NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



R

)

o A N L T EaE EE R A6

1 s ’ . ':;- ‘, : a3 & 2 ‘> B T %
e # N £ Lo E -
“ . E B vhOUI e wmt -
s A - R

(NASA-1N-82601) ACUUSTU-ULTUASUNILC N81-28458
CHARACTERIZATION CF FloLlu HELINFCKCED
CUMPLSLTES (NASA) 14 p aC AVz/nEF Avil
CS5CL M40 Unclas
G3/38 2104

Reinforced Composites *T1zato

Prepared for the
Office of Naval Research Conference entitled ‘‘A Critical Review: Techniques

for the Characterization of Composite Materials’
Cambridge, Massachusetts, June 8-10, 1981




E-910

ACOUSTO-ULTRASONIC CHARACTERIZATION OF FIBER REINFORCED COMPOSITES

by Alex Vary
National Aeronautics and Space Adi.inistration
Lewis Research Center
Cleveland, Ohio

ABSTRACT

The acousto-ultrasonic technique combines advantageous aspects of acous-
tic emission and ultrasonic methodologies. Acousto-ultrasonics operates by
introducing a repeating series of ultrasonic pulses into a material. The
waves introduced simulate the spontaneous stress waves that would arise if the
material were put under stress as in the case of acoustic emission measure-
ments. These benign stress waves are detected by an acoustic emission sen-
sor. The physical arrangement of the ultrasonic (input) transducer and acous-
tic emission (output) sensor is such that the resultant waveform carries an
imprint of morphological factors that govern or contribute to material perfor-
mance. The output waveform is quite complex, but it can be quantitized in
terms of a "stress wave factor." The stress wave factor, which can be defined
in 2 number of ways, is essentially a relative measure of the efficiency of
energy dissipation in a material., I[f flaws or other material anomalies exist
in the volume being examined, their combined effect will appear in the stiess
wave factor.

INTRODUCTION

The acousto-ultrasonic approach provides a potential alternative to
widely used acoustic emission and ultrasonic techniques for verification cf
composite integrity and strength as well as degradation due to service condi-
tions. Although conventional pulse-echo ultrasonics readily detects flaws, it
is often difficult to correlate a detected flaw to overall performance. Addi-
tionally, evaluation of strength loss after use may depend on sensing subtle
changes that are distributed throughout the material rather than isolated
flaws. Acoustic emission techniques can be used to evaluate the integrity of
a material as a whole. The problem with acoustic emission is that the mate-
rial structure must be put under stress to produce spontaneous emissions from
induced flaw growth, It is difficult to predict what such application of
stress does to the lite of the item being testea especially in the case of
composites.

Laboratory studies have uncovered strong correlations between the
acousto-ultrasonic stress wave factor and ultimate and interlaminar shear
strength in composite laminates, This is in addition to the technique's
ability to locate overt defects. Studies are underway to define the full
application spectrum of the technique especially relative to measurements of
material strength, impact damage, and degradation from thermal and chemical
exposure. This report highlights salient aspects of the acousto-ultrasonic
technique, the nature of the equipment used, and typical results obtained with
composite laminates,



BACKGROUND

Fiber reinforced composite laminates exhibit a variety of failure modes
due to their complex, anisotropic nature., The initial stage of failure can be
explained in terms of three fundamental modes: tensile, shear, or compressive
failure of the matrix; tensile or compressive failure of the fibers; or
fiber/mairix interface failure. Subsequent to the occurence of any of these
modes, ultimate failure will tend to involve complicated interactions of all
three. Governing factors include variations in fiber fraction, microvoid con-
tent, matrix material condition, etc. (Ref, 1).

The most widely used nondestructive evaluation (NDE) techniques, i.e.,
pulse-echo ultrasonics, C-scan ultrasonics, acoustic emission, etc., do not
provide a clear correlation between the presence of overt defects and their
effects on the failure of fiber reinforced composites. Attempts to relate
defects to fracture mechanisms have met with mixed results. When artificial
defects are introduced in laboratory specimens, they may exhibit failure modes
unrelated to these intentional flaws. Moreover, adverse effects of many
naturally-occuring defects cannot be accurately predicted in all cases and
their presence may uiien be ignored (Ref. 2).

