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SIMPLIFIED SULUTION FOR STRESSES ANU DEFORMATIONS

Bernard J. Hamrock and David E. Brewe*

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

A shortcut to the classical Hertzian solution for 19cal stress and de-

formation of two elastic bodies in contact is presented. The shortcut is

accomplished by using simplified forms for the ellipticity and for the com-

plete elliptic integrals of the first and second kinds as a function of the

Ln	 geometry. Thus the interdependence of these variables can be uncoupled, and

the resulting transcendental equation, which must be solved through use of

the computer or design charts. avoided.

Simplified formulas that make the elastic deformation at the center of

contact easy to calculate have been previously reported by the authors.

However, the range of applicability was limited to ellipticities greater

than or equal to 1. This paper extends the range of validity to include

ellipticities less than 1, that is, where the semimajor axis in the ellipti-

cal contact lies in a direction parallel to the rolling direction rather

than being perpendicular as in previous studies. Furthermore an auxiliary

shear stress parameter is expressed in simplified form as a function of the

geometry. This enables a shortcut calculation to be made for the location

and magnitude of the maximum subsurface shear stress.

"Propulsion Laboratory, AVRADCOM Research and Technology Laboratories.



INTRODUCTION

The classical Hertiian solution for deformation requires the calcula-

tion of the ellipticity parameter k and the complete elliptic integrals of

the first and second kinds..f and 0. respectively. Simplifying expres-

sions for k, jr. and I as a function of the radius ratio a were pre-

sented by Brewe and Hamrock (1977) using a curve-fit analysis. with these

expres0 ons the deformation at the center of the contact 6 could be deter-

inined, with a slight sacrifice in accuracy. without involved mathematical

methods or the use of design charts. The simplifying expressions were use-

ful for radius ratios ranging from circular point contact to a near line

contact normal to the rolling direction (i.e.. 1.0 < a < 35). However,

there are a number of applications for which the semimajor axis in the

elliptical contact lies in a direction parallel to the rolling direction.

resulting in a < 1. In local deformation due to asperity-asperity interac-

tion, the radius ratio can range from much less than 1 (P atir and Cheng.

1978) to infinity. For many gear and rolling-element bearing applications

the "run-in" surface becomes anisotropic and the radius ratio is generally

less than 1 for local asperity contact. Other examples where a may be

less than 1 are (1) Navikov gear contacts. (2) locomotive wheel-rail con-

tact, and (3) roller-flange contact in an axially loaded roller bearing.

Therefore the elliptical-contact deformation and stresses to be presented in

this paper are applicable for any contact ranging from something similar to

a disk rolling on a plate (radius ratio a - 0.03) to a ball-on-plate con-

tact (a - 1) to a contact approaching a nominal line contact (a	 100) such

as a barrel-shaped roller against a plate.

Thus far. we have limited our consideration to the use of the simpli-

fied formulas in determining the elliptical-contact deformation. In this
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paper we further illustrate their applicability in calculating surface

stress as well as subsurface stress, which is important to the determination

of fatigue life in rolling--element bearings.

SYMBOLS

A	 solid A

B solid B

Ux ,0y diameters of contact ellipse along 	 x	 and	 y	 directions,

respectively (cm)

E modulus of elasticity (N/cm2)

1-v 2A 	1 -v6
E' 2	 --EA A + —	

2
8	 (N/cm )E8

A	 B

complete elliptic integral of second kind

j approximate val ,.e of	 41	 using curve-fit equation

F applied	 load (N)

jr complete elliptic integral	 of first kind

Jr, approximate value of	 Jr	 usir,g curve-fit equation

k (Dy/Dx),	 ellipticity

k approximate value of	 k	 using curve-'it equation

R 
effective radius of curvature in x-plane (cm)

R 
effective radius of curvature in y-plane (cm)

1/R (1/Rx + 1 /Ry ), curvature sum (cm 1)

r	 r principal	 radii	 of	 solid	 a (cm)
a:, '
	
ay

rbx ,rby principal	 radii	 of solid	 b (cm)

t auxiliary parameter

T auxiliary parameter using curve-fit equation

x0 location along x-axis (rolling direc,A on) of maximum subsurface

shear stress (cm)

z0 calculated value of	 x0	 using approximate formila (cm)

3



z0	depth of maximum subsurface shear stress in x-z plane (cm)

z0	calculated value of z 	 using approximate formula (cm)

r	 curvature difference

a	 elliptical-contact deformation at center of contact (cm)

a	 elliptical-contact deformation calculated by using approximate

formulas (cm)

°max	
maximum Hertzian stress (N/cm1)

°max	
maximum Hertzian stress calculated by using approximate formulas

(N/cmL)

?O	
maximum subsurface orthogonal shear stress (N/cm1)

TO	maximum subsurface orthogonal shear stress using approximate

formulas (N/cm2)

CONFORMAL AND NONCONFORMAL SURFACES

Hydrodynamic lubrication is generally characterized by surfaces that

are conformal. That is, the surfaces fit snugly into each other with a high

degree of geometrical conformity, so that the load is carried over a rela-

tively large area. Furthermore the load-carrying surface area remains

essentially constant while the load is incr-ased. Fluid-film journal and

slider bearings are conformal surfaces. 	 journal bearings the radial

clearance between the shaft and the bearing is typicaily one-thousandth of

the shaft diameter; in slider bearings the inclination of the bearing sur-

face to the runner is typically one part in a thousand.

