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Abstract

The evolution of unsteady boundary layers on oscillating airfoils is
investigated by solving the governing equations by the Characteristic Box
scheme. The difficulties associated with computing the first profile on a
given tine-line, and the velocity profiles with partial flow reversal are
solved. A sample calculation has been performed for an external velocity
distribution typical of those found near the leading edge of thin
airfoils. The results demonstrate the viability of the calculation

procedure.

Introduction

The effect of unsteady motion of an airfoil on its stall behavior is a

problem of great importance in many types of fluid motion, for example,

helicopter rotor blades and jet engine compressors. A recent detailed

study has been published by Carr, McAlister and McCroskey (l) ; this study

reveals a very complicated phenomenon which depends in a subtle way on a

large number of parameters. There is one important characteristic of the

data they have compiled which serves as a focal point of the approach

which we are planning to apply sometime later in our studies; namely that

at some stage of the cycle, a large vortex is formed near the surface of

the airfoil and very shortly afterwards stall occurs. It seems also that

the stall is associated with flow reversals in the unsteady boundary layer

which may spread downstream or upstream founding on the leading-edge

radius of the airfoil.

The present paper concerns itself with the calculation of boundary-layer

characteristics of an oscillating airfoil in order to investigate the

evolution of unsteady boundary layers on such airfoils. It is one phase

of a study which will be extended later in the hooe of throwing sight on

the dynanic stall problem. In our p,-esent study we focus our attention on

*Presented at the lL!"rA"t Symposium on Unsteady Turbulent Shear Maws,
Toulouse, 5-5 May 1991.



the calculation of time-dependent boundary layers for a given pressure

di stri buti on.

There are three difficulties associated with unsteady houndary layers that

requires careful attention. First of all appropriate initial values at

t n 0 rust be chosen for the velocity distribution. Strictly speaking they

can be arbitrary but in that event, the values of au/at at t n 0 is

non-zero and this implies an lnviscid acceleration of the fluid in the

boundary layer and in consequence a velocity of slip begins to grow at the

wall. This is smoothed out by an inner boundary layer initially of

thickness (vt) 1/2 in which viscous forces are of importance. Thus a

double structure develops in the boundary layer which may be treated by a

generalization of the Keller-box scheme 
(2). 

However, if interest: is

centered on the solution at large times, this feature may be r!duced in

importance by requiring that the initial velocity distribution satisfies

the steady-state equation with the instantaneous external velocity. In

addition it is necessary to smooth out the external velocity u e (x,t) so

that aue/at n U at t - U and then standard methods may be used and

are stable. The use of the smoothing function makes for some loss of

accuracy at small values of t but the error soon decays tozero once the

required value of u 	 is specified. In the present problem the choice

of parameters in the specified external velocity distribution is such that

the smoothing function is actually unnecessary but it can easily be

incorporated into the scheme.

The second difficulty arises when u changes sign over part of the

profile at some x-station where the x-axis is parallel to the streanwise

direction and u is the corresponding velocity component. Nornally this

does not occur and one can integrate away from the profile in the

direction of positive u without any difficulty by using a standard

numerical scheme. However, if the change in sign of u does occur, we

encounter numerical instabilities since in the negative u-region we would

be integrating against the stream. The instability can be avoided by

changing the scheme either to the zig-zag box or the characteristics box.

These new schemes have already been shown to be effective in such

circumstances when the flow is unsteady (?) and in three-dimensional

flows ^ 4-6) . The essence of these schemes is that, to an increasing

extent, they take into account the fact that small disturbances are

carried along with the local fluid velocity.



The third difficulty arises when it is desired to compute the first

velocity profile at the new time line. Given, as we are, the complete

velocity profile distribution on the previous tine line, there is in

principle no difficulty in computing values on the next time-line by an

explicit method, but if we wish to avoid the stability problems associated

with such a method by using an implicit method, we are immediately faced

with the problem of generating a starting profile on the new time-line.

In order to explain the problem further, it is instructive to see what

happens to the stagnation point as a function of tine. For this purpose

let us assume that the external velocity distribution for an oscillating

airfoil is given by the fol l ;,:i ig function,

x + ED (1 + A sin Wt)
u e ^	 (1)

(1 + x2)^

where A and ED denote parameters that need to be specified. This

equation is a good approximation to the external velocity distribution

near the leading edge ::: a class of thin airfoils at variable angles of

attack and, when A n 0, has recently been used by Cebeci, Stewartson, and

Williams () to study leading-edge separation in steady flow.

