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ABSTRACT

The finite element method is widely used to find the stress fields
caused by external loads and temperature changes in composite materials.
This report presents the first of a set of systematic studies of the rate
of convergence and effect of singularities on such solutions. The problem
considered is that of a finite crack in an infinite medium under anti-
plane shear load. For this problem, it is shown that the nodal force at
the trip of the crack accurately gives the order of the singularity, that
energy release methods can give the strength to better than 1% with
element size 1/10 the crack length and that nodal forces give a much
better estimate of the stress field than do the elements themselves.

This study is being extended to inplane shear, uniform tension and

composite materials as well as finite bodies of rectangular form.
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I. INTRODUCTION

The finite element method is widely used to find stress fields in
non-homogeneous elastic materials, such as composites. For fracture
analysis the most important information is usually the strength and
nature of the singularity at the tip of a crack or at an interface be-
tween two Taminae [e.g., 1,2]. Since the stress and strain fields are
non-analytic at such singularities, it is difficult to improve the
accuracy by the accepted procedure of averaging the stress or strain
values in contiguous elements [3]. Pian and Tong [4] have shown that a
minimum potential energy formulation gives nodal displacements which
convergé uniformly to the continuum solution for the displacement field.
They and Perks [5,67 have discussed the convergence to the stress field
in the vicinity of a singularity. The current method of choice is to
fit the stress field near the tip by a region with a very fine mesh [7]
or by using a special singular element [7,8]. The first method requires
a large number of points and the second requires a prior knowledge of
the nature of the singularity.

From Pian's work, it would appear that more information can be
had from the nodal forces than has so far been exploited for static
solutions; some work has already been done on finding energy release
rates for both dynamic [9,10] and static problems [11,14].

A finite crack in an infinite elastic solid loaded at infinity in
tension (Type I), plane shear (Type II) or antiplane shear (Type III)
are useful subjects for investigation of convergence because they are
conveniently modeled with rectanguiar elements, the resulting matrix

equations may be solved with difference equation techniques, and the



solutions are well known for the homogeneous case. This report gives
extensive results for antiplane shear; work continues on the other two

loadings and on laminates.

II. NUMERICAL SOLUTION
A finite element solution for strain field in an infinite solid

with an infinite plane crack of width 2c subjected to uniform antiplane

sJ
i,J going from -= to +». If we put i = j = 0 at the center of the crack,

shear at infinity is a set of nodal displacements Wi s with the indices

then Wi T YiLj and Wy o3 T Wi, SO that we only need the solution
for non-negative i and j. Solution details are given in Appendix I
where it is shown that, for the residual problem, the nodal forces on
the crack are fOj = -1, -N < j < +N and the displacements Woj = 0,

IN| < [j]. We intend to investigate the effect of mesh size on the con-
vergence of the solution; to do so, it is convenient to convert the
above problem into the finite equivalent of a boundary integral problem
by finding the finite equivalent of the Green's Function (N = 1) and
then using superposition.

Pian shows [4] that the displacement field defined by the nodal
displacements and linear or bilinear element displacement fields
(Appendix I) gives a total potential energy greater than that in the
continuum if the boundary nodes are loaded by forces equal to

J+1

: j w(E)<(g)de (1)

FO.
J J__'l

where w(z) is the (linearly varying) constrained displacement field.



For this to be valid, we must use the force boundary conditions of
equation I-13b. In Appendix I, it is shown that the residual problem
has a constant shear stress on the crack, so that the elements of f, are

all -1. We get the solution in two steps; the first step is to find the -

displacement field for Woo': 1, Woj =0, jJ#0. Fromequations I-14
and I-17 in Appendix I:
1 N-1 X . j
W]j = c0/2 + ji] CjCOS(Jkﬂ/N) + (-1) CN/2 (2)
If we now let N »
1
Wys = J c(t) coswnje de (3)

0

where kw/N » @& in equations I-16 and II-4. From equation II-2, it can

be seen that

Wee = JO ci(g) cosmjr dg (3)

so that the nodal displacement field can be found by numerical integra-

‘tion; we only need W1j for our work. foo is now found from equation

I-6 or I-7; if we divide each element of W,

1
row of the displacement field for a unit force at i=0,j=0 and fo is

by foo we have the first

found from equation I-13b. The linear (triangular element) and bilinear

-10 (

(rectangular) element values for fo’ZOO agreed within 4 x 10 0.01%)

and agreed with the continuum value for Tyz ~ 1 (Equation I-3) within
5 x 1072,

For crack length of 2N elements, we may write:

Dy “%(ZN) N fo(ZN) (4)



where fO(ZN) is a column of 1's, 2N-1 Tong and Dy is a (2N-1)x(2N-1)
matrix each row of which is ?;(2), found from equation I-13b, with the
foo term on the main diagonal. Equation 4 can be reduced to N equations,
since Woj = Wo,-3° and solved for Wb. The nodal forces for N < j are now
found by extending D] into D2 and writing

(20) _ 9
0

1

DZ WB

A
where the elements of fo are fo ., j > N.