Many machine elements have contacting surfaces that do not conform to

each other very well. The full burden of the load must then be carried by a

very small contact area. In general, the contact areas between nonconformal

surfaces enlarge considerably with increasing load but are still small com-

pared with the contact areas between conformal surfaces. Some examples of
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these nonconformal surfaces are mating gear teeth, cams and followers, and

rolling-element bearings.

The load per unit area in conformal bearings is relatively low, typi-

cally only 1 MN/m
2
 and seldom over 7 MN/m1 . By contrast, the load per

unit area in nonconformal contacts, such as those that exist in ball bear-

ings, will generally exceed 700 MN/ 
m2 

even at modest applied loads. These

high pressures result in elastic deformation of materials such that the

elliptical contact areas are formed for load support. The present paper

develops simple solutions for the stresses and deformations in nonconformal

contacts.

CURVATURE SUM AND DIFFERENCE

The undeformed geometry of contacting solids can be represented in gen-

eral terms by two ellipsoids. The two solids with different radii of curva-

ture in a pair of principal planes (x and y) passing through the contact

between the solids make contact at a single point under the condition of

zero applied load. Such a condition is called point contact and is shown in

figure 1, where the radii of curvature are denoted by r's. It is assumed

throughout the paper that convex surfaces, as shown in figure 1, exhibit

positive curvature and concave surfaces, negative curvature. Therefore, if

the center of curvature lies within the solid, the radius of curvature is

positive; if the center of curvature lies outside the solid, the radiu: of

curvature is negative. It is important to note that, if coordinates x

and y are chosen such that

1 4 1 1 + 1	 (1)

rax rbx _ ray rby

coordinate x then determines the direction of the semiminor axis of the

contact area when a load is applied and y, the direction of the semimajor
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axis. the direction of motion is always considered to be along the x-axis.

For those situations in which the principal curvature planes of the two con-

tacting bodies are not coincident, refer to Timoshenko and Goodier (1910).

The curvature sum and difference, which are quantities of some impor-

tance in the analysis of contact stresses and deformation, are

r . R F

IX _ Fly-

where

1 _ 1 + 1

xx	 rax	 rbx

1 a 1 + 1
y ray rby

Equations (4) and (5) effectively redefine the problem of two ellipsoidal

solids approaching one another in te:•ms of an equivalent ellipsoidal solid

of radii R 	 and R 	 approaching a plane.

The radius ratio a is defined as

R

a a e	
(b)

x

Thus, if equation (1) is satisfied, then a is greater than or equal to 1;

and if it is not satisfied, a is less than 1.

SURFACE STRESSES AND DEFORMATION

when two elastic solids are brought together under a load, a contact

area develops, the shape and site of which depend on the applied load, the

elastic properties of the materials, and the curvatures of the surfaces.

b

(2)

(3)

(4)

(5)



When the two solids shown in figure 1 have a normal load applied to them,

the shape of the contact area is elliptical. It has been common to refer to

elliptical contacts as point contacts, but since this paper deals mainly

with loaded contacts, the term elliptical contact is adopted. For the

special case where r ax . ray and rbx . r h,, , the resulting contact
-.

is a circle rather than an ellipse. Where r ily and rby are both in-

finite, the initial line contact develops into a rectangle when load is

app 1 i ed.

The ellipticity parameter k is defined as the elliptical-contact

diameter in the y-direction (transverse direction) divided by the

elliptical-contact diameter in the x-direction (direction of motion) or

0
k = e
	

(7)
x

If equation (1) is satisfied and a > 1, the orientation of the contact

ellipse will have the major diameter transverse to the direction of motion,

and consequently k > 1. Otherwise, the major diameter would lie along the

direction of motion with both a < 1 and k <-1. To avoid confusion, the

commonly used solutions to the surface deformation and stresses are pre-

sented only for the case in which a > 1. The simplified solutions are pr_--

sented and then their application for a < 1 is discussed.

Harris (1966) has shown that the ellipticity parameter can be written

as a transcendental equation relating the curvature difference (eq. (3)) and

the elliptic integrals of the first .f and second ! kinds as

k . 2.r - ! 1 + r 112
	

(d)
J(1 - r

where
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A/t	 -112

sing	db	 (9)
k2)

0

* /2	 112

it :	 1 - 1 - ' sin1 p	 db	 (101
k

0

A one-point iteration method that was adopted by Hamrock and Anderson (1973)

can be used to obtain the ellipticity parameter, where

kn+1 a k 1	 (11)

The iteration process is normally continued until k n+1 differs from

k 	 by less than 1x10 
7 . Note that the ellipticity parameter is a func-

tion of the radii of curvature of the solids only:

k - f(r 
ax' 

rbx ,r ay,r
by )	 (11)

That is, as the load increases, the semi-axes in the x and y directions

of the contact ellipse increase proportionately to each other, so the ellip-

ticity parameter remains constant.

Figure 2 shows the ellipicity parameter and the elliptic integrals of

the first and second kinds for a range of the curvature ratio Ry/Rx

usually encountered in concentrated contacts.

