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PREDICTION OF BOUNDARY-LAYER CHARACTERISTICS OF AN OSCILLATING AIRFOIL *

Tuncer Cebeci and Lawrence W. Carr

Mechanical Engineering Uept. U.S. Army Aeromechanics Lab.
California State university NASA Ames Research Center
Long Beach, California Moffett Fie'd, Califorria
Abstract

The evolution of unsteady boundary layers on oscillating airfoils is
investigated by solving the governing equations by the Characteristic Box
scheme. The difficulties associated with corputing the first profile on a
given time-line, and the velocity profiles with partial flow reversal are
solved. A sarple calculation has been performed for an external velocity
distribution typical of those found near the leading edge of thin
airfoils. The results demonstrate the viability of the calculation
procedure,

[ntroduction

The effect of unsteady motion of an airfoil on its stall behavior is a
problem of great importance in many types of fluid motion, for example,
helicopter rotor blades and jet engine compressors. A recent detailed
study has been published by Carr, McAlister and McCroskey(l); this study
reveals a very complicated phenomenon which depends in a subtle way on 2
large number of parameters. There is one important characteristic of the
data they have compiled which serves as a focal point of the approach
which we are planning to apply sometime later in our studies; namely that
at some stage of the cycle, a large vortex is formed near the surface of
the airfoil and very shortly afterwards stall occurs. [t seems also that
the stall is associated with flow reversals in the unsteady boundary layer
which may spread downstream or upstream depending on the leading-edge
radius of the airfoil,

The present paper concerns itself with the calculation cf boundary-layer
characteristics of an oscillating airfoil in order to investigate the
evolution of unsteady boundary layers on such airfoils. It is one phase
of a study which will be extended later in the hooe of throwing .ight on
the dynamic stall problem. In our present study we focus our attention on

*Presented at the TUTAM Svmposium on Unsteady Turbulent Shear ¥lows,
Toulouse, 5-8 Mav 1981.



the calculation of time-dependent boundary layers for a given pressure
distribution.

There are three difficulties associated with unsteady houndary layers that
requires careful attention. First of all appropriate initial values at
t=0 rust be chosen for the velocity distribution, Strictly speaking they
can be arbitrary but in that event, the values of 3du/at at t = 0 is
non-zero and this implies an inviscid acceleration of the fluid in the
boundary layer and in consequence a velocity of slip begins to grow at the
wall, This is smoothed out by an inner boundary layer initially of
thickness (\.t)”2 in which viscous forces are of importance. Thus a
double structure develops in the boundary layer which may be treated by a
generalization of the Keller-box scheno(z). However, 1f interes: is
centered on the solution at large times, this feature may be rrduced in
importance by requiring that the initial velocity distribution satisfies
the steady-state equation with the instantaneous external velocity. In
addition it is necessary to smooth out the external velocity ue(x.t) S0
that aue/at =0 at t = 0 and then standard methods may be used and

are stable. The use of the smoothing function makes for some loss of
accuracy at small values of t but the error soon decays to zero once the
required value of Ug is specifieds In the present problem the choice

of parameters in the specified external velocity distribution is such that
the smootning function is actually unnecessary but it can easily be
incorporated into the scheme.

The second difficulty arises when u changes sign over part of the
profile at some x-station where the x-axis {s parallel to the strearwise
direction and u 1is the corresponding velocity component. Normally this
does not occur and one can integrate away from the profile in the
direction of positive u without any difficulty by using a standard
numerical scheme. However, if the change in sign of u does occur, we
encounter nunerical instabilities since in the negative u-region we would
be integrating against the stream. The instability can be avoided by
changing the scheme either to the zig-zag box or the characteristics box.
These new schemes have already been shown to be effective in such

(2)

circunstances when the flow is unsteady and in three-dinensional

flows‘4'6). The essence of these schemes is that, to an increasing
extent, they take into account the fact that small disturbances are

carried along with the local fluid velocity.



The third difficulty arises when it is desired vo compute the first
velocity profile at the new time line. Given, as we are, the complete
velocity profile distribution on the previous time line, there is in
principle no difficulty in computing values on the next time-iine by an
explicit method, but if we wish to avoid the stability problems associated
with such a method by using an implicit method, we are immediately faced
with the problem of generating a starting profile on the new time-line.

