbs s and the results of numerical computations based on an inviscid

gas-dynamic theory carried out by Brong . 6 It will be seen that results based

on the complete Newton-Busemann theory are in excellent agreement with the

experimental results for the highest Reynolds number presented; the numerical

results of Brong agree better with the experimental results for lower Reynolds

numbers. We believe that it is partly fortuitous, and not an indication of

the superiority of Newton-Busemann theory, that results from the latter theory

should be in closer agreement with the experimental results at the highest

Reynolds number than those of the gas-dynamic theory. In Ref. 8, dealing with

gas-dynamic theory, it has been shown that both increasing the free -stream

Mach number M. and decreasing the ratio of specific heats y tend to increase

the damping-in-pitch coefficient -Cm .
d

. Consequently, Newton-Busemann theory,

the theory that results from taking the double limit M. + 	 Y ^ 1 of gas-

dynamic theory, should overestimate -Cm, for finite values of M. and for

values of Y greater than unity (y - 1.4 for air). Physically, this is
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because in the Newtonian limit the shock layer becomes infinitcnimaally thin,

thus eliminating one mechanism of dynamic destabilization, namely, the ph me

lag resulting from pressure signals traveling to and reflecting from the bow

shock. Since Newton-Busemsnn theory should have overpredieted -C '„ the

close agreement evidenced in Fig. 2 between results from Newton-Busemann theory

and the experimental results at the highest Reynolds number must be attributed

to the presence of the boundary layer on the body in the experiments, which,

in the usual way, may be considered to have formed an effective displacement

surface. The effective thickness of the cone would have increased thereby,

providing a mechanism for a corresponding increase in	 -Cm6 . Thus, the

Newton-Busemann theory may have overpredicted	 -Cme by just the right amount

to account for viscous effects.

Finally, we note in Eq. (STb) that analogous to the wedge airfoil (Eq. (62)),

Ref. 1), the damping-in-pitch coefficient -C., for a cone is always positive

according to Newton-Busemann theory. Hence, the pitching motion of a cone of

any thickness and about any axis position is dynamically stable in the

Newtonian limit.

Blunt Cones

To investigate the effects of nose bluntness on the dynamic stability, we

consider a class of bodies in which, for each body, the nose consists of a

spherical cap, and the afterbody is the frustum of a circular cone which joins

the spherical cap smoothly and with a comm tangent (Fig. 3). Let the radius

of the spherical cap be RN and the radius of the base of the cone be RB.

Then the class of bodies under consideration is described by the following

parameters: the semiangle of the . ..e T. the ratio A - RN/RB I and the

(actual) length of the body (from nose to base) i - 1. Let

s - (1 - sin t) /sin t; then

18
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_A tan T
RN	 1 - sA tan T

Let j - AN; then the length a of the full cone is c - t + J and

Rg (1 + j)tan T. The equation of the body is given by

(2RNx - x2 )12 ;	 0 <- x -< j sin T
r - f (x)	 (61)

(x+j)tanT ;	 j sins <-xS1

Each of the stability derivatives consists of two parts, the first deriving

from the pressure on the spherical surface ( ) s . and the second from the

pressure on the conical surface ( )c . Thus,

(Cme) (CSO)s + (Cme),

 (CM08  (-cmo)r-(CM0  - 	+ 	
(62)

On the spherical surface, using Eq. (61a), we get from Eq. (4\9a),

P1(x) 
3 

(1 - x1 )(2x1 - x12)1,2,	
\O S x

1 = x 5 1 - sin TI	 (63)
RN 

It can also be shown, either by physical reasoning based on Eq. (47) or by

direct computation in Eq. (48), that

P2 (x) - RNP1 (x)
	

(64)

Reasoning physically, we note in Eq. (47) that the contribution due to the

nose cap to the pressure component proportional to 6 must be zero when the

axis h, about which the body turns, passes through the center of the spherical

nose cap (i.e., h - RN). for then the curve defining the nose-cap surface turns

on itself and there is no change in the body geometry, so far as the inviscid

external flow is concerned, to alert it that the nose cap is turning. We see

from Eq. (47) that the pressure component proportional to 6 will be zero at

h - RN if and only if Eq. (64) is true. Using Eqs. (63) and (64) to evaluate

the contribution of the nose cap to -Cm e and -Cae, we get
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CIS 1	 3 12 cos y T(RN - h)
s

 
(65)

	