Conditions that predispose composite structures to eventual failure can
consist of dispersed microstructural irregularities that surround larger, dis-
crete, and readily-detectable flaws. Even when these overt flaws are quite
large, as in the case of significant delaminations, the entire integrated
defect state should be considered. As illustrated in Fig. 1, a holistic ap-
proach combines nondestructive characterization of defects with characteriza-
tion of material environments in which the defects reside. There is a need
for NDE techniques that provide information on how defects, both maroscopic
and microscopic, are likely to interact in the material as a whole (Ref. 3).
Even in the absence of these types of defects appropriate NDE techniques are
still needed to verify that a composite has the strength and endurance proper-
ties intended by the designer.

The acousto-ultrasonic approach described herein is aimed at character-
ization of composite laminates in accordance with the above-mentioned needs.
The ncvel approach described addresses problems peculiar to highly attenuat-
ing, anisotropic materials such as fiber reinforced composites. It will be
shown that this approach does yield information on the integrated defect con-
dition in such materials. In the cases cited the integrated defect condition
is associated with anomalous distributions of microvoids, global variations in
fiber/resin ratio, and fiber orientation.

ACOUSTO-ULTRASONIC CONCEPT

The acousto-ultrasonic technique is predicated on the concept that during
failure, spontaneously-generated stress waves interact with material morphol-
ogy and contribute to microcracking and catastrophic crack extension (Refs. 3
and 4). This stress wave interaction is governed by factors such as scatter-
ing, dispersion, and reflection due to microstructure and boundary condi-
tions. As indicated in Fig. 2, the same factors modulate ultrasonic signals
used in NDE. It is natural to expect that because of their similarity to
spontaneous stress waves, artificially introduced ultrasonic waves simulate
the way stress waves respond to material conditions. By use of benign ultra-
sonic interrogation it should be possible to determine a modulation transfer
function that describes the behavior of actual stress waves. This would
reveal the character and magnitude of stress wave energy transfer during fail-
ure processes, at least during initial stages.



The technique described herein affords an indirect but effective means
for characterizing the stress wave energy propagation characteristics of com-
posite laminates. The procedure and apparatus are designed to evoke wave
interactions that mimic acoustic emission (stress) waves in a material under-
going deformation or experiencin? microcracking (Refs. & and 6). It will be
seen that measurement of these simulated acoustic emission waves correlates
strongly with material microstructure and mechanical strength in the case of
composite laminates.

Correlations with material properties are obtained by measurement of a
“stress wave factor" (Refs. 7 and 8). The stress wave factor may be defined
as a measure of the efficiency of stress wave energy transmission, The factor
provides a means for rating the efficiency of dynamic strain energy transfer.
In unidirectional composite laminates tested thus far (Ref. 9), the stress
wave factor is greatest along the fiber direction which is also the direction
of maximum strength,

Once microcracking starts in the brittle matrix or fibers, it is to be
expected that prompt dissipation of stress wave energy away from crack initia-
tion sites contributes to dynamic integrity and ultimate strength, Regions of
small values of the stress wave factor are regions of higher ultrasonic atten-
uation (Ref. 10). These are also observed to be weaker regions where dynamic
strain energy is likely to concentrate and promote further microcracking and
failure (Ref. 9).

APPARATUS AND OPERATIONAL FACTORS

Apparatus for making acousto-ultrasonic measurements is shown in Fig. 3
and a block diagram appears in Fig. 4. The acousto-ultrasonic wave is gen-
erated by means of a series of broadband ultrasonic pulses. The pulses are
introduced into the material of normal incidence by means of an ultrasonic
transducer directly coupled to the surface. A fixed distance away an acoust‘c
emission receiving transducer is coupled to the surface. The simulated stress
wave sensed by the receiving transducer consists of a large number of oscilla-
tions due to multiple reverberations within the material specimen,

Typical waveforms for the ultrasonic input and acousto-ultrasonic output
are illustrated in Fig. 5. On the right-hand side of Fig. 5 are the echces
that rebound from the back surface of the specimen opposite the input trans-
ducer. For each pulse of the input transducer there will be a set of discrete
back surface echoes. The left-hand side of Fig. b shows a typical signal sen-
sed by the receiving transducer. The received signal is complex because it
consists of the superposition of a large number of ieflected signals as indi-
cated by the ray traces in Fig. 6. Each ray represents a unique portion of a
reflected wavefront and each has a unigque arrival time, depending on the num-
ber of reflections from the boundary surfaces of the material.

