NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Bibliography of Lewis Research Center Technical Publications Announced in 1980

May 1981
PREFACE

In 1980, Lewis' 1020 research authors published 427 technical publications which were announced to and reached the worldwide scientific community. This number was our typical output even though, once again, we had a slight decrease in staff. In recent years, the trend in Lewis publishing has been that each year the number of technical presentations given at seminars, society symposia, and Lewis-hosted conferences has surpassed the record set the previous year. Lewis authors publish approximately 61 percent of their research contributions in outside publications and the rest as NASA research reports. Lewis authors primarily use society proceedings, seminar presentations, and journal and transactions articles to describe their work.

In 1980 the production of 307 contractor-authored research reports was higher than the previous year's output of 294. In addition, 38 patent applications were filed, and 17 patents were issued, fewer numbers than in recent years.

In 1980, the annual award for Best Lewis Publication was presented to J. Anthony Powell, Anthony J. Strazisar, and Richard G. Seasholtz for their paper "Efficient Laser Anemometer for Intra-Rotor Flow Mapping in Turbo-machinery," which describes several innovative features of this anemometer. The paper was presented at the Joint Fluids Engineering Gas Turbine Conference and Products Show, New Orleans, Louisiana, March 10-13, 1980. A description is given in abstract A80-36140 (p. 111) in this bibliography.

Also in 1980, the American Society of Lubrication Engineers presented the "Captain Alfred E. Hunt Memorial Award" for the best paper appearing in one of its publications to L. D. Wedeveno. This paper, coauthored with Professor Cristino Cusano, a summer faculty fellow from the University of Illinois, entitled "Elastohydrodynamic Film Thickness Measurements of Artificially Produced Nonsmooth Surfaces," is described in abstract A80-14720 (p. 102).

All the publications in this collection were announced in the 1980 issues of STAR (Scientific and Technical Aerospace Reports) and IAA (International Aerospace Abstracts).

The arrangement of the material is by NASA subject category, as noted in the Contents. The Lewis-authored items are listed first, followed by the contractor items. Within each of these groups is listed report literature, in N-number sequence, followed by the journal and conference presentations, in A-number sequence.

The various indexes will help locate specific publications by subject, author, contractor organization, contract number, and report number.

George Mandel
Chief, Management Services Division
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERONAUTICS (GENERAL)</td>
<td>1</td>
</tr>
<tr>
<td>AERODYNAMICS</td>
<td>2</td>
</tr>
<tr>
<td>AIR TRANSPORTATION AND SAFETY</td>
<td>8</td>
</tr>
<tr>
<td>AIRCRAFT COMMUNICATIONS AND NAVIGATION</td>
<td>9</td>
</tr>
<tr>
<td>AIRCRAFT DESIGN, TESTING AND PERFORMANCE</td>
<td>10</td>
</tr>
<tr>
<td>AIRCRAFT INSTRUMENTATION</td>
<td>11</td>
</tr>
<tr>
<td>AIRCRAFT PROPULSION AND POWER</td>
<td>12</td>
</tr>
<tr>
<td>AIRCRAFT STABILITY AND CONTROL</td>
<td>46</td>
</tr>
<tr>
<td>RESEARCH AND SUPPORT FACILITIES (AIR)</td>
<td>47</td>
</tr>
<tr>
<td>ASTRONAUTICS (GENERAL)</td>
<td>48</td>
</tr>
<tr>
<td>GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)</td>
<td>49</td>
</tr>
<tr>
<td>LAUNCH VEHICLES AND SPACE VEHICLES</td>
<td>50</td>
</tr>
<tr>
<td>SPACE TRANSPORTATION</td>
<td>51</td>
</tr>
<tr>
<td>SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING</td>
<td>52</td>
</tr>
<tr>
<td>SPACECRAFT DESIGN, TESTING AND PERFORMANCE</td>
<td>53</td>
</tr>
<tr>
<td>SPACECRAFT PROPULSION AND POWER</td>
<td>56</td>
</tr>
<tr>
<td>CHEMISTRY AND MATERIALS (GENERAL)</td>
<td>66</td>
</tr>
<tr>
<td>COMPOSITE MATERIALS</td>
<td>67</td>
</tr>
<tr>
<td>INORGANIC AND PHYSICAL CHEMISTRY</td>
<td>74</td>
</tr>
<tr>
<td>METALLIC MATERIALS</td>
<td>76</td>
</tr>
<tr>
<td>NONMETALLIC MATERIALS</td>
<td>85</td>
</tr>
<tr>
<td>PROPELLANTS AND FUELS</td>
<td>93</td>
</tr>
<tr>
<td>ENGINEERING (GENERAL)</td>
<td>96</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td>97</td>
</tr>
<tr>
<td>ELECTRONICS AND ELECTRICAL ENGINEERING</td>
<td>101</td>
</tr>
<tr>
<td>FLUID MECHANICS AND HEAT TRANSFER</td>
<td>104</td>
</tr>
<tr>
<td>INSTRUMENTATION AND PHOTOGRAPHY</td>
<td>110</td>
</tr>
<tr>
<td>LASERS AND MASERS</td>
<td>113</td>
</tr>
<tr>
<td>MECHANICAL ENGINEERING</td>
<td>114</td>
</tr>
<tr>
<td>QUALITY ASSURANCE AND RELIABILITY</td>
<td>130</td>
</tr>
<tr>
<td>STRUCTURAL MECHANICS</td>
<td>132</td>
</tr>
<tr>
<td>GEOSCIENCES (GENERAL)</td>
<td>135</td>
</tr>
<tr>
<td>EARTH RESOURCES</td>
<td>136</td>
</tr>
<tr>
<td>ENERGY PRODUCTION AND CONVERSION</td>
<td>137</td>
</tr>
<tr>
<td>ENVIRONMENT POLLUTION</td>
<td>157</td>
</tr>
<tr>
<td>METEOROLOGY AND CLIMATOLOGY</td>
<td>159</td>
</tr>
<tr>
<td>LIFE SCIENCES (GENERAL)</td>
<td>160</td>
</tr>
<tr>
<td>AEROSPACE MEDICINE</td>
<td>161</td>
</tr>
<tr>
<td>COMPUTER OPERATIONS AND HARDWARE</td>
<td>162</td>
</tr>
<tr>
<td>COMPUTER PROGRAMMING AND SOFTWARE</td>
<td>163</td>
</tr>
<tr>
<td>STATISTICS AND PROBABILITY</td>
<td>164</td>
</tr>
<tr>
<td>SYSTEMS ANALYSIS</td>
<td>165</td>
</tr>
<tr>
<td>THEORETICAL MATHEMATICS</td>
<td>166</td>
</tr>
<tr>
<td>ACOUSTICS</td>
<td>167</td>
</tr>
<tr>
<td>ATOMIC AND MOLECULAR PHYSICS</td>
<td>174</td>
</tr>
<tr>
<td>Subject</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>PLASMA PHYSICS</td>
<td>175</td>
</tr>
<tr>
<td>SOLID-STATE PHYSICS</td>
<td>178</td>
</tr>
<tr>
<td>THERMODYNAMICS AND STATISTICAL PHYSICS</td>
<td>180</td>
</tr>
<tr>
<td>ADMINISTRATION AND MANAGEMENT</td>
<td>181</td>
</tr>
<tr>
<td>ECONOMICS AND COST ANALYSIS</td>
<td>182</td>
</tr>
<tr>
<td>URBAN TECHNOLOGY AND TRANSPORTATION</td>
<td>183</td>
</tr>
<tr>
<td>SUBJECT INDEX (KEYWORDS)</td>
<td>A-1</td>
</tr>
<tr>
<td>PERSONAL AUTHOR INDEX (INCLUDES LEWIS AND CONTRACTOR AUTHORS)</td>
<td>B-1</td>
</tr>
<tr>
<td>CORPORATE SOURCE INDEX (CONTRACTOR ORGANIZATIONS)</td>
<td>C-1</td>
</tr>
<tr>
<td>CONTRACT NUMBER INDEX</td>
<td>D-1</td>
</tr>
<tr>
<td>REPORT/ACCESSION NUMBER INDEX (INCLUDES PATENTS)</td>
<td>E-1</td>
</tr>
</tbody>
</table>
The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

F.O.S.
02 AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

For related information see also 34 Fluid Mechanics and Heat Transfer.

N80-10128** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
COAXIAL SUPERSONIC EJECTOR NOZZLES
Allan R. Bishop in NASA Ames Res. Center Workshop on Thrust Augmenting Ejectors Sep. 1979 p 385-396 refs (For primary document see N80-10107 01-02)
Avail. NTIS HC A22/MF A01 CSCL 01A

The nozzles described exhibit a flow field which is supersonic except for the initial flow region, and the secondary mass flow is typically about five percent of the primary core flow. The features to improve the accuracy of the performance calculations are discussed. A special calculation is made to get as realistic a sonic line as possible for this geometry, using an analysis developed by Brown. The mixing between the secondary and core flows is treated to account for entrainment of the secondary flow into core. Both of these phenomena directly affect the pressure distribution on the nozzle and, therefore, the thrust that the nozzle produces. The importance of using realistic flow is and a mixing analysis is stressed. M.M.M.

N80-11037** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
EXPERIMENTAL STUDY OF LOW ASPECT RATIO COMPRESSOR BLADING
(NASA-TM-79280; E-217) Avail. NTIS HC A02/MF A01 CSCL 01A

The effects of low aspect ratio blading on aerodynamic performance were examined. Four individual transonic compressor stages, representative of the inlet stage of an advanced high-pressure ratio core compressor, are discussed. The flow phenomena for the four stages are investigated. Comparisons of blade element parameters are presented for the four different aspect ratio configurations. Blade loading levels are compared for the near stall conditions and comparisons are made of loss and diffusion factors over the operating range of incidence angles. A.W.H.

N80-14050** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
LASER ANEMOMETER MEASUREMENTS IN A TRANS SONIC AXIAL FLOW COMPRESSOR ROTOR
(NASA-TM-79323; E-279) Avail. NTIS HC A02/MF A01 CSCL 01A

A laser anemometer system employing an efficient data acquisition technique was used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation. Author

N80-14061** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
MODIFICATION OF AXIAL COMPRESSOR STREAMLINE PROGRAM FOR ANALYSIS OF ENGINE TEST DATA
Jeffrey G. Williams Nov. 1979 49 p refs (NASA-TM-79312; E-268) Avail. NTIS HC A03/MF A01 CSCL 01A

An existing axial compressor streamline analysis computer program to allow input of measured radial pressure and temperature profiles obtained from engine or cascade data is described. The proposed modifications increase the input flexibility and are accomplished without changing the computer program's input format. A.R.H.

N80-15061** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
SUMMARY OF ADVANCED METHODS FOR PREDICTING HIGH SPEED PROPELLER PERFORMANCE
(NASA-TM-81409) Avail. NTIS HC A02/MF A01 CSCL 01A

Three advanced analyses for predicting aircraft propeller performance at high subsonic speeds are described. Two of these analyses use a lifting line representation for the propeller blades and vortex filaments for the blade wakes but differ in the details of the solution. The third analysis is a finite difference solution of the unsteady, three dimensional Euler equations for the flow between adjacent blades. Analysis results are compared to data for a high speed propeller having eight swept blades integrally designed with the spinner and nacelle. Author

N80-17030** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
PREDICTION METHOD FOR TWO-DIMENSIONAL AERODYNAMIC LOSSES OF COOLED VANES USING INTEGRAL BOUNDARY-LAYER PARAMETERS
Louis J. Goldman and Raymond E. Augler Feb. 1980 43 p refs (NASA-TP-1623; E-076) Avail. NTIS HC A03/MF A01 CSCL 01A

A generalized analysis to predict the two-dimensional aerodynamic losses of film-cooled vanes by using integral boundary-layer parameters is presented. Heat-transfer and trailing-edge injection effects are included in the method. An approximate solution of the generalized equations is also included to show more clearly the effect of the different boundary-layer and cooling parameters on the losses. The analytical predictions agree well with the experimental results, indicating that available boundary-layer calculations for cooled vanes are of sufficient accuracy to use in the prediction method. Author

N80-21285** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
HIGH SPEED TURBOPROPS FOR EXECUTIVE AIRCRAFT, POTENTIAL AND RECENT TEST RESULTS
(NASA-TM-81482; E-419) Avail. NTIS HC A03/MF A01 CSCL 01A

Four high speed propeller models were designed and tested in an 8x8 foot wind tunnel in order to evaluate the potential of advanced propeller technology. Results from these tests show that the combination of: increased blade number, aerodynamically integrated propeller/nacelles, reduced blade thickness, spinner area ruling, and blade sweep are important in achieving high propeller efficiency at the high cruise speeds. R.E.S.
N80-27284* National Aeronautics and Space Administration,
Lewis Research Center, Cleveland, Ohio.
CASCADE FOR TRANSIENT BOUNDARY LAYERS:
STEADY, POTENTIAL TRANSONIC CASCADE FLOWS
Djordje S. Dulikravich Jul. 1980 36 p refs
(NASA-TP-1708; E-253) Avail. NTIS HC A03/MF A01 CSCL
01A

An exact, full-potential-equation (FPE) model for the steady,
irrotational, homentropic and homogevoetric flow of a com-
pressible, homocompositional, inviscid fluid through two dimen-
sional planar cascades of airfoils was derived, together with its
appropriate boundary conditions. A computer program, CAS2D,
was developed that numerically solves an artificially time-
dependent form of the actual FPE. The governing equation was
discretized by using type-dependent, rotated finite differencing
and the finite area technique. The flow field was discretized by
providing a boundary-fitted, nonuniform computational mesh. The
mesh was generated by using a sequence of conforming mapping,
nonorthogonal coordinate stretching, and local, isoparametric,
bilinear mapping functions. The discretized form of the FPE was
solved iteratively by using successive line overrelaxation. The
possible isentropic shocks were correctly captured by adding
explicitly an artificial viscosity in a conservative form. In addition,
a three-level consecutive, mesh refinement feature makes CAS2D
a reliable and fast algorithm for the analysis of transonic, two
dimensional cascade flows.

A80-20968* Summary of advanced methods for predicting
high speed propeller performance. L. J. Bober and G. A. Mitchell
(NASA, Lewis Research Center, Cleveland, Ohio), American Institute
of Aeronautics and Astronautics, Aerospace Sciences Meeting, 18th,

Three advanced analyses for predicting aircraft propeller perfor-
mance at high subsonic speeds are described. Two of these analyser
use a lifting line representation for the propeller blades and vortex
filaments for the blade wakes and differ in the details of the solution.
The third analysis is a finite difference solution of the unsteady,
three-dimensional Euler equations for the flow between adjacent
blades. Analysis results are compared to data for a high speed
propeller having 8 swept blades integrally designed with the splitter
and nacelle. These analyses provide tools for the propeller designer
ranging from a short running program for initial design studies to a
very long running program for checking final configurations.

A80-20967* Computation of three-dimensional flow in
transonie mixers and comparison with experimental data. L. A.
Povinelli, B. H. Anderson, and W. Gerstenmaier (NASA, Lewis
Research Center, Cleveland, Ohio), American Institute of Aeronau-
tics and Astronautics, Aerospace Sciences Meeting, 18th, Pas-

A three-dimensional, viscous computer code was used to
calculate the mixing downstream of a typical turbofan mixer
gy. Experimental data were obtained using pressure and
temperature rakes at the lobe and nozzle exit stations. Secondary
flow velocities were also obtained. These data were used to validate
the computer results. An assessment was also made to determine
the relative importance of turbulence in the mixing phenomenon as
compared with the streamwise vorticity set up by the secondary
flows. The observations suggest that the generation of streamwise
vorticity appears to play a significant role in determining the
temperature distribution at the nozzle exit plane.

A80-20969* Numerical simulation of supersonic inlets
using a three-dimensional viscous flow analysis. B. H. Anderson and
C. E. Towne (NASA, Lewis Research Center, Cleveland, Ohio),
American Institute of Aeronautics and Astronautics, Aerospace
80-0384. 15 p. 20 refs.

A three-dimensional fully viscous computer analysis, which
retains the viscous nature of the Navier-Stokes equations, was
evaluated to determine its usefulness in the design of supersonic
inlets. This procedure takes advantage of physical approximations to
limit the high computer time and storage associated with the
Navier-Stokes solutions. Computed results are presented for a Mach
3.0 supersonic inlet with bleed and a Mach 7.4 hypersonic inlet.
Good agreement was obtained between theory and data for both
inlets. Results of a mesh sensitivity study are also shown.

A80-38897* Comparison between optical measurements
and a numerical solution of the flow field within a transonic
axial-flow compressor rotor. A. J. Strauzis and R. V. Chima (NASA,
Lewis Research Center, Cleveland, Ohio), AIAA, SAE, and ASME,
Joint Propulsion Conference, 16th, Hartford, Conn., June 30-July 2,

A comparison between numerical and experimental results is
presented for the flowfield within a transonic axial-flow compressor
rotor. The rotor was tested at design speed and a wide open throttle
discharge condition. The relative tip Mach number was 1.4. A laser
anemometer system was used to measure velocity and flow angle
upstream, within, and downstream of the rotor. A holographic
interferometer was used to visualize the shock pattern on the
blade tip. The computational procedure solves the full three-dimen-
sional Euler equations using a time-marching technique. Shock location
and shape determined from the two optical systems are compared.
Calculated relative Mach number and flow angle contours, shock
locations, and shock strength are compared to values measured with
the laser anemometer.

Author

Measurements of surface static pressures, flow total pressure loss, and exit angle were obtained for two linear cascades to establish the effects of endwall profiling. Testing was conducted at an isentropic exit Mach number of 0.85. One cascade was fabricated with planar endwalls while the other had one planar and one profiled endwall. Both cascades utilized the same high pressure turbine inlet guide vane section. It was found that in terms of full passage loss the profiled endwall cascade has the superior performance. The secondary loss results obtained are reasonably well predicted by correlations developed from incompressible flow testing of similar configurations. Inviscid flow and boundary layer calculations are compared with the test data, and overall, the agreement is found to be good.

Use of the results for design purposes is briefly discussed. (Author)

Zero-length, slotted-lip inlet performance and associated fan blade stresses were determined during model tests using a 20-inch diameter fan simulator in the NASA-LeRC 9- by 15-foot low-speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. Inlet configurations having contraction ratios of 1.2 and 1.3 satisfied all critical low-speed inlet operating requirements for a fixed horizontal nacelle and tilt-nacelle-type subsonic V/STOL aircraft, respectively. Relative to a conventional axisymmetric tilt-nacelle inlet, the zero-length, slotted-lip inlet has a 27-percent smaller inlet lip contraction ratio, an 83-percent shorter total length, and a 5-percent smaller maximum cowl diameter. (Author)

Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops. (Author)

This paper presents a numerical method and the results of a computer program for solving an exact, three-dimensional, full potential equation that models rotating and nonrotating inviscid, absolutely irrotational, homentropic flows. Besides calculating the flows through an arbitrarily shaped rotor or stator blade row mounted on an axisymmetric hub and confined in an axisymmetric duct, the computer program is also capable of analyzing flow fields about arbitrarily shaped wing-body combinations, propellers, helicopter rotors in hover, and wind turbine rotors. The governing equation is solved numerically in a fully conservative form by using an artificial time concept, a finite volume technique, rotated time-dependent differencing, successive line overrelaxation, and sequential boundary-conforming grid refinement. An artificial viscosity is added in fully conservative form; and an initial guess for the potential field is applied, as determined by a two-dimensional cascade analysis. (Author)

The turbulence downstream of a rapid contraction is calculated for the case when the turbulence scale can have the same magnitude as the mean-flow spatial scale. The approach used is based on the formulation of Goldstein (1978) for turbulence downstream of a contraction, with the added assumptions of a parallel mean flow at downstream infinity and turbulence calculated far enough downstream so that the nonuniformity of the mean flow field has decayed, and by treating the inverse contraction ratio as a small parameter. Consideration is given to the large-contraction-ratio and classical rapid-distortion theory limits, and to results at an arbitrary contraction ratio. It is shown that the amplification effect of the contraction is reduced when the spatial scale of the turbulence increases, with the upstream turbulence actually suppressed for a contraction ratio less than five and a turbulence spatial scale greater than three times the transverse dimensions of the downstream channel. A. L. W.
Turbulent flow within turbomachines having arbitrary blade geometries is examined. Effects of turbulence are modeled using two equations, one expressing the development of the turbulence kinetic energy and the other its dissipation rate. To account for complicated blade geometries, the flow equations are formulated in terms of a nonorthogonal boundary fitted coordinate system. The analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between the different flow regimes. Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

A general method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the body surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers flow in terms of a nonorthogonal boundary fitted coordinate system. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The first program considers flow in terms of a nonorthogonal boundary fitted coordinate system. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The first program considers flow in terms of a nonorthogonal boundary fitted coordinate system. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The first program considers flow in terms of a nonorthogonal boundary fitted coordinate system. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The first program considers flow in terms of a nonorthogonal boundary fitted coordinate system.
An analytical technique for the prediction of fan blade flutter was evaluated by utilizing first stage fan flutter data from tests on an advanced high performance engine. The formulation includes both aerodynamic and mechanical coupling among all the blades of the assembly. Misalignment is accounted for in the analysis so that individual blade inertias, frequencies, or damping can be considered and self-stability was predicted by calculating a flutter determinant. The eigenvalues of which indicate the extent of susceptibility to flutter. When blade to blade differences in frequencies are considered, a stable system is predicted for the test points examined. For a tuned system, it was found that torsional flutter can be predicted at a limited number of interblade phase angles. Examination of these phase angles indicated that they were 'close' to the condition of acoustic resonance. For the range of Mach numbers and reduced frequencies considered, the so-called subcritical flutter cannot be predicted. The essential influence of mechanical coupling among the blades is to change the frequencies of the system with little or no change in damping; however, aerodynamic coupling together with mechanical coupling could change not only frequencies, but also damping in the system, with a trend toward instability.

Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cube corner contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio ranging from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, whereas viscous decay over the contraction length is negligible, or when a first order correction for viscous decay was applied to the results. T.M.

An evaluation is made of a perturbation method devised to obtain highly accurate approximations to families of strongly nonlinear solutions which are either continuous or discontinuous, and which represent variations in some arbitrary parameter. The method first defines a unit perturbation by using two nonlinear solutions which differ from one another by a nominal change in some geometric or flow parameter, then employs this unit perturbation to predict a family of related nonlinear solutions over a range of parameter variation. Coordinate stretching is incorporated into this perturbation method for determining the unit perturbation to account for the movement of discontinuities and maxima of high-gradient regions due to the perturbation. Attention is given to transonic and subsonic flows. Comparisons of the perturbation results with the corresponding 'exact' nonlinear solutions show a remarkable accuracy and range of validity of the perturbation method across the spectrum of examples considered. S.D.

A phenomenological model developed for the prediction of helicopter blade stall is presented. The model uses a system of procedure for turbulent compressible flow in axisymmetric ducts was used to successfully model the HIRAX duct flow. The analysis technique was further used to estimate the initiation of separation and delineate the steady and unsteady flow regimes in similar S-shaped ducts. (Author)

Contoured wall diffusers are designed using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffiths in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions along the diffuser wall channel from various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be sucked for the case of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs. (Author)

In the present paper, a semi-automatic, 'disk' is reviewed which was developed previously for the distorted inflow to a single-stage axial-flow compressor. Flow distortion occurs far upstream; it may be a distortion in stagnation temperature, stagnation pressure, or both. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis, and both subsonic and transonic relative Mach numbers are considered. The theory is compared with measurements made in a transonic fan stage, and a parameter study is carried out to determine the influence of solidity on the attenuation of distortions in stagnation pressure and stagnation temperature. V.P.

An approximate analysis applicable to nonorthogonal coordinate systems having a curved centerline and planar curves coordinate surfaces normal to the centerline, is presented for computation of three-dimensional subsonic flow in straight and curved diffusers. The formulation is intended to facilitate the use of constructed coordinates in circumstances where it is difficult to maintain smooth behavior in higher derivatives; the use of local Cartesian variables and fluxes leads to governing equations which
require only first derivatives of the coordinate transformation. The analysis is applied to a particular family of duct and diffuser geometries having curved centerlines and superelliptic cross sections. Qualitative agreement with experimental measurements is observed with regard to streamwise vortices and distortion of the primary flow.

J.P.B.

An implicit finite-difference code is developed to solve either inviscid or viscous flow about two-dimensional cascade blade elements. General coordinate transformations are used so that boundaries can coincide with coordinate lines, and an automatic grid generation routine based on elliptic partial differential equations is employed to mesh arbitrary cascade elements. Characteristic combinations of the differential equations are used at inflow and outflow boundaries. Computed results for both inviscid and viscous flow are compared with other existing cascade solutions and experimental data.

(Author)

An analysis is presented which has been used to predict the unsteady aerodynamic behavior of a finite supersonic cascade of airfoils forced in harmonic oscillation with airfoil-to-airfoil variations in amplitude. Theoretical predictions are compared with some recent experimental results at a reduced frequency representative of actual fan or compressor flutter cases. The similarity of the experimental situation in the finite cascade to the flutter of a severely mistuned rotor is noted.

(Author)
AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations, and aircraft accidents.
For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.

N80-15059# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
SIMULTANEOUS CABIN AND AMBIENT OZONE MEASUREMENTS ON TWO BOEING 747 AIRPLANES, VOLUME 1
Measurements of ozone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.
Aircraft Design, Testing and Performance

Includes aircraft simulation technology
For related information see also 18 Spacecraft Design, Testing and Performance and 39 Structural Mechanics.

A critical examination of flap-lag stability of a centrally hinged, spring-restrained rigid blade in both hover and forward flight is presented. Several differences in the equations of motion for blade flap-lag stability in the existing literature are identified. A rigorous and systematic development of these equations for a rigid articulated blade in forward flight shows the existence of some linear aerodynamic coupling terms associated with blade steady-state flapping and lagging in the perturbation equations. The differences identified are shown to be associated with whether or not the lag hinge flaps with the blade. The implications of these differences on stability are examined, and it is shown that the pitch-lag coupling terms associated with a hinge arrangement in which the lag hinge flaps with the blade have a marked influence on flap-lag stability, depending on the system parameters.

In response to recent concerns over possibly high ozone levels in the cabins of aircraft flying in the stratosphere, simultaneous measurements of the cabin and ambient ozone levels have been made as part of the NASA Global Atmospheric Sampling Program. Examples of the data taken on commercially operated Boeing 747-100 and 747SP airplanes are given for selected flights, together with summary statistics of over 5600 observations. Cabin ozone levels vary with the ambient level and, for unmodified aircraft, are higher on the 747 before than on the 747-100. Modifications to the ventilation system of the 747SP reduced cabin ozone levels by varying amounts up to a factor of 14.

It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

ENGINE BLEED AIR REDUCTION IN DC-10

(Contract NAS3-21763) (NASA-CR-159846) Avail: NTIS HC A03/MF A01 CSCL 01C

An 0.8 percent fuel savings was achieved by a reduction in engine bleed air through the use of cabin air recirculation. The recirculation system was evaluated in revenue service on a DC-10. The cabin remained comfortable with reductions in cabin fresh air (engine bleed air) as much as 50 percent. Flight test verified the predicted fuel saving of 0.8 percent. R.C.T.
06 AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.

NSO-14110

National Aeronautics and Space Administration.

Langley Research Center, Hampton, Va.

WIND-TUNNEL INVESTIGATION OF THE FLOW CORRECTION FOR A MODEL-MOUNTED ANGLE OF ATTACK SENSOR AT ANGLES OF ATTACK FROM -10 DEG TO 110 DEG

Thomas M. Moul Nov. 1979 20 p refs

(NASA-TM-80189) Avail: NTIS HC A02/MF A01 CSCL 01C

A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The system measurements are made using optical transducers which are fixed to the case. Measurements made in this way are the equivalent of those obtained by placing three surface-normal displacement transducers at three positions on each blade of an operational rotor.

M.M.M.
07 AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.

N80-10205* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AEROPROPULSION 1979

1979 464 p Proceedings of conf held at Cleveland, Ohio, 1-16 May 1979
(NASA-CP-2092, E-079) Avail: NTIS HC A20/MF A01 CSCL 21E

State of the art technology in aeronautical propulsion is assessed. Noise and air pollution control techniques, advances in supersonic propulsion for transport aircraft, and composite materials and structures for reliable engine components are covered along with engine design for improved fuel consumption. For individual titles, see N80-10206 through N80-10219.

J.M.S.

N80-10216* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MATERIALS AND STRUCTURES TECHNOLOGY

Robert A. Signorelli, Thomas K. Glasgow, Gary R. Halford, and Stanley R. Levine In its Aeropropulsion 1979 1979 p 149-186 refs (For primary document see N80-10205 01-07) Avail: NTIS HC A20/MF A01 CSCL 21E

Materials and structures performance limitations, particularly for the hot section of the engine in which these limitations limit the life of components, are considered. Failure modes for components such as blades, vanes, and combustors and how they are affected by the environment for such components are discussed. Methods used to improve the materials used for such components are: (1) application of directional structures to turbine components for high strength at high temperatures; (2) improved coatings to increase oxidation and corrosion resistance; (3) increase strength and stiffness with reduced weight by applying higher specific properties of composite materials; and (4) cost effective processing such as near net shape powder methods applied to disks. Life prediction techniques developed to predict component life accurately in advance of service and progress in improving the intermediate and cold section components of turbine engines are covered.

J.M.S.

N80-10219* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPUTATIONAL FLUID MECHANICS OF INTERNAL FLOW

Major solution techniques for internal computational fluid mechanics are discussed and some examples are presented. The major steps involved in developing a large computer code are then discussed.

R.E.S.

N80-10209* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ALTERNATIVE JET AIRCRAFT FUELS

Jack Grobman In its Aeropropulsion 1979 1979 p 129-148 refs (For primary document see N80-10205 01-07) Avail: NTIS HC A20/MF A01 CSCL 21E

Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of afterburning engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

J.M.S.

N80-10210* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPUTATIONAL FLUID MECHANICS OF TURBOMACHINERY TECHNOLOGY

Cavour H. Hauser, Jeffrey E. Haas (U.S. Army Res. and Technol. Labs., Cleveland, Ohio), Lonnie Reid, and Francis S. Stepka In its Aeropropulsion 1979 1979 p 231-272 (For primary document see N80-10205 01-07) Avail: NTIS HC A20/MF A01 CSCL 21E

A technology assessment of turbomachinery is presented. The design of the fan, compressor, and turbine components for future advanced aircraft engines is discussed. Basic flow characteristics in compressors and turbines and the heat transfer phenomena in cooled turbines are also discussed.

R.E.S.
MECHANICAL COMPONENTS

Research on bearings, gears, seals, and rotor dynamics (specifically high speed balancing and dampers) is presented. The research pertains to problems in both aircraft turbine engines and helicopter transmissions. R.E.S.

INSTRUMENTATION TECHNOLOGY

William C. Nieberding, David R. Englund, Jr., and George E. Glawe. In its Aeropropulsion 1979 1979 p 309-328 refs (For primary document see NBO-10205 01-07) Avail: NTIS HC A20/MF A01 CSCL 21E

Some of the efforts made in applying technologically new tools to today's propulsion measurement problems are described. They include: (1) a blade-tip clearance system; (2) a pulsed thermocouple system used to measure gas temperature with a thermocouple at temperatures above the melting point of the thermocouple; (3) an optical technique for measuring blade flutter; (4) a probe for dynamic flow and flow angle measurement; and (5) a laser anemometer system for rapidly mapping the flow profiles between the blades of a rotating compressor. R.E.S.

SUPERSONIC PROPULSION TECHNOLOGY

An overview of engine control technology is presented with emphasis on gas turbine engine controls. The role of the government, and NASA in particular, in advancing this technology is discussed. R.E.S.

SUPERSONIC PROPULSION TECHNOLOGY

H. Lee Beach, Jr. In its Aeropropulsion 1979 1979 p 387-408 refs (For primary document see NBO-10205 01-07) Avail: NTIS HC A20/MF A01 CSCL 21E

Research on hydrogen fueled scramjet engines for hypersonic flight is reviewed. Component developments, computational methods, and preliminary ground tests of subscale scramjet engine modules at Mach 4 and 7 are emphasized. Airframe integration, structures, and flow diagnostics are also discussed. It is shown that mixed-mode perpendicular and parallel fuel injection controls heat release over a wide Mach range and the fixed geometry inlet gives good performance over a wide range of Mach numbers. R.K.L.

VERTICAL TAKEOFF AND LANDING (VTOL) PROPULSION TECHNOLOGY

Propulsion problems and advanced technology requirements of VTOL aircraft are discussed. Specific topics covered include inlets with high angle of attack capability, rapid thrust modulation fans, and propulsion-system/aircraft-control integration. K.L.
data, it was demonstrated that the blade-order sampling of pressure data may yield erroneous results due to the interference caused by blade vibration. Two methods are presented which effectively eliminate this interference yielding the blade-pressure-difference spectra. The phase difference between the differential-pressure and the displacement spectra was evaluated.

Author

N80-13047 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ATOMIC CHARGE CHARACTERISTICS OF SWIRL CAN COMBUSTOR MODULES WITH SWIRL BLAST FUEL INJECTORS

Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from the data obtained, it was possible to determine the effect of design modifications on the atomizing performance of various fuel injectors and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studies with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K.

Author

N80-14121 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
STATIC TEST-STAND PERFORMANCE OF THE YF-102 TURBOFAN ENGINE WITH SEVERAL EXHAUST CONFIGURATIONS FOR THE QUIET SHORT-HAUL RESEARCH AIRCRAFT (QSRA)

The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

A.R.H.

N80-14123 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
DYNAMIC RESPONSE OF A MACH 2.5 AXIASSYMETRIC INLET AND TURBOJET ENGINE WITH A POPPET-VALUE CONTROLLED INLET STABILITY BYPASS SYSTEM WHEN SUBJECT TO INTERNAL AND EXTERNAL AIRFLOW TRANSIENTS

The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.

Author

N80-14124 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TURBOJET-EXHAUST-NOZZLE SECONDARY-AIRFLOW PUMPING AS AN EXIT CONTROL OF AN INLET-STABILITY BYPASS SYSTEM FOR A MACH 2.5 AXIASSYMETRIC MIXED-COMPRESSION INLET
Bobby W. Sanders Jan. 1980 82 p refs (NASA-TP-1532; E-9468) Avail: NTIS HC A05/MF A01 CSCL 21E

The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.

Author

N80-14125 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
EFFECT OF DEGREE OF FUEL VAPORIZATION UPON EMISSIONS FOR A PREMIXED PARTIALLY VAPORIZED COMBUSTION SYSTEM
Larry P. Cooper Jan. 1980 25 p refs (NASA-TP-1582; E-010) Avail: NTIS HC A02/MF A01 CSCL 21E

An experimental and analytical study of the combustion of partially vaporized fuel-air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-preciparizing flame tube combustor. Data collected in this study showed near linear increases in nitric oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on nitrogen oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

Author

N80-14126 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NASA BROAD-SPECIFICATION FUELS COMBUSTION TECHNOLOGY PROGRAM: STATUS AND DESCRIPTION

The program presented is a contracted effort to evolve and demonstrate the technology required to utilize broad-specification fuels in current and next generation commercial Conventional
Takeoff and Landing aircraft engines, and to verify this technology in full-scale engine tests in 1983. The program consists of three phases: Combustor Concept Screening, Combustor Optimization Testing, and Engine Verification Testing. The development and screening of the combustion system designs for the CF6-80 engine and the JT9D-7 engine, respectively, in high-pressure sector test rigs are reported.

N80-15127* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LASER-OPTICAL BLADE TIP CLEARANCE MEASUREMENT SYSTEM

A laser-optical measurement system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in rotating component rigs and complete engines. The system is applicable to fan, compressor and turbine blade tip clearance measurements. The engine mounted probe is particularly suitable for operation in the extreme turbine environment. The measurement system consists of an optical subsystem, an electronic subsystem and a computing and graphic terminal. Bench tests and environmental tests were conducted to confirm operation at temperatures, pressures, and vibration levels typically encountered in an operating gas turbine engine.

N80-15128* National Aeronautics and Space Administration.

QUIET POWERED-LIFT PROPULSION

1979 426 p refs Conf. held at Cleveland, Ohio, 14-15 Nov. 1978

(NASA-CP-2077; E-9906) Avail; NTIS HC A19/MF A01 CSCL 21E

Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'till-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed. R.E.S.

N80-15129* National Aeronautics and Space Administration.

DIRECT INTEGRATION OF TRANSIENT ROTOR DYNAMICS

An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode.

N80-15130* National Aeronautics and Space Administration.

COMPUTER SIMULATION OF ENGINE SYSTEMS

Lewis Research Center, Cleveland, Ohio.

The use of computerized simulations of the steady state and transient performance of jet engines throughout the flight regime is discussed. In addition, installation effects on thrust and specific fuel consumption are accounted for as well as engine weight, dimensions and cost. The availability throughout the government and industry of analytical methods for calculating these quantities are pointed out. M.M.M.
varied to substantially close the stators to thereby increase the

Upon a landing approach, the normal compressor stator schedule of a fan speed controlled turbofan engine is temporarily varied to substantially close the stators to thereby increase the fuel flow and compressor speed in order to maintain fan speed and thrust. This running of the compressor at an off-design speed substantially reduces the time required to subsequently advance the engine speed to the takeoff thrust level by advancing the throttle and opening the compressor stators.

Official Gazette of the U.S. Patent and Trademark Office

NBO-19038# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

METHOD AND APPARATUS FOR RAPID THRUST INCREASES IN A TURBOFAN ENGINE Patent

A sampling of probable future engine types, such as convertible engines for helicopters, turboprops for fuel-conservative airliners, and variable-cycle engines for supersonic transports are presented. Related technology improvements in propellers, materials, noise suppression, etc. are reviewed R.E.S.

NBO-19043# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AEROPROPULSION IN YEAR 2000

A preliminary assessment was made of the VTO thrust requirements for a supersonic (Type 8) aircraft with a Lift plus Lift/Cruise propulsion system. A baseline aircraft with a takeoff gross weight (TOGW) of 13 608 kg (30,000 lb) was assumed. Pitch, roll, and yaw control thrusts (i.e., the thrusts needed for aircraft attitude control in the flight hover mode) were estimated based on a specified set of maneuver acceleration requirements for V/STOL aircraft. Other effects (such as installation losses, suckdown, relightening, etc.), which add to the thrust requirements for VTO were also estimated. For the baseline aircraft, the excess thrust required for attitude control of the aircraft during VTO and flight hover was estimated to range from 36.3 to 50.9 percent of the TOGW. It was concluded that the total thrust requirements for the aircraft propulsion system are large and significant. In order to achieve the performance expected of this aircraft propulsion system, reductions must be made in the excess thrust requirements. J.M.S.

NBO-19110# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PRELIMINARY STUDY OF VTO THRUST REQUIREMENTS FOR A V/STOL AIRCRAFT WITH LIFT PLUS LIFT/Cruise PROPULSION

George E. Turney and John L. Allen Feb. 1980 23 P refs (NASA-TM-81429; E-351) Avail NTIS HC A02/MF A01 CSCL 21E

The optimum design of nacelles that operate over a wide range of aerodynamic conditions and their inlets is described. For slow speed operation the optimum internal surface velocity distributions and skin friction distributions are described for three categories of inlets: those with BLC, and those with blow in door slots and retractable slats. At cruise speed the effect of factors that reduce the nacelle external surface area and the local skin friction is illustrated. These factors are cruise Mach number, inlet throat size, fan-face Mach number, and nacelle contour. The interrelation of these cruise speed factors with the design requirements for good low speed performance is discussed. J.M.S.

NBO-20274# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

JTBD-7A (SP) JET ENGINE PERFORMANCE DETERIORATION TRENDS

The levels, trends, and causes of engine performance deterioration were investigated. A series of installed engine calibrations (both on-the-ground and in-flight) were performed on two new Pan American World Airways 747 SP aircraft. The performance data gathered covered from before the first flight through approximately 1000 flight cycles and 8900 flight hours. To accomplish the calibrations a special instrumentation system for ground testing of installed engines over a broad power range was used along with performing concurrent in-flight engine calibrations under revenue service conditions. Results of the analysis of the data, which provide a better understanding of short and long term performance deterioration of both engines and modules are presented. J.M.S.

NBO-20275# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

OPTIMUM SUBSONIC, HIGH-ANGLE-OF-ATTACK NACELLES

An aircraft-inlet noise suppressor method based on mode cutoff ratio was qualitatively checked by testing a series of liners on a YF-102 turbofan engine. Far-field directivity of the blade passing frequency was used extensively to evaluate the results. The trends and observations of the test data lend much qualitative

NBO-21323# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL EVALUATION OF A SPINNING-MODE ACOUSTIC-TREATMENT DESIGN CONCEPT FOR AIRCRAFT INLETS

An aircraft-inlet noise suppressor method based on mode cutoff ratio was qualitatively checked by testing a series of liners on a YF-102 turbofan engine. Far-field directivity of the blade passing frequency was used extensively to evaluate the results. The trends and observations of the test data lend much qualitative
A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters over the minimum-loss to near stall operating range for all stators and the potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.

REFERENCES

and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

R.E.S.

A study was made of the comparative life of plasma sprayed ZrO2-Y2O3 thermal barrier coatings on NiCrAlY bond coats on Rens 41 in short (4 min) and long (57 min) thermal cycles to 1040°C in a 0.3 Mach flame. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperature as compared to longer cycles. Appearance of the failed coating indicated compressive failure. Failure occurred at the bond coat-ceramic coating junction. At heating rates greater than 550 kw/sq m, the calculated cooling detachment stress was in the range of literature values of coating adhesive/cohesive strength. Methods are discussed for decreasing the degree of high heating rate by avoiding compressive stress.

Author

N80-22340# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

POSITIVE DISPLACEMENT TYPE GENERAL-AVIATION ENGINES: SUMMARY AND CONCLUDING REMARKS

The activities of programs investigating various aspects of aircraft internal combustion engine are briefly described including development in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines.

M.G.

N80-22341# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASA PROPELLER TECHNOLOGY PROGRAM

The program on propeller technology applicable to both low and high speed general aviation aircraft is summarized, and the overall program objectives and approach are outlined.

M.G.

N80-22344# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HIGH-SPEED-PROPELLER WIND-TUNNEL AEROACOUSTIC RESULTS

Some aerodynamic concepts are presented together with an explanation of how these concepts are applied to advanced propeller design. The unique features of this propulsion system are addressed with emphasis on the design concepts being considered for the high speed turboprop. More particular emphasis is given to the blade sweep, long blade chords, and the large number of blades.

R.C.T.

N80-22345# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ADVANCED PROPELLER AERODYNAMIC ANALYSIS

The analytical approaches as well as the capabilities of three advanced analyses for predicting propeller aerodynamic performance are presented. It is shown that two of these analyses use a lifting line representation for the propeller blades, and the third uses a lifting surface representation.

R.C.T.

N80-23310# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SIGNIFICANCE OF THERMAL CONTACT RESISTANCE IN TWO-LAYER THERMAL-BARRIER-COATED TURBINE VANES

The importance of thermal contact resistance between layers in heat transfer through two-layer, plasma sprayed, thermal barrier coatings applied to turbine vanes was investigated. Results obtained with a system of NiCrAlY bond and yttria stabilized zirconia ceramic showed that thermal contact resistance between layers is negligible. These results also verified other studies which showed that thermal contact resistance is negligible for a different coating system of NiCr bond calcium stabilized zirconia ceramic. The zirconia stabilized ceramic thermal conductivity data scatter presented in the literature is ±20 to -10 percent about a curve fit of the data. More accurate predictions of heat transfer and metal wall temperatures are obtained when the thermal conductivity values are used at the ±20 percent level.

E.D.K.

N80-23313# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DEVELOPMENT OF IMPROVED-DURABILITY PLASMA SPRAYED CERAMIC COATINGS FOR GAS TURBINE ENGINES

Irving E. Sumner and Duane L. Ruckle (Pratt and Whitney Aircraft, 18
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbine engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 °C (1850 °F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

H.E. Bloomer and Nick E. Samanich 1980 20 p refs

The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

R.C.T.

A JT16D-1 ENGINE

COMPARISON OF SEVERAL INFLOW CONTROL DEVICES FOR FLIGHT SIMULATION OF FAN TONE NOISE USING A JT18D-1 ENGINE

N80-25334# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

POWERED-LIFT ACOUSTIC PERFORMANCE

I. J. Loeffler, N. E. Samanich, and H. E. Bloomer 1980 35 p refs

The four stage turbine configuration produced design equivalent specific work output with an efficiency of 0.858; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency

COLD-AIR INVESTIGATION OF A 4 1/2 STAGE TURBINE WITH STAGE-LOADING FACTOR OF 4.66 AND HIGH SPECIFIC WORK OUTPUT. 2: STAGE GROUP PERFORMANCE

The stage group performance of a 4 1/2 stage turbine with an average stage loading factor of 4.66 and high specific work output was determined in cold air at design equivalent speed. The four stage turbine configuration produced design equivalent work output with an efficiency of 0.856; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency
TURBINE SHROUDS: HEAT TRANSFER ANALYSIS compared to an all impingement air cooled, all metal shroud, temperature in the porous metal layer. Analysis showed that of ceramic and porous metal layer thicknesses and of porous poppet. The graphite composite poppet in combination with a valve poppets and seats was investigated. Six different poppet sizes to the quiet short-haul research aircraft (QSRA) exhaust

An outdoor static test stand was used to measure the steady-state and transient performance of the YF-102 turbomfan engine with core airbleed. The test configuration included a bellmouth inlet and a contfront-wa exhaust system similar in size to the quiet short-haul research aircraft (QSRA) exhaust system. For the steady-state tests, the engine operated satisfactorily with core bleed up to 14 percent of the core inlet flow (maximum tested). For some of the tests the core-bled flow rate was scheduled to vary with fan discharge pressure, to simulate the QSR A bleed requirements. No stability, surge, stall, overtemperatur) combustor flameout, or other operating problems were encountered in any of the tests. Steady-state and transient engine performance data is presented in graphs, and fuel-control trajectories for typical test results are shown.

The durability of various materials used to make solenoid valve poppets and seats was investigated. Six different poppet materials and two seat materials were considered. Each material was tested for over 100 million cycles. Serious damage was found in four kinds of poppet materials tested. Less damage was evident in an aluminum poppet and in graph Bulgarian composite poppet. The graphite composite poppet in combination with a Vespel seat was considered the most promising combination for use in digital electronic controls for gas turbine engines. E.D.K.

A heat transfer analysis was made of a composite wall shroud consisting of a ceramic thermal barrier layer bonded to a porous metal layer which, in turn, is bonded to a metal base. The porous metal layer serves to mitigate the strain differences between the ceramic and the metal base. Various combinations of ceramic and porous metal layer thicknesses and of porous metal densities and thermal conductivities were investigated to determine the layer thicknesses required to maintain a limiting temperature at the expected operating temperature. Analysis showed that the composite wall offered significant air cooling flow reductions compared to an all impingement air cooled, all metal shroud.

An off-design performance loss model is developed for variable-area (pivoted vane) radial turbines. The variation in stator loss with stator area is determined by a viscous loss model while the variation in rotor loss due to stator area variation (for no stator end-clearance gap) is determined through analytical matching of experimental data. An incidence loss model is also based on matching of the experimental data. A stator vane end-clearance leakage model is developed and sample calculations are made to show the predicted effects of stator vane end-clearance leakage on performance.

EXPERIMENTAL DATA FROM 10 TRANSONIC FAN ROTORS WERE USED TO CORRELATE LOSSES CREATED BY PART-SPAN DAMPERS LOCATED NEAR THE MIDCHORD POSITION ON THE ROTOR BLADES. THE DESIGN TIP SPEED OF THESE ROTORS VARIED FROM 419 TO 425 M/SEC, AND THE DESIGN PRESSURE RATIO VARIED BETWEEN 1:6 AND 2:0. ADDITIONAL LOSS CAUSED BY THE DAMPERS FOR OPERATING CONDITIONS BETWEEN 50 AND 110 PERCENT OF DESIGN SPEED WERE CORRELATED WITH RELATIVE AERODYNAMIC AND GEOMETRIC PARAMETERS. THE RESULTING CORRELATION PREDICTS THE VARIATION OF TOTAL-LOSS COEFFICIENT IN THE DAMPER REGION TO A GOOD APPROXIMATION.
The potential characteristics of future aviation turbine fuels and the property effects of these fuels on propulsion system components are examined. The topics that are discussed include jet fuel supply and demand trends, the effects of refining variables on fuel properties, shale oil processing, the characteristics of broadened property fuels, the effects of fuel property variations on combustor and fuel system performance, and combustor and fuel system technology for broadened property fuels. For individual titles, see N80-29301 through N80-29330.

N80-29301/ National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.
FUTURE AVIATION FUELS OVERVIEW
Gregory M Rock. In its Aircraft Res. and Technol. for Future Fuels Jul. 1980 p 1-4 refs (For primary document see N80-29300 20-07)
Avail: NTIS HC A11/MF A01 CSLC 21D
The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels. M.G.

N80-29306/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FUELS CHARACTERIZATION STUDIES
Avail: NTIS HC A11/MF A01 CSLC 21D
Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkane and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkane determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point. M.G.

N80-29310/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
COMBUSTION TECHNOLOGY OVERVIEW
Avail: NTIS HC A11/MF A01 CSLC 21B
An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as all distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors. M.G.

N80-29313/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NBSA BROADENED SPECIFICATION FUELS COMBUSTION TECHNOL TION TECHNOLOGY PROGRAM
James S. Fear. In its Aircraft Res. and Technol. for Future Fuels Jul. 1980 p 95-98 (For primary document see N80-29300 20-07)
Avail: NTIS HC A11/MF A01 CSLC 21B
The broadened specification fuels combustion technology program's purpose is to evolve and demonstrate the technology required to enable current and next generation high-thrust, high-speed-turbofan engines to use fuels with broadened properties and to verify the evolved technology in full scale engine tests. The three phases of the program are combustor concept screening, combustor optimization testing, and engine verification testing. Constraints for designing combustion systems are outlined and problems to be expected in the use of broadened properties fuels are listed. E.D.K.

N80-29317/ National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.
FUELS RESEARCH: COMBUSTION EFFECTS OVERVIEW
Avail: NTIS HC A11/MF A01 CSLC 21B
The effects of broadened property fuels on gas turbine combustors were assessed. Those physical and chemical properties of fuels that affect aviation gas turbine combustion were isolated and identified. Combustion sensitivity to variations in particular fuel properties were determined. Advanced combustion concepts and subcomponents that could lessen the effect of using broadened property fuels were also identified. R.C.T.

N80-29319/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ANTIMISTING KEROSENE
Harold W. Schmidt In its Aircraft Res. and Technol. for Future Fuels Jul. 1980 p 125-130 (For primary document see N80-29300 20-07)
Avail: NTIS HC A11/MF A01 CSLC 21D
The antimisting additive (LMF-S) was tested in terms of its propulsion system performance. The effect of the additive on engine operation was evaluated, operating problems were identified, the adaptability of engines to antimisting kerosene was assessed, and the potential viability of this fuel for use in present and future fan jet engines was determined. R.C.T.

N80-29323/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PRELIMINARY STUDIES OF COMBUSTOR SENSITIVITY TO ALTERNATIVE FUELS
Francis M. Humenik In its Aircraft Res. and Technol. for Future Fuels Jul. 1980 p 153-160 refs (For primary document see N80-29300 20-07)
Avail: NTIS HC A11/MF A01 CSLC 21B
Combustion problems associated with using alternative fuel ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include flame radiation characteristics in the various combustor zones, the corresponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions. R.C.T.

N80-29324/ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FUELS RESEARCH: FUEL THERMAL STABILITY OVERVIEW
Stephen M. Cohen In its Aircraft Res. and Technol. for Future Fuels Jul. 1980 p 161-168 ref (For primary document see
Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

FUEL SYSTEM TECHNOLOGY OVERVIEW

Fuelsystem research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures, (2) fuel systems for high freezing point fuels, (3) experimental study of low temperature pumpability, (4) full scale fuel tank simulation, and (5) rapid freezing point measurement.

Investigation of Performance Deterioration of the CF6/JS9D, High-Bypass Ratio Turboprop Engines

The aircraft energy efficiency program within NASA is developing technology required to improve the fuel efficiency of commercial subsonic transport aircraft. One segment of this program includes engine diagnostics which is directed toward determining the sources and causes of performance deterioration in the Pratt and Whitney Aircraft JT9D and General Electric CF6 high-bypass ratio turboprop engines and developing technology for minimizing the performance losses. Results of engine performance deterioration investigations based on historical data, special engine tests, and specific test data define the influence of flight loads and component clearances on performance. Presented. The results of analysis of several damage mechanisms that contribute to performance deterioration such as blade tip rub, unifit surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

A.R.H.

NBO-28332# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

DESCRIPTION OF THE WARM CORE TURBINE FACILITY RECENTLY INSTALLED AT NASA LEWIS RESEARCH CENTER

The two new facilities were installed and operated at their design or rated conditions. The important feature of both of these facilities is that the ratio of turbine inlet temperature to coolant temperature encountered in high temperature engines can be duplicated at moderate turbine inlet temperature. The limits of the facility with regard to maximum temperature, maximum pressure, maximum mass flow rate, turbine size, and dynamometer torque-speed characteristics are discussed.

John M. Stone, REVERSE THRUST PERFORMANCE OF THE OCSEE VARIABLE PITCH TURBOPROP ENGINE

Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exist. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exist resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

Author

NBO-29334# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

STATE-OF-THE-ART BAINITE MATERIALS

The state of the art of SIA04s is examined. The review includes work on phase relations, crystal structure, synthesis, fabrication, and properties of various SIA04s. The essential features of compositions, fabrication methods, and microstructure are reviewed. High temperature fracture strength, creep, fracture toughness, oxidation, and thermal shock resistance are discussed. These data are compared to those for some currently produced silicon nitride ceramics to assess the potential of SIA04 material for use in advanced gas turbine engines.

E.D.K.

NBO-31339# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

AN EXPERIMENTAL EVALUATION OF THE PERFORMANCE DEFICIT OF AN AIRCRAFT ENGINE STARTER TURBINE

An experimental investigation was made to determine the reasons for the low aerodynamic performance of a 13.5 centimeter tip diameter aircraft engine starter turbine. The investigation consisted of an evaluation of both the stator and the stage. An approximate ten percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface.

Author

NBO-31400# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

THE NASA HIGH-SPEED TURBOPROP PROGRAM

Technology readiness for Mach 0.7 to 0.8 turboprop powered aircraft with the potential for fuel savings, DOC reductions of up to 30 and 15 percent respectively relative to current in-service aircraft is addressed. The areas of propeller aerodynamics, propeller structures, turboprop installed performance, aircraft cabin environment, and turboprop engine and aircraft studies are emphasized. Large scale propeller characteristics and high speed propeller flight research tests using a modified testbed aircraft are also considered.

J.M.S.
over a fuel air ratio range of 0.016 to 0.056. Combustion efficiency decreased at leaner and richer ratios when the inlet air temperature was 889 K. Data are presented that show the effect of fuel air ratio and inlet air temperature on liner metal temperature, isolothermal system pressure loss as a function of diffuser inlet Mach number is also presented. Data included exhaust gas pattern factors, unburned hydrocarbon, carbon monoxide, and oxides of nitrogen emission index values, and smoke numbers. Author

N80-33410# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL PERFORMANCE AND ANALYSIS OF 15.04-CENTIMETER-TIP-DIAMETER, RADIAL-INFLOW TURBINE WITH WORK FACTOR OF 1.128 AND THICK BLADING

Kerry L. McLean and Jeffrey E. Haas.

October 1980. 21 p refs

Prepared in cooperation with Army Aviation Research and Development Command, St. Louis, Mo.

(NASA-TM-1730, E-391, AVRADCOM-TR-80-09) Avail NTIS

HC AO2/MF AO1 CSCL 21E

The aerodynamic design, the performance, and an internal loss breakdown were examined for a 15.04 cm tip diameter, radial-inflow turbine. The design application was to drive a two stage, 10:1 pressure ratio compressor with a mass flow of 0.952 kg/sec and a rotational speed of 70,000 rpm. The turbine inlet temperature was 1478 K, and the turbine was designed with blades thick enough for internal cooling passages. The rotor tip diameter was limited to 86 percent of optimum in order to obtain a reduced tip speed design. The turbine was fabricated with solid, uncooled blades and tested in air at nominal inlet pressure and temperature of 1.797 x 10^5 N, 1478 K, and 322.2 K respectively. Results indicated the turbine total efficiency to be 53 percent less than design. Analysis of these results has indicated the deficit in performance to be due to secondary flow losses, vaneless space surface friction losses, and trailing edge wake mixing losses.
gives a few implications of the results to modern turbine engines. A subsequent contract dealing with a positive displacement pump operating on liquid hydrogen is discussed and some aspects of liquid hydrogen propellant systems, reflected by rocket booster experience, are treated briefly. Areas requiring further research and technology effort are delineated. (Author)

Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced technology are described. A basis for turboprop engines is also discussed, while near-term reduction of pollutants is an important goal. Noise sources including the fan, turbine combustion, and flow over internal struts, and attenuation of noise through acoustic treatment, are discussed. The paper discusses the volatility throughout the government and industry of analytical methods for calculating both the steady and transient performance of an aircraft engine during an entire flight. The historical development of some of the analytical tools capable of evaluating installation effects on engine performance are traced and their present status is described. (Author)

The Engine Component Improvement (ECI) Program is NASA sponsored and is specifically directed at reducing the fuel consumption of commercial aircraft in the near-term. As part of the ECI program, a Performance Improvement (PI) effort aimed at developing fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines is underway. This paper reviews the manner in which the PI concepts were selected for development and summarizes the current status of each of the 16 NASA selected concepts. (Author)

A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) program to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system. (Author)

The paper demonstrates that many advances can be anticipated in propulsion systems for aircraft in the next 20 years. A survey is presented of probable future engine types, including convertible engines for helicopters, turboprops for fuel efficient airliners, and variable cycle engines for super sonic transports. Also examined is the use of rotary engines in general aviation aircraft. Finally, a review is given of related technology improvements in propellers, materials, noise suppression, and digital electronic controls. (Author)

The effects of turboshaft engine environmental saturation moisture and temperatures up to 300 F on composites were investigated. It was found that epoxy resin composites absorbed the most moisture (2 wt %), while polyimide resin composites absorbed 0.8%. High moisture and temperatures degraded the flexural and interlaminar shear properties, and the environmental and impact conditions severely damaged epoxy composites. The impact damage of fiber composites in moisture-temperature environments can be assessed with finite element and composite mechanics analyses. Engine operation environmental conditions of 0.8% moisture and 140 F had no discernible effect on the fatigue resistance of composite fan exit guide vane, which can be designed to exceed engine operational requirements using composite materials. (Author)

The article suggests that the 1980's will see significant improvements in virtually all gas-turbine engine components and their materials and structural design methods. These improvements will be made possible by improved theoretical models, laser Doppler measurement techniques, advances in rotor-spool technology, the evolution of engine controls, etc. It is suggested that the engine component field should expect broad and steady advances in the technologies of flow, materials, and structures in terms of scope, precision, and tools of design. (Author)

The paper studies calculated and measured metal wall temperatures of uncoated vanes and the same vanes coated with a thermal
barrier coating system of NiCrAlY bond and yttria-stabilized zirconia ceramic. It is shown that thermal contact between layers is negligible. The significance of data scatter and of published ceramic thermal conductivity values is discussed. V.T.

The far-field radiation from the end of an exhaust duct is studied using both approximate and exact methods. Experimental data of narrow-band tone noise from static tests are compared to a multimodal radiation pattern. It is pointed out that possibly the exhaust noise in the far-field is inherently more difficult to attenuate than an inlet noise using duct suppressors. V.T.

The paper describes the tests of four devices intended to reduce inflow disturbances and turbulence using a JT15D-1 turbofan engine. The tests were made to simulate the in-flight fan tone noise; the inflow control devices (ICD's) consisted of honeycomb/screen structures mounted over the engine inlet. The ICD's ranged from 1.6 to 4 fan diameters in size, and were made with several fabrication methods. All the ICD's significantly reduced the BPF tone in the far-field directivity patterns; but the smallest ICD's introduced propagating modes which could be recognized by additional lobes in the patterns. The JT15D-1 engine had a tone source which generated a strong propagating mode at fan speeds corresponding to 'approach' power and higher. Data from a typical transducer showed that the unsteady inflow distortion modes were eliminated or reduced when either of the ICD's was installed. A.T.

Powered-lift acoustic tests of a quiet clean short-haul experimental engine (QCSSEE) under-the-wing (UTW) engine are described. Engine and wing configurations are outlined, along with instrumentation and test facilities. The results of these tests are reported. In addition, the UTW engine powered-lift performance is compared with that of the previously tested QCSSEE over-the-wing (OTW) engine. V.T.

The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project. V.P.

Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals. (Author)

The General Electric CF6-50 engine nacelle was originally equipped with both fan nozzle and core nozzle thrust reversers. Many airline operators later deactivated the core reverser. Elimination of the core reverser enabled design changes to be made to help improve performance. A reduction in core nozzle length of approximately two feet was possible. This concept, defined as the Short Core Exhaust Nozzle, was evaluated in engine ground tests, including performance, acoustic, and endurance tests under the NASA/Lewis Engine Component Improvement Program. The test results verified the performance predictions from scale model tests. The Short Core Exhaust Nozzle provides an internal cruise SFC reduction of 0.9% without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing with no signs of distress. (Author)

An analytical and experimental study was performed to determine the influence of pressure driven secondary flows on the behavior of turbofan forced mixer nozzles. The basic secondary flow structure entering the nozzle was identified experimentally and was composed of a strong vortex system aligned with the radial interface between the fan and core streams. A generic secondary flow vortex structure was constructed for input to the analysis to represent the large scale structure of this inflow condition. Comparison between experiment and analysis at five axial stations showed very good agreement and indicated that this vortex system was connected downstream and dominated the mixing process. (Author)

The paper presents a study of low aspect blading for the inlet stages of a high pressure ratio, high-speed core compressor. The basic overall design variables were stage pressure ratio and blade aspect ratio; these four stages represent two levels of total pressure ratio, two levels of rotor blade aspect ratio, and two levels of stator vane aspect ratios. Comparisons of the overall performance, radial distribution of performance parameters, diffusion factors at the near-stall conditions, blade element data, and the axial distribution
of rotor tip static pressures yielded the following results: (1) higher peak pressure ratio, high stage and rotor efficiencies, and greater stall margin were obtained with the lower aspect ratio blading, (2) the lower aspect ratio blading showed improved performance over the entire blade span, and (3) the lower aspect ratio blading showed improved performance at both the lower and higher operating conditions.

A.T.

The experimental results of the performance of high work, transonic, single-stage turbines investigated under the Energy Efficient Engine (E3) Program are presented. The objective of the E3 program is to provide an advanced technology base for a new generation of fuel-conservative turbofan engines. A single-stage turbine required fewer cooled airfoils, a reduced number of leakage paths and no interface seals. These advanced energy efficient engines require high engine pressure ratios resulting in high expansion ratio, transonic, turbine designs which must have high aerodynamic efficiency. The goal of the turbine program is to develop a high pressure turbine that is compatible with the overall engine design and has an uncooled efficiency of 90.8 percent.

Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.3 g/see. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors was determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studies with the same swirl can combustors. (Author)

The paper deals with the 'Low NOx/Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NOx), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synthetic fuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines. (Author)

The experimental results of the performance of high work, transonic, single-stage turbines investigated under the Energy Efficient Engine (E3) Program are presented. The objective of the E3 program is to provide an advanced technology base for a new generation of fuel-conservative turbofan engines. A single-stage turbine required fewer cooled airfoils, a reduced number of leakage paths and no interface seals. These advanced energy efficient engines require high engine pressure ratios resulting in high expansion ratio, transonic, turbine designs which must have high aerodynamic efficiency. The goal of the turbine program is to develop a high pressure turbine that is compatible with the overall engine design and has an uncooled efficiency of 90.8 percent. (Author)

A significant portion of the NASA-sponsored Performance Improvement Program for the CF6 engine was the development of an improved fan concept. This involved aerodynamic redesign of the CF6 fan blade to increase fan efficiency while retaining the mechanical integrity, operability, and acoustic characteristics of the existing blade. A further improvement in performance was obtained by adding a fan case stiffener ring to decouple blade-case vibrational characteristics, permitting a significant reduction in running tip clearance. Engine testing was performed to establish the performance, mechanical and acoustic properties of the new design relative to the current fan, and to establish power management characteristics for the CF6-50C2/2E engine. A significant improvement in cruise power SFC of 1.8 percent was demonstrated in Sea Level thrust projected to altitude flight conditions. (Author)

It is noted that increasing fuel costs and the decreasing availability of fuel supplies have lead to an increase in the importance of maintaining good specific fuel consumption over the life cycle of jet engines. Attention is given to an engine diagnostics program.
sponsored by NASA Lewis Research Center which has the objectives of identifying and quantifying the levels, trends, and causes of engine performance deterioration. It is reported that as part of the program, a series of installed engine calibrations were performed on two new Pan American World Airways 747 SP aircraft. A discussion of this specific test program and the results of the analysis of the data are presented.

M.E.P.

In order to assess the impact of aircraft noise on the environment in the vicinity of an airport, it is essential that a methodology be developed for predicting in-flight exhaust noise from static data. Such a methodology is presented in this paper and is compared with experimental data for several unsuppressed turbojet engines. For each engine, static data over a range of jet velocities are compared with the predicted jet mixing noise and shock-cell noise. The static noise data over and above the jet and shock noise is identified as 'excess' noise. The excess noise data are then empirically correlated to the spectral and directivity relations and account for variations in test conditions. This excess noise is then projected to flight based on the assumption that the only effects of flight are a Doppler frequency shift and a level change. The effects of flight on jet mixing noise and shock noise are computed by published NASA methods. (Author)

The role of material thermal conductivity was analyzed for its effect on the thermal performance of air-cooled gas turbine components coated with a ceramic thermal barrier material when tested at reduced temperatures and pressures. This study shows that the thermal performance can be evaluated reliably at reduced gas and coolant conditions. However, thermal conductivity corrections are required for the data at reduced conditions. These corrections for a ceramic thermal barrier coated vane are significantly different than the corrections for an uncoated vane. A comparison of uncorrected test data, therefore, would show erroneously that the thermal barrier coating was ineffective. When thermal conductivity corrections are applied to the test data these data are then shown to be representative of engine data and also show that the thermal barrier coating increases the vane cooling effectiveness by 12.5 percent. (Author)

An analysis of the effects of the hot-gas and coolant temperatures, the gas-to-blade and blade-to-coolant heat transfer coefficients, and the thermal conductances of a metal wall and a ceramic thermal-barrier coating on the prediction of local turbine-blade surface temperatures. The analysis was applied to the conditions of an advanced turbofan engine and a 1700 K, 40 atm turbine test rig, and to conditions that simulated the engine at 756 K and 15.6 atm. The results showed that with current information on boundary conditions, geometry, heat-transfer coefficients, and material thermal properties, the uncertainty in predicting and verifying local turbine-blade surface temperatures in an average engine is 98 kelvins or 7.6% of the reference metal absolute temperature for uncoated blades, and 62 kelvins or 5.7% for ceramic-thermal-barrier-coated blades. A.T.

AB9-10221 # Pratt and Whitney Aircraft Group, East Hartford, Conn.

A three-stage Vortex duct burner was evaluated to determine the performance and emissions characteristics of this concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the VSCE Testbed Program. The tests were conducted at representative takeoff, transonic climb and supersonic cruise inlet conditions for the VSCE-5028 study engine. The exhaust emissions were low at all three operating conditions with combustion efficiencies in excess of 99.7 percent, as compared to the goal of 99.0 percent. Nitric oxide emissions were moderate but in excess of the program goal of 1 gm/kg at takeoff. The thrust efficiency exceeded the goal level of 94.5 percent reaching a value of 97 percent at supersonic cruise. Soft ignition, the absence of combustion, material and composite instabilities and liner temperature levels acceptable for experimental hard vane were also demonstrated. The total pressure loss across the duct burner, at 6.76 the loss mechanisms have been identified and, in one configuration 40 percent of this excess loss was eliminated without comprizing the emissions or thrust efficiency. A.R.H.

AB9-10222 # Pratt and Whitney Aircraft, East Hartford, Conn.

Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented. A.W.H.

AB9-12091 # Pratt and Whitney Aircraft Group, East Hartford, Conn.

DESIGN, DURABILITY AND LOW COST PROCESSING TECHNOLOGY FOR COMPOSITE FAN EXIT GUIDE VANES S. S. Slecherman Aug, 1979 139 p refs (Contract NAS3-21037) (NASA-CR-159877; PWA-5570-37) Avail; NTIS HC AO7/MF AO1 CSCL 21E

A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two vendors, and fatigue test in dry and wet condition. A core and shell vane design was chosen to meet goals of hefigcaptionual graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw materials and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane. R.C.T.
FLIGHT TEST OF NAVIGATION AND GUIDANCE SENSOR ERRORS MEASURED ON STOL APPROACHES

A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and data and estimates the Installed performance of aircraft engines is presented.

A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.
The acoustic considerations involved in the low source noise basic engine design and the design procedures followed in the development of the over-the-wing (OTW) nacelle. Acoustic treatment design concepts are presented. Laboratory experiments, component tests, and scale model and engine tests supporting the OTW engine acoustic design are referenced. Acoustic design features include a near-sonic inlet, low fan and core pressure ratios, low fan tip speed, high and low frequency stacked core treatment, multiple thickness treatment, and fan frame and stator vane treatment.

M.M.M.

CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) GRAPHITE/PMR COWL DEVELOPMENT

C. L. Ruggles Jul. 1978 75 p refs (Contract NASA-19021)

(NASA-CR-135279; R78AE208) Avail: NTIS

The PMR process development, tooling concepts, testing conducted to generate materials properties data, and the fabrication of a subscale model of the inner cowl are presented. It was concluded that the materials, processes, and tooling concepts were satisfactory for making an inner cowl with adequate structural integrity.

M.M.M.

CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING (OTW) PROPULSION SYSTEM TEST REPORT, VOLUME 2: AERODYNAMICS AND PERFORMANCE

Jul. 1978 49 p refs (Contract NASA-19021)

(NASA-CR-135242; R78AE474-Vol-2) Avail: NTIS

The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated. A.W.H.

The overall reliability and maintenance costs (R&MC's) of past and current turboprop systems were examined. Maintenance cost drivers were found to be scheduled overhaul (40%), lack of modularity particularly in the propeller and reduction gearbox, and lack of inherent durability (reliability) of some parts. Comparisons were made between the 501-D13/54H60 turboprop system and the widely used JTBD turbofan. It was found that the total maintenance cost per flight hour of the turboprop was 75% higher than that of the JTBD turbofan. Part of this difference was due to propeller and gearbox costs being higher than those of the fan and reverser, but most of the difference was in the engine core where the older technology turboprop core maintenance costs were nearly 70 percent higher than for the turbofan. The estimated maintenance cost of both the advanced turboprop and advanced turbofan were less than the JTBD. The conclusion was that an advanced turboprop and an advanced turbofan, using similar cores, will have very competitive maintenance costs per flight hour.

J.M.S.

FEASIBILITY OF SiC COMPOSITE STRUCTURES FOR 1844 K (2800 °F) GAS TURBINE SEAL APPLICATION Final Report, 38 Apr. - 30 May 1979

R. Darolis Nov. 1979 120 p ref (Contract NASA-20082)

(NASA-CR-135825; R79AE4986) Avail: NTIS

The silicon carbide composites evaluated consisted of Si/SiC and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for oxidation resistance, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated at Mach 1.0 gas oxidation/erosion from 1477 K (2200 °F) to 1644 K (2500 °F). The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preoxidation was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K (2200 °F) gas turbine seal applications. Further improvements are needed in hot gas erosion resistance and abradability to demonstrate feasibility to 1644 K (250 F). A.R.H.

THE CF3 JET ENGINE PERFORMANCE IMPROVEMENT: NEW FRONT MOUNT

W. A. Fasching Dec. 1979 139 p refs (Contract NASA-20629)

(NASA-CR-159639; R79AE366) Avail: NTIS

HC A07/MF A01 CSCL 21E

The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.

Author
transmitter module was tested at 175 °C combined with
gas 0.01 g's acceleration. A.R.H.

N80-15100# General Electric Co., Cincinnati, Ohio. Aircraft
Engine Group.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE) UNDER-THE-WING (UTW) COMPOSITE NACELLE
SUBSYSTEM TEST REPORT
C L Stoffel, Jr., E A. Johnston, and D. S. Freeman Jul. 1977
83 p refs
(Contract NAS3-18021)
(NASA-CR-136075; R78AEG420) Avail. NTIS
HC A05/MF A01 CSCL 21E

The element and subcomponent testing conducted to verify
the under the wing composite nacelle design is reported. This
composite nacelle consists of an inlet, outer cowl doors, inner
cowl doors, and a variable fan nozzle. The element tests provided
the mechanical properties used in the nacelle design. The
subcomponent tests verified that the critical panel and joint areas
of the nacelle had adequate structural integrity.

J.M.S.

N80-15101# General Electric Co., Cincinnati, Ohio. Advanced
Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE). BALL SPLINE PITCH CHANGE MECHANISM
DESIGN REPORT
Apr 1978 73 p refs
(Contract NAS3-18021)
(NASA-CR-134873, R77AEG327) Avail. NTIS
HC A04/MF A01 CSCL 21E

Detailed design parameters are presented for a variable-pitch
change mechanism. The mechanism is a mechanical system
containing a ball screw/spline driving two countereacting master
blades meshing pinion gears attached to each of 18 fan
blades.

R.E.S.

N80-15102# General Electric Co., Cincinnati, Ohio.
ACOUSTIC ANALYSIS OF AFT NOISE REDUCTION
TECHNIQUES MEASURED ON A SUBSONIC TIP SPEED
50.8 cm (TWENTY INCH) DIAMETER FAN
D L Stimpert and A Clemons Jan. 1977 149 p refs
(Contract NAS3-18021)
(NASA-CR-134891, R75AEG368) Avail. NTIS
HC A07/MF A01 CSCL 21E

Sound data which were obtained during tests of a 50.8 cm
diameter, subsonic tip speed, low pressure ratio fan were analyzed.
The test matrix was divided into two major investigations:
(1) source noise reduction techniques; and (2) aft duct noise
reduction techniques. Source noise reduction techniques were
investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and
lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes
flow noise effects, faceplate porosity, rotor OGV treatment, slant
cell treatment, and splitter simulation with variable depth on the
outer wall and constant thickness treatment on the inner wall
was investigated. Variable boundary conditions such as
variation in treatment panel thickness and orientation, and mixed
porosity combined with variable thickness were examined.
Significant results are reported.
R.C.T.

N80-15103# Curtiss-Wright Corp., Wood-Ridge, N.J. Power
Systems
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE) MAIN REDUCTION GEARS TEST PROGRAM Final
Report
D W Mise1 Mar. 1977 220 p refs
(Contract NAS3-18021)
(NASA-CR-134666; CW-WR-77-008) Avail. NTIS
HC A10/MF A01 CSCL 21E

Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated
for rig testing and subsequent installation in engines. The UTW
engine reduction gears which have a ratio of 2.465:1 and a
design rating of 9712 kW at 3157 rpm fan speed were operated at
up to 105% speed at 60% torque and 100% speed at 125% torque.
The OTW engine reduction gears which have a ratio of
2.062:1 and a design rating of 12,615 kW at 3861 rpm fan
speed were operated at up to 95% speed at 50% torque and
80% speed at 109% torque. Satisfactory operation was demon-
strated at powers up to 12,172 kW, mechanical efficiency up
to 99.1% UTW, and a maximum gear pitch line velocity of
112 m/s (23,200 fpm) with a corresponding star gear spherical
roller bearing DN of 850,00 OTW. Oil and star gear bearing
temperatures, oil churning, heat rejection, and vibratory character-
istics were acceptable for engine installation.

R.C.T.

N80-15104# General Electric Co., Cincinnati, Ohio. Advanced
Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE) CLEAN COMBUSTOR TEST REPORT
Dec. 1975 60 p refs
(Contract NAS3-18021)
(NASA-CR-134916, R75AEG449) Avail. NTIS
HC A04/MF A01 CSCL 21E

A component pressure test was conducted on a F101 PFRT
combustor to evaluate the emissions levels of this combustor
design at selected under the wing and over the wing operating
conditions for the quiet clean short haul experimental engine
(GCSEE). Emissions reduction techniques were evaluated which
included compressor discharge bleed and sector burning in the
combustor. The results of this test were utilized to compare the expected GCSEE emissions levels with the emission goals of
the GCSEE engine program.
R.C.T.

N80-15105# Curtiss-Wright Corp., Wood-Ridge, N.J.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE) MAIN REDUCTION GEARS BEARING DEVELOP-
MENT PROGRAM Final Report
Dec. 1975 40 p
(Contract NAS3-18021)
(NASA-CR-134890) Avail. NTIS
HC A03/MF A01 CSCL 21E

The viability of proposed bearing designs to operate at
application conditions is described. Heat rejection variables were
defined for the test conditions. Results indicate that there is
potential for satisfactory operation of spherical roller bearing in
the GCSEE main reduction gear application.
R.C.T.

N80-15106# Curtiss-Wright Corp., Wood-Ridge, N.J.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE) MAIN REDUCTION GEARS DETAILED DESIGN
REPORT Final Report
A. Defeo and M. Kulina Jul. 1977 221 p
(Contract NAS3-18021)
(NASA-CR-134872, CW-WR-77-024) Avail. NTIS
HC A10/MF A01 CSCL 21E

Lightweight turbine engines with geared slower speed fans
are considered. The design of two similar but different gear
ratio, minimum weight, epicyclic star configuration main reduction
gears for the under the wing (UTW) and over the wing (OTW)
engines is discussed. The UTW engine reduction gear has a
to a ratio of 2.465:1 and a 100% power design rating of 9885 kW
(13,256 hp) at 3143 rpm fan speed. The OTW engine reduction
gear has a ratio of 2.062:1 and a 100% power design rating of
12813 kW (17183 hp) at 3861 rpm fan speed. Details of
configuration, stresses, deflections, and lubrication are pre-

J.M.S.

N80-15107# Hamilton Standard, Windsor Locks, Conn. Aircraft
Systems Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(GCSEE): HAMILTON STANDARD CAM/HARMONIC
DRIVE VARIABLE PITCH FAN ACTUATION SYSTEM
DETAIL DESIGN REPORT
A variable pitch fan actuation system was designed which incorporated a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high performance harmonic drive attached to a multiaxial spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses.

Author

General Electric Co, Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (OCSEE) UNDER-THE-WING ENGINE COMPOSITE FAN BLADE DESIGN REPORT: Final Report

A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the OCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.

R.C.T.

Mar. 1977: 144 p

The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.36 pressure ratio fan for the UTW engine are included. The UTW engine was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

R.C.T.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (OCSEE) COMPOSITE FAN FRAME DESIGN REPORT

An advanced composite frame which is lightweight and integrates the function of several structures was developed for the over the wing (OTW) engine and for the under the wing (UTW) engine. The composite material system selected as the basic material for the frame is Type AS graphite fiber in a Hercules 3501 epoxy resin matrix. The frame was analyzed using a finite element digital computer program. This program was used in an iterative fashion to arrive at practical thicknesses and ply orientations to achieve a final design that met all strength and stiffness requirements for critical conditions. Using this information, the detail design of each of the individual parts of the frame was completed and released. On the basis of these designs, the required tooling was designed to fabricate the various component parts of the frame. To verify the structural integrity of the critical joint areas, a full-scale test was conducted on the frame before engine testing. The testing of the frame established critical spring constants and subjected the frame to three critical load cases. The successful static load test was followed by 153 and 98 hours respectively of successful running on the UTW and OTW engines.

J.M.S.
A hybrid computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for thrust bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

N80-15115* General Electric Co., Cincinnati, Ohio. Aircraft Engine Group
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) WHIRLIGIG TEST-CHANGE MECHANISM
WHIRLIGIG TEST REPORT
Sep 1978 64 p refs
(Contract NAS3-18021)
(NASA-CR-135354; R77AE394) Avail: NTIS
HC A04/MF A01 CSCL 21E
The component testing of a ball spline variable pitch mechanism is described, including a whirligig test. The variable pitch actuator successfully completed all planned whirligig tests including a fifty cycle endurance test at actuation rates up to 125 deg per second at up to 102 percent fan speed (3400 rpm).

N80-15116* General Electric Co., Cincinnati, Ohio. Aircraft Engine Group
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) UNDER-THE-WING (UTW) BOILER PLATE NACELLE AND CORE EXHAUST NOZZLE DESIGN REPORT
Oct. 1976 104 p
(Contract NAS3-18021)
(NASA-CR-135008; R76AE222) Avail: NTIS
HC A06/MF A01 CSCL 21E
The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

N80-15117* Hamilton Standard, Windsor Locks, Conn.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) WHIRL TEST OF CAM/HARMONIC PITCH CHANGE ACTUATION SYSTEM Contractor Report, 10 Nov. 1975 - 16 Feb. 1976
Apr. 1976 208 p refs
(Contract NAS3-18021)
(NASA-CR-135140; HSER-7002) Avail: NTIS
HC A10/MF A01 CSCL 21E
A variable pitch fan actuation system, which incorporates a remote nacelle mounted blade angle regulator, was tested. The regulator drives a rotating fan mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Testing of the actuator on a wind rig, is reported. Results of tests conducted to verify that the unit satisfied the design requirements and was structurally adequate for use in an engine test are presented.

A series of acoustic tests were conducted on the over the wing engine. These tests evaluated the fully suppressed noise levels in forward and reverse thrust operation and provided insight into the component noise sources of the engine plus the suppression achieved by various components. System noise levels using the contract specified calculation procedure indicate that the in-flight noise level on a 152 m sideline at takeoff and approach are 97.2 and 94.6 EPNdB, respectively, compared to a goal of 95.0 EPNdB. In reverse thrust, the system noise level was 106.1 PNdB compared to a goal of 100 PNdB. Baseline source noise levels agreed very well with pretest predictions. Inlet-radiated noise suppression of 14 PNdB was demonstrated with the high throat Mach number inlet at 0.79 throat Mach number.

N80-15120* General Electric Co., Cincinnati, Ohio. Aircraft Engine Group
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) Final Report
William S. Willis Aug. 1979 408 p refs
(Contract NAS3-18021)
(NASA-CR-159473; R79AE478) Avail: NTIS
HC A18/MF A01 CSCL 21E
The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The OTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight goals were demonstrated.

N80-15121* General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE), DOUBLE-ANNULAR CLEAN COMBUSTOR TECHNOLOGY DEVELOPMENT REPORT
O. W. Bahr, D. L. Burris, and P. E. Sable May 1979 149 p refs
(Contract NAS3-18021)
(NASA-CR-159483; R79AE497) Avail: NTIS
HC A07/MF A01 CSCL 21E
A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions. In addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.
The components resulting from the deposition of inorganic salts (e.g., Na₂SO₄) and oxides present in the combustion products from gas turbine engines were investigated. Emphasis was placed on the effects of multicomponent vapor transport, thermophoretic transport of vapor and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence.

(NASA-CR-159753; SAR-4) Available NTIS HC A02/MF A01 CSCL 21E

An optical polarization technique was developed for measuring rapidly growing and evaporating transparent liquid condensate films (e.g., boric oxide) on solid surfaces exposed to combustion product gases. Results for the B203 deposition rate from ECl₃-seeded propane/air flames are shown to agree well with the results of earlier interference measurements, and also with theoretical CVD predictions. Evaporation rates (from platinum salt deposits on solid surfaces immersed in combustion gases) are estimated using the polarization technique. It appears that, compared with the complementary optical methods of polarization (ellipsometry) and interference, optical methods hold considerable promise for application to the rapid measurement of condensation and evaporation rates in high temperature (e.g., combustion product) environments.

(NASA-CR-159753, SAR-4) Available NTIS HC A02/MF A01 CSCL 21E
swept wing configurations were tested across a range of nozzle position are among the parameters investigated. Straight and QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE located both under the wing and over the wing is demonstrated (QCSEE) OVER THE WING (OTW) DESIGN REPORT Final QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE DIAMETER FAN, VOLUME 3 REDUCTION TECHNIQUES ON A TWENTY INCH 150.8 cm) pressure ratios, lift coefficients, and Mach numbers. F W L vs frequency at 2 fan speeds, and sound pressure level vs frequency at 2 aft angles and 2 fan speeds. The source noise plots included band pass filter sound pressure level vs acoustic angle at 2 fan speeds, and 2nd harmonic SPL acoustic angle at 2 fan speeds. The technology required for externally blown flap aircraft with engines and propulsion system for a short haul passenger aircraft is described. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided R C T.

N80-15090# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.
N80-15091# General Electric Co., Cincinnati, Ohio. Advanced Engineering and Technology Programs Dept.
Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.

N80-16082* General Electric Co., Cincinnati, Ohio, Advanced Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) OVER-THE-WING CONTROL SYSTEM DESIGN REPORT
Dec. 1977 249 p ref
(Contact NAS3-18021)
NASA-CR-135337; R77AEG664
Avail: NTIS
HC A11/MF A01 CSCL 21E
A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of serpentine designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked in position.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). CORE ENGINE NOISE MEASUREMENTS
H. D. Sowers and W. E. Coward
Dec. 1977 52 p ref
(Contact NAS3-18021)
NASA-CR-135260; R75AEG511
Avail: NTIS
HC A04/MF A01 CSCL 21E
Noise measurements were taken on a turbofan engine which uses the same core, with minor modifications, employed on the quiet clean short-haul experimental engine (QCSEE) propulsion systems. Both nearfield and farfield noise measurements were taken in order to determine the core internally generated noise levels. The resulting noise measurements were compared to predicted combustor and turbine noise levels, to verify or improve the predicted QCSEE combustor and turbine noise levels. Author

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). UNDER-THE-WING (UTW) ENGINE COMPOSITE NACELLE TEST REPORT. VOLUME 1: SUMMARY, AERODYNAMIC AND MECHANICAL PERFORMANCE
Apr. 1979 214 p ref
(Contact NAS3-18021)
NASA-CR-159471; R78AEG573-Vol-1
Avail: NTIS
HC A10/MF A01 CSCL 21E
The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan including advanced composite fan blades and using a ball-spline pitch actuation system.

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) PRELIMINARY OVER-THE-WING FLIGHT PROPULSION SYSTEM ANALYSIS REPORT
O. F. Howard
Jun. 1977 174 p ref
(Contact NAS3-18021)
NASA-CR-135296; R77AEG305
Avail: NTIS
HC A08/MF A01 CSCL 21E
The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented.

Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m baseline.

N80-15096* General Electric Co., Cincinnati, Ohio, Advanced Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE), UNDER-THE-WING (UTW) ENGINE BOILERPLATE NACELLE TEST REPORT, VOLUME 1: SUMMARY Report
31 Dec. 1977 85 p ref
(Contact NAS3-18021)
NASA-CR-135249; R77AEG212-Vol-1
Avail: NTIS
HC A04/MF A01 CSCL 21E
The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion system. Various heat control aircraft were considered. The test results demonstrate the technology required for externally blown flat aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.

N80-15097* General Electric Co., Cincinnati, Ohio, Advanced Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). COMPOSITE FAN FRAME SUBSYSTEM TEST REPORT
C. L. Stotler, Jr. and J. H. Bowden
Sep. 1977 71 p
(Contact NAS3-18021)
NASA-CR-135010; R76AEG233
Avail: NTIS
HC A07/MF A01 CSCL 21E
Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

N80-15098* General Electric Co., Cincinnati, Ohio, Advanced Engineering and Technology Programs Dept.
QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE). COMPOSITE FAN FRAME SUBSYSTEM TEST REPORT
C. L. Stotler, Jr. and J. H. Bowden
Sep. 1977 71 p
(Contact NAS3-18021)
NASA-CR-135010; R76AEG233
Avail: NTIS
HC A07/MF A01 CSCL 21E
Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

R.C.T.
A summary of the mechanical design of the boiler plate nacelle for the NSCENT over the wing (OTW) engine is presented. The nacelle, which features a D-shaped nozzle/thrust reverser and interchangeable hard wall and acoustic panels, is utilized in the engine testing to establish the aerodynamic and acoustic requirements for nozzles and reversers of this type.

N80-16061
General Electric Co., Cincinnati, Ohio Aircraft Engine Group

CORE NOISE INVESTIGATION OF THE CF6-50 TURBOFAN ENGINE Data Report, 1978 - 1979
V L Doyle Jan 1980 357 p
(Contract NAS3-21260)
(NASA-CR-159596, R78AE247) Avail NTIS
HC A16/MF A01 CSCL 21E

Acoustic data obtained during the running of the CF6-50 turbofan engine on an outdoor test stand are presented. The test was conducted to acquire simultaneous internal and far-field measurements to determine the influence of internally generated noise levels in the engine. The data includes narrowband and far-field narrowband and one-third octave band pressure spectra.

N80-16042
General Electric Co., Cincinnati, Ohio Aircraft Engine Group

CORE NOISE INVESTIGATION OF THE CF6-50 TURBOFAN ENGINE Final Report
V L Doyle and M T Moore Jan 1980 520 p refs
(Contract NAS3-21260)
(NASA-CR-159749, R79AE395) Avail NTIS
HC A22/MF A01 CSCL 21E

The contribution of the standard production annular combustor to the far-field noise signature of the CF6-50 engine was investigated. Internal source locations were studied. Transfer functions were determined for selected pairs of combustor sensors and from two internal sensors to the air field. The coherent output power was determined in the far-field measurements, and comparisons of measured overall power level were made with component and engine correlating parameters.

N80-16063
Pratt and Whitney Aircraft Group, East Hartford, Conn.

EXPANDED STUDY OF FEASIBILITY OF MEASURING IN-FLIGHT 747/710D LOADS, PERFORMANCE, CLEARANCE, AND THERMAL DATA
(Contract NAS3-20632)
HC A06/MF A01 CSCL 21E

The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airborne acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/710D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.

N80-17074
Pratt and Whitney Aircraft, East Hartford, Conn.

EXPERIMENTAL EVALUATION OF A LOW EMISSIONS HIGH PERFORMANCE DUCT BURNER FOR VARIABLE CYCLE ENGINES (VCE) Final Report
R P. Lohmann and R J. Mador Oct 1979 118 p refs
(Contract NAS3-20602)
(NASA-CR-159694, PWA-6513-32A) Avail: NTIS
HC A06/MF A01 CSCL 21A

An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to define design parameters for acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-5028 study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rig are described. The performance parameters including the fuel-air ratio, the combustion efficiency, exhaust temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

N80-18040

STUDY OF RESEARCH AND DEVELOPMENT REQUIREMENTS OF SMALL GAS-TURBINE COMBUSTORS
(Contract NAS3-21980)
(NASA-CR-159796, ADL-83381-2) Avail: NTIS
HC A04/MF A01 CSCL 21E

A survey is presented of the major small-engine manufacturers and governmental users. A consensus was undertaken regarding small-combustor requirements. The results presented are based on an evaluation of the information obtained in the course of the study. The current status of small-combustor technology is reviewed. The principal problems lie in liner cooling, fuel injection, part-power performance, and ignition. Projections of future engine requirements and their effect on the combustor are discussed. The major changes anticipated are significant increases in operating pressure and temperature levels and greater capability of using heavier alternative fuels. All aspects of combustor design are affected, but the principal impact is on liner durability. An R&D plan which addresses the critical combustor needs is described. The plan consists of 15 recommended programs for achieving necessary advances in the areas of liner thermal design, primary-zone performance, fuel injection, dilution, analytical modeling, and alternative-fuel utilization.