(C.6)	 3 X2 cos y T(RN - h)2
s

On the conical afterbody, K(x) - 0, hence P 1 (x) - 2 sin T cos T and

P2 (x) - [3x + j(1 + 2 sine T)jtan T. These show that, owing to the vanishing

Of K, the pressures on the conical afterbody depend on the local position x,

but not on the body shape upstream of x. § Making use of this property in

calculating the contributions to -Cm0 and -Cm6 due to the conical afterbody,

we are permitted to build up the contributions of the afterbody out of the

contributions from full cones; that is, those of a large cone with origin at

the apex of the cotkical frustum and base at the base of the frustum (cf. Fig. 3),

less those of a small cone with origin at the same apex and base at the foot

of the frustum. We get

(C-me- C
 (1 + j) F(xo) - fi'F\p )J

)c
(66)

2

(-
Cmg)	 cos T 

	 - B y[G(XO )

where B - a cos t and xo - (h + j)j(1 + j) is the pivot position from the

apex of the large cone relative to its length c (Fig. 3). The functions

F and G are defined in Eqs. (57). It should be apparent that each of the

first terms in Eqs. (66) represents the contribution of the large cone, and

that each of the second terms represents the (subtractive) contribution of the

small cone.

§This property, which holds for conical bodies only in the Newtonian limit,

makes the theory a local one in the sense that the pressure at a point x is

"unaware" that the frustum is not a full cone.
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In the greater part of the literature dealing with the stability of blunt

cones, 7,9 the pitching-moment coefficient and the stability derivatives are

defined with the length c of the extended sharp cone being used as the

characteristic length rather than the actual body length that is used in

this paper. We note here that the stiffness and damping-in-pitch coefficients

from Refs. 7 and 9, formed with c as characteristic length, are equal to

-(1 + j ) -,Cm
e . 

-(1 + j) -2C
10$

, 
respectively, in our notation. The effects of

bluntness on the stability derivatives may be examined by forming the ratios

of the derivatives with their counterparts for sharp cones. Combining Eqs. (65)

and (66), we get

(1 + j) -Icm8	 2 IXON(1	
me 	

1 + ^xn	 ON—I+ 3 (S - xo cos y z+ 
f)_1C	 )lr	

\	 JL	 JgR^o	
F	

S

(67)

(1 +	 1 + C X) C \S!+ 3 (B - xo cosz T)2

C	 ') -

2	
o

RN^o

For small bluntness, A - %/Rg << 1, hence B << 1, and the right-hand sides of

Eqs. (67) both reduce to 1 + 0 ( A2 ). showing that the effect of nose bluntness

should be negligibly small for small bluntness. This theoretical prediction is

borne out by a comparison of experimental results with computations based on

Newton-Busemann theory for blunted cones (with r fixed at 10' and xo fixed

at 0.6). The comparisons are presented in Figs. 4 and S, where the experimental

a	 points have been taken from an extensive compilation provided by Khalid and

East in Ref. 9. We note in Fig. 4 that the experimental results for C
m0

would appear to confirm the initial behavior predicted by Newton -Busemann theory

for values of A up to about 0 .07. Similarly. in Fig. S, as predicted by

Newton-Busemann theory, experimental results for Cm 6 initially do not vary
i
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significantly with A for values of the parameter up to about 0 .05. As the

bluntness parameter increases, however. Newton-Rusemann theory is incapable of

predicting the abrupt and large variation with bluntness that is observed

experimentally in air flow with y - 1.4 for both the stiffness and the

damping-in-pitch coefficients. This incapacity is symptomatic of Newtonian

flow theory, both steady and unsteady, in cases where a principal requirement

of the theory is violated, namly, that the shock layer remain everywhere thin.

As seen in Fig. 6 for spherically blunted cones, as the nose bluntness increases,

the shock over,xpands around the nose cap, creating a shock layer of significant

thickness on the conical afterbody. Possible amendments to the theory are dis-

cussed in Sec. VI. It is of interest to note that computations based on a com-

plete gas-dynamic theory 10 — results from which are also plotted on Figs. 4

and 5 — suggest that gas-dynamic theory is capable of capturing the major fea-

tures of the dependence on bluntness. Curiously, however, as computed, the

numerical results miss the initial behavior of the derivatives as a function of

bluntness parameter.

