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UNSTEADY NEWTON-BUSEMANN FLOW THEORY

PART II: BODIES OF REVOLUTION

W. H., Hui* and Murray Tobakt

Ames Research Center, NASA, Moffett Field, California

Abstract

Newtonian flow theory for unsteady flow past oscillating bodies of revolu-
tion at very high Mach numbers is completed by adding a centrifugal force
correction to the impact pressures. Exact formulas for the unsteady pressure
and the stability derivatives are obtained in closed form which require only
numerical quﬁdratures of terms involving the body shape. They are applicable
to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and
either sharp or blunt noses. The centrifugal force correction arising from
the cvrved trajectories followed by the fluid particles in unsteady flow is
shown to be very important. It cannot be neglected even for the case of a
circular cone, for which the centrifugal force contribution in steady flow is
zero. With the inclusion of this correction the present theory is shown to be
in excellent agreement with experimental results for sharp cones and for cones
with small nose bluntness; however, the theory gives poor agreement with the
results of experiments in air for bodies having moderate or large nose blunt-
ness. Finally, the pitching motions of slender power-law bodies of revolution

are shown to be always dynamically stable according to Newton-Busemann theory.

Index categories: Nonsteady Aerodynamics; Supersonic and Hypersonic
Flow; Entry Vehicle Dynamics and Control.

*Visiting Professor. Permanently Professor of Applied Mathematice,
University of Waterloo, Waterloo, Ontario, Canada.

tResearch Scientist. Member AIAA.



I. Introduciion

This paper continues the study of unsteady Newton-Busemann flow theury
begun by the authors in Part 1 (Ref. 1) by extending it to cover the case of
bodies of revolution as well as airfoils. Specifically, we consider high Mach
number flow past a body of revolution of arbitrary thickness and shape having
a sharp or blunt nose, which is performing a combined pitching and plunging
oscillation of low frequency. The aim is to calculate the resulting unsteady
flow on the basis of the Newton-Busemann flow model. In this model we conceive
of the surface pressure as being composed of two parts: the Newtonian impact
pressure and a centrifugal-force correction owing to the curved trajectories
that fluid particles follow along the surface subsequent to their impact.
In Sec. II the Newtonian impact pressure is derived, and in Sec. III the tra-
dectories of the fluid particles are determined. These are used in Sec. TV
to find the steady and unsteady centrifugal force corrections. Ir. Sec. V
these general results are applied to study the dynamic stability of classes
of bodies of revolution, including the effects of the unsteady centrifugal
force and of nose bluntness. Comparisons with experimental results are also

shown, and, finally, conclusions are presented in Sec., VI.

II. Newtonian Impact Pressure

Consider a body of revolution in a uniform hypersonic flow U, which
performs a harmonic pitching oscillation with zero mean angle of attack about
the pivot axis C. Simultaneously, the pivot axis undergoes a harmonic plung-
ing oscillation, so that the body is in a combined pitching and plunging
motion (Fig. 1). The body may have a sharp or blunt nose, but cannot be
flat-nosed. Let a fixed system of Cartesian coordinates OXYZ (with corre-
sponding unit vectors denoted by f. 3, and f) be such that 0 1is at the

mean position of the nose and OX 1is along the direction of the free stream



Us,. Let the body-fixed system of Cartesian coordinates O'xyz (with corre-
sponding unit vectors denoted by I. ]. and f) be such that ¢’ is at the
nose and O'x 1is alung the axis of symmetry of the body. Concurrently, a
body-fixed system of cylindrical coordinates (x,r,¢) (with corresponding unit
vectors denoted as 1. :r' and :0) will be used which is related to (x,y,z) by
X =x, y=rcos ¢, z =71 sin ¢ (1)

In the following, all the lengths X, Y, 2z, x, y, 2z, r, h, etc., are
scaled by the length of the badv L, veiocities v by U,, density p by
Pws Pressure p by p U2, Lud the time variable t by £/Us. Thus, for
example, p, = U_ = & = 1.

The harmonic pitching oscillation of the body wilh frequency w may be

represented by the displacement angle of pitch 8 (Fig. 1)

o(t) = § elkt (2)
where
Kk = ;‘J’—“ (3)

is the reduced frequency and 6 1s the amplitude of oscillation. Likewise,
the harmeaic plunging oscillation of the body at the same frequency w may
be represented by the linear displacement Y. (Fig. 1) where

Y (t) = ¥, e!* ()

which is related to the flightpath angle vy(t) by

ikt ikt

Qc(t) - ik?c e : y(t) =y e (5)

It will be assumed that |6], |y|, and k are all <<1, and all terms of
0(3%, y%, By, 8k%, yk?) and higher will be neglected.
The unit vectors of the coordinate systems introduced above are obviously

related by

Tal-of, Fa-6l+F, ®=x%k (6)



