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1.0 INTRODUCTION 

Recreation vehicles such as vans and motor homes generally have been 

constructed along box-shaped exterior lines. This shape is advantageous in 

some respects because it has a large usable volume and is easy to 

manufacture. Its obvious disadvantage is the high aerodynamic drag. 

A basic box-shaped vehicle with several modifications was tested by 

Saltzman and Meyer l ,2 at the NASA Dryden Flight Research Center. Wind tunnel 

tests of one-tenth scale models of the NASA configurations, and several 

modifications of the NASA configurations, were tested by Muirhead. 3 

More recent wind tunnel tests have been conducted on box-shaped vehicles 

somewhat similar to the earlier one-tenth scale models. The baseline model 

for these tests was the original one-tenth scale model3 with an additional 

height of 3.3 em (1.3") on the top of the vehicle. Three modifications were 

made to the baseline model to determine the effect on drag of: 

a. Built-in rounded corners on the front of the vehicle. 

b. Flow-vanes added to the baseline model which otherwise had square 

front corners. The flow-vanes were added to the front of the 

vehicle (two different flow-vane arcs: 67° and 90°) (Reference 4). 

c. Relative wind angle, yaw angle, on the relative efficiency of the 

rounded corners as compared to the flow-vane concept. 

2.0 APPARATUS AND PROCEDURES 

2.1 Models 

'I " The hypothetical full-scale vehicle would be the vehicle in Figure 2.1.1 

(Reference 1) \\'ith the addition of 13" to the top of the vehicle. 

The baseline one-tenth scale wind tunnel model is shown in Figure 

2.1.2. The present model is a derivative of the model used for the Reference 

3 experiment except that the box height has been increased by a factor of 

1.2. The dimensions of the baseline wind-tunnel model are shown in Figure 

2.1.3. The bottom of the model was smooth, identical to Configuration No.1 

of Reference 3. The model frame was constructed for the wind-tunnel tests 

from aluminum. Front, rear and top corner blocks which determine whether the 

corners are "sharp," i.e., square,or rounded, were constructed from maple 

wood. 3 The flow-vanes, Reference 4, were constructed from brass as shown in 

Figure 2.1.4. The radius of the built-in rounded corners and the flow vanes 

was 4,1 cm (1. 6 ") • Photographs of 
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model configurations 2, 3 and 4 are shown in Figures 2.1.5 through 2.1.7. The 

several configurations were assembled and tested in accordance with Figure 

2.1. 8. 

2.2 Mounting 

The wind-tunnel mounting system for the models, Figure 2.2.1, was the 

same system that had been used on previous tests. 3 The ground board enclosed 

the balance mounting strut and mounting plate. The model was held to the 

mounting plate by four adjustable rods attached to the vehicle frame and 

running through the wheels. The model was adjusted vertically on the rods to 

position the model to the correct height above the ground board. The bottom 

of the wheels were sanded off so that they did not touch the ground board 

during tests. The ground board contained two circular slots to allo~ the 

model to be rotated thirty degrees in each direction. During the tests the 

slots were covered except for a small clearance around each mounting rod. 

The horizontal pressure gradient on the ground board was zero. The board 

was tufted to check for flow separation. The front of the ground board was 

rounded slightly to eliminate a small flow separation at the leading edge. 

2.3 Tests 

The tests were conducted in the University of Kansas .91 by 1.29 meter 

wind-tunnel at Reynolds numbers of 4.S x 105 to 8.2 x 105 based upon the 

equivalent diameter of the vehicles or 10.1 x lOS to 18.4 x 105 based upon the 

length of the basic test model, Configuration 1. The Reynolds number was 

controlled by adjusting the wind-tunnel airspeed from 36.S to 66.S meters per 

second (81.7 to 148.8 miles per hour). Tests were made at yaw (relative wind) 

angles of 0°, 5°, 10°, 20° and 30° on the configurations at four different 

Reynolds numbers. Force and moment data were obtained from a si~ component 

strain-gaged balance. Base pressures were measured by a pressure 

transducer. The orifice was located at the center of the base region. 