The acousto-ultrasonic waveform is a "composite" waveform and its charac-
teristics depend on a number of factors: constructive/destructive inter-
ference between individual wavefronts, angle of incidence of the individual
reflections, mode conversions, etc. Because of these factors the composite
waveform will be influenced by material density, tensile modulus, Poisson's
ratio, and other material properties. The character of the acousto-ultrasonic
waveform will also be influenced by ultrasonic velocity, attenuation, and fre-
quency bandpass properties peculiar to the material macro- and micro-structure.

It is possible to compare different materials by analyzing the acousto-
ultrasonic waveform provided other test conditions are reproduced exactly,
e.g., thickness, spacing, coupling. As indicated in Fig. 5 the analysis of



the acousto-ultrasonic waveform can proceed by measuring its acoustic energy
or spectral signature. Variations in acoustic energy or spectral signature
will arise from variations in the material properties, macro- and micro-
structure, flaws, etc.

STRESS WAVE FACTOR

There are several ways to measure the energy content of the acousto-
ultrasonic waveform: peak detection, decay or attenuation slope, root-mean-
square, or a simple ring-down count. This latter method borrowed from acous-
tic emission technology is illustrated in Fig. 4.

After the pulse repetition rate (R) is set, a reset timer in the receiver
circuit is set to a predetermined interval (T). The acousto-ultrasonic signal
is fed to a counter-totalizer that counts the number (C) of oscillations that
exceed a voltage threshold just above the noise level for a given amplifica-
tion setting appropriate to the mzt:wrial and transducer spacing conditions.
The product (R) (T) (C) is take. -3 the "stress wave factor® kg, which in
this case is the ring-down count for a standard number of iden§1cal waveforms.

With above-described method the stress wave factor can be used to rank a
series of material specimens according to the stress wave eneryy intensity
transmitted. Higher values for Egy, correspond to higher iriersities (longer
ring-down) which correspond, in turn, to msterials that transmit acoustoe-
ultrasonic stress wave energy mcre efficiently.

An alternative method for assigning a numerical vaiue to the stress wave
factor is that of first generating an erergy envelcpe for the stress waveform
and assignin? the peak value to Egy. A further alternative is to perform a
spectrum analysis of the stress waveform and assigning the peak value of a
particular spectral component to Eg,. It is true that each method for
evaluatin? a stress wave factor wil? give a different numerical result., .Each
method will also highlight a particular aspect ot the stress waveform and
yield information on a different aspect of a material's characteristics. The
idea is to choose a consistent method to rank a series of specimens. I1llus-
trative examples of methods for analyzing acousto-ultrasonic waveforms are
presented in the next section.

EXPERIMENTAL CORRELATIONS

Examples of acousto-ultrasonic waveforms their energy curves and fre-
quency spectra appear in Figs. 7 and 8. The effect of increasing microvoid
content and corresponding decrease in transmitted energy in a unidirectional
fiber composite laminate is apparent in Fig. 7. In these graphite/polyimide
composites strength decreases rapidly as microvoid content rises above ap-
proximately 3 percent. The effect of laminate ply orientation on spectral
signature is evident in Fig. 8. The frequency spectra were made with acousto-
ultrasonic waves propagating parallel to the major axis of tensile specimens
(Ref. 9). For both the graphite/epoxy and glass/epoxy specimens there is an
obvious decrease in spectral peak energy corresponding to the decrease in plys
with fibers running in the O-degree or axial direction, These specimens
exhibited a corresponding decrease in ultimate tensile strength, Fig. 9.