:!.-Icoct-o-toinQ. :‘--3lin¢+tcos¢ N

Also, due to the motion of the body we have
g%-bxo %%"61: %‘E"o (8)
Equztions (6)-(8) will be used freely throughout the paper. Let the equation
of the surface of the body of revolution be given by
r= f(x) (9
where, evidently, £(0) = 0 in the chosen coordinate system. Then the unit

->
normal vector n on the surface is

2= u@ (@ - 1) (10a)
or
D u(x)[-If'(x) +‘3 cos ¢ + X% sin ¢) (10b)
where
u(x) = (1 + £12(0]7/2 (1)

The position vecto: of a fluid particle P on the body surface can be

written as

pelx+fr+iz (12)
where
X = x - 8f{x)cos ¢ (13a)
Y= Yc(t) + 8(x - h) + £(x)cos ¢ (13b)
Z = f(x)sin ¢ (13¢)

In order to obtain the Newtonian impact pressure we need to find the normal
component of the particle velocity immediately before and after impact. The
normal component of velocity before impact is

(Vadpagore = 1 * B = “W(X)[£'(x) + @ cos ¢] (14)



After impact, & fluid particle moves aiong the surface and the normal com-

ponent of its velocity (v,) at a point (x,¢) is equal to that of the

after
body surface velocity 35 itself. Since

->
¥ = (%%) f = 3y + 8[-Tt(x)cos ¢ + J(x - h)] (15)
x,¢ fixed
we get
(v“)after - \-r; ‘h .- u(x)cos ¢{B[x-h+ f(x)f'(x)]+ v} (16)

Accordingly, the Newtonian impact pressure is
p(x'¢'t)1npact - {(v“)before"(vn)aftel:]2 = w2 () {f'*(x) + 2f' (x)cos ¢[6(t)

+ y(t)] + 2f'(x)cos ¢ 8(t)[x - h + £(x)f'(x)]} aan

III. Particle Trajectories

As remarked in Ref, 1 (Part I of this study), the Newtonian impact pres-
sure represents the pressure at the outer edge of the Newtonian shock layer,
but the pressure at the body surface must contain an additional centrifugal-
force correction owing to the curved trajectories followed by the fluid par-
ticles subsequent to their impact. 1In this section we determine the particle
trajectories due to the unsteady motion of the body based on the Newtonian
assumption that the tangential components of acceleration are zero. We choose

two mutually orthogonal unit tangential vectors :1 and ;z as follows:

T o= u I + £ ] = u) I + T () cos ¢ + KE' (x)s1n 4] (18a)
?2 - :’ - -} sin ¢ + t cos ¢ (18b)

The velocity of a particle may be obtained by taking a time derivative of
Eq. (12) with the use of Eq. (13). We have
Ve Tik - 8f(x)cos ¢] + Ty + 8(x - h) + x£' (x)cos ¢

- ¢f(x)sin ¢] + t[if'(x)sin ¢ + ¢£ (x)cos ¢] (19a)



or
+ =+ [x + .
ve 11‘3 4+ 8u[(x = h)f"' - flcos ¢ + yuf' cos 0’ + 1,[~0(x - h)sin ¢
-y sin ¢ + 6(] + K[éu(ff‘ + x - h)cos ¢ + yu cos ¢] (19b)

The velocity U of a particle relative to the body may be obtained from
Eq. (19b) with & = y = 0. Thus,

SeT 5 * T (20)

The acceleration 2 of a particle may then be obtained by taking a time

derivative of velocity, yielding

2= ?13‘1 + ?;atz + Day, (21)
where
é%-(%) -~ ub2fE' + 20udf sin ¢ + Yuf' cos ¢ (22a)
a, =+ (£2%) - (¢ + 28&)s1n ¢ (22b)
1, fdt

a, = u[i’f" - b%F + 28 (12 cos ¢ - ¢ff' sin ¢)] + Yu cos ¢ (22¢)
u

The equations governing the motion of the particle are thus

i%-(%) - ¢2uff' + 204uf sin ¢ + Yuf' cos ¢ = 0 (23)
£ (£%8) - (7 + 260f sin ¢ = 0 (24)

The initial condition required to determine the particle motion is its velocity
immediately after impact. Before impact, a particle's velocity is i

i- :lu(l - 8f' cos ¢) + ?26 sinvo-au(f'+-0 cos ¢) (25)
After impact, the pe—ticle loses the normal component of its velocity; hence
its velocity 31 immediately after impact at (x4, ¢4, ty) is

v s T - 6(t,)E' (x,)cos @] + T,0(c )oin ¢, (26)



Comparing Eq. (26) with the general expression Eq. (19b) for velocity of a
particle in the tangent plane, v - 33 . ;. we get the following initial condi-

tionsf at x = X{o ¢ = ¢4, t = L4
% = ,,11(1- {(8 + YIE} + Bl(x, - WE] = £,]}cos ¢1) (27a)
Of = [(8 + v) + 8(x, - h)]sin ¢, (27b)

In the special case wvhen 0 = y = 0, the flow is axisymmetric and we get
¢ = ¢4. For small 6 and y, we have