Wind-tunnel test data were obtained through a newly installed 

analog/digital data system controlled by a Hewlett Packard 9825 calculator. 
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3.0 RESULTS AND DISCUSSION 

3.1 Drag 

Drag coefficients were computed from the force acting along the model 

axis. The reference area used was the projected frontal area (A) for all 

configurations. These coefficients were plotted as a function of.Reynolds 

number at each yaw angle on workplots, which are .not included in this 

report. Subsequently, drag coefficient values were extracted from these plots . 

at a Reynolds number of 8 x 105 (based upon equivalent diameter). These 

values are shown in Table I. Figure 3.1.1 shows the variation of the drag 

coefficient with yaw (relative wind) angle at this Reynolds number for 

Configuration 1. Figure 3.1.2 shows a comparision of the drag coefflcients of 

the four configurations tested at various yaw angles for a Reynolds number of 

8,x lqS. These drag coefficients were normalized by dividing each drag 

coefficient by the drag coefficient for Configuration 1. Table II presents 

drag reductions resulting from ,the. v~~ious modifications"in percent relative 

to the baseline model, Configuration 1.., 

Table III compares the data obtained. from the_pre~ent wind tunnel tests 

with data obtained by Saltzman and Meyer l and Muirhead3• The built-in rounded 

front corners produced a decrease of from 58.6 to 62.2 percent in the three 

similar tests. 

The drag data included herein and other data obtained during the tests 

indicate the following: 

1. The effect of the Reynolds number was small. 

2. The built-in rounded front corners on the forward end of the box

shaped vehicle produced a decrease in drag of 62.2% at 0° wind angle 

and an average decrease in drag of 61.1% over ,a range of relative 

wind angles from 0° to 20°. 

3. The flow-vanes with 67° arc produced a 61.7% decrease in drag at 0° 

wind angle. Over the 0° to 20° relative wind angle range the 

average decrease in drag was 48.8% 

4. The flow-vanes with a 90° arc produced a 62.9% decrease in drag at 

0° wind angle. Over the 0° to 20° relative wind angle r!lnge the 

average decrease in drag was 57.3%. 

The base pressure data variation with relative wind angle is shown iii 

Figure 3.1.3 for Configuration 1. Table IV contains the base pressure data 
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for all configurations. Figure 3.1.4 provides a comparison of the base 

pressure coefficients. The improved flow around th~ front of the vehicle 

provided by the rounded corners and the flow-vanes made the base pressure 

significantly more negative at small relative wind angles and slightly more 

negative at large relative wind angles. 
• I' II The power requ1red to overcome the aerodynamic drag for a full-scale 

vehicle, Configuration 1, at 38.5 kilometers per hour (55 mph) ground speed 

was calcuL'lted using the wind speeds of 0, 15.3 and 30.6 kilometers per hour 

(0, 9.5 and 19.0 mph). ~nnd angles of 0° through 180° relative to the vehicle 

path were used, Figure 3.1.5. The corresponding values for Configurations 2, 

3, and 4 are given in Figures 3.1.6 through 3.1.8. Table V presents the power 

to overcome aerodynamic drag required for all configurations. These data 

represent: (1) the no-wind condition, (2) a 15.3 km per hour (9.5 mph) \~ind 

and (3) a 30.6 km per hour (19.0 mph) wind each averaged over the entire range 

of directions from 0° to 180°. For a standard fu~l-scale motor-home the power required 

to overcome aerodynamic drag would be about 30% to 35% greater, see note on page iv. 

The calculated values of average power required to overcome aerodynamic 

drag has special significance for the lower of the two wind speeds, i.e., 

15.3, km per hour (9.5 mph). This is because this wind speed closely 

approximates the average annual winds for the 48 contiguous United States. 

Thus, fuel consumption values calculated from this wind speed will include the 

approximate wind effects ov~r an extended period of time, such as a year or 

more. 