When the ellipcity parameter k, the normal applied load F, Poisson's

ratio v, and the modulus of elasticity E of the contacting solids are

known, the major and minor axes of the contact ellipse and the maximum de-

formation at the center of the contact can be written from the analysis of

Hertz (1881) as

py - 2

11/3

(13 )WrR I(6k	

/
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1/3
C6lFR1O x ' 2 ^-r

(l (	
2 1/3

where

Es	
2	 (16)

1 -va 1 -vb
Ea _-Eb

In these equations, D 	 and D 	 are proportional to F 113 and s is

proportional to F2/3.

The maximum Hertzian stress at the center of contact can also be deter-

mined by using equations (13) and (14) and

6F	 (17)
°max ' wD-

SUBSURFACE STRESSES

Fatigue cracks usually start at a certain depth below the surface in

planes parallel to the direction of rolling. Because of this, special

attention must be given to the shear stress amplitude in this plane

Furthermore a maximum shear stress is reached at a certain depth below the

surface. The analysis used by Lundberg and P almgran (1947) is used here to

define this stress.

The stresses are referred to a rectangular coordinate system with its

origin at the center of the contact, its z-axis coinciding with the interior

normal of the body considered, its x-axis in the direction of rolling, and

its y-axis perpendicular to the rolling direction. In the analysis that

follows, it is assumed that y . 0.

(14)
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From Lundberg and Palmgren (1941) the following equations can be

written:

6F	 cos2O sin 0 sin Y(18)

Ti)an,y

X inO x + Oy tan Y sin 0	 ( 1 9)

0
z . ? tan Y cos b	 (20)

where 6 and Y are auxiliary parameters used in place if the coordinate

set (x,z). They are defined so as to satisfy the relationship for a con-

focal ellipsoid to the pressure ellipse (for further details see Hertz,

1881, and Lundberg and Palmgren, 1447). The maximum shear stress amplitude

is defined as

TO 0 
IT zx1max

The amplitude of the shear :stress TO is obtained from

aTzx	
0—^- s

aT zX	 0

ay 
s

For the point of maximum shear stress

t an26 . t	 (21)

tang y . t - 1	 (22)

0x
^--.	 (t - 1)(. t - 1)	 (23)

Y
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The position of the maximum point is determined by

Z
0
 • z* ^
	 (24)

0

where

(t + 1) V7F--T

Furthermore the magnitude of the maximum shear stress is given by

-^	 (28)
T O ' °max 2t t +

It should be emphasized that T O represents the maximum hall-amplitude of

the subsurface orthogonal shear stress and is not to be confused with the

maximum subsurface shear stress that occurs below the center of contact on

the plane oriented 45" to the surface. The Lundberg-Palmoren prediction of

fatigue life is based on the calculation J T O and was limited to cross

sections lying in the plane of symmetry ^, the roller path (y - 0).

SIMPLIFIED SOLUTIONS FOR a > 1

The classical Hertzian solution presented in the previous section re-

quires the calculation of the eflipicity parameter k and the complete

elliptic integrals of the first and second kinds Y' and f. This entails

iindi:og a solution to a transcendental equation relating k, F. and f to

the geometry of the contacting solids. as expressed in equation (8). This
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is usually accomplished by some iterative numerical procedure, as described

by Hamrock and Anderson k1973), or with the aid of charts, as shown by Janes

(1946).

Table 1 shows various values of radius-of-curvature ratios and corre-

sponding values of k, .Or, and f obtained from the numerical procedure

given in Hamrock and Anderson (1973). For the set ui pairs of data [(ki,

e i ), i = 1, 2,	 26], a power fit using a linear regression by the

method of least squares resulted in the following Equation:

	

F = a2/ "	 for a > 1
	

(29)

The asymptotic behavior of if and S' (a s 1 implies 4f i t s •l2, and

a * e implies Y'*  - and f * 1) was suggestive of the type of functional

dependence that f and .t might follow. As a result, an inverse and

logarithmic curve fit was tried for a and .r, respectively. The following

expressions provided excellent curve fits:

=1 + a 	 for a>1
	

(300'

where

	

q	 2'
	

(31)

and

^+ q In a	 for a > 1
	

(32)

Values of k, f, and ,F are presented in table 1 and compared with the

numeri . ally determined values of k, f, and F. Table 1 also gives the

percentage of error determined as
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e = z - zz 100	 (33)

where

z = {k, r, ,$r}	 (34)

Table 2 shows various values of radius-of-curvature ratios and corre-

sponding values of Uy, O x' amax' and a obtained exactly. Also

shown in table 2 are the appropriate values O y, Ox °max' 
and a

obtained from using equations (30) to (32) in conjunction with equations

(13) to (15) and equation (28). The percentage of error as determined by

equation (33) is also given in table 2. The agreement between the exact and

approximate solutions is indeed quite good.

Table 3 shows various values of radius-of-curvature ratios and corre-

sponding values of the auxiliary parameter t used in calculating the posi-

tion and value of maximum subsurface orthogonal shear stress. For the set

of pairs of data [(t i , a i ), i = 1, 2, ..., 44] the following simplified

formula was obtained:

t = 1 + 0.16 csch 
2

	
(36)

The position and value of maximum subsurface orthogonal shear stress corre-

sponding to the auxiliary parameter are given in table 3. The percentage of

error a is given for each of these values. The agreement between the

exact and the approximate values of t is quite good. Once the value of

the auxiliary parameter t is determined, the position and value of maximum

subsurface orthogone' shear stress can readily be calculated.
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SIMPLIFIE U SULU H UNS FUR U.01 < a < 1

Table 4 gives the simplified equations for conditions where

U.U1 < a , 100. Recall that a > 1 implies k > 1 and equation (1) is satis-

fied and that 0 < a < 1 replies U < k < 1 and equation (1) is not satis-

fied. It is important to make the proper evaluation of a since it has a

great significance in the outcome of the simplified equations. It is also

important to realize that the reciprocal of a produces the same values of

the various parameters given in tables 1 and l as produced by a for a

given curvature 1/R.