¢ =¢g +0(0,y) (28)

We therefore look for solutions to Eqs. (23), (24), and (27) in the form
%-- A(x) + [6E(x) + BC(x) + YD(x) + YE(x)]cos ¢, (29a)
f = [6F(x) + 8G(x) + yH(x) + YK(x))sin ¢, (29b)

Substituting Eq. (29) into Eqs. (23), (24), and (27), using the relation
i%{ﬁ = Q' (x)k = uQ'{A + [6B + &C + YD + yE]cos ¢} (30)

and equating like terms in 8, 8, y, ¥, etc., we obtain the following set of

ordinary differential equations:

AA' = 0 ; A(xg) = uy (31a)

(AB)' = 0 ;  B(xy) = -uyfy (31b)

MO + 2205 Clxp) = -ugl(xg - BF - £] (3le)
(AD)' = 0 ;  D(xg) = -uyfj (31d)

(AE) +§ +£'=0; E(xg) =0 (3le)

*Subucript i will denote the value of a function evaluated at

df (x)
dx *
x-xi

X = X4, €8, £1



(fF)' = 0 ; F(xq) =1 (31f)

£F

(£G)' + :U - 2f =0 3 G(K1) = x; =~ h (31g)
(FH)' =0 ;  H(xy) =1 (31h)
(£K)" + f—(-“M;ll “0; K(xq) =0 (311)

The solutions to Eqs. (31) are

where

A = u(xy)
BesD= -u(xi)f'(xi)
C(x,xg) = ulxg)[£(xg) = (x5 = DIE'(x1)] + £'(x1)80(x,%4)

£(x) - £(x4)

men) + £'(x4)8,(x,x9) (32)

E(x,xi) " -

f(xi)
F(x.xi) - H(x’xi) - T

X

1 £(xy)
G{x,xq) = I (x4 - h)f(xy) - Wlxg) So(x,xq) + 2 J; £(g)d¢

i

1 x £(£) - £(x,)
Kx) = TGpEw Jy, — WO

x .
___d;__ » ns= 002 (33)

Sp(x,xq) =
S Y C)



1V. Centrifugal Force Correction

An in Ref. 1, the centrifugel pressure {8 given hy

.p'
/
Peentrif -fp 8n pdn (Vo

where p 1is density, P is the point on the b.dy surface where pressure is
evaluated, and P' 1is the point at the outer edge of the shock layer across
from P. While an expressior for a,, the normal component of acceleration,
is readily found from Eq. (22c) plus Eqs. (29) and (32), we need an expression
for pdn. This is obtained from the law of conservation of mass. In a frame
of reference fixed with respect to the body, the continuity equation reads

2 (odn dg) + 7 + (G pdn d¢) = 0 (35)
where dn and d¢ are constants fixed with respect to the body and : is the
particle velocity relative to the body. With

Tt T + T4 +0 - 0 (36)

and dt, = dx/u, dt, = £fd¢, Eq. (35) reduces to

) u(x) 3 | £(x)x 1 d 1
3¢ (pdn) + é-x% T [é&’)‘ an] + T 3% [Qf(x)pdn] =0 37

where the velocity components x/u(x) and $f(x) are functions of x, ¢, and t
as given by Eq. (29) (in which ¢4 1is freely replaced by ¢) with x; appear-
ing as a parameter. Equation (37) is thus a first~order linear partial differ-
ential equation for pdn.

The boundary condition required may be obtained by applying the law of
conservation of mass across the shock at the outer edge. Thus, the mass-flow

rate of the free stream passing through dr,dr, at (x4, ¢,) 1s
dh, = p (T - V) + (-0 drydr,) = £,[€] + (8 + y)cos ¢

+ 8(xq - h + fyf])cos ¢4)dxg déy (385



vhereas the mase-flow rate immediately behind the shock is

dir, = p(xg.8g) [U]f dn dog = [—:‘5 f pdr.] dé (19)
x=X4

Conservation of mass demands dh, = dk,; and this yields the required boundary
condition that at x = x4, ¢ = ¢4, t = t4:

* .
3 Pdn = (£] + (8 + y)cos ¢4 + 8(xy = h + £,£1)cos ¢4)dx (40)

The solution to Eq. (37) with boundary condition Eq. (40) is sought in
the form
pdn = g (ARG + [0B(0) + 8800) + ¥DB(x) + YR(x)]cos ¢}dx; (41)

Substituting Eq. (41) into Eqs. (37) through (40}, and equating like terms in
9, é. Y Q. etc., we obtain the following set of ordinary differential equa-

tions for the determination of R to é:

(AD)' =0 ; (ML), = £ £} (42a)
(33+Ai)'+§—1;--o; (BA + AB) = f, (42b)
(ci+Aé)'+-é°§+%wo i (CA+ A = f(x - h+ ff] (42c)
(DA + AD)' +%“f- =0; (DA +AD)y = fy (42d)
(EA+AE)'+%+%-O. (EA + AE), = 0 (42¢)