N80-18041

INTERNAL COATING OF AIR COOLED GAS TURBINE BLADES Final Report
P L. Ahuja Nov. 1979 73 p refs
Six coating systems were evaluated for internal coating of，

designed for NASA CR-159762. TR-2

TANDEM FAN V/TOL NACELLE of attack separation limits were evaluated at tunnel velocities W W Rhoades and A H Ybarra Feb 1980 78 p refs

the flow -entering the diffuser through the auxiliary to the long aft inlet configuration due to the pressure disturbances

from 0 to 240 knots, angles of attack from ,10 to 40 degrees

Model variables consisted of a long aft inlet cowl, a short aft inlet cowl, a shaft simulator, blown-in door passages and diffuser vortex generators. Inlet pressure recovery, distortion, distortion, angle of attack separation limits were evaluated at tunnel velocities from 0 to 240 knots, angles of attack from -10 to 40 degrees and inlet flow rates representative of throat Mach numbers of 0.1 to 0.6. High inlet performance and stable operation was verified at all design forward speed and angle of attack conditions.

The short aft inlet configuration provided exceptionally high

The diesel engine was reinvestigated as an aircraft powerplant

AIRESEARCH GLOAT PROGRAM Final Report

AIRESEARCH GLOAT PROGRAM Final Report

37
A model TF6731-1 engine was used as a baseline for the NASA quiet general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels.

All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollutant characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three other turbofan engines. A.R.H.

Requirements; emission values are considerably reduced below FAR Part 36 conditions, are 10 to 15 ENPdB below FAA weight, and construction. The major noise, emissions, and emissions while reducing or maintaining fuel consumption levels. The use of the CFM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions. E.D.K.

N80-21332* Pratt and Whitney Aircraft Group, East Hartford, Conn.
Lawrence T. Shanob Jan. 1980 80 p (Contract NAS3-20590)
(NASA•CR•159801; PWA•5566) Avail. NTIS
HC A05/MF A01 CSCL 21E

A plasma-sprayed graded layered ceramic/metallic (ZrO2/ CoCrAIy) seal was evaluated for JT9D turbine application by rig and engine tests. Four cyclic thermal shock rig tests were conducted during the program. Three completed 1000 simulated engine thermal cycle tests and the fourth completed 500 cycles without severe cracking or spalling. Three ceramic seals were installed in a JT9D experimental engine to evaluate the effect of the engine thermal environment on the seals. All three seals completed the test successfully without severe cracking or spalling. The three seals did have slight laminar cracks at the 85/15-40/60 ZrO2/CoCrAIy interface. The second engine test evaluated the rub capabilities of the seal. Six ceramic seals were installed in the engine with fourteen abrasive tip blades. Three of the six seals rubbed to a depth of 24 mils. Eight of the fourteen abrasive tip blades showed evidence of wear. Three of the eight blades wore a maximum of five mils. Engine rub test results demonstrated the potential of reducing turbine clearances and thereby improving engine performance by use of sprayed ceramic seals. J.M.S.

N80-21334* Pratt and Whitney A/C A- RT Group, West Palm Beach, Fla.
DATA ANALYSIS OF P SUB T/P SUB S NOSEBOOM PROBE TESTING ON F100 ENGINE PSM0072 AT NASA LEWIS RESEARCH CENTER Final Report
C. H. Foote Mar. 1980 23 p (Contract NAS3-19442)
(NASA•CR•159816; PWA•FR•12540) Avail. NTIS
HC A02/MF A01 CSCL 21E

Results from the altitude testing of a P sub T/P sub S noseboom probe on the F100 engine are discussed. The F100 engine altitude test verified automatic downmatch with the engine pressure ratio control, and backup control inlet case static pressure demonstrated sufficient accuracy for backup control fuel flow scheduling. The production F6 probe measured Station 6 pressures accurately for both undistorted and distorted inlet airflow. M.G.

TWO-DIMENSIONAL FINITE-ELEMENT ANALYSES OF SIMULATED ROTOR-FRAGMENT IMPACTS AGAINST RINGS AND BEAMS COMPARED WITH EXPERIMENTS Thomas R Campione, Emmett A Witmer, and Jose J. A. Rodal Dec. 1979 363 p refs (Grant NGR 22-009-339)
(NASA•CR•159645; ASRL•TR•154-13) Avail. NTIS
HC A16/MF A01 CSCL 21E

Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CFM-JET 4B for predicting the transient, large deflection, elastic-plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CFM-JET 4B analysis code for the prediction of stress/strain/containment ring response to impact by complex deformable fragments from a tribut burst of a 158 turbo engine was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CFM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions. E.D.K.

N80-22324* Pratt and Whitney Aircraft Group, East Hartford, Conn.
PERFORMANCE DETERIORATION BASED ON EXISTING (HISTORICAL) DATA; JT9D JET ENGINE DIAGNOSTICS PROGRAM
G Phil Sallade 20 Apr. 1979 228 p refs (Contract NAS3-20032)
(NASA•CR•138448; PWA•5512-21) Avail. NTIS
HC A11/MF A01 CSCL 21E

The results of the collection and analysis of historical data pertaining to the deterioration of JT9D engine performance are presented. The results of analyses of prerepair and postrepair engine test stand performance data from a number of airlines to establish the individual as well as average losses in engine performance with respect to service use are included. Analysis of the changes in mechanical condition of parts, obtained by inspection of used gas-path parts of varying age, allowed preliminary assessments of component performance deterioration levels and identification of the causative factors. These component performance estimates, refined by data from special engine back-to-back testing related to engine performance restoration, permitted the development of preliminary models of engine component/module performance deterioration with respect to usage. The preliminary assessment of the causes of module performance deterioration and the trends with usage are presented, along with the role each module plays in overall engine performance deterioration. Preliminary recommendations with respect to operating and maintenance practices which could be adopted to control the level of performance deterioration are presented. The needs for additional component sensitivity testing as well as outstanding issues are discussed. J.M.S.

ADVANCED CERAMIC MATERIAL FOR HIGH TEMPERATURE TURBINE TIP SEALS Final Report, Feb. 1976 - May 1979
(NASA•CR•159774; SR79-R-4482, 43, RDR-1831-43) Avail. NTIS
HC A05/MF A01 CSCL 11A

Fifty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abrasive ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used to rate the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded. Author
The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

R.E.S.

N80-22333# Avco Lycoming Div., Stratford, Conn.

AVCO LYCOMING QUIET CLEAN GENERAL AVIATION TURBOFAN ENGINE
Craig A. Weatherholt, NASA Lewis Res Center Gen Aviati

The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

R.E.S.
TORSION MODE CASCADE Final Report

A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

Author

N80-25323# Pratt and Whitney Aircraft, East Hartford, Conn. Commercial Products Div.

R. F. Behlke, J. D. Brosky, and E. Canal, Jr. Avail: NTIS

A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent et a flow of 44.3 sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.

Author

N80-25325# Detroit Diesel Allison, Indianapolis, Ind.

EXPERIMENTAL DETERMINATION OF UNSTEADY BLADE ELEMENT AERODYNAMICS IN CASCADES. VOLUME 1: MORISON MODE CASCADE Final Report

A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.46. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

Author

N80-25340# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

PERFORMANCE DETERIORATION BASED ON IN-SERVICE ENGINE DATA: JT9D JET ENGINE DIAGNOSTICS PROGRAM
G. P. Sallea 27 Apr. 1979 Avail: NTIS

Results of analyses of engine performance deterioration trends and levels with respect to service usage are presented. Thirty two JT9D-7A engines were selected for this purpose. The selection of this engine fleet provided the opportunity of obtaining engine performance data starting before the first flight through initial service such that the trend and levels of engine deterioration related to both short and long term deterioration could be more carefully defined. The performance data collected and analyzed included in-flight, on wing (ground) and test stand prerepair and postrepair performance calibrations with expanded instrumentation where feasible. The results of the analyses of these data were used to: (1) close gaps in previously obtained historical data as well as augment the historical data with more carefully obtained data; (2) refine preliminary models of performance deterioration with respect to usage; (3) establish an understanding of the relationships between ground and altitude performance deterioration trends; (4) refine preliminary recommendations concerning means to reduce and control deterioration; and (5) identify areas where additional effort is required to develop an understanding of complex deterioration issues.

E.R.

N80-26300# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial, Products Div.

EXPERIMENTAL AERODYNAMIC AND ACOUSTIC MODEL TESTING OF THE VARIABLE CYCLE ENGINE (VCE) TESTBED COANNUlar EXHAUST NOZZLE SYSTEM

Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with and without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.69 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

B.D.

N80-26301# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

EXPERIMENTAL AERODYNAMIC AND ACOUSTIC MODEL TESTING OF THE VARIABLE CYCLE ENGINE (VCE) TESTBED COANNUlar EXHAUST NOZZLE SYSTEM: COMPREHENSIVE DATA REPORT

The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust system tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

B.D.

CF8 JET ENGINE PERFORMANCE IMPROVEMENT PROGRAM: HIGH PRESSURE SPUR TURBINE AERODYNAMIC PERFORMANCE IMPROVEMENT
W. A. Fasching Jul. 1980 Avail: NTIS

The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust system tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

B.D.
The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

Author

N80-27361

Curtiss-Wright Corp., Wood-Ridge, N.J.

PERFORMANCE, EMISSIONS, AND PHYSICAL CHARACTERISTICS OF A ROTATING COMBUSTION AIRCRAFT ENGINE, SUPPLEMENT A

R. K. Lamping, L. Manning, D. Myers, and B. Tjoe
May 1980

74 p

(Contract NAS5-20808)

(NASA-CR-135119; CW-WR-76-028) 3

Avail: NTIS

HC A04/MF A01 CSCL 21E

Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm. E.D.K.

N80-27364

CF6-6D ENGINE PERFORMANCE DETERIORATION

Ray H. Wulf, W. H. Kramer, J. E. Pass, and J. J. Smith
Jan. 1980

286 p refs

(Contract NAS3-20631)

(NASA-CR-159786; R80AE218)

Avail: NTIS

HC A13/MF A01 CSCL 21E

Cruise cockpit recordings and test cell performance data in conjunction with hardware inspection data from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-6D model engine. These studies established short-term deterioration from the longer term, and defined areas where a significant reduction in aircraft energy requirements for the 1980's can be realized. Unrestored losses which remain after engine refurbishment represent over 70% of the loss at engine shop visit. Sixty-three percent of the unrestored losses are cost-effective to restore which could reduce fuel consumed by CF6-6D engines in 1980 by 10.3 million gallons.

Author

N80-29302

Department of Energy, Washington, D. C.

OUTLOOK FOR ALTERNATIVE ENERGY SOURCES

Michael E. Card
In NASA. Lewis Res. Center. Aircraft Res. and Technol., for Future Fuels
Jul, 1980

p 5-9 (For primary document see N80-29300 20-07)

Avail: NTIS

HC A11/MF A01 CSCL 21D

Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuel development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if core engine development efforts are successful. In the mid-term, a broad cut fuel may be used if current development efforts are successful. As synthetic production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synthetic products with the possibility of some shale distillate and indirect coal liquefied products near the year 2000.

Author

N80-29303

CURRENT JET FUEL TRENDS

Paul P. Campbell
In NASA. Lewis Res. Center. Aircraft Res. and Technol. for Future Fuels
Jul, 1980

p 11-14 (For primary document see N80-29300 20-07)

Avail: NTIS

HC A11/MF A01 CSCL 21D

Data concerning the properties of commercial jet fuels during a period between 1974 and 1979 are discussed. During this period the average aromatic content of fuels increased from 16% to 17.5%. It is evident that the arrival of Alaska North Slope crude in 1977 had a significant impact upon the aromatics content of jet fuel supply at West Coast points with less effect upon the entire United States domestic market. This increase in aromatics has not been accompanied by a corresponding reduction in burning quality as measured by smoke point. There has been a reduction of 0.6 smoke point on the average. Looking at hydrogen content as a measure of burning quality, the all refinery average calculated hydrogen for 1978 was approximately 12.7%. The relationship between hydrogen content and aromatics content shows a slope of 043% reduction in hydrogen for 1% increase in aromatics. M.G.

Author

N80-29304

AVIATION FUELS OUTLOOK

Albert M. Monmouth
In NASA. Lewis Res. Center. Aircraft Res. and Technol. for Future Fuels
Jul, 1980

p 15-24 (For primary document see N80-29300 20-07)

Avail: NTIS

HC A11/MF A01 CSCL 21D

Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the initial refining specifications for jet fuels would significantly reduce the number of fuel availability.

Author

N80-29305

California Univ. at Los Angeles. School of Engineering and Applied Science

A METHODOLOGY FOR LONG-RANGE PREDICTION OF AIR TRANSPORTATION

Mohammad B. Ayati and J. Morley English
In NASA. Lewis Res. Center. Aircraft Res. and Technol. for Future Fuels
Jul, 1980

p 25-30 (For primary document see N80-29300 20-07)

Avail: NTIS

HC A11/MF A01 CSCL 01C

A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first used a technique for establishing the socio-economic environment within which the future aviation industry is embedded. The second part was the modeling of the industry in terms of an abstracted set of variables that represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

Author

N80-29306

Exxon Research and Engineering Co., Linden, N.J.

EFFECT OF REFINING VARIABLES ON THE PROPERTIES AND COMPOSITION OF JP-5

Martin Lieberman and William F. Taylor
In NASA. Lewis Res. Center. Aircraft Res. and Technol., for Future Fuels
Jul, 1980

p 31-39 (For primary document see N80-29300 20-07)

(Contract N00140-78-C-1491)

Avail: NTIS

HC A11/MF A01 CSCL 21D

Potential future problem areas that could arise from changes in the composition, properties, and potential availability of JP-5 produced in the near future are identified. Potential fuel problems for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables that represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

Author
concerning thermal stability, lubricity, low temperature flow, combustion, and the effect of the use of specific additives on fuel properties and performance are discussed. An assessment of available crudes and refinery capabilities is given. M.G.

N80-28307

The effects of broadening the specifications for JP-4 and JP-8 fuel on the performance and cost of all USAF aircraft presently using JP-4 as well as those expected to be introduced into the force structure by 1983 are investigated. Test results indicated that there was no impact on engine performance, turbine durability, and coking, however there was a small maintenance cost increase as a result of a small combustor life decrease. Using JP-4 as standard fuel will avoid the use of high demand middle distillate fuels and flexibility. Extensive use of JP-8 in the United States will increase middle distillate demand and cause a slight increase in engine hot-section maintenance. It is also concluded that the maximum allowable freeze point of JP-4 or JP-8 cannot be increased without degrading system performance and safety as critical conditions are approached. M.G.

N80-29308

Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrostating, and extraction processes are briefly examined and their production capabilities are assessed. M.G.

N80-29311

Advanced combustor concepts are evaluated as a means of accommodating possible future broad specification fuels. The three advanced double annular combustor concepts consisted of (1) a concept employing high pressure drop fuel nozzles for improved atomization, (2) a concept with premixing tubes in the main stage, and (3) a concept with the pilot stage on the inside and the main stage on the outside, which is the reverse of the other two concepts. All of the advanced concepts show promise for reduced sensitivity to fuel hydrogen content. Some hardware problems were encountered, but these problems could be quickly resolved if refinement tests were conducted. The design with the premixing main stage was selected for a parametric test because of its low NOx emissions level, carbon free done, and very low dome temperatures which were essentially independent of fuel type. The other advanced designs also had low dome temperatures. The premixing dome design liner temperatures exhibited less sensitivity to fuel type than did the base-line combustor, although more sensitivity than observed for concept 1. The inner liner hot spot and the observed smoke results for the premixing design suggest that the fuel-air mixture was not as uniform as desired. M.G.

N80-29312

The effects of select fuel property variations on two major engine classifications are summarized. Thirteen refined and blended fuels were used which exhibited significant variations in hydrogen content, aromatic type, initial boiling point, final boiling point, and viscosity. Trends were very similar but the degree of fuel sensitivity was not constant. For both systems the dominant fuel property during high pressure operation was found to be fuel hydrogen content. For operation at low pressure test points the fuel volatility and viscosity became the dominant fuel properties for both systems. Aromatic type and final boiling point did not significantly affect combustion data. Correlations of other fuel properties with these and other performance parameters are presented. E.D.K.

N80-28314

A program for the determination of fuel property effects on aircraft gas turbine engine mainburners and turbines is discussed. The six engines selected as test candidates are the J79, J85, J57, F30, TF39, and F100. Fuels selection is the responsibility of the contractors with two fuels as exceptions. The petroleum JP-4 is to be used as a baseline in all tests. The shale JP-4 is to be used in nearly all tests. Fuel properties are to be correlated with combustion system performance parameters. In addition, life predictions are to be made for combustor and turbine hardware. These predictions are to be based on a typical mission for each system, measured metal temperatures and temperature gradients, and oxidation/corrosion effects. E.D.K.

N80-29315

The impact of the use of broadened specification fuels on combustor design was investigated. Particular emphasis was placed on establishing the viability of various combustor modifications to permit the use of broadened specification fuels while meeting exhaust emissions and performance specifications and maintaining acceptable combustor operational and durability characteristics. Three different combustor designs were evaluated. Various design modifications on the operating capability of each of the combustor concepts with experimental, reference broadened specification fuel modifications that were evaluated included perturbation of the combustor airflow schedules to alter local stoichiometry and reaction time histories to the fuel injection system, and in line cooling including the use of thermoelectric cooling and/or advanced cooling concepts. R.C.T.

N80-29316

The use of broad specification fuels in aircraft turbine engine combustion systems was examined. Three different
combustor design concepts were evaluated for their ability to use broad specification fuels while meeting several specific emissions, performance, and durability goals. These combustor concepts covered a range from those having limited complexity and relatively low technical risk to those having high potential technical risk for achieving all of the program goals at the expense of increased risk.

R.C.T.

ATOMICIZATION OF BROAD SPECIFICATION AIRCRAFT FUELS

The atomization properties of liquid fuels for the potential use in aircraft gas turbine engines are discussed. The significance of these properties are addressed with respect to the ignition and subsequent combustion characteristics of the fuel spray/air mixture. It is shown that the fuel properties which affect the atomization behavior (viscosity, surface tension, and density) are less favorable for the broad specification fuels as compared to those for conventional fuels.

R.C.T.

BOAT FORMATION AND BURNOUT IN FLAMES

The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

R.C.T.

FUEL PROPERTY EFFECTS IN STIRRED COMBUSTORS

Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation relevant to gas turbine combustors.

R.C.T.

EFFECT OF FUEL MOLECULAR STRUCTURE ON Soot FORMATION IN GAS-TURBINE COMBUSTION

The effect of fuel variations at the same hydrogen content on the formation of soot in a gas turbine combustor was studied. Six fuels were burned to a combustor over a matrix of about 1800 kPa (5-18 atm) pressure and 500-1000 K burner inlet temperature; fuel-air ratios were varied from 0.008 to 0.024. Flame radiation measurements were made through a sapphire window toward the end of the primary zone. The hydrogen content of the six test fuels ranged from 12.80 to 12.85%. Five fuels emphasized hydrocarbon types: (mono, di, and tricyclic), naphthenes (decalin) and partially hydrogenated aromatics (tetralin); the sixth fuel emphasized final boiling point.

R.C.T.

EXPERIMENTAL STUDY OF TURBINE FUEL THERMAL STABILITY IN AN AIRCRAFT FUEL SYSTEM SIMULATOR

Avail: NTIS HC A11/MF A01 CSCL 21D

The thermal stability of aircraft gas turbine fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the aging tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

R.C.T.

Naval Air Propulsion Test Center, Trenton, N.J.

MECHANISMS OF NITROGEN HETEROCYCLE INFLUENCE ON TURBINE FUEL STABILITY

Avail: NTIS HC A11/MF A01 CSCL 21D

Lewis bases were extracted from a Utah COED syncrude via ligand exchange. Addition of this extract to Jet A at levels as low as 5 ppm N produced deterioration of stability in both JFTOT and accelerated storage tests. The lower stability fuel with a breakdown of 240°C was first stressed at a constant temperature. After repeating this procedure at several different temperatures, an Arrhenius plot was drawn from the data. The correlation coefficient and the energy of activation were calculated to be 0.97 and 8 kcal/mole respectively. Two other fuels having breakpoint temperatures of 271°C and 285°C were also studied in a similar manner. A straight line was drawn through the data at a slope equivalent to the slope of the lower stability fuel. The deposit formation rates for the three fuels were determined at 260°C, and a relative deposit formation rate at this temperature was calculated and plotted as a function of the individual fuel's breakpoint temperature.

R.C.T.

Boeing Military Airplane Development, Seattle,
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyzer code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

E.D.K.
systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid sphere/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium.

The costs were calculated utilizing analytical process models and systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid sphere/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium.

ENERGY EFFICIENT ENGINE

(Contract NAS3-20643)

(NASA-CR-159685; R79AE5652) Avail: NTIS

HC A06/MP A01 CSCL 21E

The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (EEE) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that met the goal of the E3 Project.

In the first practical application of laser anemometry to an actual gas turbine engine combustor, the mean velocity and turbulent intensity profiles were measured in a steady-flow combustion rig across an annulus simulating a turbine inlet to establish a basis for comparison with similar measurements to be made in an operating engine and to confirm current turbine aerodynamics and heat transfer design assumptions. It was necessary to develop a new experimental technique for traversing the annulus due to differential thermal expansion of the cantilevered combustion rig and a new computer-graphics analysis technique for analyzing the velocity histograms due to the high background light intensity. The axial mean velocity and turbulent intensity were uniform across the annulus under all operating conditions and the flow had little or no swirl component. The isothermal mean velocity was doubled by the burning of fuel, however, the isothermal turbulent intensity was relatively unaffected.

Results of NASA sponsored acoustic tests of three 2 ft. diameter models of the Prop-Fan (a small diameter, highly loaded, many-bladed variable pitch advanced turboprop) are presented. The highly swept model designed for noise reduction produces substantially less near field noise at simulated 0.8 Mach number cruise conditions than the unswepf or slightly swept models. It also produces less far field noise at conditions simulating takeoff and landing. The noise reduction mechanism is discussed. Correlation between harmonic noise measurements and theoretical predictions and between measured and predicted acoustic pressure pulse is good. Shadowgraph measurements which show the location of bubble associated wave patterns were obtained. Predicted and measured wave locations show good general agreement. Full scale near and far field noise is predicted.

The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed. S.D.

Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.

This paper describes the results of a study in which a systematic approach has been taken in studying the effect of selected propeller parameters on the character and magnitude of propeller noise. Four general aviation aircraft were chosen, i.e., a Cessna 172, Cessna 210, Cessna 441, and a 19 passenger commuter concept, to provide a range in flight velocity, engine horsepower, and gross weight. The propeller parameters selected for examination consisted of number of blades, rpm reduction, thickness/chord reduction, activity factor reduction, proplets, airflow improvement, sweep, position of maximum blade loading and diameter reduction.
08 AIRCRAFT STABILITY AND CONTROL
Includes aircraft handling qualities, piloting, flight controls, and autopilots

N80-29369 National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
SINGLE-STAGE ELECTROHYDRAULIC SERVOSYSTEM FOR ACTUATING ON AIRFLOW VALVE WITH FREQUENCIES TO 500 HERTZ
(NASA TP-1678, E-252) Avail NTIS HC A03/MF A01 CSCL C1C

An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made. R K G

46
09 RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

For related information see also 14 Ground Support Systems and Facilities (Space).

SELECTED DATA FROM A TRANSONIC FLEXIBLE WALLED TEST SECTION Semiannual Progress Report

S. W. D. Wolf Sep. 1980 108 p refs

(Grant NsG-7172) (NASA-CR-159360) Avail: NTIS HC A06/MF A01 CSCL 14B

Twenty four test runs of the Transonic Self-Streamlining Wind Tunnel were performed with the flexible walls 'streamlined' around a two dimensional section of four inch chord, over the Mach number range 0.3 to 0.89. Relevant wall and model data for the streamlined cases are presented.

L.F.M.
The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.

This paper presents the results of a study to determine the directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions of the next three decades in the most cost-effective manner. Discussed are the mission set requirements, state-of-the-art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost-optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system-level electric propulsion parameters. It is found that the efficiency-specific impulse characteristic generally has a more significant impact on overall costs than specific masses or costs of propulsion and power systems. (Author)

The program reviewed in the present paper has provided information of the reduced-gravity behavior of fluids, thermal control of cryogenic tankage, and fluid management system design. The studies are currently shifting from the utilization of in-house experimental facilities to the development of Spacelab experiments. The cryogenic fluid management experiment, currently undergoing detailed design, is expected to provide an orbital evaluation of a subcritical liquid hydrogen storage and supply system, as part of the Shuttle/Spacelab program. Efforts are continuing to develop computer techniques for simulating reduced-gravity fluid dynamic processes.

V.P.

48
14 GROUND SUPPORT SYSTEMS
AND FACILITIES (SPACE)
Includes launch complexes, research and production facilities, ground support equipment, mobile transporters, and simulators.
For related information see also 09 Research Support Facilities (Air).

A80-13308 # An electric propulsion long term test facility.

An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m vacuum chamber material. An array of cryopanes collects sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shake-down test of 500 hours, and facility performance during the first year of testing are presented. (Author)

N80-27403# General Dynamics/Convair, San Diego, Calif.
CONCEPTUAL DESIGN OF TWO-PHASE FLUID MECHANICS AND HEAT TRANSFER FACILITY FOR SPACELAB
B. F. North and M. E. Hill Jun. 1980 190 p. refs
(Contract NAS3-21750)
HC A09/MF A01 CSCL 14B

Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined. (Author)

49
15 LAUNCH VEHICLES AND SPACE VEHICLES

Includes boosters, manned orbital laboratories, reusable vehicles, and space stations.

STUDY OF ADVANCED COMMUNICATIONS SATELLITE SYSTEMS BASED ON SS-FDMA

John Kiesling, May 1980 359 p
(Contract NAS3-21746)
HC A16/MF A01 CSCL 228

A satellite communication system based on the use of a multiple contiguous beam satellite antenna and frequency division multiple access (FDMA) is studied. Emphasis is on the evaluation of the feasibility of SS (satellite switching) FDMA technology, particularly the multiple, contiguous beam antenna, the onboard switch and channelization, and on methods to overcome the effects of severe Ka band fading caused by precipitation. This technology is evaluated and plans for technology development and evaluation are given. The application of SS-FDMA to domestic satellite communications is also evaluated. Due to the potentially low cost Earth stations, SS-FDMA is particularly attractive for thin route applications up to several hundred kilobits per second, and offers the potential for competing with terrestrial facilities at low data rates and over short routes. The onboard switch also provides added route flexibility for heavy route systems. The key beneficial SS-FDMA strategy is to simplify and thus reduce the cost of the direct access Earth station at the expense of increased satellite complexity.

E.D.K.

Contract No. NAS3-216362. (AIAA 80-0582)

A baseline technique is described for implementing a direct-to-user (DTU) satcom communications system at 20/30 GHz transmission frequency. The purpose of this application is to utilize the high capacity frequency spectrum at K(A) band for communications among thousands of small terminals located at or close to a customer's facility. The baseline DTU system utilizes a TDMA method of communications with OQPSK modulation. Twenty-five coverage beams from a geosynchronous orbit spacecraft provide full coverage of CONUS. Low cost terminals are limited to less than 4.5 meters diameter. The impact of rain attenuation on communications availability is examined. Other techniques including satellite switched antenna beams are outlined and critical K(A)-band technology developments are identified.

(Author)
16 SPACE TRANSPORTATION

Includes passenger and cargo space transportation e.g., shuttle operations, and rescue techniques.
For related information see also 03 Air Transportation and Safety and 85 Urban Technology and Transportation.

NBS-20304* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
LaRC REDUCED GRAVITY FLUID MANAGEMENT TECHNOLOGY PROGRAM
John C. Aydelott and E. Patrick Symons (1980) 19 p. refs
(NASA-TM-81450, E-371) Avail. NTIS HC A02/MF A01 CSCL
22A
A survey of the reduced gravity fluid management technology program is presented. Information on reduced gravity fluid behavior, techniques for thermal control of cryogenic tankage, and design for fluid management systems are discussed. The development of Spacelab experiments, propellant management systems for orbit transfer vehicles, and computer techniques for simulating reduced gravity fluid dynamic processes is reported.
A.W.H.

The experimental Communications Technology Satellite (CTS), also called Hermes, uses a high power transmitter and 12 and 14-GHz frequencies for wideband (two- and one way television) and narrowband (voice, data) communications. In the joint program, both Canada and the United States have conducted a variety of communications experiments. This report concentrates on U.S. CTS experiments and miniexperiments that use ground antennas from 0.6 to 5 meters in diameter. The U.S. CTS experiments program is summarized in this report. The use of CTS for simulated and actual disasters is summarized.
(Author)
17 SPACECRAFT
COMMUNICATIONS, COMMAND
AND TRACKING

Includes telemetry; space communications networks;
astronavigation; and radio blackout.
For related information see also 04 Aircraft Communica-
tions and Navigation and 32 Communications.

N80-21412# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

A DIGITALLY IMPLEMENTED COMMUNICATIONS EXPERI-
MENT UTILIZING THE COMMUNICATIONS TECHNOLOGY
SATELLITE, HERMES

(NASA-TM-81452, E-379) Avail. NTIS HC A02/MF A01 CSDL

Developments which will reduce the costs associated with
the distribution of satellite services are considered with emphasis
on digital communication link implementation. A digitally
implemented communications experiment (DICE) which demon-
strates the flexibility and efficiency of digital transmission of
television video and audio, telephone voice, and high-bit-rate
data is described. The utilization of the DICE system in a full
duplex teleconferencing mode is addressed. Demonstration
teleconferencing results obtained during the conduct of two
sessions of the 7th AIAA Communication Satellite Systems
Conference are discussed. Finally, the results of link characteriza-
tion tests conducted to determine (1) relationships between the
Hermes channel 1 EIRP and DICE model performance and
(2) channel spacing criteria for acceptable multichannel operation,
are presented. J.M.S.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE

Includes spacecraft thermal and environmental control; and attitude control.

For life support systems see 54 Man/ System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance and 29 Structural Mechanics.

N80-18200* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CONFIGURATION EFFECTS ON SATELLITE CHARGING RESPONSE
(NASA-TM-81397; E-307) Avail: NTIS HC A02/MF A01 CSCL 22B

The response of various spacecraft configurations to a charging environment was investigated using a Satellite Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively in the formation of geosynchronous altitudes. Both a standard operating voltage (+ or -150 volts on solar arrays) and direct-drive (+ 1200 volts charging.

M.M.M.

N80-18095* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NASCAP MODELLING COMPUTATIONS ON LARGE OPTICS SPACECRAFT IN GEOSYNCHRONOUS SUBSTORM ENVIRONMENTS
(NASA-TM-81395; E-305) Avail: NTIS HC A02/MF A01 CSCL 22B

The NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced spacecraft contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface. J.M.S.

N80-32428* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MODELLING OF ENVIRONMENTALLY INDUCED DISCHARGES IN GEOSYNCHRONOUS SATELLITES
(NASA-TM-81598; E-581) Avail: NTIS HC A02/MF A01 CSCL 22B

The NASCAP computer code was used to compute the charging and discharging characteristics of a typical communication satellite in geosynchronous orbit. For the case of a severe substorm satellite surface differential charging in sunlight was found to be substantially less than that required to produce discharges in ground simulation studies. A discharge process was postulated involving discharges triggered at edges (or imperfections) followed by discharges to space. The characteristics of such discharges was parametrically varied to evaluate the possible effects on the satellite. Results indicated that discharge characteristics inferred from satellite monitors could be caused by predicted space discharges, that single cell discharges to space can reduce surface potential over entire satellite, and that low density electron trajectory computations indicate that discharge generated electrons do not return to the satellite by long trajectories. Current transients predicted do not agree with available ground simulation results indicating that additional work must be done both analytically and experimentally to understand and fully explain these discrepancies. R.C.T.

The effects of photoelectron space charge and current density on differentially charged spacecraft are studied. The steady-state potentials of a sunlit cylinder are calculated using a two-dimensional computer code with a fully self-consistent treatment of space charge and an effective surface conductivity treatment of photoelectron currents. It is found that under conditions of strong differential charging the results do not differ greatly from NASCAP results, which neglect photosheath space charge and currents. (Author)

A study of the charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, is conducted. The NASA Charging Analyzer Program (NASCAP) is used. An electric field criterion limit of 1.5 x 10^5 volts/cm is used to initiate discharges and transfer of 67% of the stored charge is used in this study, based on ground test results. The substorm characteristics are arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It has been found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the spacecraft environment.

The paper uses the NASCAP computer code to compute voltage distributions around a Solar Electric Propulsion (SEP) spacecraft as it encounters an idealized geomagnetic substorm environment. Consideration is given to both a standard operating voltage and direct-drive voltage configurations. The computations are presented without thruster operations as well as with a simplified, simulated thruster-on representation for direct-drive configuration only. Finally, it is stressed that the computations seeking possible areas of concern in the spacecraft design are exploratory.

The satellite surface potential monitor (SSPM) has been developed for the P78-2 SCATHA (Spacecraft Charging At The High Altitudes) satellite to determine the response of selected spacecraft materials to charged-particle environmental fluxes. Since the monitor infers total surface voltages from a single point on the interior side of insulators, a ground simulation program was undertaken to develop analytical techniques to model the monitors and to obtain an experimental calibration of the relationship between the flight measurement techniques and actual measurements. The experimental testing was conducted using monoenergetic electron beams irradiating samples in the dark. An analytical computer model was developed in the NASCAP (NASA Charging Analyzer Program) code. The analytical model material properties for Kapton that controlled backscatter and secondary yield were adjusted to obtain a single set of values that produced reasonable fits for both voltages and currents. The analytical techniques developed in the ground technology investigation have been applied to space flight conditions. Predictions were compared with limited flight data. The agreement is very good indicating that the technique, and NASCAP, can be used to predict spacecraft material charging behavior. Details of the testing, the analytical modeling technique and flight data comparisons are presented.

Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularly disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite.

The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged paricles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.

This paper describes the cryogenic fluid management experiment (CFME) as a Shuttle payload. The experiment includes a liquid hydrogen tank containing a fine-mesh screen acquisition device, and a thermal control system consisting of a thermodynamic vent system to intercept heat leak to the hydrogen tank and control tank pressure. Engineering data obtained will be used to establish design criteria for subcritical cryogenic storage and supply tankage.

This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

A study is presented in which the sensitivity of predicted equilibrium potential to changes in secondary electron yield parameters is investigated using MATCHG, a simple charging code which
incorporates the NASCAP material property formulations. It is found that equilibrium potentials is a sensitive function of one of the two parameters specifying secondary electron yield due to proton impact and of essentially all the parameters specifying yield due to electron impact. In addition, it is found that information on the electron generated secondary yield parameters can be obtained from mononenergetic beam charging data if charging rates as well as equilibrium potentials are accurately recorded. M.E.P.

A satellite experiment, designed to measure potential charging of typical thermal-control materials at near-geosynchronous altitude, was flown as part of the Spacecraft Charging at High Altitudes program. Direct observations of charging of typical materials in a natural charging event (greater than or equal to 5 keV) are presented. The results show some features which differ significantly from previous laboratory simulations of the environment. (Author)

The concept of active control of spacecraft charging by charged particle emission is described. Active potential control experiments using the ATS-5 and ATS-6 geostationary spacecraft are discussed, and results of these experiments are presented. Previously reported results are summarized, and a guide to reports on NASA Spacecraft Environment Section, Cleveland, Ohio), In: Space systems and their interactions with earth’s space environment. (A80-46879 20-18) New York, American Institute of Aeronautics and Astronautics, Inc., 1980, p. 318-336. 9 refs.

A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA are also traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials. (Author)

Large, high-voltage space power systems are being proposed for future space missions. These systems must operate in the charged-particle environment of space, and interactions between this environment and the high-voltage surfaces are possible. Ground simulation testing has indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 V, it has been found that the dielectrics contribute to discharges. Using these experimental results a large, high-voltage power system operating in geosynchronous orbit was analyzed with the NASCAP code. Results of this analysis indicated that very strong electric fields exist in these power systems. A technology investigation is required to understand the interactions and develop techniques to alleviate any impact on power system performance. (Author)

Charged and neutral particle transport from an 8-cm mercury ion thruster to the surfaces of the P80-1 spacecraft, the Teal Ruby sensor and the ECOM-501 sensor was examined. Evaluation of particle transport modes utilized both laboratory measurements and analysis. Line-of-sight particle transport considered deposition of Group II (high energy-high angle mercury charge exchange) ions and neutral mercury on solar array surfaces. Nonline-of-sight transport modes studied were redissipation/interception of mercury ions in magnetic fields and fraction of low energy mercury charge exchange (Group IV) ions by local electric fields. (Author)

A computer model of the three-dimensional sheath formation and plasma current collection by high voltage spacecraft has been developed. By using new space charge density and plasma collection algorithms, it is practical to perform calculations for large, complex spacecraft. The model uses NASCAP compatible objects and geometries. Results indicate that ion focusing observed in the laboratory during high voltage collection experiments is probably due to voltage gradients on the collecting surfaces. (Author)
20 SPACECRAFT PROPULSION AND POWER

Includes main propulsion systems and components e.g., rocket engines, and spacecraft auxiliary power sources.

For related information see also 27 Aircraft Propulsion, 28 Propellants and Fuels, and 44 Energy Production and Conversion

N80-13169* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
ION THRUSTER COMPONENT TESTING

(NASA-TM-79287; E-230) Avail: NTIS HC A02/MF A01 CSCL 21C

Electron bombardment thrusters, under development to provide both auxiliary and primary propulsion functions for a large variety of space missions are tested. Thruster design verification which requires life tests of durations of the order of the time anticipated in space applications, are discussed. The life time and reliability of an electron bombardment thruster is dependent upon the performance of several critical components including cathodes, vaporizers, and isolators. The performances of the cathode, vaporizer, and propellant isolaters during fatigue analyses are examined.

A.W.H.

N80-13163* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
DESIGN AND EVALUATION OF HIGH PERFORMANCE ROCKET ENGINE INJECTORS FOR USE WITH HYDROCARBON FUELS

(NASA-TM-79319; E-275) Avail: NTIS HC A02/MF A01 CSCL

The feasibility of using a heavy hydrocarbon fuel as a rocket propellant is examined. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. Experiments were done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in) to 55.9 cm (22 in). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by reaming each injector several times to provide test data over a range of injector pressure drop.

J.M.S.

N80-14182* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
SUPERCHARGED TOPPING ROCKET PROPELLANT FEED SYSTEMS

A rocket propellant feed system utilizing a bleed turbopump to supercharge a topping turbopump is presented. The bleed turbopump is of a low pressure type to meet the cavitation requirements imposed by the propellant storage tanks. The topping turbopump is of a high pressure type and develops 60 to 70 percent of the pressure rise in the propellant.

Official Gazette of the U.S. Patent and Trademark Office

N80-15204+ National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
ANALYSIS OF GaAs AND Si SOLAR CELL ARRAYS FOR EARTH ORBITAL AND ORBIT TRANSFER MISSIONS

(NASA-TM-81383; E-291) Avail: NTIS HC A02/MF A01 CSCL 21C

Silicon and gallium arsenide arrays were studied and compared for low earth orbit (LEO), geosynchronous orbit (GEO), and GEO to GEO electric propulsion orbit transfer missions. The sensitivities of total cost to parameters such as mission duration, array cost, cover-glass thickness, and concentration ratio were determined along with cost tradeoffs between silicon and gallium arsenide arrays for selected mission classes. Results indicate that development of the technology for low cost, light weight concentrators should be increased and that cost reduction efforts for gallium arsenide cells be pursued.

R.C.T.

N80-16097+ National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
UPPER STAGES UTILIZING ELECTRIC PROPULSION
David C. Byers 1980 21 p refs Presented at the JANNAF Propulsion Meeting, Monterey, Calif., 11-13 Mar. 1980

(NASA-TM-81412; E-330) Avail: NTIS HC A02/MF A01 CSCL 21C

The payload characteristics of geocentric missions which utilize electron propulsion on thruster systems are discussed. A baseline GEO to LEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed method which provided a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.

A.W.H.

N80-17198+ National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
ANALYTICAL INVESTIGATION OF TWO HYDROGEN OXYGEN ROCKET ENGINE SYSTEMS FOR LOW-THRUST APPLICATION

(NASA-TM-81420; E-343) Avail: NTIS HC A02/MF A01 CSCL 21H

Two hydrogen oxygen rocket engine system concepts were analyzed parametrically over a thrust range from 100 to 1000 pounds and a chamber pressure range from 175 to 1000 psia. Both concepts were regeneratively cooled with hydrogen and were pumped by electric motor driven positive displacement pumps. Electric power was provided by either a turboalternator (turboalternator concept) or some means external to the engine system (auxiliary power concept). The turboalternator concept is discussed. The computer program used to conduct the analyses along with the design characteristics of the major engine system components is described. The feasible design range of the systems over the parametric range of thrust is discussed in terms of allowable chamber pressure. Engine system estimated performance, mass, and dimensional envelope parametric data within the feasible design range are presented.

A.W.H.

N80-18098+ National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
ECONOMIC ANALYSIS OF THE DESIGN AND FABRICATION OF A SPACE QUALIFIED POWER SYSTEM
Gregory Ruselowski Jen. 1980 25 p refs

(NASA-TM-81418; E-339) Avail: NTIS HC A02/MF A01 CSCL 108

An economic analysis was performed to determine the cost.
of the design and fabrication of a low Earth orbit, 2 kW photovoltaic/battery, space qualified power system. A commercially available computer program called PRICE (programmed review of information for costing and evaluation) was used to conduct the analysis. The sensitivity of the various cost factors to the assumptions used is discussed. Total cost of the power system was found to be $2.46 million with the solar array accounting for 70.5%. Using the assumption that the prototype becomes the flight system, 77.3% of the total cost is associated with manufacturing. Results will be used to establish whether the cost of space qualified hardware can be reduced by the incorporation of commercial design, fabrication, and quality assurance methods.

J.M.S.

N80-23385$ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COOLING OF HIGH PRESSURE ROCKET THRUST CHAMBERS WITH LIQUID OXYGEN

An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments. A total of four thrust chambers with throat diameters of 0.066 on were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot heated tube experiments; A total of four thrust chambers with supercritical oxygen heat transfer correlation developed from parametric data within the feasible design. For individual titles, see N80-30382 through N80-30385.

R.C.T.

J.M.S.

N80-30382$ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ANALYTICAL INVESTIGATION OF TWO HYDROGEN-OXYGEN ROCKET ENGINE SYSTEMS FOR LOW-THRUST APPLICATION
Dean D. Scheer In APL The 1980 JANNAF Propulsion Meeting, Vol. 5 Mar. 1980 p 1-20 refs (For primary document see N80-30381 21-20) Avail: Issuing Activity CSCL 21H

Two hydrogen-oxygen rocket engine system concepts were analyzed parametrically over a thrust range from 100 to 1000 pounds and a chamber pressure range from 175 to 1000 psia. Both concepts were regeneratively cooled with hydrogen and were pumped by electric motor driven positive displacement pumps. Electric power was provided by either a turboalternator or a turbogenerator. The computer program used to conduct the analyses along with the design characteristics of the major engine system components are briefly described. The feasible design range of the systems over the parametric range of thrust is discussed in terms of allowable chamber pressure considering the constraints of thrust chamber cooling and cycle power. Engine system estimated performance, mass, and dimensional envelope parametric data within the feasible design range are presented.

Author

N80-30383$ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

REDUCED GRAVITY FLUID MANAGEMENT TECHNOLOGY PROGRAM

An overview of studies addressing reduced gravity fluid management problems using scale model propellant tanks in drop towers that provided up to five seconds of reduced gravity test time is given. The Cryogen Fluid Management Experiment designed to provide an orbital evaluation of a subcritical liquid hydrogen storage and supply as part of the shuttle/Spacelab program is described. An experiment to study orbital transfer of liquids and a Spacelab facility capable of housing multiple fluid dynamic and heat transfer experiments are also discussed. Progress in the analytical evaluation of propellant management systems for both low and high thrust orbit transfer propulsion systems and the development of computer techniques for simulating reduced gravity fluid dynamic processes is reported.

J.M.S.

N80-30384$ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

UPPER STAGES UTILIZING ELECTRIC PROPULSION

The payload capabilities of upper stages using electric propulsion for a LEO to GEO orbit transfer mission are presented. The impact on payloads of total mass in LEO, thrusting (trip) time, propellant type, specific impulse, and specific force characteristics was evaluated. Dependent upon detailed assumptions, electric stages were found capable of delivering payloads in thrusting time less than 5 days with payloads always initially increasing rapidly with increasing thrusting times. For the shorter thrusting (trip) times the payloads increased with increasing propellant mass and decreasing specific impulse. At very long trip times, however, the payload increased with decreasing propellant mass and increasing specific impulse. Variation of the specific mass of the power source between 5 and 30 kg/kW caused the minimum trip times to vary about a factor of three and at short trip times strongly affected the electric stage payload capabilities.

N80-30485 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

LARGE SPACE SYSTEMS/LOW-THRUST PROPULSION TECHNOLOGY

The potentially critical interactions that occur between propulsion, structures and materials, and controls for large spacecraft, are considered, the technology impacts within these fields are defined and the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization. For individual titles, see N80-31450 through N80-31471.

N80-31449$ National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ELECTRIC PROPULSION TECHNOLOGY

The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization. For individual titles, see N80-31450 through N80-31471.

A.R.H.
CHEMICAL PROPULSION TECHNOLOGY

An overview of NASA's low thrust liquid chemical propulsion program is presented with particular emphasis on thrust system technology in the ten to one thousand pound thrust range. Key technology issues include high performance of cooled low thrust engines, small cryogenic pumps, multiple starts-shutdowns (10) with slow ramps (approximately 10 seconds); thrust variation - 4/1 in flight and 20/1 between flights, long life (100 hours), improved system weight and size, and propellant selection. A.R.H.

SYNCHRONOUS ENERGY TECHNOLOGY

Robert C. Finke in its Synchronous Energy Technol. Sep. 1980 p 1-7 (For primary document see N80-33465 24-20)

The power program in NASA and DOD are discussed with emphasis on the technology for future large space power systems. The structure of the synchronous energy technology program is described and the technologies required for future geosynchronous power stations are defined. The output of the program is to be a series of data design documents to provide design information and to transfer the technology to the involved community. R.C.T.

PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT FOR SYNCHRONOUS ORE

Henry W. Brandhorst in its Synchronous Energy Technol. Sep. 1980 p 45-56 (For primary document see N80-33465 24-20)

Accomplishments and expected benefits are summarized for the following efforts: (1) achieving silicon solar cell efficiency of 18% at 200 micron m to 250 micron m thickness; (2) reducing silicon cell radiation damage in geosynchronous orbit after 10 years to less than 15%; (3) demonstrating coplanar back contact 50 micron m thick silicon solar cells with efficiency of 14%; (4) demonstrating the feasibility of a radiation tolerant GaAs concentrator cell; (5) achieving 30% efficient photo conversion in the laboratory; (6) defining candidate concepts for 50% efficient electromagnetic conversion; and (7) demonstrating the technology for protecting arrays capable of > 300W/kg after 10 years in geosynchronous orbit. A.R.H.

Sputtering in mercury ion thrusters. M. A., Oct, 30-Nov, 1, 1979, AIAA Paper 79-2041, 13 p. 48 refs.

The use of advanced electric propulsion systems will provide cost and performance benefits for future energetic space missions. A methodology to predict the characteristics of advanced electric propulsion systems was developed and programmed for computer calculations to allow evaluation of a broad set of technology and mission assumptions. The impact on overall thrust system characteristics was assessed for variations of propellant type, total accelerating voltage, thruster area, specific impulse, and power system approach. The data may be used both to provide direction to technology emphasis and allow for preliminary estimates of electric propulsion system properties for a wide variety of application. (Author)

Sputtering in mercury ion thrusters. M. A., Oct, 30-Nov, 1, 1979, AIAA Paper 79-2041, 13 p. 48 refs.

Ground-based tests of Hg ion thrusters have identified sputter erosion of thruster components as one of the main life limiting phenomena. Subsequent measurements have revealed that sputtering rates can be affected by background gases at pressures as low as 10 to the -10th torr. With the recent interest in thin film technology, sputtering in the presence of reactive gases has been studied in great detail. This paper presents the results of many of those studies and applies them to the sputtering of electric thrusters. A model, which assumes that chemisorption is the dominant mechanism, is applied to the sputtering rate measurements of the screen grid of a 30-cm thruster in the presence of nitrogen. The model utilizes inputs from a

Including photovoltaics, thermal management, and energy storage, and power management are addressed for individual tiles, see N80-33466 through N80-33475.

ADVANCED CONCEPTS

Bruce A. Banks in its Large Space Systems/Low-Thrust Propulsion Technol. Jul. 1980 p 37-106 (For primary document see N80-31449 22-20)

Packing studies discussed relate to shuttle cargo bay constraints, low thrust engine profile and performance, large space frame concept and weight, low thrust vehicles stowed in synchronous energy technology areas. A.R.H.

PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT FOR SYNCHRONOUS ORBIT.

Lewis Research Center, Cleveland, Ohio.

PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT FOR SYNCHRONOUS ORBIT.

Lewis Research Center, Cleveland, Ohio.

PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT FOR SYNCHRONOUS ORBIT.

Lewis Research Center, Cleveland, Ohio.

PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT FOR SYNCHRONOUS ORBIT.

Lewis Research Center, Cleveland, Ohio.
variety of experimental and analytical sources. The model of vaporization effectiveness is described and compared to other methods of predicting performance of a heavy hydrocarbon in terms of fuel and to experimental test results. The work was done at a chamber pressure of 4137 KN-m (400 psi) with H-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in.) to 65.9 cm (26 in.). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by "tuning" each injector several times to provide test data over a range of injector pressure drop. [Author]

Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation without a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster. [Author]

The payload capabilities of upper stages using electric propulsion for a LEO to GEO orbit transfer mission are discussed. Payloads are calculated using an established methodology which employs assumptions concerning state-of-the-art electric propulsion technology. The effects on payloads are examined for variations of total mass in LEO (MLEO), thrusting (trip) times, propellant type, specific impulse, and power source specific mass. It is found that the ratio of payload masses to total mass in LEO are intensive to MLEO, which allows a highly condensed presentation of the overall payload capability. Electric stages are shown capable of delivering payloads in thrusting times less than 50 days with the payloads increasing rapidly with increase in thrusting times. Payload capabilities exceeding those attainable with chemical propulsion are possible using state-of-the-art electric propulsion technology. L.M.

This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmodynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described. [Author]

The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation-damaged n(+)/p silicon solar cell. It is reported that this responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400°C.

Two hydrogen-oxygen rocket engine system concepts were analyzed parametrically over a thrust range from 100 to 1000 pounds and a chamber pressure range from 125 to 1000 psia. Both concepts were regenerative cooled with hydrogen and were pumped by electric motor driven positive displacement pumps. Electric power was provided by either a turboalternator (turbo-alternator concept) or from some means external to the engine system (auxiliary power concept). The computer program used to conduct the analyses along with the design characteristics of the major engine system components are briefly described. The feasible design range of the systems over the parametric range of thrust is discussed in terms of allowable chamber pressure considering the constraints of thrust chamber cooling and cycle power. Engine system estimated performance, mass, and dimensional envelope parametric data within the feasible design range are presented.

(Author)

An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile tool for predicting start basket refilling with settled fluid. A test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid, the model is a versatile tool for predicting start basket refilling with settled fluid. A test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid, the model is a versatile tool for predicting start basket refilling with settled fluid.

(Author)

The paper discusses a potential application of electric propulsion to perform orbit transfer of a large spacecraft structure to geosynchronous orbit (GEO) from LEO utilizing a nuclear reactor space power source in the spacecraft on a shared basis. The discussions include spacecraft, thrust system, and nuclear reactor space power system concepts. Emphasis is placed on earth orbit payload arrangements, spacecraft launch constraints, and spacecraft LEO assembly and deployment sequences.

(Author)

A80-38992 * / Cooling of high pressure rocket thrust cham-
Teal Ruby sensor and the ECOM 501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to determine line-of-sight and nonlinear light output from various spacecraft surfaces, plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

R.C.T.

N80-13158# Hughes Research Labs., Malibu, Calif.

R. L. Poeschel and J. R. Beattie Nov. 1979 186 p refs
(Contract NAS3-21040) (NASA-CA-159688) Avail: NTIS HC A09/MF A01 CSCL 016

An investigation of the 30-cm engineering-model-thruster technology with emphasis placed on the development of models for understanding and predicting the operational characteristics and wear-out mechanisms of the thruster as a function of operating or design parameters is presented. The task studies include:
1. the wear mechanisms and wear rates that determine the useful lifetime of the thruster discharge chamber; 2. cathode lifetime as determined by the depletion of barium from the barium-aluminate-impregnated-porous-tungsten insert that serves as a barium reservoir; 3. accelerator-grid-system technology; 4. a verification of the high-voltage propellant-flow-electrical-isolator design developed under NASA contract NAS3-20395 for operation at 10-kV applied voltage and 10-A equivalent propellant flow with mercury and argon propellants. A model was formulated for predicting performance.

M.M.M.

ANALYSIS OF COMBUSTION INSTABILITY IN LIQUID FUEL ROCKET MOTORS Ph.D. Thesis
Kin-Wing Wong and M. Ventrice Nov. 1979 119 p refs
(Grant NGR-43-003-015) (NASA-CA-159733) Avail: NTIS HC A06/MF A01 CSCL 214

The development of a technique to be used in the solution of nonlinear velocity-sensitive combustion instability problems is described. The orthogonal collocation method was investigated. It found that the results are heavily dependent on the location of the collocation points and characteristics of the equations, so the method was rejected as unreliable. The Galerkin method, which has proved to be very successful in analysis of the pressure sensitive combustion instability was found to work very well. It was found that the pressure wave forms exhibit a strong second harmonic distortion and a variety of behaviors are possible depending on the nature of the combustion process and the parametric values involved. A one-dimensional model provides further insight into the problem by allowing a comparison of Galerkin solutions with more exact finite-difference computations.

A.R.H.

N80-13165# Tennessee Technological Univ., Cookeville.

STABILITY ANALYSIS OF A LIQUID FUEL ANNULAR COMBUSTION CHAMBER M.S. Thesis
G. H. McDonald Nov. 1979 151 p refs
(Grant NGR-43-003-015) (NASA-CA-159734) Avail: NTIS HC A08/MF A01 CSCL 21H

High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of oscillations. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.
and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenhanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid hydrogen injection chamber contours. Short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

The design, fabrication, and demonstration of a 1111 newton (25 lb) thrust, integrated auxiliary propulsion system (APSI) thruster for use with LH2/L02 propellants is described. Hydrogen was supplied at a temperature range of 22 to 33 K (40 to 60 °R), and oxygen from 89 to 122 K (160 to 220 °R). The thruster was designed to operate in both pulse mode and steady state modes for vehicle attitude control, space maneuvering, and as an abort backup in the event of failure of the main propulsion system. A dual sleeve, tr ansverse injection system was designed that utilizes a primary injector/combus tor where 100 percent of the oxygen and 8 percent of the hydrogen is introduced, a secondary injector/combus tor where 45 percent of the hydrogen is introduced, and a boundary layer injector that uses the remaining 45 percent of the hydrogen to cool the thrust throat/nozzle design Hot-fire evaluation of this thruster with a BLC injection distance of 2.79 cm (1.10 in.) indicated that a specific impulse value of 620 sec can be attained using a coated molybdenum thrust chamber. Pulse mode tests indicated that a chamber pressure buildup to 90 percent thrust can be achieved in a time on the order of 48 msec. Some problems were encountered in achieving ignition of each pulse during pulse trans. This was interpreted to indicate that a higher delivered spark energy level (<100 mJ) would be required to maintain ignition reliability of the plasma torch ignition system under the extreme cold conditions resulting during pulsing.

Author

A set of missions was postulated that was considered to be representative of those likely to be feasible over the next three decades. The characteristics of these missions, and their payloads, that most impact the choice/design of the requisite propulsion system were determined. A system-level model of the near-Earth transportation process was constructed, which incorporated these mission/system characteristics, as well as the fundamental parameters describing the technology/ performance of an ion bombared metallic electric propulsion system. The model was used for sensitivity studies to determine the impact of the technology descriptors/program costs, and to establish the most cost-effective directions for technology advancement. The most important factor was seen to be the costs associated with the duration of the mission, and in this turn makes the development of advanced electric propulsion systems having moderate to high efficiencies (±50 percent) at intermediate ranges of specific impulse (approximately 1000 seconds) very desirable.

Author

Two 12 cm magneto-electrostatic containment (MECS) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5 to 73 percent argon mass utilization efficiencies at discharge energies of 2.4 to 2.75 eV/ion, respectively. Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 2.20 to 2.90 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MECS thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn from the hemispherical thruster tests gave insights into the plasma processes in the MECS discharge that will aid in the design of future thrusters.

Author
One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propulsion and chemical and/or oxygen/RP-1 are discussed. These cycles include conventional propellant turbine drives, turboelectric/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling. J.M.S.

NBO-30384
Rockdyne, Canoga Park, Calif.
LEO-TO-GEO LOW THRUST CHEMICAL PROPULSION
J. M. Shoji
The 1980 JANNAF Propulsion Meeting, Vol. 5 Mar. 1980 p 35-51 (For primary document see NBO-30361 21-20)
Avail: Issuing Activity CSCL 21H

One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propulsion and chemical and/or oxygen/RP-1 are discussed. These cycles include conventional propellant turbine drives, turboelectric/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling. J.M.S.

NBO-31465
Martin Marietta Corp., Bethesda, Md.
PRIMARY PROPULSION/LARGE SPACE SYSTEM INTERACTIONS Progress Report, 29 Aug. 1979 - 27 Nov. 1980
William W. Pipes
NASA, Lewis Research Center Large Space Systems/Low-Thrust Propulsion Technol. Jul 1980 p 107-128 (For primary document see NBO-31449 22-20)
Avail: NTIS HC A15/MF A01 CSCL 21H

Three generic types of structural concepts and nonstructural surface densities were selected and compared to represent potential LSS applications. The design characteristics of various classes of large space systems that are impacted by primary propulsion thrust requirements to effect orbit transfer are identified. The effects of propulsion system thrust-to-mass ratio, thrust transients, and performance on the mass, area, and orbit transfer characteristics of large space systems were determined.

NBO-31468
General Dynamics Corp., San Diego, Calif.
LOW-THRUST VEHICLE CONCEPT STUDIES
William J. Ketchum
NASA, Lewis Research Center Large Space Systems/Low-Thrust Propulsion Technol. Jul. 1980 p 73-96 (For primary document see NBO-31449 22-20)
Avail: NTIS HC A15/MF A01 CSCL 21H

Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were studied in order to provide the required additional data to better compare new, low thrust chemical propulsion systems with other propulsion approaches such as advanced electric systems. Studies results indicate that it is cost-effective and least risk to combine the low thrust OTV and stowed spacecraft in a single 65 K shuttle. Mission analysis indicates that there are 25 such missions, starting in the 1980's. Multiple shuttles (LSS in one, OTV in another) result in a 20% increase in LSS (SBP) diameter over single shuttle launches. Synthesis and optimization of the LSS characteristics and OTV capability resulted in determination of the optimum thrust-to-weight and thrust level. For the space base radar with radial truss arms (center thrust application), the optimum thrust-to-weight is 0.1, giving a thrust of 2000 lb. For the annular truss (edge-on thrust application) the structure is not as sensitive, and thrust of 1000 lb appears optimum. For the geoplatorm, optimum T/W is 0.16 (3000 lb thrust). The effects of LSS structural material, weight distribution, and unit area density were evaluated, as were the OTV engine thrust transient and number of burns. A.R.H.

NBO-31467
Aerojet Liquid Rocket Co., Sacramento, Calif.
LOW-THRUST CHEMICAL ROCKET ENGINE STUDY
Joseph A. Mellish

Aerospace liquid rocket engines with limited performance characteristics were developed and tested that are capable of producing thrust levels commensurate with the requirements of low acceleration space transfer missions. These engines, designed for use in vehicles that are capable of supporting human missions, are intended for launch vehicles capable of supporting human missions, are intended for launch vehicles, space station propulsive systems, and in the case of a ground based test bed, for the low thrust propulsion system used in the test bed. Experimental data and predictions based on these tests are given in this report. The results of this program are of primary interest to those involved in low thrust propulsion and the design of low thrust propulsion systems and engines. A.R.H.

NBO-31458
LOW-THRUST CHEMICAL PROPULSION
James M. Shoji
Avail: NTIS HC A15/MF A01 CSCL 21H

Results from investigations leading to the definition of low thrust chemical engine concepts are described. From the thrust chamber cooling analyses, regenerative/radiation-cooled LO2/H2 thrust chambers offered the largest chamber pressure and superior cooling capability of hydrogen and its low critical pressure. Regenerative/radiation-cooled LO2/RP-1 offered the smallest maximum chamber pressure. LO2/RP-1 film/radiation-cooling was found not feasible and LO2/RP-1 film/radiation-cooling was extremely limited. The engine cycle/configuration evaluation, the engine cycle matrix was defined through the incorporation of the heat transfer results. Engine cycle limits were established with the fuel-cell power cycle achieving the highest chamber pressure; however, the fuel cell...
system weights were excessive. The staged combustion cycle achieved the next highest chamber pressure but the preburner operational feasibility was in question. M.G. NBO-31446*

LOW-THRUST CHEMICAL ORBIT TO ORBIT PROPULSION SYSTEM PROPELLANT MANAGEMENT STUDY Progress Report
Ralph H. Derghan (NASA Lewis Research Center)
287-310 refs (For primary document see NBO-31449 22-20)
Contract NAS3-21954
Avail NTIS HC A15/MF A01 CSSL 21H
Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion system weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided the total propulsion system inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and fuel pump mass. The output also includes the mass of all tanks, the mass of the insulation, engines and other components, total wet system and burnout mass: system mass fraction: total impulse and burn time. M.G.

SOLAR ROCKET SYSTEM CONCEPT ANALYSIS Final Report
Jack A. Boddy (NASA Lewis Research Center)
Large Space Systems/low-Thrust Propulsion Technol Jul 1980
311-336 (For primary document see NBO-31449 22-20)
Contract F04611-79-C-0007
Avail. NTIS HC A15/MF A01 CSSL 21H
The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MNH, and mercury ion bombardment systems. A.R.H.

STATUS OF NICKEL-HYDROGEN CELL TECHNOLOGY
Don R. Warnock (NASA Lewis Space Flight Center)
Synchronous Energy Technol. Sep 1980
97-105 (For primary document see NBO-33465 24-20)
Avail NTIS HC A07/MF A01 CSSL 10C
Nickel hydrogen cell technology has been developed which solves the storage, management, oxygen control, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 amper-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 amper-hours, and the development of multifuel common pressure vessel modules to reduce volume, cost and weight. Manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology. A.R.H.

BAFFLE APERTURE DESIGN STUDY OF HOLLOW CATHODE EQUIPPED ION THRUSTERS
John R. Böphy, Jr and Paul J. Wilbur (NASA-CR 165164)
Avail NTIS HC A05/MF A01 CSSL 21C
A simple theoretical model which can be used as an aid in the design of the baffle aperture region of a hollow cathode equipped ion thruster was developed. An analysis of the ion and electron currents in both the main and cathode discharge chambers is presented. From this analysis a model of current flow through the aperture, which is required as an input to the design model, was developed. This model was verified experimentally. The dominant force driving electrons through the aperture was the force due to the electrical potential gradient. The diffusion process was modeled according to the Boltzmann diffusion theory. A number of simplifications were made to limit the amount of detailed plasma information required as input to the model to facilitate the use of the model in thruster design. This simplified model gave remarkably consistent results with experimental results obtained with a given thruster geometry over substantial changes in operating conditions. The only perceived change in thruster performance has been a factor of two for different thruster cathode region geometries. The design usefulness was limited by this factor of two uncertainty and by the accuracy to which the plasma parameters required as inputs to the model were specified. T.M.

SOLAR R A C K
Avail. NTIS HC A15/MF A01 CSSL 21H
VALUE OF LARGE-SCALE SPACE SYSTEMS
Recent testing of the NASA Lewis Research Center/Hughes 8-cm Engineering Model Thruster (EMT) and Power Processing Unit has centered on two primary areas of investigation: Integration of porous-tungsten dispenser-type cathode inserts into the thrust chamber (replacing previous inserts of rolled-tantalum-foil design) and characterization of thruster operation with the new inserts. Characterization testing of the EMT and of the new cathodes has demonstrated acceptable thruster performance and cathode ignition parameters; the only perceived change in thruster performance has been that a small amount of cathode heater power is required to maintain nominal keeper voltages. Thermal modeling of the cathode structures has facilitated design revisions which reduce this power requirement.

A10-13311
Recent testing of the NASA Lewis Research Center/Hughes 8-cm Engineering Model Thruster (EMT) and Power Processing Unit has centered on two primary areas of investigation: Integration of porous-tungsten dispenser-type cathode inserts into the thrust chamber (replacing previous inserts of rolled-tantalum-foil design) and characterization of thruster operation with the new inserts. Characterization testing of the EMT and of the new cathodes has demonstrated acceptable thruster performance and cathode ignition parameters; the only perceived change in thruster performance has been that a small amount of cathode heater power is required to maintain nominal keeper voltages. Thermal modeling of the cathode structures has facilitated design revisions which reduce this power requirement.

A80-20962
An investigation of parameters that affect the erosion rates of 30-cm-diameter mercury-ion-thruster components is described. A sputter-erosion model is formulated in terms of the design, operational, and material characteristics of the thruster. The erosion model is applied to the screen electrode, which is assumed to be the life-limiting component of the 30-cm thruster, resulting in a model of wearout lifetime. Results of short-term erosion-rate tests are presented that illustrate the dependence of component wear rates on variables such as discharge voltage, accelerator-grid open-area fraction, ion energy, electrode material, and the partial pressure of...
facility residual gases such as nitrogen. Test results are compared
with wearout rates predicted by the sputter-erosion model. (Author)

A80-23941 * # Computation of three-dimensional viscous supersonic
flow in inlets. R. C. Buggien, H. McDonald, J. P.
Kreskovsky, and R. Levy (Scientific Research Associates, Inc.,
Glastonbury, Conn.). American Institute of Aeronautic and Astro-
nautics, Aerospace Sciences Meeting, 18th, Pasadena, Calif., Jan.
21003.

A new approach has been developed for the computation of the
three-dimensional viscous supersonic flow with embedded subsonic
regions adjacent to solid boundaries and is applied to a
mixed-compression supersonic inlet typical of current designs. The
approach uses a reduced form of the three-dimensional Navier-Stokes
equations so that the resultant equations can be treated as an initial
boundary value problem and thus be solved by non-iterative forward
marching in space. The numerical procedure utilizes an efficient
consistently-split linearized block implicit technique to solve the
finite difference analogues to the set of governing partial differential
equations. (Author)

A80-46901 * # Torquing and electrostatic deformation of the
solar sail. R. E. LaQuey (Maya Development Corp., San Diego,
Calif.), S. E. DeForest, and M. Douglas, (In: Space systems and their
interactions with earth's space environment). (A80-48679 20-18) New
York, American Institute of Aeronautics and Astronautics, Inc.,

The impact of natural sources of electrical-mechanical oscilla-
tions induced by the environment on the solar sail system is
evaluated. The study indicates that, to the level of accuracy (first
order) of the analysis, none of the natural sources studied, which
range from plasma wave interactions to E X B forces, will have a
significant impact on the proposed solar sail design. The study is not
intended as an exhaustive analysis, and further analysis, particularly
in the area of artificially induced oscillations, is needed. (Author)

A80-48265 * # Power processing technology for spacecraft
primary ion propulsion. J. J. Biess, L. Y. Inouye (TRW Defense and
Space Systems Group, Redondo Beach, Calif.), and R. J. Fyfe
(NASA, Lewis Research Center, Cleveland, Ohio). In: Energy to the
21st century; Proceedings of the Fifteenth Intersociety Energy
Conversion Engineering Conference, Seattle, Wash., August 18-22,
Contracts No. NAS12-2183; No. NAS3-14383; No. NAS3-18924;
No. NAS3-20403; No. NAS3-21372; No. NAS3-21746.

Advanced technologies developed in support of Ion Propulsion
power processing, including the power circuitry portion of the Series
L-C Resonant Inverter, Beam Supply, power components, packaging
and heat pipe cooling of the 30 cm Ion Engine Power Processor are
described. Both the transistorized and SCR versions of the Series L-C
Resonant Inverter Beam Supply are discussed. A BIMOD Ion
Thruster/Power Processor Prototype Assembly is undergoing environ-
mental and life testing. These advanced technologies can be applied
advantageously to other applications of future high power space
power processing equipment. (Author)

A80-48356 * # Design, performance and life cycle cost
relationships for a 600kW space solar array. P. W. Richardson, F. G.
Miller, and M. N. White (PRC Systems Services Co., Huntsville, Ala.).
In: Energy to the 21st century; Proceedings of the Fifteenth
Intersociety Energy Conversion Engineering Conference, Seattle,
York, American Institute of Aeronautics and Astronautics, Inc.,

The effects on life cycle costs of a number of technology areas

65
23 CHEMISTRY AND MATERIALS
(GENERAL)
Includes biochemistry and organic chemistry

A80-25900 * 4 Investigation into the effect of plasma pre-
treatment on the adhesion of parylene to various substrates. T. Riley,
T. C. Mahuson, and K. Siebert (NASA, Lewis Research Center,
Cleveland, Ohio). Society for the Advancement of Material and
Process Engineering, Seminar on Cleaning, Finishing and Coating
An experimental effort has been undertaken to examine the
effect of plasma pretreatment of various substrate materials coated
with a polymer in the parylene family. This report describes the
procedure and discusses initial data which indicate using plasmas of
argon and oxygen to promote adhesion of parylene coatings upon
many difficult-to-bond substrates. Substrates investigated were gold,
nickel, kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and
tungsten. Without plasma treatment, 180 deg peel tests yield a few
gram (oz/in) strengths. With dc plasma treatment in the deposition
chamber, followed by coating, peel strengths are increased by one to
two orders of magnitude.

A80-28894 * Modeling and analysis of Power Processing
Systems. Y. Yu (TRW Defense and Space Systems Group, Redondo
Beach, Calif.), F. C. Y. Lee (Virginia Polytechnic Institute and State
University, Blacksburg, Va.), and J. Kolecki (NASA, Lewis Research
Center, Cleveland, Ohio). In: PESC '79; Power Electronics Specialists
Conference, San Diego, Calif., June 18-22, 1979, Record. (A80-
28892 10-33) Piscataway, N.J., Institute of Electrical and Electronics
The paper deals with a NASA-sponsored, computer-based
program - Modeling and Analysis of Power Processing Systems
(MAPPS). Three major MAPPS subprograms, Design Optimization,
Control Design, and Performance Analysis are considered. The
program makes it possible to reduce the design, analysis, and
development time, and thus the cost, in achieving the required
performance for power processing equipment and systems.

N80-33478*# Applied Medical Technology, Cleveland Heights,
Ohio
Tissue Response to Peritoneal Implants Final
Report
George J. Picha Jun 1980 73 p refs
(NASA Order C-33350-D)
(NASA-CR-159817) Avail NTIS HC A04/MF A01 CSCL
06P
Peritoneal implants were fabricated from poly 2-OH, ethyl
methacrylate (HEMA), polyetherurethane (polytetramethylene
glycol 1000 MW, 1,4 methylene disocyanate, and ethyl diamine),
and untreated and sputter treated polytetrafluoroethylene
(PTFE). The sputter treated PTFE implants were produced by an
8 cm diameter argon ion source. The treated samples consisted of
ion beam sputter polished samples, sputter etched samples
(to produce a microscopic surface cone texture) and surface
pitted samples (produced by ion beam sputtering to result in
50 microns wide by 100 microns deep square pits). These
materials were implanted in rats for periods ranging from
30 minutes to 14 days. The results were evaluated with regard
to cell type and attachment kinetics onto the different materials.
Scanning electron microscopy and histological sections were also
evaluated. In general the smooth hydrophobic surfaces attracted
less cells than the ion etched PTFE or the HEMA samples. The
ion-etching was observed to enhance cell attachment, multinucle-
ated giant cell (MNGC) formation, cell to cell contact, and fibrous
capsule formation. The cell response in the case of ion etched
PTFE to an altered surface morphology. However, equally
interesting was the similar attachment kinetics of HEMA versus
the ion etched PTFE. However, HEMA resulted in a markedly
different response with no MNGC's formation, minimal to no
capsule formation, and sample coverage by a uniform cell layer.
R.C.T.
24 COMPOSITE MATERIALS
Includes laminates.

A thermal barrier coating system was developed to protect the surfaces of metal components, gas turbines, and other heat engine parts that are exposed to fuels contaminated with metallic impurities which are normally corrosive to previously known metallic coatings. The coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system also includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or a combination of these silicates.

Composite micromechanics are used to derive equations for predicting the elastic and thermal properties of unidirectional intraply hybrid composites. The results predicted using these equations are compared with those predicted using approximate equations based on the rule of mixtures, linear laminate theory, finite element analysis and limited experimental data. The comparisons for three different intraply hybrids indicate that all four methods predict approximately the same elastic properties and are in good agreement with measured data. The micromechanics equations and linear laminate theory predict about the same values for thermal expansion coefficients. The micromechanics equations predict through-the-thickness properties which are in good agreement with the finite element results.

Equations are presented and described which can be used to predict bounds on the tensile and flexural strengths of nongraphic superhybrid (NGSH) composites. These equations are derived by taking into account the measured stress-strain behavior, the lamination residual stresses and the sequence of events leading to failure. The required input for using these equations includes constituents, properties (elastic and strength), NGSH elastic properties, cure temperature, and ply stress influence coefficients. Results predicted by these equations are in reasonably good agreement with measured data for strength and for the apparent knees in the nonlinear stress-strain curve. The lower bound values are conservative compared to measured data. These equations are relatively simple and are suitable for use in the preliminary design and initial sizing of structural components made from NGSH composites.

The effects of low level damage induced by monotonic load, cyclic load and/or residual stresses on the vibration frequencies and damping factors of fiber composite angleplied laminates were investigated. Two different composite systems were studied - low modulus fiber and ultra high modulus fiber composites. The results obtained show that the frequencies and damping factors of angleplied laminates made from low modulus fiber composites are sensitive to low level damage while those made from ultra high modulus composites are not. Vibration tests may not be sufficiently sensitive to assess concentrated local damage in angleplied laminates. Dynamic response determined from low-velocity impact coupled with the Fast Fourier Transform and packaged in a minicomputer can be a convenient procedure for assessing low-level damage.

A.R.H.
burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Undirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sf-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.

A R H.

N80-18102* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

FRACTURE MODES OF HIGH MODULUS GRAPHITE/
EPOXY ANGLEPLY LAMINATES SUBJECTED TO OFF-Axis TENSIILE LOADS

Angleplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics and fracture mode are similar to those of the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.

Author

A R H.

N80-18107* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

PREDICTION OF FIBER COMPOSITE MECHANICAL BEHAVIOR MADE SIMPLE

The elastic properties and failure stresses of angleplied fiber composite materials were determined using a pocket calculator.

The procedure uses simple equations and appropriate graphs of elastic properties versus angle plies, and can handle all types of fiber composites including hybrids. The versatility and generality of the method is illustrated in several step-by-step numerical examples.

A R H.

N80-18106* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

APPLICATION OF COMPOSITE MATERIALS TO TURBOFAN ENGINE FAN EXIT GUIDE VANES

A program was conducted by NASA with the JT9D engine manufacturer to develop a lightweight, cost effective, composite material fan exit guide vane design having satisfactory structural durability for commercial engine use. Based on the results of a previous company supported program, eight graphite/epoxy and graphite-glass/epoxy guide vane designs were evaluated and four were selected for fabrication and testing. Two commercial fabricators each fabricated 13 vanes. Fatigue tests were used to qualify the selected design configurations under nominally dry, 38 C (100 F) and fully wet and 60 C (140 F) environmental conditions. Cost estimates for a production rate of 1000 vanes per month ranged from 1.7 to 2.6 times the cost of an all aluminum vane. This cost is 50 to 80 percent less than the initial program target cost ratio which was 3 times the cost of an all aluminum vane. Application to the JT9D commercial engine is projected to result in a weight savings of 236 N (53 lb) per engine.

A R H.

N80-18107* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

FIRE TEST METHOD FOR GRAPHITE FIBER REINFORCED
PLASTICS

A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

N80-20313* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

DYNAMIC MODULUS AND DAMPING OF BORON, SILICON CARBIDE, AND ALUMINA FIBERS

The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from 190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina. The damping data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and high microstructural damping. The single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

K L.

N80-20314* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

CALCULATION OF RESIDUAL PRINCIPAL STRESSES IN CVB BORON ON CARBON FILAMENT

A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon filaments. The model is capable of predicting the residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, with an exponent of n equal to 0.5. A method for calculating the residual stresses is presented.
and the build-up of residual stresses must be limited by significant boron and carbon creep rates.

N80-21462† National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

PREDICTING THE TIME-TEMPERATURE DEPENDENT AXIAL FAILURE OF α/α1 COMPOSITES

(NASA-TM-81474, E-408) Avail. NTIS HC A03/MF A01 CSCL 11D

Experimental and theoretical studies were conducted in order to understand and predict the effects of time, temperature, and stress on the axial failure modes of boron fibers and B/α1 composites. Due to the anelastic nature of boron fiber deformation, it was possible to determine simple creep functions which can be employed to accurately describe creep and fracture stress of stress-generated deformation. A fracture-toughness fracture toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation. A fracture-toughness parameter was determined for creep and fracture stress of stress-generated deformation.

N80-23370‡ National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

ENGINE ENVIRONMENTAL EFFECTS ON COMPOSITE BEHAVIOR

(NASA-TM-81508, E-446) Avail. NTIS HC A02/MF A01 CSCL 11D

A series of programs were conducted to investigate and develop the application of composite materials to turboprop engines. A significant part of that effort was directed to establishing the impact resistance and defect growth characteristics of composite materials over the wide range of environmental conditions found in commercial turboprop engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes were summarized.

N80-28399‡ National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

A SILICON-SLURRY/ALUMINIDE COATING Patent Application

(NASA-Case-LW-13343-1; US-Patent-Appi-SN-161254) Avail. NTIS HC A02/MF A01 CSCL 11D

A low cost coating is disclosed which protects metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superally substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited Mo-AlY coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

N80-27429‡ National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

FEASIBILITY OF KEVLER 49/PMR-15 POLYIMIDE FOR HIGH TEMPERATURE APPLICATIONS

Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.

N80-28444‡ National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

PROPERTIES OF PMR POLYIMIDE COMPOSITES MADE WITH IMPROVED HIGH STRENGTH GRAPHITE FIBERS

High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long-term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.

N80-29431‡ National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

POTENTIAL RELEASE OF FIBERS FROM BURNING CARBON COMPOSITES

Vernon L. Bell Jul 1980 52 p refs.

(NASA-TM-80214) Avail. NTIS HC A04/MF A01 CSCL 11D

A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electronically conductive fibers, for both active and passive modes of operation.

N80-29432‡ National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

INFLUENCE OF EXCESS DIAMINE ON PROPERTIES OF PMR POLYIMIDE RESINS AND COMPOSITES

By varying the stoichiometry of the reactants in the preparation of PMR polyimide resin, changes occur in molecular weight distribution which influence the rheological properties and thus the processability of the resin, as well as the mechanical properties of the composite. The influence of 1-to-10 percent molar...
excess MDA on the molecular weight distribution and rheological properties of an imidized PMR system were exposed. Molecular weight distribution is characterized by gel permeation chromatography of the imidized molding compound. Shear viscosity is related to changes in average molecular weight. The thermo-oxidative stability at 800°F glass transition temperature, flexural and interlaminar shear properties of PMR polyimide/Carbon 6000 graphite fiber composites are compared as a function of the percent excess MDA in the monomer reactant mixture.

A R H

N80-33482* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

METHOD OF MAKING BENDING MATERIAL Patent
Harold A. Shively, inventor (to NASA). Issued 29 Jul. 1980. 7 p
Filed 31 Jan. 1977. Supersedes SN77-32249 (15-23, p 3050)
Division of abandoned US Patent Appl SN-616528, filed 25
Sep. 1975, which is a division of US Patent Appl SN-513611,
filed 10 Oct. 1974
Office CSCL 11 D

A composite material is described which will provide low
friction surfaces for materials in rolling or sliding contact and is
self lubricating and oxidation resistant up to and in excess of
about 930 C. The composite is comprised of a metal component
which lends strength and rigidity to the structure, a fluoride
salt component which provides lubrication and, lastly, a glass
component which not only provides oxidation protection to the
metal but may also enhance the lubrication qualities of the composite

Official Gazette of the U.S. Patent and Trademark Office

A80-10038* Fatigue behavior of SIC reinforced titanium
composites. R. T. Bhatt and H. H. Grimes (NASA, Lewis Research
Center, Cleveland, Ohio). American Society for Testing and Mat-
erials, Symposium on Fatigue of Fibrous Composite Materials, San

The low-cycle axial fatigue properties of 25 and 44 fiber volume
percent SIC/Ti(BA1-4V) composites were measured at room tem-
perature and at 650 C. At room temperature, the S-N curves for the
composites showed no anticipated improvement over bulk matrix
behavior. Although axial and transverse tensile strength results
suggest a degradation in SIC fiber strength during composite
fabrication, it appears that the poor fatigue life of the composites
was caused by a reduced fatigue resistance of the reinforced
Ti(BA1-4V) matrix. Microstructural studies indicate that the reduced
matrix behavior was due, in part, to the presence of flawed and
fractured fibers near the specimen surfaces by preparation
methods. Another possible contributing factor is the large residual
tensile stresses that can exist in fiber-reinforced matrices. These
effects, as well as the effects of fatigue testing at high temperature,
are discussed.

A80-20954* Mechanical property characterization of
intraply hybrid composites. C. C. Chamis, R. F. Lark, and J. H.
Sinclair (NASA, Lewis Research Center, Cleveland, Ohio). American
Society for Testing and Materials, Symposium on Composite

An investigation of the mechanical properties of intraply hybrid
composites made from graphite fiber/epoxy matrix hybridized with
secondary S-glass or Kevlar 49 fiber composites is presented. The
specimen stress-strain behavior was determined, showing that
mechanical properties of intraply hybrid composites can be measured
with available methods such as the tensile-off-axis test for intralaminar
shear, and conventional tests for tensile, flexure, and bend
impact properties. The results also showed that combinations of
high modulus graphite/S-glass/epoxy matrix composites exist which
yield intraply hybrid laminates with the best "balanced" properties,
and that the translation efficiency of mechanical properties from the
constituent composite to intraply hybrids may be assessed with a
simple equation.

A T

A80-27982* Dynamic response of damaged angleplied fiber
composites. C. C. Chamis, J. H. Sinclair, and R. F. Lark (NASA,
Lewis Research Center, Cleveland, Ohio). In: Modern developments
in composite materials and structures; Proceedings of the Winter
Annual Meeting, New York, N.Y., December 2-7, 1978. (A80-
27979 10-39) New York, American Society of Mechanical Engineers,
1979, p. 31-51.

An investigation was conducted to determine the effects of low
level damage induced by monotonic load, cyclic load and/or residual
stresses on the vibration frequencies and damping factors of fiber
composites. Two different composite systems were studied: low modulus fiber and ultra high modulus fiber
composites. The results obtained showed that the frequencies and
damping factors of angleplied laminates made from low modulus
fibers are sensitive to low level damage while those made from ultra high modulus composites are not. Also, vibration
tests may not be sufficiently sensitive to assess concentrated local damage
in angleplied laminates. And furthermore, dynamic response
determined from low-velocity impact coupled with the Fast Fourier
Transform and packaged in a minicomputer can be a convenient
procedure for assessing low-level damage in fiber composite angle-
plied laminates. (Author)

A80-27994* Micromechanics of intraply hybrid com-
posites: Elastic and thermal properties. C. C. Chamis and J. H.
Sinclair (NASA, Lewis Research Center, Cleveland, Ohio). In:
Modern developments in composite materials and structures; Pro-
ceedings of the Winter Annual Meeting, New York, N.Y., December

Composite micromechanics are used to derive equations for
predicting the elastic and thermal properties of unidirectional
intralaminar hybrid composites. The results predicted using the
these equations are compared with those predicted using approximate
methods, linear laminate theory, finite element analysis and limited experimental data. The compar-
tions for these different intraply hybrids indicate that all four
methods predict approximately the same elastic properties and are in
good agreement with measured data. The micromechanics equations
and linear laminate theory predict somewhat the same values for thermal
expansion coefficients. The micromechanics equations predict
thermal expansion properties which are in good agreement with the
finite element results. (Author)

A80-31169* Fire test method for graphite fiber reinforced
plastics. K. J. Bowles (NASA, Lewis Research Center, Cleveland,
Ohio). International Conference on Fire Safety, 5th, Millbrae, Calif.,

A potential problem in the use of graphite fiber reinforced resin
matrix composites is the dispersal of graphite fibers during accidental
fires. Albronite, electrically conductive fibers originating from the
burning composites could set into electrical equipment located in surrounding areas. A test method for assessing
the burning characteristics of graphite fiber reinforced composites
and the effectiveness of the composites in retaining the graphite
fibers has been developed. The method utilizes a modified Ohio State
University Rate of Heat Release apparatus. The equipment and the
testing procedure are described. The application of the test method
to the assessment of composite materials is illustrated for two resin
matrix/graphite composite systems.

A80-32062* Burning characteristics and fiber retention of
graphite/resin matrix composites. K. J. Bowles (NASA, Lewis
Research Center, Cleveland, Ohio). In: Rising to the challenge of the
A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

Theoretical and experimental studies are reviewed whose objective was to gain insight into and predict the effects of time, temperature, and stress on the axial failure modes of boron fibers and B/Al composites. Owing to the inelastic nature of boron fiber deformation, it proved possible to develop simple creep functions which can be used to describe accurately the creep and fracture stress of as-produced fibers. Analysis of damping and stress data for B/6061 Al composites indicates that fiber creep and the effects of creep of fiber fracture are measurably reduced by the composite fabrication process.

V.P.
The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide-coated boron fibers were measured from -100 to 800°C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature-dependent damping capacity data for aluminum fibers calculated from axial damping results for aluminum-aluminum composites. The dynamic fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron-based fibers are strongly anelastic, displaying frequency-dependent moduli and very high microstructural damping. The single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

(Author)

A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep.

IMPROVING THE STRESS RUPTURE AND CREEP OF SILICON NITRIDE Final Report

T. Vasilos, R. M. Cannon, Jr., and B. J. Wuensch 30 Mar. 1979 68 p refs

A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep.

IMPROVING THE STRESS RUPTURE AND CREEP OF SILICON NITRIDE Final Report

T. Vasilos, R. M. Cannon, Jr., and B. J. Wuensch 30 Mar. 1979 68 p refs

A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep.

IMPROVING THE STRESS RUPTURE AND CREEP OF SILICON NITRIDE Final Report

T. Vasilos, R. M. Cannon, Jr., and B. J. Wuensch 30 Mar. 1979 68 p refs

Yttria-stabilized zirconium oxide (Zytrite) additions to pure silicon nitride markedly improved the high temperature strength, stress rupture and creep properties of hot pressed samples. Room temperature bend strengths, however, of four (4) compositions evaluated were each about one-third lower than the NC-132 silicon nitride composition. This difference decreased with increasing temperature until at 1200°C. There was reasonable equivalence between most of the Zytrite containing compositions and NC-132 in terms of short time bend strength measurements. At 1370°C, the 10 and 20 wt. % containing compositions showed bend strengths as much as double the NC-132 material. Bend stress rupture results for 10 and 20 wt. % Zytrite containing compositions showed a strong stress sensitivity at the 176 MN/sq m (40 Ksi) level above 1200°C. Creep in bending measurements showed that at 1370°C, Zytrite containing compositions exhibited creep rates that were about two orders of magnitude lower than NC-132 material samples. All compositions appeared to follow deformation kinetics related to a visco-elastic mechanism, i.e., glassy phase diffusion creep of grain boundary sliding.

N80-10319 * United Technologies Research Center, East Hartford, Conn.

DEVELOPMENT OF SILICON NITRIDE OF IMPROVED TOUGHNESS Final Report

J. J. Brennan 2 Oct. 1979 111 p refs

Contract NAS3.21375 (NASA-CR-159676; R79-914364-12) Avail: NTIS

HC A06/MF A01 CSCL 11D

The application of reaction sintered SiN4 energy absorbing surface layers to hot-pressed SiN4 was investigated. The surface layer was formed by in-place nitridation of silicon powder. It was found that reaction sintered SiN4 layers of 1 mm thickness, fabricated from either -100, -200, -325 mesh Si powder and nitrided in 96% N2/4% H2 so that approximately 20-25 vol % unreacted Si remained in the layer, resulted in a sevenfold increase in ballistic impact resistance of a 0.64 cm thick hot-pressed SiN4 substrate from RT 1370°C to 800°C. SiN4, with MgO additive, and NCX-34 SiN4, with Y2O3 additive, were evaluated as substrate material. The finter grain size -200 and 325 mesh nitrided Si layers were for their N2/H2 mixtures, rather than pure N2, resulted in a microstructure that did not substantially degrade the strength of the hot pressed SiN4 substrate. Thermal cycling tests on the RSSN/HPSN combinations from 200°C to 1370°C for 75 cycles in air did not degrade the impact resistance nor the interfacial bonding, although a large amount of internal silica formation occurred within the RSSN layer. Mach 0.65 hr, hot gas erosion tests showed no surface recession of RSSN layers at 1200°C and slight surface recession at 1370°C.

M. M.
C. E. Kawasaki, J. L. Gutier, W. J. Fisher, and J. V. W. Memmott
Jun. 1980 114 p. refs
(Contract NAS3-20407)
(NASA-CR-159571; HSER-7968) Avail: NTIS
HC A06/MF A01 CSCL 11D

A dynamic approximate laminated plate theory is developed by
assuming that the extensional and thickness mode of vibration
are coupled. The mixed boundary value crack problem of a four
layered composite plate is solved. Dynamic stress intensity factors
for a crack subjected to suddenly applied stress are found to
vary as a function of time and depend on the material properties
of the laminate and on dynamic interactions in the region near the
crack front can be reduced by having the shear modulus of the
inner layers to be larger than that of the outer layers. A.R.H.

SUDDEN STRETCHING OF A FOUR LAYERED COMPOSITE PLATE Interim Report
G. C. Sih and E. P. Chen
Mar 1980 42 p. refs
(Grant NsG-3197)
(NASA-CR-159870; IFSM-80-102) Avail: NTIS
HC A03/MF A01 CSCL 11D

A dynamic approximate laminated plate theory is developed with
emphasis placed on obtaining effective solution for the crack
configuration where the square root of r stress singularity
and the condition of plane strain are preserved. The radial distance
r is measured from the crack edge. The results obtained show
that the crack moment intensity tends to decrease as the crack
length to laminate plate thickness is increased. Hence, a laminated
plate has the desirable feature of stabilizing a through crack as
it increases its length at constant load. Also, the level of the
plate has the desirable feature of stabilizing a through crack as
length to laminate plate thickness is increased. Hence, a laminated
analyzing laminate failure to crack propagation under dynamic
layers. The present theory, although approximate, is useful for
reduced by making the inner layers to be stiffer than the outer

SUDDEN BENDING OF CRACKED LAMINATES Interim Report
G. C. Sih and E. P. Chen
Feb. 1980 53 p. refs
(Contract NsG-3197)
(NASA-CR-159680; IFSM-80-103) Avail: NTIS
HC A04/MF A01 CSCL 11D

A dynamic approximate laminated plate theory is developed with
emphasis placed on obtaining effective solution for the crack
configuration where the square root of r stress singularity
and the condition of plane strain are preserved. The radial distance
r is measured from the crack edge. The results obtained show
that the crack moment intensity tends to decrease as the crack
length to laminate plate thickness is increased. Hence, a laminated
plate has the desirable feature of stabilizing a through crack as
it increases its length at constant load. Also, the level of the
average load intensity transmitted to a through crack can be
reduced by making the inner layers to be stiffer than the outer
layers. The present theory, although approximate, is useful for
analyzing laminate failure to crack propagation under dynamic
load conditions. A.R.H.