Figure 3 shows three diverse situations in which the simplified equa-

tions can be usefully applied. the locomotive wheel on a rail (fig. 3(a))

illustrates an example in which the ellipticity k and radius ratio a are

less than ). The ball rolling against a flat plate (fig. 3(b)) provides

pure circular contact (i.e.. a a K	 1.00). Figure 3(c) shows how the con-

tact ellipse is formed in the ball - outer-ring contact of a ball bearing.

Here the semimajor axis is normal to the direction of rolling and con-

sequently a and k are greater than 1. The detailed geometry and the

values from the calculations that can be made using the simplified formulas

are given in table 5 for each of these configurations. In using these for-

mulas it is important to pay attention to the sign of the curvatures. Note

that the outer race in figure 3(c) is a concave surface and so the jign is

negative.

SUMMARY OF RESULTS

An alternative approach has been presented for the classical Hertzian

solution for local stress and deformation of two elastic bodies in contact.

Simplified formulas that use curve-tit analysis are given in terms of the

radius ratio a for the ellipticity k and for the complete elliptic

14
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integrals, Jr and !, of the first and second kinds, respectively. Thus

their inter-dependence can be uncoupled, and solution of the resulting

transcendental equation avoided. Simplified equations were developed that

permit a more direct and easy approach to the calculation of the elliptical-

contact deformation and maximum Hertzian stress. In addition, a curve-fit

analysis was used to derive a simplified formula for an auxiliary stress

parameter t as a function of the radius ratio a. This eliminated having

to solve a cubic equation for t as a function of k. Thus the simplified

formula for t, together with the simplified formulas for stresses and de-

formations, permits a direct and easy calculation of the location and magni-

tude of the maximum subsurface orthogonal shear stress. Therefore the

elliptical-contact deformation and stresses are presented that are appli-

cable for any contact ranging from a disk rolling on a plate (radius ratio

a - U.U3) to a ball-on-plate contact (a - 1) to a contact approaching a

nominal line contact (a * 1OU) such as a barrel-shaped roller against a

p 1 ate.

REFERENCES

Brewe, D. E.; and Hamrock, B. J. (1971): Simplified Solution for Eliptical-

Contact Deformation Between Two Elastic Solids. J. Lubr. Technol. vol 99,

no. 4, 485-481.

Hamrock. B. J., and Anderson, W. J. (1913): Analysis of an Arched Outer-Race

Ball Bearir,,, Considering Centrifugal Forces. J. Lubr. Technol., vol. 95,

no. 3, t05-210.

Harris, Tedric A. (1366): Rolling Bearing Analysis. John Wiley a Sons, Inc.

1960.

Hertz, H. (1881): The Contact of Elastic Solids. J. Reine Angew. Math.,

vol. 92. 156-171.

15



Jones, A. B. (1946): Analysis of Stresses and Deflections; New Departure

Engineering Data, Vol:. ; and II. General Motors, Inc.

Lundberg, G.; P almgren A. (1947): Dynamic Capacity of Rolling Bearings.

Acta Polytech., Mech. Eng. Sci., vol. 1, no. 3, 6-9.

Patir, Nadir; and Cneng, H. S. (1918): An Average Flow Model for Determining

Effects of Tnree-Dimensional Roughness on Partial Hydrodynamic Lubrica-

tion. J. of L.ubr. Technol., vol. 100, no. 1, 12-17.

Timoshenko, S. P.; and Goodier, J. N. (1970): Theory of Elasticity

(Third Edition). McGraw-Hill Book Co., p. 415.

l
16



H
W
w

a0
U

ws
F
S
FH3
v,W
w74

WWzH
a
W
FW
Ll

a
a
R
UHa
wr
z
wxF
f+.O
Z
O
NH
D:d0.
F.'O
U

1

N
w► 4sa
sHM

FYWAZW0.WO

aaR
UH
aHW
SQ
w
U)

w
xF
fs:
O1..
NWO
a4

eU
O

x

ti
Wa
07

4

F

ON.Dr^—McP hq0 Una .o o 0 M1 n J M N N.-1.-1.-100OS o111nga-so	 Ln1JJMMN.•+.•1H000 0000000
O da o n o 0 0 0 0 0 0 o n o 0 0 0 o e e o 0 o a o 0 0 0aw

U
H so %D N N J M fY N	 Ln	 r	 M1mU1q OMM N-OU Go .•1
F e.D OrD in c3 NV a%	 1	 40