Equations (42) can be solved successively, yielding

f(xi)f'(xi)

ew (43a)

i : £(x,)
Blx,x,) = D(x,x,) = T’T:T)' [ - ulx )t () (x)8, (x,x)) ] (43b)

10



. f(x ) - h (x1 - h) '
C(x.xi) u(x ) (“ ) u(xi) f(xl)f (xt)sz(x,x‘)
& ) 2
2f' (x,) t+ £ (x e (x)]
- i ___iﬁ__ £(s)ds - 3 1 1.s (x,x,)
WD) ) ) wl(xg) °
R Xy
f(xi)f'(xi)
+ --—;-2-(—;1—)— so(x.xi)s, (x'xi) (43¢c)
) £(x,) | £ (x,) L+ £ 2 u?(x)))
E(x,x,) = TRl e (f(x) - £(x,)] - u,(xi) So(x,x,)
f(x,)f'(x,) f'(x )
R S £(8) .\ (43d)
+ uz(xi) s°(x'x1)sz(x’xi) 2(.‘1) I u(g)fz(g) f v(.) 8

We are now in a position to calculate the centrifugal pressure correction.

The normal component of acceleration is, from Eqs. (22c¢), (29), and (32),

ln(x.o.t;xi) = c(x)A? + 2(6:(x)AB + B[ (x)AC + A)

+ Yk (x)AD + y[ x(x)AE + "; cos ¢ (44)

vhere
k(x) = u*(x)£"(x) (45)
is the curvature of the body aurface along direction ?1 (the curvaturc of the
body surface along direction ;2 is, of course, equal to -1/f(x) for the
body of revolution). Putting Eqa. (41) and (44) into Eq. (34), using the
solution Eq. (43), and expanding and neglecting terms of 0(8%, v, By), we

get the centrifugal pressure correction:

11



pcentr:lf(x’¢’t)

K\X rs '
- 52 (7 e (e + 6+ vcos ¢ 58 f WELON - £20)]
- (O (8, (x,E)ME + § cos ¢ £ f (1 (©)(x, E)
+ 26 (D)C(R,E)1AE+D cos ¢ £(x) + ¥ cos ¢ FX) f (W2 (G, E)
+26OF ©OEOTE + 7 con ¢ 5T [ HEOHE o (6)

Adding Eq. (46) to Eq. (17), we get for the surface pressure

p(x,¢,t) = Py(x) + cos ¢{[6(t) + y(t)]P,(x)

+ 8(e)[P,(x) = WP, (x)] + Y(t)Py (x)} %7

where
P, (x) = ';83 j; T HEEEE (9)dE (48a)
P,(x) = 2 (x)E'(x) + %%;’% };x{u(e:)f(c)u - £'2(6)] - £2(6) €' (£)S,(x,E) }dE  (4Bb)
P (x) = 21 GIE' () [x + £GOE (0] + £(0) + B Lx{ﬁf(e)u(ﬁ)ll - £12(9)]

+ 2u(E)E2(E)E' (§) - £(E)Sy(x,E) + f—z-(f,‘(%m So(x,£)S, (x,8)

- EE2(E)E' (£)S, (x,8) - 2£(E)f' (e)f m_f f(c)dc}de (48c)
Py = 18 “Df(éfl“; e f (2 OB®,E) + 26 (DE®DME  (48d)

The expressions in Eqs. (48) may be further simplified by elementary operations
on the integral terms, yielding

2 x(x

PL) = 202 (O (x) + 3;%;% T LOHON - 26714 (492)

Po(x) = w?(x)[£(x) + 2x£'(x) + 3f(x)f'2(x)])

+§-§—3 (J1(0) - Jp(x) = J5(x) + Ju(x)]

(49b)

12




X
Py(x) = -:-%))- Jg(x) +%—§£— '-J,(x) + Jy(x) = J; Je(E)[£(x) - £(r))ds

X¢
-f L8 @18, (a4 (49¢)
0

where
2 f* ;
no <3 [ wooen- o)
(¢]
+ 35(E)E" (6) Dee
X
3,00 = [ s 0
0
2 pX (50)
Jy(x) -3f £2(6)s, (x,£)d¢
(o]
X .2 '
I (0 -f ERELE) 5 008, (0
[o]

s = [T HRE® o
o

In summary, with the shape function f(x) of a body of revolution given,
the Newton-Busemann surface pressuvre in unsteady flow can be obtained by quadra-
ture. The function Pl(x) in Eq. (49a), which represents the perturbation
pressure at small incidence in steady flow, is identical with that given by
Hayes and Probstein?® (when a nmisprint' in Ret. 2 i8 corrected: tl.o upper limit
of the integral (3.8.17) of Ref. 2 should be x, instead of 1). The functions
P,(x) and Py(x) are new, giving the out-of-phase pressure components arising

from unsteady motions in 0 and y, respectively.