FABRICATION AND EVALUATION OF LOW FIBER CONTENT ALUMINA FIBER/ALUMINUM COMPOSITES Final Report
J. E. Hack and G. C. Strempek
18 Jun. 1980 72 p. refs
(Contract NAS3-21371)
(NASA-CR-159571; AMDL-0001) Avail: NTIS
HC A04/MF A01 CSCL 11D

The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was
accomplished. Wire preform material was prepared by liquid metal
infiltration of alumina fiber bundles. The wires were subsequently
encapsulated with aluminum foil and fabricated into bulk
composite material by hot drawing. Extensive mechanical,
thermal and chemical testing was conducted on preform and
bulk material to develop a process and material database. In
addition, a preliminary investigation of mechanical forming of
bulk alumina fiber reinforced aluminum composite material was
conducted.

A.R.H.

Fiber release characteristics of graphite hybrid composites. J. Henshaw (Aire Corp., Lowell, Mass.). In: Rising to
the challenge of the '80s; Annual Conference and Exhibit, 35th, New
Orleans, La., February 4-8, 1980, Preprints. (A80-32068 12-24) New
York, Society of the Plastics Industry, Inc., 1980, p. 11-C to 11-C
8, Contract No. NAS3-21385.

The paper considers different material concepts that can be
fabricated into hybrid composites which demonstrate improved
graphite fiber retention capability in a severe fire without significant
reduction to the composite properties. More than 30 panels were
fabricated for mechanical and fire tests, the details and results of
which are presented. Methods of composite hybridization investigat-
ed included the addition of oxidation resistant fillers to the resin,
mechanically interlocking the graphite fibers by the use of woven
fabrics, and the addition of glass fibers and glass additives designed
to melt and fuse the graphite fibers together. It is concluded that a
woven fabric with a serving of glass around each graphite tow is by
far superior to the materials evaluated not only is there a coalescing
effect in each graphite layer, but there is also a definite adhesion of
each layer to its neighbor. J.P.B.

Hybrid composites that retain graphite fibers on burning. E. E. House (Boeing Aerospace Co., Seattle, Wash.). In:
Rising to the challenge of the '80s; Annual Conference and Exhibit,
35th, New Orleans, La., February 4-8, 1980, Preprints. (A80-
p. 11-D 1 to 11-D 8, Contract No. NAS3-21385.

A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites
currently used or projected for use in civil aircraft. In the event of an
aircraft crash and burn situation, there is concern that graphite fibers
will be released from the composites once the resin matrix is
thermally decomposed, Hybridizing concepts aimed at preventing
fiber release on burning were postulated and their effectiveness
evaluated under fire, impact, and air flow during an aircraft crash.

(Author)
25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography, combustion theory, electrochemistry, and photochemistry
For related information see also 77 Thermodynamics and Statistical Physics

A80-24388* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
AN INTERACTIVE MODULAR DESIGN FOR COMPUTERIZED PHOTOMETRY IN SPECTROCHEMICAL ANALYSIS

...should be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. The data also included a relatively sharp transition between the diffusion and convection transport regions. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali. (Author)

A80-20955* Combustion of solid carbon rods in zero and normal gravity, C. M. Spuckler, F. J. Kohl, R. A. Miller, C. A. Stearns (NASA, Lewis Research Center, Cleveland, Ohio), and K. J. De Witt (Toledo University, Toledo, Ohio). American Institute of Chemical Engineers, Annual Meeting, 72nd, San Francisco, Calif., Nov. 25-29, 1979, Paper, 30 p., 11 refs.

In order to investigate the mechanism of carbon combustion, normal and zero gravity experiments were conducted in which spectroscopic carbon rods were resistance ignited and burned in an oxygen environment. Direct mass spectrometric sampling was used in the normal gravity tests to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of the horizontally mounted carbon rods, either at the top or at angles of 45 or 60 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droplet tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

The paper presents new information on the durability of a CATCOM catalyst operating at low-emission combustion temperatures (about 1527 K) with a liquid fuel, No. 2 diesel. Information on the activity of No. 2 diesel after 1000 hr of aging is given. In addition, a unique in situ activity test developed for monitoring the subtle changes in the catalyst activity of the CATCOM catalyst is also detailed. The study demonstrated the feasibility of using a CATCOM catalyst in catalytically supported thermal combustion for extended operating periods.

An Interactive, top-down structured program design is described which produces a general flexible design for total automatic photometry of emission spectra in an operating environment in which sample compositions and analysis procedures are low-volume and nonroutine. The use of this type of programming is illustrated by a project to computerize trace elemental determinations including the automated reading of spectrographic plates produced by a 3.4-m Ebert mount spectograph using a dc-arc in an argon atmosphere.

The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7. Secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed residence time and CO decreases with secondary residence time.

The general problem of spray combustion was investigated. The combustion of bipropellant droplets, combustion of hydroxene fuels, and combustion of sprays were studied. A model was developed to predict mean velocities and temperatures in a combustor gas jet.

The durability of the CATCOM catalyst for use in catalytically supported thermal combustion has been demonstrated at 5 atm, complementing a previous 1000 hour durability study at 1 atm. Both of these studies were conducted at about 840 K air preheat temperature at a reference velocity of about 14 m/s, the adiabatic flame temperature of the fuel/air mixture was about 1530 K. The catalyst proved to be capable of low emissions operations after 1000 hours of diesel fuel aging. However, more severe deactivation occurred in the 5 atm test, this was attributed to a loss in kinetic (ignition) activity.

The Symposium focused on deflagration to detonation transition, coal combustion, turbulent combustion interactions, kinetics, furnace combustion, inhibition and ignition, flame structure and chemistry, combustion studies, measurement techniques, fire and explosion, engine combustion, dust, and products and explosions. Papers were presented on numerical modeling of the deflagration to detonation transition, the interaction between turbulence and combustion, turbulent flame propagation in premixed gases, spray evaporation in recirculating flow, dissociation of nitric oxide in shock waves, pollutant emissions from partially mixed turbulent flames, energy transfer and quenching rates of laser pumped electronically excited aldehydes in flames, a study of flamemappability limits using counterflow flames, the unifield thry of explosions with fuel consumption, and the dynamics and turbulent intensity of large hydrogen flames.
26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion and metallurgy

N80-10344f National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
ANALYSIS OF THE RESPONSE OF A THERMAL BARRIER COATING TO SODIUM AND VANADIUM DOPED COMBUSTION GASES
Published data on the behavior of zirconia-based thermal barrier coatings exposed to combustion gases doped with sodium and vanadium were analyzed with respect to calculated condense dew points and melting points. Coating temperatures, failure locations, and depths were reasonably well correlated. Author R.C.T.

N80-11189f National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
MECHANICAL PROPERTIES AND OXIDATION AND CORROSION RESISTANCE OF REDUCED CHROMIUM 304 STAINLESS STEEL ALLOYS
Joseph R Stephens, Charles A. Barrett, and Charles A. Gyorgak Washington Nov 1979 22 p refs (NASA-TP-1557; E 065) Avail NTIS HC A02/MF A01 CSCL 11F
An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of 196°C to 540°C the yield stress of experimental stainless steel alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure. R.C.T.

N80-11188f National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
EFFECT OF THERMALLY INDUCED POROSITY ON AN AS-HIP POWDER METALLOGRAPHY SUPERALLOY
The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated powder made from low carbon Astroloy was determined. Porosity in the disk shape pressing studied ranged from 2.6 percent at the bore to 14 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings. A.R.H.

N80-14232f National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
A thin sputtered film that exhibits improved adherence to a substrate and has improved friction and wear characteristics is described. These improvements are achieved by coating the substrate by rf sputtering with a film of titanium carbide using an argon sputtering plasma. A small nitrogen partial pressure from about 0.5% to 2.5% is added in the initial stages of the deposition during which the interface is formed. The improvements in adhesion of the titanium carbide coating to the substrate result from the presence of both titanium nitride and a nitride of the substrate in the interfacial region. NASA
At higher velocities, particle fragmentation and the subsequent cutting by silica radial wash of debris created a marked change in behavior similar to that observed for the larger steel bails. At lower speeds, erosion decreased somewhat as the Ca concentration increased for all alloys. Mg was beneficial for the Ni-base alloys but had little effect on the Co-base alloy. Surprisingly, the effect of increasing Cl was to decrease the corrosion of all alloys. Little interaction among the dopants was noted.

References

1. **N80-15417** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

SOME CONSIDERATIONS OF THE PERFORMANCE OF TWO HONEYCOMB GAS PATH SEAL MATERIAL SYSTEMS

Robert C. Bill and Lawrence T. Shevchuk 1980 29 p

MASS IMPINGEMENT CORROSION OF DUCTILE METALS

William A. Brennen and Joshua Salik Jan 1980 11 p refs

(NASA-TP-1609, E-065) Avil NTIS HC A02/MF A01 CSQL 11F

Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Mass loss of 0.2 mm diameter steel balls and macroscopic, brittle erodent particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodent particles, at lower speeds, the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

ANISOTROPY OF NICKEL-BASE SUPERALLOY SINGLE CRYSTALS

Rebecca A. MacKay [Case Western Reserve Univ., Cleveland], Robert L. Dreshfield, and R.J. D. Mayer [Case Western Reserve Univ., Cleveland] 1980 17 p refs Prepared for Presentation at 41th Intern Symp on Superalloys, Champion, Pa., 21-25 Sep 1980

(NASA-TM-81437, E-327) Avil NTIS HC A02/MF A01 CSQL 11F

The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C. Stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were then ordered according to stress rupture life for this temperature regime.

BLACK COBALT OXIDE COATINGS FOR HIGH TEMPERATURE SOLAR COLLECTORS

(NASA-TM-81258; E-253) Avil NTIS HC A02/MF A01 CSQL 10A

Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of gold (low emittance layer) which had previously been deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/emittance diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.
and 304 stainless steel. The impurities added as aqueous solutions to the combustor were salts of sodium, potassium, vanadium, molybdenum, tungsten, phosphorus, and lead. Extent of attack was determined by metal consumption and compared to the effects of sodium alone. Vanadium, molybdenum, tungsten, phosphorus, and lead in combination with sodium all resulted in increased attack as compared with sodium alone at some temperatures. Apparently due to large part to the extension of the formation of liquid deposits. Varying the sodium-potassium ratio had little effect for ratios less than 1.3 for which reduced, but measurable, attack was observed.

AN EXPERIMENTAL, LOW-COST, SILICON-ALUMINIDE HIGH TEMPERATURE COATING FOR SUPERALLOYS

An evaluation of a duplex silicon slumy/aluminide coating is presented. The coating is cyclically tested in Mach 1 combustion gases for oxidation and thermal fatigue resistance at 1093 C and in Mach 03 gases for hot-corrosion resistance at 900 C. The base metal superalloys are V–A and B–1900. The coated B–1900 specimens performed much better in oxidation than similar specimens coated with aluminides and almost as well as the more expensive Pt–Al and MCr–AlY (where M is Ni and/or Co) coatings deposited by the physical vapor deposition process. The coating also provided good hot corrosion protection. X-ray and electron microprobe studies are used to characterize the coating, determine failure mechanisms, and study some of the changes due to exposure.

APPLICATION OF SUPERALLOY POWDER METALLURGY FOR AIRCRAFT ENGINES

In the last decade, Government/Industry programs have advanced powder metallurgy-near-net shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 41 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

AN INVESTIGATION INTO THE ROLE OF ADHESION IN THE EROSION OF DUCTILE METALS

Existing theories of erosion of ductile metals based on cutting and deformation mechanisms predict no material removal at normal incidence which is contradictory to experience. Thus, other mechanisms may be involved. The possible role of adhesive material transfer during erosion is investigated by both single particle impingement experiments and erosion by streams of particles. Examination of the rebounding particles as well as the eroded surface yields evidence of a significant adhesive mechanism for the ductile metals investigated.

FOULING AND THE INHIBITION OF SALT CORROSION OF A POWDER METALLURGY SUPERALLOY

Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 10-25% of fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650°C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility.
but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

RCT

N80-28433* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
Sandra K Drake, Richard J Hill, Peter T Bizon, Jeffrey L Kledden, and Bruce P Guilliams Mar 1980 49 p refs Prepared in cooperation with AF Wright Aeronautical Labs, Wright-Patterson AFB, Ohio
(AF Proj 3066)
An elastic stress analysis was performed on a wedge specimen (prismatic bar with double-edge wedge cross-section) subjected to thermal cycles in fluidized beds. Five alloys (IN 100, Mar-M 200, Mar-M 302, NASA TAZ-B, and Rene 80) subjected to the same thermal cycling condition were analyzed. This condition was alternate 3 minute immersions in fluidized beds maintained at 316°C and 1098°C (600°F and 190°F). The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and IS03DS). Stress, strain, and temperature results are presented.

GRA

N80-31527* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
ADHERENCE OF ION BEAM SPUTTER DEPOSITED METAL FILMS ON H-13 STEEL
(NASA-TM-81585, E-562) Avail: NTIS HC A03/MF A01 CSCL 11F
An electron bombardment argon ion source was used to sputter deposit 17 different metal and metal oxide films ranging in thickness from 1 to 8 micrometers on H-13 steel substrates. The film adherence to the substrate surface was measured using a tensile test apparatus. Comparisons in bond strength were made between ion beam, ion plating, and RF deposited films. A protective coating to prevent heat checking in H-13 steel dies used for aluminum die casting was studied. The results of exposing the coated substrates to temperatures up to 700 degrees are presented.

RKG

N80-32486* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
HIGH TOUGHNESS-HIGH STRENGTH IRON ALLOY
An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment. Official Gazette of the U.S. Patent and Trademark Office.

N80-32486* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
FRACTURE TOUGHNESS OF BRITTLE MATERIALS DETERMINED WITH CHEVRON NOTCH SPECIMENS
(NASA-TM-81607, E-600) Avail: NTIS HC A02/MF A01 CSCL 11F

79
The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub IC) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub IC is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibration. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens for the stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a missing crack resistance to failure. The results for the short bar specimen are presented in detail.

W.M.G.

ASTAR 811C
(NASA-TP-1691, E-041) Avail NTIS CSCL 11F

The high vacuum creep behavior of Astar B11C (7a-BW-1R+0 7H-0 025C) was studied over the temperature range 600 C to 1700 C as a function of stress, temperature, and grain size in order to develop a relation for predicting long term creep. Primary creep strain was related to time by the Gao exponential function, and a second exponential term was developed to describe the tertiary creep portion of the creep curve. No significant periods of secondary (linear) creep were observed. The creep curves were well expressed by a relation that includes terms for primary and tertiary creep. The initial and tertiary creep rates were obtained by differentiating the respective terms from the strain-time relation and can be used to predict the temperature by using a dual activation energy to account for lattice and dislocation core diffusion. The strain parameters were determined as power functions of the applied stress.

A.R.H.

ASTAR 811C
(NASA-TP-1691, E-041) Avail NTIS CSCL 11F

The high vacuum creep behavior of Astar B11C (7a-BW-1R+0 7H-0 025C) was studied over the temperature range 600 C to 1700 C as a function of stress, temperature, and grain size in order to develop a relation for predicting long term creep. Primary creep strain was related to time by the Gao exponential function, and a second exponential term was developed to describe the tertiary creep portion of the creep curve. No significant periods of secondary (linear) creep were observed. The creep curves were well expressed by a relation that includes terms for primary and tertiary creep. The initial and tertiary creep rates were obtained by differentiating the respective terms from the strain-time relation and can be used to predict the temperature by using a dual activation energy to account for lattice and dislocation core diffusion. The strain parameters were determined as power functions of the applied stress.

A.R.H.

N80-32497* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PERFORMANCE OF TWO-LAYER THERMAL BARRIER SYSTEMS ON DIRECTIONALLY SOLIDIFIED NI-Al-Mo AND COMPARATIVE EFFECTS OF ALLOY THERMAL EXPANSION ON SYSTEM LIFE

A promising two-layer thermal barrier coating system (TBS), Ni-16.4Cr-5.1Al-0.16Y/ZrO2-6.1Y2O3 (all in weight percent), was identified for directionally solidified Ni-Al-Mo (gamma/gamma'-alpha) substrates. In cyclic furnace tests at 1250 C, the Ni-16Cr-6Y2O3 coating was better than the Ni-16Cr-5.1Al-0.16Y/ZrO2-7.2Y2O3 by about 50 percent. In natural gas - oxygen torch rig tests at 1250 C, the Ti-6Al-4V coating was better than the 2Cr-7.2Y2O3 coating by 95 percent, on MAR-M509 substrates and by 60 percent on gamma/gamma' alpha substrates. Decreasing the coefficient of thermal expansion of the substrate material from 17-18x10 to the -6 power/C (Mar-M200 + Hf and MAR-M509) to 11x10 to the -6 power/C (gamma/gamma' alpha) also resulted in improved TBS life. For example, in natural gas - oxygen torch rig tests at 1250 C, the life of Ni-16Cr-6Y2O3 was about 30 percent better on gamma/gamma' alpha than on MAR-M509 substrates. Thus compositional changes in the bond and thermal barrier coatings were shown to have a greater effect on TBS life than does the coefficient of thermal expansion.

Author

N80-32497* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
COMPARATIVE EFFECTS OF ALLOY THERMAL EXPANSION ON PERFORMANCE OF TWO-LAYER THERMAL BARRIER COATINGS FINAL REPORT

The potential for improving the durability of thermal barrier coatings (TBCs) being developed for coal derived fuel fired gas turbines was studied. Furnace oxidation behavior of plasma deposited bond coatings was improved by increasing the thickness from 0.010 cm to 0.015 cm and by depositing the coatings at 20 kW with argon 3.5 vol % hydrogen arc gas rather than at 11 kW with argon. The most oxidation resistant plasma deposited bond coatings were Ni-14, Cr-13.4Al-0.12Zr, Ni-14.3Cr-14.4Al, 0.16Y, and Ni-15Cr-12.8Al-0.36Y on B-1900 + Hf and Ni-30.5Cr-11.1Al-0.48Y on B-1900 + Hf + MAR-M509. The oxidation resistant bond coatings improved TBC life when the coatings were deposited on the specimens supported on a nail bed fixture during coating.

Author

N80-33565* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LONG-TIME CREEP BEHAVIOR OF THE NIOBIUM ALLOY C-103

The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon epsilon(0) + K e raised to the s power (st) • 1), where epsilon(0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate. R.K.G.

The operation of a turbine in the effluent of a pressurized fluidized bed (PFB) coal combustor presents serious materials problems. Synoptic erosion/corrosion and deposition/corrosion interactions may favor the growth of erosion-resistant oxides on blade surfaces, but brittle cracking of these oxides may be an important source of damage along heavy particle paths. Integrally cast alloy 713LC and IN792 + Hf superalloy turbine rotors in a single-stage turbine with 6% partial admittance have been operated in the effluent of a PFB coal combustor for up to 164 hr. The rotor erosion pattern exhibits heavy particle separation with severe erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern gives a spectrum of erosion/oxidation/deposition as a function of blade position. The data suggest that preferential degradation paths may exist even under the targeted lower loadings (less than 20 ppm).

The paper deals with some preliminary results of the Mission Profile Life Test planned to conduct a program of long-term test segments of 30-cm-diameter thrusters and power processing units under computer control. Thruster performance data and other operational characteristics taken at various times during a test segment are compared and the results are evaluated in light of the life-time mechanisms. Thruster control algorithms are also presented. The first 2700 hr of a planned 4000 hr test with a J-series 30-cm thruster, the last 1600 hr used a functional model power processing unit (PPU) operated in vacuum. The thruster-PPU was controlled by a computer with software developed to control start-ups, throttling, and variety of off-normal conditions.

V.T.

There is a wide variety of situations wherein metals are in solid state contact with dielectric materials. The paper reviews some of the factors that influence solid state interactions for metals in contact with dielectric surfaces. Since surfaces play an important part in these reactions, the use of analytical tools in characterizing surfaces is discussed. Adhesion, friction, and wear are utilized as indicators of the nature of interfacial bonding between metals and dielectrics and can be effectively determined with adhesion and friction force measurements. Films present on the surface, such as oxygen or water vapor, markedly alter adhesive bond strength which in turn affects friction force and interfacial fracture when attempts are made to separate the contact regions. Analytical surface tools such as the field ion microscope, Auger emission spectroscopy, and X-ray photoelectron spectroscopy are very effective in providing insight into the effect of contact on the surfaces of metals and dielectrics.

S.D.

A80-13071 "P Some TEM observations of AI2O3 scales formed on NiCrAl alloys, J. Smialek (NASA, Lewis Research Center, Cleveland, Ohio) and R. Gibala (NASA, Lewis Research Center; Case Western Reserve University, Cleveland, Ohio), Gordon Research Conference on Corrosion, New London, N.H., July 23-27, 1979, Paper 32 p, 26 refs.

The microstructural development of AI2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Void formation has been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grain grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Tramit oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)203 and NiAl(Cr,Al)204 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state AI2O3 growth.

A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Sn-1Ta-0.8Mo has been conducted. Two mill-processed forms of the alloy were examined. The forged material had been processed to the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
etching were used to characterize the interfacial regions, and an attempt was made to correlate adherence as measured in wear tests with the chemical nature of the interface. (Author)

The isothermal oxidation of Ni-14Cr-24Al alloys was performed in still air at 1100, 1150, and 1200°C for times up to 200 hr. The zirconium content of the alloys varied from 0.063 atom percent (at%)
due to oxide penetration, the weight gain increased with Zr content; however, the scale thickness did not increase. The Zr did increase the adherence of the oxide, particularly at 1200°C. The delta W/A vs. time data fit the parabolic model of oxidation. The specific diffusivity of the mechanism operative could not be identified by analysis of the calculated activation energies. Measurements of the AI2O3 scale lattice constants yielded the same values for all alloys. (Author)

The effect of thermally induced porosity on the mechanical properties of an as-hydrostatically pressed and heat-treated pressings made from low carbon Astroloy is examined. Tensile, stress rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressings have a porosity gradient from the rim to the bore with the bore having 1.12/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538°C and time for 0.1% creep at 704°C. It is also shown that the strength, ductility, and rupture life of the rim are systematically inferior to those of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engine, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings. L.M.

A hydrostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650°C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. The influence of fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed slight correlation with tensile behavior. The plastic strain range-life relation was reduced proportionally with the reduction in tensile ductility, but the elastic range-life relation was changed little. (Author)

Black cobalt oxide coatings were deposited on thin layers of silver or gold which had been deposited on oxidized stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt oxide for integrated values of the solar and infrared spectrum. The values of absorptance and emissivity were calculated from the measured reflectance values before and after exposure in air at 650°C for 1000 hours. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittance of approximately 0.20 even after about 1000 hours at 650°C. (Author)

A duplex silicon-aluminide coating has been developed and cyclically tested in Mach 1 combustion gases for oxidation and thermal fatigue resistance at 1093°C and Mach 0.3 gases and hot-corrosion resistance at 980°C. The bonded coatings were deposited by the physical vapor deposition process. The coatings also provided good hot-corrosion protection. V.P.

A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium and aluminum in nickel-base bond alloy coatings and the effect of bond coating thickness on yttria-stabilized zirconia thermal barrier coating life. Without yttrium in the bond coatings, the zirconia coating failed very rapidly. Increasing chromium and aluminium in the Ni-98 and Ni-98-0.5Y bond coatings increases total coating life. This effect was not as great as that due to yttrium. Increased bond coat thickness was also found to increase life. (Author)

A80-40662 * Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient. G. Staniek (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Cologne, West Germany) and J. D. Whittenberger (NASA, Lewis Research Center, Cleveland, Ohio). Zeitschrift für Werkstofftechnik, vol. 11, June 1980, p. 197-205. 16 refs. Research supported by the Alexander von Humboldt-Stiftung and Bundesministerium für Forschung und Technologie.

Thermal gradient testing of three oxide dispersion strengthened alloys (two Ni-base alloys, MA 754 and MA 6000 E, and the Fe-base MA 956) and the directionally solidified eutectic alloy, gamma/gamma prime-alpha, have been conducted. Experiments were carried out with maximum temperature up to 1200°C and thermal gradients on the order of 100°C/mm. The oxide dispersion strengthened alloys were difficult to test because the thermal stresses promoted crack nucleation and growth; thus the ability of these alloys to maintain a thermal gradient may be limited. The stability of individual fibers in gamma/gamma prime-alpha was excellent; however, microstructural changes were observed in the vicinity of grain boundaries. Similar structures were also observed in isothermally annealed material; therefore thermal gradients do not affect the microstructure of gamma/gamma prime-alpha in any significant manner. (Author)

The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 700 to 1038 C were performed for 32 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross-slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles of single crystals of the nickel-based superalloy Mar-M247 are referred to as the 001 had high lives, and those near the 011 had low lives.

T T Huang and G H Metz 1979 70047 p refs (Grant No. 3214) (NASA CR 159718 SETEC MME 79 61, SAR 21) Avail NTIS HC AO3/MF AO1 CSCL 11F

R.C.T.

Pittsburgh Univ Pa Dept of Metallurgical and Materials Engineering

AN INVESTIGATION OF THE INITIATION STAGE OF HOT CORROSION IN NI BASE ALLOYS (Seminal Report, 1 Mar. 1979 - 31 Aug. 1979)

The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

National Aeronautics and Space Administration

STRESS CORROSION CRACKING EVALUATION OF MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS

The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a sea coast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high. Several heats included in the tests. Based on a comparison with data from sea coast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these PH stainless steels.

A.R.H.
A coated specimen of 262 HRC 38, 266 HRC 37 and 266 HRC 40 compared to alloys tested in prior programs. Authors before cracks appeared. All the alloys showed little weight change cracking on the small radius of the double edge wedge specimen. HRC 40 also survived 6000 cycles without cracking. A duplicate 265 HRC 39 and 266 HRC 37 survived 6000 cycles without edge wedge specimens, both bare metal and coated for each lengthened alloy compositions or fabricating techniques. Double thermal fatigue and oxidation data were obtained. Several nickel-base aircraft turbine disk superalloys were evaluated at 650°C for resistance to fatigue crack initiation and propagation under cyclic and cyclic/dwell conditions. Controlled strain low cycle fatigue (LCF) and controlled load crack propagation tests were performed and results utilized to provide a direct comparison among the alloys. Tests were performed on selected alloys to evaluate the effects of hold times, mean stresses, stress-dwell cycle types, inert environment, and contractor test methods. At the lower total strain ranges of interest, the alloys exhibited generally increasing initiation life with increasing tensile strength for both cyclic (0.33 Hz) and cyclic/dwell (900-s hold per cycle) conditions. Rank order of the alloys by initiation life changed substantially at higher strain ranges, approaching the rank order expected from monotonic tensile ductilities. The effect of the 900 sec (15 min) hold time fatigue life varied significantly from alloy to alloy. Generally, the higher-strength, finer-grained alloys exhibited more significant reductions in fatigue life due to the dwell. The effects of mean stress were found to be negligible and the effects of mean stress were pronounced. At high strain ranges the mean stress was near zero and did not contribute to reduction in life. At low strain ranges, however, mean stresses were large and significant reductions in LCF lives occurred. L.F.M.

N80-264427* Pittsburgh Univ., Pa. Dept. of Metallurgical and Materials Engineering. HOT CORROSION OF Cr-Co, Cr-Co-Al, AND Ni-Cr ALLOYS IN THE TEMPERATURE RANGE OF 700-750 DEG C SEMIANNUAL REPORT, 1 Sep. 1979 - 28 Feb. 1980 K. T. Chang and G. H. Meier. Jun. 1980 29 p (Grant NsG-3214) (NASA-CR-156869; SAR-3) Avail NTIS HC A03/MF A01 CSCL 11F. The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Cr-Co-Al alloys was studied in the temperature range 700 to 750°C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pit corrosion morphology was induced by a number of different mechanisms. B.D.

N80-264493* General Electric Co., Cincinnati, Ohio. Aircraft Engine Group. MATERIALS FOR ADVANCED TURBINE ENGINES, VOLUME 1: POWER METALLURGY RENE 95 ROTATING TURBINE ENGINE PARTS Final Report W. R. Plouts, C. E. Shamblen, J. S. Hostler, R. E. Peebles, and R. W. Gosler. Jun. 1979 358 p 2 Vol. (Contract NASA-20073) (NASA-CR-158602; R79AE0416-Vol-1) Avail NTIS HC A16/MF A01 CSCL 11F. An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included. R.C.T.

N80-30492* Pratt and Whitney Aircraft Group, West Palm Beach, Fla. EVALUATION OF THE CYCLIC BEHAVIOR OF AIRCRAFT TURBINE DISK ALLOYS, PART 2 Contractor Report, Jul. 1978 - Mar. 1980 B. A. Cowles and J. R. Warren. Jul. 1980 196 p refs (Contract NAS3-21379) (NASA-CR-165123; PWA-1-13153-Pr-2) Avail NTIS HC A09/MF A01 CSCL 11F. Several nickel-base aircraft turbine disk superalloys were evaluated at 650°C for resistance to fatigue crack initiation and propagation under cyclic and cyclic/dwell conditions. Controlled strain low cycle fatigue (LCF) and controlled load crack propagation tests were performed and results utilized to provide a direct comparison among the alloys. Tests were performed on selected alloys to evaluate the effects of hold times, mean stresses, stress-dwell cycle types, inert environment, and contractor test methods. At the lower total strain ranges of interest, the alloys exhibited generally increasing initiation life with increasing tensile strength for both cyclic (0.33 Hz) and cyclic/dwell (900-s hold per cycle) conditions. Rank order of the alloys by initiation life changed substantially at higher strain ranges, approaching the rank order expected from monotonic tensile ductilities. The effect of the 900 sec (15 min) hold time fatigue life varied significantly from alloy to alloy. Generally, the higher-strength, finer-grained alloys exhibited more significant reductions in fatigue life due to the dwell. The effects of mean stress were found to be negligible and the effects of mean stress were pronounced. At high strain ranges the mean stress was near zero and did not contribute to reduction in life. At low strain ranges, however, mean stresses were large and significant reductions in LCF lives occurred. L.F.M.
27 NONMETALLIC MATERIALS

Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.

N80-1325s National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
CHARACTERIZATION AND PROPERTIES OF CONTROLLED NUCLEATION THERMOCHEMICAL DEPOSITED (CNTD) SILICON CARBIDE

The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200, 000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress. J.M.S.

N80-1326s National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
REACTIONS OF CALCIUM ORTHOSILICATE AND BARIUM ZIRCONATE WITH OXIDES AND SULFATES OF VARIOUS ELEMENTS

Calcium orthosilicate and barium zirconate were evaluated as the insulating layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of fission products. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and Ba2ZrO3 reacted with Fe2O3. K.L.

N80-1424s National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FRICION AND WEAR OF PLASMA-SPRAYED COATINGS CONTAINING COBALT ALLOYS FROM 25 DEG TO 650 DEG IN AIR
Harold E. Silney and Thomas P. Jacobson 1979 20 p refs (NASA-TM-79316; E-189) Avail: NTIS HC A02/MF A01 CSCL 11F

Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

N80-1816s National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
MECHANISMS OF LUBRICATION AND WEAR OF A BONDED SOLID LUBRICANT FILM

To obtain a better understanding of how bonded solid lubricant films lubricate and wear (in general), the tribological properties of polyimide-bonded graphite fluoride films were studied (in specific). A pin-on-disk type of testing apparatus was used; but in addition to sliding a hemispherically tipped rider, a rider with a 0.95 mm diameter flat area was slid against the film. This was done so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurs. In the first, the film supported the load. The lubricating mechanism consisted of the shear of a thin surface layer (of the film) between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress. M.M.M

N80-1722 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LUBRICATION AND WEAR MECHANISMS OF POLYIMIDE-BONDED GRAPHITE FLUORIDE FILMS SUBJECT TO LOW CONTACT STRESSES

The tribological properties of polyimide-bonded graphite fluoride films were studied with a pin-on-disk friction apparatus. A 440 C HT stainless steel rider with a 0.95 millimeter diameter flat area was slid against the film in order to achieve a light, closely controlled contact stress. A 1 kilogram load was applied to this flat to give a projected contact stress of 14 megapascals. Two stages of lubrication were operating. In the first stage, the film supported the load and the lubricating mechanism appeared to be the shear of a thin surface layer of the film between the rider and the bulk of the film. The second stage began after the original film was worn away, and the lubricating mechanism appeared to be the shear of very thin lubricant layers between the flat area on the rider and flat plateaus generated on the sandblasted asperities of the metallic substrate. The major difference between the lubricating mechanisms of the hemispherical and flat riders was that the flat wore through the film much more slowly than did the hemisphere. K.L.

N80-1817s National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
WEAR PARTICLES OF SINGLE-CRYSTAL SILICON CARBIDE IN VACUUM
Kazuhisa Miyoshi and Donald H. Buckley Feb. 1980 24 p refs Submitted for publication (NASA-TP-1824; E-077) Avail: NTIS HC A02/MF A01 CSCL 20B

Sliding friction experiments, conducted in vacuum with silicon
curticate /000/ surface in contact with iron based binary alloys are described. Multangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multangular particles are produced by primary and secondary cracking of cleavage planes /000/, /101/-10/, and /112-110/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

K.L.

N80-18181f National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.

REACTION OF SILICON NITRIDE PREPARED FROM WET ATTENTION-MILLED SILICON

Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400°C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens. The adherent properties of PIC-2 and PIC-5. It was concluded that the substrate material was extremely influential in determining the ability of the reaction bonded silicon nitride to adhere to the substrate material.

K.L.

N80-20398f National Aeronautics and Space Administration.

Lewis Research Center, Cleveland, Ohio.
A friction and wear study was made at 20 °C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron slider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods. Author

FRICTION AND WEAR OF IRON-BASE BINARY ALLOYS IN SLIDING CONTACT WITH SILICON CARBIDE IN VACUUM
Kazuhiro Miyoshi and Donald H. Buckley May 1980 11 p refs
NASA-TP-1612; E-260 Avail NTIS HC A02/ MF A01 CSCL 11F
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases. Improved reproducibility and reliability in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Wears rates and coefficients of friction were constant following initially high values during run-in periods. Author

LOW TEMPERATURE CROSS LINKING POLYIMIDES Patent
A way of forming a prepolymer polyimide which can be cross-linked at a relatively low temperature is disclosed. Usually a polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing a styrene derivative end-capping unit, the prepolymer is curable at a temperature of about 175 to 245 C. NASA

EFFECT OF W AND WC ON THE OXIDATION RESISTANCE OF YTTRIA-DOPED SILICON NITRIDE
The effect of W and WC contamination on the oxidation and cracking in air of sintered Si3N4 - 8 w/o Y2O3 ceramics at 500, 750, and 1350 °C is examined. A mixture of Si3N4 - 8Y2O3, mixed with alumina balls, was divided into four portions. Three portions were doped with 2 w/o WC W, and 4 w/o W
respective, in order to simulate contamination during milling. The fourth portion was undoped and used on a control. The addition of W or WC did not affect the phase relationships in the system, as all bars with or without additions contained melilite as the major Si-Y-O-N phase after sintering. At 750 C, instability (rapid oxidation and cracking) of W-doped bars appears to have occurred as a result of oxidation of the tungsten containing melilite phase. No intermediate temperature instability was observed in bars containing 2 w/o WC or in bars with no additive. Specimens exposed at 1350 C had good oxidation resistance due to the formation of a protective siliceous oxide layer. A specimen containing 4 w/o W which was precoated at 1350 C had improved oxidation resistance at 750 C. The tendency for low and oxidation and cracking of Si3N4 - 8 Y2O3 at 750 C is concluded to be related to tungsten content of the sintered bars.

METHOD OF CROSS-LINKING POLYVINYL ALCOHOL AND OTHER WATER SOLUBLE RESINS Patent

A method is disclosed for fabricating chemically inert ceramic bodies that are both highly refractory and porous. A paste is formed by mixing alumina grain having uniform particle size with colloidal silica that is stabilized with ammonia. After drying, the cast body has sufficient green strength to be handled, and it is transferred to a furnace for curing. A green body prepared in this fashion does not undergo shrinkage during curing nor during prolonged subsequent heating.

A method is disclosed for fabricating chemically inert ceramic bodies that are both highly refractory and porous. A paste is formed by mixing alumina grain having uniform particle size with colloidal silica that is stabilized with ammonia. After drying, the cast body has sufficient green strength to be handled, and it is transferred to a furnace for curing. A green body prepared in this fashion does not undergo shrinkage during curing nor during prolonged subsequent heating.

A80-12098 * Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine. W. R. Jones, Jr. (NASA, Lewis Research Center, Cleveland, Ohio) and C. E. Snyder, Jr. (NASA, Lewis Research Center, Cleveland; USAF, Materials Laboratory, Wright-Patterson AFB, Ohio), American Society of Lubrication Engineers, Annual Meeting, 34th, St. Louis, Mo., Apr. 30-May 3, 1979, Preprint 79-AM-18-1, 10 p, 25 refs. Boundary lubricating characteristics, thermal stability and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disc apparatus, a tensimeter and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyether triazine had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether triazine greater than polyether greater than C-ether greater than fluorinated polyether. (Author)

The effect of thermal aging on the weight loss, adherence, friction and wear of polyimide films and polyimide-bonded graphite fluoride films applied to 440C-HT stainless steel disks and to 204
stainless steel thin foils was studied. The films were exposed at temperatures of 315, 345, 370 or 400 °C for 100 hours or more and then evaluated at temperatures of 25, 315 or 345 °C in atmospheres of dry or moist air. Polyimide films were found to be brittle after thermal exposure, but polyimide-bonded graphite fluoride films possessed good adherence and gave low friction and wear results. Thus, polyimide-bonded graphite fluoride films appear to be good candidates for solid lubrication applications where long thermal soak times are prevalent. (Author)

Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As nitrided bond strengths averaged approximately 280 MPa at both room temperature and 1400 °C, Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens. (Author)

This paper studies the comparative life of plasma-sprayed ZrO2-Y2O3 thermal barrier coatings on NiCoAlY bond coats on René 41 in short (4 min) and long (57 min) thermal cycles at 1040 °C in a 0.3 Mach flame. Attention is given to determining the effect of short and long-duration cycles on ZrO2-Y2O3 coatings, the cause of any cycle frequency effects, and methods to improve tolerance to thermal stress. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperatures as compared to longer cycles, the failed coating indicating compressive failure. The experiments and stress calculations show that repeatedly subjecting a ceramic coating to high rates of initial heating has a more destructive influence on the coating than sustained operation at temperature. The effect of such thermal compressive stresses might be minimized through coating deposition and thickness control and by turbine cycle measurement to keep starting heating rates below critical values. (Author)

A liquid chromatographic method has been developed capable of providing a chemical fingerprint of PMR-15 resin solutions and prepreg. The amounts of two of the monomers can be quantified so their experimentally determined molar ratio can be compared to the formulated one. Only the monomers were detected in fresh resin solution, whereas several additional components, resulting from an association or reaction between the norbornyl endcap and the amine, were detected in a resin solution aged for three days. Two commercial preps exhibited fingerprints similar to that of laboratory material, but three others contained additional components corresponding to higher esters and nitriles. (Author)

Results are presented for an investigation designed to characterize the microstructure of controlled nucleation thermochromically deposition (CNTD) produced SiC material with respect to grain size, stoichiometry, phase analysis, etc., and to evaluate the room-temperature and high-temperature fracture and oxidation behavior. By using the CNTD process, ultrafine-grained SiC is deposited on tungsten wires as substrates, with superior surface smoothness and without the macrocolumnar growth commonly observed in conventional CVD materials. The results suggest that the high-purity, fully dense, and stable grain size SiC material produced by CNTD shows potential for high-temperature structural applications, provided that pertinent problems are resolved. S.D.

A80-13065 * # Mechanical and chemical effects of in-texturing biomedical polyurethanes. A. J. Weigand and M. A. Cankus (NASA, Lewis Research Center, Cleveland, Ohio), Alliance for Engineering in Medicine, Annual Conference of Engineering in Medicine and Biology, 32nd, Denver, Colo., Oct. 6-10, 1979, Paper, 27 p, 17 refs.

Improvements in gas turbine performance are approaching the limits imposed by alloy properties and excessive cooling air requirements. Thin ceramic coatings can increase the difference between gas temperature and metal temperature by several hundred degrees. Thus, they are potentially a major step forward in surface protection. These coatings offer the potential to reduce fuel consumption by permitting reduced coolant flow or higher turbine inlet temperature or to improve durability by reducing metal temperatures and transient thermal stresses. At NASA Lewis, in-house and contractual programs are in place to bring this promising technology to engine readiness in the early 1980's. Progress towards this goal is summarized in this paper. (Author)

The paper studies the comparative life of plasma-sprayed ZrO2-Y2O3 thermal barrier coatings on NiCoAlY bond coats on René 41 in short (4 min) and long (57 min) thermal cycles at 1040 °C in a 0.3 Mach flame. Attention is given to determining the effect of short and long-duration cycles on ZrO2-Y2O3 coatings, the cause of any cycle frequency effects, and methods to improve tolerance to thermal stress. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperatures as compared to longer cycles, the failed coating indicating compressive failure. The experiments and stress calculations show that repeatedly subjecting a ceramic coating to high rates of initial heating has a more destructive influence on the coating than sustained operation at temperature. The effect of such thermal compressive stresses might be minimized through coating deposition and thickness control and by turbine cycle measurement to keep starting heating rates below critical values. S.D.

An investigation is reported of improving the durability of plasma sprayed ceramic coatings for the vane platforms in the JT8D turbofan engine. The program aims for reduced fuel consumption of commercial aircraft engines; the use of improved strain tolerant
ASO notches. using four-point bends, the chevron-notch specimen used for the determination of the plane strain fracture toughness of extremely brittle materials. During testing, a crack develops at the notch tip and extends stably as the load is increased. For a given specimen and notch configuration, maximum load always occurs at the same relative crack length independent of the material. Fracture toughness is determined from the maximum load with no need for crack length measurement. Chevron-notch acuity is relatively unimportant since a crack is produced during specimen loading. In this paper, the authors use their previously determined stress intensity factor relationship for the chevron-notch short bar specimen to examine the performance of that specimen in determining the plane strain fracture toughness of silicon nitride and aluminum oxide.

(Author)

Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitried surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

(Author)

Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800°C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82°C showed that essentially no changes in the composites had occurred.

(Author)

The preliminary design and a demonstration of the feasibility of fabricating submodules of an automotive Stirling engine recuperator for waste heat recovery at 370°C are described. Sinterable silicon nitride (Silion) tubing and plates were fabricated by extrusion and hydrostatic pressing, respectively, suitable for demonstrating a potential method of constructing ceramic recuperator-type heat exchangers. These components were fixed in nitrogen atmosphere to 1800°C without significant scale
formation so that they can be used in the as fired condition. A refractory glass composition (AI2O3 x 4.5 CaO MgO x 11502) was used to join and seal component parts by a brazing technique which formed strong recuperator submodules capable of withstanding repeated thermal cycling to 1370 C. The corrosion resistance of these materials to Na2SO4-NaCl carbon mixtures was also assessed in atmospheres of hydrogen and CO2-N2-H2O mixtures at both 870 C and 1370 C for times to 1000 hours. No significant reaction was observed under any of these test conditions.

ANALYSES

Coating combinations were developed for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings were able to withstand the sliding start/stop and running rotor lift/off and touchdown and occasional short time, high speed rubs under representative loading of the engine. Some of these coatings were a combination of Al2O3-graphite and CeF2 (plasma sprayed) and were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr2O3 was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers were used to improve the ductility and the adhesion.

MOISTURE IN POLYMERS AND COMPOSITES

A suitable method for the direct measurement of moisture concentrations after humidity/thermal exposure on state of art epoxy and polyimide neat resins and their graphite and glass fiber reinforcements was investigated. Methods for the determination of moisture concentrations, profiles, moisture diffusion modeling and moisture content after short term exposure were examined. Carefully fabricated, precharacterized epoxy and polyimide neat resins, and their AS graphite and S glass-reinforced composites were exposed to humid conditions using 100% water (200 C) at ambient and elevated temperatures. These specimens were fixtureed to theoretically limit the D2O permeation to a unidirectional penetration axis. The analytical techniques evaluated were (1) laser pyrolysis gas chromatography/mass spectrometry, (2) solids probe mass spectrometry, (3) laser pyrolysis conventional infrared spectroscopy, and (4) infrared imaging thermovision. The most reproducible and sensitive technique was solids probe mass spectrometry. The fabricated exposed specimens were analyzed for D2O profiling after humidity/thermal conditioning at three exposure time durations.

NATO-CH-159745. TRW-31782. (NASA-CR-159875. DOE/NASA/0027-80/1. ALAERCH-31-3578A) Avail NTIS HC A11/1/1 MF A01 CSCL 118

A two year durability testing program to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions was conducted. Conditions included extended cyclic thermal exposures up to 2500 F and 3500 hours. Selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Caborundum pressureless sintered d-wc and British Nuclear Fuels Ltd Refel reaction sintered silicon carbide marketed by Pure Carbon Co. These materials initially were exposed to 350 hours/1750 cycles at 1200 and 1270 C (2200 and 2500 F). Subsequent exposure to 1050, 2100, and 2500 hours were performed on the materials maintaining 50 percent of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimension changes, weight changes, density changes, porosity, sample damping capacity changes, scanning electron microscope fractography and X-ray diffraction.

N80-17221* A Program plan on a NASA-Lewis funded program is presented, in which effectiveness of thick ceramic coatings in preventing hot corrosion and in providing thermal insulation to gas turbine engine components are to be investigated. Preliminary analysis of the benefits of the thermal insulating effect of this coating on decreasing cooling air and simplifying component design appears very encouraging. The program is in the preliminary stages of obtaining starting materials and establishing procedures. Numerous tables, graphs and photograms are included.

THE 3500 HOUR DURABILITY TESTING OF COMMERCIAL CERAMIC MATERIALS Interim Report

A program plan on a NASA-Lewis funded program is presented, in which effectiveness of thick ceramic coatings in preventing hot corrosion and in providing thermal insulation to gas turbine engine components are to be investigated. Preliminary analysis of the benefits of the thermal insulating effect of this coating on decreasing cooling air and simplifying component design appears very encouraging. The program is in the preliminary stages of obtaining starting materials and establishing procedures. Numerous tables, graphs and photograms are included.

The state of the art of 'SIAIONs' is reviewed, noting that the term has become a generic one applied to Si3N4 based materials. Attention is given to work on phase relations, crystal structure, synthesis, fabrication, and properties of various SIAIONs. Also discussed are the essential features of compositions, fabrication methods, and microstructures. In addition, consideration is given to high temperature flexure strength, creep, fracture toughness, oxidation, and thermal shock resistance. Finally, these data are compared to those for some currently produced silicon nitride ceramics to assess the potential of SIAION materials for use in advanced gas turbine engines.

This paper presents the results of a program of analysis and tests to determine the dynamic properties of elastomers as a function of strain and ambient temperature. Measurements were also made to determine the temperature distortion in the elastomer samples during the tests. These measured properties were compared with analytical predictions based on a viscoelastic model designed to account for the self heating of the materials as a function of strain. The test method used was well established Base Excitation Resonant Mass Technique. The specimens tested were two cylindrical butt compression specimens and a shear specimen. Strain was shown to be an important parameter in determining the dynamic properties of the elastomers. In general, these properties were much more sensitive to strain than to frequency. The self heating effect was found to account for a portion of the strain sensitivity of these properties. (Author)

A two-year durability program was performed by AirResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AirResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction. (Author)

Atmospheric burner rig tests have been conducted to evaluate the corrosion resistance of present-day thermal barrier coatings. The coatings are primarily plasma-sprayed and zirconia-based. Both duplex and graded coating systems were tested at 0 F and metal temperatures that range from 1475 F to 1850 F. The fuels ranged from clean GT No. 2 to that doped with impurity levels which simulate water-washed residual fuels. Results to date suggest that liquid sulfate condensates play an important role in the coating degradation mechanisms, whereas the role of vanadium and its salts is less clear. (Author)
28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters, and oxidizers, storage and handling, and aircraft fuels
For related information see also 27 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion

N80-13268** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
TEMPERATURE AND FLOW MEASUREMENTS ON NEAR-FREEZING AVIATION FUELS IN A WING-TANK MODEL

Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

K L

N80-18205** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
INITIAL CHARACTERIZATION OF AN EXPERIMENTAL REFERENCE BROADENED-SPECIFICATION (ERB) AVIATION TURBINE FUEL

Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental reference broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerosol specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.

J M S

N80-20402* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio
ATOMIC HYDROGEN STORAGE Patent

Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature hydrogen combine to prevent the atoms of hydrogen from recombining to form molecules.

Official Gazette of the U.S. Patent and Trademark Office

N80-21661* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
MECHANICAL IMPACT TESTS OF MATERIALS IN OXYGEN EFFECTS OF CONTAMINATION

The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions, however, contamination with cutting oil, motor lubricating oil and toolmaker dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

M G

N80-23472** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
THE IMPACT OF FUELS ON AIRCRAFT TECHNOLOGY THROUGH THE YEAR 2000

The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that will permit the use of broader property fuels and the implication of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.

M G

N80-23454** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
ANALYTICAL AND EXPERIMENTAL EVALUATIONS OF THE EFFECT OF BROAD PROPERTY FUELS ON COMBUSTORS FOR COMMERCIAL AIRCRAFT GAS TURBINE ENGINES

The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

E D K

N80-27508** National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
USE OF PETROLEUM-BASED CORRELATIONS AND ESTIMATION METHODS FOR SYNTHETIC FUELS

Correlations of hydrogen content with aromatic content, heat of combustion, and smoke point are derived for some synthetic fuels prepared from oil and coal syncrudes. Comparing the results

E D K
of the aromatics content with correlations derived for petroleum fuels shows that the shale derived fuels fit the petroleum-based correlations, but the coal derived fuels do not. The correlations derived for heat of combustion and smoke point are comparable to some found for petroleum-based correlations. Calculated values of hydrogen content and of heat of combustion are obtained for the synthetic fuels by use of ASTM estimation methods. Comparisons of the measured and calculated values show bases for the equations that exceed the critical statistics values.

Comparison of the measured hydrogen content by the standard ASTM combustion method with that by a nuclear magnetic resonance (NMR) method shows a decided bias. The comparison of the calculated and measured NMR hydrogen contents shows a difference similar to that found with petroleum fuels. Author

A. J. Pavli

Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible. A.R.H

A. J. Pavli

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LEWIS RESEARCH CENTER

CLEVELAND, OHIO

ADVANCED FUEL SYSTEM TECHNOLOGY FOR UTILIZING BROADEDEN PROPERTY AIRCRAFT FUELS

A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.

A.R.H

Some advantages of methane in an aircraft gas turbine

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.

A.R.H

Some advantages of methane in an aircraft gas turbine

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.

A.R.H

Some advantages of methane in an aircraft gas turbine

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.

A.R.H

Some advantages of methane in an aircraft gas turbine

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.

A.R.H

Some advantages of methane in an aircraft gas turbine

Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisons are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel-efficient turboprop engine burning methane appear to be feasible.
The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased. R.C.T.

LABORATORY MEASUREMENTS IN A TURBULENT, SWIRLING FLOW Final Report

David P. Houl, Nov. 1979 52 p refs (Grant NsG-3076)

(NASA-CR-159723) Avail: NTIS HC A04/MF A01 CSCL 21D

- Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constituents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant. F.O.S.

AUTOGNOSION CHARACTERISTICS OF AIRCRAFT-TYPE FUELS

(NASA-CR-159886; RBO-914617-1) Avail: NTIS HC A05/MF A01 CSCL 21D

- The ignition delay characteristics of Jet A, JP 4, and 2 diesel experimental referee broad specification (ERBS) fuel in air at inlet temperatures up to 1000 K, pressures of 10, 15, 20, 25 and 30 atm, and fuel air equivalence ratios of 0.3, 0.5, 0.7 and 1.0 were mapped. Ignition delay times in the range of 1 to 50 msec were found for a freestream flow velocity of 20 to 100 m/sec were obtained using a continuous flow test apparatus which permitted independent variation and evaluation of the effect of temperature, pressure, flow rate, and fuel/air ratio. The ignition delay times for all fuels tested appeared to correlate with the inverse of pressure and the inverse exponent of temperature. With the exception of pure cetane, which had the shortest ignition delay times, the differences between the fuels tested did not appear to be significant. The apparent global activation energies for the typical gas turbine fuels ranged from 38 to 40 kcal/mole, while the activation energy determined for cetane was 50 kcal/mole. In addition, the data indicate that for lean mixtures, ignition delay times decrease with increasing equivalence ratio. It was also noted that physical (apparatus dependent) phenomena, such as mixing (i.e., length and number of injection sites) and aircircuit cooling (due to fuel heating, vaporization and convective heat loss) can have an important effect on the ignition delay. R.K.G.

ACOUSTIC BEHAVIOR OF HELMHOLTZ RESONATORS

A. S. Hersh, Acoustical Engineering, Chatsworth, Calif.

Effect of Grazing Flow on the Nonlinear Acoustic Behavior of Helmholtz Resonators

A semi empirical fluid mechanical model is derived of the acoustic behavior of thin walled single orifice Helmholtz resonators in a grazing flow environment. The model assumes that the flow field incident to a resonator orifice consists of a spherical sound particle velocity field superimposed upon a mean grazing flow. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two microphone method. With regard to its application to rocket motor interiors, the most important finding of this study is that the acoustic impedance of Helmholtz resonators is affected by grazing flow when the product of the amplitude of the sound pressure incident to the resonator orifice and the rocket motor interior mean grazing flow speed are less than 0.5. For values greater than 0.5, the acoustic impedance is independent of the grazing flow. E.D.X.
ENGINEERING (GENERAL)

Includes vacuum technology; control engineering; display engineering, and cryogenics.

N80-13317* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

EVALUATION OF CLEANERS FOR PHOTOVOLTAIC MODULES EXPOSED IN AN OUTDOOR ENVIRONMENT

Final Report

Power recovery of silicone encapsulated and glass covered photovoltaic modules, exposed for two years in a suburban environment, was measured after washing with a variety of cleaners including detergents, abrasive soap, and hydrocarbon solvents. Silicon encapsulated modules in operating environments may experience large power losses or require extensive periodic cleaning. Glass front-faced modules in similar situations were found to be about five times more effective than mild detergents in cleaning encapsulated modules. Author

N80-16232* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

HOMOGENEN GEAL ALIGNMENT OF NEMATIC LIQUID CRYSTALS BY ION BEAM ETCHED SURFACES

A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000) and twist angles were small (< or = 3 deg) and tilt-bias angles very small (< or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment. Author

Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas. L.M.

As part of NASA's continuing assessment of future communication satellite requirements, a study was conducted to quantitatively scope current and future telecommunication traffic demand in the South Pacific Archipelagos. This demand was then converted to equivalent satellite transponder capacities. Only demand in the South Pacific Archipelagos was included. The results show that if all this traffic were carried by a satellite system: one-third of a satellite transponder would be needed to satisfy the base-year (1976-1977) requirement and about two-thirds of a satellite transponder would be needed to satisfy the forecasted 1985 requirement. Author

The purpose of the paper is to investigate and study in-depth market and system analysis for improving satellite communications. The analyses fall into two categories: the broad, scoping efforts intended to screen potential candidates and studies to develop viable operational system configurations and identify critical technology elements. To illustrate the approach, the results of 30/20 GHz study efforts which have been under way in the past few years are reviewed in detail. C.F.W.

This paper discusses various aspects of the 30/20 GHz wideband technology verification activities of NASA. The discussion considers the objectives, approach, system requirements, possible experiment configuration and payload, and the supporting research and technology elements. (Author)

The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described. M.E.P.

A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan. C.F.W.

It is noted that NASA is currently proceeding with a revitalized RS0 program aimed at the development and demonstration of advanced communication satellite system concepts and the related enabling technologies. The paper reviews the important elements of this program thrust, the approach NASA is taking to assure proper involvement of both the system supplier industry and the service supplier industry and the specific technology focus in the near term. Finally, highlights of the current NASA and industry activities related to opening up the 30/20 GHz frequency band for both commercial and military use are presented. M.E.P.

A mixed-user system is described which provides cost-effective communications services to a wide range of user terminal classes, ranging from one to two voice channel support to a direct-to-user mode, to multiple 500 mbps trunking channel support. Advanced satellite capabilities are utilized to minimize the cost of small terminals. In a system with thousands of small terminals, this approach results in minimum system cost. Author

The baseline 30/30 GHz satellite communication system, designed for cost-effective communications in the years 1990 to 2000, incorporates on-board satellite demodulation and routing of individual 64 kbps digital voice-grade circuits. This level of routing flexibility is necessary to provide efficient communications to the large number of direct-to-user terminals (DTU) projected. The circuit interfacing hardware is distributed among all the DTU and master control stations. The switching circuitry which provides full interconnectivity between 30 to 45 thousand circuits is in the satellite. The DTU terminal cost, perhaps the largest element in the system cost, represents the largest economic value element of the system because it avoids using terrestrial signal distribution

97
and routing and the charges associated with these functions. Satellite baseline design and power requirements for the system are examined.

A.R.H.

NBO-11277* Ford Aerospace and Communications Corp., Palo Alto, Calif.

CONCEPTS FOR 18/30 GHz SATELLITE COMMUNICATION SYSTEM, VOLUME 1: APPENDIX Final Report

R. Jorasch, M. Baker, R. Davies, L. Cuccia, and C. Mitchell

1 Nov 1979 169 p 3 Vol.

Contract NAS3-21362

Concepts for 18/30 GHz satellite communication systems are presented. Major terminal truncing as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

M.M.M.

NBO-11278* Ford Aerospace and Communications Corp., Palo Alto, Calif.

CONCEPTS FOR 18/30 GHz SATELLITE COMMUNICATION SYSTEM, VOLUME 1A: APPENDIX Final Report

R. Jorasch, M. Baker, R. Davies, L. Cuccia, and C. Mitchell

1 Nov 1979 181 p refs 3 Vol.

Contract NAS3-21362

(NASA-CR-159680-1A; WDL-TRB457-1A) Avail: NTIS HC A09/MF A01 CSCL 17B

The following are appended: (1) Propagation phenomena and attenuation models; (2) Models and measurements of rainfall patterns in the U.S.; (3) Millimeter wave propagation experiments; (4) Comparison of theory and experiment; (5) A practical rain attenuation model for CONUS; (6) Space diversity; (7) Values of attenuation for selected U.S. cities; and (8) Additional considerations.

M.M.M.

NBO-11279* Ford Aerospace and Communications Corp., Palo Alto, Calif.

CONCEPTS FOR 18/30 GHz SATELLITE COMMUNICATION SYSTEM STUDY, EXECUTIVE SUMMARY

M. Baker, R. Davies, L. Cuccia, and C. Mitchell

1 Nov 1979 36 p 3 Vol.

Contract NAS3-21362

(NASA-CR-159680; WDL-TRB457) Avail: NTIS HC A03/MF A01 CSCL 17B

An examination of a multiplicity of interconnected parameters ranging from specific technology details to total system economic costs for satellite communication systems at the 18/30 GHz transmission bands are presented. It was determined that K sub A band systems can incur a small communications outage during very heavy rainfall periods and that reducing the outage to zero would lead to prohibitive system costs. On the other hand, the economics of scale, i.e., one spacecraft accommodating 2.5 GHz of bandwidth coupled with multiple beam frequency reuse, leads to system designs that can accommodate the expected demand at less cost.

Author

NBO-12269* Case Western Reserve Univ., Cleveland, Ohio. Dept. of Electrical Engineering and Applied Physics.

LOW SIDELOBE LEVEL LOW-COST EARTH STATION ANTENNAS FOR THE 12 GHZ BROADCASTING SATELLITE SERVICE

R. E. Collin and L. R. Gabel

Sep. 1979 117 p refs

Contract NAS3-21366

(NASA-CR-159703) Avail: NTIS HC A06/MF A01 CSCL 17B

An experimental investigation of the performance of a 1.22 m and 1.83 m diameter paraboloid antennas with an I/D ratio of 0.38 and using a feed developed by Kumar is reported. It is found that side lobes below 30 dB can be obtained only if the paraboloids are relatively free of surface errors. A theoretical analysis of clam shell distortion shows that this is a limiting factor in achieving low side lobe levels with many commercially available low cost paraboloids. The use of absorbing pads and small reflecting plates for side lobe reduction is also considered.

Author

APPLICATION OF ADVANCED ON-BOARD PROCESSING CONCEPTS TO FUTURE SATELLITE COMMUNICATIONS SYSTEMS

J. L. Katz, M. Hoffman, S. L. Kota, J. M. Ruddy, and B. F. White

Contract F19628-79-C-0001; AF Proj. 8680

(NASA-CR-159682; MTR-3787-Vol-1) Avail: NTIS HC A18/MF A01 CSCL 17B

An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

R.C.T.

APPLICATION OF ADVANCED ON-BOARD PROCESSING CONCEPTS TO FUTURE SATELLITE COMMUNICATIONS SYSTEMS: BIBLIOGRAPHY

R. L. Edelman and J. L. Katz

Contract F19628-79-C-0001; AF Proj. 8680

(NASA-CR-159664; MTR-3787-Vol-2) Avail: NTIS HC A06/MF A01 CSCL 17B

Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included.

R.C.T.

THE 30/20 GHz FIXED COMMUNICATIONS SYSTEMS SERVICE DEMAND ASSESSMENT. VOLUME 1: EXECUTIVE SUMMARY

Contract NAS3-21366

(NASA-CR-159619) Avail: NTIS HC A03/MF A01 CSCL 17B

Demand for telecommunications services is forecasted for the period 1980-2000, with particular reference to that portion of the demand associated with satellite communications. Overall demand for telecommunications is predicted to increase by a factor of five over the period studied and the satellite portion of demand will increase even more rapidly. Traffic demand is separately estimated for voice, video, and data services and is also described as a function of distance traveled and city size. The satellite component of projected demand is compared with the capacity available in the C and Ku satellite bands and it is projected that new satellite technology and the implementation of Ka band transmission will be needed in the decade of the 1990's.

Author

THE 30/20 GHZ FIXED COMMUNICATIONS SYSTEMS SERVICE DEMAND ASSESSMENT. VOLUME 2: MAIN REPORT

Contract NAS3-21366

(NASA-CR-159620) Avail: NTIS HC A14/MF A01 CSCL 17B

A forecast of demand for telecommunications services through the year 2000 is presented with particular reference to demand for satellite communications. Estimates of demand are provided for voice, video, and data services and for various subcategories of these services. The results are converted to a common digital measure in terms of terabits per year and aggregated to obtain total demand projections.

J.M.S.
THE 30/20 GHz FIXED COMMUNICATIONS SYSTEM SERVICE DEMAND ASSESSMENT. VOLUME 3: ANNEX
R. B. Gamble, H. R. Seltzer, K. M. Speiter, and M. Westheimer

(NASA-CR-159621) Avail: NTIS HC A04/MF A01 CSCL
17B

A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

J.M.S.

THE 18/30 GHz FIXED COMMUNICATIONS SYSTEM SERVICE DEMAND ASSESSMENT. VOLUME 1: EXECUTIVE SUMMARY
T. Gabriszeski, P. Reiner, J. Rogers, and W. Terbo

(NASA-CR-159546) Avail: NTIS HC A03/MF A01 CSCL
17D

The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized. M.G.

THE 18/30 GHz FIXED COMMUNICATIONS SYSTEM SERVICE DEMAND ASSESSMENT. VOLUME 2: MAIN TEXT
T. Gabriszeski, P. Reiner, J. Rogers, and W. Terbo

(NASA-CR-159547) Avail: NTIS HC A15/MF A01 CSCL
17E

The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations. M.G.

THE 30/20 GHz FIXED COMMUNICATIONS SYSTEM SERVICE DEMAND ASSESSMENT. VOLUME 3: APPENDICES
T. Gabriszeski, P. Reiner, J. Rogers, and W. Terbo

(NASA-CR-159548) Avail: NTIS HC A08/MF A01 CSCL
17F

The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented. M.G.
major characteristics: beam topology, realizable radiation characteristics, and realizable beamforming network architecture. Eight canonical topology plans have been developed and analyzed: angular separation between identical frequency cells, angular separation between orthogonally polarized identical frequency cells, number and configuration of cells forming coverage areas, and crossover level between nonidentical frequency band cells. A general topology plan is developed for the continental United States for 100-deg synchronous satellite longitude.

The satellite communication system described provides communications for very small and very large (trunking) users. Independent combinations of FDMA and TDMA are used in the uplink and downlink designs to minimize terminal costs. Signal routing for small users is accomplished by a digital store-and-forward technique which greatly simplifies the terminal receiver, compared to satellite-switched TDMA. Different processing techniques are used for very high data rate users, but complete interconnectivity between all users is maintained. This avoids double-hop routing with excessive transmission delays. (Author)

Research and development needs for millimeter-wave space communication systems are presented. Assumed propagation fade statistics are investigated along with high data rate diversity link and storage. The development of reliable ferrite switches, and high performance receivers and transmitters is discussed, in addition to improved tolerance of dish and lens fabrication for the antennas. The typical cost for using a simplex voice channel via a high capacity 40/50 GHz satellite is presented. (Author)
33 ELECTRONICS AND ELECTRICAL ENGINEERING

Includes test equipment and maintainability, components, e.g., tunnel diodes and transistors, microminiaturization, and integrated circuits. For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

N80-11327 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
HEAT PIPE COOLING OF POWER PROCESSING MAGNETIC (NASA-TM-79270; E-223) Avail: NTIS HC A02/MF A01 CSCL 09A

A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg).

N80-13281 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
PERFORMANCE OF 22.4-kW NON-LAMINATED-FRAME dc SERIES MOTOR WITH CHOPPER CONTROLLER Final Report

Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percent points lower on chopped dc than on ripple free dc. The chopped dc locked rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

J.M.S.

N80-18300 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
LIQUID METAL SLIP RING Patent Application

Frank D. Berkopec, Robert R. Lovell, and David H. Culp, inventors (to NASA) Filed 20 Feb. 1980 16 p

A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg).

The required wave velocity reduction is achieved by reducing the beam wave resynchronization and thereby enhances efficiency. The required wave velocity reduction is achieved by reducing the resonant frequencies of the individual resonant cavities as a function of the distance from the electron gun through changes in the internal cavity dimensions. The required changes in cavity dimensions are accomplished, for example, by gradually increasing the cavity radius or decreasing the gap length from cavity to cavity.

NASA

N80-19425 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
COUPLED CAVITY TRAVELING WAVE TUBE WITH VELOCITY TAPERING Patent Application

Dennis J. Connolly, inventor (to NASA) Filed 20 Feb. 1980 16 p

A coupled cavity traveling wave tube is described which has a velocity taper, i.e., gradual velocity reduction, which affords beam wave resynchronization and thereby enhances efficiency. The required wave velocity reduction is achieved by reducing the resonant frequencies of the individual resonant cavities as a function of the distance from the electron gun through changes in the internal cavity dimensions. The required changes in cavity dimensions are accomplished, for example, by gradually increasing the cavity radius or decreasing the gap length from cavity to cavity.

NASA

N80-20487 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
CATALYST SURFACES FOR THE CHROMOUS/CHROMIC REDOX COUPLE Patent

An electrolyte producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to provide a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to depilate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.

Official Gazette of the U.S. Patent and Trademark Office

N80-21689 R National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
MULTISTAGE DEPRESSURIZED COLLECTOR WITH EFFICIENCY OF 90 TO 94 PERCENT FOR OPERATION OF A DUAL-MODE TRAVELING WAVE TUBE IN THE LINEAR REGION

Peter Ramins and Thomas A. Fox Washington Apr. 1980 16 p Refs

An update on the life testing of commercial, high current density impregnated tungsten cathodes is presented. The B-type cathodes, operated at a current density of 2 A/cm2 and a cathode temperature of 1100 C have now been run satisfactorily for more than four years. The M-cathode, at the same current density but at an operating temperature of only 1010 C, have been tested for more than three years. The M-cathodes show no degradation in current over their present operating life whereas the current from the B-cathodes degrade about 6 percent after four years of operation.

R.E.S.
An asymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT’s such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency. Author

After a brief description of how a typical TWT works, multi-stage depressed collectors (MDC) are discussed. A quick method for computing the expected efficiency of a well engineered TWT is outlined to aid in estimating power supply needs. Applications of improved TWTs and a new power supply are suggested.

A computer program written in APL is used to invert the matrix and hence to solve for the coil strengths which are used to represent the field data. Examples are given of the coil representation for (1) measured magnetic data, (2) refocusing fields, and (3) PPM focusing fields. (Author)

An asymmetric multistage depressed collector was evaluated in conjunction with a dual-mode TWT. Collector performance optimizations for the TWT operation in the linear range were stressed. Measured collector efficiencies in excess of 90 percent led to dramatic improvements in TWT overall efficiency. (Author)
rather than operating at saturation, can be very linear amplifiers. Finally, a new approach to power supplies is also covered. M.E.P.

NASA-Lewis Research Center has conducted an ongoing life test program on commercial impregnated tungsten cathodes since 1971. This brief is an update of the information as of December 1979. B-type cathodes, operated at 1100 C have been run in simulated microwave tubes at 2 A/sq cm for more than four years with about 6-percent degradation in current at a constant reference anode voltage. M-type cathodes have been operated for 30,000 h at a cathode temperature of 1010 C and 2 A/sq cm with no degradation in current as a constant reference anode voltage.

Describing-function techniques and averaging methods have been employed to characterize a multiloop switching buck regulator by three functional blocks: power stage, analog signal processor, and pulse modulator. The model is employed to explore possible forms of pole-zero cancellation and the adaptive nature of the control to filter parameter changes. Analysis-based design guidelines are provided including a suggested additional RC-compensation loop to optimize regulator performances such as stability, audiosusceptibility, output impedance, and load transient response.

A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistORIZED chopper. Dynamometer tests were first performed, followed by EV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for EV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the EV was smoother and required less driver skill than V-switch control.

Author
34 FLUID MECHANICS AND HEAT TRANSFER

Includes boundary layers, hydrodynamics, fluids, mass transfer, and ablation cooling.

For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

N80-11378** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STREAKLINE FLOW VISUALIZATION STUDY OF A HORSESHOE VORTEX IN A LARGE-SCALE, TWO-DIMENSIONAL TURBINE STATOR CASCADE

Raymond E. Giguere and Louis M. Russell 1979 20 p ref.

(NASA-TM-79274, E-201) Avail: NTIS HC A02/MF A01 CSCL

Neutrally buoyant helium-filled bubbles were observed as they followed the streaklines in a horseshoe vortex system around the vane leading edge in a large scale, two-dimensional, turbine stator cascade. Inlet Reynolds numbers, based on true chord, ranged between 100,000 to 300,000. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16 mm movie film. Individual frames from the film were selected, and overlaid to show the details of the horseshoe vortex around the leading edge. The transport of the vortex was observed as the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streaklines on the endwall surface were traced by the flow of oil drops. Author:

N80-13430** National Aeronautics and Space Administration.

MARANOGONI BUBBLE MOTION IN ZERO GRAVITY

(NASA-TM-79250, E-160) Avail: NTIS HC A03/MF A01 CSCL 207

It was shown experimentally that the Maranogoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Maranogoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Calculations and results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.

N80-13406** National Aeronautics and Space Administration.

COMBUSTION OF SOLID CARBON RODS IN ZERO AND NORMAL GRAVITY

(NASA-TM-79303; E-285) Avail: NTIS HC A03/MF A01 CSCL 218

In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen-enriched environment in normal and zero gravity. Direct mass spectrometric detection was used in the normal gravity tests to obtain concentration profiles of CO, CO2, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnation film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 10, 15, and 25 psig was obtained for three different rod diameters. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

K.L.

N80-15361** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPUTER PROGRAM FOR generating INPUT FOR ANALYSIS OF IMPINGEMENT-COOLED, AXIAL-FLOW TURBINE BLADE

(NASA-TP-1603, AVRADCOM-TR-79-34) Avail: NTIS HC A04/MF A01 CSCL 207

A computer program, TACTGRID, was developed to generate the geometrical input for the TACT program, a program that calculates transient and steady state temperatures, pressures, and cooling flows in an impingement cooled turbine blade. Using spline curves, the TACTGRID program constructs the blade internal geometry from the previously designed external blade surface and newly selected wall and channel thicknesses. The TACTGRID program generates the TACT calculational grid, calculates length between grid points required by TACT as input, and prepares the namelist input data set used by TACT for the blade geometry. In addition, TACTGRID produces a computer plot of each blade slice, detailing the grid and calculation stations, and thus eliminates the need for intermediates drafting.

J.M.S.

N80-15364** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPUTATION OF THREE-DIMENSIONAL FLOW IN TURBOMACHINERY MIXERS AND COMPARISON WITH EXPERIMENTAL DATA

(NASA-TM-81410, E-324) Avail. NTIS HC A04/MF A01 CSCL 207

A three dimensional, viscous computer code was used to calculate the mixing downstream of a typical turbomachinery mixer geometry. Experimental data obtained using pressure and temperature rakes at the lobe and nozzle exit stations were used to validate the computer results. The relative importance of turbulence in the mixing phenomenon, as compared to the streamwise vorticity set up by the secondary flows, was determined. The observations suggest that the generation of streamwise vorticity plays a significant role in determining the temperature distribution at the nozzle exit plane.

K.L.

N80-15369** National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

NUMERICAL SIMULATION OF SUPERSONIC INLETS USING A THREE-DIMENSIONAL VISCOUS FLOW ANALYSIS

(NASA-TM-81411; E-325) Avail: NTIS HC A02/MF A01 CSCL 207

A three dimensional, fully viscous computer analysis was evaluated to determine its usefulness in the design of supersonic inlets. This procedure takes advantage of physical approximations.
to limit the high computer time and storage associated with complete Navier-Stokes solutions. Computed results are presented for a Mach 7.4 hypersonic inlet. Good agreement was obtained between theory and data for both water. Results of a mesh sensitivity study are also shown.

N80-17397\# National Aeronautics and Space Administration.

EFFECTS OF A CERAMIC COATING ON METAL TEMPERATURES OF AN AIR-COOLED TURBINE VANE
Herbert J. Gladden and Curt H. Liebert Feb 1980 29 p refs (NASA-TP-1598; E-167) Avail NTIS HC A03/MF A01 CSCL 20D.

The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

N80-17398\# National Aeronautics and Space Administration.

VOLUME-ENERGY PARAMETERS AND TURBULENT-FLOW DENSITY FLUCTUATIONS
Robert C. Hendricks Jan 1980 28 p refs (NASA-TP-1585; E-127) Avail NTIS HC A03/MF A01 CSCL 20D.

Volume-energy relations determined from an equation of state were used to group many sets of heat transfer data for liquids and gases, including the near-critical region. The volume - Gibbs energy parameter grouped these data better than did such other parameters as enthalpy, temperature, or internal energy.

N80-20532\# National Aeronautics and Space Administration.

FACTORS AFFECTING CLEANUP OF EXHAUST GASES FROM A PRESSURIZED, FLUIDIZED-BED COAL COMBUSTOR

The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particles in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

N80-21708\# National Aeronautics and Space Administration.

SIMILARITY TESTS OF TURBINE VANES, EFFECTS OF CERAMIC THERMAL BARRIER COATINGS

The role of material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components coated with a ceramic thermal barrier material when tested at reduced temperatures and pressures. It is shown that the thermal performance can be evaluated reliably at reduced gas and coolant conditions; however, thermal conductivity corrections are required for the data at reduced conditions. Corrections for a ceramic thermal barrier coated vane are significantly different than for an uncoated vane. Comparison of uncorrected test data, therefore, would show erroneously that the thermal barrier coating was ineffective. When thermal conductivity corrections are applied to the test data these data are then shown to be representative of engine data and also show that the thermal barrier coating increases the vane cooling effectiveness by 12.5 percent.
momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood. E.D.K.

N80-29824 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio
TOWARD THE USE OF SIMILARITY THEORY IN TWO-PHASE CHOKED FLOWS
R C Hendericks, J V Sengera (Maryland Univ, College Park), and R J Simoneau 1980 12 p refs Proposed for presentation at Winter Ann. Meeting of the ASME, Chicago 16-21 Nov. 1980
(NASA-TM-81568) Avail NTIS HC A02/MF A01 CSCL 20D

Comparison of two phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component loci are significant.

Author

N80-29824 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio
PRELIMINARY RESULTS FROM A FOUR-WORKING SPACE, DOUBLE-ACTING PISTON, STIRLING ENGINE CONTROLS MODEL

A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behavior but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

Author

106

A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region. (Author)

Application of the principle of similarity to fluid mechanics. R. C. Hendricks (NASA, Lewis Research Center, Cleveland, Ohio) and J. V. Singer (Maryland University, College Park, Md.), International Association for Properties of Steam, International Conference on the Properties of Steam, 5th, Munich, West Germany, Sept. 8-14, 1979, Paper. 47 p. 90 refs. Grant No. NGR-21-002-344.

Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper, we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by performing such a transformation to calculate two phase critical mass flow through a nozzle. (Author)

Evolution of a rotating flow in a body of fluid bounded by a stationary flat surface is discussed. The calculated results show that the radial pressure gradient is substantially reduced in the region close to the surface, so that letting that gradient be independent of distance from the surface would be expected to give only rough or qualitative estimates. However, the reduced rotation near the stationary surface is still large enough to cause an inflow near the surface and to set up a recirculation pattern. The concentration of vorticity by the radial inflow is not great enough to increase the tangential velocities near the center of rotation. V.T.

Reported herein are comparative thermal film cooling footprints observed by infrared imagery from straight, curved and looped coolant tube geometries. It was hypothesized that the difference in secondary flow and turbulence structure of flow through these three tubes should influence the mixing properties between the coolant and mainstream. The coolant was injected across an adiabatic plate through a hole angled at 30 deg to the surface in line with the free stream flow. The data cover a range of blowing rates from 0.37 to 1.26 (mass flow per unit area of coolant divided by free stream). Average temperature difference between coolant and tunnel air was 25 C. Data comparisons confirmed that coolant tube curvature significantly influences film cooling effectiveness. (Author)

It is shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low-gravity environment. In such two-phase flow systems, local variations in bubble surface tension are caused by a temperature gradient in the liquid. Shearing stresses thus generated at the bubble surface lead to convective motion in which the bubble begins to move. A mathematical model consisting of the Navier Stokes equations and the thermal energy equations, along with the appropriate boundary conditions for both media, is proposed. V.P.

The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnets to a level at which the cooling is no longer effective. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnets. Additionally, by maintaining lower and more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of the D-30 on the thruster test rig. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor. (Author)

An experimental work is discussed whose objective was to obtain data that show the effect of temperature and temperature fluctuations on surface noise. This was accomplished experimentally by immersing a small piece of the test media in a coolant and then in a hot jet. The theory and experiment reported by Olsen (1976) provided a guide for designing and validating the hot jet experiment and for interpreting the data. It is shown that increased temperature causes a small decrease in the sound levels; at the same time it causes a shift in the spectra that is smaller but similar to the shift observed with subsonic hot jet noise. S.D.
A numerical procedure for the efficient simulation of steady inviscid flow is described and its utility is demonstrated. The method is uniformly valid for application in the subsonic, transonic and supersonic flow regimes. It does not rely on the introduction of additional assumptions beyond those necessary to obtain the Euler equations from the Navier-Stokes equations, nor does it make use of a time-asymptotic solution of the unsteady equations of motion. Application of the herein-defined surrogate equation technique allows the formulation of stable, fully-conservative, type-dependent finite difference equations for use in obtaining numerical solutions to systems of first-order partial differential equations, such as the steady-state Euler equations or their various approximations. Computational results are presented for the full Euler equations used to simulate rotational subsonic flow and for the transonic small disturbance equations. For the latter case, a computational efficiency greater than that obtained by means of the standard perturbation potential approach is indicated.

(Author)

N80-10480# Battelle Columbus Labs., Ohio

SPRAY NOZZLE DESIGNS FOR AGRICULTURAL AVIATION APPLICATIONS Final Report, Oct.–Sep, 1978

N80-159702 Available NTIS HC A06/ MF A01 CSL 20D

Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk and estimates of the operational characteristics are presented. Several liquid sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid nozzles, and on operating a spinning disk at an overloaded blowing ratio. Performance requirements for the designs are described and estimates of the operational characteristics are presented. A.W.H.

DEVELOPMENT OF A THREE-DIMENSIONAL SUPERSONIC INLET FLOW ANALYSIS Final Report

R.C. Buggeln, H. McDonald, R. Levy, and J.P. Krekovsky Jan, 1980 122 p refs (Contract NAS3-21003)

N80-32889# TRW Defense and Space Systems Group, Redondo Beach, Calif.

The determined cause of the depriming of the heat pipe was the formation of bubbles of the nitrogen/helium control gas mixture in the arteries during the thaw portion of a freeze/thaw cycle of the inactive region of the condenser section of the heat pipe. Conditions such as suction freezeout or heat pipe turn-on, which moved these bubbles into the active region of the heat pipe, contributed to the depriming mechanism. Methods for predicing, or reducing the probability of this type of failure mechanism in future applications of arterial heat pipes are included. Author

Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverag film cooled surfaces with the following conditions: normal 30 deg slant, and 30 deg x 45 deg compound-angled injection. A flat full-coverag section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000. (Author)
Experimental research into heat transfer from full-coverage film-cooled surfaces with three injection geometries was described in Part I. This part has two objectives. The first is to present a simple numerical procedure for simulation of heat transfer with full-coverage film cooling. The second objective is to present some of the Stanton number data that was used in Part I of the paper. The data chosen for presentation are the low-Reynolds number, heated-starting-length data for the three injection geometries with five-diameter hole spacing. Sample data sets with high blowing ratio and with ten-diameter hole spacing are also presented. The numerical procedure has been successfully applied to the Stanton number data sets.

(Author)
35 INSTRUMENTATION AND PHOTOGRAPHY

Includes remote sensors, measuring instruments and gages, detectors, cameras and photographic supplies; and holography.

For aerial photography see 43 Earth Resources. For related information see also 06 Aircraft Instrumentation, 19 Spacecraft Instrumentation.

N80-14374* National Aeronautics and Space Administration.

TEMPERATURE AND PRESSURE MEASUREMENT TECHNIQUES FOR AN ADVANCED TURBINE TEST FACILITY

A high pressure, high-temperature turbine test facility constructed for use in turbine cooling research is described. Several recently developed temperature and pressure measuring techniques are used in this facility. The measurement techniques, their status, previous applications and some results are discussed. Noncontact surface temperature measurements are made by optical methods. Radiation pyrometry principles combined with photodiostic scanning are used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components are expected to be handled with an 80 channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft.

M.M.M.

N80-17422* National Aeronautics and Space Administration.

FATIGUE STRENGTH TESTING EMPLOYED FOR EVALUATION AND ACCEPTANCE OF JET-ENGINE INSTRUMENTATION PROBES

The fatigue type testing performed on instrumentation rakes and probes intended for use in the air flow passages of jet engines during full scale engine tests is outlined. A discussion of each type of test performed, the results that may be derived and means of inspection is included.

R.E.S.

N80-17423* National Aeronautics and Space Administration.

OPTICAL SENSORS FOR AERONAUTICS AND SPACE

A review of some NASA and DOD programs to develop optical sensors with fiber optics for instrumentation and control is presented. Fiber optic systems offer some distinct advantages. Noise immunity is one important asset. Fiber optic systems do not conduct electricity and therefore can be used in and near areas that contain explosive or flammable materials. One obstacle of these programs is to produce more reliable sensors and to improve the safety and operating economy of future aircraft and space vehicles.

Author

N80-18385* National Aeronautics and Space Administration.

FIBER OPTIC SENSORS FOR MEASURING ANGULAR POSITION AND ROTATIONAL SPEED

Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

K.L.

N80-24595* National Aeronautics and Space Administration.

DYNAMIC BEHAVIOR OF A BEAM DRAG-FORCE ANEMOMETER

A cantilevered beam with strain gages attached to the fixed ends and the minimax technique were used in an experiment conducted to determine the dynamic behavior of a drag-force anemometer in high frequency, unsteady flow. In steady flow the output of the anemometer is proportional to stream velocity head and flow angle. Fluid mechanics suggests that, in unsteady flow, the output would also be proportional to the rate of change of fluid velocity. It was determined that effects due to the rate of change of fluid velocity are negligible for the probe geometry and frequencies involved.

A.R.H.

N80-25635* National Aeronautics and Space Administration.

COMPUTERIZED VIDEO DENSITOMETRY METHOD FOR RAPID ANALYSIS OF INFRARED PHOTOGRAPHIC IMAGES
Ernest Roberts, Jr., Frederick D. Calfo, and Frank G. Pollack Jan. 1980 13 p refs (NASA-TP-1686; E-354) Avail: NTIS HC A02/MF A01 CSCL 14E

A computerized video densitometry method is described which is approximately 50 times faster than a corresponding manual method of analysis, with no apparent sacrifice of accuracy. The object of the technique is to determine the temperature distribution across a heated surface. Infrared photographs of the heated surfaces provide the raw data. A video based, computer operated image analysis system provides the equipment. Infrared photographic pyrometry using a flat bed microdensitometer forms the basis of the technique. The procedure is illustrated on a thermally cycled aircraft gas turbine blade.

A.R.H.

The capability for accurate measurement of unsteady pressure on the surface of compressor and fan blades during engine operation was established. Tests were run on miniature semiconductor strain gage pressure transducers mounted in several arrangements. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the blade, acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results showed no failures of transducers or mountings and indicated an uncertainty of unsteady pressure measurement of approximately + or -6%, plus 0.1 kPa for a typical application.

An apparatus is described in which hydrogen atoms were trapped at temperatures down to 1.1 K in the T / field of a large volume superconducting magnet. A high sensitivity thermal detector was used to study trapping and recombination of atoms on the detector surface. The apparatus permits the application of extremely high steady state magnetic fields to study the potential effects of electron spin polarization on the stabilization of hydrogen atoms. (Author)

Advances in the gas turbine technology level and the corresponding advances in measurement instruments and technique are reviewed for each of the past decades, starting with the forties. The review provides a picture of the gradual development from the earlier, relatively simple systems, to the present sophisticated machines. A look in the future indicates that continued advances in gas turbine technology will be needed, used, and supported and that substantial changes are underway as to how these advances will be achieved. Some projections of the type of advances and in technology and measurements to be expected in the decade of the eighties are presented. V.P.

The need for blade tip clearance instrumentation has been intensified recently by advances in technology of gas turbine engines. A new laser-optical measurement system has been developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in rotating component rigs and complete engines. The system is applicable to fan, compressor and turbine blade tip clearance measurements. The engine mounted probe is particularly suitable for operation in the extreme turbine environment. The measurement system consists of an optical subsystem, an electronic subsystem and a computing and graphic terminal. Bench tests and environmental tests were conducted to confirm operation at temperatures, pressures, and vibration levels typically encountered in an operating gas turbine engine. (Author)

Innovative features of the anemometer include: (1) a rapid and efficient data acquisition system, (2) a detailed real-time graphic display of the data being accumulated, and (3) input laser beam positioning that maximizes the size of the intra-rotor region being mapped. Results demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor. The use of fluorescent seed particles allows flow measurements near the rotor hub and the casing window. (Author)

A laser anemometer system employing an efficient data acquisition technique has been used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated included flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation. (Author)

In the present paper, the current status of fluid and structural measurements is reviewed, and some potential improvements in gas turbine machinery, directly associated with the new measuring capability are discussed. Some considerations concerning the impact of the new capability on the methods and approaches that will be used in the further development of advanced technology, in general, and to aerospace gas turbine machinery, in particular, are presented. V.P.

The paper deals with an analysis procedure, based on engine-order sampling, which eliminates effectively the engine harmonics from the overall flutter spectra obtained with a case-mounted static pressure transducer. Qualitative spectral analyses of pressure data performed on the basis of blade order sampling, are examined. The interference of blade motion with the pressure signal in the steep gradient portion of the blade passage is demonstrated, using optimal displacement spectra. Two methods which remove the contribution of blade motion from the blade-pressure-difference spectra are described. V.P.

The paper presents a technique for measuring blade tip displacements which employs optical probes and an array of microcomputers. A system directly digitizing a minimum of a 2048-point time-deflection history for each of the three measurement locations on each blade is described. V.T.

The program of experimental programs is conducted at the simplest two-dimensional stationary geometry to the highly complex three-dimensional flow in a rotating blade row. Experimental methods and instrumentation techniques are described. Emphasis is placed on rotating blade row measurements.

A high pressure, high-temperature turbine test facility is being constructed at the NASA Lewis Research Center for use in turbine cooling research. Several recently developed temperature and pressure measuring techniques will be used in this facility. This paper describes these measurement techniques, their status, previous applications and some results. Noncontact surface temperature measurements will be made by optical methods. Radiation pyrometry principles combined with photoelectric scanning will be used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components will be handled with an 80-channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft.

This report outlines the fatigue type testing performed on instrumentation rakes and probes intended for use in the air flow passages of jet-engines during full-scale engine tests at Lewis Research Center. Included is a discussion of each type of test performed, the results that may be derived and means of inspection. A design and testing sequence outlines the procedures and considerations involved in the generation of suitable instrument probes.

The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20- to 80-MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

A fringe type laser anemometer is described. Features of the anemometer include: a rapid and efficient data acquisition process; a detailed real time graphic display of the data being accumulated; and input laser beam positioning that maximizes the size of the intrarotor region that can be mapped. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial flow compressor rotor. A velocity profile, derived from 30,000 measurements along 1000 sequential circumferential positions covering 20 blade passages, was obtained in 30 seconds. The use of fluorescent seed particles allows flow measurements near the rotor hub and the casing window.

Thermal film temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibrational, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately ±0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.
36 LASERS AND MASERS
Includes parametric amplifiers.

A CESIUM TELEC EXPERIMENT AT LEWIS RESEARCH
CENTER Final Report
E. J. Britt Sep. 1979 59 p refs
(Contract NAS3-21149)
(NASA-CR-159729; NSR-8-1) Avail: NTIS HC A04/MF A01
CSCL 20E

The thermoelectronic laser energy converter (TELEC), was
studied as a method of converting a 10.6 mm CO2 laser beam
into electric power. The calculated characteristics of a TELEC
seem to be well matched to the requirements of a spacecraft
laser energy conversion system. The TELEC is a high power
density plasma device which absorbs an intense laser beam by
inverse bremsstrahlung with the plasma electrons. In the TELEC
process, electromagnetic radiation is absorbed directly in the
plasma electrons producing a high electron temperature. The
energetic electrons diffuse out of the plasma striking two
electrodes which are in contact with the plasma at the boundaries.
These two electrodes have different areas: the larger one is
designated as the collector, the smaller one is designated as
the emitter. The smaller electrode functions as an electron emitter
to provide continuity of the current. Waste heat is rejected from
the collector electrode. An experiment was carried out with a
high power laser using a cesium vapor TELEC cell with 30 cm
active length. Laser supported plasma was produced in the TELEC
device during a number of laser runs over a period of several
days. Electric power from the TELEC was observed with currents
in the range of several amperes and output potentials of less
than 1 volt. The magnitudes of these electric outputs were smaller
37 MECHANICAL ENGINEERING

Includes auxiliary systems (non-power), machine elements and processes, and mechanical equipment.