Table VI contains the values of average fuel consumption per hour to 

overcome the aerodynamic drag and the resulting fuel costs in the presence of 

the aforementioned average annual ,.rinds. A diesel brake specific fuel 

consumption of 2.129 x 10-4 kg of fuel per watt hour (.35 pounds of fuel per 

horsepower hour) has been used. These values of brake specific fuel 

consumption should be multiplied by 1.46 ft if a gasoline engine were to be 

used. Fuel costs were assumed to be 26.4 cents per liter ($1.00 per 

gallon). For a diesel powered vehicle, Configuration 2 (built-in rounded 

front corners) provides a saving of about 6.0 liters per hour of driving (1.6 

gallons per hour) over the baseline configuration for national average annual 

winds and for a ground speed of 88.6 km/hr (55 mph). The corresponding 

savings for the flow-vanes were 5.5 liters per hour (1.5 gallons perhour) for 

the 67 degree arc flow-vane and about 6.0 liters per hour (1.6 gallons per 

hour) for the 90 degree arc flow-vane. 
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If a gasoline power plant is used the volumetric fuel consumption and 

savings are larger than for the diesel. Taking into account the brake 

specific fuel consumption for gasoline which is larger by a factor of about 

1.46 and the fuel density which is lower by a faetor of 0.85, the corres

ponding volumetric savings for a gasoline powered vehicle are approximately 

1.7 times larger than those listed for diesel fuel. As mentioned on page iv, 

the fuel consumption values and the fuel savings would be another 30% to 35% 

greater for a standard size motor home. 

3.2 Side Force 

The side force coefficients 117ere computed from the forces acting on the 

wind tunnel model perpendicular to the model axis. The reference area used 

was the projected frontal area (A). The variation of side force 117ith yaw for 

Configuration 1 is shown in Figure 3.2.1 for a Reynolds number of 8 x 105. 

The side force coefficients for a Reynolds number of 8 x 105, corrected for 

wind tunnel flow angularity error, are contained in Table VII. A comparLson 

of the side force coefficients of the various configurations Is contained in 

Figure 3.2.2. The built-in front rounded corners and the flow-vanes increased 

the side force coefficient over Configuration 1. Rounding the front corners 

produced similar results for the experiments described in Reference 3. 

3.3 Lift 

The variation of the lift coefficient 117ith yaw angle for Configuration 1 

is shown in Figure 3.3.1. The reference area used was the projected frontal 

area (A). The lift coefficients of all configurations for a RN = 3 x 105 are 

given in Table VIII. 

3.4 Moments 

The pitching, rolling, and yall7ing moment coefficients of Configuration 1 

about a point on the center line of the vehicle 25.4 CD (10.0") from the front 

of the vehicle and 5.7 em (2.25") above the ground plane are 8holl7n in Figures 

3.4.1, 3.4.2, and 3.4.3. The reference area used was the projected frontal 

area (A); the reference length ec) for the pitching moment was the vehicle 

length; the reference length ec) for the rolling and yawing Inoments 117as the 

vehicle width. The pitching, rolling and yawing moment coefficients of all 

configur'ltions are given in Tables IX, X, and XI for a RN = 8 x 105. 

The rolling and yawing moment coefficients for all configurations were 

corrected for flow angularity error. 
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4.0 CONCLUSIONS 

The built-in front rounded corners and the add-on flow-vanes were very 

effective in improving the flow over the forward part of the vehicle. 

For a diesel powered vehicle slightly larger than a family van the built-in 

front rounded corners provided a calculated fuel saving over the baseline 

vehicle of about 6.0 liters per hour (1.6 gallons per hour) at a driving 

speed of 88.6 km/hr (55 mph) in national average winds. The corresponding 

savings for front mounted flow-vanes were about 5.5 liters per hour 

(1.5 gallons per hour) for the 67° arc flow-vane and 6.0 liters per hour 

(1.6 gallons per hour) for the 90° arc flow-vane. For a gasoline powered 

vehicle the corresponding volumetric savings would be increased by a factor 

of about 1. 7 . 