V. Stability of Oscillating Bodies of Revolution
The general reaults tor unsteady surface pressure obtained in Sec. 1V
will now be used to study the dynamic stability of bodies of revolution. As
in Ref. 1, the principal motion variables are taken to be the angle of pitch
0(t) and the angle of attack a(t), where a(t) = 6(t) + y(t). Equation (47)
is then recast as

p(x,8,t) = P (x) + cos ¢{a(t)P,(x)+d(t)[P,(x)
= Py(x) - hP,(x)] + a(t)P,(x)} (51)

The normal force and pitching-moment coefficients are again defined as usual

M

N |
70Tt Gt (7 Dpula75 8 (52)

where §Sj, 1is the base area of the body, N is the normal force, and M is the
moment of surface-pressure force about the pivot axis C. The various stability
derivatives are defined as in Ref. 1. Thus,

2 o .
CNW - Wff "%“ p(x,¢,t)c08 ° dS » w - e,a'a
S

(53)
-me -;f_g—(l_)ff '8%#_ P(x,0,t) [x-h+ £(x)E' (x)Jcos ¢ dS , ¥ = b,a,4
S

where S 1is the lateral surface of the body of revolution. The stability
derivatives introduced above are also related through the axis-transfer rules
given by Eq. (59) of Ref. 1. In this paper we shall study in detail the
stability of the pitching motion of classes of bodies of revolution in recti-
linear flight [y(t) = 0, 6(t) = a(t)]). In this case the stiffness derivative

—Cma and the damping-in-pitch derivative -Cp:

8 take the form

1
~Cmg * ?T%T)- f Po(x)f(x)[x - h + £(x)f'(x)]dx (54a)
(o]

1
~Cn = -f-,%ﬁ f [P,(x) = hPy(X)1E(x)[x - h + £(x)f'(x)])dx (54b)
[+

14



Circular Cones

For a cone
f(x) = x tan T (55)
where the constant T is the semivertex angle of the cone. From Eq. (49),

we get

P, = sin? t , P, = 2sintcost, P, =3x tan 7 (56)

(]

whence from Eq. (54)

-Cmg = 2 (':23' - h cos? 'r) z F(h) (57a)

.2 [3_s 2 2 3] = G
Cmy = ogr T [A 3 h cos® 1 + (h cos® 1) ] = o8l T (57

The stiffness derivative formula (Eq. (57a)) according to Newtonian theory
has been extensively demonstrated (cf. Figs. 8-11 of Ref. 3) to yield very good
agreement with the results of experiments for a 10° cone in air flows at Mach
numbers greater than 5. Equation (57b) for the damping-in-pitch derivative of
a cone is, on the other hand, new anc heretofore unverified. It contains the
centrifugal force correction due to the curved paths followed by fluid particles
in unsteady motion and generalizes the result of Mahood and Hui® to include the
dependence on pivot position h.

Although, for a cone, a centrifugal force correction is not required for
steady flow, such a correction is required for unsteady flow and, in fact, is
fully as important as the impact pressure contribution. This is clearly demon-
strated in Fig. 2, in which the full damping-in-pitch coefficient with centri-
fugal force correction included (Eq. (57b)) is compared with the coefficient

that results from consideration of the impact pressure alone, namely (from

Eq. (17)),

15



2 [1 4 2 2 f]
[} - - = = h + (h (58)
(o), ace  CoSTT[2 73 M cost TH(hcost )

The difference between the two results in Fig. 2 is a direct measure of the

centrifugal force contribution, which, analytically, takes the form

2 1 1 2
..cn " — [— - = h cos 'l'] (59)
( ) centrif S°%° T 4 3

It will be seen in Fig. 2 that the centrifugal-force contribution (Eq. (59))
can be of the same order of magnitude as the impact pressure contribution
(Eq. (58)). This result casts doubt on the validity of various unsteady
Newtonian flow theories that are based on the Newtonian impact pressure alone.
For example, Ericsson's theory,’ in which -C, is calculated from the
Newtonian impact pressure alone and then addedqto an estimate of -cm& to
give the equivalent -Cne, must be incorrect in at least the separate com-
ponents, if not the sum, since both components contain centrifugal-force
contributions. These separate contributions can be deduced from the results
presented in Eq. (49). Thus, the centrifugal-force component in €. (which,
a

for this coefficient, is also the total since there is no impact pressure com-

ponent) is calculated from P,(x) alone, and takes the form

(-Cny) xR (60)

centrif
which is seen to be exactly one half of the total centrifugal-force component
in —Cmé (Eq. (59)). 1t may be easily verified that the centrifugal-force
component in —qu contributes the other half. This result, which is also
true for the wedge airfoil (cf. Eq. (51) of Ref. 1) may be summarized as
follows: the centrifugal force components in -C, and -C,  are equal (for
cones and wedge airfoils), and therefore each coefgicient c:nttibutes exactly

one half of the centrifugal-force component in -Cg,.
)

16




There is yet another aspect of this result that warrants consideration.
The fact that -(:,.q has a significant centrifugal-force component means that
even in the Newtonian limit, an accurate estimate of -c_q cannot be derived
on the basis of a local analysis, such as impact theory, or in fact any theory
in which 1ocal pressure is said to depend solely on the local flow velocity.
On the contrary, the presence of a centrifugal-force term is an indication of
the influence of flow history on the local pressure. Since a local analysis
for -Cp 1s inadequate even in the Newtonian limit, this should give pause
to thoseqpropoaing to predict aerodynamic stability derivatives at lower speeds
on the basis of vimilar local analyses.