In order to explain the problem further, it is instructive to see what
happens to the stagnation point as a function of tine. For this purpose
let us assume that the externalvelocity distribution for an oscillating
airfoil is given by the follz«iig function,

X+, (1 + A sin yt)
. . (1)
(1+x2)%

where A and & denote parameters that need to be specified. This
equation is a good approximation to the external velocity distribution
near the leading edge ¢’ a class of thin airfoils at variable angles of
attack and, when A = 0, has recently been used by Cebeci, Stewartson, and

Hilliams(7) to study leading-edge separation in steady flow.

Since by def.nition Ug = () at the stagnation point, its location, Xgo
is given by

xg = =g (1 + A sin ut) (2)

and so the upper and lower surfaces of the airfoil &s functions of time
are defined in particular by x > Xg and x < Xge For example, let

us take A =1, w=rm/4 and plot xs/;° in the (t,x) plane, as

shown in Figure 1 for one cycle (0 <t < 8). When t = 2, the stagnation
point x_ is at -2 L when t =6 it is at 0, etc. If x_ were

fixed wescould assume that u =0 at x = Xg for all time a:d all y.
Further profiles at this time-line then follow by use of one of the box
schenes that have been developed. However xs i, not fixed and it is

clearly unjustified to assume a priori that u = 0 there. Instead

therefore we use the characteristic box, with an

-3-
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W ¥ ﬂ/4.

Governing Equations

extrapolated nortal velocity, to
complete the profile at x = x| the
nearest x station to Xg 0N the

new time-line. Thus we avoid the need
to use two x-stations at the new time-
line to dimensionalize the governing
equations. Once this step is
completed, the detearmination of
further profiles on the new time line
proceeds normally and moreover we can
improve our initial estimate of the
normal velocity at by
iteration.

X = Xl

The governing boundary-layer equations for an incompressible laminar or
turbulent flow past an oscillating airfoil are well known and, with the
eddy viscosity (cm) concept, they can be written as

au av.
T 0 (3)
Ju

W, o, Mg e, ot

3t Y TV ay 3t " Ye X t 3y (4)
where <t = v(a3u/dy) - u'v'. In the absence of mass transfer, these
equations are subject to the boundary conditions given by

y*0, u=v=0; y+4& u=+uxt) (5)

The presence of the Reynolds shear stress term, =« u'v', requires o

closure assumption; in our study we use the algebraic eddy-viscosity
formulation developed by Cebeci and Smith. For details, see ref. 8.

70 complete the formulation of the problem, initial conditions rust be
specified in the (t,y) plane at some x = Xo either on the lower or
upper su.'face: of the airfoil (see Fig. 1) as well as inttial conditions in
the (x,y) plane on both surfaces of the airfoil, In the latter case, if
we assume that steady-flow conditions prevail at t = 0, then the initial
conditions in the (x,y)-plane can easily be generated for both surfaces by

ey



solving the governing equations for steady flow, which in this case, are
given by Eq. (3) and by

du
. e . 3 u .
u ax v y * ue ax * y (b ay ) (6)

where b =y + € There is no problem with the initial conditions for
Eqs. (1) and (6) since the calculations start at the stagnation point,

.-x . xs' —

Generation of the initial conditions in the (t,y) plane at x = Xy

which {s one of,the purposes of our study, 1s not so easy as was discussed
in the previous section. The following section describes our solution

procedure at t = 0 and t > Q.

Solution Procedure

We use Keller's Box method to solve the governing equations of the
previous section. This is a two-point finite-difference method which has
been used to solve a wide range of parabolic partial-differential
equations as discussed by Bradshaw, Cebeci and white1aw9. The solution
procedure for t = 0 (Eqs. (3) and (6))and t > 0 (Eqs. (3) and (4)) are

described separately below.

Solution Procedure for t = 0

As explained in the introduction any velocity profile may be chosen at

t =0 to if.itiate the computation but it is convenient to select one
which obviates the need for doub’e-structured numerical schemes and joins
smoothly on to the solution for t > 0. We fnsist that these profiles
satisfy the steady state equations with Uy given by (1) and t = 0.