J

{v

ITT. RESULTS

Using the bilinear rectangular elements, the nodal force at j = N+
is about 7.5% lower than T/TO at x = N/N+1. For a constant x, this error
decreases almost linearly with 1/N so that linear extrapolation gives
remarkably accurate results. For example, the finite element value for
x = 1.25 ¢ is 1.5962 for the 8 element solution and 1.6302 for 16. Linear
extrapolation to 1/M = 0 gives 1.6643; the continuum value is 1.6667, an
error of 0.14%. Figure 1A shows TyZ/TO vs r/c as given by equations
[-3 and I-4. It would be difficult to distinguish the finite element
values from the exact curve for j > N+1 but F+1 is shown for N from 2 to
64. The trend for the constant stréin (1inear) elements is about the same
but with about twice the error.

The above comparison shows, as is well known, that the nodal dis-
placement values converge to the continuous displacement function at a
rate appropriate to the order of the equivalent finite difference
algorithm and that the stresses at any analytic point may be found by

numerical differentiation of the displacement field to the same order



by using Hooke's Tlaw. Averagihg the "stresses"” in contiguous constant
strain elements gives Tess accurate values unless the weighting points
are carefully selected, e.g., the Gaussian integration points [3].

One would expect [4] the singular force at j = N to be given by the
weighted integral of the stresses on the y = 0 face from j = N-1 to N+1.
If we consider the original (not the residual) problem, = = 0, j < N.
Then using equation I-3 and a linear weighting function

=lj]+hx1~x/h 0
h 1 /xZ2- 1

(14 o(h))

0.9428 /h

where h = 1/N. The continuum residual problem converted to finite element
form differs from the residual finite element problem by adding 0.5 h to

Fy-

Since the displacement field solution is not analytic at the

singularity, equations I-9 and I-11 don't apply. However, we are inte-

grating only on a line where w = 0 and g—%—= 0 so that we may let Woj =0
X

in these equations; if we use only W1 N-1° "1.N and W1 N+l We should get

%%—, 0(h4). These and several other less accurate (o(hz)) approximations

were used and they all converged very rapidly to c1/ﬁ. The points for
the bilinear case are shown in Figure 1b. Rather than attempting to find
the slope from the log-log plot, it is better to extrapolate FN//ﬁ'vs h
to h = 0. These curves are shown in figure 2 where we compare the nodal

force at i = 0, j = N using equation I-11 modified by letting Wo,5 = 0,

W

5y and the second order approximation in which

the linear approximation for



2 2

we use 9—%—+ é—g = 0. These algorithms are:
ax dy
Fy = - %'(W],N—l it Wy ) (EQ I-11 mod) (5)
iy = v = gy * o(h?) ©)
TR AU REEIRRRUNTIRS AR )

A1l of the curves converge to a square root singularity but the bilinear
ones do so in a Tinear fashion which makes extrapolation accurate for
crack lengths as coarﬁe as 16 elements (N = 8). Unfortunately, they don't
extrapolate to the correct coefficient, which shows that higher order
terms must be included even in the limit. Table I shows the rate of con-
vergence for FN to its value at h = 0 using equation 7 for both the linear
and bilinear case and to the square root singularity for equations 6 and 7.
The external work done is another measure of the strength of the
singularity. The external work, equal to the strain energy, is

1
7/2 = U{c = 1) = J : w(x)ryz(x)dx

N-1
“‘]—2— % wo.(x) or Simpson's (8)
NS j=-(N-1) %

because Fj = 1. As shown in Table 1, this converges as rapidly as FN’ and
converges to the correct value. The columns headed § are the result of
Tinear extrapolation using the entry and the previous entry; thus the
extrapolation of U from the bilinear solution using 2 and 4 elements for
the half crack length gives n/4 with an error of 0.3%. One may also

approximate the energy release rate from 2 - (WN-1 . FN/2). This should



converge to

g—g—= mc (9)

The % error for the Tinear and bilinear case and for the extrapolated values
“are shown in the last four columns of Table I. These results are better

than Rybicki [14] indicates.

(2) 8

Since the values for Wo.50 agreed within 5 x 10' in the Tinear and
bilinear cases and the small table top computer used in this work took
about one minute per integration (equation 3), the values for j > 50 from
the linear case were used for the bilinear solutions. This small in-
consistency accounts for the non-uniform convergence at levels of 1074

for N = 64 in Table I.