Also plotted in Fig. 2 are the results of measurements for the damping-
in-pitch coefficient carried out in uair flow at a free-stream Mach number of
10 by Hobbs® and the results of numerical computations based on an inviscid
gas-dynamic theory carried out by Brong.6 It will be seen that results based
on the complete Newton-Busemann theory are in excellent agreement with the
experimental results for the highest Reynolds number presented; the numerical
results of Brong agree better with the experimental results for lower Reynolds
numbers. We believe that it is partly fortuitous, and not an indication of
the superiority of Newton-Busemann theory, that results from the latter theory
should be in closer agreement with the experimental results at the highest
Reynolds number than those of the gas-dynamic theory. In Ref. 8, dealing with
gas-dynamic theory, it has been shown that both increasing the free-stream
Mach number M, and decreasing the ratio of specific heats y tend to increase
the damping-~in-pitch coefficient _C“é' Consequently, Newton-Busemann theory,
the theory that results from taking the double limit M, + =, y + 1 of gas~
dynamic theory, should overestimate -Cné for finite values of M, and for

values of y greater than unity (y = 1.4 for air). Physically, this is
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because in the Newtonian limit the shock layer becomes infinitcaimally thin,
thus eliminating one mechanism of dynamic destabilization, namely, the phase
lag resulting from pressure signals traveling to and reflecting from the bow
shock. Since Newton-Busemann theory should have overpredicted -c.%. the
close agreement evidenced in Fig. 2 between results from Newton-Busemann theory
and the experimental results at the highest Reynolds number must be attributed
to the presence of the boundary layer on the body in the experiments, which,
in the usual way, may be considered to have formed an effective displacement
surface. The effective thickness of the cone would have increased thereby,
providing a mechanism for a corresponding increase in -C.E. Thus, the
Newton-Busemann theory may have overpredicted -(:.é by just the right amount
to account for viscous effects.

Finally, we note in Eq. (57b) that analogous to the wedge airfoil (Eq. (62)),
Ref. 1), the damping-in-pitch coefficient --Cm6 for a cone is always positive
according to Newton-Busemann theory. Hence, the pitching motion of a cone of
any thickness and about any axis position is dynamically stable in the
Newtonian limit.
Blunt Cones

To investigate the effects of nose bluntness on the dynamic stability, we
consider a class of bodies in which, for each body, the nose consists of a
apherical cap, and the afterbody is the frustum of a circular cone which joins
the spherical cap smoothly and with a common tangent (Fig. 3). Let the radius
of the spherical cap be Ry and the radius of the base of the cone be Rg.
Then the class of bodies under consideration is described by the following
parameters: the semiangle of the . .e v, the ratio ) = Ry/Rg, and the
(actual) length of the body (from nose to base) £t = 1. Let

s = (1 - 8in 1)/8in 1; then
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“HA tan 1
1 - a) tan 1

Ry =
Let j = sBy; then the length ¢ of the full cone 18 c = 1 + | and
Rg = (1 + j)tan 1. The equation of the body is given by

(2Ryx - xH2 , 0<x<§sint
(61)

r=f(x)= l
(x+j)tant ; Jsint <x51

Each of the stability dsrivatives consists of two parts, the first deriving
from the pressure on the spherical surface ( ),, and the second from the

pressure on the conical surface ( ).. Thus,

(rone) = (-eno), * (<a0),

(62)
- = - + J
(reme) = (-ome), + (o),
On the spherical surface, using Eq. (6la), we get from Eq. (49a),
Py(0) =3 (1 - x;) (2%, - x 2, (o $x, = é $1-sin -:) (63)

It can also be shown, either by physical reasoning based on Eq. (47) or by
direct computation in Eq. (48), that

P, (x) = RyP, (x) (64)

Reasoning physically, we note in Eq. (47) that the contribution due to the

nose cap to the pressure component proportional to ¢ must be zero when the
axis h, about which the body turns, passes through the center of the spherical
nose cap (i.e., h = Ry), for then the curve defining the nose-cap surface turns
on itself and there is no change in the body geometry, so far as the inviscid
external flow is concerned, to alert it that the nose cap is turning. We sec
from Eq. (47) that the pressure component proportional to 6 will be zero at

h = Ry if and only if Bq. (64) is true. Using Eqs. (63) and (64) to evaluate

the contribution of the nose cap to -(:.e and -C.é, we get
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(—c.e) -'% A% cos" T(Ry = h)
‘ (65)
(‘cué). = %-X’ cos® T(RN - h)?