Figure 10 shcws the stress wave factor, Egy, plotted against the cure
pressures used in making a series of graphite/po‘yimide 12-ply unidirectional
laminates. Higher cure pressure is expected to yield higher-quality, higher-
strength panels. The acousto-ultrasonic measurements revealed, however, that
even when a key processing variable like cure pressure is controlled, infericr



material can still result. In Fig. 10 the upper bound curve shown represents
optimum stress wave transmission and, hence, optimum quality for a given cure
pressure., Stress wave factor data appearing below the curve are for panels
that exhibited higher void content and erratic fiber/resin ratio.

Figure 11 shows that increases in the value of the stress wave factor
correspond to increases in interlaminar shear strength for the graphite/polyi-
mide laminates. The interlaminar shear strength measurements were made with
short beam shear specimens cut from composite panels made with a range of cure
pressures. The data in Figs. 9 through 11 were all obtained using the
previously-described ring-down method for evaluating Eg,. In the case of
Figs. 9 and 11 a normalized stress wave factor Ng, is plotted against
material strength. The normalization is based on the observation that for
each class of composite structure there is a maximum Egy, (= Emayx) for a
given set of operational conditions. This corresponds to a maximum strength
that can be realized for that structure. It is convenient, therefore, to plot
a normalized stress wave factor, Ngm(Egw/Emax) versus a normalized
strength, as in Fig. 11,

DISCUSSION

Acousto-ultrasonics is an unconventional approach to nondestructive eval-
uation of material properties. Nevertheless, it has clearly demonstrated
potentials for assessing variations in mechanical strength and performance due
to flaws and macro- and micro-structural anomalies in composite laminates.

In acousto-ultrasonics broadband pulses (typically 0.1 to 2 meqahertz)
are introduced and allowed to interact repeatedly within the material bound-
aries. When the resultant signal is finally extracted, it carries an imprint
of numerous factors that govern or contribute to material performance. In
many ways the acousto-ultrasonic waveform resembles the burst-type acoustic
emission waveform that arises spontaneously in a material undergoing micro-
cracking or crack extension. This similarity to spontaneous stress waves is
the key to inferring material behavior and response to dynamic loading,

Although the acousto-ultrasonic waveform is quite complex it is suscepti-
ble tc analysis by a variety of straightforward methods. It can be quan-
titized in terms of a “stress wave factor" which is essentially a relative
measure of the efficiency of energy dissipation in a material. If flaws or
other anomalies exist in the volume being examined, their combined effect will
be reflected in the stress wave factor. The stress wave factor can be readily
evaluated in a number of different ways to give numerical ratings of the rela-
tive strength of a series of material specimens.

It should be noted that correlations between ultrasonic measurements and
material strength have been obtained by other techniques (Ref. 11), For exam-
ple, measurements of ultrasonic attenuation through the thickness of composite
laminates have been correlated with interlaminar shear strength. Ultimate
tensile strengths of composite specimens have been correlated with ultrasonic
moduli based on combining density and velocity measurements. Although in
execution these techniques are more complicated they are complementary to
acousto-ultrasonics. OQObviously, there will be situations in which one of
these techniques is the preferred one for assessing relative variations in
composite strength,

One of the advantages of the acousto-ultrasonic method described herein
and depicted in Figs. 4 and 6 is that the stress wave signal propagates in a
direction parallel to the bounding surfaces of laminate panels. This is sig-
nificant because the signal can run parailel to a major fiher direction or the



direction that actual loads assume in use. Note also that the method requires
only one side access and, in principle, accomodates a range of curvatures
since the laminate surfaces will act as waveguides.

