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Bernard J. Hamrock and David g. Brewe*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
SUMMARY

A shortcut to the classical Hertzian solution for lqcal stress and de-
formation of two elastic bodies in contact is presented. The shortcut is
accomplished by using simplified forms for the ellipticity and for the com-
plete elliptic integrals of the tirst and second kinds as a function of the
geometry. Thus the interdependence of these variables can be uncouplied, and
the resulting transcendent?l equation, which must be solved through use of
the computer or design charts, avoided.

Simplified formulas that make the elastic deformation at the center of
contact easy to ca!culafe have been previously reported by the authors.
However, the range of applicability was limited to ellipticities greater
than or equsl to 1. This paper extends the range of validity to include
ellipticities less than 1, that is, where the semimajor axis in the ellipti-
cal contact lies in a direction parallel to the rolling direction rather
than being perpenaicular as in previous studies. Furthermore an auxiliary
shear stress parameter is expressed in simplifiéd form as a function of the
geometry. This enables a shortcut calculation to be made for the location

and magnitude of the maximum subsurface shear stress.

*Propulsion Laboratory, AVRADCOM Research and Technology Laboratories.



INTRODUCTION

The classical Hertzian solution for deformation requires the calcula-
tion of the ellipticity parameter k and the complete‘elliptic integrals of
the first and second kinds,  and &, respectively.A Simplifying expres-
sions for k, S, and & as a function of éhe radius ratio a were pre-
sented by Brewe and Hamrock (1977) using a curve-fit analysis. With these
expres<ions the deformation at the center of the contact & could be deter-
mnined, with a slight sacrifice in accuracy, without involved mathematical
methods or the use of design charts. The simplifying expressions were use-
ful for radius ratios ranging from circular point contact to a near line
contact normal to the rolling direction (i.e., 1.0 < a < 35). However,
there are a number of applications for which the semimajor axi§ in the
elliptical contact lies in a direction parallel to the rolling direction,
resulting in a < 1. In local deformation due to asperity-asperity interac-
tion, the radius ratio can range from much'less than 1 (Patir and Cheng,
1978) to infinity. For many gear and rolling-element bearing applications
the "run-in" surface becomes anisotropic and the radius ratio is generally
less than 1 for local asperity contact. Other eiamples where a may be
less than 1 are (1) Navikov gear contacts, (2) locomotive wheel-rail con-
tact, and (3) roller-flange contact in an axially loaded roller bearing.
Therefore the eliipticai-contact deformation and stresses to be presénted in
tnis paper are applicable for any contact ranging from something similar to
a disk rolling on a plate (radius ratio a = 0.03) to a ball-on-plate con-
tact (a = 1) to a contact approaching a nominal line contact (a » 100) such
as a barrel-shaped roller against a plate.

Thus far, we have limited our consideration to the use of the simpli-

fied formulas in determining the elliptical-contact deformation. In this



paper we further illustrate their applicability in calculating surface
stress as well as subsurface stress, which is important to the determination

of fatigue life in rolling-element bearings.

SYMBOL S
A solid A
8 solid B
Dx.Dy diameters of contact ellipse along x and y directions,
respectively (cm)
3 modulus of elasticity (Nlcmz)
' 1-v8 1.8 ,
3 2 53 + e (N/cm™)
\
& complete elliptic integral of second kind
) approximate value of & using curve-fit equation
F applied load (N)
5 complete elliptic integral of first kind
ra approximate vaiue of F using curve-fit equation
k (Dy/Dx)' ellipticity
I approximate value of k using curve-:'it equation
Rx effective radius of curvature in x-plane (cm)
Ry effective radius of curvature in y-plane (cm)
/R (I/Rx + 1/Ry). curvature sum (cm'l)
rax.ray principal radii of solid a (cm)
rbx.rby principal radii of solid b (cm)
t auxiliary parameter i
t auxiliary parameter using curve-fit equation
Xg location along x-axis (rolling direc.ion) of maximum subsurface

shear stress (cm)
X calculated value of X5 using approximate formula (cm)
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2 depth of maximum subsurface shear stress in x-z plane (cm)

z0 calculated value of 2 using approximate formula (cm)

r curvature difference

8 elliptical-contact deformation at center of contact (cm)