Since by def.nition	
u 
	 = 0 at the stagnation point, its location, xS,

is given by

xS a -Co (1 + A sin wt)	 (2)

and so the upper and lower surfaces of the airfoil as functions of time

are defined in particular 	 by x > x 	 and x < x S . For example, let

us take A n 1,	 w n w/4 and plot x SAO in the (t,x) plane, as

Shawn in Figure 1 for one cycle (0 < t < 8). When t n 2, the stagnation

point x 	 is at -2 Co , when t n 6 it is at 0, etc. If x  were

fixed we could assume that u a 0 at x = 
x 
	 for all tine and all y.

Further profiles at this tine-line then follow by use of one of the box

schemes that have been developed. However x 	 I!, not fixed and it is

clearly unjustified to assume a priori that u n 0 there. Instead

therefore we use the characteristic box, with an

-3-



- -	
xs/Eo

Fig. 1. Variation of stagnation
point with time for one cycle
according to Eq. (2), with

w u w/4.

extrapolated normal velocity, to

complete the profile at x n xl , the

nearest x station to x s on the

new time-line. Thus we avoid the need

to use two x-stations at the new time-

line to dimensionalize the governing

equations. Once this step is

completed, the determination of

0 further profiles on the new tine line

proceeds normally and moreover we can

improve our initial estimate of the

normal velocity at x n x1 by

iteration.

Governing Equations

The governing boundary-layer equations for an incompressible laminar or

turbulent flow past an oscillating airfoil are well known and, with the

eddy viscosity (cm ) concept, they can be written as

ax
+aV•0

Y

3u

(a)F ax +v ay	
at eax + ay 

where T ' v(au/ay) - u v . In the absence of mass transfer, these

equations are subject to the boundary conditions given by

y - 0,	 u n v - 0; y + d,	 u + ue (x,t)	 (5)

The presence of the Reynolds shear stress tern, - =v , requires a

closure assumption; in our study we use the algebraic eddy-viscosity

formulation developed by Cebeci and Smith. For details, see ref. 8.

To complete the formulation of the problem, initial conditions must be

specified in the (t,y) plane at some x a x 	 either on the lower or

upper su, • fac ci of the airfoil (see Fig. 1) as well as initial conditions in

the (x,y) plane on both surfaces of the airfoil. In the latter case, if

we assume that steady-flow conditions prevail at t - 0, then the initial

conditions in the (x,y)-plane can easily be generated for both surfaces by

(3)
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solving the governing equations for steady flow, which in this case, are

given by Eq. (3) and by

du

U ax +V ay -uedxe+ ay (b ay )

where b - v + cm. There is no problem with the initial conditions for

Eqs. (1) and (6) since the calculations start at the stagnation point,

x - xs•

Generation of the initial conditions in the (t,y) plane at x - xo,

which is one of,the purposes of our study, is not so easy as was discussed

in the previous section. The following section describes our solution

procedure at t - 0 and t > 0.

Solution Procedure

We use Keller's Box -method to solve the governing equations of the

previous section. This is a two-point finite-difference method which has

been used to solve a wide range of parabolic partial-differential

equations as discussed by Bradshaw, Cebeci and Whitelaw 9 . The solution

procedure for t - 0 (Eqs. (3) and (6))and t > 0 (Eqs. (3) and (4)) are

described separately below.

Solution Procedure for t - 0

As explained in the introduction any velocity profile may be chosen at

t - U to i,.ltiate the computation but it is convenient to select one

which obviates the need for doube-structured numerical schemes and joins

smoothly on to the solution for t > 0. We insist that these profiles

satisfy the steady state equations with u 	 given by (1) and t - 0.