(3, M l^ q q N P.D J -- Pg g -aimso r, 
.o/^1 f1gNgPJ.^PqnNMNN H.r .•+^.-100000H9.Q I°wi UIV MMN.+--=c0 000000000000e0 00

aoz ................. ..
waY
waa
W WO gM-60NN.DU1JP r.DPP-o o D^.DP.o%ONNJf,
1.7 FU JrO 	 tnP-0000 kn	 .D PPPM a % 	N.-1P q n .D Ul
0.ZW n.OPMPO1flNOgn.o ulMNN.-+.+.-+x•+00000YI JMMN N.••--+00000000000000000rQ HVN
U NN---NN----N.-1

aO 000lflMVrrn00^1(1gop0^TJOYIPN OgP00Di W in n rl r, %r + .•1 V U1 n g0M.oN g P P P 0000.~.ra..................
W ca00000000000.-1 .-d .N .-1 r1 ..^.H .-1NNNNNN

1	 1	 1	 1	 1	 1

H
F0. gNNN J P — o o lnrl 	 In n.-. N NJ I= WW OMJ
H[L. in OpNO .DnNo ^" .^ NO 1(1.Dcl 	NO .o M Mn1n NPP1-7QZ nPUP.DP.O	 1 O.-.UnJoo	 Pc%=	 PM J H1 .D	 q q .+ N J 1t1 .D O 1^ g	 P e .•. .•.Y1 .D q q	 ro on oo

P..•.

s[ .^•^.+^'+ N N N N N N fV NM-n	 M M M M MMJJJ
WaFFC7 i/1
aFH
G.S Ih tfln01l1 SON NM N 111P Oqo% co aD Nq.DO0U1
LH OP .p Nb PM J hO JO	 nO	 OPgPNo	 qO
V

D PPNPW	 .	 wlI^ggntlq lllP O P n1[^.-1 .D M.Onn.r .r 40 	 UII1Nq
ul .On g P.-a on'T %D ^D t•. q P 	 .ond	 4	 O.-1 NN
.•1 .+ .+ .-1 .-+NNNNNNNNM M M MMMMMMJJ V J

ZD: O.o P.+ .On 6n .+ J c r q J N .•. PP N n J M N O pn	 0
WO 0 o.a. %D P  M^Dl 0 s	 N n M g J O n J O.D.rUx

'C. 0o.-1.N .'•.N M M M MM M M M N N .••1 '+o o oO.^NNM
W W 1	 1	 1	 1

FN(.) O.ONOn1RO0P1(ln rnMP g nO10 P. -N I ofn1
H ONJgJNnO q.+n ON.D r.'/.-.n lflgJPU1M0[•+ O Ifl P N N .+ .-+ 0 N Ul u' Ln 	 M .p .-^ .^ .D ap .D ^(1 J n J d0. IY O.+NJ1n0Jn.rJncM ^Onnn.O J N O 11'1PN1l1n
H. .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

.-7 I.•+.-. .^ --NNNMMMJILM o 	 WPO^NMJ.Ohqa ..1.............
w

oSraJ upon Ntfiq Vl .D J.OnoNN1(10.-1nONP.r000.-. Il1N OOOn^OPPP g J.OJOJ.-. V1M N.D 1^
O.orr nWQ1	 VO	 Ln so	 O'P NJ n J .o Mn M1 J Ln 0,O r1MJ 1(101np N Ln	 Jn cl P	 Ln	 J n PO.r

I .-	 +.•+.-•I .•+ N N N M M M J	 Ln .o r^ W P c;.+ N M J V1 l^^

A. w

_ -

OD: - c 0 0oo oo onococ+0000n OOOOOOo
O O O O G O O n G O O O 0 O O G O 0 0 O O O G O O O C)IA (-IH b 01(^ONO00o0o0000000000000000O+SF oNUln 0000000000000000000000

N MJ 1n' .D n V, P OIl101nc Ill G Ln	 x 0000SO .-. .+N N .^ M J JI(^.O ng PO
a t1 -^



aONr
Qw
H
WHa

N

zFH
Z

Q
Z

a
a
KVH
a

x
zHO
to

Q
W
H
a
OV
a

N
U

dc

wa
KH
GG

N
V!
W
a
H
V!
w
U
K
1..a
N
Q
Z

XO

IC

N
H
t
OwWQ

N
W
^irq
K
H

u
O

r

a"

z
OD
J
J

d
r
w

N '
U
z
h`

X
na

N

w

a
O O N . 0%A 40 P It 0 N 0 n0 It N N P M N n P P N 40 P. p00G	 d o.•^n.-IM.p.p.n Mf.-.P Kf .OPM.r .po H.OP1f1PMn.-1aW 0.+.+:JNNNNNN^ + IOOeO.^.r rr.NNMHJ

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

—
^^rr

F U
K K r J J r r r r r r r It J It J r It r r J J r r .t r r JH Oo.70000on O 00000on00000000X x

T
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1 	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

00 w W W W W W w w w W W W W W W w w w W W W W W W W WHV IIp NOPPPOPNPn40PNr .0 N^-IN Y'140NMV1P M40
H hr N.ro g lnJ N••IOPP.p rMN.-10PPgl^^p .p lf^
41C4^ rrJrJMMMMMMNNNNNNNN^•+.r .^.+.n .r .+=O ea U 0000e0000^000c^eoe000000000ON-9.WWF
QX rrJrJ r JS r. • Jrrrrrr d ' J rr., r J r JW O O O O O O O O O C O n 0 0 0 0 0 0 p 0 0 0 0 0 0 0
V 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1w w w W W W W W W W W W W w W W W W W W w W w W W Wb N^1.•. 000Pr.•I .^NJnNU\NNJn- •I .OgorPV11nM N.-.onrMN- O P 40.0 r M N.100 P 040%.0 .0r J rrr HMM M MMNNNNNNMNNti...	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ..	 .	 .	 .	 .	 .	 .	 .O O O CO O O OO OO OO O O O O co O C . OOO O O CQ