Slender Power-Law Bodies

?or slender bodies. f(x) - 0(b) with b << 1. When terms of 0(b 3 ) are

neglected compared with terms retained of 0(b), the formulas for surface

pressure (cf. Eqs. (49) and (50)) simplify to

Po (x) _ fi2 (x) +.Lf(x)f"(x)

P l (x) - 2f' (x) + 3 f (x f-o 
f(E)dE	

(68)
x

P2 (x) - f(x) + 2xf'(x) +-y  fn ) 1 [2Ff(E)

0

- 2 
E 

f (n)dn - f ^E f E
f	

fl (n)dn)dE
0	 0
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For power-law bodies of revolution

f (x) - bxn
	

(69)

we jet

POW • ba n 3n - 1 xtn-:

P 1 (x) - bMixn-1	
(70)

P2 (x) • W42xn

where

4 n 2n+ 1
M1 ^3 n al

(71)
nn- 1 3n- 1

M2 (2n+1) 1+ 3n+1 n+2	 IT]

The damping-in-pitch derivative is

9 n
. 2 - 2 2n + 

Mz h + n hz	 (72)

For Newton-Busemann flow theory to apply, it is required that Po(x) a 0, hence

n -> 1/3. The damping-in-pitch derivative Eq. (72) has a minimums value given by

(-CM6)	 n 2n3+ 1 MiM2 - n(n + 1)1 2n +Mt 	(73)

min

which is plotted in Fig. 7 as a function of the power n. It is seen Viet

increasing the power n, that is, making the shape of the body more concave,

tends to decrease (-C.,) . In this sense it may be said that increasing the
8 min

convexity of slender power -law bodies of revolution has a favorable effect on

the dynamic stability of the bodies. This conclusion is similar to that

reached in Ref. 1 for slender power-law airfoils. However, for bodies of revolu-

tion, (-CU )	 > 0 for all n, implying that the pitching motions of slender
6 sin

power-law bodes of revolution are always dynamically stable. In contrast,
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slender power-taw alrfuilH (if cuneave shape may be dyn.imically unstable if

the surface curynture exceeds a certain limlt.

VI. Concluding Remarks

In this paper, we have developed a complete unsteady Newton-Busemann flow

theory for oscillating bodies of revolution of arbitrary shape having sharp or

blur.- noses. Exact formulas in closed form are given for the stability deriva-

tives of these bodies; they require only numerical quadratures of terms involv-

ing the body shape.

The centrifugal force arising from the curved trajectories followed by the

fluid particles in unsteady flow is shown to be very important. Its contribution

cannot be neglected, even for a circular cone for which the centrifugal force

contribution is zero in steady flow. With this correction included, the theory

is shown to be in excellent agreement with experimental results for sharp cones

and for cones with small nose bluntness.

However, as expected from the incapability of steady Newton-Busemann flow

theory to predict the surface pressure on blunt-nosed bodies in air flow (with

y - 1.4), the unsteady Newton-Busemann flow theory also gives poor results for

stability derivatives of bodies with moderate or large nose bluntness. This is

primarily due to the violation of'the principal requirement of the theory in

much flow, namely, that the shock layer remain everywhere infinitesimally thin.

Improvements may result by u p+ng the thin-shock-layer theory, in which solutions

to the full gas-dynamic equaLlons are sought in the form of a power series in

the thickness of the shock layer. The unsteady Newton-Busemann flow given here

would then provide the leading term in such a rational expansion scheme. For

configurations such that the shock layer remains everywhere thin, the thin-

shock-layer theory may be expected to give only mall corrections to the Newton-

Bussmann theory. Such is the situation in the case of an oscillating delta wing.
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4 Indeed, it can be shown" that the thin-shock-layer theory For n p4ctllatlnK delta

wings 12 gives results •ilmost identical with those obtained with unrteady Newtun-

Bussmann theory.

An alternative but empirical approach, which may produce Improvement in

predictive power over the present theory, would be to apply the concept of

embedded Newtonian flow. 7111 The application is made feasiblt.e by the avail-

ability now of a complete description of the +nsteady flow field based on the

Newton-Busemann concept.
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FIGURE CAPTIONS

Fig. 1 Oscillating body of revolution.

Fig. 2 Comparison of theory and experiment for damping-in-pitch derivative of

a 10° sharp cone.

Fig. 3 Geometry of blunt cone.

Fig. k Variation of 10° cone stiffness derivative with bluntness — comparison

of theory and experiment.

Fig. 5 Variation of damping-in-pitch derivative with nose bluntness —

comparison of theory and experiment.

Fig. 6 Variation of shock-layer thickness with bluntness of a 12.5° cone in

hypersonic air flow. (Courtesy of G. Malcolm, NASA, Ames Research Center.)

Fig. 7 Variation with power n of minimum damping-in-pitch derivative for

slender power-law body.
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