3 elliptical-contact deformation calculated hy using approximate
formulas (cm)

o hax maxifum Hertzian stress (Nlcmz)

Ehax maximum Hertzian stress calculated by using approximate formulas
(N el )

0 maximum subsurface orthogonal shear stress (Nlcmz)

'?0 maximum subsurface orthogonal shear stress using approximate

formulas (NIsz)
CONFORMAL AND NONCONFORMAL SURFACES

Hydrodynamic lubrication is generally characterized by surfaces that
are conformal, That is, the surfaces fit snugly into each other with a high
degree of geometrical conformity, so that the load is carried over a rela-
tively large area. Furthermore the load-carrying surface area remains
essentially constant wnile the load is incr~ased. Fluid-film journal and
slider bearings are conformal surfaces. .. journal bearings the radial
clearance between the shaft and the bearing is typicaily one-thousandth of
the shatt diameter; in slider bearings the inclination of the bearing sur-
face to the runner is typically cne part in a thousand.

Many machine elements have contacting surfaces that do not conform to
each other very well. The full burden of the load must then be carried by a
very small contact area. In general, the contact areas between nonconformal
surfaces enlarge considerably with increasing load but are still small com-

pared with the contact areas between conformal surfaces. Some examples of



these nonconformal surfaces are mating gear teeth, cams and followers, and
rolling-element bearings.

The load per unit area in conformal bearings is relatively low, typi-
cally only 1 MN/m2 and seldom over 7 MNlm?. 8y contrast, the load per
unit area in nonconformal contacts, such as those that exist in ball bear-
ings, will generally exceed 700 MN/m2 even at modest applied loads. These
high pressures result in elastic deformation of materials such that the
elliptical contact areas are formed for load support. The present paper
develops simple solutions for the stresses and deformations in nonconformal
contacts.

CURVATURE SUM AND DIFFERENCE

The undeformed geometrv of contacting solids can be represented in gen-
eral terms by two ellipsoids. The two solids with different radii of curva-
ture in a pair of principal planes (x and y) passing through the contact
between the solids make contact at a single point under the condition of
zero applied load. Such a condition is called point contact and is shown in
figure 1, where the radii of curvature are denoted by r's. It is assumed
tnroughout the paper that convex surfaces, as shown in figure 1, exhibit
positive curvature and concave surfaces, negative curvature. Therefore, if
the center of curvature lies within the solid, the radius of curvature is
positive; if the center of curvature lies outside the solid, the radiu: of
curvature is negative. [t is important to note that, if coordinates «x
and y are chosen such that
1 1

_.__1 +
r r 27 r
ax bx ay by

(1)

coordinate x then determines the direction of the semiminor axis of the

contact area wnen a load is applied and y, the direction of the semimajor



axis. [he direction of motion is always considered to be along the x-axis.

For those situations in which the principal curvature planes of the two con-

tacting bodies are not coincident, refer to Timoshenko and Goodier (1970).
The curvature sum and difference, which are quantities of some impor-

tance in the analysis of contact stresses and deformation, are

é.%+% (2)
i)
where

Equations (4) and (5) effectively redefine the problem of two ellipsoidal
solids approaching one another in terms of an equivalent ellipsoidal solid
of radii Rx and Ry approaching a plane,

The radius ratio a 15 defined as
R
Q.Rl (6)
X

Thus, if equation (1) is satisfied, then a is greater than or equal to 1;
and if it is not satisfied, a 1is less than 1.
SURFACE STRESSES AND DEFORMATION
wnen two elastic solids are brought together under a load, a contact
area develops, the shape and size of which depend on the applied load, the

elastic properties of the materials, and the curvatures of the surfaces,



when the two solids shown in figure 1 have a normal load applied to them,
the shape of tne contact area is elliptical. It has been common to refer to
elliptical contacts as point contacts, but since this paper deals mainly
with loaded contacts, the term elliptical contact is adopted. For the
special case where Pax ™ ray and Pox ™ rby. the resulting contact

is a circle rather than an ellipse. Where r.