The details of the procedure for computing these profiles differs slightly

from previous procedures used in steady two-dimensional flows where we

have used the definition of the stream function and reduced Eqs. (3) and

(6) to two first-order ordinary differential equations and to one

partial-differential equation. Here we consider the solution of Eqs. (3)

and (6) without the use of the stream function. For this purpose, with

primes denoting differentiation with respect to y, we let

(+1)
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r	

u' n f	 (7a)

and write Eqs. (3) and (6) as

v' 	
au	

(7b)
ax

u 2 ` 	 (U2)
(bf)' _ fv 	 -( 	 ax 	 (7c)

The finite-difference approximations of Eqs. (7) are also somewhat

different than those reported in our previous itudies dealing with

two-dimensional flows 10 . All quantities exce pt for the normal velocity

component v, are centered at the center of the box 
(Yj-1/2'

xi-1/2), see Fig. 2, by taking the values of each parameter, say q, at

the four corners of the Box, that is,

q1-1/2 . 1 (q i-1/2 + q i-1/2 ) , 1 {q 1 + q i-1 + 4 i- + gi_1)	
(8a)

	

J-1/2	 7	 1	 4	 j	 J - 1	 j i

However, the centering of the y-velocity component v is done by writing

tt-as

vj-1/2 s 11 (v j 	
+ Vi-1/2

 )

	

i-1/2	 1	 i-1/2	 i-1/2
	

(8b)

;he unknown parameters in Eqs. (8) corres pond to q^ and 
vi_1J2 

so

that when a solution of the system given by E qs. (7) is obtained, f and

u are computed at (i,j) and v at (1-./2, j). This modified

Y(j)	
centering procedure is necessary in

Yj
order to avoid oscillations due to the

!	 use of the continuity equation in the
i

yj -1i ---- -- da---- h j-1	 form given by Eq . (lb) rather than the
i

yj- 1	
use of the stream function. The

centering of E qs. (7) and the

'	 subsequent linearization procedure by

	

x i-1	 xi_^	 xi	 x(i) Newton's method allows the resulting

Fig. 2. Net rectangir for	
linear system to be written in the

finite-di fference approximations.	 form (10)

8'j - au
j-1 

_ ham- (dfj + afj
-1 ) ` ("3) j -1
	

(9a)

-(I-



1 ( av	 6v	 ) * ( s7) (6u * au-1 	 1) - ( r )—1 	 ,^-1 

(s 1 ) j afj + (s2)jafj-i + (5 3 ) j av'
 + (sa)javJ-1 + (55)j6ui

+ (s6)j6uj-1 ' (1*2)J

After linearization, the wall boundary conditions

u0 - 0,	 v0 • 0

and the edge boundary condition

uJ ' u 
become

(9c)

(10a)

(10b)

(11)du o = 0,	 dvo = 0,	 auk a 0

The resulting linear system consisting of those given in E q s. (9) and by
those in E q . (11) can ^10$olved by the block elimination method discussed
by Cebeci and Bradshaw 	 )•

Solution Procedure for t > 0

We have already pointed out that if aue/at ^ 0 when t n 0, a

double structure scheme should strictly be used to advance the solution

from t • 0. However the choice of parameters in our study is such that
aue/at is small and the difficulties that arise from using a standard

method are of a sufficiently minor nature that no further refinement is

necessary. For larger values of the relevant parameters it is easy to
incorporate a smoothing function into u 	 and one can always use the
general method(2).

Nevertheless there is still the difficulty about obtaining the velocity

profile on the first x-station at any new time-line. It can be resolved

with the use of the characteristic box method develo ped by Cebeci and
Stewartson % . Defining the streamline by

dt	 dxT- ' u (12)

-7-



and using the definition of f', and with s denoting the local

streamline, we write Eq . (4) as

I t ( k )	 W111 — f  + J1 + u
e as

JSTAGNATION SINE

	 ;,—+  U

(13)

To obtain the solution of the unsteady

boundary-laver equations given by Eqs.

x(t) (78,b) and (13) at the first x-station

--^ on either side of the stagnation line,

let us consider the grid of Fig. 1 and

direct our attention to the point

denoted by I (see Fig. 3).

k	
2	 1

	

asP E 
t	 at

W	 *"	 _L__4

1- 
n 	 t+1

Fig. 3. Notation and finite-
difference molecule for the
Characteristic Box 2.