N80-12441*® National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
MODIFIED FACE SEAL FOR POSITIVE FILM STIFFNESS

Patent Application
Izhak Etzion (Technion-Israel Inst of Technol., Haifa) and Abraham Lipshitz, inventors (to NASA) (Technion-Israel Inst. of Technol., Haifa) Filed 7 Nov. 1979 7 p Sponsored by NASA (NASA-Case-LW-12899-1; US-Patent-Appi-SN-092145) Avail: NTIS HC A02/MF A01 CSCL 11A

An invention to improve the film stiffness of a face seal without increasing the sealing and dam area is described. The improved sealing apparatus has a primary seal ring in the form of a nose piece. A spring forces a sealing surface on the seal ring into sealing contact with a seat to form a seal. A circumferential clearance seal is formed in series with this face by a lip on the nose piece. The width of the surface of the lip is substantially the same as the width of the sealing surface on the face seal. Also, the clearance between the seal on the lip and the shaft is substantially the same as the spacing between the face sealing surfaces on the face seal when the shaft is rotating. The circumferential clearance seal restricts the flow of fluid from a main cavity to an intermediate cavity with a resulting pressure drop. The hydrostatic opening is strongly dependent on the face seal clearance, and the desired axial stiffness is achieved.

N80-13473*® National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
INVESTIGATION INTO THE EFFECT OF PLASMA PRE-TREATMENT ON THE ADHESION OF PARYLENE TO VARIOUS SUBSTRATES

A procedure is described for using argon and oxygen plasmas to promote adhesion of parylene coatings upon many difficult-to-bond substrates. Substrates investigated were gold, nickel, Kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and tungsten. Without plasma treatment, 180 deg peel tests yield a few g/cm (oz/in) strengths. With dc plasma treatment in the deposition chamber, followed by coating, peel strengths are increased by one to two orders of magnitude. A.R.H.

N80-14403*® National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
SELF-ACTING LIFT-PAD GEOMETRY FOR CIRCUMFERENTIAL SEALS: A NONCONTACTING CONCEPT

A segmented circumferential seal with lift pads for hydrodynamic action was analyzed over ranges of speed and sealed pressures. Performance predictions, which predicted non-contact operation for speeds as high as 600 revolutions per second at sealed pressures to 86 N/sq cm, are discussed. Performance tests were performed on the seals and compared with the performance predictions.

A.W.H.

N80-15410*® National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
COMPARISON OF PREDICTED AND EXPERIMENTAL PERFORMANCE OF LARGE-BORE ROLLER BEARING OPERATING TO 3.0 MILLION DN

Bearings inner and outer race temperatures and the amount of heat transferred to the lubricant were calculated by using the computer program CYBEAN. The results obtained were compared with previously reported experimental data for a 118 mm bore roller bearing that operated at shaft speeds to 25,500 rpm, radial loads to 8,900 N (2000 lb), and total lubricant flow rates to 0.0102 cu m/min (2.7 gal/min). The calculated results compared well with the experimental data.

N80-18340*® National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
TRIBOLOGICAL PROPERTIES OF SILICON CARBIDE IN METAL REMOVAL PROCESSES

Material properties are considered as they relate to adhesion, friction, and wear of single crystal silicon carbide in contact with metals and alloys that are likely to be involved in a metal removal process such as grinding. Metal removal from adhesion between sliding surfaces in contact and metal removal as a result of the silicon carbide sliding against a metal, indenting into it, and plowing a series of grooves or furrows are discussed. Fracture and deformation characteristics of the silicon carbide surface are also covered. The adhesion, friction, and metal transfer to silicon carbide is related to the relative chemical activity of the materials. The more active the metal, the higher the adhesion and friction, and the greater the metal transfer to silicon carbide. Atomic size and content of alloying elements play a dominant role in controlling adhesion, friction, and abrasive wear properties of alloys. The friction and abrasive wear (metal removal) decrease linearly as the shear strength of the bulk metal increases. They decrease as the solute to solvent atomic radius ratio increases or decreases linearly from unity, and with an increase of solute content. The surface fracture of silicon carbide is due to cleavages of 0001, 10-110, and/or 111-210 planes. J.M.S.
The performance of 120.65 mm bore high speed design tapered roller bearings was investigated at shaft speeds to 20,000 rpm under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature in turbomachinery bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.

K.L.

The performance sensitivity of a two-shaft automotive gas turbine engine to changes in component performance and cycle operating parameters was examined. Sensitivities were determined for changes in turbomachinery efficiency, compressor inlet temperature, power turbine discharge temperature, regenerator effectiveness, regenerator pressure drop, and several gas flow and heat leaks. Compressor efficiency was found to have the greatest effect on system performance. K.L.

The results of a test program to evaluate a compact, high performance, fixed ratio traction drive are presented. This transmission, the Veseytis Multifiler Traction Drive, is a fixed ratio, single stage planetary with two rows of stepped planet rollers. Two versions of the drive were parametrically tested back-to-back at speeds to 73,000 rpm and power levels to 180 kW (240 hp). Parametric tests were also conducted with

A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shroud the rotor bades. A compliant backring surrounds the shroud. The backing is a yielding deomflexible porous material covered with a thin ductile layer. A mounting fixture surrounds the backing. NASA
the Nasvytis drive retrofitted to an automotive gas turbine engine. The drives exhibited good performance, with a nominal peak efficiency of 94 to 96 percent and a maximum speed loss due to creep of approximately 3.5 percent.

N80-18405 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. **ENDURANCE AND FAILURE CHARACTERISTICS OF MODIFIED VASCO X-2, CBS 600 AND AISI 9310 SPUR GEARS**

Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from AISI 9310 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth surface failure occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in failure at the tips of the gears.

Author

N80-18406 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. **EFFECT OF GEOMETRY AND OPERATING CONDITIONS ON SPUR GEAR SYSTEM POWER LOSS**

The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter, fine-pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tire (no-load) losses are generally a significant percentage of the full load loss except at low speeds.

Author

N80-18407 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. **CONSTRAINED FATIGUE LIFE OPTIMIZATION OF A NASVYTIIS MULTIROLLER TRACTION DRIVE**

A contact fatigue life analysis method for multiroller traction drives is presented. The method is based on the Lundberg-Palmgren analysis method for rolling element bearing life prediction, and also uses life adjustment factors for materials, processing, lubrication, and effect of traction. The analysis method is applied in an optimization study to the multiroller traction drive, consisting of a single-stage planetary configuration with two rows of stepped planet rollers of five rollers per row. The drive was approximately 25 centimeters in diameter by 11 centimeters long, having a nominal ratio of 15:1. The theoretically predicted drive life was 2510 hours at a nominal continuous power and speed of 74.8 kW (100 hp) and 7500 rpm. A contact fatigue life analysis method for multiroller traction drives is presented. The method is based on the Lundberg-Palmgren analysis method for rolling element bearing life prediction, and also uses life adjustment factors for materials, processing, lubrication, and effect of traction. The analysis method is applied in an optimization study to the multiroller traction drive, consisting of a single-stage planetary configuration with two rows of stepped planet rollers of five rollers per row. The drive was approximately 25 centimeters in diameter by 11 centimeters long, having a nominal ratio of 15:1. The theoretically predicted drive life was 2510 hours at a nominal continuous power and speed of 74.8 kW (100 hp) and 7500 rpm. Author
FULLY PLASMA-SPRAYED COMPLIANT BACKED CERAMIC TURBINE SEAL

Douglas A. Rohn, Stuart H. Lowenthal, and Neil E. Anderson

To maintain the minimum operating clearances between the blade tips and the lining of a high pressure turbine, a low temperature easily decomposable material, such as a polymer, in powder form is blended with a high temperature resistant metal powder. The two materials are simultaneously deposited on a substrate formed by the turbine casing. Alternately, the polymer powder may be added to the metal powder during plasma spraying. A ceramic layer is then deposited directly onto the metal-polymer composite. The polymer additive mixed with the metal is then completely volatilized to provide a porous layer between the ceramic layer and the substrate. Thermal stresses are reduced by virtue of the resulting porous structure which affords a cushion effect. By using plasma spraying for depositing both the powders of the metal and polymer material, as well as the ceramic powder, no brazing is required.
A gas path seal suitable for use with a turbine engine or compressor is provided. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shroud the rotor blades. A compliant backing surrounds the sround. The backing is a compliant material covered with a thin ductile layer. A mounting fixture surrounds the backing.

Official Gazette of the U.S. Patent and Trademark Office

Lewis Research Center, Cleveland, Ohio.

THE RESPONSE OF TURBINE ENGINE ROTORS TO INTERFERENCE RUBS

Albert F. Kascak 1980 18 p refs
Film Supplement number C-294 to this report is available on request from Chief, Management Services Division (5-5), National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135

(ArT-NAS•781518: AVKADSQOM-TR-80-0-C14: E-462) Avail: NTIS HC A02/MF A01 CSQL 21D

A method was developed for the direct integration of a rotor dynamics system experiencing a blade loss induced rotor rub. Both blade loss and rotor rub were simulated on a rotor typical of a small gas turbine. A small change in the coefficient of friction (from 0.1 to 0.2) caused the rotor to change from forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to study the susceptibility of rotors to rub induced backward whirl problems.

L.F.M.

FULLY FLOODED ELASTOHYDRODYNAMIC LUBRICATED ELLIPTICAL CONTACTS

Bernard J. Hamrock 1980 27 p refs

(ArT-NAS•781543: E-497) Avail: NTIS HC A03/MF A01 CSQL 131

Emphasis is on fully flooded, elastohydrodynamic lubricated, elliptical contacts. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. A brief description of the relevant equations used in the elastohydrodynamic lubrication of elliptical contacts is given. The most important practical aspect of the elastohydrodynamic theory is the determination of the minimum film thickness within the contact. The maintenance of a fluid film of adequate magnitude is an essential feature of the correct operation of lubricated machine elements. The results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and elliptic integrals of the first and second kinds. Simplified expressions that allow quick calculations of the deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented.

L.F.M.
as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions. The theoretical findings are compared directly with results obtained experimentally. Author

N80-28711* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CIRCUMFERENTIAL SHAFT SEAL Patent

A circumferential shaft seal is described which comprises two sealing rings held to a rotating shaft by means of an elosomeric band. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite. Official Gazette of the U.S. Patent and Trademark Office

N80-28716* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CIRCUMFERENTIAL CORRECTION FOR ROLLER SKEWING

A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to produce changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the roller while eight have rollers with compounded transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature. Author

N80-29706* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

ROTOR DYNAMIC INSTABILITY PROBLEMS IN HIGH-PERFORMANCE TURBOMACHINERY
1980 493 p. refs Contd. held at College Station, 12-14 May 1980; sponsored by Texas A and M Univ., Louisville Univ., and ARAD (NASA-CP-2133; E-413) Avail: NTIS HC A20/MF A01 CSCL 131

Diagnostic and remedial methods concerning rotodynamic instability problems in high performance turbomachinery are discussed. Instabilities due to seal forces and work-fluid forces are identified along with those induced by rotor bearing systems. Several methods of rotor dynamic control are described including active feedback methods, the use of elosomeric elements, and the use of hydrodynamic journal bearings and supports. For individual titles, see N80-29707 through N80-29733. Author

N80-29716* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DAMPING IN RING SEALS FOR COMPRESSIBLE FLUIDS
David P. Fleming In its Rotor Dynamics Instability Prob. in High-Performance Turbomachinery 1980 p 169-188 refs (For primary document see N80-29706 20-37) Avail: NTIS HC A20/MF A01 CSCL 131

An analysis is presented to calculate damping in ring seals for a compressible fluid. Results show that damping in tapered ring seals (optimized for stiffness) is less than that in straight bore ring seals for the same minimum clearance. Damping in ring seals can promote fractional frequency whirl and can, thus, be detrimental. Thus, tapered seals can benefit rotor and seal stability by having lower damping as well as higher stiffness. Use of incompressible results leads to large errors. Author
N8O-3179?# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

SIMULATION AND VISUALIZATION OF FACE SEAL MOTION STABILITY BY MEANS OF COMPUTER-GENERATED MOVIES

A computer aided design method for mechanical face seals is described. Based on computer simulation, the actual motion of the flexibly mounted element of the seal can be visualized. This is achieved by solving the equations of motion of this element, calculating the displacements in its various degrees of freedom vs. time, and displaying the transient behavior in the form of a motion picture. Incorporating such a method in the design phase allows one to detect instabilities and to correct undesirable behavior of the seal. A theoretical background is presented. Details of the motion display technique are described, and the usefulness of the method is demonstrated by an example of a noncontacting conical face seal. M.G.

N8O-3179# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

OBSERVATION OF PRESSURE VARIATION IN THE CAVITATION REGION OF SUBMERGED JOURNAL BEARINGS

Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations in the cavitation zone, contrary to common assumptions of constant cavitation pressure. Author

N8O-3374# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

EFFECT OF CAGE DESIGN ON CHARACTERISTICS OF HIGH-SPEED-JET-LUBRICATED 36-MILLIMETER-BORE BALL BEARING

Parametric tests were conducted with a 36 mm bore angular contact ball bearing with a double outer land guided cage. Provisions were made for jet lubrication and outer-ring cooling of the bearing. Test conditions included a combined thrust and radial load at nominal shaft speeds of 48,000 rpm, and an oil-in temperature of 394 K (350 F). Successful operation of the test bearing was accomplished up to 2.5 million ON. Test results were compared with those obtained with similar bearing having a single outer land guided cage. Higher temperatures were generated with the double outer land guided cage bearing, and bearing power loss and cage slip were greater. Cooling the outer ring resulted in a decrease in overall bearing operating temperature. Author

Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gasous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however, the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating. (Author)

The NASA Lewis Research Center devised a comprehensive gear technology research program beginning in 1969, the results of which are being integrated into the NASA civilian helicopter transmission System Technology Program. Attention is given to the results of this gear research and those programs which are presently being undertaken. In addition, research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. Finally, the impact of advanced gear research technology on rotorcraft transmission design is discussed. (Author)

The leak rates through shaft seals with large pressure drops were simulated using gaseous hydrogen, or nitrogen flowing through an annulus with a nonrotating centerbody. The flows were choked. For concentric or eccentric position of the rotor and parallel or convergent tapered flow passages, data and analysis revealed that mass flow or leak rate can be determined from a relation whose normalizing parameters depend on the thermodynamic critical constants of the working fluid and an average flow area expressed in terms of the inlet and exit cross-sectional areas. Using these normalized relations, the flow data for parallel and three convergent, tapered, shaft-seal configurations are in good agreement. Generalization to any simple gas or gas mixtures is implied and demonstrated in part. (Author)

Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide rollers. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk material increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron
They increase as the atomic ratio increases or decreases linearly from the unit y. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys. (Author)

This paper describes methods used to design elastoamorically damped supports for high-speed, flexible rotor-bearing systems. The procedure consists of using a damped natural frequency analysis to identify stiffness and damping requirements for the supports over the speed range. Optimum values for these coefficients are found and unbalance response analysis is used to calculate expected rotor behavior. Equations for calculating the shear and compressive stiffness and damping of button-type elastomer mounts are given, as is a procedure for their application to the design of the elastomeric mounts. These techniques were successfully applied to the design of damped elastomeric supports for a high-speed rotor, which traverses two bending critical speeds. Results of the testing showed that the rotor was well behaved and showed linear response to unbalance. Measured modal damping exceeded expectations and tests were conducted with both high- and low-loss elastomers, enabling the exploration of the practical range of elastomer damping capability. (Author)

This paper presents the results of a program of analysis and test to determine the dynamic properties of elastomer cartridge operating under a rotating load. These measured properties were compared to predictions based on results of unidirectional tests with the same elastomer material. The test method for the dynamic stiffness and damping measurements was essentially the same as the Base Excitation Resonant Method. The primary difference is that the exciting force used for these most recent tests was exerted by rotating unbalance in a rotating test rig rather than a shake table. The specimen tested were two rectangular cross-section, continuous ring cartridges of different cross-section and three cylindrical button cartridges of different button thickness. Tests were performed for strains from about 0.001 to about 0.01 (double amplitude). Material properties and prediction equations determined from reciprocating tests were used to make numerical predictions of stiffness, damping, and loss coefficient for the test elements, with encouraging results. Strain was shown to be an important parameter in determining these dynamic properties, particularly damping and loss coefficient. (Author)

A80-28010 * Wear of seal materials used in aircraft propulsion systems and grooves height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys. (Author)

In contrast to hydrodynamic bearings, which depend for low-friction characteristics on a fluid film between the journal and the bearing surfaces, roller-element bearings employ a number of balls or rollers that roll in an annular space. The paper briefly outlines the advantages and disadvantages of roller-element bearings as compared to hydrodynamic bearings. The coverage discusses bearing types, rolling friction, friction losses in rolling bearings, contact stresses, deformation, hydrodynamic load-carrying capacity, bearing dynamics including elastohydrodynamics, load distribution, lubrication (grease, solid oil, oil-air mist), specific dynamic capacity and life, specific static capacity, and fatigue or wearout (elasto-hydrodynamics, wear). Rolling by reason wear factor as a function of environment is plotted and discussed. S.D.

Evaluation of power transmission shafting for high-speed balancing has shown that when axial torque is applied, the imbalance response is altered. An increase in synchronous excitation always occurs if the axial torque level is altered from the value used during balancing: this was the case even when the shaft was balanced with torque applied. The twisting of the long slender shaft produces a change in the imbalance distribution sufficient to disrupt the balanced state. This paper presents a review of the analytic development of a weighted least squares approach to influence coefficient balancing and a review of experimental results. The analytic approach takes advantage of the fact that the past testing has shown that the influence coefficients are not significantly affected by the application of axial torque. The 3.00-m (12-ft) long aluminum shaft, 7.62 cm (3 in.) in diameter was run through the first flexural critical speed at torque levels ranging from zero torque to 903.8 N-m (8000 lb-in.) in 112.9 N-m (100 lb-in.) increments. Good comparison was achieved between predicted and experimental results. (Author)

This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomer were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as non-synchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes. (Author)

Existing theories of erosion of ductile metals based on cutting and deformation mechanisms predict no material removal at normal incidence which is contradictory to experience. Thus, other mechanisms may be involved. The possible role of adhesive material transfer during erosion is investigated by both single-particle impingement experiments and erosion by streams of particles. Examination of the rebounding particles as well as the eroded surface yields evidence of a significant adhesive mechanism for the ductile metals investigated.

The tribological properties of polyimide-bonded graphite fluoride films were investigated. A pin-on-disk type of testing apparatus was used; the specimen was a spherically tipped rider, a rider with a 0.50-mm-diameter flat area was slid against the film so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred: in the first, the film supported the load and the lubrication mechanism consisted of the shear of a thin surface layer between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 extruder lubricant was used in a recirculating lubrication system containing a 49-microin absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometer or the normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and of one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating by a factor of an order of magnitude. However, the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

The results of the Materials for Advanced Turbine Engines (MATE) program initiated by NASA are presented. Mechanical properties comparisons are made for superalloy parts produced by as-HIP powder consolidation and by forging of HIP consolidated billets. The effect of various defects on the mechanical properties of powder parts are shown.

A contact fatigue life analysis method for multiroller traction drives is presented. The method is based on the Lundberg-Palmgren analysis method for rolling element bearing life prediction, and also uses life adjustment factors for materials, processing, lubrication, and effect of traction. The analysis method is applied in an optimization study to the multiroller traction drive, consisting of a single-stage planetary configuration with two rows of stepped planet rollers of five rollers per row. The drive was approximately 25 centimeters in diameter by 11 centimeters long, having a nominal ratio of 15:1. The theoretically predicted drive life was 2610 hours at a nominal continuous power and speed of 74.6 kW (100 hp) and 75,000 rpm.

The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of operating conditions and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis showed good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.

The results of a test program to evaluate a compact, high performance, fixed-ratio traction drive are presented. This transmission, the Nasvytis Multiroller Traction Drive, is a fixed-ratio, single-stage planetary with two rows of stepped planet-rollers. Two versions of the drive were parametrically tested by back-to-back speeds to 73,000 rpm and power levels to 180 kW (240 hp). Parametric tests were also conducted with the Nasvytis drive
retrofitted to an automotive gas turbine engine. The drives exhibited good performance, with a nominal peak efficiency of 94 to 96 percent and a maximum speed loss due to creep of approximately 3.5 percent. (Author)

Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue results in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential for tooth fracture occurring at a tooth surface fatigue pit. Careful consideration of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears. (Author)

A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, calculated oil jet impingement depth, and estimated heat transfer coefficients. Experimental measurements of gear tooth average surface temperatures and instantaneous surface temperatures were made with a fast response infrared radiometric microscope. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at both load and speed. Increasing the speed at constant load and increasing the load at constant speed cause a significant rise in average and peak surface temperatures of gear teeth. The oil jet pressure required for adequate cooling at high speed and load conditions must be high enough to get full depth penetration of the teeth. Calculated and experimental results were in good agreement with high oil jet penetration but showed poor agreement with low oil jet penetration depth. (Author)

A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size. (Author)

The feasibility of silicon carbide composite structures was evaluated for 1644 K gas turbine seal applications. The silicon carbide composites evaluated consisted of Si/SiC Sicomp (Trademark) - and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for abradability, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. The BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated for Mach 1.0 gas oxidation/erosion resistance from 1477 K to 1644 K. The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preconditioning was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K gas turbine seal applications. J.M.S.

Dual density, plasma sprayed ceramic coating systems were investigated for possible application as abradable turbine tip seal systems in small gas turbine engines. Abradability, erosion resistance, internal leakage, and microstructural characterization were investigated for polyester and cenosphere filled zirconium oxide composites. Results indicate the polyester system is more abradable but displays significantly less erosion resistance than the cenosphere system. It is also stated that the absence of significant blade tip damage during abradability testing of both systems suggests additional effort may result in a more nearly optimum balance of abradability and erosion resistance. M.G.

A study of fundamental rub behavior for ten dense sprayed materials and eight current compressor clearance materials has been conducted. A literature survey of a wide variety of metallurgical and thermophysical properties was conducted and correlated to rub behavior. Based on these results, the most promising dense rub material was Cu-SAl. Additional studies on the effects of porosity, incursion rate, blade solidity and ambient temperature were carried out on aluminum bronze (Cu-SAlFe) with and without a 515B Feltmetal underlayer. Author

The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of engines operating with turbine
inlet temperatures as high as 1370°C is examined. The conventional superalloys, directionally solidified eutectics, oxide dispersion strengthened alloys, and tungsten fiber reinforced superalloys are reviewed and compared on the basis of maximum turbine blade temperature capability. Improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are also reviewed. Molybdenum alloys are found to be the most suitable for mass produced turbine wheels. Various forms and fabrication processes for silicon nitride, silicon carbide, and SIALON’s are investigated for use in high stress and medium stress high temperature environments.

K.L.

A tire and wheel assembly is described which consists of a low profile pneumatic tire with sidewalls that deflect inwardly under a load and a wheel having a narrow central channel and extended rim flanges. The extended rim flanges support the tire sidewalls under static and dynamic loading conditions to produce a combination particularly suited to aircraft applications.

NASA

Six single stage reciprocating seal configurations to the requirements of the Stirling cycle engine were evaluated. The seals tested were: the Boeing Footseal, NASA Chervon polyimide seal, Bell seal, Quad seal, Tetraseal, and Dynabak seal. None of these seal configurations met the leakage goals of 0.002 cc/sec at helium gas pressure of 1.22 x 10^7 PA, rod speed of 7.19 m/sec peak, and seal environmental temperature of 108 K for 1500 hours. All test seals failed due to high temperatures. Catastrophic failures were observed for a minimum number of test runs characterized by extremely high leakage rates and large temperature rises. The Bell seal attained 63 hours of run time at significantly lowered test conditions.

E.D.K.

A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the high speed shaft of a turbine in an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without a flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

E.D.K.
Recommendations are made, based on experiences with stable and unstable compressors, which can be used as guides in future designs. High and low pressure compressors which operate well above their fundamental rotor-bearing lateral natural frequencies can suffer from destructive subsynchronous vibration. Usually the elements in the system design which contribute to this vibration, other than the shafting and the bearings, are the seals (both gas labyrinth and oil breakdown bushings) and the aerodynamic components.

References

1. **N80-28662**
 - *Rocketdyne, Canoga Park, Calif.*

2. **N80-28702**
 - FIELD EXPERIENCES WITH ROTORDYNAMIC INSTABILITY IN HIGH-PERFORMANCE TURBOMACHINERY
 - H. E. Doyle In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 3-13 (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01 CSCL 13K

3. **N80-28706**
 - Southwest Research Inst., San Antonio, Tex.
 - FIELD VERIFICATION OF LATERAL-TORSIONAL COUPLING EFFECTS ON ROTOR INSTABILITIES IN CENTRIFUGAL COMPRESSORS
 - J. C. Wachel and F. R. Szenasi In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 15-34 refs (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01 CSCL 13K

4. **N80-28708**
 - Mechanical Technology, Inc., Latham, N. Y.
 - PRACTICAL EXPERIENCE WITH UNSTABLE COMPRESSORS
 - Sion B. Malanowski In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 35-43 refs (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01

5. **N80-28710**
 - ANALYSIS AND IDENTIFICATION OF SUBSYNCHRONOUS VIBRATION FOR A HIGH PRESSURE PARALLEL FLOW CENTRIFUGAL COMPRESSOR
 - R. G. Kirk, J. C. Nicholas, G. H. Donald, and R. C. Murphy In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 45-63 refs (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01 CSCL 13K

6. **N80-28711**
 - SUBSYNCHRONOUS INSTABILITY OF A GEARED CENTRIFUGAL COMPRESSOR OF OVERHUNG DESIGN
 - Avail: NTIS HC A20/MF A01 CSCL 13K

7. **N80-28712**
 - Bently Nevada Corp., Minden.
 - Donald E. Bently In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 95-106 (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01 CSCL 13K

8. **N80-28713**
 - Kobe Steel Ltd. (Japan)
 - ASYNCHRONOUS VIBRATION PROBLEM OF CENTRIFUGAL COMPRESSOR
 - Takeshi Fujikawa, Naotsugi Ishiguro, and Mitsubishi Ito In NASA. Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 109-118 refs (For primary document see N80-29706 20-37)
 - Avail: NTIS HC A20/MF A01 CSCL 13K

1350 C° to achieve near-maximum fuel economy. A.R.H.
Flow induced aerodynamic spring coefficients of labyrinth seals are discussed and the restoring force in the deflection plane of the rotor and the lateral force acting perpendicularly to it are also considered. The effects of operational conditions on the spring characteristics of these components are examined, such as differential pressure, speed, inlet flow conditions, and the geometry of the labyrinth seals. Estimation formulas for the lateral forces due to shaft rotation and inlet swirl, which are developed through experiments, are presented. The utilization of the investigations is explained and results of stability calculations, especially for high pressure centrifugal compressors, are added. Suggestions are made concerning the avoidance of exciting forces in labyrinths.

M.G.

N80-297916#' Kobe Univ. (Japan). Mechanical Engineering Dept.
EVALUATION OF INSTABILITY FORCES OF LABYRINTH SEALS IN TURBINES OR COMPRESSORS
Tsuchi-kou Iwatsubo In NASA, Lewis Res. Center Rotordyn Instability Probl. in High-Performance Turbomachinery 1980 p 249-265 refs For primary document see N80-29706 20-37
Avail NTIS HC A20/MF A01 CSCL 131
The details of a test program for the measurement of the unsteady forces on centrifugal impellers are discussed. Various hydrodynamic flows are identified as possible contributors to these destabilizing forces.
R.C.T.

N80-29720# Technical Univ. of Denmark, Copenhagen.
EFFECT OF FLUID FORCES ON ROTOR STABILITY OF CENTRIFUGAL COMPRESSORS AND PUMPS
Jorgen Colding-Jorgensen In NASA, Lewis Res. Center Rotordyn Instability Probl. in High-Performance Turbomachinery 1980 p 229-247 refs For primary document see N80-29706 20-37
Avail NTIS HC A20/MF A01 CSCL 131
A simple two dimensional model for calculating the rotordynamic effects of the impeller forces in centrifugal compressors and pumps is presented. It is based on potential flow theory with singularities. Equivalent stiffness and damping coefficients are calculated for a machine with a vanless volute formed as a logarithmic spiral. It is shown that for certain operating conditions, the impeller force has a destabilizing effect on the rotor.
R.C.T.

N80-29721#' Cornell Univ., Ithaca, N.Y.
NON-SYNCHRONOUS WHIRLING DUE TO FLUID-DYNAMIC FORCES IN AXIAL TURBO-MACHINERY ROTORS
Shen Fu Shen and Vinod G. Mangle In NASA, Lewis Res. Center Rotordyn Instability Probl. in High-Performance Turbomachinery 1980 p 267-284 refs For primary document see N80-29706 20-37
Avail NTIS HC A20/MF A01 CSCL 131
The role of fluid forces acting on the blades of an axial turborotor with regards to whirling was analyzed. The dynamic
equations were formulated for the coning mode of an overhung rotor. The exciting forces due to the motion were defined through a set of rotor stability derivatives, and analytical expressions of the aerodynamic contributions were found for the case of small mean stream deflection, high solidity and equivalent flat plate cascade. For a typical case, only backward whirl was indicated when the phase shifting of the rotor wake effect was ignored. A parametric study of the dynamic stability boundary method that a reduction in blade stagger angle, mass Row rate, fluid density and an increase in stiffness and external damping are all indicative for improved stability. R.C.T.

The quasi-steady computer analysis of the perturbed centrifugal impeller passage flow was reviewed. A total of 115 stage calculations were used to define the fluid damping coefficient, delta sub fluid. Results indicate that the average total damping coefficient per stage needed for stability is delta sub fluid total > 1.85. R.C.T.

The limitations in the performance of turbomachines which arise as a result of selfexcited vibration were investigated. Bearing forces, elastic hysteresis, and forces from fluid flow through clearances were considered as possible origins. A theoretical evaluation was made to determine the dependence of the forces form the leakage losses and from rotating flow in radial gaps. R.C.T.

Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given. R.C.T.

A symmetric 3 mass rotor supported on hydrodynamic bearings is described. An approximate method of representing finite bearings is used to calculate bearing forces. As the method sums forces from a number of independent circular lobes lemon 3 and 4 lobe bearings are taken into account. The calculations are based on an axial groove bearing. Linear analysis precedes nonlinear simulation of some unstable conditions. The demonstration of small limit cycles suggests that necessarily flexible rotors e.g., helicopter tail rotors, may be practical without either tilt pad bearings or external dampers. R.C.T.

The effect of working fluid on the dynamics of an impeller with radial vanes was investigated. The impeller was supported vertically from a very flexible quill shaft in order to produce a low critical speed, and to allow the fluid dynamic effects on the impeller to predominate. The shaft was supported from ball bearings, so that there was no possibility of oil whip from fluid film bearings as a destabilizing influence. The impeller was run both in the atmosphere, and submerged in working fluids contained in a cylindrical housing, open at the top. Variable speed was obtained with a dc gearmotor drive unit. The speed was measured with a proximity pulse tachometer and electronic digital counter. R.C.T.

The destabilizing effect of rotating damping was investigated. When the rotation was faster than the whirl, rotating damping drags the orbiting particle forward. When stationary damping was also present, the stationary damping was readily determined by balancing the backward and forward drags. A key notion was that a forward whirl at rate omega a sub n with respect to stationary axis appears to be a backward whirl at rate Omega - omega sub n with respect to a system rotating supercritically at rate Omega. The growth rate of unstable whirls (or the decay rate of stable whirls) was readily estimated by a simple energy balance. R.C.T.

Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric
resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed. R.C.T.

N80-29730# Virginia Univ., Charlottesville. Dept. of Mechanical and Aerospace Engineering.

INSTABILITY THRESHOLDS FOR FLEXIBLE ROTORS IN HYDRODYNAMIC BEARINGS
Paul E. Allaire and Ronald D. Flack In NASA, Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 403-427 refs (For primary document see N80-29706 20-37)
(Grant NsG-3177: Contract DE-AC01-78ET-13151; Grant RCA-77-6C)

Two types of fixed pad hydrodynamic bearings (multiplate and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the presence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well. R.C.T.

N80-29731# Virginia Univ., Charlottesville. Dept. of Mechanical and Aerospace Engineering.

STABILIZATION OF AERODYNAMICALLY EXCITED TURBOMACHINERY WITH HYDRODYNAMIC JOURNAL BEARINGS AND SUPPORTS
Lloyd E. Barrett and Edgar J. Gunter In NASA, Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 429-452 refs (For primary document see N80-29706 20-37)
(Grant NsG-3105: Contracts DAA29-77-C-0009; EF-76-S-01.2479)
Avail: NTIS HC A20/MF A01 CSCL 131

A method of analyzing the first mode stability and unbalance response of multiassembly rotors is presented whereby the multiassembly system is modeled as an equivalent single mass modal model including the effects of rotor flexibility, general linearized hydrodynamic journal bearings, squeeze film bearing supports and rotor aerodynamic cross coupling. Expressions for optimum bearing and support damping are presented for both stability and unbalance response. The method is intended to be used as a preliminary design tool to quickly ascertain the effects of bearing and support changes on rotor-bearing system performance. R.C.T.

N80-29732# Mechanical Technology, Inc., Latham, N. Y.

USE OF ELASTOMERIC ELEMENTS IN CONTROL OF ROTOR INSTABILITY
Avail: NTIS HC A20/MF A01 CSCL 131

The dynamic characteristics of elastomeric supports are discussed. Stiffness and damping characteristics for elastomeric density various geometries including O-rings, buttons loaded in compression, and rectangular elements loaded in shear are presented. The effects of frequency, temperature, and amplitude are illustrated, as well as the effects of material and geometry. Empirical design methods are illustrated, and several examples are presented where elastomers have successfully controlled both synchronous and nonsynchronous vibrations. R.C.T.

N80-29733# Virginia Univ., Charlottesville.

FEASIBILITY OF ACTIVE FEEDBACK CONTROL OF ROTORDYNAMIC INSTABILITY
James W. Moore, David W. Lewis, and John Heinzman In NASA, Lewis Res. Center Rotordyn. Instability Probl. in High-Performance Turbomachinery 1980 p 467-476 (For primary document see N80-29706 20-37)
(Contract DE-AC01-78ET-13151)
Avail: NTIS HC A20/MF A01 CSCL 131

Some of the considerations involved in the use of feedback control as a means of eliminating or alleviating rotordynamic instability are discussed. A simple model of a mass on a flexible shaft is used to illustrate the application of feedback control concepts. R.C.T.

SMALL PASSENGER CAR TRANSMISSION TEST; FORD C4 TRANSMISSION Final Report
(Contracts DENC-124; EC-77-A-31-1044)

A 1979 Ford C4 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Ford C4 transmission. A.R.H.

SMALL PASSENGER CAR TRANSMISSION TEST; CHEVROLET LUV TRANSMISSION Final Report
(Contract DENC-124: EC-77-A-31-1044)

A 1978 Chevrolet LUV manual transmission tested per the applicable portions of a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the upper ninety percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Chevrolet LUV transmission. A.R.H.

N80-32710# Mechanical Technology, Inc., Latham, N. Y.

DEVELOPMENT OF PROCEDURES FOR CALCULATING STIFFNESS AND DAMPING OF ELASTOMERS IN ENGINEERING APPLICATIONS, PART 7
A. Rieger and E. Zotti Sep. 1980 85 p refs (Contract NAS3-21623)
(NASA-CR-165138: Rept-80TR63) Avail: NTIS HC A05/MF A01 CSCL 131

An elastomer shear damper was designed, tested, and compared with the performance of the T 55 power turbine supported on the production engine roller bearing support. The Vilon 70 shear damper was designed so that the elastomer damper could be interchanged with the production T 55 power turbine roller bearing support. The results show that the elastomer shear damper permitted stable operation of the power turbine to the maximum operating speed of 16,000 rpm. Author
deficit was attributed to missed goals in the heat recovery system efficiency targets of small size turbomachinery. Most of the SFC components from the development program showed a value of 0.44. The miss in power was primarily due to missing the 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44.

The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.

Author
QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques, and quality control.

N80-15422* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
PHOTOVOLTAIC POWER SYSTEM RELIABILITY CONSIDERATIONS
(NASA-TM-79291, DOE/NASA/20370-79/19, E-235) Avail NTIS HC A02/MF A01 CSCL 14D
An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy. J M S

N80-22714* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
SIMULATION OF TRANSDUCER-COUPPLANT EFFECTS ON BROADBAND ULTRASONIC SIGNALS
The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation, flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interference conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection. Author

N80-24634* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
CONCEPTS AND TECHNIQUES FOR ULTRASONIC EVALUATION OF MATERIAL MECHANICAL PROPERTIES
Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions. A.R.H.

N80-28882* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
QUANTITATIVE ULTRASONIC EVALUATION OF ENGINEERING PROPERTIES IN METALS, COMPOSITES AND CERAMICS
Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques can be transferred from laboratory to industrial environments. E.D.K.

The ultrasonic nondestructive evaluation techniques discussed in the present paper indicate potentials for material characterization and property prediction. Stress wave interaction and material transfer function concepts are examined as a basis for explaining correlations between material mechanical behavior and ultrasonically measured quantities. It is observed that the effect and criticality of any discrete flaw, such as crack, inclusion, or any other stress raiser, is definable only in terms of its material microstructural environment. This underscores the importance of ultrasonic techniques capable of characterizing the stress wave energy transfer properties of a material. V.P.

Ultrasonic techniques that have demonstrated potential for material characterization are reviewed. These techniques rely on physical acoustic properties of materials and the interaction of elastic stress waves with morphological factors in the ultrasonic regime. The speed of wave propagation and energy lost by interaction with material microstructure and geometrical factors underlie ultrasonic determination of material properties. Two categories of ultrasonic measurements are discussed: those related to material strengths (e.g., elastic moduli, tensile strength, and fracture toughness) and those related to morphology and material conditions that govern strength and performance (e.g., microstructure, void content, residual stress, fatigue damage). It is shown that large-scale industrial application of ultrasonic NDE will depend on advancement in such areas as theory development, instrumentation, system automation, standardization, and coordination with design. V.L.

A finite element computer program using the initial stress
approach of elastic-plastic analysis was developed. Crack closure stresses were calculated for three different models. It was concluded that (1) the closure stress is highest in the strip necking model, lowest in the plane strain model, and intermediate in the plane stress model, and (2) the crack closure stress decreases if the separation occurs before the stress reaches the maximum value. Nonpropagating fatigue cracks in the two-phase martensitic-feritic steels were also investigated. Unzipping increments were calculated for different crack lengths. At a prescribed stress intensity level, the shorter the crack length, the greater the unzipping increment is. This means that the shorter crack will grow faster than the longer one if both are subjected to the same K-level.
39 STRUCTURAL MECHANICS

Includes structural element design and weight analysis, fatigue, and thermal stress
For applications see 05 Aircraft Design, Testing and Performance and 18 Spacecraft Design, Testing and Performance

N80-13513* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
COMPARISON TESTS AND EXPERIMENTAL COMPLIANCE
CALIBRATION OF THE PROPOSED STANDARD ROUND
COMPACT PLANE STRAIN FRACTURE TOUGHNESS
SPECIMEN
D. M. Fisher and R. J. Buzzard Nov. 1979 21 p refs
(NASA-TM-81379; E-264) Avail NTIS HC A03/MF A01 CSCL 20K

Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress-intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long arm displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders. Author

N80-15428* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
A RELATION BETWEEN SEMIEMPIRICAL FRACTURE
ANALYSES AND R-CURVES
Thomas W. Orange Jan. 1980 45 p refs
(NASA-TP-1600; E-9963) Avail NTIS HC A03/MF A01 CSCL 20K

The relations between several semiempirical fracture analyses (SEFA) and the R-curve concept of fracture mechanics are examined and the conditions for equivalence between a SEFA and an R-curve are derived. A hypothetical material is employed to study the relation analytically. Equivalent R-curves are developed for several real materials using data from the literature. For each SEFA there is an equivalent R-curve whose magnitude and shape are determined by the SEFA formula and its empirical parameters. If the R-curve is indeed unique, then the various empirical parameters cannot be constant and vice versa. However, for one SEFA the differences are small enough that they may be within the range of normal data scatter for real materials. Author

N80-22734* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
NONLINEAR, THREE-DIMENSIONAL FINITE-ELEMENT
ANALYSIS OF AIR-COOLED GAS TURBINE BLADES
Albert Kaufman and Raymond E. Gaugler Apr. 1980 22 p refs
(NASA-TP-1669; E-074) Avail NTIS HC A02/MF A01 CSCL 21K

Cyclic stress-strain states in cooled turbine blades were calculated for a simulated mission of an advanced technology commercial aircraft engine. The MARC, nonlinear, finite-element computer program was used for the analysis of impingement-cooled airfoils, with and without leading-edge film cooling. Creep was the predominant damage mode (ignoring hot corrosion), particularly around film-cooling holes. Radially angled holes exhibited less creep than holes with axes normal to the surface. Beam-theory analysis of all-impingement-cooled airfoils gave fair agreement with MARC results for initial creep. Author

N80-23678* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
STATUS OF NASA FULL-SCALE ENGINE AEROELASTICITY
RESEARCH

Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choker flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena. Author

N80-23684* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
PRACTICAL IMPLEMENTATION OF THE DOUBLE LINEAR
DAMAGE RULE AND DAMAGE CURVE APPROACH FOR
TREATING CUMULATIVE FATIGUE DAMAGE
S. S. Manson (Case Western Reserve Univ) and G. R. Halford Apr. 1980 50 p refs
(NASA-TP-1617; E-387) Avail NTIS HC A03/MF A01 CSCL 20K

Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed. Author

N80-27719* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
COMPARISON OF ELASTIC AND ELASTIC-PLASTIC
STRUCTURAL ANALYSES FOR COOLED TURBINE BLADE
AIRFOILS
Albert Kaufman Jul. 1980 15 p refs
(NASA-TP-1679; E-241) Avail NTIS HC A02/MF A01 CSCL 20K

Elastic plastic stress strain states in cooled turbine blade airfoils were calculated by three methods for the initial takeoff transient of an advanced technology aircraft engine. The three analytical methods compared were a three dimensional elastic plastic, finite element analysis, a three dimensional, elastic, finite element analysis, and a one dimensional, elastic plastic, beam theory analysis. Structural analyses were performed for eight cases involving different combinations of mechanical and thermal loading on impingement cooled airfoils with and without leading edge film cooling holes. The von Mises effective total strains at maximum takeoff computed from the elastic and elastic plastic finite element analyses agreed with 9 percent for rotating airfoils and 2B percent for stationary airfoils with the elastic results on the conservative side. Author

N80-32735* National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
THE METHOD OF LINES IN THREE DIMENSIONAL
FRACTURE MECHANICS
A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research efforts are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Point-Baker and by the recurrence relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

R.K.G.

The paper presents simple spline-function equations for fracture mechanics calculations. A spline function is a sequence of piecewise polynomials of degree n greater than 1 whose coefficients are such that the function and its first n-1 derivatives are continuous. Second-degree spline equations are presented for the point band, and crack-line wedge-loaded specimens. Some expressions can be used directly, so that for a cyclic crack propagation test using a compact specimen, the equation allows the crack length to be calculated from the slope of the load-displacement curve. For an R-curve test, equations allow the crack length and stress intensity factor to be calculated from the displacement and the displacement ratio.

A.T.

The stability of a beam subjected to compressive centrifugal forces arising from steady rotation about an axis which does not pass through the clamped end of the beam is analyzed to determine the critical rotational speeds for buckling in the in-plane and out-of-plane directions. The differential equations of motion are solved numerically using an integrating, matrix method in combination with an eigenanalysis to determine the eigenvalues from which stability is assessed. The results clarify several differences which have been identified in the literature relating to the proper behavior of the critical rotational speed for buckling as the radius of rotation of the clamped end of the beam is reduced.

A.T.

The method of Strainrange Partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interserion tests of several steel alloys. Comparisons are made with predictions based upon the Time- and Cycle-Fraction approach. The method of Strainrange Partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the Time- and Cycle-Fraction approach.

A convenient procedure is described for the determination of the mechanical behavior (elastic properties and failure stresses of angleplie fiber composite laminates using a pocket calculator. The procedure consists of simple equations and appropriate graphs of (plus or minus theta) ply combinations. The procedure can handle all types of fiber composites including hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.

The paper presents data relevant to several types of aeroelastic instabilities which have been obtained using several types of rocket and turbofan engines. Special attention is given to data relative to separated flow (stall, hock, etc.), flutter, and system mode instabilities. The discussion presents the characteristics of these instabilities, and a number of correlations are presented that help identify the nature of the phenomena.

M.E.P.

A convenient procedure is described for the determination of the mechanical behavior (elastic properties and failure stresses of angleplie fiber composite laminates using a pocket calculator. The procedure consists of simple equations and appropriate graphs of (plus or minus theta) ply combinations. The procedure can handle all types of fiber composites including hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.

Developments in the analysis of creep-rupture data are reviewed with particular reference to time temperature relations for the correlation and extrapolation of creep and stress rupture data, the minimum commitment method, and successive regression methods. Some conclusions to the development of time-temperature parameters are noted.

V.P.

A80-45364 * Vibration and buckling of rectangular plates under in-plane hydrostatic loading. R. E. Kielb (NASA, Lewis Research Center, Cleveland, Ohio) and L. S. Han (Ohio State University, Columbus, Ohio). Journal of Sound and Vibration, vol. 70, June 22, 1980, p. 545-556. 15 refs.

Numerical solutions are presented for the fundamental natural frequency and mode shape of a rectangular plate loaded by in-plane hydrostatic forces for a wide variety of aspect ratios, boundary conditions, and load magnitudes. All six possible combinations of simply supported and clamped edges are considered. The limiting conditions of unloaded vibration and buckling are discussed in detail, with emphasis on the preferred mode shape. Design curves and approximate formulae are presented which provide a simple means of determining the fundamental frequency parameter.

For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and
maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimen with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack. (Author)

N80-10615# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

EFFECT OF TIME DEPENDENT FLIGHT LOADS ON JTBD-7 PERFORMANCE DETERIORATION
A Jay and B L Lewis 21 Aug 1979 73 p refs
HC A04/MF A01 CSCL 01C

The results of a modal transient analysis of the engine/aircraft system are presented. The response of the JTBD-7 to analytically simulated vertical gusts and landings was predicted using a NASTRAN finite element mathematical model of the JTBD/74 propulsion system. The NASTRAN finite element model of the propulsion system included engine structural models of the fan, low/high pressure compressors, diffuser/turbine cases, and high/low pressure rotors, as well as elastomer models of the nacelle, tailcone, and wing pylons. The analyses conducted predicts that an insignificant level of JTBD-7 performance deterioration would occur due to a typical vertical gust encounter or a typical revenue service landing. Analysis of a high sink rate landing with a heavy fuel load indicates the possibility of local wear, however, the lack of an accurate dynamic rotor/seal interference model provides an accurate quantitative evaluation of performance change for this once-per-life event. J M S.

N80-22733# Mechanical Technology, Inc., Latham, N Y.

DEVELOPMENT OF PROCEDURES FOR CALCULATING STIFFNESS AND DAMPING OF ELASTOMERS IN ENGINEERING APPLICATIONS, PART 6
A Rieger, G Burgess, and E Zora 4 Apr 1980 157 p refs
(Contract NASA-18546)
(NASA-CR-159838, MTI-80TR29) Avail: NTIS
HC A08/MF A01 CSCL 20K

An elastomer damper was designed, tested, and compared with the performance of a hydraulic damper for a power transmission shaft. The six button Viton-70 damper was designed so that the elastomer damper or the hydraulic damper could be activated without upsetting the imbalance condition of the assembly. This permitted a direct comparison of damper effectiveness. The elastomer damper consistently performed better than the hydraulic mount and permitted stable operation of the power transmission shaft to speeds higher than obtained with the squeeze film damper. Tests were performed on shear specimens of Viton-79, Buna-N, EPDM, and Neoprene to determine performance limitations imposed by strain, temperature, and frequency. Frequencies of between 110 Hz and 1100 Hz were surveyed with imposed strains between 0.005 and 0.03 at temperatures of 32 C, 68 C, and 80 C. A set of design curves was generated in a unified format for each of the elastomer materials.

N80-227720# Massachusetts Inst. of Tech., Cambridge, Aeronautical and Structures Research Lab.

INSTRUCTIONS FOR THE USE OF THE CIVM-JET 4C FINITE-STRAIN COMPUTER CODE TO CALCULATE THE TRANSIENT STRUCTURAL RESPONSES OF PARTIAL AND/OR COMPLETE ARBITRARILY-CURVED RINGS SUBJECTED TO FRAGMENT IMPACT
Jose J. A. Rodel, Susan E. French, Emmett A. Witmer, and Thomas R. Stagliano Dec. 1979 38 p refs
(Grant NGR-22-009-339)
HC A03/MF A01

The CIVM-JET 4C computer program for the 'finite strain' analysis of 2 d transient structural responses of complete or partial rings and beams subjected to fragment impact stored on tape as a series of individual files. Which subroutine are found in these files are described in detail. All references to the CIVM-JET 4C program are made assuming that the user has a copy of NASA CR-134907 (ASRL TR 154-9) which serves as a user's guide to (1) the CIVM-JET 4B computer code and (2) the CIVM-JET 4C computer code 'with the use of the modified input instructions' attached hereeto. L FM

N80-227632# Massachusetts Inst. of Tech., Cambridge.

FINITE-STRAIN LARGE-DEFLECTION ELASTO-VISCOPLASTIC FINITE-ELEMENT TRANSIENT RESPONSE ANALYSIS OF STRUCTURES
Jose J. A. Rodel and Emmett A. Witmer Jul. 1979 557 p refs
(Grant NGR-22-009-339)
HC A24/MF A01 CSCL 20K

A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture. E D K.
A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.

Official Gazette of the U.S. Patent and Trademark Office
43 Earth Resources
Includes remote sensing of earth resources by aircraft and spacecraft, photogrammetry, and aerial photography.
For instrumentation see 35 Instrumentation and Photography.

N80-15538# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
Possible Methods for Distinguishing Icebergs from Ships by Aerial Remote Sensing
Waton L. Howes Dec. 1979 36 p refs
(NASA-TM-79910; E-266) Avail: NTIS HC A03/MF A01 CSCL 08L
The simplest methods for aerial remote sensing which are least affected by atmospheric opacities are summarized. Radar is preferred for targets off the flight path, and microwave radiometry for targets along the flight path. Radar methods are classified by ability to resolve targets. Techniques which do not require target resolution are preferred. Among those techniques, polarization methods appear most promising, specifically those which differentiate the expected relatively greater depolarization by icebergs from that by ships or which detect doubly-reversed circular polarization.
R.C.T.

N80-18497# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
Numerical Calculation of Steady Inviscid Full Potential Compressible Flow about Wind Turbine Blades
(NASA-TM-81438; E-361; AIAA-Paper-80-0607) Avail: NTIS HC A02/MF A01 CSCL 10B
An exact nonlinear mathematical model that accounts for three-dimensional cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades was derived. An artificially time dependent version was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh.
K.L.

N80-20787# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
Assessment of Satellite and Aircraft Multispectral Scanner Data for Strip-Mine Monitoring
Ernie W. Splaz and Joyce T. Dooley Washington Mar. 1980 39 p; Original contains color illustrations
(NASA-TM-79268; E-187) Avail: NTIS HC A03/MF A01 CSCL 08I
The application of LANDSAT multispectral scanner data to describe the mining and reclamation changes of a hilltop surface coal mine in the rugged, mountainous area of eastern Kentucky is presented. Original single band satellite imagery, computer enhanced single band imagery, and computer classified imagery are presented for four different data sets in order to demonstrate the land cover changes that can be detected. Data obtained with an 11 band multispectral scanner on board a C-47 aircraft at an altitude of 3000 meters are also presented. Comparing the satellite data with color, infrared aerial photography, and ground survey data shows that significant changes in the disrupted area can be detected from LANDSAT band 5 satellite imagery for mines with more than 100 acres of disturbed area. However, band-ratio (bands 5/6) imagery provides greater contrast than single band imagery and can provide a qualitative level 1 classification of the land cover that may be useful for monitoring either the disturbed mining area or the revegetation progress. However, if a quantitative, accurate classification of the barren or revegetated classes is required, it is necessary to perform a detailed, four band computer classification of the data.
J.M.S.
ENERGY PRODUCTION AND CONVERSION

Includes specific energy conversion systems, e.g., fuel cells and batteries; global sources of energy; fossil fuels; geothermal conversion; hydroelectric power; and wind power.

For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 85 Urban Technology and Transportation.

SOME TECHNIQUES FOR REDUCING THE TOWER SHADOW OF THE DOE/NASA MOD-0 WIND TURBINE TOWER

Final Report

Richard R. Burley, Joseph M. Savino, Lee H. Wagner, and James H. Dietrich Sep 1979 128 p refs (Contract DE-AB29-76ET20370)

NASA-TM-79202; DOE/NASA/20370-79/17; E-087

Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

A.W.H.

SOME TECHNIQUES FOR REDUCING THE TOWER SHADOW OF THE DOE/NASA MOD-0 WIND TURBINE TOWER

Final Report

H. Diedrich Sep 1979 129 p refs

NTIS HC A07/MF AO1 CSCL 108

Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

A.W.H.
The efficiency of solar cells for space use is assessed. High efficiency technique. Experimental details are given along with the results are discussed. R.E.S.

RADIATION DAMAGE

A R.H.

SPACE SOLAR CELLS: HIGH EFFICIENCY AND RADIATION DAMAGE

The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GeAs solar cell performance and radiation damage and 30 percent devices are discussed. R.E.S.

OPEN-CIRCUIT VOLTAGE IMPROVEMENTS IN LOW RESISTIVITY SOLAR CELLS

Improvements in the open circuit voltage of 0.1 ohm-cm silicon solar cells were achieved using a multistep diffusion technique. Experimental details are given along with the results of an analysis that indicate that anomalous behavior of the electron mobility in the cell base limits attainment of higher voltages. Author

BACK SURFACE REFLECTORS FOR SOLAR CELLS

Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al. R.C.T.

Lithium counterdoped n+/p silicon solar cells were irradiated with 1 MV electrons and their post irradiation performance and low temperature annealing properties were compared to that of the 0.35 ohm cm control cells. Cells fabricated from float zone and Czochralski grown silicon were investigated. It was found that the float zone cells exhibited superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Room temperature and 60 C annealing studies were conducted. The annealing was found to be a combination of first and second order kinetics for short times. It was suggested that the mechanism for lithium migration was migration of lithium to a radiation induced defect with subsequent neutralization of the defect by combination with lithium. The effects of base lithium gradient were investigated and was found that cells with negative base lithium gradients exhibited poor radiation resistance and performance compared to those with positive or no lithium gradients, the latter being preferred for overall performance and radiation resistance. M.G.

RADIATION DAMAGE ANNEALING MECHANISMS AND POSSIBLE LOW TEMPERATURE ANNEALING IN SILICON SOLAR CELLS

The defect responsible for reverse annealing in 2 ohm/cm n+/p silicon solar cells was identified. This defect, with energy level at e sub v = 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studies. These calculated results are in reasonable agreement with experimental data. M.G.

CANDIDATE THERMAL ENERGY STORAGE TECHNOLOGIES FOR SOLAR INDUSTRIAL PROCESS HEAT APPLICATIONS

A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown. R.C.T.

GLOBAL CALIBRATION OF TERRESTRIAL REFERENCE CELLS AND ERRORS INVOLVED IN USING DIFFERENT IRRADIANCE MONITORING TECHNIQUES

The feasibility of global calibration of terrestrial reference
cells is discussed. A simple, accurate secondary calibration technique based on ratios of test to reference cell currents measured in natural sunlight is described. Different techniques for monitoring incident irradiance during solar cell performance measurements are also examined and assessed, including the techniques of black body detectors, calibrated reference cells, and the convolution of spectral response with solar irradiance.

M.G.

N80-16459* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. LARGE WIND TURBINE DESIGN CHARACTERISTICS AND R AND D REQUIREMENTS Seymour Lieben, ed. (Technical Report Services, Rocky River, Ohio) Dec 1979 459 p. Refs Conf. held at Cleveland, 24-26 Apr 1979, sponsored in part by DOE (NASA CP 2106 CONF 790411) Avail NTIS HC A20/MF A01 CSCL 10B. Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis wind turbine designs are also examined and assessed including the R and D requirements sponsored in part by DOE.

N80-164655* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. DESIGN EVOLUTION OF LARGE WIND TURBINE GENERATORS David A. Spera In its Large Wind Turbine Design Characteristics and R and D Requirements Dec 1979 p 25-33 ref (For primary document see N80-16453 07/44) Avail NTIS HC A20/MF A01 CSCL 10B. During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design both external and internal of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments, (2) computer code developments, and (3) blade technology developments.

R.E.S.

N80-16469* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. STRUCTURAL ANALYSIS CONSIDERATIONS FOR WIND TURBINE BLADES David A. Spera In its Large Wind Turbine Design Characteristics and R and D Requirements Dec 1979 p 211-224 ref (For primary document see N80-16453 07/44) Avail NTIS HC A20/MF A01 CSCL 10B. Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.

K.L.

N80-16470* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. BLADE DESIGN AND OPERATING EXPERIENCE ON THE MOD-OA 200 kW WIND TURBINE AT CLAYTON, NEW MEXICO Bradford S. Linscott and Richard K. Shaltens In its Large Wind Turbine Design Characteristics and R and D Requirements Dec 1979 p 225-238 ref (For primary document see N80-16453 07/44) Avail NTIS HC A20/MF A01 CSCL 10B. Two 60 foot long aluminum wind turbine blades were operated for over 3000 hours on the MOD-OA wind turbine. The first signs of blade structural damage were observed after 400 hours of operation. Details of the blade design, loads, cost, structural damage, and repair are discussed.

K.L.

N80-16472* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. DESIGN, FABRICATION, AND TEST OF A STEEL SPAR WIND TURBINE BLADE Timothy L. Sullivan, Paul J. Sirocky, Jr. and Larry A. Vitera In its Large Wind Turbine Design Characteristics and R and D Requirements Dec 1979 p 267-284 ref (For primary document see N80-16453 07/44) Avail NTIS HC A20/MF A01 CSCL 10B. The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-0 aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

K.L.

N80-16480* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. SIMULATION STUDIES OF MULTIPLE LARGE WIND TURBINE GENERATORS ON A UTILITY NETWORK Leonard J. Gilbert and David M. Trenzenberg (Purdue Univ.) In its Large Wind Turbine Design Characteristics and R and D Requirements Dec 1979 p 375-384 refer (For primary document see N80-16453 07/44) Avail NTIS HC A20/MF A01 CSCL 10B. The potential electrical problems that may be inherent in the inertia of clusters of wind turbine generators and an electric utility network were investigated. Preliminary and limited results of an analog simulation of two MOD-2 wind generators tied to an infinite bus indicate little interaction between the generators and between the generators and the bus. The system demonstrated transient stability for the conditions considered.

A.R.H.

N80-16490* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. POTENTIAL PERFORMANCE IMPROVEMENT USING A REACTING GAS (NITROGEN TETROXIDE) AS THE WORKING FLUID IN A CLOSED BRAYTON CYCLE Final Report Robert J. Stockl Dec 1979 p 23 ref (Contract EX 76 A 29 1060) (NASA TM 79322 DOE/NASA/1060-79/3) Avail NTIS HC A02/MF A01 CSCL 10B. The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

Author.

N80-16494* # National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio. PRELIMINARY ANALYSIS OF PERFORMANCE AND LOADS DATA FROM THE 2 MEGAWATT MOD-1 WIND TURBINE GENERATOR D. A. Spera, L. A. Vitera, T. R. Rich and W. E. Leusenstater 1979 p. refs. Presented at 4th Biomass Energy Workshop on Wind Energy Conversion Systems, Atlanta, D.C. 29-31 Oct 1979 sponsored by DOE (Contract EX 77 A 29 101D) (NASA TM 81408 DOE/NASA/1060-79/3) Avail NTIS HC A02/MF A01 CSCL 10A. Preliminary test data on output power, wind speed, rotor blade loads, system dynamic behavior, and start-stop characteristics on the Mod-1 wind turbine generator are presented. These data were analyzed statistically and are compared with design predictions of system performance and loads. To date, the Mod-1 wind turbine generator has produced up to 1.5 MW of power, with a measured power versus wind speed curve which agrees closely with design. Blade loads were measured at wind speeds up to 14 m/s and also during rapid shutdowns. Peak transient loads during the most severe shutdowns are less than the design limit loads. On the inboard blade sections, fatigue loads are approximately equal to the design cyclic loads. On the outboard blade sections, however, measured cyclic loads
cells is discussed. A simple, accurate 'secondary' calibration technique based on ratios of test to reference cell currents measured in natural sunlight is described. Different techniques for monitoring incident irradiance during solar cell performance measurements are also examined and assessed, including the techniques of black-body detectors, calibrated reference cells, and the convolution of spectral response with solar irradiance.

M.G.

Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design. For individual titles, see N80-16454 through N80-16482.

N80-16455*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. DESIGN EVOLUTION OF LARGE WIND TURBINE GENERATORS David A. Spera In its Large Wind Turbine Design Characteristics and R and D Requirements Dec. 1979 p 25-33 ref (For primary document see N80-16453 07-44) Avail. NTIS HC A20/MF A01 CSCL 10B

During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.

R.E.S.

N80-16469*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. STRUCTURAL ANALYSIS CONSIDERATIONS FOR WIND TURBINE BLADES David A. Spera In its Large Wind Turbine Design Characteristics and R and D Requirements Dec. 1979 p 211-224 refs (For primary document see N80-16453 07-44) Avail. NTIS HC A20/MF A01 CSCL 10B

Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.

K.L.

N80-16470*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. BLADE DESIGN AND OPERATING EXPERIENCE ON THE MOD-0A 200 kW WIND TURBINE AT CLAYTON, NEW MEXICO Bradford S. Linscott and Richard K. Shaltens In its Large Wind Turbine Design Characteristics and R and D Requirements Dec. 1979 p 229-238 refs (For primary document see N80-16453 07-44) Avail. NTIS HC A20/MF A01 CSCL 10B

Two 60 foot long aluminum wind turbine blades were operated for over 3000 hours on the MOD-0A wind turbine. The first signs of blade structural damage were observed after 400 hours of operation. Details of the blade design, loads, cost, structural damage, and repair are discussed.

K.L.

N80-16472*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. DESIGN, FABRICATION, AND TEST OF A STEEL SPAR WIND TURBINE BLADE Timothy L. Sullivan, Paul J. Sroicky, Jr., and Larry A. Viterna In its Large Wind Turbine Design Characteristics and R and D Requirements Dec. 1979 p 267-284 refs (For primary document see N80-16453 07-44) Avail. NTIS HC A20/MF A01 CSCL 10B

The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-0 aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

K.L.

N80-16491*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. SIMULATION STUDIES OF MULTIPLE LARGE WIND TURBINE GENERATORS ON A UTILITY NETWORK Leonard J. Gilbert and David M. Tretensberg (Purdue Univ.) In its Large Wind Turbine Design Characteristics and R and D Requirements Dec. 1979 p 375-384 refs (For primary document see N80-16453 07-44) Avail. NTIS HC A20/MF A01 CSCL 10B

The potential electrical problems that may be inherent in the inertia of clusters of wind turbine generators and an electric utility network were investigated. Preliminary and limited results of an analog simulation of two MOD-2 wind generators tied to an infinite bus indicate little interaction between the generators and between the generators and the bus. The system demonstrated transient stability for the conditions considered.

A.R.H.

The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

Author

Preliminary test data on output power versus wind speed, rotor blade loads, system dynamic behavior, and start-stop characteristics of the Mod-1 wind turbine generator are presented. These data were analyzed statistically and are compared with design predictions of system performance and loads. To date, the Mod-1 wind turbine generator has produced up to 1.5 MW of power, with a measured power versus wind speed curve which agrees closely with design. Blade loads were measured at wind speeds up to 14 m/s and also during rapid shutdowns. Peak transient loads during the most severe shutdowns are less than the design limit loads. On the inboard blade sections, fatigue loads are approximately equal to the design cyclic loads. On the outboard blade sections, however, measured cyclic loads
are significantly larger than design values, but they do not appear to exceed fatigue allowable loads as yet.

R.E.S.

N80-18554* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
OVERVIEW OF A STIRLING ENGINE TEST PROJECT
Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of the results of future tests to be conducted on the Stirling engines.

R.E.S.

N80-18555* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FLEXIBLE FORMULATED PLASTIC SEPARATORS FOR ALKALINE BATTERIES Patent Application
A flexible separator for alkaline batteries is disclosed. The separator is comprised of a coating which is applied to a nonwoven porous substrate such as sheets or mats of asbestos or other materials which are inert with respect to the alkaline electrolyte of the battery. The coating material comprises a polyphenylene oxide polymer, an organic additive and inorganic and organic fillers which comprise up to 55% by volume of less than the coating material. Preferably, at least one inorganic filler material which is reactive with the electrolyte is included to produce desirable pores in the coating. The organic additive is a polymeric polyester material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the coating.

R.E.S.

N80-18556* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
FLEXIBLE FORMULATED PLASTIC SEPARATORS FOR ALKALINE BATTERIES Patent Application
A flexible separator for alkaline batteries is disclosed. The separator is comprised of a coating which is applied to a nonwoven porous substrate such as sheets or mats of asbestos or other materials which are inert with respect to the alkaline electrolyte of the battery. The coating material is comprised of a polyphenylene oxide polymer, an organic additive and inorganic, and organic fillers which comprise up to 55% by volume or less of the coating material. Preferably, at least one inorganic filler material which is reactive with the electrolyte is included to produce desirable pores in the coating. The organic additive is a polymeric polyester material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the coating.

N80-18557* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
CATALYST SURFACES FOR THE CHROMOUS/CHROMIC REDOX COUPLE Patent Application
An electricity producing cell of the reduction-oxidation type is disclosed. The cell is divided into two compartments by a membrane and each compartment contains a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromiumous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes caused by the lead to depilate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density. NASA

N80-18563* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
ENGINEERING EVALUATION OF A SODIUM HYDROXIDE THERMAL ENERGY STORAGE MODULE Final Report
An engineering evaluation of thermal energy storage modules was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

R.E.S.

N80-19613* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
TEETED, TIP-CONTROLLED ROTOR; PRELIMINARY TEST RESULTS FROM MOD-0 100-KW EXPERIMENTAL WIND TURBINE
Tests of results conducted using the MOD-0 100 kW experimental wind turbine are evaluated. The teetered rotor significantly decreased loads on the yaw drive mechanism and reduced blade cyclic flapwise bending moments by 25 percent at the 20 percent span location when compared to the rigid hub rotor. The teetered hub performed well, but impacted the teeter stops on occasion as wind speed and/or direction varied rapidly. The tip-controlled rotor performed satisfactorily with some expected loss of control when compared to the full span pitchable blade. The performance results indicate that a review of techniques used to calculate rotor power is in order.

K.L.

N80-19614* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
INSTALLATION AND CHECKOUT OF THE DOE/NASA MOD-1 2000-KW WIND TURBINE GENERATOR
The Mod-1 machine was assembled without the blades, tested, and sent to the site at Boone, North Carolina for erection. The blades were transported directly to the site. A series of
checkout tests were then conducted to evaluate performance and loads. The results of these tests compared well with the design data.

NBO-19628* # National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS), VOLUME 1: SUMMARY
Gerald J. Barnes, Raymond K. Burns, and Gary D. Sagerman
Jan. 1980 89 p
(Contract EC-77-A-31-1062)
(NASA-TM-81400; DOE/NASA/1062-80/4; E-312) Avail: NTIS HC A05/MF A01 CSCL 10B
Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermocells were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.

NBO-21837* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
FLAME TUBE PARAMETRIC STUDIES FOR CONTROL OF FUEL BOUND NITROGEN USING RICH-LEAN TWO-STAGE COMBUSTION
Donald F. Schultz and Gary Wolfsbrandt
1980 25 p refs
Presented at Western States Sect. of the Combust. Inst. of Spring Meeting, Irvine, Calif. 21-22 Apr. 1980
(Contract EF-77-A-01-2593)
(NASA-TM-81472; DOE/NASA/2593-80/15; E-405) Avail: NTIS HC A02/MF A01 CSCL 21B
An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The fuels were premixed to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion: conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced, efficiency was accentuated shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased. M.G.

NBO-22778* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
LITERATURE SURVEY OF PROPERTIES OF SYNFUELS DERIVED FROM COAL Interim Report
Thaine W. Reynolds, Richard W. Niedzwiecki, and John S. Clark
Feb. 1980 152 p refs
(Contract EF-77-A-01-2593)
(NASA-TM-79243; DOE/NASA/79243-79/8; E-150) Avail: NTIS HC A08/MF A01 CSCL 21D
A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts

for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthol, solvent-refined coal, donor solvent, zinc chloride hydrotreatment, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

R.E.S.

NBO-22779* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.
PROGRAM DEFINITION AND ASSESSMENT OVERVIEW
Larry H. Gordon
In its Thermal Energy Storage Mar. 1980 p 38-41 refs (For primary document see NBO-22788 13-44)
Avail: NTIS HC A09/MF A01 CSCL 10B
The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks. J.M.S.
INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

Avail NTIS HC A99/MF A01 CSCL 10A

The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

N80-22779# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COLLECTION AND DISSEMINATION OF TES SYSTEM INFORMATION FOR THE PAPER AND PULP INDUSTRY

M W. Dietrich and Howard Ede (Ede (Howard), Inc., Bellevue, Wash.) In its Thermal Energy Storage Mar. 1980 p 105-111 (For primary document see N80-22788 13-44)
Avail NTIS HC A99/MF A01 CSCL 10B

A survey of U.S. and international paper and pulp mills using thermal energy storage (TES) systems as a part of their production processes was conducted to obtain sufficient operating data to conduct a benefits analysis encompassing: (1) an energy conservation assessment, (2) an economic benefits analysis, and (3) an environmental impact assessment. An information dissemination plan was then proposed to effectively present the benefits of TES to the U.S. paper and pulp industry. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

N80-22769# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

D Q. Hoover, Jr. Apr. 1980 87 p
(Contracts DEN3-161; DE-AI03-79ET-11272)
(NASA-CR-158879; DOE/NASA/D161-2; QR-2) Avail: NTIS HC A05/MF A01 CSCL 10A

Stack tests indicate that the discrepancies between calculated and measured temperature profiles are due to reactant cross-over and a lower than expected thermal conductivity of cells. Preliminary results indicate that acceptable contact resistance between cooling plane halves can be achieved without the use of paper. The preliminary design of the enclosure, definition of required labor and equipment for manufacturing repeating components, and the assembly procedures for the benchwork design were developed. Fabrication of components for a second 5-cell stack of the MK-2 design and a second 23-cell stack of the MK-1 design was started. The definition of water and fuel for the reforming subsystem was developed along with a preliminary definition of the control system for the subsystem. The construction and shakedown of the differential catalytic reactor was completed and testing of the first catalyst initiated. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

N80-23777# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

REDOX STORAGE SYSTEMS FOR SOLAR APPLICATIONS

(Contract EF-77-A-31-267A)
(NASA-TM-81457; DOE/NASA/1002-80-5; E-383) Avail: NTIS HC A05/MF A01 CSCL 10A

The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that key to the technical feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

N80-23778# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

THE OPTIMIZATION AIR SEPARATION PLANTS FOR

COMBINED CYCLE MHD-POWER PLANT APPLICATIONS

(Contract DEN3-165; EF-77-A-01-2674)
(NASA-TM-81510; DOE/NASA/2674-80/10) Avail: NTIS HC A02/MF A01 CSCL 10B

Some of the design approaches being employed during a current supported study directed at developing an improved separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to design separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW

N80-23780# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

SUMMARY AND EVALUATION OF THE PARAMETRIC STUDY OF POTENTIAL EARLY COMMERCIAL MHD POWER PLANTS (PSPEC)

(Contract EC-77-A-31-1040)

A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms. R.E.S.

INDUSTRIAL STORAGE APPLICATIONS OVERVIEW
oxygen enriched plant as the first commercial MHD plant is described.

R.E.S.

N80-24778*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

AN ELECTRIC VEHICLE PROPULSION SYSTEM'S IMPACT ON BATTERY PERFORMANCE: AN OVERVIEW
John M. Bozek, John J. Smithrick, Robert C. Cataldo, and John E. Ewashinko
1980 10 p refs
(Contract EC-77-A-31-1044)
HC A02/MF A01 CSCL 10B

The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvement in short term performance of the battery.

R.E.S.

N80-28779*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

THERMAL ENERGY STORAGE
Jun. 1980 77 p refs
(Contract EC-77-A-31-1044)
HC A05/MF A01 CSCL 10C

The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

R.E.S.

N80-28780*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

PULSE CHARGING OF LEAD-ACID TRACTION CELLS
John J. Smithrick May 1980 22 p refs
(Contract EC-77-A-31-1044)
(NASA-TM-81513; DOE/NASA/1044-6; E-454) Avail: NTIS
HC A02/MF A01 CSCL 10C

Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform-peak charge pulse current of 193 amps, peak discharge pulse current of about 578 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over current constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

R.E.S.

N80-27799*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

ENGINEERING TEST FACILITY DESIGN DEFINITION

(Contract EF-77-A-01-2874)
(NASA-TM-81489; DOE/NASA/2674-11; E-438) Avail: NTIS
HC A02/MF A01 CSCL 10A

The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to faciliate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

Author

N80-27804*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

EFFECT ON COMBINED CYCLE EFFICIENCY OF STACK GAS TEMPERATURE CONSTRAINTS TO AVOID ACID CORROSION Final Report
(Contract EF-77-A-01-2593)
(NASA-TM-81531; DOE/NASA/2593-17; E-483) Avail: NTIS
HC A02/MF A01 CSCL 10B

To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils containing sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

Author

N80-27805*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

IMPACT OF PROPULSION SYSTEM R AND D ON ELECTRIC VEHICLE PERFORMANCE AND COST
Harvey J. Schwartz and Andrew L. Gordon 22 May 1980 16 p refs
(Contract EC-77-A-31-1044)
(NASA-TM-81548; DOE/NASA/1044-9; E-504) Avail: NTIS
HC A02/MF A01 CSCL 10B

The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

L.F.M.

N80-28855*/# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

COGENERATION TECHNOLOGY ALTERNATIVES STUDY
The use of various advanced energy conversion systems was compared with each other and with current technology systems for their savings in fuel energy, cost, and emission, and on a national level. The ground rules established by NASA and assumptions made by the General Electric Company in performing this cogeneration technology alternatives study are presented. The analytical methodology employed is described in detail and is illustrated with numerical examples together with a description of the computer program used in calculating over 7000 energy conversion system-industrial process applications.

NBO-28962*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. **RAPPORTEUR REPORT: MHD ELECTRIC POWER PLANTS**

(Contract EF-77-A-01-2674) NTIS HC A02/ MF A01 CSCL 10B

Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baselined MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered. A.R.H.

NBO-29883*† National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. **GAS PHASE OXIDATION DOWNSTREAM OF A CATALYTIC COMBUSTOR**

(Contract EC-77-A-31-1040) NTIS HC A02/ MF A01 CSCL 10A

Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, pre-vaporized propane/air feed to a 12 cm/ diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO2 continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor would be required. R.K.G.
Open cycle MHD is one of the major R&D efforts in the Department of Energy’s program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.

S.D.

A80-28804* # Numerical calculation of steady inviscid full potential compressible flow about wind turbine blade D. S. Dulikravich (NASA, Lewis Research Center, Cleveland, Ohio). In: Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers, (A80-28801 10-44) New York, American Institute of Aeronautics and Astronautics, Inc, 1980, p. 14-19, 9 refs, Sponsored by the National Research Council. (AIAA 80-0670) The air flow through a propeller-type wind turbine rotor is characterized by three-dimensional rotating cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades. In the case of large rotor diameter and/or increased rotor angular speed, the existence of small supersonic zones terminated by weak shocks is possible. An exact nonlinear mathematical model (called a steady Full Potential Equation - FPE) that accounts for the above phenomena has been rederived. An artificially time dependent version of FPE was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conformance the periodic computational mesh. (Author)

A80-28835* # Installation and checkout of the DOE/NASA Mod-1 2000-kW wind turbine generator. R. L. Puthoff, J. L. Collins, and R. A. Wolf (NASA, Lewis Research Center, Cleveland, Ohio). In: Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers, (A80-28801 10-44) New York, American Institute of Aeronautics and Astronautics, Inc, 1980, p. 249-260, 8 refs. (AIAA 80-0638) The paper describes the DOE/NASA Mod-1 wind turbine generator, its assembly and testing, and its installation at Boone, North Carolina. The paper concludes with performance data taken during the initial tests conducted on the machine. The successful installation and initial operation of the Mod-1 wind turbine generator has had the following results: (1) megawatt-size wind turbines can be operated satisfactorily on utility grids; (2) the structural loads can be predicted by existing codes; (3) assembly of the machine on top of the tower presents no major problem; (4) large blades 100 ft long can be transported long distances and over mountain roads; and (5) operating experience and performance data will contribute substantially to the design of future low-cost wind turbines. (Author)
The paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaay, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy. (Author)

Spectral effects on direct-insolation absorptance of five collector coatings, G. B. Hotchkiss (Texas Instruments, Inc., Dallas, Tex.), F. F. Simon (NASA, Lewis Research Center, Cleveland, Ohio), and L. C. Burmeister (Kansas University, Lawrence, Kan.), American Society of Mechanical Engineers and American Institute of Chemical Engineers, Joint National Heat Transfer Conference, 18th, San Diego, Calif., Aug. 6-8, 1979, ASME Paper HT-18, 7 p. 16 refs. Members, $1.50; nonmembers, $3.00. Grant No. NQG-3087.

Absorptance for direct insolation of black chrome, black nickel, copper oxide, and two black zinc conversion selective coatings were calculated for a number of typical solar spectrums. Measured spectral reflectances were used while the effects of atmospheric ozone density, turbidity, and air mass were incorporated in calculated direct solar spectrums. Absorptance variation for direct insolation was found to be of the order of 1 percent for a typical range of clear-sky atmospheric conditions. (Author)

The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model. A.T.

The paper describes the designs, hardware, and installations of NASA photovoltaic power systems in the village of Schuchuli in Upper Volta, Africa. The projects were designed to demonstrate that current photovoltaic system technology can provide electrical power for domestic services for small, remote communities. The Schuchuli system has a 3.5 kW peak solar array which provides power for water pumping, a refrigerator for each family, lights, and community washing and sewing machines. The 1.8 kW Tangaay system provides power for pumping, flour milling, and lights in the milling building. Both are stand-alone systems operated by local personnel, and they are monitored by NASA to measure design adequacy and refine future designs. A.T.

Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were tested. Each series string was charged at an average C/20 rate, and discharged at a C/2.5 rate to a 75% rated depth. Results indicate that the relatively inexpensive 120 Hz FWRS charger appears feasible for charging 6 amp-hour nickel-zinc cells with no significant loss in average cycle life when compared to constant current charging. The 1-kHz SW charger could also be used with no significant loss in average cycle life, and suggests the possibility of utilizing the existing electric vehicle charger controller circuitry for an onboard charger. There was an apparent difference using the 120 Hz SCR charger compared to the others, however, this difference could be due to an inadvertent severe overcharge, which occurred prior to cell failure. The remaining two positive pulse charging waveforms, FWRS and 1 kHz, did not improve the cycle life of 5 amp-hour nickel-zinc cells over that of constant current charging. (Author)

A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the
NASA/DU/E photovoltaic test facility. The system includes four
substacks of 39 cells each (1/3 sq ft active area) which are connected
hydraulically in parallel and electrically in series. An open circuit
voltage cell and a set of rebalance cells are used to continuously
monitor the system state of charge and automatically maintain the
anode and cathode reactants electrochemically in balance. Techno-
logical advances in membranes and electrodes and results of multieell
stack tests are reviewed.

N80-10603* Energy Research Corp., Danbury, Conn.
TECHNOLOGY DEVELOPMENT FOR PHOSPHORIC ACID
FUEL CELL POWERPLANT, PHASE 2 Quarterly Report
Larry Christner
July 1979 72 p
Prepared for DOE
(Contract DE-AC-02-78-CH00007)
(Contract NAS3-20558: NASA-CR-159705; DOE/NASA/0067-79-2; GR-3)
Avail: NTIS HC A04/MF A01 CSCL 10A
A technique for producing an acid inventory control module
by pouring FEP onto a partially screened carbon paper backing
is discussed. Theoretical analysis of the acid management indicates
that the vapor composition of 103% H3PO4 is approximately
1.0 ppm P4O10. An SEM evaluation of corrosion resistance of
phenolic resins and graphite/phenolic resin composites in H3PO4
at 185 C shows specific resistance stashing. Carbonization of
graphite/phenolic bipolar plates is achieved without blistering.

N80-10622* General Electric Co., Schenectady, N. Y.
CONCEPTUAL DESIGN OF THERMAL ENERGY STORAGE
SYSTEMS FOR NEAR-TERM ELECTRIC UTILITY APPLICA-
TIONS. VOLUME 2: APPENDICES, SCREENING OF CONCEPTS
W. Haust, B. J. Berkowitz, and R. C. Hare
April 1979 151 p
Prepared for DOE
(Contract EC-77-A-31-1034; EPRI Proj. 1082-1)
(Contract NAS3-21363)
Avail: NTIS HC A08/MF A01 CSCL 10A
Volume two contains three appendices entitled: (1) Bibliography
and Cross References; (2) Taxonomy: Proponents and Sources;
and (3) Concept Definitions. DOE

EXECUTIVE SUMMARY: MOD-1 WIND TURBINE GENERA-
TOR ANALYSIS AND DESIGN REPORT Final Report
Mar. 1979 61 p
Prepared for DOE
(Contract NAS3-20558: EC-77-A-29-1010)
(Contract NAS3-165947: DOE/NASA/0058-79/3)
Avail: NTIS HC A04/MF A01 CSCL 10A
Activities leading to the detailed design of a wind turbine
generator having at nominal rating of 1.8 megawatts are reported.
Topics covered include (1) system description; (2) structural
dynamics; (3) stability analysis; (4) mechanical subassemblies
design; (5) power generation subsystem; and (6) control and
instrumentation subsystem. A.R.H.

N80-11566 Solaron Corp., Rockville, Md.
ECONOMICAL SPACE POWER SYSTEMS
Joel H. Burkholder
Jan. 1980 161 p
Prepared for DOE
(Contract NAS3-21353)
Avail: NTIS HC A08/MF A01 CSCL 10B
A preliminary evaluation of the feasibility of the use of
prestressed concrete as a material for low cost blades for wind
turbines was conducted. A baseline blade design was achieved
for an experimental wind turbine that met aerodynamic and
structural requirements. Significant cost reductions were indicated
for volume production. Casting of a model blade section
showed no fabrication problems. Coupled dynamic analysis
revealed that adverse rotor tower interactions can be significant
with heavy rotor blades.

ANTON PERMESELECTIVE MEMBRANE
Samuel S. Alexander, Russell R. Hodgdon, and Warren A. Waite
May 1979 52 p
Prepared for NASA
(Contract DE-AC02-78CH00666; NASA-CR-159599; DOE/NASA/0001-79-1)
Avail: NTIS HC A04/MF A01 CSCL 10A
Experimental composite membranes were synthesized on a
lab scale consisting of a thin layer of anion permeselective resin
supported by and bonded to a porous physically strong and
conductive substrate film. These showed good selectivity and
also substantially lower electrical resistivities than the homogenous
candidate membranes optimized for this study. A wide range of resin porosities were examined for candidate
membrane systems, CDIL, CP4L, and A3L to identify the
formulation giving the best overall redox cell performance.
Candidate anion membranes showed large increases in resistivity
after a short time of immersion in concentrated FeCl/HCl solution.
Largely on the basis of resistance stability the CDIL formulation
was selected as prime candidate and about thirty-five membranes
(one foot square) were produced for experimental and dynamic
evaluation. R.E.S.
A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design, taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

![Image](image-url)

N80-16483

Energy Technology, Inc., Cleveland, Ohio.

STUDY OF ADVANCED RADIAL OUTFLOW TURBINE FOR SOLAR STEAM RANKINE ENGINES

Contract DEN3-86

NASA-DOE/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

O. J. Strock Jan 1980 56 p

(Contract DEN3-98)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17547

Institute of Gas Technology, Chicago, III.

HIGH-TEMPERATURE MOLTEN SALT THERMAL ENERGY STORAGE SYSTEMS

Final Report, 14 Sep 1977 - 14 Dec 1978

Contract NAS3-20806

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17548

Kaman Aerospace Corp., Bloomfield, Conn.

DESIGN, FABRICATION, TEST AND EVALUATION OF A PROTOTYPE 150-FOOT LONG COMPOSITE WIND TURBINE BLADE

Final Report

(Contract NAS3-20600; EX-76-01-1028)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17549

Spectraflow, Inc., Sylmar, Calif.

DEVELOPMENT OF IMPROVED WRAPAROUND CONTACTS FOR SILICON

Final Report

(Contract NAS3-20065)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-18554

Sundstrand Corp., Rockford, Ill.

THE 15 kW SUB A (NOMINAL) SOLAR THERMAL ELECTRIC POWER CONVERSION CONCEPT DEFINITION STUDY: STEAM RANKINE TURBINE SYSTEM

Final Report

(Contract DE-31-63-AER-1713; DOE/NASA/0061-79/1; NAS-7845) Available.

STEAM RANKINE TURBINE SYSTEM Final Report

N80-17543

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17544

Institute of Gas Technology, Chicago, III.

DESIGN, FABRICATION, TEST AND EVALUATION OF A PROTOTYPE 150-FOOT LONG COMPOSITE WIND TURBINE BLADE

Final Report

(Contract NAS3-20600; EX-76-01-1028)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17545

Kaman Aerospace Corp., Bloomfield, Conn.

DESIGN, FABRICATION, TEST AND EVALUATION OF A PROTOTYPE 150-FOOT LONG COMPOSITE WIND TURBINE BLADE

Final Report

(Contract NAS3-20600; EX-76-01-1028)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17546

Spectraflow, Inc., Sylmar, Calif.

DEVELOPMENT OF IMPROVED WRAPAROUND CONTACTS FOR SILICON

Final Report

(Contract NAS3-20065)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17547

Institute of Gas Technology, Chicago, III.

HIGH-TEMPERATURE MOLTEN SALT THERMAL ENERGY STORAGE SYSTEMS

Final Report, 14 Sep 1977 - 14 Dec 1978

Contract NAS3-20806

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17548

Kaman Aerospace Corp., Bloomfield, Conn.

DESIGN, FABRICATION, TEST AND EVALUATION OF A PROTOTYPE 150-FOOT LONG COMPOSITE WIND TURBINE BLADE

Final Report

(Contract NAS3-20600; EX-76-01-1028)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

N80-17549

Spectraflow, Inc., Sylmar, Calif.

DEVELOPMENT OF IMPROVED WRAPAROUND CONTACTS FOR SILICON

Final Report

(Contract NAS3-20065)

DOE/NASA/WIND TURBINE DATA ACQUISITION, PART I: EQUIPMENT

148
A parametric study of potential early commercial MHD power plants was then used to fabricate a number of cells for evaluation and study, as well as to establish the validity of the process sequence. While a number of cells exhibiting relatively good conversion efficiencies were produced, nearly all had low I-V curve factors for the level of efficiencies attained. Cells with conversion efficiencies of more than 15 percent (air mass zero and 25 C) had fill factors of only 0.76. Evidence as to the cause of this has not been conclusive, but is most likely linked to isolation failure in the wraparound dielectric and associated shunting problems.

Author

N80-18565*# Avco Corp., Wilmington, Mass.
PARAMETRIC STUDY OF POTENTIAL EARLY COMMERCIAL MHD POWER PLANTS Final Report
Finn A Hals Dec 1979 246 p refs
(Contracts DEN3-51; EF-77-A-01-2874)

Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

R.E.S.

N80-18562*# Grumman Aerospace Corp., Bethpage, N.Y.
Joseph Alario, Robert Kosson, and Robert Haslett Jan 1980 73 p refs
(Contracts DEN3-39; EC-77-A-31-1034)
(NASA-CR-159726; DOE/NASA/0039-79/1; GAC-TR-1681-09) Avail: NTIS HC A04/MF A01 CSCL 10A

Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators, and slurries. The most practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub.) storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler countercflowing stream of liquid metal carrier fluid and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

R.E.S.

APPENDIX: MOD-1 WIND TURBINE GENERATOR ANALYSIS AND DESIGN REPORT, VOLUME 2 Final Report
May 1979 425 p
(Contracts NASD-20088: EX-77-A-29-1010)

The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.

K.L.

A 15 kW (NOMINAL) SOLAR THERMAL-ELECTRIC POWER CONVERSION: CONCEPT DEFINITION STUDY: STEAM RANKIN RECIPROCATOR SYSTEM Final Report
(Contracts DEN3-63; EX-78-A-29-1060)
(NASA-CR-159591; DOE/NASA/0063-79/1) Avail: NTIS HC A03/MF A01 CSCL 10A

A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations, a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent; maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.

R.E.S.

R. E. Martin 1979 52 p refs
(Contract NAS7-21257)
(NASA-CR-158907; FCR-1657) Avail: NTIS HC A04/MF A01 CSCL 10A

The development of a long life, high performance, high efficiency, hydrogen oxygen alkaline fuel cell configuration for application to a NASA orbiting space vehicle is documented. Seven full-size 0.25 ft active area single cells were constructed and tested at cell temperatures between 140 F and 200 F, current densities out to 500 ASF, and reactant pressures up to 30 psia. Cells incorporating platinum-supported-on-carbon catalyst anodes demonstrated 8,085 cell-hours of endurance operation with virtually no change in performance and 2,985 cell-hours of operation to a cyclical load profiles with no apparent loss in cathode performance due to high voltage operation. Cell edge frame materials and heat treated polybenzimidazole (PBI) matrix samples were corrosion tested in 42 wt% aqueous potassium hydroxide at 250 F. Based upon test data, PBI appears unsuitable for use as a fuel cell matrix material. Five semiconducting oxides were evaluated as cathode catalysts and as cathode catalyst supports. The candidate supports LaMnO3 and LaNiO3 appear to have development potential and merit further study.

K.L.

ANNUAL TECHNICAL REPORT, FISCAE YEAR 1979, VOLUME 1: EXECUTIVE SUMMARY Annual Report
John W. Lucas 15 Jan. 1980 46 p Sponsored in part by DOE
(Contract NAS7-100)
(NASA-CR-159715; JPL-Pub-79-112-Vol-1) Avail: NTIS HC A03/MF A01 CSCL 10A

Accomplishments of the Point-Focusing Distributed Receiver Technology project are presented. The following aspects of the project are discussed: information dissemination, concentrator development, receiver and heat transport network development.
the completed solar cells with doping concentrations in the junction layer. Considerable effort was invested in investigating the effects of bandgap narrowing caused by high open circuit voltages as high as 645 mV (AM0 25 °C) were attained by high dose phosphorus implantation followed by furnace annealing and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

A.R.H.

Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment study was performed to select engine designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative concept for the reformer was conceived and modifications of the computer program to be used in its design were started.

R.E.S.

The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 °C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and extraction of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

R.E.S.