Ay
finite, the initial line contact develops into a rectangle when load is

and rby are both in-

app lied.

The ellipticity parameter k is defined as the elliptical-contact
diameter in the y-direction (transverse direction) divided by the
elliptical-contact diameter in the x-direction (direction of motion) or

0

k = Ul (7)

) §

If equation (1) is satisfied and o > 1, the orientation of the contact
ellipse will have the major diameter transverse to the direction of motion,
and consequently k > 1. Otherwise, the major diameter would lie along the
direction of'motion with both a <1 and k <-l. To avoid confusion, the
commonly used solutions to the surface deformation and stresses are pre-
sented only for the case in which a > 1. The simplified solutions are pr.-
sented and then their application for a < 1 is discussed.

Harris (1966) has shown that the ellipticity parameter can be written
as a transcendenial equation relating the curvature difference (eq. (3)) and

the elliptic integrals of the first § and second & kinds as

27 - &1 + n)lf?

K= =T

(8)

where



wel 1712
1 4
F= 1-( --—2-)smo d¢ (9)
k
0 L -
wef 13/2
1 . 2.
- 1 -1l - sin g do (10
' 4 L ( ;7) )]
0 -l

A one-point iteration method that was adopted by Hamrock and Anderson (1973)

can be used to obtain the ellipticity parameter, where

Koy ® K, (11)

The iteration process is normally continued until kn*l differs from
kn by less than 1x10'7. Note that the ellipticity parameter is a func-
tion of the radii of curvature of the solids only:

k = f(rax‘rbx‘ray'rby) (12)

That is, as the load increases, the semi-axes in the x and y directions
of the contact ellipse increase proportionately to each other, so the ellip-
ticity parameter remains constant,

Figure 2 shows the ellipicity parameter and the elliptic integrals of
the first and second kinds for a range of the curvature ratio Ry/Rx
usually encountered in concentrated contacts.

Wnen the ellipcity parameter k, the normal applied load F, Poisson's
ratio v, and the modulus of elasticity E of the contacting solids are
known, the major and minor axes of the contact ellipse and the maximum de-

formation at the center of the contact can be written from the analysis of

Hertz (188l) as

. 2
6k™ &FR
D, =2 (——, ) (13)



6 £FR
0, - 2(248) (14)

o]

where
. 2
E' = — —y (16)
l-wv l -
a., b
ta &

el/3

I[n these equations, Dy and Dx are proportional to and § is

proportional to F2/3.
The maximum Hertzian stress at the center of contact car also be deter-

mined by using equations (13) and (14) and

6F
o . = (17)
max 'Dyux

SUBSURFACE STRESSES

Fatigue cracks usually start at a certain depth below the surface in
planes parallel to the direction of rolling. Because of this, special
attention must be given to the shear stress amplitude in this plane
Furthermore a maximum shear stress is reached at a certain depth below the
surface. The analysis used by Lundberg and Palmgran (1947) is used here to
def ine this stress.

The stresses are referred to a rectangular coordinate system with its
origin at tne center of the contact, its z-axis coinciding with the interior
normal of the body considered, its x-axis in the direction of rolling, and
its y-axis perpendicular to the rolling direction., In the analysis that

follows, it is assumed that y = 0.



From Lundberg and Paimgren (1947) the following equations can be

written:

" (2,0 V4
(uy tan“y + Dx cos b)

X = % VDE + oy2 tanly sin o (19)

D
2= 21 tan y cos p (20)

T

where p and y are auxiliary parameters used in place >f the coordinate
set (x,2). They are defined so as to satisfy the relationship for a con-
focal ellipsoid to the pressure ellipse (for further details see Hertz,
1881, and Lundberg and Palmgren, 1447). The maximum shear stress amplitude

is defined as

Tn=|T
0" |"2x| e

The amplitude of the shear stress Tty 1{s obtained from

3T ax

T

3T 2x

ay =0

For the point of maximum shear stress

tan’p = t (21)
tanly = t - 1 (22)
Dx 2
. V-1t -1 (23)
y
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The position of the maximum point is determined by

ox
Dx
Xg = & a* 3~ (25)
where
* 1 (26)
(t+1) vt -1
t +
i T YProd (27)
Furthermore the magnitude of the maximum shear stress is given by
t- =0 Vot -1 (28)
0 max 2t (t *+ 1)