Alternate send-receive transducer arrangements can, of course, be em-
ployed. Certainly, the proximity of the transducers can be modified for best
effect in a given composite structure, Or the transducers can be deployed on
opposite sides of an article, possibly in exact opposition. This latter
transducer arrangement would resemble that used in pulse transmission ultra-
sonics. The principal difference between acousto-ultrasonics and conventional
ultrasonics, regardless of transducer arrangement, is in the manner of sensing
and handling signals.,

Perhaps tlie most advantageous aspect of acousto-ultrasonics relative to
the more conventional techniques such as those mentioned previously is in
overcoming the high atteruation common to most composite structures. It is
often difficult to recover a set of undistorted echoes needed for velocity or
attenuaticn measurements. As an alternative, acousto-uitrasonics affords a
method for sensing and measuring the results of introducing discrete ultra-
sonic pulses after pronounced attenuition and dispersion by material factors.
The acoustic emission sensor and circuitry provide the necessary sensitivity
and amplification. In addition, acoustic emission processing tactics such as
ring-down counting provide excellent methods for analysis of the resultant
signals (Ref. 6).

Studies are progressing to define the operational spectrum and to examine
other potential applications of the acousto-ultrasonic and stress wave factor
concepts. For example, preliminary tests show that acousto-ultrasonics is a
viable inspection tool for bonded structures like composite skin bonded to
honeycomb reinforcement. Other preliminary tests currently in progress
demonstrate the utility of acousto-ultrasonics in monitoring degradation of
composite laminates due to thermal exposure and impact damage (Ref. 8). .

It is apparent from a consideration of results obtained thus far that the
acousto-ultrasonic approach can operate on three levels of sophisticaton:
Firstly, as a coarse, go-no-go indicator of serious flaws or discontinuities.
Secondly, as a means for ranking essentially defect-free materials according
to inherent strength., Thirdly, as an investigative tool for identification of
factors that govern or contribute to material property variations. This
Jatter aspect of acousto-ultrasonics, similarly with acoustic emission, de-
pends on improving the understanding of waveform ana frequency modifications
induced by stress wave propagation in various composite media (Ref. 12).

gxcept in the first sense mentionea above, i.e., as an indicator of
flawed regions in composite structures, current versions of the acousto-
ultrasonic technique are essentially laboratory oriented. Accomplishment of
the more sophisticated measurements suggested and illustrated herein is cur-
rently confined to laboratory specimens. In these latter cases careful con-
trol must be maintained over transducer positioning, coupling mode, pressure,
etc. to achieve reproducible results. Possible field applications of the
acousto-ultrasonic technique can be realized only if the necessary accomoda-
tions between the apparatus and test article are recognized and employed.

SUMMARY AND CONCLUSION

Acousto-ultrasonics combines ~omplementary aspects of acoustic emission
and ultrasonic technology. Acousto-ultrasonics provides an alternative that
overcomes problems of conventional acoustic emission and ultrasonic techniques
for the nondestructive evaluation of fiber reinforced composite laminates.



The inspection of this class of materials can benefit from the sensitivity and
signal processing methods of acousto-ultrasonics.

Examples given herein demonstrate the acousto-ultrasonic methodology and
its viability for ranking composite laminates according to their mechanical
strength as influenced by local flaws and anomalies in fiber content, fiber
orientation, and microvoids. Although adaptable.to field use for indicating
serious flaws in composite structures the more sophisticated uses demonstrated
for the technique have thus far been based on experiments conducted under
laboratory conditions,
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Figure 1. - Diagram iliustrating the relation of defect and material characterization to defining
the integrated effect of the material -defect state on stuctural integrity and life,
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Fiqure 2 - Depiction of material microstructure as an ultrasonic wave filter in which a standard
reference signal becomes modulated according 1o a definable transfer function.
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Figure 4 - Diagram of acousto-ultrasonic apparatus for measurement of the stress wave factor
Egy * (RIITH(C) The quantity C is the number of *ringdown® oscillations exceeding a preset
thresiold voltage as i1 the acousto-ultrasonic waveform shown in figure 5,
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Figure 6. - Generalized ray traces of principal longitudinal wave reflections that become
superimposed in the *composite® acousto-ultrasonic waveform. Each successive ray
will be delayed by some multiple of the "round-trip* travel time associated with the
specimen thickress. The amplitude of each successive wavefront will depend on its
particular angle of incidence duri.g reflections, These factors contribute to cor-
structive and destructive interferencr effects that determine the complex character of
the resultant acousto-ultrasonic waveform as in figures 5 and 7.
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