The details of the procedure for computing these profiles differs slightly
fron previous procedures used in steady two-dimensional flows whers we
have used the definition of the stream function and reduced Eqs. (3) and
(6) to two first-order ordinary differential equations and to one
partial-differential equation. Here we consider the solution of Egs. (3)
and (6) without the use of the stream function. For this purpose, with
primes denoting differentiation with respect to y, we let

-8~



.u‘ s f (72)

and write Eqs. (3) and (6) as

vieo (7b)
ax
2
u 2
(bf)' - fv = . %(21)4- %7(;-) (7¢)

The finite-difference approximations of Eqs. (7) are also somewhat
different than those reported in our previous ;tudies dealing with
two-dimensional f1ows1°. A1l quantities except for the normal velocity
component v, are centered at the center of the box (yj-l/z'

xi-1/2)’ see Fig, 2, by taking the values of each parameter, say q, at
the four corners of the Box, that is,

i-172 1 ,.i-1/2 _i-1/2, _ 1,1 i-1 i i-1
However, the centering of the y-velocity compcnent v i{s done by writing
- it.-as

pRVAR JU AR ()

he unknown parameters in Eqs. (8) ~orrespond to q} and VS-I/Z s

that when a solution of the system given by Eqs. (7) is obtained, f and
u are computed at (i,j) and v at (i-./2, j). This modified
y{J) ’ centering procedure is necessary in

0

y. ! order to avoid oscillations due to the
J 5 ] use of the continuity equation in the
yi-‘s ----1---1—4:9------ hj-] form given by Eq. (7b) rather than the
yj-] g { use of the stream function. The
: centering of Eqs. (7) and the
. subsequent linearization procedure by

.
i1 xi-s i x(1) Newton's method allows the resulting
Fig. 2. Net rectangie for linear system to be written in the

finite-difference approximations. form(lo)

& - Gy - —%-'-l (815 ¢ 68, 1) = (ry)y (9a)



1
(8v, = &v, ,) + (5,), (su, + 8u, ,) = (r) (9v)
Larihbi B B L A B I R
(sl)Jij + “2’3";].1 + (s:’)deJ + (S‘)JGVJ_I + (ss)JGuJ
+ (35)16“1_1 . ("2)3 (9¢)
After linearization, the wall boundary conditions

UO'O. Vo-o (10‘)

u, = u (10b)

su_ =0, v, = 0, auJ =0 (11)

The resulting linear system consisting of those given in Eqs. (9) and by
those in Eq. (11) can ?ﬁogolved by the block elimination method discussed
by Cebeci and Bradshaw

Solution Procedure for t > Q

We have already pointed out that if au./at p 0 when t =0, a
double structure scheme should strictly be used to advance the solution
from t = 0. However the choice of parameters in our study is such that
age/at is small and the difficulties that arise from using a standard
method are of a sufficiently minor nature that no further refinement is
necessary. For larger valuyes of the relevant parameters it is easy to
incorporate a smoothing function into Ug and one can always use the

general method(z).

Nevertheless there is still the difficulty about obtaining the velocity
profile on the first x-station at any new time-line. [t can be resolved
with the use of the characteristic box method developed by Cebeci and
Stewartsony)_ Defining the streamline by



and using the definition of f', and with s denoting the local
streamline, we writo Ea. (4) as

) . L ']
\“ LG ; (be? ) = ty 41 + u2 —9-
o STAGNATION LINE 13
\l J ul # (13)

To obtain the solution of the unsteady

k “‘; T boundary.laver equations given by Egs.
, l J' ‘" x(1) (72,0) and (13) at the first x-station
k-1 > *’ -~ on either side of the stagnation line,

L

‘ " let us consider the grid of Fig. 1 and
fg. 3. Notation and finite-

difference molecule for the direct ocur attention to the point

Characteristic Box 2. denoted by 1 (see Fig. 3).
To write the difference approximations of Eq. (13) we define

a3y at/cos a (14)