[t should be emphasized that T represents the maximum hal€-amplitude of
the subsurface orthogonal shear stress and is not to be confused with the
max imum subsurface shear stress that occurs below the center of contact on
the plane oriented 45° to the surface. The Lundberg-Palmgren prediction of
fatigue life is based on the calculation _f T and was limited to cross
sections lying in the plane of symmetry o the roller path (y = 0).
SIMPLIFIED SOLUTIONS FOR a > 1

The classical Hertzian solution presented in the previous section re-
quires the calculation of the eilipicity parameter k and the complete
elliptic integrals of the first and second kxinds # and . This entails

findi:g a solution to a transcendental equation relating k, §. and ¢ to

the geometry of the contacting solids, as expressed in equation (8). This

11
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is usually accomplished by some iterative numerical procedure, as described
by Hamrock and Anderson (1973), or with the aid of charts, as shown by Jones
(1940).

Table 1 shows various values of radius-of-curvature ratios and corre-
sponding values of k, S, and & obtained from “he numerical procedure
given in Hamrock and Anderson (1973). For the set ui pairs of data [(k\..
oi). i=1, 2, ..., 26], a power fit using a linear regression by the

method of least squares resulted in the following equation:
kK= uzl' for a >1 (29)

The asymptotic behavior of & and & (a » 1 implies & » F » /2, and
a»e implies F »= and & » 1) was suggestive of the type of functional
dependence that £ and 5 might follow., As a result, an inverse and
logarithmic curve fit was tried for & and §, respectively. The following

expressions provided excellent curve fits:

F-1+3  for a1l (30}

where
q=3-1 (31)

and
F=5*qina for a>1 (32)

Values of T, ;. and & are presented in table 1 and compared with the
numerically determined values of k, &, and . Table 1l also gives the

percentage of error determined as

12




e - (Z-2)100 (33)

2
where
Zs{k. ‘!’} (34)
i-{k & #) (35)

Table 2 shows various values of radius-of-curvature ratios and corre-

spending values of 0, D ,

s Ox* %max and o« obtained exactly. Also

shown in table 2 are the appropriate values 3},‘3;
obtained from using equations (30) to (32) in conjunction with equations
(13) to (15) and equation (28). The percentage of error as determined by
equation (33) is also given in table 2. The agreement between the exact and
approximate solutions is indeed quite good.

Table 3 shows various values of radius-of-curvature ratios and corre-
sponding values of the auxiliary parameter t wused in calculating the posi-
tion and value of maximum subsurface orthogonal shear stress. For the set
of pairs of data [(ti' a;)y 1= 1, 2, ..., 44] the following simplified

formula was obtained:
= K
t=1+0.16 csch 7 (36)

The position and value of maximum subsurface orthogonal shear stress corre-
sponding to the auxiliary parameter are giver in table 3, The percentage of
error e is given for each of these values. The agreement between the
exact and the approximate values of t is quite good. Once the value of
the auxiiiary parameter t 1is determined, the position and value of maximum

subsurface orthogone’ shear stress can readily be calculated.

13
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SIMPLIFIED SOLUTIUNS FUR 0.0l < a ¢ 1

Table 4 gives the simplified equations for conditions where
0.0 < a < 100. Recall that a > 1 implies k > 1 and equation (1) is satis-
fied and that 0 < a < 1 implies 0 < k < 1 and equation (1) is not satis-
fied. 1t is important to make the proper evaluation of a since it has a
great significance in the outcome of the simplified equations., [t is also
important to realize that the reciprocal of a produces the same values of
the various parameters given in tables 1 and ¢ as produced by o for a
given curvature l/R.