IV. CONCLUSIONS

It has been shown that the singularity at a crack tip under
antiplane shear (Type III) can be accurately modeled with a relatively
coarse mesh near the tip if one uses the energy release from crack exten-
sion. The results are remarkably accurate if one gets solutions for two
or three element sizes and extrapolates to zero size (Table I).

Curve fitting to the stress field requires a very fine mesh both
because the slope of the continuum solution departs rapidly from that
of the leading term and because the finite element solution is oscillating
at the first two or three nodal points (see also Wilson [7]).
| The nodal force at the crack tip as a function of mesh size is a
very accurate measure of the order of the singularity but may converge

to the wrong strength if higher order terms are not included. Even



where the displacement field is analytic, the nodal forces give a better
approximation to the stress field than does element averaging.

The methods used in this report are being extended to Types I and
IT loading and Taminated material and could be used for finite bodies
of rectangular shape. They are economical with computer time since by
using boundary element techniques, only small matrices need be inverted
to get finite element solutions for large (or infinite) arrays. The
results presented here were obtained on a small (64K bytes) table top

computer.



APPENDIX I - FINITE ELEMENT PROBLEM FORMULATION

Our problem is that of a crack of Tength -c < x < ¢ in the y =0

plane, extending to + » in the z direction of the infinite solid with a

uniform shear stress t__ = Ty at x2 + y2 ~+ » (antiplane, Type III). This

yz
is the same problem as the edge crack of length ¢ in the semi-infinite
solid, x > 0. The continuum solution is given by Bentham and Koiter

[12, Sect 3.3]. For antiplane shear:

For our geometry:

o(c) = - %? g (2 - &)1/ I-2
Along the x axis
2 1/2
X 2 2

T =T T X" >cC I-3

yz 0 [Xz - C2]
There is a singularity of order 1/2 at x2 = cz. For > 0, let

x=c+r , o= g— \
—_ - —1/2 _3_ 2 -
Then Tyz = TO(ZOL) (1 + i © + o(a”)) ! I-4
_ 172

and KIII = 1

The finite element problem is more easily handled if we subtract a

uniform stress field from the above, leaving a boundary condition of:
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vz 0 I-5

T+ 0 X2+y2—->oo

We use a square grid of nodal points at x = j, y = i subjected to
a shear stress 1 = 1 on the negative face i = 0, -c < j < c and let G = 1.
By symmetry:
o1, i,
“i,-5 7 ML5
The basic element is the square of side 1. By minimizing the strain

energy [3] we can show that the nodal force at point i,j of the element(s)

bounded by i, i+1, j and j+1 is:
’F = W —J—w —lw I"6
ij ij 2 Ti+l,j 2 "i,j¥]
for a uniform strain field in the two triangular elements bounded either
by the line (i,3)(i+1,j+1) or (i+1,3)(i,j+1). It is interesting and

useful that for antiplane shear the direction of the diagonal does not

affect equation I-6. For the bilinear displacement field:

W = W.iJ (]‘C)(]‘ﬂ) + w-i+'|,j C(]—n)

+ W'i ’j+](1‘C)Y\ + W]-_H L3+ &n

the corresponding equation is:

1

~ 1
Yig T Mit,g T8 YiLie T3 M,

F_ij =

1-7

N

These elements are now assembled to give a zero nodal force for i # 0.

Using equation I-6 the field equations are

F.. =0= I-8

i3 LR IR I TR B

07 YL T i,
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and the nodal force on the negative y face is

1

—

e

Fig =251 " M5 - 2 Y4 T M [-9
Using equation I-7, they are
0= - l-(w + W oW )
3 Wi5-1 T W, T Yia1, 90
1 8 1
gy T3 T 3 Y
1
=3 Wy o1 Wian,g t Yier, e I-10
and
- — l .
Fig =3 (gng 50 H W5 F Wi ge1)
1, 1 8 1
g g I Y 3 ) 1-11

Equation I-8 is the finite difference equation for the Laplacian

good to o(hz); using the governing partial differential equation

2 2 _
dX 3y
we find that equation I-9 gives the first derivative, w,, 0(h2), while

Y

W is o(h). Normally we can use %—(wi_] FIR j) which is

1,3 7 i+,
o(hz) but not at a stressed surface. This same result does not hold for
equations I-10 and 11 but we can show that the system converges o(h4).