J

denoting an average velocity, we compute o, from

where, with u i

J

aJ = tan'l uj (15)

assuming that at first v at point P is known and is equal to its value
at vi'l/z'k'l. This assumption decouples the continuity equation, Ea.
(7') from Eqs. (7a) and (13) and reduces the problem to a
“two-dimensional® one with f and u being the only unknowns. The
finite-difference approximations of Eq. (7a) are written in the usual way
and the finite-difference approximations to Eq. (13) are written by

centering it at point P. This procedure leads to

-1 i,k i,k i,k
i,k i,k n,k-1 n,k-1
(bv) > = (bv):*y  (bv) P77 = (bv)
J j-1 J-1 1 pelok k-.
L * ‘LWH -7 U322+ Ry
i,k n,k-1
i,k nkel u ' =y’
I R T )
1,k n,k-1
i,k n,k-1 u -u,’
1 2, =1
« > [(V1 +uS) 1+u ) ]
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The profiles bj' f. and vy as well as Ve at (n,k-1) are
obtained by interpolating the profiles at (f,k-1) and {1-1,k-1). To

find the angle &,, we define uj in Eq. (15) by

vy --% (u}'k + ug'k°l) (17)

Since the system given by Eas. (16) is linear, there is no need for
lineari2ation and we solve it subject to the two boundary conditions,
namely,

u_ = 0. ¥, s u (18)

by using the block-elimination method in which case the matrices are
2 x 2. Ve shall refer to this scheme as Characteristic Box 2.

Once 2 solution of Eqs. (7a) and (13) has been obtained, we compute v
from Eq. (7b) which, in finite-difference form, for the center of the net
rectangle, point E, can be written as (see Fig. 3)

1,k-1/2
V—V_l._u! —u! (19)
hi-1 X~ *n

Here V, denotes the value of v, at E and u, 1is given by Eq.
(17). Since the right-hand side of Eq. (19) 1s known, we can solve this
equation for vJ and with v° = 0, find VJ for 1‘: h| :_g. We

then substitute this new value of vJ into Eq. (16) for v and

solve the system again to compute new values of vJ. This procedure is

repeated until convergence.

For convenience we use the same procedure to compute point 2 to the left
of point 1. Once two points on a given t-1ine are computed by this
procedure, u: then use the values of vJ at E2 and El’ compute &

new value v and repeat the solution procedure for Eqs. (7a) and (13),
and later Eq. (19). After that the stations to the left of point 2 and
the stations to the right of point 1 are computed by using the Regular Box
scheme if there is no flow reversal across the layer and by the Character-
ietic Box scheme if there is flow reversal. The “new"” Characteristic Box
scheme {s now slightly different than the Characteristic Box 2 so we shall
refer to it as Characteristiz Box 3.

-9-



To describe the Characteristic Box 3 scheme which solves Eqs. (7a,b) and
(13) without decoupling the continuity equation from Eqs. (7a) and (13),
we consider the sketch shown in Figure 4.

Yi-1/72 {

e
<«’\

-

" - o o
¥i-5/2 ¥i-3/2 ,T

/
1 -
nlc :4‘ ﬁ-k‘
i-2 {-1 1 i+) 142
Fig. 4. Notation for Characteristic Box 3.

Using the Zig-Zag Box scheme discussed in detail in Ref. 5, we write Eq.
(7b) in the following finite-difference form

i §o1,k
AU R VR T PPRELR 2 (20)
where
TS Tl 1
(Xyep = Xqop) (xg =gy
X3 = %0 1 fik=1 _  1+1,k-1
Tl eaen el cvaes voes SRSV Rt VP I (21)
Since

("i -X )
P s ve ” Mey2) o
IBVZRRTIE VPR crmvyracs arpm SIS VR RV 1

The relation between v1_1/2 and 3} can be written as

im L8yt (22)
where By and 33 are given by
(x4 = xq_y/5) .
T y2 - N2 3" ~fh-32 @)
Introducing Eq. (22) into Eq. (20) and rearranging, we get
-1 - - .
njer (10 8Ty - Ty y) +Fuy 8y (24)
where
By = -8y * :".111/12& "3}1 (837 - 83) (25)

-10-



As in Characteristic Box 2, we center Eq. (13) at the midpoint of (1{,k)
and (1,n) to get the “inite-diffarence equations given by Eq. (16b) with
vP being obtained by l1inear interpolation of 31_1/2 and Wi.

which 1s

~
v -V
vP . ?1 . (xc - x') -%ll[g;--l (26)
n°" "

Equations (16a), (24) and (16b) are then linearized by Newton's method,
and again are solved by the block elimination method.