Figure 3 shows three diverse situations in which the simplified equa-
tions can be usefully applied. The locomotive whcel on a rail (fig. 3(a))
i llustrates an example in which the ellipticity k and radius ratio a are
less than ). The ball rolling against a flat plate (fig. 3(b)) provides
pure circular contact (i.e., a = k = 1,00). Figure 3(c) shows how the con-
tact ellipse is formed in the ball - outer-ring contact of a ball bearing.
Here tne semimajor axis 1s normal to the direction of rolling and con-
sequently a and Kk are greater than 1. Tne detailed geometry and the
values from the calcuilations that can be made using the simplitied formulas
are given in table 5 for each of these configurations. [In using these for-
mulas 1t s unportant to pay attention to the sign of the curvatures. Note
that the outer race n tigure 3(c) 1s a concave surface and so the sign s
negative,

SUMMARY OF RESULTS

An alternative approach has been presented for the classical Hertzian
solution for local stress and deformation of two elastic bodies in contact.
sSimplified formulas that use curve-tit analysis are given in terms of the

radius rati1wo a for the ellipticity k and for the complete elliptic
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integrals, J and &, of the first and second kinds, respectively. Thus

their inter-dependence can be uncoupled, and solution of the resulting

transcendental equation avoided. Simplified equations were developed that
permit a more direct and easy approach to the calculation of the elliptical-
contact deformation and maximum Hertzian stress. In addition, a curve-fit
analysis was used to derive a simplified formula for an auxiliary stress
parameter t as a function of the radius ratio a. This eliminated having
to solve a cubic equation for t as a function of k. Thus the simplified
formula for t, together with the simplified formulas for stresses and de-
formations, permits a direct and easy calculation of the location and magni-
tude of the maximum subsurface orthogonal shear stress. Therefore the
elliptical-contact deformation and stresses are presented that are appli-
cable for any contact ranging from a disk rolling on a plate (radius ratio

a = 0.03) to a ball-on-plate contact (a = 1) to a contact approacning a

nominal line contact (a » 100) such as a barrel-shaped roller against a

plate.
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TABLE 4, - SIMPLIFLZD EQUATIONS
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TABLE 5. - PRACTICAL APPLICATIONS FOR DIFFERING CONFORMITIES

(€' « 2.197x107 NJcml.] '

CONTACT WHEEL ON RAIL BALL ON PLANE BALL - OUTER-
PARAMETERS RING CONTACT
F 1.00x10% N 222.8111 N 2224111 N
Cax 50,1900 cm 0.6350 cm 0.6350 cm
ray - 0.6350 cm 0.6350 cm
Tox - ® -3.8900 cm
Tby 30.0000 cm @ -0.6600 cm
a 0.5977 1.0000 22.0905
k 0.7099 1.0000 7.3649
3 0.7206 1.0000 7.1738
Fs 1.3526 1.5708 1.0207
7 1.3812 1.5708 1.0258
K 1.8508 1.5708 3.3941
5 1.8645 1.5708 3.3375
Dy 1.2801 cm 0.0420 cm 0.1842 ¢m
3} 1.2829 cm 0.0426 ¢cm 0.1810 cm |
0, 1.8032 cm 0.0426 cm 0.0250 cm
0, 1.7802 cm 0.0426 cm 0.0252 cm
s 0.0089 cm 7.13x10-% cm 3.56x10-4 cm
T 0.0091 cm 7.13x10-% cm 3.57x10-% cm
omax 8.27x10% N/cme 2.34x10% N/emd 9.22x10% N/cm?
Tmax 8.36x104 N/cm 2.34x10% Njcmd 9.30x10% N/cmd
t 1.4354 1.2808 1.0090
T 1.4346 1.3070 1,0089
) #0.8802 cm #0.0195 ¢ *0.0096 cm
Tb %0.8745 cm %0.0197 cm %0,0097 cm
) 0.5410 cm 0.0149 cm 0.0123 cm
7 0.5350 cm 0.0145 cm 0.0124 cm
0 1.02x10% N/cml 5.01x10% Nfcmé 2.29x10% N/emd
T 1.64x10% N/cmd 4.94x10% N/cmé 2.32x10% Nfcn? |




Elliptic integrals, ¢ and .§

Figure 1, - Geometry of contacting elastic solids.
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Figure 2. - Ellipticity parameter and elliptic integrals of first and second kinds as a

tunction of curvature ratio,

Ellipticity parametar, k



(c) Ball - outer-ring contact.

Figure 3. - Three degrees of conformity.
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