A conceptual design of a free piston solar Stirling engine-linear alternator which can be designed and developed to meet the requirements of a near-term solar test bed engine with minimum risks was developed. The conceptual design was calculated to have an overall system efficiency of 38% and provide 15 kW electric output. The free piston engine design incorporates features such as gas bearings, close clearance seals, and gas springs. This design is hermetically sealed to provide long life, reliability, and maintenance free operation. An implementation assessment study performed indicates that the free piston solar Stirling engine-linear alternator can be manufactured at a reasonable price cost (direct labor plus material) of $2,500 per engine in production quantities of 25,000 units per year. Opportunity for significant reduction of cost was also identified.

R.E.S.

A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each critical failure mode was tracked from the top down and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.
The effects on life cycle costs of a number of technology areas are examined for a 100-MW solar array. A baseline system conceptual design is developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies are then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance and hence life cycle cost.

Author HC A03/MF A01 CSCL 10C

N80-24745*# Engelhard Minerals and Chemicals Corp., Edison, N.J.

The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 2000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm): 0.146, carbon monoxide (vppm): 30, 2420; nitrogen oxides (vppm): 5.7, 5.6. R.E.S.
Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. A cogeneration system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual fuel savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesel fuel was most efficient. The advanced technologies used coal-derived fuels, or coal, with advanced fluid bed combustion or on-site gasification systems.

The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serves as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data, ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.

The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is designed optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour. J.M.S.
COPLANAR BACK CONTACTS FOR THIN SILICON SOLAR SCREEN PRINTING TECHNOLOGY APPLIED TO SILICON

The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kW machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft-lb at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of afailsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

L.F.M.

Jay W. Thornhill and William E. Sipperly Apr. 1980 36 p refs (Contract NAS3-21251) Avail: NTIS HC A03/ MF A01 CSCL 10A

A process for fabricating 2 to 3 mil wraparound solar cells was formulated. Sample thin wraparound cells were fabricated using this process. The process used a reinforced perimeter construction to reduce the breakage that occurs during handling of the wafers. A retracting piston post was designed and fabricated to help minimize the breakage that occurs during the screen printing process. Two alternative methods of applying the aluminum back surface field were investigated. In addition to the standard screen printed back surface field, both spin-on and evaporated aluminum techniques were researched. Neither spin-on nor evaporated aluminum made any noticeable improvement over the screen printing technique. A fine mesh screen was chosen for the application of the aluminum paste back surface field. The optimum time and temperature for firing the aluminum turned out to be thirty seconds at 850 C. The development work on the dielectric included looking at three dielectrics for the wraparound application. Transene 1000, Thick Film Systems 1126RCB and an in house formulation 61-2-2A were all tested. Cells with pre-dielectric thickness of 3.0 to 3.5 mils using Transene 1000 as the wraparound dielectric and the procedure outlined above showed an average efficiency of 10.7 percent. Thinner cells were fabricated, but had an unacceptable yield and efficiency.

R.E.S.
of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnace application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

N80-29845 General Dynamics/Convair, San Diego, Calif.STONE OF POWER MANAGEMENT TECHNOLOGY FOR ORBITAL MULTI-100kW APPLICATIONS. VOLUME 3: REQUIREMENTS

(CNAS-21-2175)

(NASA-CR-159834; GDC-ASP-80-015) Avail: NTIS

HC A03/MF A01 CSCL 10B

Mid to late 1980's power management technology needs to support development of a general purpose space platform, capable of supplying 100 to 250 KWe to a variety of users in low Earth orbit are examined. A typical, shuttle assembled and supplied space platform is illustrated, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power requirements used to evaluate power management options for life cycle cost effectiveness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, details which lead to technology goals, including: array and power requirements used to evaluate power management options for life cycle cost effectiveness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, and advantages and disadvantages of ac and dc systems for the application. System and component requirements are compared with the state-of-the-art to identify areas where technological development is required.

N80-29852 Communications Satellite Corp., Clarksburg, Md. THIN n-p RADIATION-RESISTANT SOLAR CELL FEASIBILITY STUDY Final Report

J. F. Allison, R. A. Arndt, and A. Meulenberg, Jr. Jun. 1980 70 p refs 10A

(CNAS-21-2180)

(NASA-CR-159871) Avail: NTIS HC A04/MF A01 CSCL 10A

Silicon solar cells were fabricated to verify the predictions that: (1) thin n-p+ cells can provide high values of open circuit voltage even when high resistivity base material (> 1000 ohm-cm) is used; (2) cells with good pl+ back contacts will display an increase in open circuit voltage with decreasing cell thickness; and (3) high quality, thin, high resistivity, solar cells can be made using processing compatible with conventional practice. Analysis of I-V and spectral response measurements of these cells confirmed theoretical predictions and thereby pointed to voltages beyond the near 600 mV obtained in this study.

N80-29867 Honeywell, Inc., Minneapolis, Minn. Technology Strategy Center. ACTIVE HEAT EXCHANGE SYSTEM DEVELOPMENT FOR LATEN HOT THERMAL ENERGY STORAGE Final Report

R. T. LeFrois and A. K. Mathur Apr. 1980 226 p

(CNAS-DEN3-38)

(NASA-CR-159727; DOE/NASA/0038-80/2; HI-79188) Avail: NTIS HC A11/MF A01 CSCL 10C

Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCM's) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed examination. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures.

Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaN02, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

N80-29885 Jet Propulsion Lab., California Inst. of Tech., Pasadena. SOLAR THERMAL POWER SYSTEMS. HIGH TEMPERATURE THERMAL ENERGY STORAGE IN STEEL AND SAND

Robert H. Turner 15 Dec. 1979 93 p Sponsored by NASA and DOE

(NASA-CR-15970B; DOE/NASA/0100-79/1; JPL-PUB-80-35) Avail: NTIS HC A05/MF A01 CSCL 10C

The technical and economic potential for high temperature (343 C, 650 F) thermal energy storage in hollow steel ingots, pipes embedded in concrete, and for pipes buried in sand was evaluated. Because it was determined that concrete would separate from pipes due to thermal stresses, concrete was replaced by sand, which is free from thermal stresses. Variations of the steel ingot concept were not cost effective compared to the sand-pipe approach, therefore, the sand-pipe thermal storage unit (TSU) was evaluated in depth to assess the approximate tube spacing requirements consistent with different system performance characteristics and also attendant system costs. For large TSUs which do not require fast response times, the sand-pipe approach offers attractive possibilities. A pipe diameter about 9 cm (3.5 in) and pipe spacing of approximately 25 cm (10 in) with sand filling the interspaces, appears appropriate. Such a TSU system designed for 8 hours charge/discharge cycle has an energy unit storage cost (CE) of $2.63/kWh-t and a power unit storage cost (Cp) of $42/kW-t (in 1977 dollars).
COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 3: ENERGY CONVERSION SYSTEM CHARACTERISTICS Final Report

Jan, 1980 283 p refs
(Contracns DEN3-30: EC-77-Ann-1062)
(NASA-CR-159761; DOE/NASA/0031-80/5-Vol-3;
UTC-FCR-1333-Vol-3) Avail: NTIS HC A13/MF A01 CSCL 10B

Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame of work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified. R.K.G.

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 4: ENERGY CONVERSION SYSTEMS Final Report

(Contract DEN3-31)
(NASA-CR-159768; DOE/NASA/0031-80/4-Vol-4) Avail: NTIS HC A21/MF A01 CSCL 10B

Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified. R.K.G.

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 2: PROCESS BOILER PERFORMANCE Final Report

W. F. Knightly May 1980 296 p
(Contract DEN3-31)
(NASA-CR-159770-Part 1: DOE/NASA/0031-80/6-Vol-6-Part-1;
GEBOET0105-Vol-6-Part-2) Avail: NTIS HC A13/MF A01 CSCL 10B

About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metal. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. The two nocogeneration base cases are included: coal fired and residual fired process boilers. T.M.

(Contracts DEN3-161: DE-AL-05-7807-1172)
(NASA-CR-159888; DOE/NASA/0161-4; Rept-80-969-MARED-R3: QR-3) Avail: NTIS HC A04/MF A01 CSCL 10A

The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kw test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed. S.J.
Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fitted together with their performance, capital costs, and the research and development required to bring them to this level of performance.

Author

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 6: COMPUTER DATA. PART 1: COAL-FIRED NOCOGENERATION PROCESS BOILER. SECTION A Final Report

(Contract DEN3-31)

(NASA-CR-159270-Pl-1; GEBET0105-Vol-6-Pl-1; DOE/NASA/0031-80/6) Avail. NTIS HC A21/MF A01 CSCL 108

Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fitted together with their performance, capital costs, and the research and development required to bring them to this level of performance.

Author

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 6: COMPUTER DATA. PART 2: RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER. Final Report

W. F. Knightly May 1980 287 p

(Contract DEN3-31)

(NASA-CR-159770-Pl-2: GEBET0105-Vol-6-Pl-2; DOE/NASA/0031-80/6-Vol-6-Pl-2) Avail. NTIS HC A13/MF A01 CSCL 108

Computer generated performance data on the performance of the energy conversion system presented. Performance parameters included fuel consumption and savings, capital costs, economics, and emissions of residual fired process boilers.

T.M.

N80-33682# National Aeronautics and Space Administration. Lewis Research Center. Cleveland, Ohio.

MOD-2 WIND TURBINE FARM STABILITY STUDY Final Report

E. N. Hinrichsen Jun. 1980 170 p refs

(Contracts DEN3-134: DE-AIO1-79ET-20305)

156

A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system configuration, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F indirect air heater, no oxygen enrichment, Illinois No. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 200 kV/m. Results indicate that optimum net MHD generator power is generally less than 50% limited by electric stress-limited, with optimum net power a relatively weak function of operating pressure.

A.L.W.
AN ANALYTICAL STUDY OF NITROGEN OXIDES AND CARBON MONOXIDE EMISSIONS IN HYDROCARBON COMBUSTION WITH ADDED NITROGEN. PRELIMINARY RESULTS

The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven-reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence time.

R.E.S.

SULFATE AND NITRATE COLLECTED BY FILTER SAMPLING NEAR THE TROPOPAUSE

Francis M. Humenik, Erwin A. Lezberg, and Dumas A. Ottersen Jan. 1980 30 p refs (NASA-TP-1587; E-073) Avail. NTIS HC A02/MF A01 CSCL 13B

Filter samples collected near the tropopause with an F-106 aircraft and two Boeing 747 aircraft were analyzed for sulfate and nitrate ion content. Within the range of routine commercial flight altitudes (at or below 12.5 km), stratospheric mass mixing ratios for the winter-spring group averaged 0.25 ppb for sulfate and 0.35 ppb for nitrate. For the summer-fall group, stratospheric mixing ratios averaged 0.13 ppb for sulfate and 0.25 ppb for sulfate and nitrate, respectively. Winter-spring tropospheric mass mixing ratios averaged 0.08 ppb for sulfate and 0.10 ppb for nitrate, while summer-fall group tropospheric mixing ratios averaged 0.05 ppb for sulfate and 0.08 ppb for nitrate. Correlations of the filter data with available ozone data suggest that the sulfate and nitrate are transported from the stratosphere to the troposphere.

K.L.

DETERMINING IMPACT OF RIVER INPUTS ON GREAT LAKES WATERS. REMOTE SENSING RESULTS

The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Ontario, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of the remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery.

J.M.S.
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control, (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved. K.L.
47 METEOROLOGY AND CLIMATOLOGY
Includes weather forecasting and modification.

In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used. B.J.

A group of 30 patients with adenocarcinoma of the pancreas including some patients with very advanced disease, were treated with the so-called mixed beam modality employing photon treatments three times per week and neutron treatments twice a week. Two hundred Rods or equivalent Rods (RBE 3.3) were given in daily fractions aiming at a total dose of 6000 Rods in 6 to 8 weeks. The treatments were well tolerated and significant palliation was achieved in 26 to 30 cases. Twelve months survival was 33 percent with a median survival of 7 months or 210 days. Treatment techniques and localization procedures are discussed.

R.E.S.
52 AEROSPACE MEDICINE

Includes physiological factors, biological effects of radiation, and weightlessness.

N80-14884* National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

INTRA-OCULAR PRESSURE NORMALIZATION TECHNIQUE
AND EQUIPMENT Patent
Edward F. Baehr, Inventor (to NASA) Issued 12 Jun. 1979
5 p. Filed 31 Aug. 1977 Supersedes N77-30738 (15 - 21, p 2839)
US Patent and Trademark Office CSCL 088

A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-bladed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.

Official Gazette of the U.S. Patent and Trademark Office
A computer program was developed to aid assembly language programmers of minicomputers and minicomputer systems in solving the man-machine communications problems that exist when scaled integers are involved. In addition to producing displays of quasi-steady state values, INFORM provides an interactive mode for debugging programs, making program patches, and modifying the displays. Auxiliary routines SAMPLE and DATAO add dynamic data acquisition and high speed dynamic display capability to the program. Programming information and flow charts to aid in implementing INFORM on various machines together with descriptions of all supportive software are provided. Program modifications to satisfy the individual user's needs are considered.
NONANALYTIC FUNCTION GENERATION ROUTINES FOR 16-BIT MICROPROCESSORS

Interpolation techniques for three types (univariate, bivariate, and map) of nonanalytic functions are described. These interpolation techniques are then implemented in scaled fraction arithmetic on a representative 16-bit microprocessor. A FORTRAN program is described that facilitates the scaling, documentation, and organization of data for use by these routines. Listings of all these programs are included in an appendix.

ALGORITHM FOR CALCULATING TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY
James W. Gountner Feb., 1980 23 p. refs (NASA-TM-81453; E-384) Avail NTIS HC A02/MF A01 CSCL 09B

An algorithm is presented for calculating both the quantity of compressor bleed flow required to cool the turbine and the decrease in turbine efficiency caused by the injection of cooling air into the gas stream. The algorithm, which is intended for an axial flow, air routine in a properly written thermodynamic cycle code. Ten different cooling configurations are available for each row of cooled airfoils in the turbine. Results from the algorithm are substantiated by comparison with flows predicted by major engine manufacturers for given bulk metal temperatures and given cooling configurations. A list of definitions for the terms in the subroutine is presented.
65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing, Monte Carlo method, and stochastic processes

Cycles till failure of silver-zinc cells with competing failure modes: Preliminary data analysis
Steven M. Sidik, Harold F. Leibccki, and John M. Bozek 1980
(NASA-TM-81556, E-517) Avail. NTIS HC A03/MF A01 CSCL 14D

One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.

Author

As many as three iterated statistical model deletion procedures are considered for an experiment. Population model coefficients were chosen to simulate a saturated factorial experiment having an unfavorable distribution of parameter values. Using random number studies, three model selection strategies were developed, namely, (1) a strategy to be used in anticipation of large coefficients of variation (neighborhood of 65 percent), (2) strategy to be used in anticipation of small coefficients of variation (4 percent or less), and (3) a security regret strategy to be used in the absence of such prior knowledge.

Author
AN AVERAGING BATTERY MODEL FOR A LEAD-ACID BATTERY OPERATING IN AN ELECTRIC CAR

A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

C.F.W.
THEORETICAL MATHEMATICS
Includes topology and number theory.

Approximate expressions were developed for the noise radiation from the aft duct. The results of approximate aft radiation equation compare favorably to more exact Wiener-Hopf radiation results. Refraction as well as convective effects in the multiple flow streams is considered. The peak in the radiation pattern, which occurs nearly at engine sideline, is composed of modes with relatively large cut-off ratios. This implies that aft fan radiation will be inherently more difficult to suppress than the fan inlet noise. The theoretical multimodal radiation pattern is compared to experimental data for the first two harmonics of blade passage frequency for three full-scale fans at two speeds. The agreement between theory and experiment is quite good.
A TIME-DEPENDENT DIFFERENCE THEORY FOR NOISE PROPAGATION IN A TWO-DIMENSIONAL DUCT

Kenneth J. Baumeister 1979 38 p refs Presented at 98th Meeting of the Acoustical Soc. of Am., Salt Lake City, Utah, 26-30 Nov. 1979
(NASA-TM-79302; E-264) Avail: NTIS HC A03/MF A01 CSCL 20A

A time dependent numerical formulation was derived for sound propagation in a two dimensional straight soft-walled duct in the absence of mean flow. The time dependent governing acoustic-difference equations and boundary conditions were developed along with the maximum stable time increment. Example calculations were presented for sound attenuation in hard and soft wall ducts. The time dependent analysis were found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements. R.C.T.

A RECIPROCITY PRINCIPLE IN DUCT ACOUSTICS

(NASA-TM-79300; E-250) Avail: NTIS HC A02/MF A01 CSCL 20A

Various reciprocity relations in duct acoustics have been derived on the basis of the spatial reciprocity principle implied in Green’s functions for linear waves. The derivation includes the reciprocity relations between mode conversion coefficients for reflection and transmission in nonuniform ducts, and the relation between the radiation of a mode from an arbitrarily terminated duct and the absorption of an externally incident plane wave by the duct. Such relations are well defined as long as the systems remain linear, regardless of acoustic properties of duct nonuniformities which cause the mode conversions. A.R.H.

APPLICATION OF COHERENCE IN FAN NOISE STUDIES

Joseph R. Balombi Feb. 1980 26 p refs (NASA-TP-1630; E-157) Avail: NTIS HC A03/MF A01 CSCL 20A

A study of fan noise was made by using the coherence function to obtain far field spectra that were coherent with the
fan rotational rate. Choosing fan rotational rate as one of the two variables yielded new information about the far field noise generated during static fan testing. As a result of this coherent data processing, the inlet fan-tone noise present in static testing was determined to be mostly random when the rotor-alone and rotor-stator interaction tones were cut off. After the rotor-alone sound field was cut on, the sound pressure became coherent, and the angular extent of high coherence increased as fan speed was increased. In addition, the sound field was organized as a pattern of lobes whose amplitude varied slowly with time. Additional fan test results indicate that operating the fan with an inflow control device can partially reduce the fan-tone noise levels to those produced by coherent processing.

A method which shows that increasing the annulus width will lower the noise level is described. The method entails modifying a concentric coaxial nozzles to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.

A semi-empirical model for predicting the noise generated by jets exhausting from circular nozzles is presented and compared with small-scale static and simulated-flight data. The present method is an updated version of that part of the original NASA aircraft noise prediction program relating to circular jet noise. The earlier method agreed reasonably well with experimental static and flight data for jet velocities up to approximately 520 m/sec. The poorer agreement at higher jet velocities appeared to be due primarily to the manner in which supersonic convection effects were formulated. The purely empirical supersonic convection formulation is replaced in the present method by one based on theoretical considerations. Other improvements of an empirical nature were included based on model-jet/free-jet simulated-flight tests. The effects of nozzle size, jet velocity, jet temperature, and flight are included.

A method which shows that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level is described. The method entails modifying a concentric coaxial nozzle to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.

A semi-empirical model for predicting the noise generated by jets exhausting from circular nozzles is presented and compared with small-scale static and simulated-flight data. The present method is an updated version of that part of the original NASA aircraft noise prediction program relating to circular jet noise. The earlier method agreed reasonably well with experimental static and flight data for jet velocities up to approximately 520 m/sec. The poorer agreement at higher jet velocities appeared to be due primarily to the manner in which supersonic convection effects were formulated. The purely empirical supersonic convection formulation is replaced in the present method by one based on theoretical considerations. Other improvements of an empirical nature were included based on model-jet/free-jet simulated-flight tests. The effects of nozzle size, jet velocity, jet temperature, and flight are included.
a liquid fuel, ducted, combustion noise test facility are analyzed.
Measurements made over a range of air and fuel flows are discussed.
Measured spectra are compared with spectra calculated using a simple analytical model.

Author

N80-23098# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
EFFECT OF INFLOW CONTROL ON INLET NOISE OF A CUT-ON FAN
Richard P. Woodward and Frederick W. Glaser 1980 13 p refs
Presented at 6th Aeroacoustics Conf., Hartford, Conn., 4-6 Jun 1980; sponsored by AIAA
(NASA-TM-81487) Avail: NTIS HC A02/MF A01 CSCL 20A

The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone; suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

M.G.

N80-23100# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
FORWARD ACOUSTIC PERFORMANCE OF A SHOCK-SWALLOWED HIGH-TIP-SPEED FAN (GF-13)
James G. Lucas, Richard P. Woodward, and Michael J. MacKinnon
May 1980 20 p refs
(NASA-TP-1668; E-202) Avail: NTIS HC A02/MF A01 CSCL 20A

Forward noise and overall aerodynamic performance data are presented for a high-tip-speed fan having rotor blade airfoils designed to alter the conventional leading-edge bow shocks to weak, oblique shocks which are swallowed within the interblade channels. It was anticipated that the swallowed shocks would minimize the generation of multiple-frequency tone noise. In the speed range where the shocks presumably were swallowed, the multiple-tone noise was lowered only about 3 decibels. Comparison with several high-speed fans on a thrust-corrected basis indicates that the present fan was the quietest in total forward noise at low speeds but offered no advantage at high speeds.

Author

N80-23101# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
HIGHER ORDER MODE PROPAGATION IN NONUNIFORM CIRCULAR DUCTS
Presented at the 6th Aeroacoustics Conf., Hartford, 4-6 Jun 1980; sponsored by AIAA
Prepared in cooperation with M.T. Cambridge
(NASA-TM-81481; E-148) Avail: NTIS HC A02/MF A01 CSCL 20A

Higher order mode propagation in a nonuniform circular duct without mean flow was investigated. An approximate wave equation is derived on the assumptions of the duct cross section varies slowly and that mode conversion is negligible. Exact closed form solutions are obtained for a particular class of converging-diverging circular duct which referred to as 'circular cosh duct.' Numerical results are presented in terms of the transmission loss for the various duct shapes and frequencies. The results are applicable to multimodal propagation, single mode propagation, and sound radiation from certain types of contoured inlet ducts, or of sound propagation in a converging-diverging duct of somewhat different shape from a cosh duct. F.O.S.

Author

N80-23102# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
AN EXPLORATORY SURVEY OF NOISE LEVELS ASSOCIATED WITH A 100K WIND TURBINE GENERATOR
J. R. Balombin 1980 20 p refs
Presented at the 99th Meeting of the Acoustical Soc. of Am., Atlanta, 21-25 Apr 1980
(NASA-TM-81486; E-424) Avail: NTIS HC A02/MF A01 CSCL 20A

Noise measurements of a 125-foot diameter, 100 kW wind turbine are presented. The data include measurements as functions of distance from the turbine and directivity and cover a frequency range from 1 Hz to several kHz. Potential community impact is discussed in terms of A-weighted noise levels relative to background levels, and the intrasonic spectral content. Finally, the change in the sound power spectrum associated with a change in the rotor speed in described. The acoustic impact of this size wind turbine is judged to be minimal.

M.G.

N80-25101# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
A COMPARISON BETWEEN AN EXISTING PROPELLER NOISE THEORY AND WIND TUNNEL DATA
James H. Dittmar May 1980 41 p refs
(NASA-TM-81519; E-464) Avail: NTIS HC A03/MF A01 CSCL 20A

The noise of three supersonic helical tip speed propellers was compared with the noise predicted by an existing noise theory. Comparisons of the peak blade passage tones showed fairly good agreement between theory and experiment at the lowest helical tip Mach numbers tested, 0.86 and 1.00, while at higher numbers, the theory predicted higher noise levels than measured. When the differences among the propellers were considered the theory and measurement showed fairly good agreement. Directivity measurements in general showed that the measured blade passage tone data peaked further downstream than the theory predicted. At the cruise design condition the harmonics appeared to fall off faster in the data than the theory indicated.

E.D.K.

N80-26115# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
MEASURED AND PREDICTED IMPINGEMENT NOISE FOR A MODEL-SCALE UNDER THE WING EXTERNALLY BLOWN FLAP CONFIGURATION WITH A QCSEE TYPE NOZZLE
D. J. McKinzie, Jr Jun. 1980 63 p refs
(NASA-TM-81494; E-432) Avail: NTIS HC A04/MF A01 CSCL 20A

Jet/flap interaction noise was measured and predicted for a small-scale model two-flap, under-the-wing, externally blown flap configuration equipped with and without noise suppression devices. The devices consisted of short spanwise fairings centered in relationship to the jet axis and positioned in the slots between the wing and flaps. The nozzle approximated that of the Quiet Clean Short-haul Experimental Engine (QCSEE). Takeoff noise reductions of 6 dB in the flyover and 5 dB in the sideline plane were obtained over a wide range of radiation angles. Approach noise reductions of about 5 dB were obtained only in the forward quadrant of the flyover plane; no reductions were obtained in the sideline plane. Models of several noise sources were combined analytically to form an overall noise prediction, the results from which compared favorably with the measured data. The aerodynamic performance characteristics for these configurations were substantially the same in the takeoff attitude. However, in the approach attitude, the suppressed configuration produced a 6 percent reduction in the flow turning efficiency.

Author

N80-29312# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio.
PREDICTION OF UNSUPPRESSED JET ENGINE EXHAUST NOISE IN FLIGHT FROM STATIC DATA
James R. Stone 1980 26 p refs
Presented at 8th Aeroacoustics Conf., Hartford, Conn., 4-6 Jun 1980; sponsored by AIAA
(NASA-TM-81537; E-491) Avail: NTIS HC A03/MF A01 CSCL 20A

A methodology developed for predicting in-flight exhaust noise from static data is presented and compared with experimental
data for several unsuppressed turbojet engines. For each engine, static data over a range of jet velocities are compared with the predicted jet mixing noise and shock-cell noise. The static engine noise over and above the jet and shock noises is identified as excess noise. The excess noise data are then empirically correlated to smooth the spectral and directivity relations and account for variations in test conditions. This excess noise is then projected to flight based on the assumption that the only effects of flight are a Doppler frequency shift and a level change given by 40 log (1 - m sub 0 cos theta), where M sub 0 is the flight Mach number and theta is the observer angle relative to the jet axis.

M.G.

N80-30154* # National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, Ohio.

NUMERICAL TECHNIQUES IN LINEAR DUCT ACOUSTICS

Status Report

Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turbojet engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

A. R. H.

A time-dependent numerical formulation is derived for sound propagation in a two-dimensional straight soft-walled duct in the absence of mean flow. The time-dependent governing acoustic-difference equations and boundary conditions are developed along with the maximum stable time increment. Example calculations are presented for sound attenuation in hard- and soft-wall ducts. The time-dependent analysis has been found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements.

(Author)

A time dependent numerical solution of the linearized continuity and momentum equation is developed for sound propagation in a two-dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic-difference equations and boundary conditions are developed along with a numerical determination of the maximum stable time increments. The analysis begins with a harmonic noise source radiating into a quiescent duct. This explicit iteration method then calculates stepwise in real time to obtain the transient as well as the 'steady' state solution of the acoustic field. Example calculations are presented for sound propagation in hard and soft wall ducts, with no flow and with plug flow. Although the problem with sheared flow has been formulated and programmed, sample calculations have not yet been examined. So far, the time dependent finite difference analysis has been found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

(Author)

On the basis of static zero/acoustic data obtained at model scale, the effect of nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a cowl/fan nozzle, a slot/nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 40 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

(Author)
refinements have been made, then empirical corrections can be applied.

(Author)

Insight into the inflight acoustic characteristics of high-velocity jet noise suppressor nozzles for supersonic cruise aircraft (SCA) is provided. Although the suppression of jet noise over the entire range of directivity angles is of interest, the suppression of the peak noise level in the rear quadrant is frequently of the most interest. Consequently, the paper is directed primarily to the inflight effects at the peak noise level. Both single and inverted-velocity-profile multistream suppressor nozzles are considered. The importance of static spectral shape on the noise reduction due to inflight effects is stressed.

(Author)

Previous studies have shown that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level. In the present model-scale study, the annulus was shaped by an eccentric mounting of the annular nozzle with respect to the conical core nozzle. Acoustic measurements were made in the flyover plane below the widest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and concentric coaxial nozzles are compared over a limited range of operating conditions. The implications of the acoustic benefits derived from the eccentric nozzle to practical applications are discussed.

(Author)

A rigorous treatment is presented of sound radiation from circular ducts with either a hyperbolic horn or an infinite plane baffle. In the analysis hyperboloidal wave functions are used, which are defined here, for the first time, as a class of eigenfunctions of the wave equation for oblate spheroidal co-ordinates. The numerical results include the complex conversion (or reflection) coefficients and the radiation directivity for various incident wave modes.
A STUDY OF THE TRANSMISSION CHARACTERISTICS OF SUPPRESSOR NOZZLES
K. K. Ahuja, M. Salikuddin, R. H. Burrin, and H. E. Plumbee, Jr. June 1980 263 p refs
(Contract NAS3-20797) (NASA-CR-165133) Avail: NTIS HC A12/MF A01 CSCL 20A

The internal noise radiation characteristics for a single stream 12-lobed 24 tube suppressor nozzle, and for a dual stream 36 chute suppressor nozzle were investigated. An equivalent single round conical nozzle and an equivalent coannular nozzle system were also tested to provide a basis for comparison. The technique utilized a high voltage spark discharge as a noise source within the test duct which permitted separation of the incident, reflected and transmitted signals in the time domain. These signals were then Fourier transformed to obtain the nozzle transmission coefficient and the power transfer function. These transmission parameters for the 12-lobed, 24 tube suppressor nozzle and the reference conical nozzle are presented as a function of jet Mach number, duct Mach number, polar angle and temperature. Effects of simulated forward flight are also considered for this nozzle. For the dual stream, 36 chute suppressor, the transmission parameters are presented as a function of velocity ratios and temperature ratios. Possible data for the equivalent coaxial nozzle is also presented. Jet noise suppression by these nozzles is also discussed.

A.R.H.

Nozzle transmission coefficient (NTC) for a 12-lobe, 24-tube suppressor nozzle and a reference round convergent nozzle of equal area are obtained by an impulse test technique. This technique utilizes a high voltage spark discharge as a noise source within the test duct. Effects of nozzle geometry, jet Mach number, jet temperature and flight velocity on the radiation characteristics of the two nozzles are presented. Likewise, the jet mixing noise measured in the absence of internal noise for both nozzles at static and also simulated flight conditions are discussed.

An experimental and analytical program has been carried out to evaluate sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients. The analytical program employs a computer code based on the method of multiple scales to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. Detailed comparisons between the analytical predictions and the experimental measurements have been made. The circumferential variations of pressure amplitudes and phases at several axial positions have been examined in straight and variable area ducts, with hard walls and lined sections, and with and without a mean flow. Reasonable agreement between the theoretical and experimental results has been found.
A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

Official Gazette of the U.S. Patent and Trademark Office
RESULTS OF DUCT AREA RATIO CHANGES IN THE NASA LEWIS H2-O2 COMBUSTION MHD EXPERIMENT

MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered. R.C.T.

EFFECT OF VELOCITY OVERSHOOT ON THE PERFORMANCE OF MAGNETOHYDRODYNAMIC SUBSONIC DIFFUSERS

The evolution of an overshoot velocity distribution was studied in a plane two dimensional diffuser as a function of diffuser divergence angle. The diffuser performance for velocity overshoot was compared to that for a fully developed inlet velocity profile. Results indicate that the ratio of peak-to-center line velocity increases along the diffuser for a diffuser half angle greater than some critical value. It was also found that irrespective of the accompanying inlet temperature distribution, the wall shear stress and the wall heat flux is substantially larger when the inlet velocity profile has an overshoot than that for a fully developed inlet velocity profile. R.C.T.

TOPPING AND PROCESS HEATING Final Report

An examination of the benefits of thermionic-energy conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost distribution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve from the protection of hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC. This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains. M.G.
1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 15 and 17 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.5 torr cesium pressure up to 1600 K to 1900 K and use cesium pressures with 1600 K to 1900 K. Used in this manner, a cesium-seeded electrode becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART efforts.

--

An experimental and analytical study of a Blumlein-type transverse fast discharge operating with He and Xe are presented. An electro optical voltage probe was used to measure the discharge voltage, and the measured voltages were in agreement with the computed voltages. The analytical model was used to predict the dependence of the discharge efficiency for producing metastables and ions on the important plasma and external circuit parameters. In the ion efficiency is greater than the metastable efficiency, while in Xe it is the opposite; the He ion efficiencies are much larger than in Xe, while Xe metastable efficiencies are much larger than in He. These differences between Xe and He are accounted for by differences in the decay rate of the metastable states of the ground-state and excited-state modified Paschen discharge was obtained with water-cooled cathode. Steady-state plasmas with ion kinetic temperatures from 16 to 830 eV were measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent parameters. Electron density measurements were made using an vibration sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

MHD power generation experiments utilizing a cesium-seeded H2O2 working fluid have been carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments are conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments it is found that the power output increases with the square of the B field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at B fields greater than 50 volts/insulator. (Author)

Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Paschen discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathode. Steady-state plasmas with ion kinetic temperatures from 16 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm. (Author)

N80-12880 # State Univ of New York at Buffalo Lab for Power and Environmental Studies EXPERIMENTAL AND THEORETICAL INVESTIGATION FOR THE SUPPRESSION OF THE PLANAR ARC DROP IN THE THERMIonic CONVERTer Final Report, 1 Jul. 1974 - 16 Apr. 1978

David T. Shaw Apr 1979 41 p refs (Grant Ngl-7071) (NASA CR-159611: LAPES-79-003) Avail: NTIS HC A03/MF A01 CSCL 201

The possibility of using N2 as a gas additive for the development of thermionic topping generators was investigated. The experiment is described and observations are discussed. The potential of applying microwave power in the interelectrode spacing of the converter as an ion generation source was also assessed. (Author)

Tests were conducted using plasma densities of approximately 10 to the 6th power - 10 to the 8th power/cu cm. Insulating materials tested were polyimide (Dapon), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several ionization of collected current was obtained with both surface scribing and a 2 x 2 cm conducting square of the B field. This fact is apparent as the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations that the "insulator effect" is a surface property of the insulator that is not a function of the plasma conditions.
observations, that the generation of vapor is a major factor in the enhancement of collected current. A.R.H.,

Graeme Aston Jun. 1980 93 p refs
(Grant NGR-06-002-112) (NASA-CR-159849) Avail: NTIS HC A05/MF A01 CSCL 201

An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiperature ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominantly one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

Author

PLASMA PHYSICS ANALYSIS OF SERT-2 OPERATION
(Grant NsG-3011) (NASA-CR-159814) Avail: NTIS HC A04/MF A01 CSCL 201

An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An experimental path for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

E.D.K.

NBO-32223/* Colorado State Univ., Fort Collins. Dept. of Physics.
INTERACTION OF HIGH VOLTAGE SURFACES WITH THE SPACE PLASMA Annual Report
Harold R. Kaufman and Raymond S. Robinson May 1980 50 p refs
(Grant NsG-3196) (NASA-CR-161513) Avail: NTIS HC A03/MF A01 CSCL 201

High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.

R.K.G.
For Earth and Space

The Planar Multijunction Cell: A New Solar Cell

John C. Evans, An-Ti Chai, and Chandra Goradia (Cleveland State Univ., Ohio) 1980

Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multijunction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are independently connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabrication methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

Three high open-circuit voltage cell designs based on 0.1-ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10 to the 15th power/cm². Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE) cell. The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types.

Four types of sensors were used to make both dynamic and time-averaged flow measurements in a turbine rig to determine the magnitude of errors in time-averaged total-pressure measurements made at a station 5 1/2 blade chords downstream from the rotor. The effects turned out to be negligible. The sensors and their intended use are discussed.

A family of high-voltage solar cells, called the planar multijunction (PMJ) cell, is being developed. The new cells combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabrication methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

A family of high voltage solar cells, called the planar multijunction (PMJ) cell, is being developed. The new cells combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabrication methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.
homogeneous alignment. Extinction ratios were very high, and twist and tilt-bias angles were very small. The SEM results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment. (Author)

The paper considers critical currents in A-15 structure Nb3Al converted from a cold-worked bcc structure. Nb3Al prepared in the ductile phase by quenching and mechanical working followed by conversion to the A-15 structure could carry currents above 10^9 A/sq m in fields near 20 T. These critical currents are comparable to those of Nb3Ge and V3Ga which are closest competing materials for use in high fields; further enhancement of the critical current is possible if thermal treatments are optimized. A.T.

Three high open-circuit voltage cell designs based on 0.1 ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10^15/sq cm. Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE) cell. The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. The cell regions controlling both short-circuit current and open-circuit voltage degradation were defined in all three cell types. An increase in front surface recombination velocity accompanied time dependent degradation of a HLE cell after X-irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types. (Author)

A computational model is developed which describes the evolution and propagation of an ionizing front (negative streamer) in solid materials. The ionization front consists of drifting avalanching electrons moving self-consistently under the influence of their own space-charge field together with an applied external field. The required input information for the model consists of the functional dependence of the macroscopic transport coefficients on the local electric field, the initial conditions for beginning the calculation, and the strength of the applied field. A computational approach for specifying the transport coefficients and initial conditions is also described. The approach has been implemented by constructing three computer codes which sequentially interface, beginning with single electron scattering, and ending with streamer development. Computational results are presented for model calculations in Teflon. The overall model is perceived to provide a picture of the initiation phase of a propagating discharge in electron-irradiated dielectrics. (Author)
THERMODYNAMICS AND STATISTICAL PHYSICS

Includes quantum mechanics, and Bose and Fermi statistics.

For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

Specific examples are cited herein to illustrate the universal needs and demands for thermophysical property data. Applications of the principle of similarity in fluid mechanics and heat transfer and extensions of the principle to fluid mixtures are discussed. It becomes quite clear that no matter how eloquent theories or experiments in fluid mechanics or heat transfer are, the results of their application can be no more accurate than the thermophysical properties required to transform these theories into practice, or in the case of an experiment, to reduce the data. Present-day projects take place on such a scale that the need for international standards and mutual cooperation is evident.
The matrix management approach to program management is an organized effort for attaining program objectives by defining and structuring all elements so as to form a single system whose parts are united by interaction. The objective of the systems approach is uncompromisingly complete coverage of the program management endeavor. Starting with an analysis of the functions necessary to carry out a given program, a model must be defined; a matrix of responsibility assignment must be prepared; and each operational process must be examined to establish how it is to be carried out and how it relates to all other processes.

A.R.H.

The matrix management approach to program management is described, showing that it is an organized approach to attaining program objectives by defining and structuring all elements so as to form a single system whose parts are united by interaction. The objective of the systems approach is to attain an uncompromised complete coverage of the program management effort. It is demonstrated that beginning with an analysis of the functions necessary to carry out a given program, a model must be defined; a matrix of responsibility assignment must be prepared; and each operational process is examined to establish how it is to be implemented and how it relates to all other processes.

M.E.P.
The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs from specific masses or costs of propulsion and power systems is evaluated.

A.W.H.
85URBAN TECHNOLOGY AND TRANSPORTATION

Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.

For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.

N80-21200* / National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

BUDGETS AND MANAGEMENT OF LEAD TECHNOLOGY FOR AUTOMOTIVE STIRLING ENGINE DEVELOPMENT

The technical advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or back-ups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. The planned SRT activities are related to the timeline of the engine development program that they must support.

A.M.S.

N80-21201* / National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FUEL ECONOMY SCREENING STUDY OF ADVANCED AUTOMOTIVE GAS TURBINE ENGINES

The technical advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or back-ups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. The planned SRT activities are related to the timeline of the engine development program that they must support.

A.M.S.

N80-28254* / National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PRELIMINARY RESULTS OF STEADY STATE CHARACTERIZATION OF NEAR TERM ELECTRIC VEHICLE BOARD PROPULSION SYSTEM

The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

M.G.

N80-30229* / National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A LABORATORY FACILITY FOR ELECTRIC VEHICLE PROPULSION SYSTEM TESTING

The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F_{load} = K_{1} \cdot F_{road} + K_{2} \cdot V^3 + K_{3} \cdot \sin(\theta).

The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

A.R.H.

The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.

M.E.P.

ASSESSMENT OF THE STATE OF TECHNOLOGY OF AUTOMOTIVE STIRLING ENGINES

The current status of automotive Stirling engine technology is considered. The energy is described and the history of its evolution is reviewed. Overall engine, component, subsystem, and material problem areas are identified and recommendations are made for further development and testing. Potential improvements are also identified. Projected Stirling engine/vehicle performance is compared to that of vehicles using current internal combustion engine in terms of performance, fuel consumption, multifuel capability, emissions, and noise level. It is concluded that the potential for achieving 1984 program goals is clearly discernible. The program goals require at least a 30 percent reduction in fuel consumption, acceptable emissions, and the capability of satisfactorily operating with a variety of alternate fuels.

A.R.H.

N80-17916* / Garrett Corp., Torrance, Calif.

ADVANCED ELECTRIC PROPULSION SYSTEM CONCEPT FOR ELECTRIC VEHICLES

Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery packs to achieve a basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 per cent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.04/km using lead-acid batteries and also the acceleration of zero to 89 km/hr.

Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the complications that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions. However, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
application in several different vehicle sizes A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle propulsion system concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. The final propulsion system consists of a 65 kW spark ignition engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

N80-28286 Eaton Engineering and Research Center, Southfield, Mich.

SMALL PASSENGER CAR TRANSMISSION TEST CHEVROLET 200 TRANSMISSION Final Report

The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J95.1h) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.

N80-30228 Ford Motor Co., Dearborn, Mich.

REGENERATOR MATRIX PHYSICAL PROPERTY DATA

Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chemical attack, and thermal stability.

N80-32298 Battelle Columbus Labs., Ohio

DESIGN STUDY OF STEEL V-BELT CVT FOR ELECTRIC VEHICLES Final Report

A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.6 inches high and 13.8 inches wide. The estimated weight was 165 lb. An overall potential efficiency of 85 percent was projected for the average power condition.
Experimental evaluation of a spinning-mode acoustic-treatment design concept for aircraft inlets --- suppression of TF-102 engine fan noise [NASA-TP-1613] p0046 NBO-21323
Pressure spectra and cross spectra at an exit nozzle contraction in a ducted combustion system [NASA-TM-81177] p0168 NBO-23097
AEROSOL CORROSION
SOLAR STABILITY
ACOUSTIC DUCTS
Spectral structure of pressure measurements made in a combustion duct [NASA-TP-79300] p0167 NBO-12024
Pressure spectra and cross spectra at an area contraction in a ducted combustion system [NASA-TM-81177] p0168 NBO-23097
Numerical techniques in linear duct acoustics --- finite difference and finite element analyses [NASA-TM-81553] p0170 NBO-30154
ACOUSTIC EMISSION
Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1 --- jet engine noise radiation through concentric exhaust nozzles [NASA-CR-159696] p0172 NBO-11870
ACOUSTIC IMPROVEMENT
ACOUSTIC MEASUREMENTS
NOISE MEASUREMENT
Noise suppression due to annulus shaping of a conventional coaxial nozzle [NASA-TP-1613] p0171 NBO-35497
Acoustic measurements of three Prop-Fan models [AIAA PAPER 80-0995] p0171 NBO-35508
Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13) [NASA-TP-16689] p0169 NBO-23100
Measured and predicted impingement noise for a model-size under-the-wing externally blown flat configuration with a QCHE type nozzle [NASA-TM-81494] p0169 NBO-26115
ACOUSTIC PROPAGATION

Quiet Clean Short-haul Experimental Engine (QCSEE)
Under-The-Wing (UTW) composite nacelle test report. Volume 2: Acoustic performance
[NASA-CP-159702] p0044 N80-29297

ACOUSTIC PROPAGATION

High-order mode propagation in nonuniform circular ducts
[AIAS Paper 80-1018] p0171 A80-25974

ACOUSTIC PROPERTIES

ACOUSTIC SIMULATION

ACOUSTIC VIBRATIONS

ACOUSTIC VELOCITY

Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1 --- jet engine noise radiation through conannular exhaust nozzles
[NASA-CP-155998] p0172 N80-11870

ACOUSTIC VELOCITY

U Sound Waves

ACOUSTIC retrofitting

Quiet Clean Short-haul Experimental Engine (QCSEE): Acoustic treatment development and design
[NASA-CP-135266] p0033 N80-15122

ACOUSTIC RADIATION

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT5D-1 engine
[NASA-TR-81505] p0019 N80-24314

ACOUSTIC VELOCITIES

U Sound Waves

AEROCOACUSTICS

Acoustic behavior of fibrous bulk materials
[AIAS PAPERS 80-0896] p0172 A80-35591

Quiet Clean Short-haul Experimental Engine (QCSEE)
Over-The-Wing (OTW) propulsion system test report. Volume 4: Acoustic performance
[NASA-CP-135326] p0032 N80-15118

Cone noise investigation of the CF6-50 turbofan engine
[NASA-CP-159998] p0036 N80-16061

Cone noise investigation of the CF6-50 turbofan engine
[NASA-CP-159794] p0036 N80-16062

Application of coherency in fan noise studies
[NASA-TR-1630] p0167 N80-18862

ACQUISITION

ATP DATA ACQUISITION

ACTUATORS

Quiet Clean Short-haul Experimental Engine (QCSEE).
Ball spline pitch change mechanism design report
[NASA-CP-134873] p0030 N80-15101

Quiet Clean Short-haul Experimental Engine (QCSEE).
Ball spline pitch change mechanism design report
[NASA-CP-136973] p0030 N80-15101

Quiet Clean Short-haul Experimental Engine (QCSEE).
Wing flap pitch change mechanism design report
[NASA-CP-135140] p0032 N80-15117

Durability tests of solenoid valves for digital actuators

Single-stage electrohydraulic actuators for actuating on airflow valves with frequencies up to 500 hertz

ADAPTIVE CONTROL

Identification and dual adaptive control of a turbojet engine
p0023 A80-10033

An adaptive-control switching back regulator - Implementation, analysis, and design
p0103 A80-28167

ADAPTIVE CONTROL SYSTEMS

U ADAPTIVE CONTROL

ADAPTIVE LOADS

Improving the stress rupture and creep of silicon nitride --- turbine materials
[NASA-CP-159565] p0072 N80-10318

Radiation damage in lithium-counterdoped n-type silicon solar cells
[NASA-TR-8139] p0130 N80-15557

Antilocking keramess --- reduced flammability during aircraft accident circumstances
p0021 N80-29319

ADHESION

Metal-dielectric interactions
p0081 A80-13067

Improved adhesion of sputtered refractory carbides to metal substrates
p0081 A80-25274

Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates
p0066 N80-25900

An investigation into the role of adhesion in the erosion of ductile metals
[AEGE PREPRINT 80-AM-3K-3] p0122 A80-43519

Adhesion and friction of iron-base binary alloys in contact with silicon carbide in air --- high temperature lubricants

An investigation into the role of adhesion in the erosion of ductile metals

ADHESIVE BONDING

Effect of interfacial species on shear strengths of metal-nitride contacts
p0178 A80-22100

Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates
[NASA-TR-79224] p0114 N80-13673

Improved bond coatings for use with thermal barrier coatings

ADHESIVE JOINTS

Phase change in liquid face seals. II - Isothermal and adiabatic bounds with real fluids
[NASA-CP-134873] p0179 A80-14739

AEROCOACUSTICS

Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics
p0170 A80-20952

Acoustic considerations of flight effects on jet noise suppressor nozzles
[AIAS PAPER 80-0164] p0171 A80-22965

Effect of turbulence on surface noise
p0170 A80-28419

Effect of inflow control on inlet noise of a cut-on fan
[AIAS PAPER 80-1049] p0171 A80-35993

Workshop report for the AIAA 5th Aeroacoustics Conference
p0172 A80-41156

Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics
p0176 N80-13881

High-speed-propeller wind-tunnel aeroacoustic results
p0018 N80-22344

Pressure spectra and cromm spectra at an area contraction in a ducted combustion exhaust
[NASA-TR-81477] p0168 A80-23097

Quiet Clean Short-haul Experimental Engine (QCSEE)
Under-The-Wing (UTW) composite nacelle test report. Volume 2: Acoustic performance
[NASA-CP-159472] p0044 N80-29297

Aeroacoustic performance of a 50.8-cm (20-inch) diameter variable-pitch fan and inlet. Volume 2: Acoustic data
[NASA-CP-135140] p0044 N80-29299

AERODYNAMIC BUZZ

A DRAG

AERODYNAMIC CHARACTERISTICS

AERODYNAMIC STABILITY
Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades [NASA-80-0607] p0165 80-28804
Zero-length, lifted-lip inlet for submarine military aircraft [NASA-Paper 80-1240] p0004 80-12103
Core compressor exit stage study: I: Aerodynamic and mechanical design [NASA-99-TN-9714] p0037 80-19113
Advanced propeller aerodynamic analysis [NASA-80-22385] p0018 80-23100
AERODYNAMIC CONFIGURATIONS
AERODYNAMIC LOADS AERODYNAMIC LOADS Effect of time dependent flight loads on JT9D-7 performance deterioration [NASA-CR-159681] p0134 80-10151
AERODYNAMIC NOISE Workshop report for the AIAA 5th Aeroacoustics Conference p0172 80-081156
AERODYNAMIC STABILITY Measuring unsteady pressure on rotating compressor blades --- with semiconductor strain gages under gas turbine engine operating conditions [NASA-TG-9869] p0110 80-12620
Examination of the flap-lag stability of rigid airfoil test blades [NASA-TG-9870] p0110 80-15123
Dynamic response of a Mach 2.5 axisymmetric inlet and turbine engine with a poppet-valve controlled inlet stability bypass system when subjected to internal and external airflow transients [NASA-TG-1531] p0014 80-19123
Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports p0128 80-29731
AERODYNAMIC STALLING A phenomenological model of the dynamic stall of a helicopter blade profile [GENOA, TN No. 1979-194] p0006 80-20086
AERODYNAMICS W THERMAL-AERODYNAMICS NT ROTOR AERODYNAMICS Modification of axial compressor streamline program for analysis of engine test data [NASA-TG-79312] p0002 80-014051

Experimental performance and analysis of 15.04-centimeter-tip-diameter, radial-inflow turbine with work factor of 1.126 and thick blading [NASA-TP-1730] p0023 80-33410
AERODYNAMICS Status of NASA full-scale engine aeroclastics research p0133 80-35906
Nonlinear aerelastic equations of motion of twisted, nonflexible, flexible horizontal (1, 3) wind turbine blades [NASA-CR-159502] p0152 80-26774
AERODYNAMIC FLUTTER
AEROSPACE ENGINEERING The impact of fuels on aircraft technology through the year 2000 [NASA-TP-81506] p0093 80-23472
AEROSPACE ENGINEERING By AERONAUTICAL ENGINEERING Optical sensors for aeronautics and space [NASA-TM-98607] p0110 80-17423
AEROSPAC ENVIRONMENTS First results of material charging in the space environment [NASA-TM-98623] p0175 80-18946
AEROSPAC INDUSTRY NT AIRCRAFT INDUSTRY
Effect of time dependent flight loads on JT9D-7 performance deterioration

Materials and structures technology

Composites in turbine engines

Mechanical compensation of engine limitations

Jet engine performance deterioration

Two-dimensional finite-element analyses of aircraft engine performance, weight, and life cycle costs

Study-state performance of J85-21 compressor at 100 percent design speed with and without intermediate fan blade blockage

Application of spray-on powder metallurgy core aircraft engines

Two-dimensional finite-element analyses of simulated rotor-stall impacts against rings and boxes compared with experiments

Performance deterioration based on existing (historical) data: JT9D jet engine diagnostic program

Design study: A 150-350 kW lightweight diesel aircraft engine

General aviation propulsion

An overview of NASA research on positive displacement general-aviation engines

Positive displacement type general-aviation engines: Summary and concluding remarks

Preliminary study of advanced turboprop and turbofan engines for light aircraft --- cost effectiveness

Advanced component technologies for energy-efficient turbofan engines

Engine component improvement: Performance improvement, JT9D-7 3.6 A engine

Joint investigation of a 1/2 stage turbine with stage-loading factor of 4.66 and high specific work output. 2: Stage group performance

Performance deterioration based on in-service engine data: JT9D jet engine diagnostic program

CF6 jet engine performance improvement program: High pressure turbine aerodynamic performance improvement
Air Force fuel mainburner/turbine effects programs

The broadened-specification fuels combustion technology program at Pratt and Whitney Aircraft

Fuels research: Combustion effects overview

Atomization of broad specification aircraft fuels

Fuel property effects in stirred combustors

Preliminary studies of combustor sensitivity to alternate fuels

Preliminary research: Fuel thermal stability overview

Experimental study of turbine fuel thermal stability in an aircraft fuel system simulator

Low temperature fuel behavior studies

Some advantages of methanes in an aircraft gas turbine

AIRCRAFT NOISE

AIRCRAFT NOISE REDUCTION

Comparison of inlet suppressor data with approximate theory based on cutoff ratio

An acoustic sensitivity study of general aviation propellers

Advanced turbo-prop airplane interior noise reduction-source definition

Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program

General Aviation Propulsion

Quiet HEV engine powered-lift acoustic performance

AIRCRAFT NOISE REDUCTION

AIRCRAFT PERFORMANCE

Subject Index

Propeller performance methodologies

Optimum subsonic, high-angle-of-attack nacelles

Fuel/engine/airframe tradeoff study, phase 1

AIRCRAFT POWER SOURCES

U AIRCRAFT ENGINES

AIRCRAFT STABILITY

STABILITY

AIRCRAFT STRUCTURES

MT AIRCRAFT ENGINES

AIRCRAFT TURBINES

Improved tire/wheel concept --- pneumatic aircraft tire

AEROFUZZ CHARACTERISTICS

U AIRFOILS

AIRFOILS

MT ALUMINUM ALLOYS

MT AUSTENITIC

MT ASTROLOY (TRADEMARK)

MT CAST

MT FABRIC

MT MAGNESIUM OXIDES

MT NONLINEAR EQUATIONS

MT MATRICES (MATHEMATICS)

MT METALS

MT MICRO- AND MINI-PROCESSORS

MT EXTREMELY BLOWN FLAPS

MT PROPELLER BLADES

MT ROTARY WINGS

MT REPOILERS

Advanced propeller aerodynamic analysis

Core compressor exit stage study, 2

Diffusion bonded boron/aluminum spar-shell fan blade

Comparison of elastic and elastic-plastic structural analyses for cooled turbine blade airfoils

Quiet Clean Short-haul Experimental Engine (QCSEE)

Fuels research; Combustion effects overview

Experimental aerodynamic and acoustic model

Advanced turbo-prop airplane interior noise reduction-source definition

Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program

General Aviation Propulsion

Quiet HEV engine powered-lift acoustic performance

AIRCRAFT NOISE REDUCTION

AIRCRAFT PERFORMANCE

A theoretical and experimental investigation of
A comparison of experiment and theory for sound propagation in variable area ducts p0173 A00-45844

ANNULAR FLOW
Hydraulic forces caused by annular pressure seals in centrifugal pumps p0126 N80-29718

ANNULAR NOZZLES
Noise suppression due to annulus shaping of a convectiveional coaxial nozzle p0171 A80-35497
Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle p0171 A80-35498

Coanular supersonic ejector nozzles

Noise suppression due to annulus shaping of conventional coaxial nozzle
[NASA-TM-61461] p0162 N80-23047

Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) tested coanular exhaust nozzle system

Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) tested coaxial exhaust nozzle system: Comprehensive data report

ANTENNAS ARRAYs
Ka-band, multielement, contiguous coverage satellite antenna for the USA
[AIAA 88-0557] p0095 A80-29586

ANTENNA COMPONENTS
AT ANTENNA FEEDS
Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service
[NASA-CR-159703] p0098 N80-12259

ANTENNAS
AT AEROSPACE ANTENNAS
AT MULTIPLE BEAM INTERVAL SCANNERS
AT PARABOLIC ANTENNAS
AT SATELLITE ANTENNAS
AT SLOT ANTENNAS

ANTIFRICTION BEARINGS
AT BALL BEARINGS
AT ROLLER BEARINGS
Method of making bearing material
[NASA-CASE-LEW-11930-3] p0079 N80-33482

ANTIFRAGMENTATION COATINGS
AT PRELIMINARY STUDY OF A SOLAR SELECTIVE COATING SYSTEM USING BLACK COALITE OXIDE FOR HIGH TEMPERATURE SOLAR COLLECTORS

APPROXIMATION
AT FINITE DIFFERENCE THEORY
AT FINITE ELEMENT METHOD

AQUEOUS SOLUTIONS
AT METHOD OF CROSS-LINKING POLYVINYL ALCOHOL AND OTHER WATER SOLUBLE RESINS

ARCHIGRADES
AT A QUANTITATIVE ANALYSIS OF INTER-ISLAND TELEPHONE TRAFFIC IN THE PACIFIC BASIN REGION (PB9)

ARCHITECTURE
AT AN ADVANCED MIXED USER DOMESTIC SATELLITE SYSTEM ARCHITECTURE
[AIAA 88-0098] p0095 A80-29544

ARCHITECTURE (COMPUTERS)
AT HIGH SPEED CYLINDRICAL ROLLING ELEMENT BEARING ANALYSIS "CITIAH" - ANALYTIC FORMULATION
[ASPE PAPER 79-LUB-35] p0129 A80-14761

ARGON
AT ADHEREENCE OF ION BEAM SPUTTER DEPOSITED METAL FILMS ON N-1 STEEL
[NASA-TM-61585] p0079 N80-31527

ARGON FLUX
AT INVESTIGATION INTO THE EFFECT OF PLASMA PRETREATMENT ON THE ADHESION OF PARYLENE TO VARIOUS SUBSTRATES
p0066 A80-25900

ARK (IMPACT PREDICTION)
AT COMPUTERIZED SIMULATION
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>BALL BEARINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMATIC CONTROL</td>
<td>turbine engine</td>
</tr>
<tr>
<td>AUGMENTATION</td>
<td>AUTOMOBILES</td>
</tr>
<tr>
<td>ELECTRIC AUTOMOBILES</td>
<td>NT</td>
</tr>
<tr>
<td>AVIANIENCES</td>
<td>NT</td>
</tr>
<tr>
<td>ATOMICS</td>
<td>NT</td>
</tr>
<tr>
<td>FLIGHT TEST OF NAVIGATION GUIDANCE SENSOR</td>
<td></td>
</tr>
<tr>
<td>ERRORED MEASUREMENTS ON STOL APPROACHES</td>
<td></td>
</tr>
<tr>
<td>[NASA-TH-01154] p0028 N80-13041</td>
<td></td>
</tr>
<tr>
<td>AXIAL COMPRESSORS</td>
<td>U TURBOCOMPRESSORS</td>
</tr>
<tr>
<td>AXIAL FLOW COMPRESSORS</td>
<td>U TURBOCOMPRESSORS</td>
</tr>
<tr>
<td>AXIAL FLOW PUMPS</td>
<td>NT</td>
</tr>
<tr>
<td>TURBINE FUSES</td>
<td>NT</td>
</tr>
<tr>
<td>EFFICIENT LASER ANEMOMETER FOR INTRA-ROTOR FLOW</td>
<td></td>
</tr>
<tr>
<td>NAPPING IN TURBOMACHINERY</td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>ALTERNATIVE EVALUATION OF THE PERFORMANCE</td>
</tr>
<tr>
<td>NT</td>
<td>DEFICIT OF AN AIRCRAFT ENGINE STARTER TURBINE</td>
</tr>
<tr>
<td>[NASA-TM-81571] p0022 N80-3100</td>
<td></td>
</tr>
<tr>
<td>AXIAL LOADS</td>
<td>NT</td>
</tr>
<tr>
<td>PREDICTING THE TIME-TEMPERATURE DEPENDENT AXIAL</td>
<td></td>
</tr>
<tr>
<td>FAILURE OF S/A COMPOSITES</td>
<td></td>
</tr>
<tr>
<td>[NASA-CM-159646] p0071 A80-35494</td>
<td></td>
</tr>
<tr>
<td>AXIAL STRAIN</td>
<td>NT</td>
</tr>
<tr>
<td>EFFECTS OF AXISYMMETRIC CONTRACTIONS ON TURBULENCE</td>
<td></td>
</tr>
<tr>
<td>OF VARIOUS SCALES</td>
<td></td>
</tr>
<tr>
<td>AXISSYMMETRIC BODIES</td>
<td>NT</td>
</tr>
<tr>
<td>TIME DEPENDENT DIFFERENCE THEORY FOR SOUND</td>
<td></td>
</tr>
<tr>
<td>PROPAGATION IN AXISSYMMETRIC DUCTS WITH PLUG FLOW</td>
<td></td>
</tr>
<tr>
<td>AXISSYMMETRIC DEFORMATION</td>
<td>NT</td>
</tr>
<tr>
<td>AXISSYMMETRIC FLOW</td>
<td>NT</td>
</tr>
<tr>
<td>ANNULAR FLOW</td>
<td></td>
</tr>
<tr>
<td>AXLES</td>
<td>NT</td>
</tr>
<tr>
<td>SHAFTS (MACHINE ELEMENTS)</td>
<td></td>
</tr>
</tbody>
</table>

B

B-A-W DEVICES | 8-BULK ACOUSTIC WAVE DEVICES |
| RAPID | Baffle aperture design study of hollow cathode |
| equipped ion thrusters |
| BALL BEARINGS | BALANCING |
| ROLLING-ELEMENT BEARINGS | NT |
| BALL STUDY OF SOLID BODIES |
| ANALYSIS OF WEAR DEBRIS FROM FULL-SCALE BEARING |
| FATIGUE TESTS USING THE PERGAMON |
| [ASLE PREPRINT 80-AM-3E-2] p0722 A80-34167 |
| ANALYSIS OF WEAR-DEBRIS FROM FULL-SCALE BEARING |
| FATIGUE TESTS USING THE PERGAMON |
| BALL BEARINGS | SOME LIMITATIONS IN APPLYING CLASSICAL EHD |
| FILM-THICKNESS FORMULAE TO A HIGH-SPEED BEARING |
| [NASA-CR-165136] p0116 N80-3100 |
| NT | OPERATING CHARACTERISTICS OF HIGH-SPEED |
| JET-LUBRICATION 35-MILLIMETER-BORE BEARING |
| WITH A SINGLE-OUTER-LAND-GUIDED CAGE |
| [NASA-TH-01531] p0117 N80-21753 |
| STRESSES AND DEFORMATIONS IN ELLIPTICAL CONTACTS |
BALLISTICS

Effect of cage design on characteristics of high-speed-jet-lubricated 35-millimeter-dose ball bearings -- turbojet engines
[NASA-TP-1732]
p0120 A80-33794

BALLISTICS
Prediction of fragment velocities and trajectories
[p0096 A80-16210

BANDWIDTH
30/20 GHz wideband technology verification program
[p0097 A80-25917

BARDER AFFIRMATION
G ELECTRICAL PROPERTIES
U SURFACE PROPERTIES
BARISH COMPOUNDS
BT BARISH ZINCATES
BARISH ZINCATES
Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements
[NASA-EM-79277]
p0085 A80-13256

BARS
Compliance and stress intensity coefficients for short-bar specimens with chevron notches
[p0133 A80-46032

BATTERIES
G ELECTRIC BATTERIES
BATTERY CHARGERS
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
[p0146 A80-40329

Pulse charging of load-acid traction cells
[NASA-EM-80175]
p0143 A80-25780

BATTERY SEPARATORS
G SEPARATORS
BEAR PLASMA AMPLIFIERS
Baffle aperture design study of hollow cathode equipped ion thrusters
[NASA-CR-65664]
p0064 A80-33476

BEARS (RADIATION)

BT ELECTRON BEAMS
BT ION BEAMS
Ka-band, multibeam, contiguous coverage satellite antenna for the USA
[NASA-EM-65857]
p0099 A80-29586

BEARS (SURFACE)

BT CARTILEFEB BEAMS
Buckling of rotating beams
[p0133 A80-20149

Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments
[NASA-CR-159645]
p0038 A80-22323

Instructions for the use of the CIVM-Jet 4C finite-strain computer code to calculate the transient structural responses of partial and/or complete arbitrarily-curved rings subjected to fragment impact
[NASA-CR-159083]
p0134 A80-27720

BEARS
Limit cycles of a flexible shaft with hydrodynamic journal bearings in unstable regimes
[p0127 A80-29725

BEARING

BT ANTIFRiction BEARINGS
BT BALL BEARINGS
BT FOIL BEARINGS
BT JOURNAL BEARINGS
BT ROLLER BEARINGS
On the role of oil-film bearings in promoting shaft instability: Some experimental observations
[p0127 A80-29726

Instability thresholds for flexible rotors in hydrodynamic bearings
[p0128 A80-29730

Stabilization of aerodynamically excited turbocharger with hydrodynamic journal bearings and supports
[p0128 A80-29731

Method of making bearing material
[NASA-CASE-LH-11930-3]
p0120 A80-33482

BENDING MOMENTS
Fracture toughness determination of Al203 using four-point-bend specimens with straight-through and chevron notches
[p0090 A80-42085

BIBLIOGRAPHY
Application of advanced on-board processing concepts to future satellite communications systems: Bibliography
p0156 A80-25099

SUBJECT INDEX

[NASA-CR-159684] p0098 A80-12261

BINARY ALLOYS
Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
[NASA-TP-1604]
p0076 A80-15234

Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
[NASA-EM-79262]
p0086 A80-21534

BINARY MIXTURES
MT EUTECTIC ALLOYS
BINARY SYSTEMS (DIGITAL)
U DIGITAL SYSTEMS
BINARY SYSTEMS (MATERIALS)
MT BINARY ALLOYS
MT EUTECTIC ALLOYS
BIOLOGICAL MODELS
U BIONICS
BIONICS
Mechanical and chemical effects of ion-texturing biomedical polymers
p0089 A80-13045

BIOPHYSICS
MT PUBLIC HEALTH
BIOINFORMATICS
U BIONICS
BIPROPELLANTS
U LIQUID ROCKET PROPELLANTS
BIRD-FLIGHT ACCIDENTS
Program for impact testing of spar-shell fan blades, test report
[NASA-CH-135393]
p0037 A80-21328

BLADE TIPS
Teetered, tip-controlled rotor -- Preliminary test results from Mod-0 100-kW experimental wind turbine
[AIAA-69-0642]
p0145 A80-26836

Laser-optical blade tip clearance measurement system
[NASA-CH-13576]
p0116 A80-36127

Laser-optical blade tip clearance measurement system
[NASA-EM-81376]
p0015 A80-14128

Advanced ceramic material for high temperature turbine tip seals
[NASA-CR-157774]
p0038 A80-22325

Forward acoustic performance of a shock-swallowing high-tip-speed fan (sF-13)
[NASA-EM-1668]
p0169 A80-23100

Study of blade aspect ratio on a compressor front stage
[NASA-CR-159556]
p0040 A80-25333

BLEED-OFF
U PRESSURE REDUCTION
BLOW FLAPS
U EXTERNALLY BLOWN FLAPS
BORESTERS OF REVOLUTION
U ROTATING CYLINDERS
BODY-WING CONFIGURATIONS
Quiet Clean Short-haul Experimental Engine (QCSEE)
Under-the-wing (UTW) composite nacelle test report. Volume 1: Acoustic performance
[NASA-CR-159472]
p0044 A80-29297

BOREING AIRCRAFT
MT BOEING 747 AIRCRAFT
BOEING MILITARY AIRCRAFT
U MILITARY AIRCRAFT
BOEING 747 AIRCRAFT
Measurements of cabin and ambient ozone on Boeing 747 airplanes
[NASA-CH-135479]
p0100 A80-28653

Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1
[NASA-EM-79166]
p0008 A80-15059

Expanded study of feasibility of measuring in-flight 747/720/747/720 load, performance, clearance, and thermal data
[NASA-EM-159717]
p0036 A80-16063

JT 9D-7A (sF) jet engine performance deterioration trends
[NASA-EM-159695]
p0016 A80-22274

BOILER PLATE
[NASA-CR-135250]
p0028 A80-14116

BOILERS
Coupled generator and combustor performance calculations for potential early commercial MHD power plants
[p0156 A80-25099

A-10
Reduced bleed air extraction for DC-10 cabin air conditioning.

[IAA PAPER 80-1197] p0010 A60-41104

CARBON

Hydrogen magnetic field at Ca impurity site in Ln2/Yi Euclidean alloys Rb2B6Se2 and Rb2B6P6 by TDAC technique — Time Differential Perturbed Angular Correlation

p0178 A60-160643

CALCIUM COMPOUNDS

MT CALCIUM FLUORIDES

MT CALCIUM SILICATES

CALCIUM FLUORIDES

Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

CALCIUM SILICATES

Analysis of the response of a thermal barrier coating to sodium and vanadium-doped combustion gases

Reactions of calcium orthosilicate and calcium zirconate with oxides and sulfates of various elements

CALCULATORS

Prediction of fiber composite mechanical behavior made simple — using a rocket calculator

CALCULUS

MT POWER SERIES

CALIBRATING

Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from 0 deg to 110 deg — Langley 12-foot low speed wind tunnel test

Global calibration of terrestrial reference cells and errors involved in using different irradiance monitoring techniques

CANCER

Preliminary results of fast neutron treatments in carcinomas of the pancreas

[NASA-TM-81504] p0160 N80-24983

CANTILEVER BEAMS

Dynamic behavior of a beam drag-force anemometer

CANTILEVER BINDERS

MT CANTILEVER BEAMS

CAPILLARY CIRCULATION

U CAPILLARY FLOW

CAPILLARY FLOW

Capillary acquisition devices for high-performance vehicles: Executive summary — evaluation of cryogenic propellant management techniques using the cantilever launch vehicle

[NASA-CR-1595658] p0062 N80-19168

CAPILLARY TUNNELS

Capillary acquisition devices for high-performance vehicles: Executive summary — evaluation of cryogenic propellant management techniques using the cantilever launch vehicle

[NASA-CR-1595658] p0062 N80-19168

CAPTURE TESTS

MT STATIC FIELDS

MT STATIC TESTS

CARBIDES

MT SILICON CARBIDES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

Improved adhesion of sputtered refractory carbides to metal substrates

p0081 A80-25274

An investigation of the initiation stage of hot corrosion in Ni-base alloys

CARBON

Combustion of solid carbon rods in zero and normal gravity

p0074 A80-20955

Combustion of solid carbon rods in zero and normal gravity

[NASA-TM-79303] p0104 N80-13404

CARBON COMPOUNDS

MT CARBIDES

MT FLUOROCARBONES

MT SILICON CARBIDES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

Improved adhesion of sputtered refractory carbides to metal substrates

p0081 A80-25274

An investigation of the initiation stage of hot corrosion in Ni-base alloys

CARBON

Combustion of solid carbon rods in zero and normal gravity

p0074 A80-20955

Combustion of solid carbon rods in zero and normal gravity

[NASA-TM-79303] p0104 N80-13404

CARBON COMPOUNDS

MT CARBIDES

MT FLUOROCARBONES

MT SILICON CARBIDES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

Improved adhesion of sputtered refractory carbides to metal substrates

p0081 A80-25274

An investigation of the initiation stage of hot corrosion in Ni-base alloys

CARBON

Combustion of solid carbon rods in zero and normal gravity

p0074 A80-20955

Combustion of solid carbon rods in zero and normal gravity

[NASA-TM-79303] p0104 N80-13404

CARBON COMPOUNDS

MT CARBIDES

MT FLUOROCARBONES

MT SILICON CARBIDES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

Improved adhesion of sputtered refractory carbides to metal substrates

p0081 A80-25274

An investigation of the initiation stage of hot corrosion in Ni-base alloys

CARBON

Combustion of solid carbon rods in zero and normal gravity

p0074 A80-20955

Combustion of solid carbon rods in zero and normal gravity

[NASA-TM-79303] p0104 N80-13404

CARBON COMPOUNDS

MT CARBIDES

MT FLUOROCARBONES

MT SILICON CARBIDES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

Improved adhesion of sputtered refractory carbides to metal substrates

p0081 A80-25274

An investigation of the initiation stage of hot corrosion in Ni-base alloys

CARBON

Combustion of solid carbon rods in zero and normal gravity

p0074 A80-20955

Combustion of solid carbon rods in zero and normal gravity

[NASA-TM-79303] p0104 N80-13404

CARDIOVASCULAR DISEASES

MT TITANIUM CARBIDES

MT TUNGSTEN CARBIDES

CARBON DIOXIDE LASERS

A cesium TELEC experiment at Lewis Research Center

[NASA-CR-159729] p0073 N80-14386

CARBON FIBER REINFORCED PLASTICS

Fire test method for graphite fiber reinforced plastics

p0070 A80-31169

Burning characteristics and fiber retention of graphite/resin matrix composites

p0070 A80-32062

Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

p0071 A80-32066

Burning characteristics and fiber retention of graphite/resin matrix composites

[NASA-TM-79314] p0067 N80-14196

Fire test method for graphite fiber reinforced plastics

Circumferential shaft seal

p0119 A80-26711

CARBON FIBERS

Fiber release characteristics of graphite hybrid composites

p0073 A80-32063

High char imide-modified epoxy matrix composites

p0071 A80-34789

Calculation of residual principal stresses in CVD boron on carbon filaments

p0072 A80-44237

Calculation of residual principal stresses in CVD boron on carbon filaments

Potential release of fibers from burning carbon composites — aircraft fires

[NASA-TM-80216] p0069 N80-29941

Statistical aspects of carbon fiber risk assessment modeling — fire accidents involving aircraft

[NASA-CR-159318] p0073 N80-29342

CARBON MONOXIDE

Comments on 'Experimental evidence for interhemispheric transport from airborne carbon monoxide measurements'

p0159 A80-32520

An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen — Preliminary results

[ASME PAPER 80-GT-60] p0074 ABO-44237

An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

[NASA-CR-79226] p0157 N80-13721

CARBON STEELS

Manufacture of low carbon astronomy turbine disk shapes by hot isostatic pressing. Volume 2, project 1

[NASA-CASE-LEF-1219] p0037 N80-21329

CARBONASOS RODS

MT CARBON

CARCINOMA

U CARCINOS

CARGO AIRCRAFT

MT KC-14A AIRCRAFT

CARTRIDGE ACTUATED DEVICES

U ACTUATORS

CARTRIDGES

Dynamic properties of elastomer cartridge specimens under a rotating load

p0121 A80-24002

CASCADE FLOW

An experimental investigation of endwall profiling in a turbine vane cascade

[IAA PAPER 80-1085] p0004 A80-39094

Streamline flow visualization study of a horseshoe vortex in a large-scale, two-dimensional turbine stator cascade

[ASME PAPER 80-GT-54] p0004 A80-42145

An implicit finite-difference code for inviscid and viscous cascade flow

[IAA PAPER 80-1427] p0007 A80-44128

Aerosodynamic analysis of a supersonic cascade vibrating in a complex mode

p0007 A80-45841

A-12
Cesium compounds

Quantitative ultrasonic evaluation of engineering properties in metals, composites, and ceramics

Fracture toughness determination of Al2O3 using four-point bend specimens with straight-through and chevron notches

Improving the stress rupture and creep of niobium nitride --- turbine materials

Development of silicon nitride of improved toughness

Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

Materials review for improved automotive gas turbine engines --- superalloys, refractory alloys, and ceramics

Composite wall concept for high temperature turbine structures: Survey of low modulus strain isolator materials

Advanced ceramic material for high temperature turbine tip seals

Effect of thermal cycling on 2r02- Y203 thermal barrier coatings

Fully plasma-sprayed compliant backed ceramic turbine seal

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4-Y203 ceramic

Regenerator matrix physical property data

The 3500 hour durability testing of commercial ceramic materials

The 3500 hour durability testing of commercial ceramic materials

Cesium compounds

Cesium oxides

Cesium oxides

Effects of oxide additions and temperature on sinterability of milled silicon nitride

Cesium military aircraft

U military aircraft

Cerates

Autoignition characteristics of aircraft-type fuels

Cerenkov effect

U carbon fiber reinforced plastics

Chalcogenides

Chromium oxides

Chromium compounds

Chromium compounds
CHROMIUM
Effects of yttrium, aluminium and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers
[NASA-TM-81485] p0079 80-22464

CHROMIUM ALLOYS
MT ASTROLOGY (TRADEMARK)
MT CHROMIUM STEELS
The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys
[NASA-TR-15465] p0080 80-26465
Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys
[NASA-TP-1557] p0076 80-11168

CHROMIUM COMPOUNDS
Catalyst surfaces for the chromium/chromic redox couple
[NASA-CASR-LEM-13482-2] p0160 80-16557

CHROMIUM STEEL
Anodic polarization behavior of austenitic stainless steel alloys with lower chromium content
p0178 80-22250

CHUGGING
MT CONSUMPTION STABILITY CIRCULANTS
MT SWITCHING CIRCUITS

CIRCULATION
MT ATMOSPHERIC CIRCULATION

CIVIL AVIATION
Aeropropulsion in year 2000

CLEAN FUELS
MT FUEL OILS

CLEANSING
Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment
[NASA-TP-709248] p0096 80-13317
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates
[NASA-TP-79224] p0114 80-13473

CLEANNERS
Laser-optical blade tip clearance measurement system
p0111 80-36137
Fuel conservation through active control of rotor clearances
[AIAA PAPER 80-1087] p0045 80-41506

CLINICAL MEDICINE
Preliminary results of fast neutron treatments in carcinoma of the pancreas
[NASA-TM-158716] p0160 80-24983

CLOSED LOOP SYSTEMS
MT FEEDBACK CONTROL

COAL
Cogeneration Technology Alternatives Study (CTAS). Volume II: Summary
Assessment of satellite and aircraft multispectral scanner data for strip-mine monitoring
[NASA-TP-79556] p0136 80-20787
Literature survey of properties of synfuels derived from coal
[NASA-TR-79243] p0141 80-22277
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
[NASA-CP-159767] p0155 80-31870

COAL LIQUICATION
Effects of impurities in coal-derived liquids on accelerated hot corrosion of superalloys
Use of petroleum-based correlations and estimation methods for synthetic fuels
[NASA-TR-81533] p0093 80-27509

COAL UTILIZATION
The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a fluid coal combustor
p0080 80-10043
Survey of MHD plant applications
p0144 80-11972
Oxygen-enriched air for MHD power plants
[NASA-TP-79249] p0137 80-15955
Status of the DOE/NASA critical gas turbine research and technology project
[NASA-TP-79307] p0137 80-14953
Factors affecting cleanup of exhaust gas from a pressurized, fluidized-bed coal combustor [NASA-TH-81439] p0105 W0-20532

Improved PFB operation: 400-hour turbine test results --- coal combustion products and hot corrosion in gas turbines [NASA-TH-81511] p0079 W0-26426

Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating --- coal combustion product environments [NASA-TH-81555] p0175 W0-33221

COATINGS

COATINGS
 NT ALUMINUM COATINGS
 NT ANTIPERSPIRING COATINGS
 NT CERAMIC COATINGS
 NT METAL COATINGS
 NT NICKEL COATINGS
 NT PLASTIC COATINGS
 NT PROTECTIVE COATINGS
 NT SPRAYED COATINGS
 NT THERMAL CONTROL COATINGS

Adaptable compressor and turbine seals, volume 1 --- for turbine engines [NASA-TH-159600] p0083 W0-14235

COAXIAL NOZZLES

Noise suppression due to annulus shaping of a conventional coaxial nozzle p0171 A80-35947

COAXIAL NOZZLES

Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle [NASA-TH-159600] p0083 W0-14235

Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle --- supersonic cruise aircraft [NASA-TH-81660] p0168 W0-22046

Noise suppression due to annulus shaping of conventional coaxial nozzle [NASA-TH-81661] p0168 W0-22047

COBALT ALLOYS

NT ASTEROLOGY (TRADMARK)

Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air [ASLE PREPRINT 90-AM-6C-2] p0122 A80-43776

Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air [NASA-TH-79316] p0085 W0-14249

Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Al alloys in the temperature range of 700-750 deg C [NASA-TH-159589] p0084 W0-26427

COBALT COMPOUNDS

NT COBALT OXIDES

Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors [NASA-TH-81555] p0082 A80-35500

Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors [NASA-TH-81569] p0077 A80-18156

COEFFICIENT OF FRICTION

Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air [ASLE PREPRINT 90-AM-6C-2] p0122 A80-43776

Sliding friction of some metallic glasses p0090 A80-46453

Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air [NASA-TH-79316] p0085 W0-14249

Adhesion and friction of icon-base binary alloys in contact with silicon carbide in vacuum [NASA-TP-1694] p0076 W0-15234

Tribological properties of spattered No5 and 2 films in relation to film morphology [NASA-TH-81465] p0078 W0-21490

The performance of turbine engine rotors to establish TB --- for turbine engines [NASA-TH-81516] p0118 W0-27686

COEFFICIENTS

NT ATTENUATION COEFFICIENTS
 NT COEFFICIENT OF ELASTICITY
 NT FLOW COEFFICIENTS
 NT HEAT TRANSFER COEFFICIENTS

COGENERATION

Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating --- coal combustion product environments [NASA-TH-159555] p0175 W0-33221

COHESIVE RADIATION

Application of coherence in fan noise studies [NASA-TP-1630] p0167 W0-18682

COHERENT SOURCES

U COHERENT RADIATION

COHERENT TRANSMISSION

U COHERENT RADIATION

COLD FLOW TESTS

Design and cold-air test of single-stage uncooled turbine with high work output [NASA-TP-1647] p0019 W0-25337

Cold-air investigation of a 4.1/2 stage turbine with stage-loading factor of 4.66 and high specific work output. 2: Stage group performance [NASA-TP-1680] p0019 W0-25338

COLD FORGING

U COLD WORKING

COLD WORKING

Critical currents in A-15 structure 9b3A1 converted from cold-worked bcc structure
COLLISIONS
WT AIRCRAFT COLLISIONS
WT PARTICLE COLLISIONS

The optimization of air separation plants for combined cycle H2/PWR plant applications
[NASA-TM-81510] p0142 NO-23778

COMBUSTIBILITY
U FLAMMABILITY

Combustion of solid carbon rods in zero and normal gravity
[NASA-TR-79303] p0104 NO-13404

COMBUSTION CHAMBERS

Performance of annular prediffuser-combustor systems
[ASME PAPER 80-GT-15] p0026 NO-42154

Durability testing of advanced catalysts and catalytic supports for gas turbine combustors
[ASME PAPER 80-01-69] p0028 NO-82199

Advanced catalytic combustors for low pollutant emissions, phase 1
[NASA-CR-195532] p0026 NO-13046

Stability analysis of a liquid fuel annular combustion chamber
[NASA-CR-195726] p0061 NO-13165

Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines
[NASA-TM-19562] p0014 NO-14125

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-CR-195963] p0032 NO-15121

Core noise investigation of the CF6-50 turbofan engine combustion system
[NASA-CR-195958] p0036 NO-16061

Core noise investigation of the CF6-50 turbofan engine
[NASA-CR-195749] p0036 NO-16062

Study of research and development requirements of small gas-turbine combustors
[NASA-CR-195796] p0026 NO-18040

Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
[NASA-TM-81439] p0015 NO-20532

The effect of catalyst length and downstream reactor distance on catalytic gas turbine performance
[NASA-TM-81475] p0142 NO-23779

Durability testing at 5 atmospheres of advanced catalysts and catalytic supports for gas turbine engine combustors
[NASA-CR-195839] p0151 NO-24748

Analytical and experimental evaluation of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines
[NASA-TM-81496] p0093 NO-25454

CO2 BUSTION PRODUCTS

Diesel engine catalytic combustor system --- turbocharging
[NASA-CASE-LBN-12995-1] p0110 NO-26659

Experimental combustor study program
[NASA-CR-80211] p0042 NO-29311

NASA broadened-specification fuels combustion technology program
[NASA-CR-20021] p0021 NO-29313

The broadened-specification fuels combustion technology program at Pratt and Whitney Aircraft
[NASA-CR-195964] p0032 NO-29321

Preliminary studies of combustor sensitivity to alternative fuels
[NASA-CR-80212] p0021 NO-29323

Low-pressure performance of annular, high-pressure (40 atm) high-temperature (2400 K) combustion system
[NASA-TM-1713] p0023 NO-32396

Energy efficient engine
[NASA-CR-195965] p0045 NO-33408

CO2 BUSTION CONTROL

Flame tube parametric studies for control of fuel bound nitrogen using rich-loan two-stage combustion
[NASA-TM-81472] p0141 NO-21837

CO2 BUSTION EFFICIENCY

Results of duct area ratio changes in the NASA Lewis HD-22 combustion H2D experiment
[NASA-TM-79319] p0006 NO-13163

Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels
[NASA-TM-79313] p0056 NO-13162

Fuel quality combustion analysis
[NASA-CR-159721] p0094 NO-15284

The broadened-specification fuels combustion technology program at Pratt and Whitney Aircraft
[NASA-CR-195966] p0043 NO-29321

NASA General Electric broad-specification fuels combustion technology program, phase 1
[NASA-CR-80212] p0042 NO-29316

Fuel research: Combustion effects overview
[NASA-CR-80212] p0021 NO-29327

Fuel property effects in stirred combustors
[NASA-TM-81472] p0036 NO-29316

Performance deterioration of commercial high-bypass ratio turndown engines
[NASA-TM-81552-BEV] p0023 NO-32394

The energy efficient engine project
[NASA-CR-195966] p0023 NO-32395

CO2 BUSTION EFFICIENCY

Advanced catalytic combustors for low pollutant emissions, phase 1
[NASA-CR-195532] p0026 NO-13046

Stability analysis of a liquid fuel annular combustion chamber
[NASA-CR-195726] p0061 NO-13165

Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines
[NASA-TM-19562] p0014 NO-14125

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-CR-195963] p0032 NO-15121

Core noise investigation of the CF6-50 turbofan engine combustion system
[NASA-CR-195958] p0036 NO-16061

Core noise investigation of the CF6-50 turbofan engine
[NASA-CR-195749] p0036 NO-16062

Study of research and development requirements of small gas-turbine combustors
[NASA-CR-195796] p0026 NO-18040

Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
[NASA-TM-81439] p0015 NO-20532

The effect of catalyst length and downstream reactor distance on catalytic gas turbine performance
[NASA-TM-81475] p0142 NO-23779

Durability testing at 5 atmospheres of advanced catalysts and catalytic supports for gas turbine engine combustors
[NASA-CR-195839] p0151 NO-24748

Analytical and experimental evaluation of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines
[NASA-TM-81496] p0093 NO-25454

CO2 BUSTION EFFICIENCY

Results of duct area ratio changes in the NASA Lewis HD-22 combustion H2D experiment
[NASA-TM-79319] p0006 NO-13163

Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels
[NASA-TM-79313] p0056 NO-13162

Fuel quality combustion analysis
[NASA-CR-159721] p0094 NO-15284

The broadened-specification fuels combustion technology program at Pratt and Whitney Aircraft
[NASA-CR-195966] p0043 NO-29321

NASA General Electric broad-specification fuels combustion technology program, phase 1
[NASA-CR-80212] p0042 NO-29316

Fuel research: Combustion effects overview
[NASA-CR-80212] p0021 NO-29327

Fuel property effects in stirred combustors
[NASA-TM-81472] p0036 NO-29316

Performance deterioration of commercial high-bypass ratio turndown engines
[NASA-TM-81552-BEV] p0023 NO-32394

The energy efficient engine project
[NASA-CR-195966] p0023 NO-32395

CO2 BUSTION EFFICIENCY

Advanced catalytic combustors for low pollutant emissions, phase 1
[NASA-CR-195532] p0026 NO-13046

Stability analysis of a liquid fuel annular combustion chamber
[NASA-CR-195726] p0061 NO-13165

Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines
[NASA-TM-19562] p0014 NO-14125

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-CR-195963] p0032 NO-15121

Core noise investigation of the CF6-50 turbofan engine combustion system
[NASA-CR-195958] p0036 NO-16061

Core noise investigation of the CF6-50 turbofan engine
[NASA-CR-195749] p0036 NO-16062

Study of research and development requirements of small gas-turbine combustors
[NASA-CR-195796] p0026 NO-18040

Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
[NASA-TM-81439] p0015 NO-20532

The effect of catalyst length and downstream reactor distance on catalytic gas turbine performance
[NASA-TM-81475] p0142 NO-23779

Durability testing at 5 atmospheres of advanced catalysts and catalytic supports for gas turbine engine combustors
[NASA-CR-195839] p0151 NO-24748

Analytical and experimental evaluation of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines
[NASA-TM-81496] p0093 NO-25454
COMBUSTION STABILITY

- Experimental studies of the formation/deposition of sodium sulfate in/from combustion gases --- hot corrosion of gas turbine engine components
 [NASA-CR-159751] p0033 W0-15131
- Synthesis of improved phenolic resins
 [NASA-CR-159724] p0099 W0-17121
- Fire test method for graphite fiber reinforced plastic
 [NASA-TM-81436] p0068 W0-16107
- Fuel quality combustion analysis
 [NASA-CR-159671] p0094 W0-19204
- Improved PFR operations: 400-hour turbine test results --- co.1. combustion products and hot corrosion in gas turbines
- Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A
 [NASA-CR-135119] p0041 W0-27361
- Soot formation and burnout in flames
 [NASA-CR-135119] p0043 W0-29220
- Effect of fuel molecular structure on soot formation in gas turbine combustion
 [NASA-CR-135119] p0043 W0-29222
- Potential release of fibers from burning carbon composites in aircraft fires
 [NASA-TM-80214] p0069 W0-29431

COMBUSTION STABILITY CATCHCROSS catalog 5 at 1000 hour aging study using No. 2 fuel oil
 p0075 A80-35908
- Analysis of combustion instability in liquid fuel rocket motors
 [NASA-CR-159733] p0061 W0-13164
- Stability analysis of a liquid fuel annular combustion chamber
 [NASA-CR-159734] p0061 W0-13165
- Application of Reynolds number dependent processes by wave distortion --- liquid fuel combustor stability
 [NASA-CR-159732] p0075 W0-13193
- Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels
 [NASA-CR-159732] p0094 W0-31621

COMBUSTION WAVES U PLANE PROPAGATION

- COMBUSTORS U CORON DOUBLE CHAMBERS
- COMMERCIAL AIRCRAFT MT BORING 747 AIRCRAFT
- MT DC 9 AIRCRAFT
- MT DC 16 AIRCRAFT
- MT LIGHT TRANSPORT AIRCRAFT
- MT SUPERSOONIC COMMERCIAL AIR TRANSPORT

- Aircraft energy efficiency [ACEE] status report
 p0012 W0-10206
- The NASA high-speed turboprop program
 [NASA-CR-159671] p0022 W0-31401

COMMERCIAL AVIATION U CIVIL AVIATION U COMMERCIAL AIRCRAFT

- COMMERCIAL ENERGY Coupled generator and combustor performance calculations for potential early commercial HED power plants
 p0156 A80-25999
- NOO-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report
 [DOE/NASA/0002-06/2] p0152 W0-26677

- Combustion Reaction bonded silicon nitride prepared from wet attrition-milled silicon --- fractography
 [NASA-TM-81426] p0086 W0-18161

COMMUNICATION EQUIPMENT NASA communications technology research and development
 [NASA-CR-159687] p0097 A80-25920

COMMUNICATIONS NETWORKS Packet communications in satellites with multiple-beam antennas and signal processing
 [AIAA-80-0583] p0099 A80-29574
- Concepts for 20/30 GHz satcom systems for direct-to-user applications
 [AIAA-80-0583] p0050 A80-35329
- The 30/20 GHz mixed user architecture development study
 [NASA-CR-159686] p0097 W0-10415
- The 30/20 GHz mixed user architecture development study: Executive summary
 [NASA-CR-159687] p0097 W0-10416

COMMUNICATION SATELLITE U TELECOMMUNICATION

- Concepts for 30/20 GHz satellite communication system, volume 1
- Concepts for 30/20 GHz satellite communication system, volume 1A: Appendix
- Concepts for 30/20 GHz satellite communication system study, executive summary
- The 10/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary
 [NASA-CR-159546] p0099 W0-22547
- The 10/30 GHz fixed communications system service demand assessment. Volume 2: Main report
 [NASA-CR-159547] p0099 W0-22548
- The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices
 [NASA-CR-159548] p0099 W0-22549