To write the difference approximations of Eq. (13) we define

as  = at/cos a 3	 (14)

where, with u3 denoting an average velocity, we compute a 3 from

a3 n tan -1 u 3	 (15)

assuming that at first v at point P is known and is equal to its value

at 
v.k-1, 

ehis assumption decouoles the continuity equation, Eq.

(7') from Eqs. (1a) and (13) and reduces the problem to a
"two-dimensional" one with f and u being the only unknowns. The

finite-difference approximations of Eq . (7a) are written in the usual way
and the finite-difference approximations to E q . (13) are written by
centering it at point P. This procedure leads to

1	 i,k	 i,k	 i,k
h3-1(t3	 - f3-1) - u3-1/2	

0 (16a)

(bv) i ' k — (bv) i,k 	(bv) n ' k-1 — (bv)nik-1
	 Ii,k	 ,k-"^

2 3 -1	 3 -1	 -'F 3 . 1/2	 3-1/2	 3 - 1 /c

i,kn,k - 1 	u i ' k _ un,k-1

3

i ,k	 n,k-1
. 1 [ 1 + u 2 ) i-k + 1 + u2)n'k-1] u1-1/2 ^1- 1/2

2	 3-1/2	 3 - 1/2	 As 
1- 1/ ?
 (16b)

-3-
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The profiles b,, f' and u, as well as u  at OA-1) are

obtained by interpolating the profiles at (i,k-1) and (i-1,k-1). To

find the angle Q . we define uj in Eq. (15) by

ui
	

(uI k 
+ un,k-1 )	(17)

Since the system given by E qs. (16) is linear, there is no need for

linearization and we solve it subject to the two boundary conditions,

namely,

	

uo - 0.	 u  - U 	 (18)

by using the block-elimination method in which case the matrices are

2 x 2. We shall refer to this scheme as Characteristic Box 2.

Once a solution of Eqs. (7a) and (13) has been obtained, we compute v

from Eq. (7b) which, in finite-difference form, for the center of the net

rectangle, point E. can be written as (see Fig. 3)

	

V — V	 ui'k-1/2	 u

	

J h1 . _ i _ 	^
	^-1	 xi 

_ 
xm

Here V3 denotes the value of v i at E and u 	 is given by Eq.

(17). Since the right-hand side of Eq . (19) is known, we can solve this

equation for V
1
 and with Vo - 0. find VJ for 1 < j < J. We

than substitute this new value of V i into Eq . (16) for —vP and

solve the system again to compute new values of Vj . This procedure is

repeated until convergence.

For convenience we use the same procedure to compute point 2 to the left

of point 1. Once two points on a given t-line are computed by this

procedure, we then use the values of V
1
 at E2 and E 19 compute a

new value v P and repeat the solution procedure for Eqs. (7a) and (13).

and later Eq. (19). After that the stations to the left of point 2 and

the stat'ons to the right of point 1 are computed by using the Regular Box

scheme if there is no flow reversal across the layer and by the Character-

i ctic Box scheme if there is flow reversal. The "new" Characteristic Box

scheme is now slightly different than the Characteristic Box 2 so we shall

refer to it as Characteristi: Box 3.

(19)

-9-



To describe the Characteristic Box 3 scheme which solves Eqs. (14.b) and

(13) without decoupling the continuity equation from Eqs. (14) and (13).

we consider the sketch shown in Figure 4.

v i-1/2,	 4
k

/
• •

r•vP J	 %
V
i-5/2 vi -3/2 ^^	 vi

w	 w
k

1-2	 i-1	 i	 i+l	 1+2

Fig. 4. Notation for Characteristic Box 3.

Using the Zig-Zag Box scheme discussed in detail in Ref. S. we write Eq.