Za On ^M g r .r NOnJO OrNNJn .r pN M.e

in

w0	 rr OU1P.rNU1 .0.0.D rvt/n JN0 40 .urM.-^ONJ.D400aa 000-. -+ ..+ ..+.+.+.+ + + ^0000000000
W

0.
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

Inlnlnn&n In lnnlnlnininw,000+nw%oin&nlnunInrin0 0 o a o 0 o p o C. 0 0 0 0 0 0 0 0 0 0 C. 0 o p p o
X W w w W W w W W W W w w W W W W W W w W W W W W W W

Z frNONN N Q otl.ogMNnP 0	NPI%J.0tlJ01nPM40J.rt.. a 0nJ .••. P40r.••IP p n .G V71nNNOPP 4040 n.o .OMNM
rJJM MMIH NNNNCVNNNN •+ ^ .r+ ^^^+ ^.^^

xwm" c+0000000000000000000000000
VI" —

'nU.,
	

in %A Ntn n%n N in N 1n o U1 1n 0 In o N Vm 6n U1 No 0 
0 0 ii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C. 0 0 0 0X14 WWWWWWWWWWWWWWWWWWWWWWWWWW6 OnM wf40nN J- NIn 0-HM0 Pr P Un Pr O.oMb Plp n.0 Yl r N- p Pq 00	 ^p .p In In
JJr 3^+^1nMNNNNNNNNN^ ••+ ^^+••+•+-+^+.-^.r .••I
O ^^ O O O O O O O O a e 0 0 r N 0 0 0 0 0 0 0 0 0 0

H
X 1nJ1n .00.-IJN^OPPP0N0PngJ .rJnnWMWO d otl .NMnCPl 	N..o NJ.0400
V 0:w= pooC; C;C	 +.+.-a .+.. .+.+ p o o oo 00000 C;W W 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1a

JP.pNP.-IUI-.q N N O q .rnnoq .p U1 M.-1 Pn X I MNNN^^- . oOPPPP pg nl- . n W.O .O	 n 1n Y1 1nLn0
^Q n C'. C.titi.•i.-fir-. .. .ti .000000000000000000OOOOOO Citl OC Oq 	QO 0000000000100

C; C;	 00000000000000000000

NH rPU\NPOJO.O J. ••.Pn O.0	 40101%"-C 40.04\
HU X MNNN^ + OOPPP404040 n nn .p 0 0 0 pU1 U1 U1u1XK 0000000KF oopo000000000000000000000.
iG O O O O O O p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OU
H r7

U Za oNU1n.rPn0.040-.tP40N.pNPP O Mn 1^11nMP
alle WO	 QI O.00M.ON r d.0 d .0 .O U1NPU1N 401%MOJPMnOZFU Ua .......
KMv aq	 I oo-..r.-+NNNNNNNNN .r.-.--.00000p.r..N
H

I
W W 1	 1	 1	 1	 1

W. .a a

.4 W JRMN .p JI%^. U\-.00 N .a:C .w	 DY1-+ J.ONSNnLr.	 I MJ.On 40NU140 ONr. Mo n.+.p . -+UlP M.O NCO ^1pN
O .-. .+^-r .rNNry 	 n.nn J U\U110 a10nn40v	 PO^Q Otl000000000000 tl000000tl000^•1

O O O O O O O O O O O O tl O O O O O O O O O O 01 O O

rOJnPP .PJ 0 D&A	 P -i nNrN n Da .+7 V\.0- 40 N.040 .•. K1 yln P.ONn N.0 ^^	 'a Nn N.poQ .+NNN^"IM ^l l^l n'^J U1 In .0 W .0n h ^p 40t► PO0000tl0 0000000nc^000000oo0o.r
O O O O O O O O O O p O O O O O O O O O O O O O O O

-I.. Wix:3 C;
yfF ►J 0000c+	 n01ooc,00pooa00001.0^KF 000tl000nc.tloao0ooc00000000^J? a( a pU1 tl Y100000000000Uff o!D C.'.00tl000QKR[ oNU1 - 0000o0oocl00000r^000000Ol
CL I '°I-+-»N Mr Ul .o n40 W-, 	 c,' v%* 	n'	 in C1000r-^

^- -.NN n.n J J+%.n- .p a o



Q^
w
QWNw
a

N

xQ

a

aa

pppya+^^^

z
e
u

O p
ITI	 ,

Q .r
W aF
a xV ^
a r

In
U)
a ^
`'	 a

w

.^ N -7	 g
u

7 \

O

S x
F `~
Y hr.
W NL
w11
a
in w
J

c
W
O
FH
U

Q

z0
F
5
..-1

I

.-1

t'N

a
O dgMNSNOJNPdHh.r .r M Ml d.r P,-1MJ 	 P NMhppNO NO d.r IPIPa	 d P, It	 P,N•+hPJO.IpMddHOO.^MMAIf1 M n N .-thJ.-1 .-I HJ d1^PP g1^dJM'+ r+H 1 f1hP

o	 aS	 W JMS C;	 JJ Y; WI UI 1; W;C	 IOO O	 00 o 00000000000000000
F N.-1	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 t	 1	 1	 1	 I	 1	 1	 1
94O y