When there is no flow reversal across the layer, we use the Regular Box
schene described in detail! in Ref. S.

Results and Discussion

To date calculations have been carried out in only one test-case, namely
when € " 0.10, Asl, @ = «/4, and for a limited range of «x

( |x|] < 0.3). With the use of the various procedures described in this
paper the calculations were quite straightforward and the formal validity
and efficacy of the numerical schemes were estadlished. The resuits are
summarized in Figs. S5-7. In Fig., 5 we display the variation of wall-shear
with time at differer:t x-stations and in Fig. 6 the variation with x at
different times. These graphs are entirely in line with expectations and
we note that the flow reversal at the wal. is quite smooth, A similar
remark applies to the velocity profiles on either side of the stagnation
line displayed in Fig. 7.

The next phase in our studies is to extend tha computations to larger
values of A.zo and saaller values of w so as to more closely

approach the conditions of dynamic stall., [t s of interest to comment on
the fluid mechanical problems that may then arise. First, if €o is
increased beyond 1.155, the steady-state solution at t = 0 separates on
the upper side of the airfoil and the calculation terminates. This is not
a serious drawback unless the unsteady boundary develops a singularity
because the smoothing function mentioned earlier may be adapted to ensure
that ¢ 13 fnitially less than 1.155 and rises to 2 value g-eater than
that after a2 finite time. The unsteady boundary layer then includes
regions of reversed flow which may well become extensive if A 1s also

11~
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allowed to increase to mimic more closely the conditions of dynamic
stall. Even if the boundary layer remains smooth, the displacement
thickness may then become much thicker and have a significant modifying
effect on the external flow. It would be useful then to consider an
interactive problem ‘= “ich the external stream depends in part on the
displacement thickness thus generalizing the studies reported for steady
f1ou(7). Consideration then has to be given to the variation of
circulation with time which may lead to a more complicated expression for
the dependence of ug On the displacement thickness than was used in
Ref. 7 but-the computation should not be any more complicated as a
result, Finally, in order to mimic the dynamic stall problem most
effectively(l’ll), w should be reduced to very small values (as
typical of dynamic st211 problem). So long as w > 0, the difficulties
reported in Ref. 3 at separation in uninteracted flows and in
post-separation flows otherwise, should not be present. On the other
e 8 -0.38 013 TR »"0  hand, van Dommelen and Shen(lz) have
provided quite strong evidence that a
singularity can occur in an unsteady
boundary layer for which the external
velocity is steady. This phenomenon
is still somewhat controvers1a1(13)
but there seems no doubt that the
boundary layer will exhibit dramatic
" properties for small enough values of

0.2 -5.1 0 0 9 9-0.1 2 0.1 0.20.3 4 and it {s possible that these may

C'q
Fig. 5. Varfation of wall shear give further insight into dynamic

parameters with time at differ- stall.
ent x-stations.

te g.g ts ,2.0
. .5t 3.0
0.4 0 - t= /8.0
‘.o 7'0
.2 r o -0 o .0
ce
L 1.2
° . . _J 1 4
//7’ 0 0.2 0.2 0.2
X
-0.2
’
2.4 L L L

Fig. 6. Variation of skin-friction coefficient with x at different
t-intervals. Note t =8 corresponds to one cycle.
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-

x = -0.02 0.0 +0.02
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LINE LINE
t=18
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- LOVE
-
I
x = -0.14 -0.12 -0.40 -0.08
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Fig. 7. Velocity .rofiles in the immediate neighborhood of the stagnation
lines at cifferent times. u_ = 0 on the dashed line at the specified time
and serves to "define" upper or lower surfaces.
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