On the conical afterbody, x(x) = 0, hence Pl(x) = 2 gin Tt cos T and
P,(x) = [3x + J(1 +2 sin? 1)]tan t. These show that, owing to the vanishing
of «, the pressures on the conical afterbody depend on the local position x,
but not on the body shape upstream of x.5 Making use of this property in
calculating the contributions to -Cme and -Cmé due to the conical afterbody,
we are permitted to build up the contributions of the afterbody out of the
contributions from full cones; that is, those of a large cone with origin at
the apex of the conical frustum and base at the base of the frustum (cf. Fig. 3),
less those of a small corie with origin at the same apex and base at the foot

of the frustum. We get

(‘cﬂe)c = (1+ j)[F(xo) - s‘r(:—")]
(s, = e [oe - ()]

where B = A cost and x5 = (h + j)/(1 + j) is the pivot position from the

(66)

apex of the large cone relative to its length c (Fig. 3). The functions

F and G are defined in Eqs. (57). It should be apparent that eazh of the
first terms in Eqs. (66) represents the contribution of the large cone, and
that each of the second terms represents the (subtractive) contribution of the

small cone.

5This property, which holds for conical bodies only in the Newtonian limit,
makes the theory a local one in the sense that the pressure at a point x s

"unaware" that the frustum is not a full cone,
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In the greater part of the literature dealing with the stability of blunt
cones,’*? the pitching-moment coefficient and the stability derivatives are
defined with the length ¢ of the extended sharp cone being used as the
characteristic length rather thaﬁ the actual body length that is used in
this paper. We note here that the stiffness and damping-in-pitch coefficients
from Refs. 7 and 9, formed with c as characteristic length, are equal to
-(1 + J)'lcne. -(1 + j)'zC.é. respectively, in our notation. The effects of
bluntness on the stability derivatives may be examined by forming the ratios
of the derivatives with their counterparts for sharp cones. Combining Eqs. (65)

and (66), we get

@ J)“cne g2 o\ 4
[(1 + j)'lcn" =1 +—S-F(x° [—B(%)'PS (8 X, cos? T)]
(] Ry=0
b (67)
1+ j)'zcné \ .
— - 8 a2 _° i _ 2 2
[(1 + ;])’zc“lé 1 +-(—G "o). [B G(B)+ 3 (B - xo cos 1)] J
RN-O

For small bluntness, A = Ry/Rg << 1, hence B8 << 1, and the right-hand sides of
Eqs. (67) both reduce to 1 + 0(A?), showing that the effect of nose bluntness
should be negligibly small for small bluntness. This theoretical prediction is
borne out by a comparison of experimental results with computations based on
Newton-Busemann theory for blunted cones (with 1 fixed at 10° and X, fixed
at 0.6). The comparisons are presented in Figs. 4 and 5, where the experimental
points have been taken from an extensive compilation provided by Khalid and

East in Ref. 9. We note in Fig. &4 that the experimental results for Cm“

would appear to confirm the initial bchavior predicted by Newton-Busemann thcory
for values of A wup to about 0.07. Similarly, in Fig. 5, as predicted by

Newton-Busemann theory, experimental results for c,.6 initially do not vary
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significantly with A for values of the parameter up to about 0.05., As the
bluntness parameter increases, however, Newton-Busemann theory is incapable of
predicting the abrupt and large variation with bluntness that s obscrved
experimentally in air flow with y = 1.4 for both the stiffness and the
damping-in-pitch coefficients. This incapacity is symptomatic of Newtonian

flow theory, both steady and unsteady, in cases where a principal requirement

of the theory is violated, namely, that the shock layer remain everywhere thin.
As seen in Fig. 6 for spherically blunted cones, as the nose bluntness increases,
the shock over:xpands around the nose cap, creating a shock layer of significant
thickness on the conical afterbody. Possible amendments to the theory are dis-
cussed in Sec. VI. It is of interest to note that computations based on a com-
plete gas-dynamic theory!® — results from which are also plotted on Figs. 4

and 5 — suggest that gas-dynamic theory is capable of capturing the major fea-
tures of the dependence on bluntness. Curiously, however, as computed, the
numerical results miss the initial behavior of the derivatives as a function of
bluntness parameter,

Slender Power-Law Bodies

Tor slender bodies, £(x) = O(b) with b << 1, When terms of O(b*) are
neglected compared with terms retained of O0(b), the formulas for surface

pressure (cf. Eqs. (49) and (50)) simplify to

Po(x) = £'2(x) +3 £(OE"(x)

11 X
P,(x) = 26 (x) +§ff—(%lL £(£)d¢

, x
P,(x) = £(x) + 2x£' (x) +%%%1L [2F£(E)

(68)