!^^' M M J J J J J .t J J J J J J J JJ J J J J J J J J J J J ct S S J J J J J J J J J S J J JO O O O e e O O O O O O O O O O O o O e o O O O O o O O O O O o O o e O O O co O O O O O
tnd	 O WWWWWWWWWWWWWWWWWWW%3wwwwWWWWWWWWWWWWWWWWWWWWW	 V	 I^. dogoPY^oNJ^lh dMdo p PhoohPYl V1P U "fpdpNppJPOJaPgNgddp

^K1\ p.-nNdp.+J	 dPJ.rp d^f H.-+dHOPhd1MNOPp1^NCl	 I%r1d111NPJPJP W-.N C, .'^ JP .+.-1.^NNNP^ 11f1dhhggPPP^pphhhddd .Od1ry u11t1J1J1JJJMMMKIWv•a 'S•. O O O O O O O O O O O O O O O O O O O O O tl O 0 0 0 0 0 0 e e 0 0 0 0 0 0 0 0 0 0 O O O

M J It J J J J J S J J J J J J 1 J J N It It QT 1 J J S J J J J J J J J It J J J S J .t J J J0 0 0 0 0 0 0 0 C] O O O O O O O O O O O O O O O O O O O O O O O O O O O co 0 0 0 co G O ON
O WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWI4WWWWW►• NN1.rdPOOPhNMJNNNNd.-^MPO1fl .r N Ulh lul p JNPIf1 d.+grrpNPpP.-11pJOlfIOdNOhoYI.IgdJNMdNOp1^111J HN OPppJOMdp cy lyMJH,-

d •-^^'+tiNNNNNJUIdhh p PP .-1PPP pp hhdddddNNNJJJJJJJ HHM
O O CQ O O Q O O O O O O O O a 0 0 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 0 0 42.0  0 0 0 0 0

F W1Mp JNJNJHhOdN q .r p.r in dP J J p N M dlp P h rY M PM .•d N Pwo	
dWJ

kn	 ",agoN N hNJOPd. ^IJ hu1J1NhNNhdNNdNPNd ON.-. q MhPPpd NJ^.-IHdqUa
as MNdM.y OO.NNN.-^oON.+NNNMJJJJMMNN. -1.-10000000oO0oo0O
W W N ^•	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1
a

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N000000000000000000e0000000000000000000000000
I	 l   	 l	 l	 l	 t	 l	 l	 l	 l	 l	 l	 l	 i	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 1	 1	 1
W4444WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWI.IW

O dNPPPJ1N p NNPP.r Mp MOPMdddNN p .-INPM p NhN00.- . nd NlN hoJ
IN NJp +MNdhh pp dJM.tiPphNdddddNJJHNN.IPhdN1MN.+OP pphH 1 J N N N N N N N N N N N N J J J J J J S J 1 1 J S J 1 1 1 H M M M M M M M M N N N N

V W- 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 0 0 0 0 v O O O

..4 I.K. UL11J ul W oC - N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N NN m 7 O O O O O O O O O O O O O O O O J O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O Ono N I	 I	 I	 I	 I	 I	 I	 t	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 f	 1	 i	 1	 1	 i	 l	 1	 1	 1	 1	 1	 1	 1:^ F W W W W W W W W W W W W W W W W l;W W W W W W W W I4 W W W W W W W W W W W W W W W W W WN N O JMJ ph J PMdpOtlhMOh JM CJ .- ,o 0, P1JMM1dp- 'r J 	 hh O, -,n4 d pNd
DI I dONMJNNdddhdJMNOP p h p ppp p hdNlMNNPhN1MIh N •-IOP pph

^. 1NNNNNNIlINNNNNNNNJJJJJJJJJ111111MMMMMMMn r1N NNN
O O O O O O O O o 0 0 O O O 0 0 0 0 O O 0 0 O O O O O O 0 O O O 0 O O O O e O O O C ; 0= 

ul F .a ZR: r+ppNr•^P pdJdNONOUN1hd1.-+ h NNPM.+r^M.-• 000d'-IN VIP.+IJNPUI
d pti	 d.I ll p oJpP+M MI .r I^MPJhoI/l Y1J NPt^ f1 M1/IOdJ NOO N1d so v,ti.^O

w l Va
OQV as I N1 o	 N NH M r4 J1 M N NN000 I.+ N N MM MMM NN N N 	 C:"	 0	 0
z0

W W
0.

I	 I	 I	 i	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

O t
N NdpdhN- adMJn dNPdJNh w i	 qdN Nr.P p - ,D N N 1 MN NJ_OF 171:

O^
-h Ndoq.-• dNPhUIJdNOPp/^I^ddUlUlkn0JJ1MMMnMMNNNNNNNNNNNNN I% p d 1 1 M M N N N N .-. ti 0 0 0 0 o O O b O O b 0 0 0 0 O O o 0 0 0 0 0 0 0 0 0 0 0 0 0

O O O O O O O O O O O O O O O O tl b 0 0 0 O O 0 O O O O O 0 O O Q O O U O O tl O O O 0 0 0n z .........	 .............	 ............
W O-UH i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O tl 0 0 0 0 O O O