The corresponding matrix equation is

- BW. ., + AW. - BWi 0 I-13a

i-1 i +1

v =F I-13b
_Bw_l._.o -

N =4
=
=

o~ ~
EWO - FW'I -

where W} is the column vector of the displacements of the nodes in 1th

row. Using the notation of Appendix II, the values of a and b in equa-

tion II-1 are those in Table I.
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Equation 1-8 I-9 1-10 I-11
Matrix A B E F A B E F
a 4 -1 2 -1 8/3 -1/3 43 -1/3
b -1 0 -1/2 o -1/3 -1/3 -1/6 -1/3
Table I-1

We may solve the matrix difference equation I-13a, by expanding

ﬁ& in the eigenvectors of Appendix II. Using equation II-7, if we

substitute:

=1

"
§><|
=t

by
1
f><|
=
=
=<
—_
1
B

oo
i
>

X A

=<

B
into equation I-13a and use the last of equations II-2, the equations for

ﬁ} are decoupled:

~ ~ Pd _
" Mg Gy Ay Gy - Mg Gy = 0 I-15
If we now let:
Gk 7 Ck %1,k
-] B
then - ABk ck + AAk ABk C © 0
s 1-16
and Cp = Bk + /Bkz -1
where Bk = XAk/szk J

AAk and Agy are given by equation II-4 and a and b are shown in table I-1.

In order to satisfy the condition at infinity, we take the + or - sign

2 1

to make ¢c© < 1. > 1/2 g as g -+ 0.



Ifwy, =1, Woj = 0, j # 0, from equations I-13a and I-16

Ak Tik T Bk 92k T 2Bk Xok Yoo T Bk Moo
(Aak = € Agid 94 = gk Yoo

or UGk = “k Yoo

13
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APPENDIX II - FACTORING TRIDIAGONAL MATRICES

The matrices we are concerned with all have one constant, a, on
the main diagonal and another, b, on the first sub and superdiagonal
with all other elements zero. By symmetry, they extend from -N to +N
and are (2N+1) X (2N+1) square. In order to get symmetrical reflection
at + N, we make the second element of the first row and the next to the
last element of the last row equal to 2b which gives the following form.

r N

a ¢b

0 2b a |

| -

The associated eigenvalue problem is:

RX = XA

YR =AY

o } 11-2
normalized to Yx=1
so that R=XAY and YRX = A |

where A is the diagonal matrix of the eigenvalues, X is the square matrix
of the eigenvector columns and Y is the adjoint squére matrix of the

eigenvector rows. The difference equations are:

N

boxiy kT Xk P Xie kT M XLk
Xkt etk T M XNk 11-3

2b X1,k TR KNk T MK KNGk




The matrix has 2N+1 roots:
A =at 2b cos (kw/2N) k= 0,1,...,2N+]
The corresponding column eigenvectors are:
Xj = c€os (ik /2N) i=-N,...,0,...,N
The adjoint row eigenvectors are:
V.= (0 -46. 3010 -Ls xi/N
ki 2 °i,tN 2 Nk’ *ik

where Gij is the Kronecker s.

The antisymmetric tridiagonal matrix found by replacing the 2b

[I-6

terms in equation II-1 with 0, has the same eigenvalues, but sines for

the eigenvectors (equation II-5) instead of cosines.

15
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% CONVERGENCE = 100 —22— "

X - X

il

Xoo
FN (r=0) |t=r%a Bilinear Bilinear Linear | Bilinear Linear
Céh Bi  Linear
o om* o™y s lom®) s | 5 U S S T A LT TR B

1 122.4 27.4 I --- --- --- --- 32 --- 61 ---

2 110.8 11.8 1 28.5 | --- 34.3 | --- 21 10.2 33.4 {6.0 11.9 19.9

4 5.2 5.9 +14.8 | 1.2 17.8 | 1.2 10.3 | 0.30 17.2 | 1.1 5.5 0.9 9.3 1.28
8 2.6 2.8 7.4 10.02 8.8 (0.06 5.1 0.07 8.7 {0.22 2.7 10.21 4.5-1 0.24
16 1.3 1.4 3.7 10.06 4.4 10.10 2.6 | 0.03 4.4 10.05 1.3 10.05 2.24 | 0.05
32 0.6 0.7 1.8 10.01 2.2 |0.04 § 1.3} 0.004 2.210.013: 0.6 |0.012 1.11 | 0.013
64 0.3 0.3 0.9 [0.04* 1.1 0'03*;? 0.6 | 0.007*{ 1.110.004 f 0.3 |0.018% | 0.55| 0.004

i i J
(a) (b) (c) (d)

(a) Tinear h~0 , F_=0.953 /8/3 = 0.943

(b) linear h -0 , ., = 0.862

(c) U ,=n/2 , o =1/2

(d) FNWN-1 > /2N

* Inaccurate to 107%

TABLE I

0¢
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