€ 13
-2 f f(n)dn - ?’%ET I £3(n)dnldg
o o /
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For power-law bodies of revolution

£(x) = bx" (69)
we zet
Po(x) = b2 2(3n - 1) xzn—a
P, (x) = bM,x""} (70)
P,(x) = bM,x"
where

M _in§2n+12
1 1 n+l

1)(3n -1 1)
a(n - -
My = (2n 4 1)[l *Ia+ D@+ 2)(3n + 15]
The damping-in-pitch derivative 1is
a2 M tM M2
'c"e n+l 2le-o'lh"'nh (72)

For Newton-Busemann flow theory to apply, it is required that P,(x) 2 0, hence
n > 1/3. The damping-in-pitch derivative Eq. (72) has a minimum value given by

3 M+ M\ (73)
(roms) R ["1"2 T ”('z‘ﬁ-i‘)]

which is plotted in Fig. 7 as a function of the power n. It is seen tlat
increasing the power n, that is, making the shape of the body more concave,
tends to decrease (.C.é)nin. In this sense it may be said that increasing the
convexity of slender power-law bodies of revolution has a favorable effect on

the dynamic stability of the bodies. This conclusion is similar to that

reached in Ref. 1 for slerder powver-law airfoils. However, for bodies of revolu-
tion, (-(:.é)-1 >0 for all n, i{mplying that the pitching motions of slender

n
power-law bocies of revolution are always dynamically stable. In contrast,
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alender power-law alrfolls of concave shape may be dynamically unstable if

the murface curvature cxceods a certain 1imit.,

VI. Concluding Remarks

In this paper, we have developed a complete unsteady Newton-Busemann flow
theory for oscillating bodies of revolution of arbitrary shape having sharp or
bluur anoses. Exact formulas in closed form are given for the stability deriva-
tives of these bodies; they require only numerical quadratures of terms involv-
ing the body shape.

The centrifugal force arising from the curved trajectories followed by the
fluid particles in unsteady flow is shown to be very important. Its contribution
cannot be neglected, even for a circular cone for which the centrifugal force
contribution i{s zero in steady flow. With this correction included, the theory
is shown to be in excellent agreement with experimental results for sharp cones
and for cones with small nose bluntness.

However, as expected from the incapability of steady Newton-Busemann flow
theory to predict the surface pressure on blunt-nosed bodies in air flow (with
y = 1.4), the unsteady Newton-Busemann flow theory also gives poor results for
stability derivatives of bodies with moderate or large nose bluntness. This is
primarily due to the violation of the principal requirement of the theory in
such flow, namely, that the shock layer remain everywhere infinitesimally thin.
Improvements may result by using the thin-shock-iayer theory, in which solutions
to the full gas-dynamic equaiions are sought in the form of a power series in
the thickness of the shock layer. The unsteady Newton-Busemann flow given here
would then provide the leading term in such a rationa' expansion scheme. For
configurations such that the shock layer remains everywhere thin, the thin-
shock-layer theory may be expected to give only small corrections to the Newton-

Busemann theory. Such is the situation in the case of an oscillating delta wing.
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Indeed, 1t can be shown'' chat the thin-shock-layer theory for oscillating delta
vings'? gives results almost identical with those obtained with unsteady Newton-

Busemann theory.

An alternative but empirical approach, which may produce improvement in
predictive power over the present theory, would be to apply the concept of
embedded Newtonian flow.”»>!? The application is made feasible by the avail-
ability now of a complete description of the » nsteady flow field based on the

Newton-Busemann concept.
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FIGURE CAPTIONS

Fig. 1 Oscillating body of revelutlon.

Fig. 2 Comparison of theory and experiment for damping-in-pitch derivative of

a 10° sharp cone.

Fig. 3 Geometry of blunt cone.

Fig. 4 Variation of 10° cone stiffness derivative with bluntness — comparison

of theory and experiment.

Fig. 5 Variation of damping-in-pitch derivative with nose bluntness -

comparison of theory and experiment.

Fig. 6 Variation of shock-layer thickness with bluntness of a 12.5° cone in

hypersonic air flow. (Courtesy of G. Maléoln, NASA, Ames Research Center.)

Fig. 7 Variation with power n of minimum damping-in-pitch derivative for

slender power-law body.
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EXPERIMENT:

SYMBOL T M_  FACILITY
g 56 14 ARL
g 20° 8 AEDC
10° 4 ARL
v 10 14 ARL
g 9° 10 AEDC
B<M_<142 & 10 AEDC
5.6° <r<20° O 10° 10 AEDC
0.56 <x < 0.67 0 ) 10 AEDC
0<Ry/Rg<04 o 7 10 AEDC
A 8° 10 AEDC
N 79° 10 AEDC
4 10° 10 AEDC
—. @ 10° 685  REF.8
1005k - NEWTON —BUSEMANN THEORY,
v \ EQ.(67b), 7=10°, X = 0.6
5ol ¢ 3o
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