COMMUNICATIONS TECHNOLOGY SATELLITE U TELECOMMUNICATIONS TECHNOLOGY SATELLITE

NASA satellite communications technology research and development

NASA communications technology research and development

- 30/20 GHz fixed communications systems service demand assessment

- National Aeronautics and Space Administration plans for space communication technology

- NASA's program in communication satellites [AIAA 79-247]
 p0097 A80-26712

- Packet communication in satellites with multiple-beam antennas and signal processing
 [AIAA-80-0537] p0099 A80-25974

- Ka-band, multibeam, contiguous coverage satellite systems for the USA
 [AIAA-80-0557] p0099 A80-25988

- Multibeam satellite on-board signal processing
 [AIAA-80-0537] p0099 A80-25974

- Concepts for 20/30 GHz satcom systems for direct-to-user applications
 [AIAA-80-0537] p0099 A80-25954

- System analysis for millimeter-wave communication satellites
 p0100 A80-52479

- Concepts for 10/30 GHz satellite communication system, volume 1

- Concepts for 10/30 GHz satellite communication system, volume 1A: Appendix
 [NASA-CR-159625-VOL-1A] p0098 W0-11278

- Concepts for 10/30 GHz satellite communication system study, executive summary
 [NASA-CR-159625-VOL-1A] p0098 W0-11279

- The 30/20 GHz fixed communications systems service demand assessment. Volume 1: Executive summary
 [NASA-CR-159619] p0098 W0-16262

- The 30/20 GHz fixed communications systems service demand assessment. Volume 2: Main report
 [NASA-CR-159620] p0098 W0-16263

- The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex
 [NASA-CR-159621] p0098 W0-16264

- A digitally implemented communications experiment utilizing the communications technology satellite, Hermes
 [NASA-TM-81452] p0052 W0-21412

- The 10/30 GHz fixed communications systems service demand assessment. Volume 1: Executive summary
 [NASA-CR-159546] p0099 W0-22547

- The 10/30 GHz fixed communications systems service demand assessment. Volume 2: Main report
 [NASA-CR-159547] p0099 W0-22548

- The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices
 [NASA-CR-159548] p0099 W0-22549

- Study of advanced communication satellite systems based on SS-PDMA
 p0050 W0-25537

- A quantitative analysis of inter-island telephony traffic in the Pacific Basin Region [PB]
 [NASA-TM-81547] p0097 W0-25610

COMMUNICATIONS TECHNOLOGY U TELECOMMUNICATIONS
COMMUNICATIONS TECHNOLOGY SATELITES
Communications technology satellite - United States experimental and disaster communications applications
NASA's program in communication satellites
[IAS-P-79-147] p0096 80-28712
Depreciation of arterial heat pipes: An investigation of CTS thermal excursions
[NASA-CH-106105] p0106 80-32688
COMPONENTS
MT Aircraft components
MT anechoic chambers
MT pressure chambers
MT vacuum chambers
COMPATIBILITY (PROPAGATION)
U Modulus of elasticity
W iron thruster component testing
[IAA PAPER 79-2116] p0059 80-20959
The CJP jet engine performance improvement: How front seated
[NASA-CH-159639] p0029 80-14127
COMPONENT MATERIALS
W aluminum boron composites
W boron reinforced materials
W carbon fiber reinforced plastics
W fiber composites
W glass fiber reinforced plastics
W graphite-epoxy composite materials
W laminates
W metal matrix composites
W polymer matrix composite materials
W resin matrix composites
W engine environmental effects on composite behavior
--- moisture and temperature effects on mechanical properties
[IAA 80-0695] p0024 80-35101
Quantitative ultrasonic evaluation of engineering properties in metals, composites, and ceramics
[NASA-CH-159496] p0034 80-11030
Materials and structures technology
[NASA-CH-135075] p0012 80-12101
Quiet Clean Short-haul Experimental Engine (QCESE)
Under-the-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials
[NASA-CH-135075] p0034 80-15100
Quiet Clean Short-haul Experimental Engine (QCESE)
Under-the-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials
[NASA-CH-135075] p0034 80-15100
Quiet Clean Short-haul Experimental Engine (QCESE)
Under-the-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials
[NASA-CH-135075] p0034 80-15100
Quiet Clean Short-haul Experimental Engine (QCESE)
Under-the-Wing (UTW) composite nacelle subsystem test report --- to verify strength of selected composite materials
[NASA-CH-135075] p0034 80-15100
Synthesis of improved phenolic resins
[NASA-CH-135974] p0011 80-17221
Possibility of kerlar 49/195-15 polyamide for high temperature applications
[NASA-CH-81856] p0029 80-35101
Tungsten wire/Pe-naphthalic matrix turbine blade fabrication study
[NASA-CH-159576] p0044 80-29331
Fabrication and evaluation of low fiber content alumina fiber/aluminum composites
[NASA-CH-159576] p0044 80-29331
Method of making bearing material
[NASA-CASE-LEW-11930-3] p0070 80-34682
COMPONENT STRUCTURES
W laminates
Possibility of SiC composite structures for 1646 deg gas turbine seal applications
[NASA-CH-135051] p0123 80-13474
Quiet Clean Short-haul Experimental Engine (QCESE)
under-the-wing engine composite fan blade design report
[NASA-CH-135051] p0031 80-15100
Quiet Clean Short-haul Experimental Engine (QCESE)
under-the-wing engine composite fan blade design report
[NASA-CH-135051] p0031 80-15100
Composite wall concept for high temperature turbine shroud: Survey of low modulus strain isolator materials
[NASA-CH-159807] p0066 80-20298
Sudden stretching of a four layered composite plate
[NASA-CH-159807] p0073 80-25383
Quiet Clean Short-haul Experimental Engine (QCESE)
under-the-wing engine composite fan blade: Preliminary design test report
[NASA-CH-134806] p0044 80-29298
COMPRESSOR MOTORS
Cost analysis of composite fan blade manufacturing
[NASA-CASE-LEW-11930-3] p0044 80-31398
COMPRESSION
U Composite materials
COMPOSITION (PROPERTIES:)
MT atmospheric moisture
MT chemical composition
MT moisture content
COMPRESSIBILITY
Reaction bonded silicon nitride prepared from wet attrition-ground silicon contents
[NASA-CH-135046] p0089 80-32828
COMPRESSIBLE FLOW
MT transonic flow
A three-dimensional turbulent compressible subsonic duct flow analysis for use with constructed coordinate system
[IAA PAPER 80-07-03] p0025 80-42147
An efficient user-oriented method for calculating compressible flow in an as about three-dimensional inlets --- panel method
[NASA-CH-159576] p0004 80-10134
Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades
[NASA-TR-81430] p0136 80-10497
Wind: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades
COMPRESSIBLE GASES
Deposition in ring seals for compressible fluids
[NASA-TR-81430] p0119 80-29716
COMPRESSOR BLADES
Measuring unsteady pressure on rotating compressor blades --- with semiconductor strain gages under gas turbine engine operating conditions
[NASA-TR-81430] p0110 80-12630
Experimental study of low aspect ratio compressor blade design
[IAA PAPER 80-07-03] p0025 80-42147
Analytical analysis of a supersonic cascade vibrating in a complex mode
[NASA-CASE-LEW-11930-3] p0070 80-34682
Experimental study of low aspect ratio compressor blade design
[NASA-TR-81430] p0002 80-11037
Core compressor exit stage study, 1: Aerodynamic and mechanical design
[NASA-CH-159974] p0037 80-19113
COMPRESSOR BLADE EFFICIENCY
Experimental study of low aspect ratio compressor blade design
[NASA-TR-81430] p0002 80-11037
Steady-state performance of J85-21 compressor at 100 percent of design speed with and without interstage rake blockage
[NASA-CH-81856] p0017 80-21333
Core compressor exit stage study, 2
[NASA-CASE-LEW-11930-3] p0039 80-23312
Off-design correlation for losses due to part-span dampers on transonic rotors
[NASA-TR-1693] p0020 80-26352
Practical experience with unstable compressors
[NASA-CH-159576] p0125 80-29709
COMPRESSOR ROTORS
Efficient laser anemometer for inverter-rotor flow mapping in turbomachinery
[NASA-PAPER 80-07-03] p0111 80-36140
Laser anemometer measurements in a transonic axial flow compressor rotor
[NASA-PAPER 80-07-03] p0111 80-36140
Comparison between optical measurements and a numerical solution of the flow field within a transonic axial-flow compressor rotor
[IAA PAPER 80-07-03] p0003 80-36807
Laser anemometer measurements in a transonic axial flow compressor rotor
[NASA-TR-81430] p0002 80-14050
CONVAIR MILITARY AIRCRAFT

COOLANTS

Coolant tube curvature effects on film cooling as detected by infrared imagery

Influence of coolant tube curvature on film cooling effectiveness as detected by infrared imagery

[NASA-TP-1546]

COOLING

MT AIR COOLING

MT FILM COOLING

MT LIQUID COOLING

MT SURFACE COOLING

MT SWEAT COOLING

COOLING SYSTEMS

Heat pipe cooled power magnetics

[ASA-CE-159659]

Heat pipe cooled power processing magnetics

[ASA-PAPER 79-GT-7]

Heat pipe cooled of high-pressure, hydrocarbon-fueled rocket engines

[ASA-PAPER 80-1266]

Heat pipe cooling of power processing magnetics

Heat pipe cooled of high-pressure, hydrocarbon-fueled engines

[ASA-CE-159750]

Heat pipe cooled of high-pressure, hydrocarbon-fueled engines

[NASA-TP-81559]

Some advantages of methane in an aircraft gas turbine

[NASA-TR-81559]

COPPER

Strengthening of tough-iron-12% nickel-reactive metal alloys at 77 K by copper additions

[ASA-PAPER 80-GT-6]

COPPER COEFFICIENTS

MT MAGNETIC CORES

MT ELECTRON GUNS

COPPER RADIATION

MT ELECTRON GUNS

COPPER RADIATION

CROSS-COREL functions

CROSS-CORRELATION

MT ELECTROCHEMICAL CORROSION

MT FUEL CORROSION

MT HOT CORROSION

MT SCALE (CORROSION)

Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TP/879

[ASA-TP-81399]

CORROSION PREVENTION

Foiling and the inhibition of salt corrosion --- hot corrosion of superalloys

[ASA-TP-81469]

CORROSION RESISTANCE

[NASA-TR-81199]

CORROSION RESISTANCE

[NASA-TR-81559]

CORROSION RESISTANCE

[NASA-TR-81199]
CRACK INITIATION
Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage
[NASA-TR-85157] p0132 880-23604

CRACK PROPAGATION
Simple spline-function equations for fracture mechanics calculations
p0133 880-10832
Characterization and properties of controlled nucleation thermomechanical deposited C/P/M/silicon carbide
p0085 880-13063
Fracture toughness determination of Al2O3 using four-point-bend specimens with straight-through and chevron notches
p0090 880-42085
Performance of Chevron-notch short bar specimens in determining the fracture toughness of silicon nitride and aluminum oxide
p0090 880-50696
Comparison tests and experimental compliance calibration of the proposed standard round compact plane strain fracture toughness specimen
[NASA-TM-5179] p0132 880-13513
Sudden bending of cracked laminates
[NASA-CH-155860] p0073 880-25300
Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2
[NASA-CH-165123] p0064 880-30482

CRACKING (FRACTURING)
MY STRESS CORROSION CRACKING
CRACKS
Modelling of crack tip deformation with finite element method and its applications
p0150 880-13503

CREEP ANALYSIS
Long-time creep behavior of the tantalum alloy Antal 839C --- as a function of stress, temperature, and grain size
[NASA-CP-1691] p0080 880-32489

CREEP PROPERTIES
Long-time creep behavior of the niobium alloy C-103
[NASA-CP-1727] p0080 880-33555

CREEP RESISTANCE
CREEP STRENGTH
A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data
p0133 880-38142
Anisotropy of nickel-base superalloy single crystals
p0033 880-51573
Improving the stress rupture and creep of silicon nitride -- turbine materials
[NASA-CH-159585] p0072 880-10318
Creep-rupture behavior of seven iron-base alloys after long term aging at 760 deg in low pressure hydrogen

CREEP STRENGTH
Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo
p0081 880-13277

CREEP TESTS
Strain-range partitioning life predictions of the long time metal properties council creep-fatigue tests
p0133 880-27958

CRESTATIONS
U TRAVELING WAVE TUBES

CURRENT DENSITY
CRUDE OIL
Low NO/X heavy fuel combustor program
[ASME PAPER 80-GT-69] p0026 880-42199
Alternative jet aircraft fuels
p0012 880-10209

CRYOGENIC EQUIPMENT
Capillary acquisition devices for high-performance vehicles: Executive summary --- evaluation of cryogenic propellant management techniques using the centaur launch vehicle
[NASA-CH-159568] p0062 880-15185

CRYOGENIC FLUID STORAGE
A liquid hydrogen experiment as a Shuttle payload
[ASME PAPER 80-0-1166] p0054 880-36909
LeRC reduced gravity fluid management technology program

CRYOGENIC FLUIDS
MY LIQUID HYDROGEN
MY LIQUID OXYGEN
Comparative thermal analysis of alternate cryogenic fluid management experiment (CFME) configurations
[NASA-CH-165151] p0048 880-32412
Experiments on H2-02 MHD power generation
p0176 880-44239
Experiments on H2-02 MHD power generation

CRYOGENIC ROCKET PROPULSANTS
LeRC reduced gravity fluid management technology program
p0048 880-35904
Capillary acquisition devices for high-performance vehicles: Executive summary --- evaluation of cryogenic propellant management techniques using the centaur launch vehicle
[NASA-CH-159568] p0062 880-15185
LeRC reduced gravity fluid management technology program
Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results
[NASA-CH-165150] p0048 880-31423

CRYOTRAPPING
Atomic hydrogen storage --- cryotrapping and magnetic field strength
[NASA-PAPER-12942] p0093 880-20402

CRYSTAL STRUCTURE
State-of-the-art silicon materials
p0022 880-29358

CRYSTALS
MT DIRECTIONAL SOLIDIFICATION (CRYSTALS)
MT METAL CRYSTALS
MT SINGLE CRYSTALS

CUMULATIVE DAMAGE
Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage
[NASA-TM-81517] p0132 880-23684

CURIE
Low temperature cross linking polyimides
[NASA-CASE-LEW-12542-3] p0079 880-32984

CURRENT CONVERTERS (AC TO DC)
Bi-directional four quadrant (BDQ) power converter development
[NASA-CH-159660] p0147 880-14080

CURRENT DENSITY
Photoelectron charge density and transport near differentially charged spacecraft
p0053 880-15773
Open-circuit voltage improvements in low resistance solar cells
[NASA-TM-81368] p0138 880-15555
Thin a-i-p radiation-resistant solar cell feasibility study
DTK WIELECK ZINC BATTERIES
DTK SOLAR CELLS
DTK THERMODYNAMIC CONVERSIONS
DTK THERMOELECTRIC GENERATORS
DTK DIRECT POLARIZED ANTENNAS
DTK SLOT POLARIZED ANTENNAS
DIRECTIONAL SOLIDIFICATION (CRYSTALS)
Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient
[NASA-CH-159797] p0096 N80-151300
Development of exothermically cast single-crystal Mar-M 247 and derivative alloys
[AEROSPACE-21-3469] p0084 A80-45625
Directional solidification at ultra-high thermal gradients
[NASA-CH-159596] p0056 N80-151300
Thermal fatigue and oxidation data for directionally solidified Mar-M 246 turbine blades
[NASA-CH-159790] p0037 N80-21330
Performance of two-layer thermal barrier systems on directionally solidified Ni-Al-Mo and comparative effects of alloy thermal expansion on system life
[NASA-CH-81604] p0080 N80-32468
DISCOVERIES
Communications technology satellite - United States experiments and disaster communications applications
p051 A80-10032
DISEASES
WT CARCIN
WT CLAUCOMA
DISPERING
Aerial applications dispersal system control requirements study --- agriculture
[NASA-CH-159970] p0158 N80-18586
DISPERSSION PREDICTION SIMULATION
U PREDICTION SIMULATION
DISPLACEMENT MEASUREMENT
Digital system for dynamic turbine engine blade displacement measurements
p0111 A80-36151
DISPLAY DEVICES
WT ABRACORES
DISINTIATION
WT ENERGY DISTRIBUTION
DISOCIATION
WT GAS DISEX Asociation
DISTANCE MEASURING EQUIPMENT
WT RADIO ALTIMETERS
DISTORTION
WT FLOW DIRECTION
FLOW DISTRIBUTION (PROPELLANT)
WT FLOW DISTRIBUTION
WT ZON DISTRIBUTION
WT PRESSURE DISTRIBUTION
WT STRESS CONCENTRATION
WT TEMPERATURE DISTRIBUTION
WT VELOCITY DISTRIBUTION
DISPLACEMENT THEORY
U PERTURBATION THEORY
DOCUMENTS
WT BIBLIOGRAPHIES
WT USER MANUALS (COMPUTER PROGRAMS)
DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS
An advanced mixed user domestic satellite system architecture
[AIAA-80-0049] p0099 A80-29544
On-board processing concepts for future satellite communications systems
[NASA-CH-156683] p0099 N80-24510
DOPIING (ADITIVES)
U ADITIVES
DOUGLAS AIRCRAFT
WT DC 9 AIRCRAFT
WT DC 10 AIRCRAFT
DOUGLAS DC-9 AIRCRAFT
U DC 9 AIRCRAFT
DOUGLAS MILITARY AIRCRAFT
U MILITARY AIRCRAFT
DRAG
WT AERODYNAMIC DRAG
DRAG COEFFICIENT
U AERODYNAMIC DRAG
DRAG DEVICES
WT SKIPLERES
DRAG REDUCTION
Development of a Kevlar/FDR-15 reduced drag DC-9 nacelle fairing
[AIAA PAPER 80-1194] p0010 A80-41193
DRONE HELICOPTERS
U HELICOPTERS
DROP SIZE
Spray nozzle designs for agricultural aviation applications -- relation of drop size to spray characteristics and nozzle efficiency
[NASA-CH-159702] p0106 N80-10460
DROPS (LIQUIDS)
WT RAINSHOPS
Dispersion of sound in a combustion duct by fuel droplets and soot particles
p0170 A80-20953
Investigation of critical burning of fuel droplets
p0075 N80-12142
DROPS (LIQUIDS)
WT WICKER ZINC BATTERIES
DUAL MODE PROPULSION
U HYBRID PROPULSION
DUCT GROUENT
Higher order mode propagation in nonuniform circular ducts
[AIAA PAPER 80-1018] p0171 A80-35974
A comparison of experiment and theory for sound propagation in variable area ducts
p0173 A80-45948
Reciprocity principle in duct acoustics --- finite difference and finite element analysis
NODUCTED FAN ENGINES
Experimental evaluation of a low emissions high performance duct burner for Variable Cycle Engines (VCE)
Ducted FANS
Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan --- quiet engine program
[NASA-CH-134891] p0030 A80-15102
DUCTED FLOW
Some aspects of a free jet phenomena to 105 L/D in a constant area duct
p0106 A80-10030
Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment
[AIAA PAPER 80-0023] p0176 A80-18203
Time-dependent difference theory for noise propagation in a two-dimensional duct
[AIAA PAPER 80-0098] p0170 A80-18269
A time dependent difference theory for sound propagation in ducts with flow
p0170 A80-20953
Dispersion of sound in a combustion duct by fuel droplets and soot particles
p0170 A80-20953
A three-dimensional turbulent compressible subsonic duct flow analysis for use with constructed coordinate systems
[AIAA PAPER 80-1398] p0036 N80-14102
DUCILITY
An investigation into the role of adhesion in the erosion of ductile metals
[ASLE PREPRINT 80-AM-38-3] p0122 A80-43159
An investigation into the role of adhesion in the erosion of ductile metals
DUCTS
WT ACOUSTIC DUCTS
WT ANOMALOUS DUCTS
Time dependent difference theory for sound propagation in axisymmetric ducts with plug flow
Higher order mode propagation in nonuniform circular ducts
[NASA-TM-14841] p0169 N80-23101
DURABILITY
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
Durability tests of solenoid valves for digital actuators
Comparison of elastic and elastic-plastic
The performance and efficiency of four
motor/controller/battery systems for the simpler
electric vehicles

A-28
ELECTRIC POWER SUPPLIES

ELECTRIC VEHICLES

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Design study of toroidal traction CTV for electric vehicles

Advanced propulsion system for hybrid vehicles

A laboratory facility for electric vehicle propulsion system testing

Performance of 22.4-kW nonlaminated-frame do traction system

Design study of steel V-Delt CTV for electric vehicles

ELECTRIC IMPULSES

U ELECTRIC PULSES

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Advanced electric propulsion system concept for electric vehicles

An automatically-shifted two-speed transaxle system for electric vehicles

An averaging battery model for a lead-acid battery operating in an electric car

Advanced electric propulsion system concept for electric vehicles

An automatically-shifted two-speed transaxle system for electric vehicles

ELECTRIC MOTORS

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Study of advanced electric propulsion system concept using a flywheel for electric vehicles

Preliminary results of steady state characterization of near-ter electric vehicle propulsion system

ELECTRIC RENTERS

Simulation studies of multiple large wind turbine generators on a utility network

SUBJECT INDEX

Cogeneration Technology Alternatives Study (CTAS).

Volume 3: Energy conversion system characteristics

ELECTRIC HYBRID VEHICLES

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Design study of toroidal traction CTV for electric vehicles

Advanced propulsion system for hybrid vehicles

A laboratory facility for electric vehicle propulsion system testing

Performance of 22.4-kW nonlaminated-frame do traction system

Design study of steel V-Delt CTV for electric vehicles

ELECTRIC IMPULSES

U ELECTRIC PULSES

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Advanced electric propulsion system concept for electric vehicles

An automatically-shifted two-speed transaxle system for electric vehicles

An averaging battery model for a lead-acid battery operating in an electric car

Advanced electric propulsion system concept for electric vehicles

An automatically-shifted two-speed transaxle system for electric vehicles

ELECTRIC MOTORS

Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller --- a dc to dc voltage converter

Study of advanced electric propulsion system concept using a flywheel for electric vehicles

Preliminary results of steady state characterization of near ter electric vehicle propulsion system

ELECTRIC RENTERS

Simulation studies of multiple large wind turbine generators on a utility network
Description of photovoltaic village power systems in the United States and Africa

Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells

Study of power management technology for orbital multi-100kWe applications. Volume 3: Requirements
[NASA-CR-159038] p0154 W00-29845

Characteristics of primary electric propulsion systems
[AIAA PAPER 79-2041] p0058 A60-10376
Preliminary results of the mission profile life text of a 30 cm Ng bombardment thruster
[AIAA PAPER 79-2076] p0057 A60-10391
An electric propulsion long term test facility
[AIAA PAPER 79-2050] p0049 A60-13308
Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions
[AIAA PAPER 79-2043] p0048 A60-20961
Upper stages utilizing electric propulsion
[AIAA PAPER 80-0912] p0054 A60-32886
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
[AIAA PAPER 79-2041] p0058 A60-10376
Primary electric propulsion technology study --- for thruster wear-out mechanisms
[NASA-TH-19269] p0182 W00-11950
Upper stages utilizing electric propulsion
[NASA-TH-91442] p0056 W00-16097
Upper stages utilizing electric propulsion
[NASA-TH-91442] p0057 W00-30396
Electric propulsion technology
[NASA-TH-19269] p0057 W00-31452
Auxiliary control of LSS
[NASA-CASE-LEM-13148-1] p0176 A60-11366

Electric Rocket Engines

Characteristics of primary electric propulsion systems
[AIAA PAPER 79-2041] p0058 A60-10376
SEBT II 1979 extended flight thruster system performance
[AIAA PAPER 79-2053] p0059 A60-10386
Orbital transfer of large space structures with nuclear electric rockets
[AIAA PAPER 80-0913] p0054 A60-41697
Electric propulsion for near-Earth space missions
[NASA-CR-159356] p0062 W00-16096

Electrical Conduction

U ELECTRICAL RESISTIVITY

Electrical Engineering

Solid-fuel turbine fan stability study
[NASA-CR-165156] p0156 W00-33662

Electrical Properties

Initial comparison of SSPM ground test results and flight data to NASCAP simulations --- Satellite
Surface Potential Monitor NASA Charging Analyzer Program
[AIAA PAPER 80-0336] p0054 A60-29751
Error analysis in the measurement of average power with application to switching controllers
[NASA-CR-159792] p0184 W00-21202

Characterization of solar cells for space applications. Volume 10: Electrical characterizations of Spectrolab BIS, textured, 10 ohm-cm, 300 micron cells as a function of intensity, temperature and irradiation
[NASA-CR-162422] p0147 W00-11566
Modification of the electrical and optical properties of polymers --- ion irradiation to create texture
[NASA-CASE-LEM-13027-1] p0087 W00-24497

Electrical Resistance

Contact Resistance

Potential release of fibers from burning carbon composite --- aircraft filters
[NASA-CR-60214] p0069 W00-29431
Thin r/2-p radiation-resistant solar cell feasibility study
[NASA-CR-159071] p0154 W00-29845

Electro-optics

Study of a rare-gas transverse fast discharge
[p0176 A60-11366

Electro-catalysts

Catalyst surfaces for the chromous/chromic redox couple
[NASA-CASE-LEM-13148-1] p0101 W00-20487
Cell module and fuel conditioner
[NASA-CR-159088] p0155 W00-31882

Electrochemical Cells

Alkaline batteries

Nuclear electric rockets

Solar electric propulsion

Electrochemistry

Catalyst surfaces for the chromous/chromic redox couple
[NASA-CASE-LEM-13148-1] p0101 W00-20487
Redox storage systems for solar applications
[NASA-TH-16164] p0142 W00-23777

Electrochemical corrosion

Anodic polarization behavior of austenitic stainless steel alloys with lower chromium content
[p0176 A60-22250

Electrochemistry

Catalyst surfaces for the chromous/chromic redox couple
[NASA-CASE-LEM-13148-2] p0160 W00-18557

Electrodeposition

Decay of the salicyc concentration gradient at an alkaline zinc cathode after charging
[p0074 A60-13070
Improved refractory coatings and method of producing the same
[NASA-CASE-LEM-13169-1] p0076 W00-14232

Electrodes

Cathodes

Cathodes

Cell Cathodes

Cell Cathodes

Cathodes

Cathodes

Cathodes

Advanced screening of electrode couples
[NASA-CR-159738] p0144 W00-22777
Optical thermionic energy conversion with established electrodes for high-temperature topping and process heating --- coal combustion product environments
[NASA-TH-16155] p0175 W00-33221
Status of nickel-hydrogen cell technology
[p0064 W00-33474
Toroidal cell and battery --- energy storage for orbital space applications or power cells for electric vehicles
[NASA-CASE-LEM-12910-1] p0146 W00-33857

Electrogenerators

Electro Hydraulic Control

Electro optical cells

Catalyst surfaces for the chromous/chromic redox couple
[NASA-CASE-LEM-13148-1] p0101 W00-20487
Toroidal cell and battery --- energy storage for orbital space applications or power cells for electric vehicles

A-30
Study of advanced radial outflow turbine for solar
shades rankine engine. [NASA-CS-159695]

DOE/NASA wind turbine data acquisition. Part 1:
Equipment. [NASA-CS-159779]

Multistage depressed collector with efficiency of
90 to 94 percent for operation of a dual-mode
traveling-wave tube in the linear region
[NASA-TP-1670]

Potentialities of TEC topping: A simplified view
of parametric effects
[NASA-TR-81468]

Photoelectric technology development for
synchronous orbit
p0056 N80-33470

ENERGY CONVERSION EFFICIENCY

90- to 93-percent efficient collector for
operation of a dual-mode traveling-wave tube in
the linear region p0102 N80-13909

Results of duct area ratio changes in the NASA
Lewis H-2-02 combustion MHD experiment
[AIAA PAPER 80-0023]

Results from tests on a high work transonic
turbine for an energy efficient engine
[NASA-CR-159760]

The planar multijunction cell - A new solar cell
for earth and space p0186 N80-8205

NASA-Lewis closed-cycle magnetohydrodynamics plant
analysis [NASA-TM-59285]

Self-reconfiguring solar cell system
[NASA-CRD-85-12568-1]

Solar cell array: High efficiency and radiation
damage [NASA-TM-81367]

Study of advanced radial outflow turbine for solar
shades rankine engine. [NASA-CS-159695]

DOE/NASA wind turbine data acquisition. Part 1:
Equipment. [NASA-CS-159779]

Multistage depressed collector with efficiency of
90 to 94 percent for operation of a dual-mode
traveling-wave tube in the linear region
[NASA-TP-1670]

Potentialities of TEC topping: A simplified view
of parametric effects
[NASA-TR-81468]

Photoelectric technology development for
synchronous orbit
p0056 N80-33470

ENERGY CONVERSION EFFICIENCY

90- to 93-percent efficient collector for
operation of a dual-mode traveling-wave tube in
the linear region p0102 N80-13909

Results of duct area ratio changes in the NASA
Lewis H-2-02 combustion MHD experiment
[AIAA PAPER 80-0023]

Results from tests on a high work transonic
turbine for an energy efficient engine
[NASA-CR-159760]

The planar multijunction cell - A new solar cell
for earth and space p0186 N80-8205

NASA-Lewis closed-cycle magnetohydrodynamics plant
analysis [NASA-TM-59285]

Self-reconfiguring solar cell system
[NASA-CRD-85-12568-1]

Solar cell array: High efficiency and radiation
damage [NASA-TM-81367]

A-32
ENERGY STORAGE ONVICES

ENERGY TECHNOLOGY

MT ELECTRIC ENERGY STORAGE

- Small passenger car transmission test: Ford C4
- Small passenger car transmission test: Chevrolet
- Small passenger car transmission test: Chevrolet LTV
- Large wind turbines: A utility option for the transmission system

OUTLOOK

- Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating --- coal combustion product environments
- Cogeneration Technology Alternatives Study (CTAS).
- Cogeneration Technology Alternatives Study (CTAS) Volume 2: Analytical approach
- Cogeneration Technology Alternatives Study (CTAS) Volume 6: Computer data. Part 1: Coal-fired cogeneration process boiler, section A.
- Cogeneration Technology Alternatives Study (CTAS) Volume 6: Computer data. Part 2: Non-diluted-fired cogeneration process boiler

ENERGY STORAGE TECHNOLOGY

- Energy transfer
- Energy storage
- Energy transfer
- Energy storage
- Energy transfer
- Energy storage

ENERGY TECHNOLOGY

- The use of wind data with an operational wind turbine in a research and development environment
- Development of photovoltaic village power systems in the United States and Africa
- Power management for multi-100 KWe space system
- Technology development for phosphoric acid fuel cell powerplants, phase 2
- Status of the DOE/NASA critical gas turbine research and technology project
- Candidate thermal energy storage technologies for solar industrial process heat applications
- Large wind turbine design characteristics and B and D requirements
- Structural analysis considerations for wind turbine blades
- Blade design and operating experience on the N008-08 200 kW wind turbine at Clayton, New Mexico
- Design, fabrication, and test of a steel spar wind turbine blade
- Preliminary analysis of performance and loads data from the 2-megawatt mod-1 wind turbine generator
- Experiments on a-02MD power generation

ENERGY STORAGE TECHNOLOGY

- Parametric study of potential early commercial and power plants
- Appendix: NOU-1 wind turbine generator analysis and design report, volume 2
- Advanced technology light weight fuel cell program --- orbiting space vehicle long-life hydrogen oxygen fuel cell
- Cogeneration Technology Alternatives Study (CTAS).
- Cogeneration Technology Alternatives Study (CTAS) Volume 2: Summary
- Thermal Energy Storage: Fourth Annual Review Meeting
- Program definition and assessment overview --- for thermal energy storage project management
- The effect of catalyst length and downstream reactor distance on catalytic combustor performance
- An electric vehicle propulsion systems impact on battery performance: An overview
- Cogeneration Technology Alternatives Study (CTAS).
- Thermal energy storage
- High temperature thermal energy storage in steel and sand
- Report: NHD electric power plants

SUNJNCT

INDEX

ENGINES DESIGN

- Control technology
- Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report
- Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
- Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report
- Data analysis of F sub T/F sub S nozzle probe testing on F100 engine 060072 at NASA Lewis Research Center

ENGINES DESIGN

- Interface engine design

- Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs
- Preparing aircraft propulsion for a new era in energy and the environment
- Computer simulation of engine systems --- for aircraft design
- Advanced component technologies for energy-efficient turboshaft engines
- Multifuel rotary aircraft engine
Zero-length, slotted-lip inlet for subsonic military aircraft
([AIAA PAPER 80-1245]) p0004 800-41203
Fuel conservation through active control of rotor clearance
([AIAA PAPER 80-1087]) p0045 800-41506
NASA Broad-Specification Fuels Combustion Technology Program - Status and demonstration
(Lewis PAPER 80-05-65) p0094 800-42195
CF6 fan performance improvement strategy
([AIAA PAPER 80-CS02]) p0026 800-42206
Aircraft propulsion 1979 --- conferences
([NASA-CP-2052]) p0012 800-10205
VSC technology definition study
([NASA-CR-159730]) p0027 800-10222
Design, durability and low cost processing technology for composite fan exit guide vanes
([NASA-CR-159677]) p0027 800-12091
Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) Under-The-Wing (UTW) engine acoustic design study
([NASA-CR-135267]) p0026 800-14117
Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) engine acoustic design study
([NASA-CR-135268]) p0026 800-14118
Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nozzle test report, Volume 1: Summary, aerodynamic and mechanical performance
([NASA-CR-159471]) p0035 800-15094
Quiet Clean Short-Haul Experimental Engine (QCSEE) Preliminary over-the-wing flight propulsion system analysis report
([NASA-CR-135296]) p0035 800-15095
Quiet Clean Short-Haul Experimental Engine (QCSEE) Composite fan frame subsystem test report
([NASA-CR-135010]) p0035 800-15096
Quiet Clean Short-Haul Experimental Engine (QCSEE) Main reduction gear test program
([NASA-CR-134669]) p0030 800-15030
Quiet Clean Short-Haul Experimental Engine (QCSEE) Combustor test report
([NASA-CR-134391]) p0030 800-15049
Quiet Clean Short-Haul Experimental Engine (QCSEE) Main reduction gears detailed design report
([NASA-CR-134872]) p0030 800-15106
Quiet Clean Short-Haul Experimental Engine (QCSEE) High Standard clean combustor, derivative variable pitch fan actuation system design detail design report
([NASA-CR-1348852]) p0030 800-15107
Quiet Clean Short-Haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan
([NASA-CR-135009]) p0031 800-15099
Quiet Clean Short-Haul Experimental Engine (QCSEE) Fan package design
([NASA-CR-134882]) p0031 800-15111
Quiet Clean Short-Haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE OTW fan
([NASA-CR-134841]) p0031 800-15112
Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-the-wing engine composite fan blade design
([NASA-CR-134890]) p0037 800-15113
Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-the-wing engine and control simulation results
([NASA-CR-135049]) p0031 800-15119
Quiet Clean Short-Haul Experimental Engine (QCSEE) Bell spline pitch-change mechanism whirligig test report
([NASA-CR-135354a]) p0032 800-15115
Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) roller plate nozzle and core exhaust nozzle design report
([NASA-CR-135757]) p0023 800-31402

SUBJECT INDEX
ENGINEERING DEVELOPMENT

NASA Broad-Specification Fuels Combustion Technology Program — Status and description
[ASME PAPER 80-04-96] p0001 A8O-42195

Results from tests on a high work transonic turbine for liquid oxygen efficient engines
[ASME PAPER 80-01-146] p0026 A8O-42258

CF6 fan performance improvement
[ASME PAPER 80-01-146] p0026 A8O-42284

Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes
p0112 A8O-42291

JT9D 7A /SP/ jet engine performance deterioration trends
p0026 A8O-42420

[NASA-CE-159691] p0028 NBO-17074

By NASA-TM-79257
p0056 A8O-13043

Modification of axial compressor streamline for analysis of engine test data
[NASA-TM-79312] p0002 A8O-14051

Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-the-Ring propulsion system test report. Volume 2: Aerodynamics and performance

Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-the-Ring (OTR) propulsion system test report. Volume 1: Summary report

Expanded study of feasibility of using in-flight 747/757 loads, performance, clearances, and thermal data

Experimental evaluation of a low emissions high performance duct burner for Variable Cycle Engines
[NASA-CH-159694] p0036 A8O-17074

Analytical investigation of two hydrogen oxygen rocket engine systems for low-temperature application
[NASA-TP-81420] p0056 A8O-17138

Performance sensitivity analysis of Department of Energy-Chrysler upgraded automotive gas turbine engine, S/M 5-4
[NASA-TM-79242] p0115 A8O-17467

Overview of a stalling engine test project
[NASA-TM-81442] p0140 A8O-18564

JT9D (SP) jet engine performance deterioration trends

CF6-80 engine short-term performance deterioration
[NASA-CH-159030] p0039 A8O-23316

Engine component improvement: Performance improvement/CFD - TP 3.8 kW fan
[NASA-CH-159064] p0039 A8O-25332

Static and transient performance of YF-102 engine with up to 14 percent core airflow for the quiet short-haul research aircraft
[NASA-TP-1692] p0020 A8O-25339

CF6 jet engine performance improvement program: High pressure turbine aerodynamic performance improvement
[NASA-CH-159832] p0040 A8O-26302

Inlet gas ion thruster development
[NASA-CH-159805] p0062 A8O-27424

Air Force fuel well/burner/turbine effort
[NASA-CH-159832] p0042 A8O-28314

Investigation of performance deterioration of the CF6/7590, high-bypass ratio turbofan engines
[NASA-TP-81552] p0022 A8O-29332

Description of the high bypass ratio turbine facility recently installed at NASA Lewis Research Center
[NASA-TP-81652] p0022 A8O-29333

Performance deterioration of commercial high-bypass ratio turbofan engines
[NASA-TP-81552-820] p0023 A8O-32394

ENGINEERING DEVELOPMENT
U PRODUCT DEVELOPMENT

SUBJECT INDEX

MT HYDROGEN OXYGEN ENGINES
MT INTERNAL COMBUSTION ENGINES
MT JET ENGINES
MT MERCURY ION ENGINES
MT NUCLEAR ENGINE FOR ROCKET VEHICLES
MT TURBINE ENGINES
MT SUPERSONIC COMBUSTION JET ENGINES
MT VARIABLE CYCLE ENGINES
MT WATER COOLED TURBINE ENGINES
MT WATER COOLED TURBOFAN ENGINES
MT WET VALVE ENGINES
MT HYDROGEN OXYGEN ENGINES
MT INTERNAL COMBUSTION ENGINES
MT JET ENGINES
MT MERCURY ION ENGINES
MT NUCLEAR ENGINE FOR ROCKET VEHICLES
MT TURBINE ENGINES
MT SUPERSONIC COMBUSTION JET ENGINES
MT VARIABLE CYCLE ENGINES
MT WATER COOLED TURBINE ENGINES
MT WATER COOLED TURBOFAN ENGINES
MT WET VALVE ENGINES

ENGINEERING DEVELOPMENT
U PRODUCT DEVELOPMENT

MT AIR BREATHEING ENGINES
MT AIR BREATHEING ENGINES
MT DIESEL ENGINES
MT DIESEL ENGINES
MT DUCTED FAN ENGINES
MT DUCTED FAN ENGINES
MT ELECTRIC TURBINE ENGINES
MT ELECTRIC TURBINE ENGINES
MT GAS TURBINE ENGINES
MT GAS TURBINE ENGINES
MT HYBRID PROPELLANT ROCKET ENGINES
MT HYBRID PROPELLANT ROCKET ENGINES

A-36
A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data

Origin of coverage annealing in radiation-damaged silicon solar cells

Ka-band, multibeam, contiguous coverage satellite antenna for the USA

Intra-ocular pressure normalization technique and equipment

Screen printing technology applied to silicon solar cell fabrication

Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

Cost analysis of composite fan blade manufacturing processes

Design, fabrication and testing of an optical temperature sensor

Fatigue laboratory: Strain gauge partitioning life predictions of the long time Metal Properties Council creep-fatigue tests

Failure Modes
Fracture modes of high modulus graphite/epoxy angleplied laminates subjected to off-axis tensile loads

Predicting the time-temperature dependent axial failure of Si/Al composites

Fracture modes of high modulus graphite/epoxy angleplied laminates subjected to off-axis tensile loads

Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

Far-field radiation of aft turbofan noise

Road usage of SiC/SiC composite fan blades for JT9D-7 3.8 AR fan

Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes

Constrained fatigue life optimization of a NASVYTIS multiloop cycle drive

Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears

Constrained fatigue life optimization of a NASVYTIS multiloop cycle drive

Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes

Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph
Summarized advanced methods for predicting high speed propeller performance
(AIAA PAPER 80-0225) p003 A80-20966
An implicit finite-difference code for inviscid and viscous cascade flow
(AIAA PAPER 80-1427) p007 A80-44128
Time-dependent difference theory for sound propagation in a two-dimensional duct -- of a turbofan engine
[NASA-TM-79280] p0167 W80-12622
A time dependent difference theory for sound propagation in ducts with flow --
characteristic of inlet and exhaust ducts of turbines
[NASA-TM-79302] p0167 W80-12623
Time dependent difference theory for sound propagation in axisymmetric ducts with plug flow
An alternative approach to the numerical simulation of steady inviscid flow
[NASA-TM-81542] p003 W80-27286
Influence of pressure driven secondary flows on the behavior of turbofan forced mixed
Numerical techniques in linear duct acoustics --
finite difference and finite element analyses
[NASA-TM-81653] p0170 W80-30154

Finite Element Method
Analytical and experimental spur gear tooth temperature as affected by operating variables
[AIAA PAPER 80-46412] p0122 A80-46691
A three-dimensional spacecraft-charging computer code
Modeling of crack tip deformation with finite element method and its applications
[NASA-CR-159318] p055 A80-13503
Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments
[NASA-CR-159645] p038 W80-22323
Nonlinear, three-dimensional finite-element analysis of air-cooled gas turbine blades
[NASA-T-1669] p0132 W80-22734
Three dimensional finite-element elastic analysis of a typically cycled double-edge wedge geometry specimen -- nickel alloy turbine parts
[NASA-TM-80980] p0079 W80-26433
Finite-strain large-deflection elastic-viscoelastic finite-element transient response analysis of structures
Numerical techniques in linear duct acoustics --
finite difference and finite element analyses
[NASA-TM-81553] p0170 W80-30154

Fire Damage
Fiber release characteristics of graphite hybrid composites
[ASM-CE-159717] p0073 A80-32063
FIRE PREVENTION
Hybrid composites that retain graphite fibers on burning
[NASA-TM-81436] p0073 A80-32064
FIRE
Fire test method for graphite fiber reinforced plastics
Potential release of fibers from burning carbon composites -- aircraft fires
[NASA-TM-80926] p0069 W80-29431
Statistical aspects of carbon fiber risk assessment modeling -- fire accidents involving aircraft
[NASA-CR-15918] p0073 W80-29432

Fire Igniting
[FLIGHT INSTRUMENTS] p0027 A80-10253
Comparison of several inflow control devices for flight simulation of fan tone noise using a D715D-1 engine
[AIAA PAPER 80-1025] p025 A80-38640
Characteristics of internal- and jet-noise radiation from a multi-lobe, multi-tube suppressor nozzle tested statically and under flight simulation
[AIAA PAPER 80-1027] p0173 A80-36642
An improved prediction method for the noise generated in flight by circular jets
[NASA-TM-81470] p0168 W80-22048

Flight Tests
Prediction of un-suppressed jet exhaust noise in flight from static data
[ASM-CE-159717] p0027 A80-44491
Flight test of navigation and guidance sensor errors measured on STOL appraches

Flow Characteristics
Flow Distribution
Flow Velocity
Flow Thermodynamic Stability
Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-4V-0.8Mo
[NASA-TM-81470] p0061 A80-13277
Evolution of a rotating flow in the vicinity of a surface

Summarized advanced methods for predicting high speed propeller performance
(AIAA PAPER 80-0225) p003 A80-20966
An implicit finite-difference code for inviscid and viscous cascade flow
(AIAA PAPER 80-1427) p007 A80-44128
Time-dependent difference theory for sound propagation in a two-dimensional duct -- of a turbofan engine
[NASA-TM-79280] p0167 W80-12622
A time dependent difference theory for sound propagation in ducts with flow --
characteristic of inlet and exhaust ducts of turbines
[NASA-TM-79302] p0167 W80-12623
Time dependent difference theory for sound propagation in axisymmetric ducts with plug flow
An alternative approach to the numerical simulation of steady inviscid flow
[NASA-TM-81542] p003 W80-27286
Influence of pressure driven secondary flows on the behavior of turbofan forced mixed
Numerical techniques in linear duct acoustics --
finite difference and finite element analyses
[NASA-TM-81653] p0170 W80-30154

Finite Element Method
Analytical and experimental spur gear tooth temperature as affected by operating variables
[AIAA PAPER 80-46412] p0122 A80-46691
A three-dimensional spacecraft-charging computer code
Modeling of crack tip deformation with finite element method and its applications
[NASA-CR-159318] p055 A80-13503
Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments
[NASA-CR-159645] p038 W80-22323
Nonlinear, three-dimensional finite-element analysis of air-cooled gas turbine blades
[NASA-T-1669] p0132 W80-22734
Three dimensional finite-element elastic analysis of a typically cycled double-edge wedge geometry specimen -- nickel alloy turbine parts
[NASA-TM-80980] p0079 W80-26433
Finite-strain large-deflection elastic-viscoelastic finite-element transient response analysis of structures
Numerical techniques in linear duct acoustics --
finite difference and finite element analyses
[NASA-TM-81553] p0170 W80-30154

Fire Damage
Fiber release characteristics of graphite hybrid composites
[ASM-CE-159717] p0073 A80-32063
FIRE PREVENTION
Hybrid composites that retain graphite fibers on burning
[NASA-TM-81436] p0073 A80-32064
FIRE
Fire test method for graphite fiber reinforced plastics
Potential release of fibers from burning carbon composites -- aircraft fires
[NASA-TM-80926] p0069 W80-29431
Statistical aspects of carbon fiber risk assessment modeling -- fire accidents involving aircraft
[NASA-CR-15918] p0073 W80-29432

Fire Igniting
[FLIGHT INSTRUMENTS] p0027 A80-10253
Comparison of several inflow control devices for flight simulation of fan tone noise using a D715D-1 engine
[AIAA PAPER 80-1025] p025 A80-38640
Characteristics of internal- and jet-noise radiation from a multi-lobe, multi-tube suppressor nozzle tested statically and under flight simulation
[AIAA PAPER 80-1027] p0173 A80-36642
An improved prediction method for the noise generated in flight by circular jets
[NASA-TM-81470] p0168 W80-22048

Flight Tests
Prediction of un-suppressed jet exhaust noise in flight from static data
[ASM-CE-159717] p0027 A80-44491
Flight test of navigation and guidance sensor errors measured on STOL appraches

Flow Characteristics
Flow Distribution
Flow Velocity
Flow Thermodynamic Stability
Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-4V-0.8Mo
[NASA-TM-81470] p0061 A80-13277
Evolution of a rotating flow in the vicinity of a surface
Subject Index

Fluids Flow

- Flow Coefficients
 - Turbulence and shear induced by flow in a turbine stage [NASA-TR-79320], p0127

- Flow Disturbance
 - Inlet flow distortion in turbomachinery, I: A parameter study [AIAA Paper 90-1076], p0006
 - The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream [NASA-CH-159754], p0036

- Flow Measurement
 - Critical mass flux through short borda-type inlets: An alternative approach to the numerical simulation of steady inviscid flow [NASA-TR-61405], p0104
 - Optical measurements of near-freezing fluid flows in a large-scale, two-dimensional stator cascade [NASA-TR-81410], p0019
 - Fluid forces on a tunnel model of a rotor blade in a large-scale, two-dimensional stator cascade [NASA-TR-79285], p0093

- Flow Stability
 - Impact of new instrumentation on advanced turbine research [NASA-TR-81505], p0106
 - Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model [NASA-Paper 90-02-4], p0008
 - Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model [NASA-TR-79285], p0093

- Flow Visualization
 - Film thickness for different regimes of fluid-film lubrication [NASA-TR-61569], p0106
 - Thermophysical property data of its applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0008
 - The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream [NASA-TR-81410], p0178

Flow Theory

- Aeronautical bubble motion in zero gravity — Lewis zero gravity drop tower [NASA-TR-79250], p0104

- Flow Velocity
 - Laser anemometer measurements at the exit of a stator cascade [NASA-TR-1714], p0019
 - Laser anemometer measurements in a transonic axial flow compressor rotor [NASA-TR-79323], p0002
 - Lubrication of optimized-design tapered-roller bearings to 2.4 million SW [NASA-TR-79294], p0011

Flow Visualization

- Simultaneous flow visualization study of a horsehoe vortex in a large-scale, two-dimensional turbine stator cascade [AIAA Paper 90-02-4], p0004

Flow Sheets

- Symmetry characteristics of aircraft-type fuels [NASA-CH-159866], p0095

Fluid Dynamics

- Fluid dynamics: Turbulence property data — Who needs them similarity principle applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0106

Fluid Flow

- Free jet phenomena in a 90 deg-sharp edge inlet geometry [NASA-TR-81505], p0106

Fluid Mechanics

- Thermophysical property data of its applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0106

Fluid Mechanics

- Turbulence property data — Who needs them similarity principle applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0106

Fluid Mechanics

- Thermophysical property data of its applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0106

Fluid Mechanics

- Thermophysical property data of its applications in fluid mechanics and heat transfer [NASA-Paper 90-02-4], p0106
FUEL CONSUMPTION

- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel in a wing-tank model (NASA CR-1596993, 80-02494)
- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel combustion system (NASA CR-1596993, 80-02494)
- Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model (NASA CR-1596993, 80-02494)

FUEL INJECTION

- Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels (NASA CR-1594993, 80-02494)
- Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels (NASA CR-1594993, 80-02494)
- Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels (NASA CR-1594993, 80-02494)
- Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels (NASA CR-1594993, 80-02494)

FUEL PRODUCTION

- Aircraft Research and Technology for Future Fuels (NASA CR-135119, 980-33861)
- Aircraft Research and Technology for Future Fuels (NASA CR-135119, 980-33861)
- Aircraft Research and Technology for Future Fuels (NASA CR-135119, 980-33861)
- Aircraft Research and Technology for Future Fuels (NASA CR-135119, 980-33861)

FUEL SENSITIVITY

- Effect of fuel molecular structure on soot formation in gas turbine combustion (NASA CR-135119, 980-33861)
- Effect of fuel molecular structure on soot formation in gas turbine combustion (NASA CR-135119, 980-33861)
- Effect of fuel molecular structure on soot formation in gas turbine combustion (NASA CR-135119, 980-33861)
- Effect of fuel molecular structure on soot formation in gas turbine combustion (NASA CR-135119, 980-33861)

FUEL SUITABILITY

- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel in a wing-tank model (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel combustion system (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel combustion system (NASA CR-135119, 980-33861)

FUEL SYSTEMS

- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)

FUEL USE

- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
- Effect of fuel vaporization upon emissions for a premixed partially vaporized fuel (NASA CR-135119, 980-33861)
GAS TURBINES

\[\text{ASME PAPER 00-GT-4} \quad \text{p0044} \quad \text{AB0-02175}\]

Experime ntal study of low aspect ratio compressor blading

\[\text{ASME PAPER 00-GT-6} \quad \text{p0020} \quad \text{AB0-02147}\]

Performance of annular prediffusor-combustor systems

\[\text{ASME PAPER 00-GT-15} \quad \text{p0024} \quad \text{AB0-02154}\]

An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion

\[\text{ASME PAPER 00-GT-60} \quad \text{p0024} \quad \text{AB0-02190}\]

Effect of fuel molecular structure on mode formation in gas turbine engines

\[\text{ASME PAPER 00-GT-62} \quad \text{p0020} \quad \text{AB0-02192}\]

NASA Broad-Specification Fuels Combustion Technology Program - Status and description

\[\text{ASME PAPER 00-GT-65} \quad \text{p0020} \quad \text{AB0-02195}\]

Low NOx/ heavy fuel combustor program

\[\text{ASME PAPER 00-GT-69} \quad \text{p0020} \quad \text{AB0-02199}\]

Evaluation of a high performance fixed-ratio traction drive

\[\text{p0130} \quad \text{AB0-06410}\]

Similarity tests of turbine vanes - Effects of ceria-toughened barrier coatings

\[\text{p0077} \quad \text{AB0-00013}\]

Control technology

\[\text{p0130} \quad \text{AB0-10215}\]

Analysis of the response of a thermal barrier coating to mollius and vanadium doped combustion gases

\[\text{p0020} \quad \text{AB0-13044}\]

Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1

\[\text{p0020} \quad \text{AB0-13045}\]

Final report

\[\text{p0030} \quad \text{AB0-13046}\]

Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2

\[\text{p0130} \quad \text{AB0-11043}\]

User manual

\[\text{p0130} \quad \text{AB0-13046}\]

Advanced catalytic combustors for low pollutant emissions, phase 1

\[\text{p0020} \quad \text{AB0-13046}\]

Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system --- for gas turbine engines

\[\text{p0021} \quad \text{AB0-14125}\]

NASA broad specification fuels combustion technology program: Status and description

\[\text{p0030} \quad \text{AB0-14126}\]

Laser-optical blade tip clearance measurement system

\[\text{p0130} \quad \text{AB0-11043}\]

Temperature and pressure measurement techniques for an advanced turbine test facility

\[\text{p0130} \quad \text{AB0-11274}\]

Theory of deposition of condensable impurities on surfaces immersed in combustion gases

\[\text{p0030} \quad \text{AB0-11513}\]

Experimental studies of the formation/depansion of sodium sulfate in/over combustion gases --- hot corrosion of gas turbine engine components

\[\text{p0030} \quad \text{AB0-11513}\]

Impact of new instrumentation on advanced turbine research

\[\text{p0030} \quad \text{AB0-11513}\]

Sintered silicon nitride recuperator fabrication

\[\text{p0030} \quad \text{AB0-11513}\]

Plasma-sprayed dual density ceramic turbine seal system

\[\text{p0030} \quad \text{AB0-11513}\]

Air pollution from aircraft

\[\text{p0017} \quad \text{AB0-16600}\]

Some considerations of the performance of two honeycomb gas path seal material systems

\[\text{p0077} \quad \text{AB0-16143}\]

Performance sensitivity analysis of Department of Energy-Chrysler upgraded automotive gas turbine engine, 5/8 S-5

\[\text{p0119} \quad \text{AB0-17467}\]

Materials review for improved automotive gas turbine engine --- superalloys, refractory alloys, and cermetics

\[\text{p0123} \quad \text{AB0-17469}\]

Study of research and development requirements of small gas-turbine combustors

\[\text{p0038} \quad \text{AB0-18040}\]

Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

\[\text{p0016} \quad \text{AB0-20272}\]

Composite wall concept for high temperature turbine shafts: Survey of low modulus strain isolator materials

\[\text{p0066} \quad \text{AB0-20398}\]

Fuel economy screening study of advanced automotive gas turbine engines

\[\text{p0162} \quad \text{AB0-21201}\]

Operating characteristics of high-speed, jet-liquidified 35-gallon-drum ball bearing with a single-outlet land-guided gas turbine

\[\text{p0020} \quad \text{AB0-21755}\]

Parametric tests of a traction drive retrofitted to an automotive gas turbine

\[\text{p0020} \quad \text{AB0-21756}\]

Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

\[\text{p0016} \quad \text{AB0-23133}\]

Extension of similarity test procedures to cooled engine components with insulating ceramic coatings

\[\text{p0105} \quad \text{AB0-24277}\]

Design of automotive gas turbine engine development program

\[\text{p0124} \quad \text{AB0-24260}\]

Conceptual design study of an improved automotive gas turbine powertrain

\[\text{p0124} \quad \text{AB0-24261}\]

Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

\[\text{p0151} \quad \text{AB0-24740}\]

External fuel vaporization study, phase 1

\[\text{p0095} \quad \text{AB0-25455}\]

Analytical and experimental evaluation of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

\[\text{p0020} \quad \text{AB0-25456}\]

A silicon-steel/alumina-coated --- protects aircraft and land-based gas turbine engines

\[\text{p0030} \quad \text{AB0-26389}\]

High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine

\[\text{p0030} \quad \text{AB0-26440}\]

CF6-60 engine performance deterioration

\[\text{p0041} \quad \text{AB0-27364}\]

Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-arc stators

\[\text{p0043} \quad \text{AB0-29322}\]

State-of-the-art SIAlON materials

\[\text{p0022} \quad \text{AB0-29356}\]

Some advantages of methane in an aircraft gas turbine

\[\text{p0031} \quad \text{AB0-29534}\]

The 3500 hour durability testing of commercial ceramic materials

\[\text{p0091} \quad \text{AB0-31552}\]

Upgraded automotive gas turbine engine design and development program, volume 2

\[\text{p0128} \quad \text{AB0-32719}\]

GAS TURBINES

Thick ceramic coatings development for industrial gas turbines -- A program plan

\[\text{p0019} \quad \text{AB0-10042}\]

The measuring and growing of advanced gas turbines

\[\text{p0111} \quad \text{AB0-36127}\]

Improved PPB operations -- 400-hour turbine test results ---- Premixed Fluidized Bed

\[\text{p0145} \quad \text{AB0-35639}\]

Results from tests on a high work transonic turbine for an energy efficient engine

\[\text{p0020} \quad \text{AB0-36258}\]

Development of silicon nitride of improved toughness

\[\text{p0072} \quad \text{AB0-36319}\]

Corrosion resistant thermal barrier coating --- protecting gas turbines and other heat engines parts

\[\text{p0067} \quad \text{AB0-11414}\]

Feasibility of SiC composite structures for 1644 deg gas turbine seal applications

\[\text{p0123} \quad \text{AB0-13798}\]
Low NOx heavy fuel combustor program
[NASA-TP-79313]
Status of DOE/NASA critical gas turbine research and technology project
[NASA-TP-79307]
Potential performance improvement using a reacting gas (nitrogen-kerosine) as the working fluid in a closed Brayton cycle
[NASA-TP-79222]
Internal coating of air-cooled gas turbine blades
[NASA-CR-155701]
Nonlinear, three-dimensional finite-element analysis of air-cooled gas turbine blades
[NASA-TT-1669]
Literature survey of properties of synfuels derived from coal
[NASA-TP-79243]
Conceptual definition study of small Brayton cycle engines for dispersed solar electric power systems
[NASA-CR-155692]
Conceptual design study of an improved gas turbine powertrain
[NASA-CR-155952]
The effect of catalyst length and downstream reactor distance on catalytic combustor performance
[NASA-TP-01475]
Improved PFD operations: 400-hour turbine test results --- coal combustion products and hot corrosion gas turbines
[NASA-TP-01511]
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid formation
[NASA-TP-01531]
Cogeneration Technology Alternatives Study (CTAS).
Volume 3: Energy conversion system characteristics
[NASA-CR-155761]

GAS- LIQUID INTERACTIONS

Nanoelectron bubble motion in zero gravity

GAS-METAL INTERACTIONS

Spurttering in mercury ion thrusters

GAS-SOLID INTERACTIONS

MT GAS-METAL INTERACTIONS

GASEOUS CAVITATION

U CAVITATION FLOW

U GAS FLOW

GASES

MT ARGON

MT ARGON PLASMA

MT CARBON MONOXIDE

MT CHARGED PARTICLES

MT EXHAUST GASES

MT GAS MIXTURES

MT HIGH PRESSURE OXYGEN

MT HIGH TEMPERATURE GASES

MT HYDROGEN

MT HYDROGEN ATOMS

MT HYDROGEN ZONES

MT HYDROGEN PLASMA

MT LIQUID PLASMAS

MT LIQUID GASES

MT LIQUID NATURAL GAS

MT LIQUID HYDROGEN

MT LIQUID OXYGEN

MT MONOMIC Molecular GASES

MT NEON

MT OXYGEN

MT OZONE

MT RARE GASES

MT RESIDUAL GAS

MT XENON

GASP

U GLOBAL AIR SAMPLING PROGRAM

GRAB TEETH

NASA gear research and its probable effect on rotorcraft transmission design

Endurance and failure characteristics of modified Vanco X-2, CES 600 and AISI 9310 spur gears

Analytical and experimental spur gear tooth temperature as affected by operating variables

Spur-gear-system efficiency at part and full load

Analytical and experimental spur gear tooth temperature as affected by operating variables

Ideal spiral bevel gears: A new approach to surface geometry

GRABS

NASA gear research and its probable effect on rotorcraft transmission design

Effect of geometry and operating conditions on spur gear system power loss

Quiet Clean Short-haul Experimental Engine (QCSEE)

Fuel reduction gears test program

Quiet Clean Short-haul Experimental Engine (QCSEE)

Noise reduction gears bearing development program

Quiet Clean Short-haul Experimental Engine (QCSEE)

Main reduction gears detailed design report

Spur-gear-system efficiency at part and full load

Endurance and failure characteristics of modified Vanco X-2, CES 600 and AISI 9310 spur gears --- aircraft construction materials

Effect of geometry and operating conditions on spur gear system power loss

Ideal spiral bevel gears: A new approach to surface geometry

GENERAL AEROSPACE AGENCY

MT AEROSPACE AGENCY

A theoretical and experimental investigation of propeller performance methodologies

An acoustic sensitivity study of general aviation propellers

Study of research and development requirements of small gas-turbine combustors

A 150 and 300 kw lightweight diesel aircraft engine design study

High speed turboprops for executive aircraft, potential and recent test results

AIRCRAFT

MT AERONAUTIC AIRCRAFT

Aeronautical research QCGAT program --- quiet clean general aviation turbofan engines

Avco Lycoming quiet clean general aviation turbofan engine

Summary of NASA QCGAT program

New opportunities for future, small, General-Aviation Turbofan Engines (GATE)

An overview of NASA research on positive displacement general-aviation engines

GENERAL DYNAMICS AEROSPACE

MT F-102 AIRCRAFT

GENERAL DYNAMICS MILITARY AIRCRAFT

U MILITARY AIRCRAFT

GEOMETRIC EFFECTS

U MAGNETIC EFFECTS

GEOMETRIC STRESSES

U MAGNETIC STRESSES

GEOMETRICAL MAGNETODYNAMICS

U MAGNETOHYDRODYNAMICS

GEOMETRY

MT ANGLE OF ATTACK

MT DUCT GEOMETRY

MT FLOW GEOMETRY

MT MODERN GEOMETRY

MT SPECIFIC GEOMETRY

GEOSTATIONARY SATELLITES

U SYNCHRONOUS SATELLITES

GEOSYNCHRONOUS ORBITS

NASA core modeling of environmental-charging-induced discharges in satellites
behavior of helicals resonators

HIGH STRENGTH STEELS
HIGH TEMPERATURE ALLOYS
HIGH STRENGTH ALLOYS
HIGH PRESSURE

Some flow characteristics of conventional and tapered high-pressure-drop simulated seals
[ASLE PREPRINT 79-LC 30-2] p0120 N80-14727
Advanced cooling techniques for high-pressure, hydrogen-cooled rocket engines
[AIAA PAPER 80-1266] p0660 N80-38994
Advanced cooling techniques for high-pressure bearings in fluidic engines
[NASA CR-159750] p0661 N80-17141
Cooling of high pressure rocket thrust chambers with liquid oxygen
[NASA-TH-81503] p0557 N80-23365
CPU jet engine performance improvement program: High pressure turbine autodynamic performance improvement
[NASA CR-159632] p0640 N80-26302

HIGH PRESSURE OXYGEN

Mechanical impact tests of materials in oxygen effects of contamination -- Teflon, stainless steel, and alumina
[NASA-TP-1571] p0093 N80-21551

HIGH SPEED

Design of cantilever dampsers for a high-speed flexible ror
[JOURNAL OF APPLIED MECHANICS 79-DEE-68] p0121 A80-15739
Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 million DN
[NASA-TP-1599] p0114 N80-15514
Performance of computer-optimized tapered-rollen bearings to 7.4 million DN
[NASA-TH-81414] p0114 N80-16342
Calculated and experimental data for a 110-mm bore collet bearing to 3 million DN
[NASA-TH-81427] p0116 N80-19496
Lubrication of optimized-design tapered-roller bearings to a million DN
[NASA-TP-1714] p0119 N80-20734
Effect of cage design on characteristics of high-speed ball-lubricated 35-millimeter-bore ball bearing -- turbojet engines
[NASA-TP-1732] p0120 N80-33749

HIGH SPEED FLIGHT

U HIGH SPEED

HIGH STRENGTH

Properties of EP Polyamide composites made with improved high strength graphite fibers
[NASA-TH-81537] p0069 N80-28444

HIGH STRENGTH ALLOYS

NY AEROGAY (TRADEMARK)

NY HIGH STRENGTH STEELS

STRENGTHENING OF TIGHT-IRON-12% NICKEL-REACTION METAL ALLOYS AT 77 K BY COPPER ADDITIONS
[NASA-TH-18040-99] p0174 A80-34049
Quantitative ultrasonic evaluation of engineering properties in metals, composites, and ceramics
[NASA-TH-81541] p0135 A80-39641
Development of a high strength hot isostatically pressed /H2/ disk alloy, MAEL 76
[NASA-TH-81635] p0094 A80-44108
High toughness-high strength iron alloy

HIGH TEMPERATURE

High-temperature molten salt thermal energy storage systems
[NASA CR-159663] p0148 N80-17547
Composite wall concept for high temperature turbine shrouds: Survey of low modulus strain isolator materials
[NASA-TH-81421] p0116 N80-18405
High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine
[NASA-TH-159848] p0091 N80-26468
High temperature thermal energy storage in steel and sand
[NASA CR-159708] p0154 N80-29660

HILSCH TUBES

Autoignition characteristics of aircraft-type fuels
High temperature alloys
U HEAT RESISTANT ALLOYS

High temperature environments
Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors
[NASA-TH-81478] p0082 A80-35500
Development of electrochemically cast single-crystal maz-247 and derivatice alloys
[.nasa-research-21-3461] p0084 N80-58525
Corrosion resistant thermal barrier coating --- protecting gas turbines and other heat engine parts
[NASA-CASE-LW-13088-1] p0067 N80-11142
Optical thermionic energy conversion with established electrodes for high-temperature topping and processes heating --- coal combustion product environments
[NASA-TH-81255] p0175 N80-33221

HIGH TEMPERATURE FLUIDS

HI TEMPERATURE LIQUIDS

Comparison of the weight loss and adherence of nine different polyamide films thermally aged at 315 C and 350 C in air --- high temperature lubricants
[NASA CR-159505] p0086 N80-18613

HIGH TEMPERATURE MATERIALS

U HEAT RESISTANT ALLOYS

HIGH TEMPERATURE PLASMAS

Parametric dependance of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy
[NASA-TH-81534] p0176 N80-62265
High temperature research
Improving the stress rupture and creep of silicon nitride --- turbine materials
[NASA-CR-159505] p0072 N80-10318
Feasibility of Kevlar 49/PMM-15 polyamide for high temperature applications
[NASA-TH-81560] p0069 N80-27429

HIGH TEMPERATURE TESTS

Thick ceramic coating development for industrial gas turbines - A program plan
[ST-79-M-4702-05] p0091 A80-10042
Hot corrosion of four superalloys - HA-100, S-57, IN-617, and TD-Metal
[NASA-TH-81534] p0081 A80-14445
Creep-rupture behavior of seven iron-base alloys after long term aging at 760 deg in low pressure hydrogones

HIGH VOLTAGES

Plasma collection by high voltage spacecraft at low earth orbit
[AIAA PAPER 80-0042] p0059 A80-18249
Radiation damage in high voltage silicon solar cells
[ASME PAPER 79-DET-88] p0121 A80-15739
Space environmental interactions with biased spacecraft surfaces
[NASA-TH-81560] p0069 N80-27429
Development of a planar multijunction cell - A new solar cell for earth and space
[NASA-TH-81534] p0146 A80-48205
Interacion of high voltage surfaces with the space plasm --- solar arrays
[NASA-CR-159731] p0176 N80-14923
Planar multijunction high voltage solar cells
[NASA-TH-81381] p0178 N80-16914
Experimental results on plasma interactions with large surfaces at high voltages
[NASA-TH-81423] p0175 N80-18946
Radiation damage in high voltage silicon solar cells
[NASA-TH-81478] p0178 N80-23180
Interaction of high voltage surfaces with the space plasmas
[NASA CR-165131] p0177 N80-32223

HILLSCH TUBES

Influence of coolant tube curvature on film cooling effectiveness as detected by infrared imagery

Subject Index

Hinge Robes

[MSPA-TMP-1546] p0013 80-110377

Hinge Robes

U Torque

Hinged Motor Blades

U Rotary WIngs

Hinges

Mt Flaping Hinges

Hinge Trajectories

U Transfer Orbits

Honeycomb Structures

U Transfer Orbits

Hollow Cathodes

Primary electric propulsion technology study —
for the near wake of a compressor rotor blade
[MSPA-165988] p0061 80-13158

Hydrogen hollow cathode ion source
[MD-P-12904-1] p0174 80-32156

Baffle aperture design study of hollow cathode
equipped ion thrusters
[MSPA-165164] p0061 80-33476

Honeycomb Structures

Some considerations of the performance of two
honeycomb gas path seal material systems
[MSPA-181398] p0077 80-16143

Hot Corrosion

Mt Temperature Dependence

The chemistry of sodium chloride involvement in
processes related to hot corrosion
[MD-P-10044] p0074 80-10044

Hot corrosion of four superalloys — HA-168, S-57,
IN-617, and TD-Nickel
[MD-P-10044] p0081 80-14445

An experimental, low-cost, silicon-aluminate
high-temperature coating for superalloys
[MD-P-10044] p0082 80-25501

Effect of sodium, potassium, magnesium, calcium,
and chlorine on the high temperature corrosion of
IN-100, U-700, IN-792, and MAR M-509
[MD-P-10044] p0083 80-15233

An investigation of the initiation stage of hot
corrosion in Ni-base alloys
[MSPA-125918] p0083 80-15233

Effect of sodium, potassium, magnesium, calcium,
and chlorine on the high temperature corrosion of
IN-100, U-700, IN-792, and MAR M-509
[MD-P-10044] p0083 80-15233

Study of the effects of gaseous environments
on the hot corrosion of superalloy materials
[MSPA-159747] p0083 80-15155

Fouling and the inhibition of salt corrosion —
hot corrosion of superalloys
[MSPA-161423] p0078 80-21492

Improved P/P operations: 400-hour turbine test
results — coal combustion products and hot
corrosion in gas turbines
[MSPA-181511] p0079 60-26426

Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys
in the temperature range of 700-750 °C
[MSPA-159689] p0084 80-24287

HOT GAS SYSTEMS

HOT HIGH TEMPERATURE GASES

HOT JET EXHAUST

HOT JETS

HOT PLASMAS

HOT TEMPERATURE PLASMAS

HOT PRESSING

Effects of thermally induced porosity on an am-HIP
crystal structure and low temperature
oxidation behavior of a Si3N4 — O w/o Y203 ceramic
[MD-P-12904-1] p0062 80-29950

Development of a high strength, hot isostatically
pressed (HIP) disk alloy, X86-78
[MD-P-10044] p0084 80-44108

Application of superalloy powder metallurgy for
aircraft engines
[MD-P-10044] p0122 80-44240

Effect of starting powder characteristics on
density, microstructure and low temperature
oxidation behavior of a Si3N4 — O w/o Y203 ceramic
[MD-P-12904-1] p0062 80-29950

Effect of thermally induced porosity on an am-HIP
powder metallurgy superalloy
[MD-P-12904-1] p0062 80-29950

Application of superalloy powder metallurgy for
aircraft engines
[MD-P-12904-1] p0076 80-11169

Hot-Wire Flowmeters

Three dimensional mean flow and turbulence
characterization of the near wake of a compressor
rotor blade
[MD-P-159518] p0005 80-27268

Hot-Wire Turbulence Meters

U HOT-WIRE FLOWMETERS

Housings

U COLUMNS

Hotting Stability

Examination of the flap-lag stability of rigid
articulated rotor blades
[p0014 80-15123

Hughes Military Aircraft

U MILITARY AIRCRAFT

Hybrid Combustion

U HYBRID PROPULSION ROCKEN ENGINES

Hydraulic Actuators

U ACTUATORS

U HYDRAULIC EQUIPMENT

Hydraulic Equipment

Single-stage electrohydraulic servosystem for
actuating on airflow valve with frequency to
500 hertz
[p0016 80-20954

Hydraulic Equipment

Free-piston regenerative hot gas hydraulic engine
[p0016 80-20954

Hydraulic Heating Sources

U HYDRAULIC EQUIPMENT

Hydraulic Fluids

U HYDRAULIC EQUIPMENT

Hydraulic Valves

U HYDRAULIC EQUIPMENT

Hydraulics

Hydraulic forces caused by angular pressure seals
in centrifugal pumps
[p0126 80-29716

Hydrocarbon Combustion

An analytical study of nitrogen oxides and carbon
monoxide emissions in hydrocarbon combustion
with added nitrogen — Preliminary results
[MD-P-12904-1] p0074 80-42190

Low NOx heavy fuel combustion system
[MSPA-15913] p0137 80-13624

An analytical study of nitrogen oxides and carbon
monoxide emissions in hydrocarbon combustion
with added nitrogen, preliminary results
[MSPA-159313] p0137 80-13624

Flame tube parametric studies for control of fuel
bound nitrogen using rich-lean two-stage
combustion
[MSPA-161423] p0175 80-25160

Hydrogen Fuel Systems

U DIESEL FUELS

U FOSSIL FUELS

U JET ENGINE FUELS

U JP-5 JET FUELS

Advanced cooling techniques for high-pressure,
hydrocarbon-fueled rocket engines
[p0059 80-26957

Hydrocarbon Combustion

An analytical study of nitrogen oxides and carbon
monoxide emissions in hydrocarbon combustion
with added nitrogen — Preliminary results
[MD-P-12904-1] p0074 80-42190

Low NOx heavy fuel combustion system
[MSPA-15913] p0137 80-13624

An analytical study of nitrogen oxides and carbon
monoxide emissions in hydrocarbon combustion
with added nitrogen, preliminary results
[MSPA-159313] p0137 80-13624

Flame tube parametric studies for control of fuel
bound nitrogen using rich-lean two-stage
combustion
[MSPA-161423] p0175 80-25160

LORED HARDWARE
U PLASTIC DEFORMATION

MAGNETIC SUBSTANCES

MAGNETIC FIELD CONFIGURATIONS
A matrix solution for the simulation of magnetic fields with ideal current loops
- The effect of a weak vertical magnetic field on fluctuation-induced transport in a Bumpy-Torus plasma

MAGNETIC FIELDS
Two-dimensional representations of axisymmetric fields for computer calculations — in modeling microwave tubes
- Atomic hydrogen storage — cryotrapping and magnetic field strength

MAGNETIC MEASUREMENT
Hyperfine magnetic field at Cd impurity site in L2/L3: Heusler alloys SiSnCo and SiSnPb by TEDAC technique — Time Differential Perturbed Angular Correlation

MAGNETIC PROPERTIES
- MT MAGNETIC EFFECTS
- MT MAGNETIC RESONANCE
- MT PARAMAGNETIC RESONANCE
- MT SPIN-BOARD RESONANCE

MAGNETIC STORES
Computed voltage distributions around solar electric propulsion spacecraft

MAGNETIC STORES
U MAGNETIC STORES
Initial comparison of SSPM ground test results and flight data to NASCAR simulations --- Satellite Surface Potential Monitor NASA Charging Analyzer Program

[ASME PAPER 80-TA-34] p0034 A80-35719

Balancing of a power-transmission shaft with the application of axial torque

[ASME PAPER 80-GT-162] p0122 A80-46410

Effect of geometry and operating conditions on spur gear system power loss

[ASME PAPER 60-GT-143] p0122 A80-66413

Constrained fatigue life optimization of a MASYTIS multicolor tractor drive

[ASME PAPER 79-LUB-341] p0122 A80-46409

Evaluation of a high performance fixed-ratio traction drive

[ASME PAPER 79-LUB-34] p0122 A80-66407

Stress limitations and techniques for ultrasonic evaluation of material mechanical properties

[ASME PAPER 79-LUB-34] p0122 A80-46409

Mechanical properties

[ASME PAPER 79-LUB-34] p0122 A80-46410

Mechanical properties

[ASME PAPER 79-LUB-34] p0122 A80-46413

Simplified fatigue life analysis for traction drive contacts

[ASME PAPER 79-LUB-34] p0122 A80-46409

Simplified fatigue life analysis for traction drive contacts

[ASME PAPER 79-LUB-34] p0122 A80-66413

Evaluation of a high performance fixed-ratio traction drive

[ASME PAPER 79-LUB-34] p0115 A80-17469

Effect of geometry and operating conditions on spur gear system power loss

[ASME PAPER 79-LUB-34] p0115 A80-18404

Constrained fatigue life optimization of a MASYTIS multicolor tractor drive

[ASME PAPER 79-LUB-34] p0116 A80-18406

Ideal spiral bevel gears: A new approach to surface geometry

[ASME PAPER 79-LUB-34] p0116 A80-18407

Parametric tests of a traction drive retrofitted to an automotive gas turbine

[ASME PAPER 79-LUB-34] p0117 A80-19498

Design study of flat belt CVT for electric vehicles

[ASME PAPER 79-LUB-34] p0124 A80-21754

Design study of steel V-belt CVT for electric vehicles

[ASME PAPER 79-LUB-34] p0185 A80-32299

Mechanical engineering

Load support system analysis high speed input pinion configuration

[ASME PAPER 79-LUB-34] p0129 A80-14760

Mechanical measurement

MT Displacement measurement

MT Flow measurement

MT Pressure measurement

MT Velocity measurement

MT Vibration measurement

MT Wind measurement

MT Wind velocity measurement

Mechanical properties

MT Abrasion resistance

MT AERODYNAMICS

MT CHEEP properties

MT CHEEP rupture strength

MT CHEEP strength

MT Ductility

MT Dynamic modulus of elasticity

MT Elastic properties

MT Elastoplasticity

MT Fatigue life

MT Flexibility

MT Fracture strength

MT High strength

MT Modulus of elasticity

MT Shear strength

MT stiffness

MT Stress ratio

MT Tensile properties

MT Tensile strength

MT Thermal resistance

MT Thermoelectricity

MT Yield strength

Mechanical property characterization of intraply hybrid composites

Effects of thermally induced porosity on an an-NiB powder metallurgy superalloy

Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

Strengthening of tough iron-12% nickel-reactive metal alloys at 77 K by copper additions

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

Engine environmental effects on composite behavior --- moisture and temperature effects on mechanical properties

Application of superalloy powder metallurgy for aircraft engines

Concepts and techniques for ultrasonic evaluation of material mechanical properties.
Effect of thermally induced porosity on an as-HIP powder metalurgy superalloy [NASA-TM-79266]
Characterization of an oxide dispersion strengthened superalloy, MA-600Ge, for turbine blade applications --- turbine blade [NASA-CH-159493]
Synthesis of improved polyimide resins [NASA-CH-159724]
Coaxial and techniques for ultrasonic evaluation of material mechanical properties [NASA-TM-81523]
Quantitative ultrasonic evaluation of engineering properties of metals, composites and ceramics [NASA-TM-81530]
Influence of excess zirconium on properties of PM polycrystalline --- --- and composites [NASA-CH-81580]
Regenerator matrix physical property data [NASA-CH-15965a]
Intraocular pressure normalization technique and equipment [NASA-CASE-LW-12723-1]
Evaluation of particle transport for the P80-1 spacecraft --- rocket and structural composites [NASA-CH-15994]
Physical phenomena in mercury ion thrusters [NASA-CH-15996a]
Effect of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers
An investigation into the role of adhesion in the erosion of ductile metals [ASLE PREPRINT 80-AM-3E-2]
Analysis of wear debris from full-scale bearing [AIIA PAPER 79-2047]
A model for predicting the wearout lifetime of the LeCox/Hughes 30-cm mercury ion thruster [NASA-TM-79216]
Specific spacecraft evaluation: Special report --- charged particle transport in a mercury ion thruster to spacecraft surfaces [NASA-CH-159920]
Hg ion thruster component testing [NASA-TM-79209]
Physical phenomena in mercury ion thrusters [NASA-CH-159746]
Effects of fine porosity on the fatigue behavior of a powder metalurgy superalloy [NASA-CH-159493]
Constrained fatigue life optimization of a NASATISS multicylinder drive [NASA-TM-61-159493]
Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage [NASA-TM-61-15177]
A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites [NASA-TM-79276]
Predicting the time-temperature dependent axial failure of B/A1 composites [NASA-CH-81474]
Durability bonded boron/aluminum spar---blade fan blade [NASA-CH-159711]
Cost analysis of composite fan blade manufacturing processes [NASA-CH-159767]
Preparation of cast aluminum alloy---mica particle composites [NASA-CH-159753]
A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites [NASA-CH-159753]
A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites [NASA-CH-159777]
Cost analysis of composite fan blade manufacturing processes [NASA-CH-159767]
Characterization of an oxide dispersion strengthened superalloy, MA-600Ge, for turbine blade applications --- turbine blade [NASA-CH-159493]
Performance of two-layer thermal barrier systems on directionally solidified Ni-Al-Mo and comparative effects of alloy thermal expansion on system life [NASA-CH-159493]
Development of a high strength hot isostatically pressed /HIP/ disk alloy, BREL 76 [NASA-CH-159493]
Application of superalloy powder metallurgy for aircraft engines

[ASLE PREPRINT 79-HT-25] p0027 A80-46014

METAL SURFACES
Metal-dielectric interactions

[ASLE PREPRINT 79-LO-5C-1] p0120 A80-14738

The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

Comments on Auger electron production by Ne/Ar bombardment of surfaces

[ASME PAPER 80-HT-25] p0027 A80-48014

An investigation into the role of adhesion in the erosion of ductile metals

[ASME PAPER 80-AM-3E-2] p0122 A80-43167

Metallographic parameters in tribology

METALLIC GLASSES
Sliding friction of some metallic glasses

METALLOGRAPHY
Analysis of wear debris from full-scale bearing fatigue tests using the ferrograph

[ASLE PREPRINT 80-AM-3E-2] p0122 A80-43167

METALLICODIES
MT SILICON

MT ALUMINUM
MT ALUMINUM COATINGS
MT CADMIUM
MT CHROMIUM
MT SILICON
MT GALLIUM
MT IRON
MT LIQUID METALS
MT ZINC
MT ZINC PHOSPHIDES
MT BOTHE
MT ZINC COMBUSTIBLES

METALLED COMPRESSION TESTS
U COMPRESSION TESTS
U MECHANICAL PROPERTIES
U METALLOGRAPHIC PARAMETERS

The use of wind data with an operational wind turbine in a research and development environment

[ASME PAPER 79-TR-122] p0145 A80-35730

METEORS
U MEASURING INSTRUMENTS
U MEASURING METHODS

METEOROLOGY

SOME ADVANTAGES OF METHANE IN AN AIRCRAFT GAS TURBINE

[ASME PAPER 79-61559] p0094 A80-29502

MICA
Preparation of cast aluminum alloy-mica particle composites

MICROCOMPUTERS
Digital system for dynamic turbine engine blade displacement measurements

MICRODENSITOMETERS
Computerized video densitometry method for rapid analysis of infrared photographic images---temperature distribution across a turbine blade

MICROPROCESSORS
Nonlinear function generation routines for 16-bit microprocessors

[ASME PAPER 80-618586] p0163 A80-33104

MICROSCOPE
MT ELECTRON MICROSCOPE
MICROSTRUCTURE
Some TEM observations of Al203 scales formed on

MIGAL alloys

Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

[ASME PAPER 80-15350] p0130 A80-26682

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4/o T203 ceramic

[ASME PAPER 80-HT-81356] p0088 A80-27848

State-of-the-art SiAlON materials

[Metallographic Society of America] p0022 A80-29356

MICROWAVE AMPLIFIERS
Solid-state X-band combiner study

[ASME PAPER 80-HT-25] p0103 A80-11328

MICROWAVE ANTENNAS
MT SLOT ANTENNAS
MT MICROPHONE AMPLIFIERS
MT MICROPHONE TUBES
MT SLOT ANTENNAS
MT TRAVELING WAVE TUBES

MICROWAVE FREQUENCIES
MT EXTREMELY HIGH FREQUENCIES
MT SUPERHIGH FREQUENCIES

MICROWAVE SWITCHING
Study of advanced communications satellite systems based on SS-PDM

[ASME PAPER 80-HT-25] p0050 A80-25357

MICROWAVE TRANSMISSION
Communications technology satellite --- United States experiments and disaster communications applications

[ASME PAPER 80-HT-25] p0051 A80-10032

Concepts for 20/50 GHz satcom systems for direct-to-user applications

[ASME PAPER 80-HT-25] p0050 A80-35329

MICROWAVE TUBES
MT TRAVELING WAVE TUBES
Two-dimensional representations of axisymmetric fields for computer calculations --- in modeling microwave tubes

[ASME PAPER 80-HT-25] p0102 A80-16232

MICROWAVES
MT MILLIEMETER WAVES
MT Radar COLLISIONS
MT BIRD-AIRCRAFT COLLISIONS

MILITARY AIRCRAFT
Zero-length, slotted-lip inlet for subsonic military aircraft

[ASME PAPER 80-HT-25] p0004 A80-41203

MILLIEER WAVES
System analysis for millimeter-wave communication satellites

[ASME PAPER 80-HT-25] p0100 A80-52479

MILLING (MIXING)

MIXERS

EXPERIMENTAL EVALUATION OF ENHANCED MIXERS FOR AN ENERGY EFFICIENT ENGINE

[ASME PAPER 80-HT-25] p0025 A80-38903
NASA STRUCTURAL ANALYSIS PROGRAM
NASA TITAN
NASA SUPERSONIC CRUISE AIRCRAFT RESEARCH
NASA propeller technology program

NASA's program in communication satellites
Initial comparison of SSPP ground test results and flight data to NASCAP simulations --- Satellite Surface Potential Monitor NASA Charging Analyzer Program

NASA TITAN
NASA FULL-SCALE ENGINE AEROSLICITIVITY RESEARCH

Status of NASA full-scale engine aerelasticity research

Experimental evaluation of exhaust mixers for an Energy Efficient Engine

Matrix management for aerospace 2000

NASA broad-spectrum fuels combustion technology program: Status and description

Status of the DOE/NASA critical gas turbine research and technology project

Quiet powedered-Lift propulsion

NASA propeller technology program

Rejox storage systems for solar applications

NASA structural analysis program

NASTRAN

Effect of time dependent flight loads on JTS-7

NATIONAL frequencies

U RESONANT FREQUENCIES

NATIONAL GAS

MET LIQUEFIED NATURAL GAS

NAVIGATION AIDS

MT NAVIGATION INSTRUMENTS

NAVIGATION INSTRUMENTS

MT RADIO ALTIMETERS

Flight test of navigation and guidance sensor errors measured on STOL approaches

NEAR WAVES

Three dimensional mean flow and turbulence characteristics of the near wake of a compressor rotor blade

NEMO

Comments on Auger electron production by Ne+/ reboadment of surfaces

NEOPLASMS

MT CANCER

NU-EVA (ENGINE)

U NUCLEAR ENGINE FOR ROCKET VEHICLES

NUCLEARIZATION

Plasma physics analysis of SERT-2 operation

NUCLEAR EXPLORATION

Preliminary results of fast neutron treatments in carcinomas of the pancreas

NEW MEXICO

Blade design and operating experience on the NECA-CA 200 kw wind turbine at Clayton, New Mexico

MICHEL ALLOYS

ASTROLOGY (TRADEMARK)

Some TEM observations of Al203 scales formed on Nickel alloys

The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys

Strengthening of tough iron-12% nickel-reactive metal alloys at 77 K by copper additions

Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient

Development of a high strength hot isoastically pressed /HIZ/ disk alloy, HIZL-76

Anisotropy of nickel-base superalloy single crystals

Characterization of an oxide dispersion strengthened superalloy, MA-6000F, for turbine blade applications --- turbine blade

An investigation of the initiation stage of hot corrosion in Ni-base alloys

Chemical processes involved in the initiation of hot corrosion of E-1950 and NASA-TFNI V1A

Anisotropy of nickel-base superalloy single crystals

Hot corrosion of Co-Cr, Co-Cr-AI, and Ni-Cr alloys in the temperature range of 700-750 deg C

Three dimensional finite-element elastic analysis of a thermally cycled double-edge wedge geometry

Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

A-67
A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites 0071 ABO-34764

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0070 ABO-35941

Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive field evaluation and materials tests 0071 ABO-48223

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-51575

Simulation of transducer-couplant effects on broadband ultrasonic signals 0130 ABO-22714

Concepts and techniques for ultrasonic evaluation of material mechanical properties 0130 ABO-24063

Quantitative ultrasonic evaluation of engineering properties in metals, composition, and ceramics 0130 ABO-26682
Characteristics of internal- and jet-noise radiation from a multi-lobe, multi-tube supersonic nozzle tested statically and under flight simulation conditions.

Influence of pressure driven secondary flows on the behavior of turbulent forced mixers.

Time-dependent difference theory for noise propagation in a two-dimensional duct of a turbofan engine.

Computation of three-dimensional flow in turbofan engine parts and comparison with experimental data.

Influence of pressure driven secondary flows on the behavior of turbulent forced mixers.

Numerical analysis of incompressible flows.

Characterization and properties of controlled nucleation thermochemical deposited \textit{ACWVD}/silicon carbide.

Numerical calculation of transonic axial turbomachinery flows.