WHU

50 Oa-	 a, u t p d p N p .+O N Nh.+d.-^h NNONNOph N ul r	 phd 1111/11 MMNCI. O Npp.-IdMOgdu 'a to)	 a- so	 %a d ul ul into r r 	 Pei	 M MMNNNNNNNNN NNN
% so011MMMNNN.+.1'•b 0000000	 000000tl 0 0 0 0 0 b O 0 0 0 0 0 b O 0 0 0 0 0 0 U .^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O

O O O o 0 0 0 b O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1+hP.-I UIq N .^ M NOdPUI UINPdul g lfll^ q ulMN1 . +^/ulbPN'+.D I^hdJ.1 P1^1fl
O	 d
0 JpJ Nln ulloJhP p r^ p od.-^d^+h NUIh-,OoNPdMUIO.. NNNNNNN •+.-+.-+aQ: N0 J4*	 .-+NnMMM N .-1 m 	 0
W N	 1	 1	 1	 I	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l1

dHNbpul a- of w, Ph Ln	 0N.--. 0O mdo	 in 	 cD so	 NN•-I d.-++P h.-.gtNmooNb.-. NNdd1 PN do	 M.-•- Cl	 NO ddulJ J CD	 -1	 d 1N.-.'+ 000 000Od pp N.-IMPhpgpdpMP N MO dn0 pH0 w h N N JM.-.....(-.0000000 0001 . 1 O00V	 1'.hullMp .oul J J rinnMNNN.+-..-. 0oo 00o000OOOOOpo000
a W h .J M M n N N N N N .r .r .-..-..r .r .+ . y ti .^ .r .-a .r .ti .-^ .-..-..r .-..-• .w .-a .r .r .r .^ .-a .-I .r .-..r .r .r .-^

M 4
X OdN1 PMpNHO N + dh NNdJ ph OPOh.rph d1 J MM N p NN S P 1 r H OhN
OK pM OOMM1N	 I0o*0N t11"'1pNNn o,o  Mj t	 dN1MMNNNg-K0. .N	 adD	 h10	 dMa, 	 "Iso opNPdlPdN1MMNN.-^.tiOb000o000nh J4 It	 PpdN J O. hNN1 M MMNN .--I .+.r000OQ 00000 p 0000000 C	 .y

N J M M M N N N N 

w `'oa -^o
N H N O o 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 cf O O O O o O C O 0 0 0 0 0 0 0 0 0 0 tl 0 0 0 0 0HKF oGlpo CJOOOOtlb o co 000o000000w4P,	 oopoonoopuN
H	 K	 L! .•. N H J N d h p P O O U O O O O o O e N p N O O O 0 O O O O O U O O O O O O O O O O 0 ec2,

booObbo00rNMJNdr`pPONNI'^O000oo0000000000000000
K 0au 000000000000000000.ti .r r. .r NMlu-,	 PONONONONb.-`O OU[O

^^.+N(.I MM J IT N dh p



TABLE 4. - SIWLIF1 70 EQUATIONS
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1 <0<100 0.01<a<1
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TABLE 5. - PRACTICAL APPLICATIONS FOR DIFFERING CONFORMITIES

(E' - 2.197x10 7 NIcm2.1

CONTACT
PARAMETERS

WHEEL ON RAIL BALL ON PLANE BALL - OUTER-
RING CUNTACT

F 1.00405 N 222.4111 N 222.4111 N

,ax 50.1900 cm 0.6350 cm 0.6350 cm

ray m 0.6350 cm 0.6350 cm

rbx m -3.8900 cm

rby 30.0000 cm - -0.6600 cm

a 0.5971 1.0000 22.0905

k 0.7099 1.0000 7.3649

k 0.7206 1.0000 7.1738

1.3526 1.5708 1.0267

f 1.3412 1.5708 1.0258

1.8508 1.5708 3.3941

J 1.8645 1.5708 3.3315

u 1.2801 cm 0.0426 cm 0.1842 cm

Oy 1.2829 cm 0.0426 cm 0.1810 cm

O x 1.8U32 cm 0.0426 cm 0.0250 cm

Ox 1.7802 cm i	 0.0426 cm 0.0252 cm

6 U.UO89cm 7.13x10-4 cm 3.56x10-4 cm

6 i	 0.0091	 cm 7.13x10-4 cm 3.51x10-4 cm

O max 8.27x1U4 N/cm2 2.34x105 N/cm2 9.22x104 N/cm2

a max 8.36x1U4 N/cm2 2.34x107 N/cin2 9.30x104 N/cm2

t 1.4354 1.2808 1.0090

T 1.4346 i	 1.3U70 1.0089

i	 xO *0.88b2 cm =0.0195 un *0.0096 cm

TO *U.8745 cm *0.0191 cm •0.0091 cm

zO 0.5410 cm O.U149 cm 0.0123 cm

z̀ O 0.537U cm 0.0145 cm 0.0124 cm

TO 1.62x104 NIcm2 5.01x104 N/cm2 2.29x104 N/cm2

70 1 .64x1 04 N l cn z 4.94x1U4 Nic mz 1 2.32x1 04 N/ cm22
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Figure 1. - Geometry of contacting elastic solids.
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Figure 2	 - Ellipticity parameter and elliptic integrals of first and second kinds as a
function of curvature ratio.
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(a) Wheel on rail.

ate.
y;

i

Ibl Ball on plane.

tcl Ball - outer-ring contact.

Figure 3. - Three degrees of conformity.
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