(7b) in the following finite-difference fora

hi l l (vi — yj-1) 
+ 
WuJ-1 /2 • _ a l +	 J-1i2	 (20)

where

ti	 (x i+1	 x i )	 1
9 
w x

1+1 _ xi-1) x i	x1-1 •

s	
xi	 x

1-1	 1	 ui,k-1 _ ui+l,k-1)	
(21)81	

xi +l _ xi-1 x
i - x 1+1T	 ( J-1/2	 J-1/2

Since

("i-1/2	
x 1 - 3 2)

v 1 -1/2	 1-3/2	
3J2 - 

x1
-5/2 

(v 1-3/2 — v1-512)•

The relation between v1-1/2 and vi can be written as

v1 - (1 + 02)vi_1J2 + 9 3	 (22)

where h and 93 are given by

(x 1 	x i-1 2)• -	 0 - - v	 (23)
42	 xi-3/2 - xi-1/2	

3	 B2 i-3/2

Introducing Eq. (22) into Eq . (20) and rearranging, we get

hJ-1 (1 + 0 2)(;j - 
v J-1

) + Wu 	 n S4	 (24)

where

0 4 • -a l + guj11/2k + h
i l l (B3-i _ a3)	 (25)

-10-



As in Characteristic Box 2, we center Eq. (13) at the midpoint of (i,k)

and (i,n) to get the finite-difference equations given by Eq . (16b) with

v 	 being obtained by linear interpolation of vi-1%2 and yi,

which is

ti

P %	 vi-1/2 - vi
v a v i + (xc - xi) xni_

Equations (16a), (24) and (16b) are then linearized by Newton's method,

and again are solved by the block elimination method.

When there is no flow reversal across the layer, we use the Rejular Box

scheme described in detail in Ref, S.

Results and Discussion

To date calculations have been carried out in only one test-case, namely

when Co n 0.10, A n 1, w v/4, and for a limited range of x

( {xj < 0.3). With the use of the various procedures described in this

paper the calculations were quite straightforward and the formal validity

and efficacy of the numerical schemes were established. The results are

summarized in Figs. 5-7. In Fig. 5 we dis play the variation of wall-shear

with time at differer; x-stations and in Fig. 6 the variation with x at

different times. These graphs are entirely in line with ex pectations and

we note that the flow reversal at the wal: is quite smooth. A similar

remark applies to the velocity profiles on either side of the stagnation

line displayed in Fig. 7.

The next phase in our studies is to extend the computations to larger

values of A,E0 and smaller values of w so as to more closely

approach the conditions of dynamic stall. It is of interest to comment on

the fluid mechanical problems that may then arise. First, if C o is

increased beyond 1.155, the steady-state solution at t n 0 separates on

the upper side of the airfoil and the calculation terminates. This is not

a serious drawback unless the unsteady boundary develops a singularity

because the smoothing function mentioned earlier may be ada pted to ensure

that C o is initially less than 1.155 and rises to a value 9-eater than

that after a finite time. The unsteady boundary layer then includes

regions of reversed flow which may well become extensive if A is also

(26)

-11-
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0.4
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0

-0.2

-0.4

allowed to increase to mimic more closely the conditions of dynamic

stall. Even if the boundary layer remains smooth, the displacement

thickness may then become much thicker and have a significant modifying

effect oo the external flow. It would be useful then to consider an

interactive problem '- :rich the external stream depends in part on the

displacement thickness thus generalizing the studies reported for steady

flow (). Consideration then has to be given to the variation of

circulation with time which may lead to a more complicated expression for

the dependence of u  on the dis placement thickness than was use& in

Ref. 1 but-the computation should not be any more com plicated as a

result. Finally, in order to mimic the dynamic stall problem most

effectively 
(1,11)9 w should be reduced to very small values (as

typical of dynamic stall .problem). So long as w > 0, the difficulties

reported in Ref. 3 at separation in uninteracted flows and in

post-separation flows otherwise, should not be present. On the other

XM-,.14 -0.14 -C. 11 X.M.M hand, van Dommelen and than (12) have

provided quite strong evidence that a

singularity can occur in an unsteady

boundary layer for which the external

velocity is steady. This phenomenon

is still somewhat controversial (13)

but there seems no doubt that the

boundary layer will exhibit dramatic

properties for small enough values of

-0.2 -M 0 0 0C	0 -0.1 -? 0.1 0.2 0.3 W and it is possible that these may
rL

Fig. 5. Variation of wall shear 	
give further insight into dynamic

parameters with time at differ-	 stall.
ent x-stations.

Fig. 6. Variation of skin-friction coefficient with x at different
t-intervals. Note t = 8 corresponds to one cycle.
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Fig. 7. Velocity ,jrofiles in the immediate neighborhood of the stagnation
lines at aifferent times. u - 0 on the dashed line at the specified time
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