Optical measuring instruments.
SUBJECT INDEX

An adaptive-control switching buck regulator - Implementation, analysis, and design [NASA-TR-81567] p0103 A60-28167

OPTIMIZATION

OPTIMAL CONTROL

Performance of computer-optimized tapered-roller bearings to 2.4 million ON [NASA-TR-81474] p0114 A60-16342

OPTIMUM CONTINUAL

Optimization of the design of the orbital propellant systems [NASA-TR-81565] p0088 A60-28654

OPTIMIZATION

Orifice flow [NASA-TR-81565] p0088 A60-28654

Orbital transfer vehicles

Nuclear electric propulsion system utilizing an earth orbital transfer of large spacecraft structures [NASA-Paper-80-1223] p0060 A60-28975

Orbital transfer of large space structures with nuclear electric rockets [NASA-Paper-80-083] p0058 A60-81697

LTO-to-GEO low thrust chemical propulsion [NASA-TP-1693] p0020 080-28352

Propulsion system concept analysis [NASA-Paper-80-083] p0064 A60-31469

Solar rocket system concept analysis [NASA-Paper-80-083] p0064 A60-31470

Orbital transfer

Orbits

WT earth orbits [NASA-CR-165150] p0048 A60-31423

Orbital transfer orbits [NASA-Paper-80-083] p0063 A60-31456

Orbital transfer vehicle concept studies [NASA-Paper-80-083] p0056 A60-31457

Low-thrust chemical orbit to orbit propulsion system propellant management study [NASA-Paper-80-083] p0064 A60-31469

Orbital space stations

Power management for multi-100 kwe space systems [NASA-Paper-80-083] p0060 A60-48357

Orbital transfer

U TRANSFER ORBITAL SPACE STATIONS

Orbits

WT earth orbits [NASA-Paper-80-083] p0060 A60-48357

Orbital transfer

WT geosynchronous orbits [NASA-Paper-80-083] p0060 A60-48357

WT space station orbits [NASA-Paper-80-083] p0060 A60-48357

WT transfer orbits [NASA-Paper-80-083] p0060 A60-48357

Organic compounds

WT fluorocarbons [NASA-Paper-80-083] p0060 A60-48357

Orifice flow

Free jet phenomena in a 90 deg-sharp edge inlet geometry [NASA-Paper-80-083] p0106 A60-10037

Oscillation dampers

Oscillation dampers [NASA-Paper-80-083] p0106 A60-10037

Oscillation dampers for losses due to part-span damper on transonic rotors [NASA-Paper-80-083] p0200 A60-28352

Oscillations

WT pressure oscillations [NASA-Paper-80-083] p0146 M60-20487

Oscillations

WT microwaves tubes [NASA-Paper-80-083] p0146 M60-20487

U orbital transfer vehicles

Oscillation flow

Laser anemometer measurements at the exit of a T63 combustor [NASA-Paper-80-083] p0045 A60-27737

Oscillations

WT vents [NASA-Paper-80-083] p0146 M60-20487

Output

Oxidation

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4 - Y2O3 ceramic [NASA-TR-81565] p0088 A60-28654

Combustion of solid carbon rods in zero and normal gravity [NASA-TR-79303] p0104 A60-13404

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4 - Y2O3 ceramic [NASA-TR-81565] p0088 A60-28654

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4 - Y2O3 ceramic [NASA-TR-81565] p0088 A60-28654

Performance, emissions, and physical characteristics of a rotating combustion engine, supplement A

FUEL SUPPLY SYSTEMS

Performance deterioration of commercial high-bypass ratio turbofan engines

Investigation of performance deterioration of the CP6/JT9D, high-bypass ratio turbofan engines

Performance deterioration of commercial high-bypass ratio turbofan engine with 200 transmission

Elastomer damper performance - 400-hour turbine test results

Evaluation of present-day thermal barrier coating for industrial/utilitarian applications

Performance deterioration of commercial high-bypass ratio turbofan engines

Effect of geometry and operating condition on supersonic system power loss

Evaluation of a high-performance fixed-ratio turbine drive

Hydron thruster component testing

Quiet Clean Short-Haul Experimental Engine (QCEE)

Engine performance tests to define propulsion system performance on turbofan engines

Synthesis of improved phenolic resins

Phase change in phosphoric acid

Fuel character effects on the J79 and J101 engine

Photoelectron charge density and transport near photoemission - Nonlinear subsonic and transonic flows

Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows

Evaluation of a strained-coordinate perturbation procedure - Linear and adiabatic bounds with real fluids

Synthesis of improved phenolic resins

Technology development for phosphoric acid fuel cell powerplant, phase 2

Fuel cell and fuel conditioner

Photoemission - Nonlinear subsonic and transonic flows

Petroleum Products

PHOTOVOLTAIC CELLS

Performance, emissions, and physical characteristics of a rotating combustion engine, supplement A

Performance deterioration of commercial high-bypass ratio turbofan engines

Evaluation of present-day thermal barrier coating for industrial/utilitarian applications

Evaluation of present-day thermal barrier coating for industrial/utilitarian applications

Performance deterioration of commercial high-bypass ratio turbofan engines

Performance deterioration of commercial high-bypass ratio turbofan engine with 200 transmission
A photovoltaic power system in the remote African village of Tangaye, Upper Volta [NASA-TM-79216].

Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment [NASA-TM-79208].

Economic analysis of the design and fabrication of a space qualified power system [NASA-TM-79214].

Study of power management technology for orbital multi-100kW applications. Volume 1: Requirements [NASA-CR-159036].

Photovoltaic technology development for synchronous orbit.

PHUGOID OSCILLATIONS
U PITCH (ECLIPSION) PHYSIOLOGICAL EFFECTS
MT PHYSIOLOGICAL RESPONSES
PHYSIOLOGICAL RESPONSES

PLASMA POTENTIALS
PLASMA PROPERTIES
PLASMA RINGS
PLASMA SPRAYING
PLASMA STABILITY
PLASMA INTERACTIONS
MT PLASMA-ELECTROMAGNETIC INTERACTION

Tissue response to peritoneal implants

A photovoltaic power system reliability considerations

Description of photovoltaic village power systems in the United States and Africa

Photovoltaic power system reliability considerations

Photovoltaic power system reliability considerations

U PITCH (INCORPORATION)
MT PHYSIOLOGICAL RESPONSES
PHYSIOLOGICAL RESPONSES

Planar multifunction high voltage solar cells [NASA-TM-15108].

Planar multifunction high voltage solar cells [NASA-TM-15108].
POLYMER MATRIX COMPOSITE MATERIALS

A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

High char imide-modified epoxy matrix resins

Development of a Kevlar/PMM-15 reduced drag DC-9 nacelle fairing

[AIAA PAPER 80-1194] p0011 ABO-39789

Improve fiber retention by the use of fillers in graphite fiber/resin matrix composites

[AIAA-TR-79-9220] p0067 WBO-13117

POLYMERIC FILMS

Effect of thermal aging on the tribological properties of polyimide films and polyimide-bonded graphite fluoride films

[ASLE PREPRINT 79-AM-31-1] p0088 ABO-12094

Mechanisms of lubrication and wear of a bonded solid lubricant film

Lubrication and wear mechanisms of polyimide-bonded graphite fluoride films subjected to low contact stress

[NASA-TP-1584] p0085 WBO-17220

Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

POLYMERS

Mechanical and chemical effects of ion-texturing biomedical polymers

p0085 ABO-13065

Modification of the electrical and optical properties of polymers --- ion irradiation to create texture

POLYMERIZED ETHER

Boundary lubrication, thermal and oxidative stability of fluorinated polyether and a perfluorocopolyether triazine

[ASLE PREPRINT 79-AM-10-1] p0088 ABO-12089

POLYVACETIC ACID

Method of cross-linking polyvinyl alcohol and other water soluble resins

[NASA-CASE-LW-13013-1] p0088 WBO-32516

POPULATION THEORY

Gaussian pooling model selection for two-level fixed effects factorial experiments

p0164 ABO-40764

PORES

U POROSITY

POROSITY

Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

p0082 ABO-29990

Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

p0082 ABO-35495

Formation of porous surface layers in reaction bonded silicon nitride during processing

p0090 ABO-51574

Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

Formation of porous surface layers in reaction bonded silicon nitride during processing

[NASA-TM-81493] p0076 WBO-23456

POWDERED METALS

U METAL POWDER

POWER CONDITIONING

POWER EFFICIENCY

How to quickly predict the overall TEP and the multistage depressed collector efficiency

p0102 ABO-31759

Improved traveling wave tubes --- for ECCS systems

p0102 ABO-49225

Power processing technology for spacecraft primary ion propulsion

p0065 ABO-46265

Heat pipe cooled power processing magnets

[AIAA PAPER 79-2082] p0059 ABO-10392

Power processing technology for spacecraft primary ion propulsion

p0107 ABO-26960

modeling and analysis of Power Processing Systems

p0066 ABO-28894

Power processing technology for spacecraft primary ion propulsion

p0101 WBO-11327

Heat pipe cooled power magnets

[NASA-CASE-LW-12568-1] p0137 WBO-14472

Improved traveling wave tubes

Test results of a multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12591] p0102 WBO-22598

Study of power management technology for orbital multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12592] p0153 WBO-28862

POWER EFFICIENCY

How to quickly predict the overall TEP and the multistage depressed collector efficiency

p0102 ABO-31759

Improved traveling wave tubes --- for ECCS systems

p0102 ABO-49225

Power processing technology for spacecraft primary ion propulsion

p0065 ABO-46265

Heat pipe cooled power processing magnets

[AIAA PAPER 79-2082] p0059 ABO-10392

Power processing technology for spacecraft primary ion propulsion

p0107 ABO-26960

Modeling and analysis of Power Processing Systems

p0066 ABO-28894

Power processing technology for spacecraft primary ion propulsion

p0101 WBO-11327

Heat pipe cooled power magnets

[NASA-CASE-LW-12568-1] p0137 WBO-14472

Improved traveling wave tubes

Test results of a multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12591] p0102 WBO-22598

Study of power management technology for orbital multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12592] p0153 WBO-28862

POWER EFFICIENCY

How to quickly predict the overall TEP and the multistage depressed collector efficiency

p0102 ABO-31759

Improved traveling wave tubes --- for ECCS systems

p0102 ABO-49225

Power processing technology for spacecraft primary ion propulsion

p0065 ABO-46265

Heat pipe cooled power processing magnets

[AIAA PAPER 79-2082] p0059 ABO-10392

Power processing technology for spacecraft primary ion propulsion

p0107 ABO-26960

Modeling and analysis of Power Processing Systems

p0066 ABO-28894

Power processing technology for spacecraft primary ion propulsion

p0101 WBO-11327

Heat pipe cooled power magnets

[NASA-CASE-LW-12568-1] p0137 WBO-14472

Improved traveling wave tubes

Test results of a multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12591] p0102 WBO-22598

Study of power management technology for orbital multi-100kWe applications. Volume 2: Study

[NASA-CASE-LW-12592] p0153 WBO-28862
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPULSIVE EFFICIENCY</td>
</tr>
<tr>
<td>INTERNAL COATING OF AIR COOLED GAS TURBINE BLADES</td>
</tr>
<tr>
<td>NASA-CR-159701</td>
</tr>
<tr>
<td>EFFECT OF THERMAL CYCLING ON 2R02-2V03 THERMAL BARRIER COATINGS</td>
</tr>
<tr>
<td>NASA-TM-81480</td>
</tr>
<tr>
<td>A SILICON-SILVER/ALUMINIDE COATING --- PROTECTS AIRCRAFT AND LAND-BASED GAS TURBINE ENGINES</td>
</tr>
<tr>
<td>NASA-CASE-LWM-13543-1</td>
</tr>
<tr>
<td>HIGH TEMPERATURE SELF-LUBRICATING COATINGS FOR AIR LUBRICATED FOLL BEARINGS FOR THE AUTOMOTIVE GAS TURBINE ENGINE</td>
</tr>
<tr>
<td>NASA-CR-159048</td>
</tr>
<tr>
<td>PERFORMANCE OF TWO-LAYER THERMAL BARRIER SYSTEMS ON DIRECTIONALLY SOLIDIFIED Ni-Al and Ni-Base</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NASA-TM-81604</td>
</tr>
<tr>
<td>IMPROVED BOND COATINGS FOR USE WITH THERMAL BARRIER COATINGS</td>
</tr>
<tr>
<td>NASA-TR-81567</td>
</tr>
<tr>
<td>PUBLIC HEALTH</td>
</tr>
<tr>
<td>AMOUNTMENT OF POTENTIAL EXPOSURE TO FRIABLE INSULATION MATERIALS CONTAINING ASBESTOS</td>
</tr>
<tr>
<td>NASA-TM-81435</td>
</tr>
<tr>
<td>FUELS</td>
</tr>
<tr>
<td>DESIGN STUDY OF STEEL V-BELT CVT FOR ELECTRIC VEHICLES</td>
</tr>
<tr>
<td>NASA-TR-159845</td>
</tr>
<tr>
<td>FUEL SAVING FLOW</td>
</tr>
<tr>
<td>UNSTABLE FLOW</td>
</tr>
<tr>
<td>FUEL COMMUNICATION</td>
</tr>
<tr>
<td>THE 30/20 GHz MIXED USER ARCHITECTURE DEVELOPMENT STUDY</td>
</tr>
<tr>
<td>NASA-CR-159668</td>
</tr>
<tr>
<td>THE 30/20 GHz MIXED USER ARCHITECTURE DEVELOPMENT STUDY: EXECUTIVE SUMMARY</td>
</tr>
<tr>
<td>NASA-CR-159667</td>
</tr>
<tr>
<td>A DIGITALLY IMPLEMENTED COMMUNICATION EXPERIMENT UTILIZING THE COMMUNICATIONS TECHNOLOGY</td>
</tr>
<tr>
<td>SATELLITE, HURON</td>
</tr>
<tr>
<td>NASA-TR-81452</td>
</tr>
<tr>
<td>FUSELAGE</td>
</tr>
<tr>
<td>ELECTRIC FUSELAGE</td>
</tr>
<tr>
<td>PUMP SEALS</td>
</tr>
<tr>
<td>ANALYSIS AND DESIGN OF A UNIFORM-CLEARANCE, PUMPING-CAGE ROD SEAL FOR THE STIRLING ENGINE</td>
</tr>
<tr>
<td>NASA-CR-159663</td>
</tr>
<tr>
<td>PUMPS</td>
</tr>
<tr>
<td>NT CENTRIFUGAL PUMPS</td>
</tr>
<tr>
<td>NT TURBINE PUMPS</td>
</tr>
<tr>
<td>PYROLYSIS ALLOY</td>
</tr>
<tr>
<td>U COMPOSITE MATERIALS</td>
</tr>
<tr>
<td>U REFRAC TORY MATERIALS</td>
</tr>
<tr>
<td>U FLIGHT MEASUREMENTS</td>
</tr>
<tr>
<td>U TEMPERATURE MEASUREMENT</td>
</tr>
</tbody>
</table>

| A-80 |

<table>
<thead>
<tr>
<th>PROPELLENTS & ENGINE PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNAL COATING OF AIR COOLED GAS TURBINE BLADES</td>
</tr>
<tr>
<td>NASA-CR-159701</td>
</tr>
<tr>
<td>EFFECT OF THERMAL CYCLING ON 2R02-2V03 THERMAL BARRIER COATINGS</td>
</tr>
<tr>
<td>NASA-TM-81480</td>
</tr>
<tr>
<td>A SILICON-SILVER/ALUMINIDE COATING --- PROTECTS AIRCRAFT AND LAND-BASED GAS TURBINE ENGINES</td>
</tr>
<tr>
<td>NASA-CASE-LWM-13543-1</td>
</tr>
<tr>
<td>HIGH TEMPERATURE SELF-LUBRICATING COATINGS FOR AIR LUBRICATED FOLL BEARINGS FOR THE AUTOMOTIVE GAS TURBINE ENGINE</td>
</tr>
<tr>
<td>NASA-CR-159048</td>
</tr>
<tr>
<td>PERFORMANCE OF TWO-LAYER THERMAL BARRIER SYSTEMS ON DIRECTIONALLY SOLIDIFIED Ni-Al and Ni-Base</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NASA-TM-81604</td>
</tr>
<tr>
<td>IMPROVED BOND COATINGS FOR USE WITH THERMAL BARRIER COATINGS</td>
</tr>
<tr>
<td>NASA-TR-81567</td>
</tr>
</tbody>
</table>
Acoustic analysis of aft noise reduction techniques measured on a twenty inch (50.8 cm) diameter fan -- quiet engine
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARCINOMA OF THE PANCREAS</td>
</tr>
<tr>
<td>RADIATION TOLERANCE</td>
</tr>
<tr>
<td>Radiation damage in lithium-counterdoped n/p silicon solar cells</td>
</tr>
<tr>
<td>Thin n+p radiation-resistant solar cell feasibility study</td>
</tr>
<tr>
<td>RADIATION ALTIMETERS</td>
</tr>
<tr>
<td>Solid-state X-band combiner study</td>
</tr>
<tr>
<td>RADIATION COMMUNICATION</td>
</tr>
<tr>
<td>NT TIME DIVISION MULTIPLE ACCESS</td>
</tr>
<tr>
<td>The 30/20 GHz fixed communications systems service demand assessment. Volume 1: Executive summary</td>
</tr>
<tr>
<td>The 30/20 GHz fixed communications systems service demand assessment. Volume 2: Main report</td>
</tr>
<tr>
<td>The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex</td>
</tr>
<tr>
<td>RADIO FREQUENCIES</td>
</tr>
<tr>
<td>NT EXTREMELY HIGH FREQUENCIES</td>
</tr>
<tr>
<td>NT ULTRAHIGH FREQUENCIES</td>
</tr>
<tr>
<td>RADIO RELAY SYSTEMS</td>
</tr>
<tr>
<td>NT ULTRAHIGH FREQUENCIES</td>
</tr>
<tr>
<td>RADIO TRANSMISSION</td>
</tr>
<tr>
<td>NT MILLIMETER WAVES</td>
</tr>
<tr>
<td>NT ULTRAHIGH FREQUENCIES</td>
</tr>
<tr>
<td>RADIOSENSITIVITY</td>
</tr>
<tr>
<td>U RADIATION THERAPY</td>
</tr>
<tr>
<td>RADIATION THERAPY</td>
</tr>
<tr>
<td>RAIN</td>
</tr>
<tr>
<td>Concepts for 18/30 GHz satellite communication systems, volume 1</td>
</tr>
<tr>
<td>Concepts for 18/30 GHz satellite communication systems, volume 1A: Appendix</td>
</tr>
<tr>
<td>Concepts for 18/30 GHz satellite communication systems study, executive summary</td>
</tr>
<tr>
<td>RAINBOWS</td>
</tr>
<tr>
<td>Calculation of water drop trajectories to and about arbitrary three-dimensional bodies in potential airflow</td>
</tr>
<tr>
<td>RAKET ENGINES</td>
</tr>
<tr>
<td>NT COMBUSTION RENGET ENGINES</td>
</tr>
<tr>
<td>RANKINE CYCLE</td>
</tr>
<tr>
<td>Study of advanced radial outflow turbine for solar steam Rankine engines</td>
</tr>
<tr>
<td>A 15kW (nominal) solar thermal-electric power conversion concept definition study: Steam Rankine reciprocator system</td>
</tr>
<tr>
<td>The 15 kW sub e (nominal) solar thermal-electric power conversion concept definition study: Steam Rankine turbine system</td>
</tr>
<tr>
<td>A 15 kW (nominal) solar thermal-electric power conversion concept definition study: Steam Rankine reciprocator system</td>
</tr>
<tr>
<td>RARE EARTH ELEMENTS</td>
</tr>
<tr>
<td>NT CERIUM</td>
</tr>
<tr>
<td>NT YTTRIUM</td>
</tr>
<tr>
<td>RARE GASES</td>
</tr>
<tr>
<td>NT ARON</td>
</tr>
<tr>
<td>NT NEON</td>
</tr>
<tr>
<td>NT XENON</td>
</tr>
<tr>
<td>Radiation damage in lithium-counterdoped n/p silicon solar cells</td>
</tr>
<tr>
<td>Inert gas ion thruster development</td>
</tr>
<tr>
<td>RADIATION EFFECTS</td>
</tr>
<tr>
<td>Global calibration of terrestrial reference cells and errors involved in using different irradiance monitoring techniques</td>
</tr>
<tr>
<td>RADIATION EFFECTS</td>
</tr>
<tr>
<td>RADIATION MEASUREMENTS</td>
</tr>
<tr>
<td>RADIATION PRESSURE</td>
</tr>
<tr>
<td>NT SOUND PRESSURE</td>
</tr>
<tr>
<td>RADIATION PROTECTION</td>
</tr>
<tr>
<td>NT X RAY PROTECTION</td>
</tr>
<tr>
<td>RADIATION SHIELDING</td>
</tr>
<tr>
<td>NT RADIATION SHIELDING</td>
</tr>
<tr>
<td>RADIATION THERAPY</td>
</tr>
<tr>
<td>Preliminary results of fast neutron treatments in</td>
</tr>
</tbody>
</table>
REINFORCED PLASTICS

REIGNITION

RELATIONSHIPS

RESEARCH AND DEVELOPMENT

REPUBLIC MILITARY AIRCRAFT

REUSABLE SPACECRAFT

RESOURCES

RESOURCES MANAGEMENT

RESOURCES NUMBER

RESISTIVITY

RESONANT FREQUENCIES

RESOURCES MANAGEMENT

REMARKS

RELAPSE ANALYSIS

RELAY ENGINEERING

RELATIONSHIPS

RELIABILITY

RESEARCH AND DEVELOPMENT

RESEARCH FACILITIES

RESEARCH MANAGEMENT

RESEARCH MANAGEMENT
Low speed test of the aft inlet designed for a (NASA-CR-159739)

SEALS (STOPPERS)

Gas and steam seals

SEPARATORS

A sealing system for gas and steam seals

SELF ALIGNMENT

Homogeneous alignment of magnetic liquid crystals by ion beam etched surfaces

SENSORS

MT SANDS

Quantitative interpretation of Great Lakes remote sensing data

SENSITIVITY

NT RADIATION TOLERANCE

SPECTRAL SENSITIVITY

SEPARATED FLOW

MT BOUNDARY LAYER SEPARATION

An analytical and experimental study of a short m-shaped subsonic diffuser of a transonic inlet

SEPARATORS

Flexible formulated plastic separators for alkaline batteries

SERIES (MATHEMATICS)

MT POWER SERIES

SENT (ROCKET TESTS)

MT SPACE ELECTRIC ROCKET TESTS

SENT 2 SPACECRAFT

SENT 2 spacecraft (NASA-CR-159606)

SENT II 1979 extended flight thrusters system performance

SENT 2 PHYSICS

Flame physics analysis of SENT-2 operation

SERVICE LIFE

An ion thruster component test (NASA-PAPER-79-2116)

A model for predicting the wearout lifetime of the LEO/Hughes 30-ohm mercury ion thruster (NASA-PAPER-79-2116)
Subject Index

- Life test studies on tungsten impregnated cathodes
 p0103 A80-45122
- Cycles till failure of siltron-zinc cells with competing failure modes - Preliminary data analysis
 p0146 A80-46614
- Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
 p0146 A80-46329
- Design, performance and life cycle cost-effectiveness relationships for a 500kW space solar array
 p0065 A80-48256
- JP9D-7A (SP) jet engine performance deterioration trends
 [NASA-TR-61459]
 p0016 W00-20274
- Performance deterioration based on existing (historical) data: JP9D jet engine diagnostics program
 [NASA-CR-135448]
 p0036 W00-22324
- Performance deterioration based on in-service engine data: JP9D jet engine diagnostics program
 [NASA-CR-135523]
 p0040 W00-23560

Shear Mechanics

- Single-stage electrohydraulic servosystem for actuating on airflow valves with frequencies to 500 hertz
 [NASA-TP-1578]
 p0046 W00-29369

Shafts (Machine Elements)

- MT Turbomachinery
 - Some flow characteristics of conventional and tapered high-pressure-drop simulated models
 [ASME PAPER 79-LC-8-2]
 p0120 A80-14727
 - Load support system analysis high speed input
 [ASME PAPER 79-LC-8-3]
 p0129 A80-14760
 - Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft
 [ASME PAPER 80-05-162]
 p0121 A80-42272
 - Circumferential shaft seal
 [NASA-CR-134911]
 p0115 W00-18401
 - Operating characteristics of high-speed, jet-lubricated 35-millimeter-bore ball bearing with a single-outer-land-guided cage
 [NASA-CR-134912]
 p0117 W00-21753
 - Limit cycles of a flexible shaft with hydrodynamic journal bearings in unstable regimes
 p0127 W00-29725
 - On the role of oil-film bearings in promoting shaft instability: Some experimental observations
 p0120 W00-29726
 - Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports
 p0120 W00-29731
 - Effect of cage design on characteristics of high-speed, jet-lubricated 35-millimeter-bore ball bearing --- turbojet engines
 [NASA-TP-1732]
 p0120 A80-33749

Shake Aircraft

- Alternative jet aircraft fuels
 p0012 W00-10209
- Use of petroleum-based correlations and estimation methods for synthetic fuels
 p0093 W00-27509
- Military jet fuel from shale oil
 p0042 W00-29308

Shake Flow

- A time dependent difference theory for sound propagation in ducts with flow
 p0170 A80-20951

Shake Properties

- MT Shear Strength
- Shear Strength
 - Effect of interfacial species on shear strength of metal-sapphire contacts
 p0178 A80-22300

Shells

- MT Plasma Shells
- Shielding
- MT Radiation Shielding

Shock Diffusers

- U Diffusers
- U Shock Wave Attenuation

Shock Resistance

- Preliminary study of methods for providing thermal shock resistance to plasma-sprayed ceramic gas-path seals
 [NASA-TP-1561]
 p0087 W00-23453

Shock Wave Attenuation

- Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13)
 [NASA-TP-1668]
 p0169 W00-23100

Shock Wave Control

- Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a NASA 2.5 axiymmetric mixed-compression inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test
 [NASA-TP-1532]
 p0014 W00-14124

Short-Haul Aircraft

- QCSEE UTW engine powered-lift acoustic performance --- Quiet Clean Short-Haul Experimental Engine
 Under The Wing
 [NASA-TP-17378]
 p0028 W00-14115
 Quiet Clean Short-Haul Experimental Engine (QCSEE)
 Under-the-Wing (UTW) engine boilerplate nozzle test report.
 Volume 2: Aerodynamic and performance
 [NASA-CR-135250]
 p0028 W00-14116
 Quiet, Clean, Short-Haul, Experimental Engine (QCSEE)
 Under-The-Wing (UTW) engine acoustic design
 [NASA-CE-135267]
 p0028 W00-14117
 Quiet, Clean, Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) engine acoustic design
 [NASA-CR-135268]
 p0028 W00-14118
 Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-The-Wing (UTW) graphite/FAR cool development
 [NASA-CR-135269]
 p0028 W00-14119
 Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Engine (QSRE)
 [NASA-TP-1556]
 p0014 W00-14121
 Demonstration of short-haul aircraft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 1
 [NASA-TP-13846]
 p0033 W00-15083
 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 2
 [NASA-TP-13847]
 p0034 W00-15084
 Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume 3
 [NASA-TP-13848]
 p0034 W00-15085
 Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-the-Wing (OTW) design report
 [NASA-TP-13849]
 p0034 W00-15086
 Quiet Clean Short-Haul Experimental Engine (QCSEE) preliminary under-the-wing flight propulsion system analysis report
 [NASA-TP-13850]
 p0034 W00-15088
 Quiet Clean Short-Haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan
 [NASA-TP-13851]
 p0034 W00-15089
 Quiet Clean Short-Haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report
 [NASA-TP-13852]
 p0034 W00-15090
 Quiet Clean Short-Haul Experimental Engine (QCSEE) over-the-wing control system design report
 [NASA-TP-13853]
 p0035 W00-15092
 Quiet Clean Short-Haul Experimental Engine (QCSEE). Core engine noise measurements
 [NASA-TP-13854]
 p0035 W00-15093
 Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and mechanical performance
 [NASA-TP-13855]
 p0035 W00-15094
 Quiet Clean Short-Haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion systems analysis report
 [NASA-TP-13856]
 p0035 W00-15095
 Quiet Clean Short-Haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nozzle test report, volume 1
 [NASA-TP-13857]
 p0035 W00-15096
 Quiet Clean Short-Haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate
SILICON CARBIDES

SILICON NITRIDES

SILICON JUNCTIONS

SILICON COMPOUNDS

IT SILICON NITRIDES

NT CALCIUM SILICATES

MT SILICON CARBIDES

MT SILICON NITRIDES

An experimental, low-cost, silicon-aluminate high-temperature coating for superalloys

[SILICON-N-16455] p0076 N80-20370

State-of-the-art silicon nitride materials

p0022 N80-29358

SILICON JUNCTIONS

Radiation damage in high voltage silicon solar cells

p0179 ABO-94234

SILICON ENHANCERS

State-of-the-art of silicon nitride materials

p0099 ABO-13066

Reaction bonded silicon nitride prepared from wet attrition-milled silicon

p0099 ABO-13066

3500-hour durability testing of ceramic materials for automotive gas turbine engines

[SILICON-N-16455] p0099 ABO-30575

Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

p0090 ABO-46099

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a S13N4 - 8 w/o Y2O3 ceramic

p0090 ABO-11010

Performance of Chevron-notch short bar specimens in determining the fracture toughness of silicon nitride and aluminum oxide

p0090 ABO-50696

Formation of porous surface layers in reaction bonded silicon nitride during processing

p0090 ABO-51574

Improving the stress rupture and creep of silicon nitride --- turbine materials

[SILICON-CR-15966] p0072 N80-10318

Development of silicon nitride of improved toughness

[SILICON-CR-15966] p0072 N80-10319

Sintered silicon nitride regenerator fabrication

[SILICON-CR-159713] p0072 N80-25209

Radiation damaged silicon nitride prepared from wet attrition-milled silicon --- fracture toughness

[SILICON-CR-159729] p0072 N80-27403

Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a S13N4-8 w/o Y2O3 ceramic

[SILICON-CR-159729] p0072 N80-27404

The 3500 hour durability testing of commercial ceramic materials

[SILICON-CR-159783] p0091 N80-31552

SILICON POLYMERS

MT SILICON RESINS

MT SILICONES

SILICON SOLAR CELLS

U SOLAR CELLS

SILICON RESINS

Silicone modified resins for graphite fiber laminates

p0072 N80-22407

SILICONES

Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment

[SILICON-M-79248] p0096 N80-13137

SIMILARITY THOREUM

Application of the principle of similarity fluid mechanics

p0107 ABO-10039

Extension of similarity test procedures to cooled engine components with insulating ceramic coatings

[SILICON-M-1615] p0105 N80-24577

Toward the use of similarity theory in two-phase choked flows

[SILICON-M-1615] p0106 N80-29623

SIMULATIONS

MT ACOUSTIC SIMULATION

MT ANALOG SIMULATION

MT COMPUTERIZED SIMULATION

MT CONTROL SIMULATION

MT DIGITAL SIMULATION

MT EXHAUST FLOW SIMULATION

MT FLIGHT SIMULATION

MT SPACE ENVIRONMENT SIMULATION

SIMULATORS

MT CONTROL SIMULATION

A-91
The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide (NASA-TR-81569) p0106 N80-29624

A laboratory facility for electric vehicle propulsion system testing (NASA-TR-81574) p0163 N80-30229

SINTERING

Kinematic correction for roller skewing

Stirring effects of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a 53.4% - 4.8% SiC ceramic (NASA-TR-8164) p0120 A80-14734

Effects of oxide additions and temperature on sinterability of nickel-based silicon nitride (NASA-TR-81453) p0087 N80-23456

Formation of porous surface layers in reaction bonded silicon nitride during processing (NASA-TR-81453) p0087 N80-23456

SLOW DATA PROCESSORS

Modified power law equations for vertical wind profiles --- investigation of wind power plant siting

SKEWNESS

Kinematic correction for roller skewing

SKIN FRICTION

Skin friction

SLIDING FRICTION

The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide (NASA-TR-79-IC-5C-1) p0120 A80-14734

Rolling-element bearings --- contact sliding friction study of solid bodies (NASA-TR-81565) p0121 A80-31961

Sliding friction of some metallic glasses (NASA-TR-81566) p0090 A80-46153

Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide (NASA-TR-81567) p0096 N80-46100

Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum (NASA-SP-1612) p0087 N80-22494

SLOT ANTENNAS

UHF coplanar-slot antenna for aircraft-to-satellite data communications (NASA-TR-81568) p0099 A80-13004

SLOTTED ANTENNAS

U SLOT ANTENNAS

SHAKING

U LATERAL OSCILLATION

SODIUM

Analysis of the response of a thermal barrier coating to sodium and vanadium doped combustion gases (NASA-TR-81569) p0076 N80-10344

SODIUM CHLORIDES

The chemistry of sodium chloride involvement in processes related to hot corrosion (NASA-TR-81570) p0074 A80-16041

SODIUM COMPOUNDS

MT SODIUM CHLORIDES

MT SODIUM HYDROXIDES

MT SODIUM SULFATES

SODIUM HYDROXIDES

Engineering evaluation of a sodium hydroxide thermal energy storage module (NASA-TR-81571) p0140 N80-18563

SODIUM SULFATES

Experimental studies of the formation/deposition of sodium sulfate in/fixed combustion gases --- hot corona of gan turbine engine components (NASA-TR-81572) p0140 N80-18563

A-92
Computed voltage distribution around Solar Electric Propulsion spacecraft

Initial comparison of 555M ground test results and flight data to NASCAP simulations —— Satellite Surface Potential Monitor NASC Charging Analyzer Program

Effects of secondary yield parameter variation on predicted equilibrium potential of an object in a charging environment —— for spacecraft

First results of material charging in the space environment

Active control of spacecraft charging

A three-dimensional spacecraft-charging computer code

Space environmental interactions with biased spacecraft surfaces

Torquing and electrostatic deformation of the solar sail

Specific spacecraft evaluation: Special report —— charged particle transport from a mercury ion thruster to spacecraft surfaces

Configuration effects on satellite charging response

Effects of secondary yield parameter variation on predicted equilibrium potential of an object in a charging environment —— using compacted simulation

Computed voltage distributions around solar electric propulsion spacecraft

NASCAP modelling computations on large optics spacecraft in geosynchronous substorms environments

Space environmental interactions with biased spacecraft surfaces

Spacelab image processor for electric propulsion transportation systems

Torquing and electrostatic deformation of the solar sail

Large Space Systems/Low-Thrust Propulsion Technology

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Characterization of primary electric propulsion systems

Preliminary results of the mission profile life tent of a 30 cm mg bombardment thruster

Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital ion thruster missions

Upper stages utilizing electric propulsion

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Evaluation of particle transport for the P80-1 spacecraft —— mercury ion thruster spacecraft surfaces interactive effects

Electric Propulsion spacecraft

Space environmental interactions with biased spacecraft surfaces

Power management for multi-100 KWe space systems

Heat pipe cooling of power processing magnet

Economical space power systems

Economical analysis of the design and fabrication of a space qualified power system

Advanced technology light weight fuel cell program

Orbiting space vehicle long-life hydrogen oxygen fuel cell systems

Spacecraft PROPERTIES

MT ELECTROMAGNETIC PROPULSION

MT ION PROPULSION

MT MASS DELIVERIES (PAYLOAD DELIVERY)

MT PLASMA PROPULSION

MT SOLAR ELECTRIC PROPULSION

MT SOLAR PROPULSION

Characterization of primary electric propulsion systems

Preliminary results of the mission profile life tent of a 30 cm mg bombardment thruster

Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital ion thruster missions

Upper stages utilizing electric propulsion

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

Evaluation of particle transport for the P80-1 spacecraft —— mercury ion thruster spacecraft surfaces interactive effects

STEEL STRUCTURES
Design, fabrication, and test of a steel spar wind turbine blade. NASA-TH-81505

STEELS
MT AUSTENITIC STAINLESS STEELS
MT CARBON STEELS
MT CHROMIUM STEELS
MT HIGH STRENGTH STEELS
MT MARAGING STEELS
MT STAINLESS STEELS

High temperature thermal energy storage in steel and sand. NASA-TH-81505

AERODYNAMICS
Wind tunnel investigation of the Titan Forward Skirt compartment flow from a free-stream Mach number of 0.80 to 1.96—conducted in the Lewis Research Center 8x6 foot supersonic wind tunnel. NASA-TM-81572

STATICS
Power processing technology for spacecraft primary ion propulsion. NASA-TM-81470

STATISTICAL VARIABLES
An improved prediction method for the noise generated in flight by circular jets. NASA-TM-81584

STATISTICAL ANALYSIS
Effect of inflow control on inlet noise of a cut-off fan in an anechoic chamber. NASA-TM-81467

STEAM RANKINE ENGINE
Static and transient performance of YF-102 engine with up to 14 percent core bleed for the H-13 steel. NASA-TM-81692

STEERING SYSTEMS
Screen printing technology applied to silicon solar cell fabrication. NASA-CR-159765

STEPS
MT AUSTENITIC STAINLESS STEELS
MT CARBON STEELS
MT PRECIPITATED STAINLESS STEELS
MT HIGH STRENGTH STEELS
MT CHROMIUM STEELS
MT NICKEL STEELS
MT STAINLESS STEELS

High temperature thermal energy storage in steel and sand. NASA-TH-81505

STIFFNESS
Modified face seal for positive fluid stiffness. NASA-CR-159761

STIFFNESS AND DAMPING
Development of procedures for calculating stiffness and damping of elastomers in engineering applications, part 7. NASA-CR-159761

STIFFNESS AND DAMPING
Modified face seal for positive fluid stiffness. NASA-CR-159761

STIMULATED EMISSION DEVICES
MT CARBON DIOXIDE LASERS

STIRLING CYCLE
Assessment of the state of technology of automotive Stirling engines. NASA-CR-159587

STIRLING CYCLE
Screen-printing technology applied to silicon solar cell fabrication. NASA-CR-159765

STIRLING CYCLE
Supporting research and technology for automotive Stirling engine development. NASA-CR-159587

STIRLING CYCLE
Testing of reciprocating seals for application in a Stirling cycle engine. NASA-CR-159587

STIRRING ROSE
Testing of reciprocating seals for application in a Stirling cycle engine. NASA-CR-159587

STORAGE BATTERIES
MT NICKEL HYDROGEN BATTERIES
MT NICKEL-ZINC BATTERIES

STORAGE BATTERIES
Decay of the zincate concentration gradient at an alkaline zinc cathode after charging. NASA-TM-81569

STRATEGIES
Improvement and scale-up of the NASA Redox storage system. NASA-159587
i

SUPERSONIC PLOW

SUBJECT INDEX

p0070 000-21492
[NASA-TM-81469]
SULFIDES
NT MOLYBDENUM DISULFIDES
NT MOLYBDENUM SULFIDES
SULFUR COMPOUNDS
NT MOLYBDENUM DISULFIDES
NT MOLYBDENUM SULFIDES
HT SODIUM SULFATES
NT SULFATES
MT SULFURIC ACID
SO.L► ORIC ACID
Effect on combined cycle efficiency of Stack gas
temperature constraints to avoid acid corrosion
[NASA-TM-81531]
p0143 080-27004
SUPERALLOTS
U HEAT RESISTANT ALLOYS
SUPMMCRAMGENS
supercharged topping rocket propellant food system
[NASA-CASE-XLE-02062-1]
p0056 080-14188
Diesel engine catalytic combustor system --turbocharging
p0118 M60-26659
[NASA-CASE-LEW-12995-1]
SUPERCHARGING
U SUPERCHARGERS
SUPRACONDUCTING MAGNETS
Apparatus for trapping and thermal detection of
atomic hydrogen in high magnetic fields at low
temperatures

STRUCTURAL DESIGN CRITMAIA
Executive summary: ho4-1 Wind turbine generator
analysis and design report
POW 080-11550
[MASK-CR-159497]
Computer simulation of engine Syntex$
[NASA-TM-79290]
p0015 060-15132
STROCTONAL DYNAMICS
U DYNAMIC STRUCTURAL ANALYSIS
STROCTONAL ENGINEERING
Coannular supersonic ejector nozzles
P0002 MOO-10128
Quiet Clean Short-haul Experimental Engine (QCSEE)
Under-The-Wing (UTW) composite nacelle
[NASA-CR-135352]
p0032 U80-15119
STRUCTURAL FATIGUE
U FATIGUE (MATERIALS)
STRUCTURAL n 9ABEMS
MT BEAMS (SUPPORTS)
NT CARTILEVER BEAMS
STRUCTURAL STRAIN
Development of silicon nitride of :aproved toughness
[NASA-CH-159676)
p0072'USO-10319
Effects or axisyaxetric contractions on turbulence
of various scales
p0006 MOO-32328
[NASA-CR-165136]
52RUCTURAL VIBRATION
MT FLUTTER
NT SUPERSONIC FLUTTER
NT TORSIONAL VIBRATION
Vibration and buckling of rectangular plates under
in-plane hydrostatic loading
pO133 ABO-45364
STS
U SPACF TRANSPORTATION SYSTEM
STYRENES
LOW temperature cross linking polyimides
[NASA-CASE-LEM-12876-1]
p0087 580-26447
SUBCMITICAL FLOE
Evaluation of a strained-coordinate perturbation
procedure - Nonlinear subsonic and transonic flows
[AIAA PAPER 80-0339]
p0006 ASO-18324
SUBGRATITY
U REDUCED GRAVITY
SUMLAYERS
U SUBSTRATES
SUBSONIC AIRCRAFT
Zero-length, slotted-lip inlet for subsonic
military aircraft
p0004 A80-41203
[AIAA PAPER 80-1245]
SUBSONIC FLOW
Evaluation of a strained-coordinate perturbation
procedure - Nonlinear subsonic and transonic flows
p0006 A80-18324
[AMA PAPER 80-03391
Summary of advanced methods for predicting high

p0111 A80-34546

SUPMNCONDUCTORS
Critical currents in 1-15 structure Nb3A1
converted from cold-worked bcc structure
pO179 A80-33853
SUPERCRITICAL FLOE
Evaluation of a strained-coordinate perturbation
procedure - Nonlinear subsonic and transonic flows
p0006 A00-18324
[AIAA PAPER 80-03391
SUPERRIGB FRRQURNCIES
Concepts for 18/30 GHZ satellite communication
system, volume 1
p0098 WOO-11277
[NASA-CH-159625-VOL-1]s
concepts for 18/30 GHz - atellite communication
system, volume IA: Appendix
[NASA-CE-159625-VOL -1A]p0098 USO-11278
Concepts for 18/30 GHz satellite communication
system study. Executive summary
p0098 080-11279
[NASA-CE-159680]
Solid-state X-band combiner study
p0103 080-11328
[NASA-CE-162432]
SUPERBYBRID MATERIALS
MT GRAPHITE-EPDXY COMPOSITE MATERIALS
SUPERSONIC AIRCRAFT
MT F-16 AIRCRAFT
NT' F-102 AIRCRAFT
5T SUPERSONIC COMMERCIAL AIR TRANSPORT
NT SUPERSONIC TRANSPORTS
SUPERSONIC COMBUSTION NANJET ENGINES
Hypersonic propulsion --- supersonic combustion
ramjet engines
p0013 080-10217
SUPERSONIC COMMERCIAL AIM TRANSPORT
supersonic propulsion technology --- variable
cycle engines

speed propeller performance
p0003 A80-20966
[AIAA PAPER 80-0225]
A three-dimensional turbulent compressible
subsonic duct flow analysis for use with
constructed coordinate systems
p0006 A80-41601
[AIAA PAPER 60-1398]
Summary of advanced methods for predicting high
speed propeller performance
p0002 NBO-15051
[NASA-TM-81409]
Influence of pressure driven secondary flows on
the behavior of turbofan forced mixers
p0105 NOO-27632
[NASA-TM-81541]
SUBSTRATES
investigation into the effect of plasma
pretreatment on the adhesion of parylene to
various substrates
p0066 A80-25900
Investigation into the effect of plasma
pretreatment on the adhesion of paryleae to
various substrates
[NASA-TM-79224]
p011-4 NBO-13473
SUCTION
Small, high pressure liquid hydrogen turbopunp
p0125 U80-26662
[NASA-CH-159821]
SULFATES
NT SODIUM SULFATES
Reactions of calcium orthosilicate and barium
zirconate with oxides and sulfates of various
elements
p0085 NOO-13256
[NASA-TM-79272]
sulfate and nitrate collected by filter sampling
near the tropopause
p0157 580-14581
[RASA-TP-1567]
Fouling and the inhibition of salt corrosion --hot corrosion of superalloys

p0013 980-10216

SUPERSONIC COMPRESSORS
Inlet flow distortion in turbomachinery. I
Comparison of theory and experiment in a
transonic fan stage. II - ► parameter study
p0006 ASO-38895
[AIAA PAPER 80-1076]
Aerodynamic analysis of a supersonic cascade
vibrating in a complex mode
p0007 ASO-45841
SUPERSONIC CRUISE AIRCRAFT MESRARCR
Noise suppression due to annulus shaping of an
inverted-velocity-profile coaxial nozzle --supersonic cruise aircraft
p0168 080-22046
[NASA-TM-81460]
SUPERSONIC FLOM
Numerical simulation of supersonic inlets using a
three-dimensional viscous flow analysis
p0003 A80-20969
[AIAA PAPER 00-0384]
computation of three-dimensional, viscous
supersonic flow in inlets
p0U65 ASO-23941
[AIAA PAPER 80-01941
Coannular supersonic ejector nozzles
p0002 MOO-10128
Summary of advanced methods for predicting high
speed propeller performance
p0002 HOO-15051
[NASA-TM-81409]
A-99

^vIL

{

s
i
4


Surface Properties

Surface Properties

Aerodynamic analysis of a supercritical cascade vibrating in a complex mode

Supersonic Inlets

Inlet flow distortion in turbomachinery. 1 - A parameter study of theory and experiment in a transonic fan stage, AIAA Paper 80-1076

Dynamic components of a Mach 2.5 axisymmetric and turbocool engine with a poppet-valve controlled inlet stability bypass system when subjected to internal and external airflow transients

[NASA TP-1531]

Tribotest of secondary-airflow pumping with an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric air-breathing artificial inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test

[NASA TP-1542]

Development of a three-dimensional supersonic inlet flow analysis

[NASA CR-3218]

Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis

[NASA TP-19111]

Surface Roughness

The CF6 jet engine performance improvement: New front mount

[NASA CR-159639]

Comparison of inlet suppressor data with approximate theory based on cutoff ratio

[NASA TM-01406]

Surface Cooling

Full-coverage film cooling. I - Comparison of heat transfer data for inlet injection angles

[ASME PAPER 80-GT-43]

Full-coverage film cooling, II - Comparison of heat transfer data and numerical simulation

[ASME PAPER 80-GT-44]

Surface Energy

Interaction of high voltage surfaces with the space plasma --- solar arrays

[NASA CR-159731]

Surface Finish

Investigation into the effect of plasma pretreatment on the adhesion of polyethylene to various substrates

[NASA TM-01436]

Tribochemical properties of silicon carbide in metal removal processes

[NASA TN-79238]

Modification of the electrical and optical properties of polymers --- ion irradiation to create texture

[NASA CASE LEW-13027-1]

Surface Geometry

Full-coverage film cooling, II - Heat transfer data and numerical simulation

[ASME PAPER 80-GT-44]

Surface Interactions

Surface Interactions

Surface layers

Significance of thermal contact resistance in two-layer, thermal-barrier-coated turbine vanes

[NASA TM-01493]

Formation of porous surface layers in reaction bonded silicon nitride during processing

[NASA TM-01493]

Surface Pressure

Surface Properties

Surface Properties

Aerodynamic analysis of a supercritical cascade vibrating in a complex mode

Supersonic Inlets

Inlet flow distortion in turbomachinery. 1 - A parameter study of theory and experiment in a transonic fan stage, AIAA Paper 80-1076

Dynamic components of a Mach 2.5 axisymmetric and turbocool engine with a poppet-valve controlled inlet stability bypass system when subjected to internal and external airflow transients

[NASA TP-1531]

Tribotest of secondary-airflow pumping with an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric air-breathing artificial inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test

[NASA TP-1542]

Development of a three-dimensional supersonic inlet flow analysis

[NASA CR-3218]

Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis

[NASA TP-19111]

Surface Roughness

The CF6 jet engine performance improvement: New front mount

[NASA CR-159639]

Comparison of inlet suppressor data with approximate theory based on cutoff ratio

[NASA TM-01406]

Surface Cooling

Full-coverage film cooling. I - Comparison of heat transfer data for inlet injection angles

[ASME PAPER 80-GT-43]

Full-coverage film cooling, II - Comparison of heat transfer data and numerical simulation

[ASME PAPER 80-GT-44]

Surface Energy

Interaction of high voltage surfaces with the space plasma --- solar arrays

[NASA CR-159731]

Surface Finish

Investigation into the effect of plasma pretreatment on the adhesion of polyethylene to various substrates

[NASA TM-01436]

Tribochemical properties of silicon carbide in metal removal processes

[NASA TN-79238]

Modification of the electrical and optical properties of polymers --- ion irradiation to create texture

[NASA CASE LEW-13027-1]

Surface Geometry

Full-coverage film cooling, II - Heat transfer data and numerical simulation

[ASME PAPER 80-GT-44]

Surface Interactions

Surface Interactions

Surface layers

Significance of thermal contact resistance in two-layer, thermal-barrier-coated turbine vanes

[NASA TM-01493]

Formation of porous surface layers in reaction bonded silicon nitride during processing

[NASA TM-01493]

Surface Pressure

Surface Properties

Surface Properties

Aerodynamic analysis of a supercritical cascade vibrating in a complex mode

Supersonic Inlets

Inlet flow distortion in turbomachinery. 1 - A parameter study of theory and experiment in a transonic fan stage, AIAA Paper 80-1076

Dynamic components of a Mach 2.5 axisymmetric and turbocool engine with a poppet-valve controlled inlet stability bypass system when subjected to internal and external airflow transients

[NASA TP-1531]

Tribotest of secondary-airflow pumping with an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric air-breathing artificial inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test

[NASA TP-1542]

Development of a three-dimensional supersonic inlet flow analysis

[NASA CR-3218]

Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis

[NASA TP-19111]

Surface Roughness

The CF6 jet engine performance improvement: New front mount

[NASA CR-159639]

Comparison of inlet suppressor data with approximate theory based on cutoff ratio

[NASA TM-01406]
SYNTHETIC FIBERS
MT GLASS FIBERS
SYNTHETIC FUELS
Literature survey of properties of synthetic fuels derived from coal
Use of petroleum-based correlations and estimation methods for synthetic fuels
SYNTHETIC RESINS
MT EPOXY RESINS
MT KEVLAR (TRADENAME)
MT PHENOLIC RESINS
MT POLYESTER RESINS
MT THERMOSETTING RESINS
SYNTHETIC HUBBIES
MT GLASS FIBERS
SYSTMS ING IMMEEYIMG
5
TABLAS (DATA)
IT THERMOSETTING RESINS
IT PHENOLIC RESINS
IT
SYSTRNS ING IMMEEYIMG
5
ATT ELASTOMERS
IT THERMOSETTING RESINS
IT PHENOLIC RESINS
IT
System analysis for millimeter-wave communication satellites
[NASA-TP-1714] p0119 860-29734
Possible methods for distinguishing icebergs from other floating bodies
[NASA-CR-1597752] p0037 860-18042
TANKS (CONTAINERS)
MT FUEL TANKS
MT PROPellant TANKS
MT WING TANKS
TAIL ROTORS
Long-time creep behavior of the tantalum alloy Antar 81C --- an as function of stress, temperature, and grain size
[NASA-TP-1691] p0080 860-32449
TECHNOLOGY ASSessorR
TAPES
U TAPERING
TAPERING
Lubrication of optimized-design tapered-roller bearings to 2.4 million DM
[AIAA PAPER 79-2103] p0064 860-13311
TECHNOLOGY FORECasting
Electric propulsion, circa 2000
[AIAA PAPER 80-0946] p0012 860-10212
Aero-propulsion technology - A review of recent developments
[AIAA PAPER 79-2103] p0064 860-13311
Bearing technology for a new era in energy and the environment
[AIAA PAPER 80-0914] p0024 860-23775
Fluid and structural measurements to advance gas turbine technology
[CONTRAINTS] p0133 860-10212
Aero-propulsion in year 2000
[AIAA PAPER 80-0914] p0024 860-23775
Aeropropulsion in year 2000
[AIAA PAPER 80-0914] p0024 860-23775
TECHNOLOGY TRANSFER

VSCC technology definition study
[NASA-CR-159730] p0027 N00-10222
Cost-effective technology advancement directions
for electric propulsion transportation systems
in earth-orbital missions
[NASA-TM-79229] p0162 N00-11950
Assessment of the state of technology of
avtomotive Stirling engines
[NASA-CR-159631] p0163 N00-13509
Current trends
[NASA-TM-79317] p0175 N00-16805
An overview of NASA research on positive
displacement general-compression engines
[p0017 N00-22336
Assessment and preliminary design of an energy
buffer for regenerative braking in electric vehicles
[NASA-CR-159756] p0184 N00-23216
Concepts and techniques for ultrasonic evaluation
of material mechanical properties
[NASA-TM-81523] p0130 N00-24634
Solar array sub-system study
[NASA-CR-159857] p0151 N00-24742
Advanced fuel cell system technology for utilizing
broadened property aircraft fuel
[NASA-TM-81536] p0094 N00-27510
Impact of propulsion system R and D on electric vehicle performance and cost
[NASA-TM-81546] p0143 N00-27805
Synchronous energy technology program
[p0058 N00-30466
Status of nickel-hydrogen cell technology
[p0064 N00-33474
TECHNOLOGY TRANSFER
Energy conservation and environmental benefits of
thermal energy storage systems in the pulp and paper industry
[p0186 AB0-40194
Collection and dissemination of TES system
information for the pulp and paper industry
[p0142 N00-22797
TECHNOLOGY UTILIZATION
NASA communications technology research and development
[p0097 AB0-25920
Evaluation of present-day thermal barrier coatings
for industrial/utility applications
[p0092 AB0-39617
Instrumentation technology
[p0013 N00-10214
The 30/20 GHz fixed communications system service
demand assessment. Volume 1: Executive summary
[NASA-CR-159619] p0098 N00-10262
The 30/20 GHz fixed communications system service
demand assessment. Volume 2: Main report
[NASA-CR-159620] p0098 N00-10263
The 30/20 GHz fixed communications system service
demand assessment. Volume 3: Annex
[NASA-CR-159621] p0199 N00-10264
Industrial storage applications overview
[p0142 N00-22797
Collection and dissemination of TES system
information for the pulp and paper industry
[p0142 N00-22797
TESTING
Tested, tip-controlled rotor: Preliminary test results from mod-0 100-kW experimental wind turbine
[NASA-TM-81405] p0140 N00-19613
TFLOC (TRADEMARK)
Negative streamer development in FEP tendon
[p0179 AB0-19776
Mechanical impact tests of materials in oxygen
effects of preoxidation --- Teclon, stainless steel, and aluminum
[NASA-TP-1571] p0093 N00-21551
TALKCOMMUNICATION
MT DATA LINKS
MT FREQUENCY DIVISION MULTIPLE ACCESS
MT PULSE COMMUNICATION
MT RADIO COMMUNICATION
MT SPACE COMMUNICATION
MT SPACECRAFT COMMUNICATION
MT TELEMETRY
MT TIME DIVISION MULTIPLE ACCESS
MT VOICE COMMUNICATION
MT WIDEBAND COMMUNICATION
NASA advanced communications systems analysis
[p0097 AB0-25916
SUBJECT INDEX
Multigigabit satellite on-board signal processing
[AIAA 00-0583] p0100 AB0-29605
On-board processing concepts for future satellite communications systems
[NASA-CR-159683] p0099 AB0-24914
A quantitative analysis of inter-island telephony traffic in the Pacific Basin Region (PBR)
[NASA-TM-81567] p0097 N00-32610
TELEMETRY
U TELEMETRY
TELEMETRY
Phase-locked telemetry system for rotary
instrumentation of turbomachinery, phase I
[NASA-CR-159453] p0029 AB0-14182
TEMPERATURE
MT HIGH TEMPERATURE
MT INERT TEMPERATURE
MT IGNITION TEMPERATURE
MT LOW TEMPERATURE
MT SURFACE TEMPERATURE
MT WALL TEMPERATURE
TEMPERATURE DEPENDENCE
Predicting the time-temperature dependent axial
failure of S/Al composites
[p0071 AB0-35494
Predicting the time-temperature dependent axial
failure of S/Al composites
[NASA-TM-61974] p0069 AB0-24135
Long-time creep behavior of the tantalum alloy
Antar 01/C --- as a function of stress, temperature, and grain size
[NASA-TP-1691] p0030 N00-32489
TEMPERATURE DIFFERENCES
U TEMPERATURE GRADIENTS
TEMPERATURE DISTRIBUTION
Computerized video densitometry method for rapid
analysis of infrared photographic images ---
temperature distribution across a turbine blade
[NASA-TP-1696] p0110 N00-27535
TEMPERATURE EFFECTS
Elevated temperature flow strength, creep
resistance and diffusion welding characteristics of
Ti-6Al-2Nb-Ta=0.80
[p0081 AB0-13277
The effects of strain and temperature on the
dynamic properties of elastomers
[M8E PAPER 79-DET-571] p0179 AB0-15720
Effect of temperature on surface noise
[p0107 AB0-28419
Apparatus for trapping and thermal detection of
atomic hydrogen in high magnetic fields at low
temperatures
[p0111 AB0-38456
Engine environmental effects on composite behavior
--- moisture and temperature effects on
mechanical properties
[AIAA 60-0653] p0024 AB0-35101
Effect of thermal cycling on Fe20-7203 thermal
barrier coatings
[p0089 AB0-35099
Effects of oxide additions and temperature on
sinterability of sintered silicon nitride
[NASA-TP-1644] p0086 AB0-21532
Feasibility study of silicon nitride regenerators
[NASA-CR-15957] p0184 N00-25209
Fuel system technology overview
[p0022 AB0-25328
Long-time creep behavior of the niobium alloy C-103
[NASA-TP-1727] p0080 N00-33555
TEMPERATURE MEASUREMENTS
U TEMPERATURE DISTRIBUTION
TEMPERATURE GRADIENTS
Stability of several oxide dispersion strengthened
alloys and a directionally solidified
glass/glassy phosphate-alpha eutectic alloy in a
thermal gradient
[p0082 AB0-40562
Directional solidification at ultra-high thermal
gradient
[NASA-CR-159797] p0096 AB0-15300
TEMPERATURE INDICATORS
U TEMPERATURE MEASURING INSTRUMENTS
TEMPERATURE INSTRUMENTS
U TEMPERATURE MEASURING INSTRUMENTS
TEMPERATURE INVERSIONS
U CENTRIC FUSING STRESS
U INTERFACIAL TENSION
TEMPERATURE MEASUREMENT
Impact of new instrumentation on advanced turbine
Temperature and pressure measurement techniques for an advanced turbine test facility
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Temperature and pressure measurement techniques for an advanced turbine test facility
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Temperature and pressure measurement techniques
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Temperature and pressure measurement techniques for an advanced turbine test facility
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Temperature and pressure measurement techniques
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Temperature and pressure measurement techniques for an advanced turbine test facility
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
Numerical calculation of transonic axial turbomachinery flows
[NASA-TR-601544] p0020 N80-27363

TRANSONIC INLETS
U SUPERSONIC INLETS
TRANSONIC TURBINES
U SUPERSONIC TURBINES
TRANSONICS
U TRANSONIC FLOW
TRANSONIZATION COOLING
U SWEAT COOLING
TRANSPORT AIRCRAFT
MT BOEING 747 AIRCRAFT
MT DC 9 AIRCRAFT
MT DC 10 AIRCRAFT
MT LIGHT TRANSPORT AIRCRAFT
MT SHORT HAUL AIRCRAFT
MT VC-1 AIRCRAFT
TRANSPORT COEFFICIENTS
U TRANSPORT PROPERTIES
TRANSPORT PROPERTIES
MT ELECTRICAL RESISTIVITY
MT IONIC MOBILITY
MT VISCOITY
Comments on 'Experimental evidence for intercalaspheric transport from airborne carbon monoxide emissions'
p0159 A80-32520
TRANSPORTATION
MT AIR TRANSPORTATION
MT SPACE TRANSPORTATION SYSTEM
MT URBAN TRANSPORTATION
TRAPPED PARTICLES
MT MAGNETICALLY TRAPPED PARTICLES
TRAPPING
U CRYO TRAPPING
TRAVELING WAVE TUBES
Analytical prediction and experimental verification of TW and depressed collector performance using multidimensional computer programs
p0102 A80-13900
90- to 93-percent efficient collector for operation of a dual-mode traveling-wave tube in the linear region
p0102 A80-13999
How to quickly predict the overall SWT and the multistage depressed collector efficiency
p0102 A80-37579
Improved traveling wave tubes --- for ICM systems
p0102 A80-46235
Thermionic cathode life test studies
[NASA-TR-601441] p0101 A80-18302
Coupled cavity traveling wave tube with velocity tapering
[NASA-CASE-LEW-12296-1] p0101 A80-19425
Multistage depressed collector with efficiency of 90 to 94 percent for operation of a dual-mode traveling wave tube in the linear region
[NASA-TP-1670] p0101 A80-21669
Improved traveling wave tubes
[NASA-TR-60147] p0102 A80-22598
TRIBOLOGY
Effect of thermal aging on the tribological properties of polyamide films and polyamide-bonded graphite fluoride films
[ASLE P REPRINT 79-AH-3T-26-1] p0060 A80-12094
Metal-dielectric interactions
p0081 A80-13067
Elenthopdodynamic idle thickness measurements of artificially-produced non-smooth surfaces
[ASLE P REPRINT 79-IC-1A-1] p0120 A80-14720
Tribological properties of sputtered MoS2 films in relation to film morphology
p0089 A80-35502
Mechanisms of lubrication and wear of a bonded solid lubricant film
[ASLE P REPRINT 80-AH-3T-26-1] p0122 A80-43163
Comparison of the tribological properties at 25 C of seven different polyamide films bonded to 301 stainless steel
p0086 N80-19263
Tribological properties of sputtered MoS2 sub 2 films in relation to film morphology
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
[NASA-TP-1612] p0007 N80-22494
TRIGGERS
U ACTUATORS
TRIPROPELLANTS
U LIQUID ROCKET PROPELLANTS
TRIPOPOASS
Saltate and nitrate collected by filter sampling near the tropopause
[NASA-TR-1567] p0157 N80-14581
TRIUMPHS
U SHAFTS (MACHINE ELEMENTS)
TUBING
U PIPES (TUBES)
TUMORS
MT CANCER
TUNGSTEN
Life test studies on tungsten impregnated cathodes
p0103 A80-45122
Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride
p0050 A80-46699
Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride
[NASA-TR-601529] p0067 N80-27483
Tungsten wire/solid matrix turbine blade fabrication study
[NASA-CR-159768] p0044 N80-29331
TUNGSTEN CARBIDES
Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride
p0090 A80-46099
Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride
TUNGSTEN COMPOUNDS
MT TUNGSTEN CARBIDES
TURBINES
Influence of mistuning on blade torsional flutter
[NASA-CL-165137] p0005 N80-31351
TURBINE BLADES
Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades
[AIAA 80-0607] p0145 A80-28804
Development of exothermically cast single-crystal Na-N 247 and derivative alloys
[NASA-TRP-1598] p0004 A80-38694
Uncertainties in predicting turbine blade metal temperatures
[AEROSPACE-21-3469] p0064 A80-46525
Characterization of an oxide dispersion strengthened superalloy, MA-6000X, for turbine blade applications --- turbine blade report
Quiet Clean Short-haul Experimental Engine (QCESII) under-the-wing engine composite fan blade design report
Computer program for generating input for analysis of impingement-cooled, axial-flow turbine blades
[NASA-TR-1603] p0104 N80-15361
Evaluation of feasibility of prestressed concrete for use in wind turbine blades
[NASA-CR-159725] p0147 N80-15553
Structural analysis considerations for wind turbine blades
p0139 N80-16469
Blade design and operating experience on the BOD-CA 200 kW wind turbine at Clayton, New Mexico
p0139 N80-16470
Design, fabrication, and test of a steel-steel wind turbine blade
p0139 N80-16472
Prediction method for two-dimensional aerodynamic loads of cooled vanes using integral boundary-layer parameters
p0002 A80-17030
Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane
[NASA-TR-1596] p0105 N80-17397
Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>TURBINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program for impact testing of spar-shell fan</td>
<td>TURBINE INSTRUMENTS</td>
</tr>
<tr>
<td>Thermal fatigue and oxidation data for</td>
<td>Impact of new instrumentation on advanced turbine research [NASA-CR-159832] p0112 860-36155</td>
</tr>
<tr>
<td>directionally solidified NAM-N 246 turbine blades</td>
<td>Temperature and pressure measurement techniques for an advanced turbine test facility [NASA-CR-159832] p0112 860-36155</td>
</tr>
<tr>
<td>Similarity tests of turbine vanes, effects of</td>
<td>TURBINE PUMPS</td>
</tr>
<tr>
<td>Advanced ceramic material for high temperature</td>
<td>Small, high pressure liquid hydrogen turbopump [NASA-CR-159821] p0122 860-26652</td>
</tr>
<tr>
<td>turbine tip seals [NASA-CR-159774]</td>
<td>TURBINE WHEELS</td>
</tr>
<tr>
<td>p0132 860-22734</td>
<td></td>
</tr>
<tr>
<td>two-layer thermal-barrier-coated turbine vanes</td>
<td>Phase locked telemetry system for rotary instrumentation of turbomachinery, phase 1 [NASA-CR-159821] p0112 860-36155</td>
</tr>
<tr>
<td>Fully plasma-sprayed compliant backed ceramic</td>
<td>MT AXIAL FLOW TURBINES</td>
</tr>
<tr>
<td>turbine seal [NASA-CASE-LW-13260-1] p0117 860-24619</td>
<td>MT GAS TURBINES</td>
</tr>
<tr>
<td>Computerized video densitometry method for</td>
<td>MT SHADED TURBINES</td>
</tr>
<tr>
<td>rapid analysis of infrared photographic images —</td>
<td>MT STEAM TURBINES</td>
</tr>
<tr>
<td>temperature distribution across a turbine blade</td>
<td>MT TURBOSYNCHRONOUS TURBINES</td>
</tr>
<tr>
<td>[NASA-TP-1666] p0110 860-25635</td>
<td>MT TWO STAGE TURBINES</td>
</tr>
<tr>
<td>p0152 860-26774</td>
<td>Effect of sodium, potassium, magnesium, calcium, and chlorine on the high temperature corrosion of In-100, U-700, In-792, and N-609 [NASA-CR-159821] p0122 860-35495</td>
</tr>
<tr>
<td>Comparison of elastic and elastic-plastic</td>
<td>Improving the stress rupture and creep of silicon nitride — turbine materials [NASA-CR-159821] p0172 860-36138</td>
</tr>
<tr>
<td>WIND: Computer program for calculation of three</td>
<td>Development of improved high pressure turbine outer gas path seal components — abradability and thermal cycling test results [NASA-CR-159901] p0038 860-21326</td>
</tr>
<tr>
<td>dimensional potential compressible flow about</td>
<td>Application of superalloy powder metallurgy for aircraft engines [NASA-TM-81666] p0076 860-21488</td>
</tr>
</tbody>
</table>

A-109
Cf6 fan performance improvement
[ASME PAPER 80-GT-176]
p0006 580-42204

Uncertainties in predicting turbine blade metal temperatures
[ASME PAPER 80-GT-25]
p0027 580-48014

Design, durability and low cost processing technology for composite fan exit guide vane's
[ASME-CR-159677]
p0027 580-12991

Time dependent difference theory for sound propagation in a two-dimensional duct --- of a turbofan engine
[NASA-TP-79236]
p0167 580-12202

A time dependent difference theory for sound propagation in ducts with flow characteristics --- inlet and exhaust ducts of turbine engines
[NASA-EN-79302]
p0167 580-12203

Quiet Clean Short-Haul Experimental Engine (QCSEE)
Over-The-Wing (OTW) propulsion system test report. Volume 1: Aerodynamics and performance --- engine performance tests to define propulsion system performance on turbofan engines
[NASA-CR-159332]
p0029 580-14120

Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (CSHA)
[NASA-TP-1556]
p0014 580-14121

The CF6 jet engine performance improvement: New front sound
[NASA-EN-159639]
p0029 580-14127

Study of turboprop system reliability and maintenance costs
[NASA-EN-159592]
p0029 580-14129

Abordable compressor and turbine seals, volume 1 --- for turbofan engines
[NASA-EN-159600]
p0083 580-14235

Quiet Clean Short-Haul Experimental Engine (QCSEE)
Over The Wing (OTW) design report
[NASA-EN-159686]
p0034 580-15066

Quiet Clean Short-Haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report
[NASA-EN-159386]
p0034 580-15089

Computation of three-dimensional flow in turbofan mixers and comparison with experimental data
[NASA-EN-159101]
p0104 580-15364

Core noise investigation of the CF6-50 turbofan engine
[NASA-EN-159598]
p0036 580-16061

Core noise investigation of the CF6-50 turbofan engine
[NASA-EN-159749]
p0036 580-16062

Method and apparatus for rapid thrust increases in a turbofan engine
[NASA-CASE-LEN-12971-1]
p0016 580-16039

Application of composite materials to turbofan engine fan exit guide vane's
[NASA-EN-16162]
p0068 580-18106

Experimental evaluation of a spinning-mode acoustic-treatment design concept for aircraft inlets --- suppression of YF-102 engine fan noise
[NASA-TP-16163]
p0016 580-21323

Analysis of uncertainties in turbine metal temperature predictions
[NASA-TP-1553]
p0017 580-21326

Aircraft QCCAT program --- quiet clean general aviation turbofan engines
[NASA-EN-159575]
p0037 580-21331

Aeroacoustic QCCAT program --- quiet clean general aviation turbofan engine
[NASA-EN-159575]
p0037 580-21331

Summary of NASA QCCAT research
[ASME PAPER 80-GT-174]
p0039 580-22333

CF6 jet engine performance improvement: New fan design
[NASA-EN-155100]
p0132 580-23678

Far-field radiation of aft turbofan noise
[NASA-EN-15506]
p0166 580-24129

Advanced component technologies for energy-efficient turbofan engines
[NASA-EN-15507]
p0199 580-24306

Static and transient performance of YF-102 engine with up to 14 percent core airflow for the quiet short-haul research aircraft
[NASA-EN-1692]
p0020 580-25303

A-110
Investigation of performance deterioration of the CFE/TF90, high-bypass ratio turbofan engines
[NASA-TR-165152]
p0022 U80-29332

Effect of cage design on characteristics of topological turbulence of a transonic wind tunnel test
[NASA-CR-135010]
p0033 N80-23678

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT8D-1 engine
[ATAA PAPERS 80-1049]
p0171 ABO-35993

Effect of inflow control on inlet noise of a cut-out fan
[ATAA PAPERS 80-1025]
p0025 ABO-36640

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-TR-165152]
p0022 W80-29332

CF6 fan performance improvement
[ASME PAPER 80-GT-176]
p0026 ABO-36224

Influence of inflow control on blade torsional flutter
[NASA-TR-165137]
p0005 N80-11351

CF6/JT9D, high-bypass ratio turbofan engines
[NASA-Ca-165137] p0022 W80-31351

Influence of inflow control on blade torsional flutter
[NASA-CR-165137]
p0005 N80-31351

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT8D-1 engine
[ATAA PAPERS 80-1049]
p0171 ABO-35993

Effect of inflow control on inlet noise of a cut-out fan
[ATAA PAPERS 80-1025]
p0025 ABO-36640

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-TR-165152]
p0022 W80-29332

Effect of cage design on characteristics of topological turbulence of a transonic wind tunnel test
[NASA-CR-135010]
p0033 N80-23678

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT8D-1 engine
[ATAA PAPERS 80-1049]
p0171 ABO-35993

Effect of inflow control on inlet noise of a cut-out fan
[ATAA PAPERS 80-1025]
p0025 ABO-36640

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-TR-165152]
p0022 W80-29332

Effect of cage design on characteristics of topological turbulence of a transonic wind tunnel test
[NASA-CR-135010]
p0033 N80-23678

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT8D-1 engine
[ATAA PAPERS 80-1049]
p0171 ABO-35993

Effect of inflow control on inlet noise of a cut-out fan
[ATAA PAPERS 80-1025]
p0025 ABO-36640

Quiet Clean Short-haul Experimental Engine (QCSEE)
[NASA-TR-165152]
p0022 W80-29332

Effect of cage design on characteristics of topological turbulence of a transonic wind tunnel test
[NASA-CR-135010]
p0033 N80-23678

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT8D-1 engine
[ATAA PAPERS 80-1049]
p0171 ABO-35993

Effect of inflow control on inlet noise of a cut-out fan
[ATAA PAPERS 80-1025]
p0025 ABO-36640
Simulation of transducer-couplant effects on broadband ultrasonic signals

Concepts and techniques for ultrasonic evaluation of material mechanical properties

ULTRASONIC WAVES TRANSMISSION
Simulation of transducer-couplant effects on broadband ultrasonic signals --- in nondestructive flaw evaluation and materials testing
[PIU-112 980-44233]

ULTRASONICS
Quantitative ultrasonic evaluation of engineering materials in metals, composites and ceramics

UNIAXIAL STRAIN
U AXIAL STRAIN
UNITED STATES OF AMERICAN
UT KENTUCKY
UT NEW MEXICO

UNSTEADY FLOW
Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torison mode cascade
[NASA-CH-159831] p0040 980-25335

UPPER STAGE ROCKET ENGINES
Upper stages utilizing electric propulsion
[PIU-9 980-29999]

UPPER STAGE ROCKET ENGINES
Upper stages utilizing electric propulsion
[PIU-57 980-30366]

UPPER VOLTA
A photovoltaic power system in the remote African village of Tanyaye, Upper Volta
[NASA-TM-79314] p0137 980-12552

URBAN TRANSPORTATION
A new traffic control design method for large networks with signalized intersections
[PIU-103 980-14841]

USER HANDS (COMPUTER PROGRAMS)
[NASA-CH-159592] p0020 980-13044

A calculation procedure for viscous flow in turbomachines, volume 3 --- computer programs
[NASA-CH-159064] p0005 980-26274

UTILITIES
Description of photovoltaic village power systems in the United States and Africa
[PIU-104 980-46796]

Simulation studies of multiple large wind turbine generators on a utility network
[PIU-108 980-16480]

Summary and evaluation of the parametric study of potential early commercial HWR power plants
[NASA-TM-81486] p0142 980-23780

Turbine wind turbine farm stability studies
[NASA-CH-159156] p0156 980-33462

V BAND
V EXTREMELY HIGH FREQUENCIES
V/STOL AIRCRAFT
V C-15 AIRCRAFT
V HELICOPTERS
V ROID ROTOR HELICOPTERS
V SHORT TAKEOFF AIRCRAFT
V TANDER HELICOPTERS
V Tilt Rotor AIRCRAFT
V TURBOPROP AIRCRAFT
V HIGH TAKEOFF PERFORMANCE
Low speed test of the aft inlet designed for a tandem fan V/STOL model
[NASA-CH-159752] p0037 980-18042

A preliminary study of VTO thrust requirements for a V/STOL aircraft with lift plus cruise propulsion
[NASA-TM-81428] p0016 980-19110

VACUUM APPARATUS
VACUUM CHAMBERS
VACUUM CHAMBERS
Atomic hydrogen storage --- cryotrapping and magnetic field strength
[CHI 980-20402]
High-speed-propeller wind-tunnel aeroacoustic results

A comparison between an existing propeller noise theory and wind tunnel data

Selected data from a transonic flexible walled test section

Wind tunnel investigation of the Titan Forward Skirt compartment test from a transonic Mach number of 0.80 to 1.96 --- conducted in the Lewis Research Center 8 by 6 foot supersonic wind tunnel

Wind tunnels

Low-speed wind tunnels

Wind velocity

Some techniques for reducing the tower shadow of the DOE/NASA Mod-0 wind turbine tower --- wind tunnel tests to measure effects of tower structure on wind velocity

Wind velocity measurement

Some techniques for reducing the tower shadow of the DOE/NASA Mod-0 wind turbine tower --- wind tunnel tests to measure effects of tower structure on wind velocity

Windmills (windpowered machines)

Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades

Windpower utilization

Modified power law equations for vertical wind profiles --- in investigation of windpower plant siting

Wind tunnel design

Design, fabrication, and test of a steel spar wind turbine blade

Preliminary analysis of performance and loads data from the 2-megawatt mod-1 wind turbine generator

Wind tunnel investigations of flow correlation for a model-ventilated angle of attack sensor at angles of attack from -10 deg to 110 deg --- Langley heat test low speed wind tunnel test

Turboexhaust-nozzle secondary-airflow pumping in an ax. inlet control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test

t, •

EEIGNT NACTOES

MIND TUNNEL

EMIGNTLESSNESS

MNIGNT FACTOIS

MIND PROFILES

MIND MEASUREMENT

WHIRL INSTABILITY

MELDED STRUCTURES

MT STEEL STRUCTURES

WHEELS

MT DIFFUSION WELDING

WEIGHT

U MOISTURE CONTENT

WHEELS

MT FLWHEELS

MT TURBINE WHEELS

MT VEHICLE WHEELS

WHEEL INSTABILITY

U ROTARY INSTABILITY

WIND AERODYNAMICS

Communications technology satellite — United States experiments and disaster communications applications

30/20 GHz wideband technology verification program

Application of advanced onboard processing concepts to future satellite communication systems

Application of advanced onboard processing concepts to future satellite communication systems: Bibliography

Wind [meteorology]

Mod-02 wind turbine system concept and preliminary design report. Volume 2: Detailed report

Wind circulation

U atmospheric circulation

Wind measurement

U wind velocity measurement

The use of wind data with an operational wind turbine in a research and development environment

Wind profiles

Modified power law equations for vertical wind profiles --- in investigation of windpower plant siting

Modified power law equations for vertical wind profiles

Wind tunnel tests

Full-range cooling, I — Comparison of heat transfer data for three injection angles

A theoretical and experimental investigation of propeller performance methodologies

Some techniques for reducing the tower shadow of the DOE/NASA Mod-0 wind turbine tower --- wind tunnel tests to measure effects of tower structure on wind velocity

Wind tunnel investigation of the flow correlation for a model-ventilated angle of attack sensor at angles of attack from -10 deg to 110 deg --- Langley heat test low speed wind tunnel test

Turboexhaust-nozzle secondary-airflow pumping in an ax. inlet control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet --- Lewis 10- by 10-ft. supersonic wind tunnel test

A-116
ZINC SILVER OXIDE BATTERIES

The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys

Composite wall concept for high temperature turbine shrouds: Heat transfer analysis

ZIRCONIUM COMPOUNDS

ZIRCONIUM OXIDES

Effect of thermal cycling on 2zr02-y203 thermal barrier coatings

Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

Analysis of the response of a thermal barrier coating to sodium and vanadium doped combustion gases

Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers
PERSONAL AUTHOR INDEX

Typical Personal Author Index Listing

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARIO, J.</td>
<td>The report number helps to indicate the type of document listed (e.g., NASA report, translation. NASA contractor report) The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence with the report, translation. NASA contractor report) The page and accession numbers appearing first</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALBREZ, L.</td>
<td>Vertical Takeoff and Landing (VTOL) propulsion technology</td>
<td>p0013 N80-10218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABBOTT, J. N.</td>
<td>Summary and evaluation of the parametric study of potential early commercial HBD power plants [PSPEC] [NASA-TN-81497]</td>
<td>p0142 N80-23780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACOSTA, A. J.</td>
<td>A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps</td>
<td>p0126 N80-29719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAMS, J. J.</td>
<td>Inlet flow distortion in turbomachinery. I - Comparison of theory and experiment in a transonic fan stage. II - A parameter study [AIAA PAPER 80-1076]</td>
<td>p0006 A80-30895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADLER, A.</td>
<td>Computational fluid mechanics of internal flow</td>
<td>p0012 N80-10211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARIO, J.</td>
<td>Analytical and experimental spur gear tooth temperature an affected by operating variables</td>
<td>p0123 A80-46412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARIO, J.</td>
<td>Analytical and experimental spur gear tooth temperature an affected by operating variables [NASA-TM-81419]</td>
<td>p0115 N80-180403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARIO, J.</td>
<td>Active heat exchange system development for latent heat thermal energy storage [NASA-CR-159726]</td>
<td>p0149 N80-18562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLARTE, F. N.</td>
<td>Optical sensors for aeronautics and space [NASA-TR-81407]</td>
<td>p0110 N80-17423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLGROTH, B. K.</td>
<td>National Aeronautics and Space Administration plans for space communication technology</td>
<td>p0097 N80-26795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLAIN, P. E.</td>
<td>Instability thresholds for flexible rotors in hydrodynamic bearings</td>
<td>p0128 N80-29730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLER, G. V.</td>
<td>Self-acting lift-pair geometry for circumferential seals: A noncontacting concept [NASA-TP-1563]</td>
<td>p0114 N80-14903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLEN, J. L.</td>
<td>Preliminary study of VTO thrust requirements for a VTOL aircraft with lift plus lift/cruise propulsion [NASA-TR-81429]</td>
<td>p0016 N80-15110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTHOEN, S. A.</td>
<td>Critical currents in A-15 structure N811A1 converted from cold-worked bcc structure</td>
<td>p0179 A80-33853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALBUY, J. K. A.</td>
<td>Sliding friction of some metallic glasses</td>
<td>p0090 A80-46153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDERSON, B.</td>
<td>Influence of pressure driven secondary flows on the behavior of turbofan forced mixers [AIAA PAPER 80-1198]</td>
<td>p0025 A80-41515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDERSON, B.</td>
<td>Computation of three-dimensional flow in turbofan mixers and comparison with experimental data [AIAA PAPER 80-0327]</td>
<td>p0025 A80-41515</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anderson, D.

Anderson, D. N.

Anderson, D. N.
Effect of geometry and operating conditions on spur gear system power losses [NASA-TM-81497] p0122 A80-46409
Spur-gear-system efficiency at part and full load [NASA-TM-81425] p0115 N80-18044
Effect of geometry and operating conditions on spur gear system power loss [NASA-TM-81495] p0117 N80-21754

Anderson, L. J.
Rolling-element bearings [NASA-TM-81579] p0121 A80-31961

Amsbaugh, B. E.
Characterization of solar cells for space applications, Volume 10: Electrical characterization of Spectrolab SSF, textured, 10 ohm-cm, 300 micron cells as a function of intensity, temperature and irradiation [NASA-CP-162422] p0147 N80-11566

Arti, K. J.

Antoine, A. C.

Antonini, G.

Arka, A.

Arehart, H. C.
Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes [NASA-TM-81402] p0112 A80-42291
Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes [NASA-TM-81402] p0110 N80-17422

Arndt, R. A.
Thin dielectric radiation-resistant solar cell feasibility study [NASA-CR-159871] p0154 N80-29852

Arth, C. W.
A quantitative analysis of inter-island telephony in the Pacific Basin Region (PBR) [NASA-TM-81937] p0097 N80-32610

Ashe, T. L.
Concept definition study of small Brayton cycle engines for dispersed solar electric power systems [NASA-CR-159592] p0150 N80-22278

Astro, G.
Ion extraction from a plasma [NASA-CR-159049] p0177 N80-26161

Auer, B. C.

Aulter, R. B.

Ayati, N. E.
A methodology for long-range prediction of air transportation [NASA-TM-81581] p0012 N80-29305

Auletto, J. C.
LeRC reduced gravity fluid management technology program [NASA-CR-159650] p0051 N80-20304
LeRC reduced gravity fluid management technology program [NASA-TM-81450] p0051 N80-20304

Badger, R. B.

Baker, E. F.
Inter-octave pressure normalization technique and equipment [NASA-CR-159643] p0132 N80-15121

Baker, A. N.

Baker, D. R.

Bakas, V. L.

Baker, E. F.
Concepts for 20/30 GHz satcom systems for direct-to-user applications [AIAA-80-0582] p0050 A80-35329

Baker, J. W.

Baldwin, B. E.

Baldwin, R. E.
An exploratory survey of noise levels associated with a 100 kW wind turbine [NASA-TR-1630] p0167 N80-18882
An exploratory survey of noise levels associated with a 100kW wind turbine [NASA-TR-81486] p0169 N80-23102

Banks, R. A.
Advanced concepts [NASA-CASE-LEN-12955-1] p0161 M80-14684

Barba, G. J.

Barba, R. B.
Application of coherence in fan noise studies [NASA-TR-159483] p0132 N80-35499
An exploratory survey of noise levels associated with a 100kW wind turbine [NASA-TR-81486] p0169 N80-23102

Barber, C. A.
BOKOBSI, R. M.
Preliminary results of fast neutron treatments in carcinomas of the pancreas
[NASA-TM-81516]
p0160 W80-2493

BURRIS, R. E.
Core compressor exit stage study. 1: Aerodynamic and mechanical design
[NASA-CR-159714]
p0037 W80-19113

BURRIS, R. E.
Core compressor exit stage study, 2
[NASA-CR-159812]
p0039 W80-23312

BUZZARD, R. J.
Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft
[ASME PAPER 80-GT-162]
p0121 A80-42272

BUZZARD, R. J.
Development of procedures for calculating stiffness and damping of elastoamor in engineering applications, part 6
[NASA-CR-158036]
p0134 W80-22733

BURRIS, J. A.
Oxygen-enriched air for NBD power plants
[NASA-8996]
p0096 A80-25096

BURGHOLDER, J. N.
Economical space power systems
[NASA-CR-159696]
p0047 W80-15559

BURLAY, R. M.
Some techniques for reducing the tower shadow of the DOR/HLA nod-0 wind turbine tower
[NASA-797202]
p0137 W80-10594

BURNSTEIN, L. C.
Spectral effects on direct-insolation absorptance of five collector coatings
[ASME PAPER 79-HTR-10]
p0146 A80-45722

BURRIS, R. H.
Coproduction Technology Alternatives Study (CTAS). Volume 1: Summary
[NASA-SM-19400]
p0141 W80-19626

BURRIS, R. H.
A study of the transmission characteristics of suppressor nozzles
[NASA-CR-165133]
p0172 W80-32186

BURROS, R.
Energy efficient engine
[NASA-CR-159865]
p0045 W80-33408

BURROS, R.
Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report
[NASA-CR-159840]
p0032 W80-15121

BURRIS, R. T.
Fracture toughness of brittle materials determined with chevron notch specimens
[NASA-TM-81607]
p0079 W80-32486

BURZAND, S. J.
Comparison tests and experimental compliance calibration of the proposed standard round compact plane strain fracture toughness specimen
[NASA-TM-81379]
p0132 W80-15313

BYERS, D. C.
Characteristics of primary electric propulsion systems
[IAA PAPER 79-2041]
p0058 A80-10376

Upper stages utilizing electric propulsion
[NASA-80-29989]
p0059 A80-29989

Nuclear electric propulsion system utilization for earth orbit transfer of large spacecraft structures
[IAA PAPER 80-1223]
p0060 A80-38975

Orbital transfer of large space structures with nuclear electric rockets
[IAA PAPER 80-083]
p0054 A80-41897

Upper stages utilizing electric propulsion
[NASA-TM-81412]
p0056 W80-16097

Upper stages utilizing electric propulsion
[NASA-TM-81412]
p0057 W80-30386

C

CAGEAS, R. P.
Influence of coolant tube curvature on film cooling effectiveness as detected by infrared imagery
[NASA-79-1546]
p0013 W80-11087

CARL, R.
Advanced screening of electrode couples
[NASA-159738]
p0141 W80-22777

CARL, R.
Catalyst faces for the chromous/chronic redox couple
[NASA-CASE-LHEW-11340-2]
p0140 W80-18537

Catalyst surfaces for the chromium/chromic redox couple
[NASA-CASE-LHEW-11340-1]
p0141 W80-18537

CALFO, P. S.
Computerized video densitometry method for rapid analysis of infrared photographic images
[NASA-72-1686]
p0110 W80-25635

CALHOUN, J. T.
Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines
[NASA-CR-159856]
p0153 W80-27603

CAMPBELL, F. W.
Current jet fuel trends
[NASA-80-12930]
p0041 W80-29302

CARL, R.
Current jet fuel trends
[NASA-80-12930]
p0041 W80-29302

CATALOG, B. C.
A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system
[NASA-CR-15991]
p0091 W80-35152

CARTER, J. R.
Improving the stress rupture and creep of silicon nitride
[NASA-CR-159585]
p0072 W80-10318

CARLSON, J. E.
Outlook for alternative energy sources
[NASA-CR-165150]
p0048 W80-31423

CARTER, J. R.
The 3500 hour durability testing of ceramic materials for automotive gas turbine engines
[AIRESearch-31-3542]
p0092 A80-35575

CARTER, J. R.
The 3500 hour durability testing of ceramic materials
[NASA-CR-159785]
p0091 W80-35575

CARTER, J. R.
A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system
[NASA-CR-159591]
p0149 W80-19612

CARTER, J. R.
Aeroelastic analysis of a supercruising cascade vibrating in a complex mode
[NASA-80-45841]
p0007 A80-45841

CASSIDY, J.
A three-dimensional spacecraft-charging computer code
[NASA-CR-159865]
p0055 A80-46891

CASTELLI, V.
High speed cylindrical rolling element bearing analysis 'CTIBAAN' - Analytic formulation
[ASME PAPER 79-LDP-35]
p0129 A80-14761

CASTLES, R. C.
An electric vehicle propulsion system's impact on battery performance: An overview
[NASA-80-15155]
p0143 W80-24756

CAUCHER, T. Z.
A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps
[NASA-80-29719]
p0126 W80-29719

CAVAGH, J. R.
Plasma-sprayed dual density ceramic turbine seal systes
[NASA-CR-159739]
p0123 W80-15411

CAVANO, R. J.
Second generation PBI polyimide/fiber composites
[NASA-CR-159666]
p0072 W80-12118

CEMMUS, M. A.
Mechanical and chemical effects of ion-texturing biomedical polymers
[p0089 A80-13065

CHAL, A. T.
Back surface reflectors for solar cells
[NASA-79-1546]
p0135 A80-25166

Planar multijunction high voltage solar cells
[NASA-TM-81369]
p0176 W80-16914

CHAL, A. T.
The planar multijunction cell - A new solar cell
for earth and space

CHESTER, N.

Heat pipe cooling of power processing magnets

[ASTM PAPER 79-2062]

CHESTER, R. S.

Heat pipe cooling of power processing magnets

[ASTM-TE-79270]

CHESTERMAN, E. P.

Packet communications in satellites with multiple-beam antennas and signal processing

[ASTM 80-0537]

CHEW, K. T.

Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys

[ASTM-CR-159669]

CHIAPETTA, L.

External fuel vaporization study, phase 1

[ASTM-CR-159890]

CHIGIER, K. A.

Air pollution from aircraft

[ASTM-CR-159712]

CHILDS, D. W.

Testing of turbulent seals for rotodynamic coefficients

p0126 W60-29714

CHILDS, S. R.

Testing of turbulent seals for rotodynamic coefficients

p0126 W60-29714

CHIRA, E. V.

Comparison between optical measurements and a numerical solution of the flow field within a transonic axial-flow compressor rotor

p0003 A60-38607

An implicit finite-difference code for inviscid and viscous cascade flow

[ASTA PAPER 80-16279]

p0007 A80-44118

CHIK, R. M.

Sintered silicon nitride recuperator fabrication

p0090 W60-15263

CHO, Y. C.

Higher order mode propagation in nonuniform circular ducts

p0171 A60-10597

Inertial sources for sound radiation from circular ducts with hyperbolic horns or infinite plane baffle

p0171 A80-37695

Reciprocity principle in duct acoustics

p0167 W60-12824

Higher order mode propagation in nonuniform circular ducts

[ASTM-CR-159705]

p0169 W60-23101

CRSTEB, T. C.

Reciprocity principle in duct acoustics

p0170 A80-20956

CHRISTENSEN, L. S.

Nondispersive atomizers for agricultural aviation applications

p1000 W60-19450

CHRISTENSEN, L.

Technology development for phosphoric acid fuel cell powerplants, phase 2

[ASTM-CR-159777]

p0147 W60-10603

CHOBB, R. L.

Study of a rare-gas transverse fast discharge

p0176 W60-11366

CHURENCO, C. C.

Vertical takeoff and landing (VTOL) propulsion technology

p0013 W60-10128

CLAAS, T. D.

High-temperature molten salt thermal energy storage systems

[ASTM-CR-159663]

p0146 W60-17547

CLAAS, J. S.

Status of the DOS/NASA critical gas turbine research and technology project

[ASTM-79307]

p0137 W60-14493

Literature survey of properties of synfuels derived from coal

[ASTM-79243]

p0141 W60-22776

CLARK, W. L.

Aerial applications dispersal systems control requirements study

[ASTM-CR-159781]

p0158 W60-18586

CLEMONS, A.

Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan

[ASTM-CR-134991]

p0030 W60-15102

Quiet Clean Short-Dual Experimental Engine (GCSE): Acoustic treatment development and design

[ASTM-CR-135266]

p0033 W60-15122

Acoustic performance of a 50.8-cm (20-inch) diameter variable-pitch fan and inlet. Volume 2: Acoustic data

[ASTM-CR-135118]

p0044 W60-29299

CLEMONS, D. L.

Plasma-sprayed dual density ceramic turbine seal system

[ASTM-CR-159739]

p0123 W60-15411

COCHRANE, R. P.

Temperature and pressure measurement techniques for an advanced turbine test facility

p0112 A60-36157

Temperature and pressure measurement techniques for an advanced turbine test facility

[ASTM-CR-79278]

p0110 W60-14374
Roth, C. J.

Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows

Chang, M. H.

Installing and checkout of the DOE/NASA Rod-I

COPPOLA, E. 1.

Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 million DM

COPPOLA, E. 2.

Perforrned on the design and checkout of the DOE/NASA Rod-I

COOPER, L. P.

Calculated and experimental data for a 118-mm bore roller bearing to 3 million DM

CONLES, S. A.

NASA gear research and its probable effect on turbocraft transmission design

CONARD, N. E.

Constrained fatigue life optimization of a NASA/TES multijet roller drive

CORNETT, J. E.

Simplified fatigue life analysis for traction drive contacts

CORLET, R. C.

Mechanical components

CONNOLLY, D. J.

Simplified fatigue life analysis for traction drive contacts

CONEY, T. A.

Constrained fatigue life optimization of a NASA/TES multijet roller drive

COLLIN, R. E.

Some limitations in applying classical SDB fillet-thickness formula to a high-speed bearing

COLDING-JORGENSEN, J.

Ideal optical bevel gears: A new approach to surface geometry

COMBO, S. N.

NASVYTIS multiroller traction drive

COE, M. N.

Some limitations in applying classical SDB fillet-thickness formula to a high-speed bearing

COs, M. N.

NASVYTIS multiroller traction drive

COLTRIN, E. M.

First results of material charging in the space environment

FUELS research: Fuel thermal stability overview

COLE, P. H.

Low sidelobe networks with signalized intersections

COLETT, R. C.

Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows

CONRAD, J. L.

NASA gear research and its probable effect on turbocraft transmission design

COOKE, R. T.

Advanced cooling techniques for high-pressure, hydrocarbon-fueled rocket engines

COPE, L. P.

Effect of degree of fuel vaporization upon emissions for a promised partially vaporized combustion system

COFFEA, M. N.

Military jet fuel from shale oil

CORLEY, R. C.

Method and apparatus for rapid thrust increases in a turbofan engine

CORET, J. E.

Method and apparatus for rapid thrust increases in a turbofan engine

CORDER, W. E.

Quiet, Clean, Short-Haul, Experimental Engine (QCSS) Under-The-Wing (OTW) engine acoustic design

CORDER, B. A.

Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

COV, J. J.

NASA gear research and its probable effect on turbocraft transmission design

CONRAD, W. E.

Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 million DM

COPPOLA, E. 1.

Perforrmed on the design and checkout of the DOE/NASA Rod-I

COOPER, L. P.

Calculated and experimental data for a 118-mm bore roller bearing to 3 million DM

CONLES, S. A.

NASA gear research and its probable effect on turbocraft transmission design

CONARD, N. E.

Constrained fatigue life optimization of a NASA/TES multijet roller drive

CORNETT, J. E.

Simplified fatigue life analysis for traction drive contacts

CORLET, R. C.

Mechanical components

CONNOLLY, D. J.

Simplified fatigue life analysis for traction drive contacts

CONEY, T. A.

Constrained fatigue life optimization of a NASA/TES multijet roller drive

COLLIN, R. E.

Some limitations in applying classical SDB fillet-thickness formula to a high-speed bearing

COLDING-JORGENSEN, J.

Ideal optical bevel gears: A new approach to surface geometry

COMBO, S. N.

NASVYTIS multiroller traction drive

COE, M. N.

Some limitations in applying classical SDB fillet-thickness formula to a high-speed bearing

COs, M. N.

NASVYTIS multiroller traction drive

COLTRIN, E. M.

First results of material charging in the space environment

FUELS research: Fuel thermal stability overview

COLE, P. H.

Low sidelobe networks with signalized intersections

COLETT, R. C.

Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows

CONRAD, J. L.

NASA gear research and its probable effect on turbocraft transmission design

CORDER, J. E.

Method and apparatus for rapid thrust increases in a turbofan engine

CORDER, J. E.

Method and apparatus for rapid thrust increases in a turbofan engine

CORDER, W. E.

Quiet, Clean, Short-Haul, Experimental Engine (QCSS) Under-The-Wing (OTW) engine acoustic design

CORDER, B. A.

Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

COV, J. J.

NASA gear research and its probable effect on turbocraft transmission design
Combustion of solid carbon rods in zero and normal gravity [NASA-CE-159874]

Concepts for 20/30 GHz sateen systems for Packet communications in satellites with enhanced data rate [NASA-CE-159694]

A phenomenological model of the dynamic stall of a helicopter blade profile [NASA-CE-159729]

Design of elastomer dampers for a high-speed scramjet [NASA-CE-159729]

The effects of strain and temperature on the dynamic properties of elastomer cartridge specimens under a rotating load [NASA-CASE-LEY-12876-1]

Feasibility of SIC composite structures for 1644 gas turbine seal applications [NASA-CE-159665]

Determination of jet fuel thermal deposit rate using a modified JFTOT [NASA-CE-159724]

Effect of sodium, potassium, magnesium, calcium, and strontium on the high temperature corrosion of IX-100, IX-700, IX-792, and nahs 509 [NASA-PAPER 80-CE-150]

Effect of sodium, potassium, magnesium, calcium, and strontium on the high temperature corrosion of IX-100, IX-700, IX-792, and nahs 509 [NASA-PAPER 80-CE-150]

Preliminary results from a four-working space, volume 1 (NASA-CE-159634)
Combustion of solid carbon rods in zero and normal gravity [NASA-TM-79303] p0104 NOO-13404

DI CARLO, J. A. Predicting the time-temperature dependent axial failure of B/Al composites [NASA CR-159590] p0036 N80-16061

DI CARLO, J. A. Predicting the time-temperature dependent axial failure of B/Al composites [NASA-TM-01474] p0069 NOO-21452

DITTMER, W. C. Energy conservation and environmental benefits of thermal energy storage systems in the pulp and paper industry [NASA CR-159725] p0147 NOO-15553

DITTMER, W. C. Collection and dissemination of TES system information for the paper and pulp industry [NASA CR-159598] p0069 NOO-21452

DITTMER, W. C. A comparison between an existing propeller noise theory and wind tunnel data [NASA CR-160391] p0150 NOO-22798

DORLING, F. X. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems [NASA CR-159592] p0150 NOO-22798

DOCKS, G. R. Design study of a 15 k w free-piston Stirling engine-linear alternator for dispersed solar electric power system [NASA CR-159587] p0150 NOO-22787

DOODS, W. J. Advanced catalytic combustors for low pollutant emissions, phase 1 [NASA CR-159563] p0026 NOO-13048

DOODS, W. J. NASA/General Electric broad-spectrum fuels combustion technology program, phase 1 [NASA CR-159564] p0042 NOO-29316

DOOLEY, S. Neutralization tests on the SERT II spacecraft [AIAA PAPER 79-0204] p0059 NOO-10307

DONOVAN, F. L. Communications technology satellite - United States experiments and Disaster communications applications [NASA CR-160392] p0150 NOO-22798

DOOLING, J. A. Assessment of satellite and aircraft multispectral scanner data for stripe-mine monitoring [NASA TM-79268] p0136 NOO-20707

DOOLING, R. A. Torquing and electrostatic deformation of the solar sail [NASA CR-160393] p0065 NOO-46501

DOOWING, R. C. Characterization of solar cells for space applications, Volume 10: Electrical characteristics of Spectrolab B-SF, textured, 10 cm x 10 cm, 300 micron cells as a function of intensity, temperature and irradiation [NASA CR-162422] p0147 NOO-11566

DOYLE, N. A. Field experiences with rotordynamic instability in high-performance turbomachinery [NASA CR-162423] p0125 NOO-29707

The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream

DURANTE, A. F.

NASA communications technology research and development

DURANTE, A. F.

Effect of starting powder characteristics on oxidation behavior of a Si304 - 8 w/o Y2O3 ceramic

DURANTE, A. F.

Characterization and properties of controlled nucleation thermochemical deposited /CVD/ silicon carbide

DURANTE, A. F.

State-of-the-art of silicon carbide materials

DURANTE, A. F.

State-of-the-art of silicon carbide materials

E

EHLING, R. N., JR.

Oxygen-enriched air for NHD power plants

EHLING, R. N., JR.

A liquid hydrogen experiment as a Shuttle payload

EHLING, R. N.

Liquid oxygen/liquid hydrogen auxiliary power system thrust system investigation

EHLING, R. N.

Energy conservation and environmental benefits of thermal energy storage systems in the pulp and paper industry

EHLING, R. N.

Collection and dissemination of XRS system information for the paper and pulp industry

EHLING, R. N.

Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

EHLING, R. N.

Depilization of arterial heat pipes: An investigation of CFS thermal excursions

EHLING, R. L.

Materials review for improved automotive gas turbine engine

EHLING, R. L.

Preliminary study of advanced turboprop and turboshift engines for light aircraft

KNECUTT, J. E.

Experimental combustor study program

ELLING, R. T.

Concept definition study of small Brayton cycle propulsion for dispersed solar electric power systems

ELLING, R. T.

Life test studies on tungsten impregnated cathodes

ELLING, R. T.

Thermionic cathode life test studies

ELLING, R. T.

Development of a high strength hot isostatically pressed /HIP/ disk alloy, NERL 76

ELLING, R. T.

Manufacture of low carbon austenite turbine disk shapes by hot isostatic pressing. Volume 2, project 1

ELLING, R. T.

A methodology for long-range prediction of air transportation

ELLING, R. T.

Measuring unsteady pressure on rotating compressor blades

ELLING, R. S.

Instrumentation technology

ELLING, R. S.

A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data

ELLING, R. S.

Modified face seal for positive film stiffness

ELLING, R. S.

Analysis and design of a uniform-clearance, pumping-cling rod seal for the Stirling engine

ELLING, R. S.

Dynamic response to rotating-advancing rundown in non-contacting face seals

ELLING, R. S.

Dynamic analysis of noncontacting face seals

ELLING, R. S.

Simulation and visualization of face seal motion stability by means of computer generated movies

ELLING, R. S.

Observation of pressure variation in the cavitation region of submerged journal bearings

ELLING, R. S.

A quantitative analysis of inter-island telephony traffic in the Pacific Basin Region (PSB

ELLING, R. S.

Development of a high strength hot isostatically pressed /HIP/ disk alloy, NERL 76

ELLING, R. S.

Manufacture of low carbon austenite turbine disk shapes by hot isostatic pressing. Volume 2, project 1

ELLING, R. S.

The planar multi-junction cell - A new solar cell for earth and space

ELLING, R. S.

Planar multi-junction high voltage solar cells

ELLING, R. S.

An electric vehicle propulsion system's impact on battery performance: An overview

F

FARN, G. H.

Investigation of critical burning of fuel droplets

FALCONER, P. D.

Comments on 'Experimental evidence for interhemispheric transport from airborne carbon monoxide measurements'

FASCHING, R. A.

The CFE jet engine performance improvement: New front mount

FASCHING, R. A.

CFE jet engine performance improvement: New fan

FASCHING, R. A.

CFE jet engine performance improvement program: High pressure turbine aerodynamic performance

FARIS, J. M.

Air pollution from aircraft

FARIS, J. M.

NASA Broad-Specification Fuels Combustion Technology Program - Status and description

FARIS, J. M.

NASA Paper 80-07-65

FARIS, J. M.

AIAA Paper 80-1096

FARIS, J. M.

AIAA Paper 80-1196

FARIS, J. M.

AIAA Paper 80-2593

FARIS, J. M.

AIAA Paper 80-44108

FARIS, J. M.

AIAA Paper 80-2309

FARIS, J. M.

AIAA Paper 80-16914

FARIS, J. M.

AIAA Paper 80-45122

FARIS, J. M.

AIAA Paper 80-22701

FARIS, J. M.

AIAA Paper 80-27695

FARIS, J. M.

AIAA Paper 80-27797

FARIS, J. M.

AIAA Paper 80-22701

FARIS, J. M.

AIAA Paper 80-27695

FARIS, J. M.

AIAA Paper 80-27797

FARIS, J. M.

AIAA Paper 80-22701

FARIS, J. M.

AIAA Paper 80-27695

FARIS, J. M.

AIAA Paper 80-27797

FARIS, J. M.
Comparison of the weight loss and adherence of candidate thermal energy storage technologies for streakline flow

Significance of thermal contact resistance in mechanisms of lubrication and wear of a bonded two-layer thermal-barrier-coated turbine vane

Load support system analysis high speed input basic configuration

Streakline flow visualization study of a horseshoe vortex in a large-scale, two-dimensional turbine stator cascade
cubic thermal barrier coatings
Effect of cubic thermal barrier coatings on metal temperatures of an air-cooled turbine vane
[NASA-TP-1598] p.0105 ABO-17337
Similarity tests of turbine vanes, effects of cubic thermal barrier coatings
[NASA-TP-81473] p.0105 ABO-21706
Extension of similarity test procedures to cooled engine components with insulating cubic coatings
[NASA-TP-1615] p.0105 ABO-24577

GLASGOW, T. K.
Effect of inflow control on inlet noise of a cut-on fan
[AIAA PAPER 80-1049] p.0171 ABO-35953
Effect of inflow control on inlet noise of a cut-on fan
[NASA-TP-01467] p.0169 ABO-23098

GLASSMAN, A.
Formation of porous surface layers in reaction bonded silicon nitride during processing
[NASA-TP-79508] p.0090 ABO-51574
Materials and structures technology
[NASA-TP-81428] p.0090 ABO-10210
Reaction bonded silicon nitride prepared from wet attrition-milled silicon
[NASA-TP-81428] p.0090 ABO-32828
Formation of porous surface layers in reaction bonded silicon nitride during processing
[NASA-TP-81428] p.0090 ABO-51574

GLASSMAN, A. J.
Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-area stators
[NASA-TP-01532] p.0020 ABO-23546
Some advantages of methane in aircraft gas turbine
[NASA-TP-81559] p.0094 ABO-29502

GLAVAS, G. E.
Instrumentation technology
[NASA-TP-81473] p.0117 ABO-35960

GLAVE, R. N.
Design, fabrication and testing of an optical temperature and imaging sensor
[NASA-TP-81559] p.0117 ABO-35959

GODLEWSKI, N. F.
Open-circuit voltage improvements in low resistivity solar cells
[NASA-TP-81388] p.0138 ABO-15555

GOODFOOT, J.
Noise suppression due to annulus shaping of a conventional coaxial nozzle
[NASA-TP-81405] p.0171 ABO-35497
Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle
[NASA-TP-81405] p.0171 ABO-35498
Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle
[NASA-TP-81405] p.0171 ABO-22046
Noise suppression due to annulus shaping of conventional coaxial nozzle
[NASA-TP-81405] p.0171 ABO-22047

GORDON, E. R.
Effect of inflow control on inlet noise of a cut-on fan
[AIAA PAPER 80-1049] p.0171 ABO-35953
Effect of inflow control on inlet noise of a cut-on fan
[NASA-TP-01467] p.0169 ABO-23098

GORDON, R. E.
An automatically-shifted two-speed transaxle system for an electric vehicle
[NASA-TP-81473] p.0148 ABO-19992
Engineering evaluation of a sodium hydroxide thermal energy storage module
[NASA-TP-81473] p.0148 ABO-19563

GORES, J. W.
Materials for advanced turbine engines. Volume II: Power metallurgy of SHS rotating turbine engine parts
[NASA-TP-81405] p.0084 ABO-28499

GRAHAH, E. J.
The NASA high-speed turboprop program
[NASA-TP-81405] p.0022 ABO-31401

GRAHAM, A. H.
Characterization and properties of controlled nucleation thermochemical deposited (CND) silicon carbide
[NASA-TP-81405] p.0089 ABO-13063
Characterization and properties of controlled nucleation thermochemical deposited (CND) silicon carbide
[NASA-TP-81405] p.0085 ABO-13254

GRAHAM, D. W.
Coolant tube curvature effects on film cooling as detected by infrared imagery
[ASME PAPER 79-WA/GT-7] p.0107 ABO-18638
Impact of new instrumentation on advanced turbine research
[NASA-TP-81405] p.0117 ABO-36155
Influence of coolant tube curvature on film cooling effectiveness as detected by infrared imaging
[NASA-TP-81405] p.0117 ABO-36155
Impact of new instrumentation on advanced turbine research
[NASA-TP-81405] p.0117 ABO-36155

GRAFR, H. P.
Monitoring unsteady pressure on rotating compressor blades
[NASA-TP-81405] p.0110 ABO-12630
Thin film temperature sensor
[NASA-TP-81405] p.0110 ABO-12630

GREGORY, R. L.
The optimization of air separation plants for combined cycle dry-power plant applications
[NASA-TP-81405] p.0140 ABO-23778

GREGORY, G. H.
A theoretical and experimental investigation of propeller performance methodologies
[AIAA PAPER 80-1240] p.0026 ABO-32083
An acoustic sensitivity study of general aviation propellers
[AIAA PAPER 80-1240] p.0045 ABO-30191
PERSONAL AUTHOR INDEX

GRIBB, J. T.
Experimental results on plasma interactions with large surfaces at high voltages

GRIBB, R. B.
Fatigue behavior of SiC reinforced titanium composites

GRIBB, J.
Alternative jet aircraft fuels
[NASA-TM-81942] p0012 880-10209

The impact of fuels on aircraft technology through the year 2000

GRIBB, J. S.
Preparation of aircraft propulsion for a new era in energy and the environment
[NASA-TM-81966] p0024 880-17737

GROSS, D.
Noise reduction
[SA-TH-60980] p0012 880-10208

GRISWOLD, D.
Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics
[NASA-JF-8006] p0170 880-20952

GRISWOLD, D.
Assessment at full scale of exhaust nozzle to wing size on STOL-OTW acoustic characteristics
[NASA-TM-79279] p0167 880-13881

GRISWOLD, D.
Stress distribution in the crack wake of a fatigue crack in a thin-walled structure
[SA-TM-80978] p0073 880-29432

GRUBER, M. P.
Self-reconfiguring solar cell system
[NASA-CASE-LAM-12866-1] p0137 880-14472

GUILLEN, B. P.
Three dimensional finite element analysis of a thermally cycled double-edge wedge geometry specimen
[NASA-TM-80980] p0079 880-26433

GÜRTLER, R. J.
Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports
[SA-TM-80980] p0128 880-29731

GUSEK, G. S.
Communications technology satellite - United States experiments and disaster communications applications
[NASA-CASE-LAM-12866-1] p0051 880-10332

GUTKIND, J. J.
The method of lines in three dimensional fracture mechanics
[NASA-TM-81593] p0132 880-32753

GUSHER, C. A.
Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys
[NASA-TP-1557] p0076 880-11188

HALFORD, R. H.
Strain gauge partitioning life predictions of the long term metal properties council creep-fatigue tests
[SA-TH-60980] p0175 880-18946

Materials and structures technology
[SA-TH-60980] p0175 880-18946

Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage
[NASA-TM-81517] p0132 880-23684

HALL, R. W.
Cogeneration Technology Alternatives Study (CTAS).
Volume 1: Summary report
[NASA-CASE-LAM-12866-1] p0151 880-26797

Cogeneration Technology Alternatives Study (CTAS).
Volume 2: Analytical approach
[NASA-CASE-LAM-12866-1] p0143 880-26859

HALES, P. A.
Personal study of potential early commercial BBD power plants
[NASA-CASE-LAM-12866-1] p019 A80-16559

HARRISON, D. J.
Strength and deformations in elliptical contacts

Fully flooded elastohydrodynamic lubricated elliptical contacts

Starved elastohydrodynamic lubricated elliptical contacts

Film thickness for different regimes of fluid-film lubrication

HARRIS, B.
Vibration and buckling of rectangular plates under in-plane hydrostatic loading
[NASA-CASE-LAM-12866-1] p0133 880-45364

HASEN, E. G.
Heat pipe cooling of power processing magnets
[SA-TH-60980] p0175 880-18946

Heat pipe cooling of power processing magnets

HASEN, E. G.
Heat pipe cooling of power processing magnets

HASEN, E. G.
Heat pipe cooling of power processing magnets

HARMON, E. R.
Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications
[NASA-CASE-LAM-12866-1] p0069 880-27429

HARPER, F. R., SK.
Improved tire/wheel concept
[SA-TH-60980] p0175 880-18946

HARRIS, K.
Development of exothermically cast single crystal and single crystalline materials for use in advanced gas turbine engines
[SA-TH-60980] p0175 880-18946

HART, E.
Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2
[NASA-CASE-LAM-12866-1] p0108 880-23599

HARTNABE, M.
Airbreathing propulsion component technologies
[NASA-CASE-LAM-12866-1] p0024 880-37462

HARTMAN, R. J.
The measuring and growing of advanced gas turbine materials
[SA-TH-60980] p0175 880-18946

Fluid and structural measurements to advance gas turbine technology
[SA-TH-60980] p0175 880-18946

Supercharged topping rocket propellant feed system
[NASA-CASE-LAM-12866-1] p0056 880-14188

HASKETH, K.
Active heat exchange system development for latent heat thermal energy storage
[NASA-CASE-LAM-12866-1] p0149 880-18562

HASSELS, J. D.
An experimental evaluation of the performance of an aircraft engine starter turbine
[NASA-TM-81571] p0022 880-31400

HASSELS, G. V.
An automatically-shifted two-speed transaxle system for an electric vehicle
[NASA-CASE-LAM-12866-1] p0164 880-16952

HAMLAND, R.
Critical currents in A-15 structure NiAl converted from cold-worked bcc structure
[NASA-CASE-LAM-12866-1] p0179 880-33853

HAUSER, C. H.
Turbomachinery technology
[SA-TH-60980] p0182 880-10212

B-D-15
HZNSHAN, J. E.
Experimental investigation of a 0.15 scale model of a conformal variable-ram inlet for the F-16 airplane [NASA-CR-159640] p0005 W80-24263

HEMDEICES, MERRILL, EERBALL, HENDENICS, MILES, H. E.
Comparison of inlet suppressor data with approximate theory based on cutoff ratio [AIAA PAPER 80-0106] p0110 W80-28964

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT15D-1 engine [AIAA PAPERS 80-1025] p0025 A80-38640

Comparison of inlet suppressor data with approximate theory based on cutoff ratio [NASA-TM-81386] p0167 W80-15076

Experimental evaluation of a spinning-mode acoustic-treatment design concept for aircraft inlets [NASA-TM-1613] p0216 W80-21323

Comparison of several inflow control devices for flight simulation of fan tone noise using a JT15D-1 engine [NASA-TM-81385] p0019 W80-24314

HEDRICK, J.

HEIDBERG, R. U.
Air research Grant program [NASA-CR-159750] p0037 W80-21331

HEILE, R. E.

HENDRICKS, R. C.
Toward the use of similarity theory in two-phase choked flows [NASA-TM-81568] p0106 W80-29623

Some aspects of a free jet phenomena to 105 L/D in a constant area duct [NASA-TM-81568] p0106 A80-10030

Critical mass flow through short Borda type inlets of various cross sections [NASA-TM-81568] p0106 A80-10031

Free jet phenomena in a 90 deg-sharp edge inlet geometry [NASA-TM-81568] p0106 A80-10037

Some flow characteristics of conventional and tapered high-pressure-drop simulated nozzles [ASLE PREPRINT 79-1C-3B-2] p0120 W80-14727

Thermophysical property data - Who needs them [AIAA PAPERS 79-WA/MD-17] p0180 W80-16630

HENDRICKS, J.
Fiber release characteristics of graphite hybrid composite [NASA-TM-81568] p0073 A80-32063

HENDRICKS, R. F.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon [NASA-TM-81568] p0086 W80-18101

HENDRICKS, R. F.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon [NASA-TM-81568] p0089 A80-32063

HERMAN, A. H.
Radiation damage in lithium-counterdoped s/p silicon solar cells [NASA-CR-81391] p0138 W80-15557

HERMAN, P.

HERR, B. S.
Acoustic behavior of fibrous bulk materials [AIAA PAPER 80-0986] p0172 A80-35551

Effect of grazing flow on the nonlinear acoustic behavior of hollow cylinders [AIAA PAPER 80-0986] p0172 A80-35551

HESSE, M.
Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors [NASA-CR-159839] p0151 W80-24748

HESSE, M. W.
Durability testing of advanced catalysis and catalyst supports for gas turbine engine combustors [NASA-CR-159839] p0074 A80-35681

HESS, K. L.

HEXWOOD, J. B.
Air pollution from aircraft [NASA-CR-159712] p0010 W80-15060

HILL, M. W.

HILL, E. J.
Three dimensional finite-element elastic analysis of a thermally cycled double-edge wedge geometry specimen [NASA-TM-80980] p0079 W80-26433

HILL, R. V.

HILSHEK, J. M.
System analysis for millimeter-wave communication satellites [NASA-CR-159682] p0098 W80-12260

HINRICHS, R. M.

HINATE, J. G.
Coupled generator and combustor performance calculations for potential early commercial NDE power plants [NASA-CR-159682] p0098 W80-12260

HINATI, J. G.

HINSEY, K. E.

HODGES, R. D.
Corrosion resistant thermal barrier coating [NASA-CASE-LWK-1306-1] p0067 W80-11142

HODGES, R. D.
Phase-locked telemetry system for rotor instrumentation of turbomachinery, phase 1 [NASA-CR-159542] p0029 W80-14182

HOGG, J.

HOPF, E.
Application of advanced on-board processing concepts to future satellite communications systems [NASA-CR-159662] p0090 W80-12260

HOLDSHAW, J. D.
Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-CR-81569] p0010 A80-26853

HOPKINS, R.
Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1 [NASA-CR-81569] p0010 A80-26853
Comparison of several inflow control devices for quiet short-haul research aircraft (QSRA)

HOLMES, N.
On the role of oil-film bearings in promoting shaft instability: Some experimental observations
[ASME PAPER 60-1196] p0025 ASME-141514

HONG, J. T.
Experimental evaluation of a spinning-mode plasma fluctuation-induced transport in a Bumpy-Torus plasma
[ASME PAPER 79-LUB-4] p0129 ASME-14739

HORVITZ, Y. I.
Influence of excess diamine on properties of PAR polymer resins

HORST, J.
Preliminary results of fast neutron treatments in carcinomas of the pancreas

HORSTERT, G. B.
Spectral effects on direct-injection absorption of five collector coatings
[ASME PAPER 79-HT-10] p0146 ASME-14572

HOTZ, G. N.
Cold-air investigation of a 4 1/2 stage turbine with stage-loading factors of 4.66 and high specific work output. 2: Stage group performance
[NASA-TP-1688] p0019 NASA-25338

HOULT, D. F.
Laboratory measurements in a turbulent, swirling flow
[NASA-CS-159723] p0095 NASA-22509

HOUST, H. E.
Hybrid composites that retain graphite fibers on burning
[NASA-CS-134868] p0073 NASA-32064

HUBBARD, D. R.
Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report
[NASA-CS-135296] p0035 NASA-15095

HUBBARD, J. B.
Soot formation and burnout in flames
[NASA-CS-135296] p0035 NASA-15095

HUBBARD, H. L.
Possible methods for distinguishing icebergs from ships by aerial remote sensing
[ASME-141514] p0027 NASA-10222

HUBBERT, R. A.
VSCE technology definition study

HUSDEN, V. R.
Electric propulsion, circa 2000
[NASA-TP-901512] p0059 NASA-32886

HUSDEN, W. P.
Phase change in liquid phase seals. II - Isothermal and adiabatic bounds with real fluids

HULLER, T. T.
Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 Million DR
[NASA-TP-1599] p0014 NASA-15010

HULLER, F. T.
Comparison of predicted and experimental performance of large-bore roller bearing operating to 3.0 Million DR
[NASA-TP-1599] p0014 NASA-15010

HUMPHRIES, J. H.
Subsynchronous instability of a geared centrifugal compressor of overhung design
[NASA-CH-159730] p0027 NASA-10222
null
Mackin, J. A.
Survey of anisotropy of nickel-base superalloy single crystals
[NASA-CR-159714] p0037 M80-19113

Mack, E. F.
An efficient user-oriented method for calculating compressible flow in an about three-dimensional inlet

Mackay, R. A.
Anisotropy of nickel-base superalloy single crystals

Anisotropy of nickel-base superalloy single crystals
[NASA-CR-81437] p0077 M80-17200

Machado, J. J.
Experimental evaluation of a low emissions high performance duct bnrner for variable cycle engines (VCE)

Magleby, B.
Acoustic pressures on a prop-fan aircraft fuselage surface
[IAA PAPER 80-1002] p0172 80-35965

Advanced turbo-prop airplane interior noise reduction-source definition

Mangold, E.
Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces
[NASA-CR-81376] p0096 M80-16232

Mangold, T. C.
Investigation into the effect of plasma pretreatment on the adhesion of paralyne to various substrates
[NASA-CR-79224] p0066 80-25900

Investigation into the effect of plasma pretreatment on the adhesion of paralyne to various substrates
[NASA-CR-79224] p0114 M80-13473

Mais, D. D.
Anisotropy of nickel-base superalloy single crystals

Anisotropy of nickel-base superalloy single crystals

Maisel, J. E.
Error analysis in the measurement of average power with application to switching controllers
[NASA-CR-159792] p0104 M80-21202

Malagasy, S. B.
Practical experience with usable compressors
[NASA-CR-81380] p0125 M80-29709

Mandel, H.
A three-dimensional spacecraft-charging computer code
p0055 A80-46891

Mandel, M.
Plasma collection by high voltage spacecraft at low earth orbit
[IAA PAPER 80-0042] p0055 A80-18249

Photoelectron charge density and transport near differentially charged spacecraft

Manning, I.
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A
[NASA-CR-159119] p0041 M80-27361

Mangin, G. A.
A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data
p0133 A80-38142

Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

Martin, K. A.
Sputtering in mercury ion thrusters
[IAA PAPER 79-2106] p0056 A80-10384

HG ion thruster component testing
[IAA PAPER 79-2116] p0059 A80-20959

HG ion thruster component testing
[NASA-TH-75287] p0056 M80-13159

Martin, P. J.
Experimental study of turbine fuel thermal stability in an aircraft fuel system simulator
p0043 M80-29325

Martin, C.
Study of advanced radial outflow turbine for solar steam Rankine engines
p0168 M80-16483

Martin, E. E.
Advanced technology light weight fuel cell program
p0149 M80-15615

Martin, E. L.
Expanded study of feasibility of measuring in-flight 747/7200 loads, performance, clearance, and thermal data

Marz, J. E.
A photovoltaic power system in the remote African village of Zanyaye, Upper Volta

Maskal, T.
Design study of a 15 kw free-piston Stirling engine-linear alternator for dispersed solar electric power systems

Mats, H.
Parametric instabilities of rotor-support systems with application to industrial ventilators
p0127 M80-29729

Mather, K. E.
Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles
[NASA-CR-159756] p0164 M80-23116

Active heat exchange system development for latent heat thermal energy storage

McArthur, K. W.
Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells
[NASA-CR-159833] p0150 M80-22775

Mather, N. B.
Inlet flow distortion in turbomachinery. I - Comparison of theory and experiment in a transonic fan stage. II - A parameter study
[IAA PAPER 80-1076] p0006 A80-38965

May, C. E.
Decay of the zincate concentration gradient at an alkaline zinc cathode after charging
p0074 A80-13070

Method of cross-linking polyvinyl alcohol and other water soluble resins
[NASA-CR-159833] p0004 M80-32516

McArthur, R. A.
Open-circuit voltage improvements in low resistivity solar cells
[NASA-TM-81368] p0136 M80-15555
Comparison of several inflow control devices for flight simulation of fan tone noise using a J75D-1 engine [AIAA Paper 80-1025] p0025 A80-38649

Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Range Research Aircraft (QSRA) [NASA TP-1556] p0014 N80-14121

Comparison of several inflow control devices for flight simulation of fan tone noise using a J75D-1 engine [NASA TR-81505] p0019 N80-20434

Static and transient performance of YF-102 engine with up to 14 percent core bleed for the quiet short-haul research aircraft [NASA TP-1692] p0020 N80-25339

Engine component improvement program - Performance improvement [AIAA Paper 80-0223] p0024 A80-19300

Engine component improvement program - Performance improvement [NASA TR-79304] p0013 M80-12092

Improved components for engine fuel miltage [NASA TP-31402] p0023 A80-31602

Design, fabrication and testing of an optical temperature sensor [NASA CR-159125] p0112 N80-31777

Sintered nickel nitrode recuperator fabrication [NASA CR-159706] p0090 M80-15263

Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors p0082 A80-35500

Effect of thermal cycling on zircaloy-2 engine barrier coatings p0089 A80-35899

Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors [NASA TR-01385] p0077 N80-18156

Effect of thermal cycling on zircaloy-2 engine barrier coatings [NASA TR-81480] p0108 N80-22349

Computational three-dimensional viscous supersonic flow in inlet [NASA Paper 80-0946] p0065 A80-23941

A three-dimensional turbulent compressible subsonic duct flow analysis for use with a constructed coordinate system [AIAA Paper 80-1398] p0006 A80-41601

Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8 cm) diameter fan, volume I [NASA CR-136894] p0033 M80-15083

Intra-ocular pressure normalization technique and equipment [NASA CR-128-12723-1] p0135 N80-18659

Recessed and predicted impingement noise for a model-scale under the wing externally blown flap configuration with a CISE type nozzle [NASA TR-8164] p0169 N80-26115

Experimental performance and analysis of 15.04 centimeter-tip-diameter, radial-inflow turbine with work factor of 1.126 and thick blading

Comparison of Static Corppacinon of several inflow control devices

Engine component improvement program: Performance

Preliminary study of a solar selective 0

Effect of thermal cycling on UO2-Y2O3 thermal

Sintared silicon nitrode recuperator Fabrication

Matrix management for aerospace 2000

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a

Intra-ocular

A three-dimensional turbulent compressible

Effect of thermal cycling on Zr02

Design, fabrication and tooting of as optical
down

Experimental performance and analysis of

Measured and predicted impingement noise for a

Development of a three-dimensional supersonic

Stability analysis of a
AORDIS, H. W.

Cold-air investigation of a 1/2 stage turbine with stage-loading factor of 4.66 and high specifilc work output. 2. Stage group performance.

Effect of fuel molecular structure on soot formation in gas turbine combustion.

NOSER, J. S.

Materials for advanced turbine engines. Volume 1: Power metallurgy near 95 operating turbine engine parts.

Effect of fuel molecular structure on soot formation in gas turbine engines.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[NASA-TP-1608] p0021 NS0-29222

Effect of fuel molecular structure on soot formation in gas turbine combustion.

[NASA-TR-165125] p0112 80-31777

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Particulate emissions from the Cycle Engine (VCE) testbed coannular exhaust nozzle system.

[NASA-TP-165155] p0175 NS0-23221

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Particulate emissions from the Cycle Engine (VCE) testbed coannular exhaust nozzle system.

[NASA-TP-165155] p0175 NS0-23221

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.

[ASME PAPER 80-GT-62] p0095 ASO-42192

Performance, emissions, and physical characteristics of a rotating cycle engine. Volume 1.

[NASA-CR-159721] p0043 80-29322

Prediction of fragmental trajectories.
PETERS, D.

A three-dimensional spacecraft-charging computer code

PARKS, R. E.

Plasma collection by high voltage spacecraft at low earth orbit

PARKS, D. R.

Parametric instabilities of rotor-support system with application to industrial ventilators

PASS, J. E.

Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

PATT, B. P.

CPC fan performance improvement

PAVLY, A. J.

Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

PEIRCE, M.

Packet communications in satellites with multiple-beam antennas and signal processing

PEIKO, P. F.

Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

PEACOCK, A.

Effect of cage design on characteristics of ball bearing

PEACOCK, P. A.

A phenomenological model of the dynamic stall of a helicopter blade profile

PEELSE, M. J.

Fracture toughness of brittle materials determined with chevron notch specimens

PEEPES, N. E.

Performance of computer-optimized, tapered-roller ball bearings to 2.4 million DN

PERCIVAL, L. S.

Temperature and pressure measurement techniques

PERKINS, J. R.

Operating characteristics of high-speed, jet-lubricated 35-millimeter-bore ball bearing with a single-outlet-land-guided cage

PERKSON, C. A.

Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

PEROT, D.

A phenomenological model of the dynamic stall of a helicopter blade profile

PERSTEIN, B. A.

Proprietary aircraft propulsion for a new era in energy and the environment

Emission reduction

PETERS, B. J.

High-temperature molten salt thermal energy storage systems

PETERS, E. H.

Materials for advanced turbine engines. Volume 1: Power metallurgy h5e 95 rotating turbine engine parts

PHILLIPPP, W. H.

Method of cross-linking polyvinyl alcohol and other water soluble resins

PIETT, R. D.

Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1

PINE, R. E.

Lubrication of optimized-design tapered-roller ball bearings to 2.4 million DN

PINEL, S. I.

A study of the transmission characteristics of high-speed-jet-lubricated 35-millimeter-bore ball bearing

PIERCE, R. J.

Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

PIERCE, R. J.

Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

PIERCE, R. J.

Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

PIERCE, R. J.

Lubrication of optimized-design tapered-roller bearings to 2.4 million DN

PIERCE, R. J.

Lubrication of optimized-design tapered-roller bearings to 2.4 million DN
EUSELON, SALLIE, S., J.
SAGERMAY, G. D.
RUSSELL, L. M.
SAGERSER, E.
LEES, C. L.
AGGLES, S.
SABLA, P. E.
SCHULL, R. M.

A study of the transmission characteristics of solid-state economic analysis
An investigation into the role of adhesion in the characterization of near term electric vehicle propulsion system testing
A laboratory facility for electric vehicle propulsion system
testing

S

SAUSE, R. W.

Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

SALBER, R. M.

Quiet Clean Short-haul Experimental Engine (QCSEE) - Double-annular clean combustor
technology development report

SALBER, C. T.

Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report

SALLEN, J.

An investigation into the role of adhesion in the erosion of ductile metals

SALLRUDS ring, M.

Characteristics of internal- and jet-noise radiation from a multi-lobe, multi-tube suppressor nozzle tested statically and under flight simulation

SALLER, G. P.

Expanded study of feasibility of measuring in-flight 747/777/767 loads, performance, clearance, and thermal data

SALLER, B. E.

Kinematic correction for roller skewing

SALZMAN, J.

Strain-rate partitioning life predictions of the long-time Metal Properties Council creep-fatigue tests

SALZMAN, J.

Quantitative interpretation of Great Lakes remote sensing data

SALZMAN, J. A.

Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

SALZMAN, J.

Reverse thrust performance of the QCSEE variable pitch turbine engine

SANDERCOCK, E. F.

Off-design correlation for losses due to part-span dampers on transonic rotors

SANDERS, R. M.

Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients

SANDERS, B. M.

Coral reef ecosystem studies

SANDERS, G. S.

Aerial applications dispensal systems control requirements study

SANDERS, B. M.

Coral reef ecosystem studies

SANDERS, A. A.

Fuel conservation through active control of rotor clearances

SANDERS, A. A.

Method and apparatus for rapid thrust increases in a turbofan engine

SANDERS, A. A.

Advanced component technologies for energy-efficient turbofan engines

SANDERS, R. K.

Advanced component technologies for energy-efficient turbofan engines

SANDERS, R. E.

Kinematic correction for roller skewing

SANDERS, R. E.

Some techniques for reducing the tower shadow of...
the DOE/NASA mod-0 wind turbine tower

SCHAFFNER, J. W.
The energy efficient engine project

SCHAMERLING, R.
Plasma-sprayed dual density ceramic turbine seal system

SCHRANE, D. B.
Analytical investigation of two hydrogen-oxygen rocket engine systems for low-thrust application

SCHNELL, H.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, H. J.
Analyzing starting powder characteristics on pre-treatment on the adhesion of parylene to various substrates

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHULZ, D. F.
Effect of starting powder characteristics on plasma collection by high voltage spacecraft at low earth orbit

SCHNUELLI, G.
A three-dimensional spacecraft-charging computer code

SCHWALBE, P. T.
Calculation and experimental data for a 118-m bore roller bearing to 3 million DM

SCHMIDT, H.
Effect of cage design on characteristics of high-speed jet-lubricated 35-millimeter-bore ball bearing

SCHOTT, D. M.
Flame tube parametric studies for control of fuel bound nitrogen using rich-leak two-stage combustion

SCHUETZ, S.
Effect of M and WC on the oxidation resistance of yttria-doped silicon nitride

SCHULZ, D. F.
Evaluation of particle transport for the P80-1 spacecraft

SCHWABE, K.
Initial characterization of an Experimental Reference Broadened-Specification (REBS) aviation turbine fuel

SCHENZ, G. A.
Application of the principle of similarity fluid mechanics

SCHWEITZER, J. P.
High char sidewall-modified epoxy matrix resins

SCHUETZ, S.
Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4 - 8 w/o Y2O3 ceramic

SCHUETZ, D. M.
Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N4 - 8 w/o Y2O3 ceramic

SCHWABE, J. R.
Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller

SCHWAB, H. C.
Program to develop sprayed, plastically deformable compressor shroud seal materials

SCHWARTZ, H. J.
Impact of propulsion system R and D on electric vehicle performance and cost

SCHWABE, F. C.
Bi-directional four quadrant (BD4Q) power converter development

SCHNEIDER, R. E.
First results of material charging in the space environment

SCHULZ, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing

SCHMAUSS, H.
Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNEIDER, E. C.
Effective laser anemometer for intra-rotor flow mapping in turbomachinery

SCHLUETT, F. T.
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

SCHMIDT, D. F.
Flexible formulated plastic separators for alkaline batteries

SCHNUILLE, G. N.
Analytical investigation of two hydrogen-oxygen combustion ball bearing
SPEBA, D. A.
Modified power law equations for vertical wind profile
[ASAP-TR-79275] p0159 ABO-35719

Modified power law equations for vertical wind profile
[ASAP-TR-79275] p0159 ABO-35719

Design evolution of large wind turbine generators
[SASA-TR-81408] p0139 ABO-16045

Structural analysis considerations for wind turbine blades
[SASA-TR-81408] p0139 ABO-16469

Preliminary analysis of performance and loads data from the 2-megawatt mod-1 wind turbine generator
[SASA-TR-81408] p0139 ABO-16494

SYTHER, E. H.
The 30/20 GHz fixed communications systems service demand assessment. Volume 1: Executive summary
[NASA-CR-159619] p0098 ABO-16622
The 30/20 GHz fixed communications systems service demand assessment. Volume 2: Main report
[NASA-CR-159620] p0098 ABO-16623
The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex
[NASA-CR-159621] p0099 ABO-16624

SPFENCE, W. M.
Assessment of satellite and aircraft multispectral scanner data for strip-mine monitoring
[NASA-TR-792620] p0136 ABO-20787

SPFREISS, J. R.
Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows
[AIAA PAPER 80-0339] p0006 ABO-10022

SPFREISS, B.
The optimization of air separation plants for combined cycle NBD + power applications
[NASA-TH-81510] p0142 ABO-23778

SPFREISS, C. R.
Combustion of solid carbon rods in zero and normal gravity
[SASA-TR-792603] p0104 ABO-13404
Combustion of solid carbon rods in zero and normal gravity
[SASA-TR-792603] p0104 ABO-13404

SPFREISS, G. D.
Evaluation of the effect of micturition on blade torsional flutter

SPFREISS, H. V.
Influence of micturition on blade torsional flutter

SPFREISS, J. A.
Compliance and stress intensity coefficients for short bar specimens with chevron notches
[SASA-TR-81408] p0133 ABO-46032

STADY, R. G.
Description of the the core turbine facility recently installed at NASA Lewis Research Center
[NASA-CR-15962] p0022 ABO-29333

STADY, R. B.
Two-dimensional finite element analyses of simulated rotor-fan impact against rings and beams compared with experiments
[NASA-CR-159645] p0038 ABO-22233
Instructions for the use of the CFD-Fluids computer code to calculate the transient structural responses of partial and/or complete arbitrarily-curved rings subjected to fragment impact
[NASA-CR-159873] p0134 ABO-27720

STADY, S. S.
Evaluation of a strained-coordinate perturbation procedure - Nonlinear subsonic and transonic flows
[SASA-TR-81408] p0006 ABO-16524

STALAGHER, P. J.
Summary and evaluation of the parametric study of potential early commercial RBD power plants (PSERC)
[NASA-TR-81497] p0142 ABO-23780

STAM, G.
Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient
[SASA-TR-81408] p0096 ABO-40962

STAMM, J. D.
General design method for three-dimensional potential flow fields. 1: Theory
[NASA-TR-81408] p0005 ABO-29251

TECEA, J. E.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
(AIAA Paper 80-1193)
p0009 80-38963
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
([NASA-TR-81512])
p0016 80-23313

SZANCA, E. N.
Abatable compressor and turbine seals, volume 1
([NASA-CE-159600])
p0083 80-14235

SWENLA, R. A.
Quantitative interpretation of Great Lakes remote sensing data
p0157 80-45005

TAYLOR, M.
Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results
([NASA-TP-1696])
p0157 80-27832

SZENASI, F. R.
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
([NASA-TR-81391])
p0138 80-15557
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
([NASA-TR-81392])
p0138 80-15556
Radiation damage in high voltage silicon solar cells
([NASA-TR-81078])
p0179 80-23680
Radiation damage in high voltage silicon solar cells
([NASA-TR-81079])
p0178 80-23160

STOKES, R. P.
Lec reduced gravity fluid management technology program
p0048 80-35504

SILVARESE, J. C.
Design study of steel V-Belt CTY for electric vehicles
([NASA-CE-159845])
p0185 80-32299

SCHNEIDER, C. M.
Origin of reverse annealing in radiation-damaged silicon solar cells
p0095 80-33850
Radiation damage in high voltage silicon solar cells
p0179 80-44234
Radiation damage in lithium-counterdoped n/p silicon solar cells
([NASA-TR-81391])
p0136 80-15557
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
([NASA-TR-81392])
p0138 80-15556
Radiation damage in high voltage silicon solar cells
([NASA-TR-81078])
p0179 80-23160

STOCKS, R. F.
Lec reduced gravity fluid management technology program
p0048 80-35504

SCHNEIDER, R. B.
Field verification of laterial-axial coupling effects on rotor instabilities in centrifugal compressors
p0125 80-29708

SCHNEIDER, K. J.
External fuel vaporization study, phase 1
([NASA-CE-159850])
p0095 80-25435

SCHNEIDER, J. H.
Control technology
p0113 80-10215

TABER, L.
A calculation procedure for viscous flow in turbomachines, volume 2
([NASA-CE-159636])
p0004 80-17955
A calculation procedure for viscous flow in turbomachines, volume 3
([NASA-CE-159664])
p0005 80-26274

TAYLOR, J. C.
Effects of anisynematic contractions on turbulence variations scales
([NASA-TR-81536])
p0006 80-32320

TANG, S.
Performance of annular prediffuser-combustor systems
([ASME Paper 80-02-15])
p0026 80-42154

TAYLOR, M. F.
Effect of cooling variables on the properties and composition of JP-5
p0041 80-29306

TAYLOR, J. A.
Design of elastomeric dampers for a high-speed flexible rotor
([ASME Paper 79-DHT-86])
p0121 80-15736

TAYLOR, W.
The 10/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary
([NASA-CE-159546])
p0059 80-22547
The 10/30 GHz fixed communications system service demand assessment. Volume 2: Main text
([NASA-CE-159547])
p0059 80-22548
The 30/40 GHz fixed communications systems service demand assessment. Volume 3: Appendices
([NASA-CE-159548])
p0059 80-22549

TAYLOR, J. S.
Optical sensors for aeronautics and space
p0110 80-17423

TEBBILD, C. H.
Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbiting missions
([NASA-TR-79269])
p0162 80-11950
Electric propulsion for near-earth space missions
([NASA-CE-159735])
p0062 80-16096

TEBBILD, C. H., Jr.
Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbiting missions
([NASA-CE-159739])
p0198 80-20691

TEBBILD, J. A.
Autogeneration characteristics of aircraft-type fuel
([NASA-CE-159806])
p0095 80-30355

THALLEN, L. H.
Improvement andscale-up of the NASA Redox storage system
p0146 80-48370

THOMPSON, R. W.
Redox storage systems for solar applications
([NASA-TR-81646])
p0142 80-23777

THOMAS, R. J.
Self-excited rotor whirl due to tip-seal leakage forces
p0127 80-29723

THOMAS, R. L.
Large wind turbines: A utility option for the generation of electricity
([NASA-TR-81052])
p0144 80-32858

THOMPSON, R. L.
Marangoni bubble motion in zero gravity
p0170 80-20958
Marangoni bubble motion in zero gravity
([NASA-TR-79250])
p0104 80-13403

THOMPSON, R. W.
Vibration exciting mechanisms induced by flow in turbomachine stages
p0127 80-29722

THOMAS, J. H.
Development of improved wraparound contacts for silicon
([NASA-CE-159748])
p0148 80-16554

THOMPSON, R. W.
Screen printing technology applied to silicon solar cell fabrication
([NASA-CE-159769])
p0153 80-27808

THOMPSON, R. W.
Cogr generation of electricity
([NASA-CE-159807])
p0095 80-30355

THOMPSON, R. W.
Improvement of the NASA Bedox storage system
([NASA-CS-159625])
p0146 80-48370

THOMPSON, R. W.
Improvement andscale-up of the NASA Redox storage system
([NASA-CS-159663])
p0144 80-48370

THOMPSON, R. W.
Redox storage systems for solar applications
([NASA-TR-81646])
p0142 80-23777

TIERNSHAW, R. N.
NASA Global Atmospheric Sampling Program (GASP) data report for tapes VLOO11 and VLOO13
([NASA-TR-81642])
p0157 80-21692

TINK, J. S.
Gase phase oxidation downstream of a catalytic combustor
([NASA-TR-81551])
p0144 80-29863

TISENO, R. M.
High-temperature molten salt thermal energy storage systems
([NASA-CE-159643])
p0148 80-17547

TITMAN, R. N.
Long-time creep behavior of the tantalum alloy Hastelloy A
([NASA-TP-1691])
p0008 80-32849
Long-time creep behavior of the niobium alloy C-103
([NASA-TR-79277])
p0008 80-33555

TOKA, B.
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A
([NASA-CE-153119])
p0041 80-27361

TOLLY, W. P.
High-freezing-point fuel studies
p0083 80-29329

TONACIO, N. A.
Supporting research and technology for automotive
CORPORATE SOURCE INDEX

Typical Corporate Source Index Listing

<table>
<thead>
<tr>
<th>CORPORATE SOURCE</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRW, INC., CLEVELAND, OHIO.</td>
<td>Tungsten wire/FeC3Al composite turbine blade fabrication study</td>
<td>p0090 N80-12357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEROSPACE CORP., EL SEGUNDO, CALIF.</td>
<td>Nuclear electric propulsion system for earth orbit transfer of large spacecraft structures</td>
<td>p0600 A80-30975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEROSPACE CORP., LOS ANGELES, CALIF.</td>
<td>Initial comparison of SSPM ground test results and flight data to NASCAP simulations</td>
<td>p0054 A80-29751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., TORRANCE, CALIF.</td>
<td>Design study of toroidal CVT for electric vehicles</td>
<td>p0124 N80-25661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., MILWAUKEE, WIS.</td>
<td>Airmumns QCGAT program</td>
<td>p0377 N80-21331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Constrained fatigue life optimization of a NaYFe3SiO8 multilayer traction drive</td>
<td>p0122 A80-46407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Effect of geometry and operating conditions on spur gear system power loss</td>
<td>p0122 A80-46409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Evaluation of a high performance fixed-ratio traction drive</td>
<td>p0122 A80-46410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Computer program for generating input for analysis of impingement-cooled, axial-flow turbine blade</td>
<td>[NASA-TP-1603]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine</td>
<td>[NASA-TP-1603]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMUMS NRG CO., CLEVELAND, OHIO.</td>
<td>Characterization and properties of controlled nucleation thermochemical deposited /CVD/ silicon carbide</td>
<td>p0089 A80-13063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE AERONAUTICAL LABS., WRIGHT-PATTERSON AFB, OHIO.</td>
<td>First results of material charging in the space environment</td>
<td>p0055 A80-45609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE AERONAUTICAL LABS., WRIGHT-PATTERSON AFB, OHIO.</td>
<td>Three dimensional finite-element analysis of a thermally cycled double-edge wedge geometry specimen</td>
<td>[NASA-TM-81457]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>3500-hour durability testing of ceramic materials for automotive gas turbine engines</td>
<td>p0092 A80-35575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Development of advanced composite materials for aerospace applications</td>
<td>[AIRES-31-3542]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Abradable compressor and turbine seals, volume 1</td>
<td>p0084 A80-45825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Air Research QCGAT program</td>
<td>p0377 N80-21331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Concept definition study of small Brayton cycle engines for dispersed solar electric power systems</td>
<td>[NASA-CR-159592]</td>
<td>p0150 N80-22778</td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>The 3500 hour durability testing of commercial ceramic materials</td>
<td>[NASA-CR-159765]</td>
<td>p0091 N80-31552</td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Nuclear electric propulsion system for earth orbit transfer of large spacecraft structures</td>
<td>[NASA-CR-159903]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Advanced propulsion system for hybrid vehicles</td>
<td>[NASA-CR-159771]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Subasynchronous instability of a geared centrifugal compressor of overhung design</td>
<td>[NASA-CR-159592]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Tissue response to peritoneal implants</td>
<td>[NASA-CR-159617]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Nasvytis multiroller traction drive</td>
<td>p0056 U80-33478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Constrained fatigue life optimization of a NaYFe3SiO8 multilayer traction drive</td>
<td>p0122 A80-46407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Effect of geometry and operating conditions on spur gear system power loss</td>
<td>p0122 A80-46409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Evaluation of a high performance fixed-ratio traction drive</td>
<td>p0122 A80-46410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Computer program for generating input for analysis of impingement-cooled, axial-flow turbine blade</td>
<td>[NASA-TP-1603]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Some considerations of the performance of two honeycomb gas path seal material systems</td>
<td>[NASA-TM-81457]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Spur-gear system efficiency at part and full load</td>
<td>[NASA-TP-1622]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Simplified fatigue life analysis for traction drive contacts</td>
<td>[NASA-TP-1603]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Composite wall concept for high temperature turbine shafts: Survey of low modulus strain isolator materials</td>
<td>[NASA-TP-71457]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR FORCE GEOPHYSICS LAB., HANSCOM AFB, BASS.</td>
<td>Parametric tests of a traction drive retrofitted to an automotive gas turbine</td>
<td>[NASA-TP-71457]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The title of the document is used to provide a brief description of the subject matter. The page number and NASA or AIAA accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.
ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND,

ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND, ST. LOUIS, MO.

Experimental performance and analysis of 150.04-centimeter-tip-diameter, radial-inflow turbine with work factor of 1.126 and thick blading. [NASA-TDR-1730] p0023 N80-33410

ABET AVIATION RESEARCH AND DEVELOPMENT COMMAND, ST. LOUIS, MO.

Simplified fatigue life analysis for traction drive contacts. p0121 A80-28010

ATMOSPHERIC SCIENCES ASSOCIATES, BEDFORD, MASS.

Weir of real materials used in aircraft propulsion systems. p0122 A80-46413

ABET STRUCTURES LAB., HAMPTON, VA.

Buckling of rotating beams. p0133 A80-20149

ATMOSPHERIC SCIENCES ASSOCIATES, BOSTON, MASS.

Calculation of water drop trajectories to and about arbitrary three-dimensional bodies in potential airflow. [NASA-9892] p0005 N80-28302

ATKINS CORP., LOWELL, MASS.

Fiber release characteristics of graphite hybrid composites. p0073 A80-32063

AVCO CORP., WILMINGTON, MASS.

Parametric study of potential early commercial MHD power plants. [NASA-CR-60303] p0149 N80-18559

AVCO LICOMING DIV., STRATFORD, CONN.

AVCO Lycoming quiet clean general aviation turboshaft engine. p0039 N80-22333

AVCO LICOMING DIV., WILLIAMSPT, PA.

AVCO SISTERS DIV., WILMINGTON, MASS.

Improving the stress rupture and creep of silicon nitride. [NASA-CR-159585] p0072 N80-10318

BANASAR HINDU UNIV., VARANASI (INDIA).

Preparation of cast aluminum-alloy-silica particle composites. p0071 A80-32632

BATTLE COLUMBUS LABS., OHIO.

Spray nozzle designs for agricultural aviation applications. [NASA-CR-159702] p0108 N80-10460

BATTLEY NAYLOR INT'L, SAN FRANCISCO, CALIF.

BATTLEY NEVADA CORP., RIBBON.

The parameters and measurements of the destabilizing actions of rotating machines, and the assumptions of the 1950's. p0125 N80-29712

BOEING AEROSPACE CO., KENNEDY SPACE CENTER, FLA.

Cost-effective technology advancements for electric propulsion transportation systems in earth-orbital missions. [AIAA PAPER 79-2003] p0048 A80-20961

BOEING AEROSPACE CO., SEATTLE, WASH.

Hybrid composites that retain graphite fibers on burning. [NASA-CR-159735] p0068 N80-16096

Electric propulsion for near-Earth space missions. p0062 N80-16096

BOEING CO., SEATTLE, WASH.

Auxiliary control of LS3. p0063 N80-31459

C-2

CORPORATE SOURCE INDEX

BOEING COMMERCIAL AIRPLANES CO., SEATTLE, WASH.

Improved tire/wheel concept. [NASA-CASE-LAB-11695-2] p0124 N80-16402

Aviation fuels outlook. p0041 N80-29304

BOEING ENGINEERING AND CONSTRUCTION, SEATTLE, WASH.

BOEING MILITARY AIRCRAFT DEVELOPMENT, SEATTLE, WASH.

High-freezing-point fuel studies. p0043 N80-29329

BROOKS (WILLIAM R.) AND ASSOCIATES, BERMALY, CALIF.

Study of advanced electric propulsion system concept using a flywheel for electric vehicles. [NASA-CR-159650] p014 N80-18591

An automatically-shifted two-speed transaxle system for an electric vehicle. [NASA-CR-159746] p014 N80-18592

CALIFORNIA INST. OF TECH., PASADENA.

A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps. p0126 N80-29719

CALIFORNIA UNIV., LA JOLLA.

Critical currents in A-15 structure in alloy. p0124 N80-18991

CALIFORNIA UNIV. AT LOS ANGELES.

A methodology for long-range prediction of air transportation. p0041 N80-29305

CARNEGIE UNIV. (ENGLAND).

The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream. p0004 N80-44862

CARNEGIE-MELLON UNIV., PITTSBURGH, PA.

Phase change in liquid face seals. IT - Isothermal and adiabatic bounds with real fluids. [AIAA PAPER 79-2004] p0129 A80-51573

CASE WESTERN RESERVE UNIV., CLEVELAND, OHIO.

Some TFR observations of A1203 scaled formed on nickel alloys. p0081 A80-13071

A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data. p013 N80-38162

Anisotropy of nickel-base superalloy single crystals. p0063 A80-51573

Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service. [NASA-CR-159703] p0098 N80-12259

CHRYSLER CORP., DETROIT, MICH.

Upgraded automotive gas turbine engine design and development program, volume 2. [NASA-CR-159671] p0128 N80-32719

CINCINNATI UNIV., OHIO.

Hyperfine magnetic field at Cd impurity site in La211 Heusler alloys Rh2MnGe and Rh2MnPb by TOFAC technique. p0178 A80-16843
Holographic order mode propagation in nonuniform circular ducts
[NASA-TM-108019]
p0166 N80-23101

Instructions for the use of the CRAC-Jet AC finite-strain computer code to calculate the transient structural response of partial and/or complete arbitrarily curved riser subjected to fragment impact

SO in formation and burnout in flames
p0043 N80-29320

Physical explanations of the destabilizing effect of damping in rotating parts
p0127 N80-29728

Finite-strain large-deflection elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft

AIAA DEVELOPMENT CORP., SAN DIEGO, CALIF.

Torquing and electrostatic deformation of the solar sail
p0065 A80-46901

MECHANICAL TECHNOLOGY, INC., LATHAN, N.Y.
The effects of strain and temperature on the dynamic properties of elastomers
[ASME PAPER 79-DT-57] p0092 A80-15720

Design of elastomer dampers for a high-speed flexible rotor
[ASME PAPER 79-DT-68] p0121 A80-15736

Dynamic properties of elastomer cartridge specimens under a rotating load
p0121 A80-29902

Balancing of a power- transmission shaft with the application of axial torque
ASME PAPER 80-GT-143] p0121 A80-42256

Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft
[ASME PAPER 80-GT-143] p0121 A80-42272

Assessment of the state of technology of automotive fluidic engines

Development of procedures for calculating stiffness and damping of elastomers in engineering applications, part 6

Design study of a 15 kw free-piston Stirling engine-linear alternator for dispersed solar electric power system

High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine
[NASA-CR-159599] p0091 A80-26448

Practical experience with unstable compressors
p0125 N80-29709

Use of elastomeric elements in control of rotor instability
p0128 N80-29732

Development of procedures for calculating stiffness and damping of elastomers in engineering applications, part 7

MIAMI UNIV., OXFORD, OHIO.

Hydroxine magnetic field at Cd impurity site in LiF/W Vanier B212 and B215 by TOPAC technique
p0178 A80-16843

MIDWEST RESEARCH INST., KANSAS CITY, MO.

Thermal energy storage systems using fluidized bed heat exchangers

HITE CORP., BEDFORD, MASS.

Application of advanced on-board processing concepts to future satellite communications systems
[NASA-CR-159562] p0098 N80-12260

Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

On-board processing concepts for future satellite communications systems
TEXAS A&M UNIV., COLLEGE STATION.
Testing of turbulent walls for aerodynamic coefficients
[ASME PAPER 79-10-10] p016 A80-45722
Experimental results concerning centrifugal impeller excitations
[ASME PAPER 79-11-10] p010 A80-29727
TEXAS INSTRUMENTS, INC., DALLAS.
Spectral effects on direct-insulation absorbency of fine collector coatings
[ASME PAPER 79-11-10] p016 A80-45722
TEXAS A&M, AUSTIN.
The effect of a weak vertical magnetic field on fluctuation-induced transport in a Bubble-Torus plasma
p0176 A80-25476
THREE M VEHICLES, SAN DIEGO, CALIF.
The performance and efficiency of four motor/controller/battery systems for the simple electric vehicles
[NASA-CS-159776] p103 A80-24550
TOKYO UNIV.., JAPAN.
Fluid forces on rotating centrifugal impeller with whirling motion
p0127 A80-29724
TOLEDO UNIV., OHIO.
Identification and dual adaptive control of a turbojet engine
p0023 A80-10033
A new traffic control design method for large networks with signalized intersections
p0103 A80-14841
Examination of the flip-leg stability of rigid articulated rotor blades
p0010 A80-15123
Dispersion of sound in a combustion duct by fuel droplets and soot particles
p0170 A80-20953
Combustion of solid carbon rods in zero and normal gravity
p0074 A80-20955
Naragoni bubble motion in zero gravity
p0107 A80-20958
Spectral structure of pressure measurements made in a combustion duct
p0171 A80-35496
Nonlinear aeroelastic equations of motion of twisted, nonslender, flexible horizontal-axis wind turbine blades
[NASA-CR-159502] p0152 A80-26774
THU DEFENSE AND SPACE SYSTEMS GROUP, REDONDO BEACH, CALIF.
Evaluation of particle transport for the PBO-1 spacecraft
[ASME PAPER 79-2047] p0055 A80-13301
An adaptive-control switching buck regulator - Implementation, analysis, and design
p0103 A80-28167
Modeling and analysis of Power Processing Systems
p0066 A80-28094
An advanced mixed user; domestic satellite system architecture
[ASME PAPER 80-0494] p0099 A80-29544
Power processing technology for spacecraft primary ion propulsion
p0065 A80-48265
Specific spacecraft evaluation: Special report
Heat pipe cooled power magnets
[NASA-CR-159658] p0103 A80-13362
Analyses of moisture in polymers and composites
[NASA-CR-159745] p0091 A80-15264
Deposition of aerosol heat pipes: an investigation of C2H thermal excursions
[NASA-CS-165153] p1008 A80-32688
THU EQUIPMENT LABS.., CLEVELAND, OHIO.
Second generation PBO polyamide/fiber composites
[NASA-CR-159666] p0072 A80-12118
THU, INC., CLEVELAND, OHIO.
Tungsten wire/Pecarly matrix turbine blade fabrication study
[NASA-CR-159788] p0046 A80-29331
Cost analysis of composite fan blade manufacturing processes
THU, INC., REDONDO BEACH, CALIF.
Heat pipe cooling of power processing magnets
[ASME PAPER 79-2082] p0107 A80-20960
Multi-bit satellite on-board signal processing
[NASA-80-0565] p0100 A80-25605
The 30/20 GHz mixed user architecture development study
[NASA-CR-159666] p0097 A80-10415
The 30/20 GHz mixed user architecture development study: Executive summary
[NASA-CR-159667] p0097 A80-10416
TUNO RESEARCH, INC., LEONVILLE, PA.
Vibration exciting mechanism induced by flow in turbine stage
p0127 A80-29722
TWIN MILL PROP CO., SAN RAFAEL, CALIF.
Evaluation of feasibility of prestressed concrete for use in wind turbine blades
U.
UNITED AIR LINES, INC., CHICAGO, ILL.
Current jet fuel trends
p0041 A80-29303
UNITED TECHNOLOGIES CORP., EAST HARTFORD, CONN.
External fuel vaporization study, phase I
[NASA-CR-159680] p0055 A80-25453
UNITED TECHNOLOGIES CORP., SOUTH WINDSOR, CONN.
Advanced technology light weight fuel cell program
[NASA-CR-159687] p0189 A80-19615
Cogeneration technology alternatives study. Volume 1: Summary report
[NASA-CR-159759] p0152 A80-25792
Cogeneration technology alternatives study. Volume 2: Industrial process characteristics
[NASA-CR-159760] p0152 A80-25793
Cogeneration technology alternatives study. Volume 3: Energy conversion system characteristics
[NASA-CR-159761] p0155 A80-31869
UNITED TECHNOLOGIES RESEARCH CENTER, EAST HARTFORD, CONN.
Development of silicon nitride of improved toughness
[NASA-CR-159676] p0072 A80-10319
Study of the effects of gaseous environments on the hot corrosion of superalloy materials
Experimental study of turbine fuel vaporization study, phase 1.
[ASME PAPER 79-2086] p0095 A80-30355
Autoignition characterization of aircraft-type fuels
[NASA-CR-159686] p0055 A80-30355
Turbulence or limiting on blade torsional flutter
[NASA-CS-165137] p0005 A80-31351
Design, fabrication, and testing of an optical temperature sensor
[NASA-CN-159615] p0112 A80-17177
V.
VIRGINIA POLYTECHNIC INST. AND STATE UNIV., BLACKSBURG.
An adaptive-control switching buck regulator - Implementation, analysis, and design
p0103 A80-28167
Modeling and analysis of Power Processing Systems
p0066 A80-28094
A comparison of experiment and theory for sound propagation in variable area ducts
[NASA-CR-159686] p0055 A80-30355
VIRGINIA UNIV., CHARLOTTESVILLE.
Instability thresholds for flexible rotors in turbomachinery with hydrodynamic journal bearings and supports
p0128 A80-29730
Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports
p0128 A80-29731
Feasibility of active feedback control of rotordynamic instability

Wright-Grissom Co., El Segundo, Calif.
High speed cylindrical rolling element bearing analysis 'CYCLEN' - Analytic formulation

[ASME 79-LUB-35] p0129 N80-14761

Xerox Corp., El Segundo, Calif.

Xerox Electro-Optical Systems, Pasadena, Calif.

Preliminary results of the mission profile life test of a 30 cm Hg bombardment thruster

[AIAA 79-2076] p0081 A80-10391

An electric propulsion long term test facility

[AIAA 79-2080] p0049 A80-13308

Inert gas ion thruster development

[AIAA 79-20905] p0062 N80-27426

Yale Univ., New Haven, Conn.

Theory of deposition of condensable impurities on surfaces immersed in combustion gases

Experimental studies of the formation/deposition of sodium sulfate in/ from combustion gases

CONTRACT NUMBER INDEX

Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Page Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN3-21971</td>
<td>p0095</td>
<td>W00-25453</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by contract number. Under each contract number, the accession numbers, denoting documents that have been produced as a result of a contract, are arranged in according order with the AAA accession numbers appearing first. Proceeding the accession number is the page number in the document in which the cita

Note: Some entries contain non-visible embedded content, possibly due to formatting or the nature of the data.
<table>
<thead>
<tr>
<th>CONTRACT NUMBER INDEX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS3-21971</td>
<td>p0095 N80-25453</td>
</tr>
<tr>
<td>NAS3-21975</td>
<td>p0172 A80-35551</td>
</tr>
<tr>
<td>NAS3-21980</td>
<td>p0036 N80-18040</td>
</tr>
<tr>
<td>NAS3-21995</td>
<td>p0005 N80-28302</td>
</tr>
<tr>
<td>NAS3-30368</td>
<td>p0147 N80-14480</td>
</tr>
<tr>
<td>NAS3-30813</td>
<td>p0147 N80-15553</td>
</tr>
<tr>
<td>NAS7-10480</td>
<td>p0103 N80-11328</td>
</tr>
<tr>
<td>NAS8-33108</td>
<td>p0065 N80-29719</td>
</tr>
<tr>
<td>NCI-401-031</td>
<td>p0006 A80-48265</td>
</tr>
<tr>
<td>NCI-604-040</td>
<td>p0006 A80-20740</td>
</tr>
<tr>
<td>NGR-06-002-112</td>
<td>p0061 N80-17137</td>
</tr>
<tr>
<td>NGR-06-006-005</td>
<td>p0177 N80-26161</td>
</tr>
<tr>
<td>NGR-06-009-039</td>
<td>p0063 N80-33476</td>
</tr>
<tr>
<td>NGR-21-002-344</td>
<td>p0117 A80-37895</td>
</tr>
<tr>
<td>NGR-22-009-339</td>
<td>p0036 N80-22323</td>
</tr>
<tr>
<td>NGR-22-010-024</td>
<td>p0083 N80-29762</td>
</tr>
<tr>
<td>NGR-39-005-077</td>
<td>p0010 N80-16060</td>
</tr>
<tr>
<td>NGR-43-003-15</td>
<td>p0075 N80-12142</td>
</tr>
<tr>
<td>NGR-47-006-031</td>
<td>p0061 N80-13164</td>
</tr>
<tr>
<td>NGR-47-006-031</td>
<td>p0061 N80-13165</td>
</tr>
<tr>
<td>NGR-47-007-002</td>
<td>p0075 N80-13193</td>
</tr>
<tr>
<td>NSF EWH-78-18544</td>
<td>p0075 A80-11754</td>
</tr>
<tr>
<td>MSG-15-017</td>
<td>p0073 N80-29432</td>
</tr>
<tr>
<td>MSG-3011</td>
<td>p0062 N80-24362</td>
</tr>
<tr>
<td>MSG-3012</td>
<td>p0177 N80-27169</td>
</tr>
<tr>
<td>MSG-3023</td>
<td>p0065 N80-27280</td>
</tr>
<tr>
<td>MSG-3046</td>
<td>p0129 A80-14739</td>
</tr>
<tr>
<td>MSG-3072</td>
<td>p0069 N80-15300</td>
</tr>
<tr>
<td>MSG-3078</td>
<td>p0129 N80-32720</td>
</tr>
<tr>
<td>MSG-3072</td>
<td>p0095 N80-22509</td>
</tr>
<tr>
<td>MSG-3076</td>
<td>p0146 A80-45722</td>
</tr>
<tr>
<td>MSG-3077</td>
<td>p0176 A80-25476</td>
</tr>
<tr>
<td>MSG-3091</td>
<td>p0176 A80-16843</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0126 N80-29731</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0033 N80-15130</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0043 N80-29327</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0159 N80-32520</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0152 N80-26774</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0033 N80-15130</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0126 N80-29730</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0176 N80-24759</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0006 A80-38895</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0176 N80-16923</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0177 N80-32223</td>
</tr>
<tr>
<td>MSG-3105</td>
<td>p0073 N80-25383</td>
</tr>
<tr>
<td>Accession Number</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E-010</td>
<td>p0014</td>
</tr>
<tr>
<td>E-019</td>
<td>p0014</td>
</tr>
<tr>
<td>E-020</td>
<td>p0078</td>
</tr>
<tr>
<td>E-029</td>
<td>p0077</td>
</tr>
<tr>
<td>E-041</td>
<td>p0080</td>
</tr>
<tr>
<td>E-047</td>
<td>p0093</td>
</tr>
<tr>
<td>E-063</td>
<td>p0114</td>
</tr>
<tr>
<td>E-066</td>
<td>p0116</td>
</tr>
<tr>
<td>E-072</td>
<td>p0157</td>
</tr>
<tr>
<td>E-076</td>
<td>p0116</td>
</tr>
<tr>
<td>E-079</td>
<td>p0012</td>
</tr>
<tr>
<td>E-080</td>
<td>p0116</td>
</tr>
<tr>
<td>E-087</td>
<td>p0137</td>
</tr>
<tr>
<td>E-090</td>
<td>p0076</td>
</tr>
<tr>
<td>E-119</td>
<td>p0114</td>
</tr>
<tr>
<td>E-126</td>
<td>p0076</td>
</tr>
<tr>
<td>E-127</td>
<td>p0105</td>
</tr>
<tr>
<td>E-136</td>
<td>p0015</td>
</tr>
<tr>
<td>E-147</td>
<td>p0115</td>
</tr>
<tr>
<td>E-154</td>
<td>p0014</td>
</tr>
<tr>
<td>E-156</td>
<td>p0093</td>
</tr>
<tr>
<td>E-159</td>
<td>p0137</td>
</tr>
<tr>
<td>E-160</td>
<td>p0104</td>
</tr>
<tr>
<td>E-164</td>
<td>p0067</td>
</tr>
<tr>
<td>E-167</td>
<td>p0105</td>
</tr>
<tr>
<td>E-178</td>
<td>p0076</td>
</tr>
<tr>
<td>E-182</td>
<td>p0067</td>
</tr>
<tr>
<td>E-187</td>
<td>p0136</td>
</tr>
<tr>
<td>E-189</td>
<td>p0065</td>
</tr>
<tr>
<td>E-192</td>
<td>p0065</td>
</tr>
<tr>
<td>E-195</td>
<td>p0008</td>
</tr>
<tr>
<td>E-203</td>
<td>p0116</td>
</tr>
<tr>
<td>E-204</td>
<td>p0096</td>
</tr>
<tr>
<td>E-206</td>
<td>p0093</td>
</tr>
<tr>
<td>E-207</td>
<td>p0095</td>
</tr>
<tr>
<td>E-212</td>
<td>p0110</td>
</tr>
<tr>
<td>E-214</td>
<td>p0116</td>
</tr>
<tr>
<td>E-217</td>
<td>p0002</td>
</tr>
<tr>
<td>E-220</td>
<td>p0117</td>
</tr>
<tr>
<td>E-223</td>
<td>p0101</td>
</tr>
<tr>
<td>E-224</td>
<td>p0040</td>
</tr>
<tr>
<td>E-228</td>
<td>p0077</td>
</tr>
<tr>
<td>E-230</td>
<td>p0056</td>
</tr>
<tr>
<td>E-233</td>
<td>p0015</td>
</tr>
<tr>
<td>E-235</td>
<td>p0130</td>
</tr>
<tr>
<td>E-237</td>
<td>p0036</td>
</tr>
<tr>
<td>E-241</td>
<td>p0132</td>
</tr>
<tr>
<td>E-243</td>
<td>p0066</td>
</tr>
<tr>
<td>E-246</td>
<td>p0014</td>
</tr>
<tr>
<td>E-249</td>
<td>p0167</td>
</tr>
<tr>
<td>E-250</td>
<td>p0167</td>
</tr>
<tr>
<td>E-253</td>
<td>p0046</td>
</tr>
<tr>
<td>E-255</td>
<td>p0104</td>
</tr>
<tr>
<td>E-259</td>
<td>p0033</td>
</tr>
<tr>
<td>E-260</td>
<td>p0087</td>
</tr>
<tr>
<td>E-261</td>
<td>p0067</td>
</tr>
<tr>
<td>E-263</td>
<td>p0137</td>
</tr>
<tr>
<td>E-265</td>
<td>p0076</td>
</tr>
<tr>
<td>Reference</td>
<td>Item Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>MASA-CR-159620</td>
<td>p0098 800-16263**</td>
</tr>
<tr>
<td>MASA-CR-159621</td>
<td>p0099 800-16264**</td>
</tr>
<tr>
<td>MASA-CR-159625-VOL-1</td>
<td>p0100 800-16265**</td>
</tr>
<tr>
<td>MASA-CR-159631</td>
<td>p0101 800-16266**</td>
</tr>
<tr>
<td>MASA-CR-159632</td>
<td>p0102 800-16267**</td>
</tr>
<tr>
<td>MASA-CR-159635-VOL-1A</td>
<td>p0103 800-16268**</td>
</tr>
<tr>
<td>MASA-CR-159640</td>
<td>p0104 800-16269**</td>
</tr>
<tr>
<td>MASA-CR-159650</td>
<td>p0105 800-16270**</td>
</tr>
<tr>
<td>MASA-CR-159651</td>
<td>p0106 800-16271**</td>
</tr>
<tr>
<td>MASA-CR-159655</td>
<td>p0107 800-16272**</td>
</tr>
<tr>
<td>MASA-CR-159666</td>
<td>p0108 800-16273**</td>
</tr>
<tr>
<td>MASA-CR-159668</td>
<td>p0109 800-16274**</td>
</tr>
<tr>
<td>MASA-CR-159670</td>
<td>p0110 800-16275**</td>
</tr>
<tr>
<td>MASA-CR-159672</td>
<td>p0111 800-16276**</td>
</tr>
<tr>
<td>MASA-CR-159673</td>
<td>p0112 800-16277**</td>
</tr>
<tr>
<td>MASA-CR-159676</td>
<td>p0113 800-16278**</td>
</tr>
<tr>
<td>MASA-CR-159677</td>
<td>p0114 800-16279**</td>
</tr>
<tr>
<td>MASA-CR-159682</td>
<td>p0115 800-16280**</td>
</tr>
<tr>
<td>MASA-CR-159684</td>
<td>p0116 800-16281**</td>
</tr>
<tr>
<td>MASA-CR-159685</td>
<td>p0117 800-16282**</td>
</tr>
<tr>
<td>MASA-CR-159687</td>
<td>p0118 800-16283**</td>
</tr>
<tr>
<td>MASA-CR-159688</td>
<td>p0120 800-16285**</td>
</tr>
<tr>
<td>MASA-CR-159691</td>
<td>p0121 800-16287**</td>
</tr>
<tr>
<td>MASA-CR-159695</td>
<td>p0122 800-16289**</td>
</tr>
<tr>
<td>MASA-CR-159696</td>
<td>p0123 800-16290**</td>
</tr>
<tr>
<td>MASA-CR-159703</td>
<td>p0124 800-16291**</td>
</tr>
<tr>
<td>MASA-CR-159705</td>
<td>p0125 800-16292**</td>
</tr>
<tr>
<td>MASA-CR-159706</td>
<td>p0126 800-16293**</td>
</tr>
<tr>
<td>MASA-CR-159707</td>
<td>p0127 800-16294**</td>
</tr>
<tr>
<td>MASA-CR-159710</td>
<td>p0128 800-16295**</td>
</tr>
<tr>
<td>MASA-CR-159711</td>
<td>p0129 800-16296**</td>
</tr>
<tr>
<td>MASA-CR-159713</td>
<td>p0130 800-16297**</td>
</tr>
<tr>
<td>MASA-CR-159714</td>
<td>p0131 800-16298**</td>
</tr>
<tr>
<td>MASA-CR-159715-VOL-2</td>
<td>p0132 800-16299**</td>
</tr>
<tr>
<td>MASA-CR-159716</td>
<td>p0133 800-16300**</td>
</tr>
<tr>
<td>MASA-CR-159717</td>
<td>p0134 800-16301**</td>
</tr>
<tr>
<td>MASA-CR-159718</td>
<td>p0135 800-16302**</td>
</tr>
<tr>
<td>MASA-CR-159721</td>
<td>p0136 800-16303**</td>
</tr>
<tr>
<td>MASA-CR-159722</td>
<td>p0137 800-16304**</td>
</tr>
<tr>
<td>MASA-CR-159723</td>
<td>p0138 800-16305**</td>
</tr>
<tr>
<td>MASA-CR-159724</td>
<td>p0139 800-16306**</td>
</tr>
<tr>
<td>MASA-CR-159725</td>
<td>p0140 800-16307**</td>
</tr>
<tr>
<td>MASA-CR-159727</td>
<td>p0141 800-16308**</td>
</tr>
<tr>
<td>MASA-CR-159728</td>
<td>p0142 800-16309**</td>
</tr>
<tr>
<td>MASA-CR-159731</td>
<td>p0143 800-16310**</td>
</tr>
<tr>
<td>MASA-CR-159732</td>
<td>p0144 800-16311**</td>
</tr>
<tr>
<td>MASA-CR-159734</td>
<td>p0145 800-16312**</td>
</tr>
<tr>
<td>MASA-CR-159735</td>
<td>p0146 800-16313**</td>
</tr>
<tr>
<td>MASA-CR-159738</td>
<td>p0147 800-16314**</td>
</tr>
<tr>
<td>MASA-CR-159739</td>
<td>p0148 800-16315**</td>
</tr>
<tr>
<td>MASA-CR-159741</td>
<td>p0149 800-16316**</td>
</tr>
<tr>
<td>MASA-CR-159744</td>
<td>p0150 800-16318**</td>
</tr>
<tr>
<td>MASA-CR-159746</td>
<td>p0151 800-16319**</td>
</tr>
<tr>
<td>MASA-CR-159747</td>
<td>p0152 800-16320**</td>
</tr>
<tr>
<td>MASA-CR-159748</td>
<td>p0153 800-16321**</td>
</tr>
<tr>
<td>MASA-CR-159750</td>
<td>p0154 800-16322**</td>
</tr>
<tr>
<td>MASA-CR-159752</td>
<td>p0155 800-16323**</td>
</tr>
<tr>
<td>MASA-CR-159754</td>
<td>p0156 800-16324**</td>
</tr>
<tr>
<td>MASA-CR-159756</td>
<td>p0157 800-16326**</td>
</tr>
<tr>
<td>MASA-CR-159775</td>
<td>p0021 800-16329**</td>
</tr>
<tr>
<td>MASA-CR-159776</td>
<td>p0022 800-16330**</td>
</tr>
<tr>
<td>MASA-CR-159778</td>
<td>p0023 800-16331**</td>
</tr>
<tr>
<td>MASA-CR-159780</td>
<td>p0024 800-16332**</td>
</tr>
<tr>
<td>MASA-CR-159781</td>
<td>p0025 800-16333**</td>
</tr>
<tr>
<td>MASA-CR-159782</td>
<td>p0026 800-16334**</td>
</tr>
<tr>
<td>MASA-CR-159783</td>
<td>p0027 800-16335**</td>
</tr>
<tr>
<td>MASA-CR-159784</td>
<td>p0028 800-16336**</td>
</tr>
<tr>
<td>MASA-CR-159785</td>
<td>p0029 800-16337**</td>
</tr>
<tr>
<td>Report/Accession Number Index</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>NASA-CR-165129</td>
<td>p0112 N00-31777#</td>
</tr>
<tr>
<td>NASA-CR-165133</td>
<td>p0172 N00-2386#</td>
</tr>
<tr>
<td>NASA-CR-165136</td>
<td>p0069 N00-32328#</td>
</tr>
<tr>
<td>NASA-CR-165138</td>
<td>p0128 N00-32718#</td>
</tr>
<tr>
<td>NASA-CR-165150</td>
<td>p0049 N00-31623#</td>
</tr>
<tr>
<td>NASA-CR-165155</td>
<td>p0016 N00-32668#</td>
</tr>
<tr>
<td>NASA-CR-165156</td>
<td>p0156 N00-33862#</td>
</tr>
<tr>
<td>NASA-CR-165179</td>
<td>p0083 N00-16142#</td>
</tr>
<tr>
<td>NASA-CR-165205</td>
<td>p0076 N00-10234#</td>
</tr>
<tr>
<td>NASA-CR-165244</td>
<td>p0114 N00-31473#</td>
</tr>
<tr>
<td>NASA-CR-165246</td>
<td>p0116 N00-16240#</td>
</tr>
<tr>
<td>NASA-CR-165249</td>
<td>p0137 N00-10595#</td>
</tr>
<tr>
<td>NASA-CR-165250</td>
<td>p0104 N00-13403#</td>
</tr>
<tr>
<td>NASA-CR-165253</td>
<td>p0067 N00-11143#</td>
</tr>
<tr>
<td>NASA-CR-165263</td>
<td>p0076 N00-11189#</td>
</tr>
<tr>
<td>NASA-CR-165282</td>
<td>p0066 N00-15462#</td>
</tr>
<tr>
<td>NASA-CR-165279</td>
<td>p0101 N00-13227#</td>
</tr>
<tr>
<td>NASA-CR-165272</td>
<td>p0085 N00-13256#</td>
</tr>
<tr>
<td>NASA-CR-165275</td>
<td>p0137 N00-13623#</td>
</tr>
<tr>
<td>NASA-CR-165276</td>
<td>p0067 N00-11144#</td>
</tr>
<tr>
<td>NASA-CR-165276</td>
<td>p0110 N00-14137#</td>
</tr>
<tr>
<td>NASA-CR-165272</td>
<td>p0176 N00-13981#</td>
</tr>
<tr>
<td>NASA-TM-192587</td>
<td>p0115 N00-17667#</td>
</tr>
<tr>
<td>NASA-CR-165281</td>
<td>p0067 N00-11145#</td>
</tr>
<tr>
<td>NASA-CR-165282</td>
<td>p0056 N00-10180#</td>
</tr>
<tr>
<td>NASA-CR-165289</td>
<td>p0067 N00-11171#</td>
</tr>
<tr>
<td>NASA-CR-165290</td>
<td>p0056 N00-13159#</td>
</tr>
<tr>
<td>NASA-CR-165291</td>
<td>p0075 N00-15132#</td>
</tr>
<tr>
<td>NASA-CR-165293</td>
<td>p0118 N00-13968#</td>
</tr>
<tr>
<td>NASA-CR-165296</td>
<td>p0118 N00-13967#</td>
</tr>
<tr>
<td>NASA-CR-165296</td>
<td>p0116 N00-13047#</td>
</tr>
<tr>
<td>NASA-CR-165297</td>
<td>p0076 N00-16093#</td>
</tr>
<tr>
<td>NASA-CR-165299</td>
<td>p0053 N00-10234#</td>
</tr>
<tr>
<td>NASA-CR-165297</td>
<td>p0167 N00-12824#</td>
</tr>
<tr>
<td>NASA-CR-165300</td>
<td>p0167 N00-12823#</td>
</tr>
<tr>
<td>NASA-CR-165302</td>
<td>p0167 N00-12823#</td>
</tr>
<tr>
<td>NASA-CR-165314</td>
<td>p0104 N00-13904#</td>
</tr>
<tr>
<td>NASA-CR-165319</td>
<td>p0139 N00-20329#</td>
</tr>
<tr>
<td>NASA-CR-165322</td>
<td>p0099 N00-23777#</td>
</tr>
<tr>
<td>NASA-CR-165323</td>
<td>p0175 N00-14522#</td>
</tr>
<tr>
<td>NASA-CR-165367</td>
<td>p0067 N00-12120#</td>
</tr>
<tr>
<td>NASA-CR-165370</td>
<td>p0175 N00-12081#</td>
</tr>
<tr>
<td>NASA-CR-165370</td>
<td>p0076 N00-15235#</td>
</tr>
<tr>
<td>NASA-CR-165376</td>
<td>p0076 N00-14234#</td>
</tr>
<tr>
<td>NASA-CR-165376</td>
<td>p0022 N00-14051#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0067 N00-14996#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0116 N00-14126#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0175 N00-16085#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0177 N00-12552#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0132 N00-14375#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0165 N00-16024#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0002 N00-14050#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0011 N00-14110#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0021 N00-26433#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0028 N00-13061#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0105 N00-14120#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0167 N00-14683#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0096 N00-16232#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0136 N00-15550#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0066 N00-18168#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0077 N00-18157#</td>
</tr>
<tr>
<td>NASA-CR-165381</td>
<td>p0077 N00-18156#</td>
</tr>
<tr>
<td>Patent Class</td>
<td>Accession Number</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>415-196</td>
<td>p0118 M80-26658*</td>
</tr>
<tr>
<td>423-648</td>
<td>p0093 M80-20402*</td>
</tr>
<tr>
<td>427-30</td>
<td>p0087 M80-24437*</td>
</tr>
<tr>
<td>427-44</td>
<td>p0088 M80-32516*</td>
</tr>
<tr>
<td>427-164</td>
<td>p0087 M80-24437*</td>
</tr>
<tr>
<td>428-38</td>
<td>p0093 M80-23516*</td>
</tr>
<tr>
<td>429-104</td>
<td>p0101 M80-20487*</td>
</tr>
<tr>
<td>429-109</td>
<td>p0101 M80-20487*</td>
</tr>
<tr>
<td>429-139</td>
<td>p0088 M80-23516*</td>
</tr>
<tr>
<td>435,851</td>
<td>p0118 M80-26658*</td>
</tr>
<tr>
<td>457,718</td>
<td>p0161 M80-14600*</td>
</tr>
<tr>
<td>475,469</td>
<td>p0056 M80-14100*</td>
</tr>
<tr>
<td>4104,327</td>
<td>p0016 M80-16339*</td>
</tr>
<tr>
<td>4104,431</td>
<td>p0135 M80-16330*</td>
</tr>
<tr>
<td>4193,827</td>
<td>p0093 M80-20402*</td>
</tr>
<tr>
<td>4195,650</td>
<td>p007 M80-24437*</td>
</tr>
<tr>
<td>4195,537</td>
<td>p0105 M80-24573*</td>
</tr>
<tr>
<td>4207,024</td>
<td>p0118 M80-26658*</td>
</tr>
<tr>
<td>4212,477</td>
<td>p0119 M80-20497*</td>
</tr>
<tr>
<td>4214,902</td>
<td>p0079 M80-32404*</td>
</tr>
<tr>
<td>4214,905</td>
<td>p0070 M80-33482*</td>
</tr>
<tr>
<td>4253,448</td>
<td>p0079 M80-32404*</td>
</tr>
<tr>
<td>4216,260</td>
<td>p0086 M80-32516*</td>
</tr>
<tr>
<td>4218,633</td>
<td>p0174 M80-33166*</td>
</tr>
<tr>
<td>1333-Vol-1</td>
<td>p0152 M80-25792**</td>
</tr>
<tr>
<td>1333-Vol-2</td>
<td>p0152 M80-25793**</td>
</tr>
<tr>
<td>1333-Vol-3</td>
<td>p0155 M80-24309**</td>
</tr>
<tr>
<td>1333-Vol-4</td>
<td>p0152 M80-25794**</td>
</tr>
<tr>
<td>1333-Vol-6</td>
<td>p0152 M80-25795**</td>
</tr>
<tr>
<td>916607-12</td>
<td>p0095 M80-25453**</td>
</tr>
<tr>
<td>T8857</td>
<td>p0098 M80-11239**</td>
</tr>
<tr>
<td>T8857-Vol-1</td>
<td>p0098 M80-11277**</td>
</tr>
<tr>
<td>T8857-Vol-1A</td>
<td>p0198 M80-11270**</td>
</tr>
<tr>
<td>4500-131-4</td>
<td>p0164 M80-28315**</td>
</tr>
<tr>
<td>4500-131-3</td>
<td>p0164 M80-28315**</td>
</tr>
<tr>
<td>T880-142</td>
<td>p0039 M80-23315**</td>
</tr>
<tr>
<td>K85-2372</td>
<td>p0062 M80-27424**</td>
</tr>
</tbody>
</table>