The fuel savings for a standard size motor home would be greater than 

for the above noted diesel or gasoline powered vehicles by from 30% to 35% 

because of the larger frontal area. Thus projected fuel savings for a standard 

size motor home powered by gasoline can approach 12.5 to 13.5 liter (3.3 to 

3.6 gallons) for each hour of driving at highway speeds. 
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Figure 2.1.1 Full-scale baseline vehicle,except for height (Reference 1) 



Figure 2.1.2 Baseline wind tunnel model having all square corners, configuration no. 1. 
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Figure 2.1.5 Model configuration 2 with built-in rounded front corners 
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Figure 2.1.6 Model configuration 3 with flow-vanes (67~ arc) 



Figure 2.1.7 Model configuration 4 with flow-vanes (90 0 arc) 
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Table I. Drag coefficients, RN 

Yaw Angles, IjJ 

Avg Avg Configuration 
Number o 5 10 20 30 (0 to 10) (0 to 20) 

1 
2 
3 
4 

0.975 
0.369 
0.373 
0.362 

1.035 
0.399 
0.431 
0.390 

1.121 
0.435 
0.556 
0.473 

1.212 
0.486 
0.864 
0.632 

1.171 
0.389 
0.892 
0.524 

1.044 
0.401 
0.453 
0.408 

1.086 
0.422 
0.556 
0.464 

Table II. Influence on drag coefficient of 
configuration changes and relative wind angles 

CONF IGURAT ION 

Parts Added 

Rounded 
Front corners (4) 
Flow-vanes (67°) 
Flow-vanes (90°) 

Note: 1. R = 8 x 105 
·N 

No. to No. 

1 + 2 
1 + 3 
1~ 4 

2. Qualitative-relative winds from ~ 

30 

Zero wind l 

incremental 
change 

-62.2% 
-61.7% 
-62.9% 

DRAG 

Average wind 2 

incremental 
change 

-61.1 % 
-48.8% 
-57.3% 



Table III. Comparison of tests run at Dryden Flight Research 
Center and the University of Kansas 

Front 
Corners 

Square 

Round 

% 
Decrease 

Note: 

DFRC (ref 2) :1 KU (ref 3) KU (present tests) 
I 
i 
! 

Config. CD 
i 

Config. CD Config. 

A(R) 1.130 l(S) 1.029 l(S) .975 

2(R) 1.107 

F(S)* .463 4(S) .426 2(S) .369 

A-F 1-4 59.0 58.6 1-2 62.2 A 1 1 

1. All data at f3 = 0° 

2. (R) signifies rough bottom, 
(S) signifies smooth bottom 

3. Configuration F had 3/4 seal over underbody, 
*hence not completely smooth bottom 

4. Height of body, hence Reference A, for present 
tests is larger than for References 2 and 3 by a 
factor of 1.2 

Table IV. Base pressure coefficients, RN = 8 ){ 105 

CD 

Configuration Yaw angles, 1/1 
Number 0 5 10 20 30 

1 -.090 -.200 -.297 -.493 -.587 

2 -.191 -.259 -.327 -.500 -.612 

3 -.151 -.260 -.346 -.584 -.625 

4 -.174 -.250 -.334 -.551 -.650 
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Table V. Average power required to overcome aerodynamic 
drag for all configurations tested 

Configuration 
Number Wind Speed km/hr (mph) 

0 15.3 (9.5) 30.6 (19.0) 

1 35( 46) 38(51) 4 2( 57) 

2 13(18) 15(20) 17 (22) 

3 13(18) 17(23) 23( 31) 

4 13(17) 15(20) 19( 25) 

Note: 1. Ground speed = 88.6 km/hr (55 mph). 
2. Power values are integrated over wind angles from 0° to 180°. 
3. Power value units, ~~(HP). 
4. Power required values in table V are for "full-scale" 

vehicle, see note on page iv. Power required to overcome 
aerodynamic drag for a standard size motor-home would 
be 30% to 35% greater than for so-called "full-scale" 
vehicle of this study. 
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Table VI. Average fuel consumption per hour required to overcome 
aerodynamic drag for all configurations tested,for diesel 

Configurat'ion 
Number 

1 

2 

3 

4 

Note: 1. 
2. 
3. 

4. 
5. 

6. 

7. 

8. 

Fuel 
Consumption 

liters/hr(gal/hr) 

Fuel 
Savings 

liters/hr(gal/hr) Saving* 

~Cost 

Savings 
$/hr 

9.8(2.6) 

3.8(1.0) 

4.3(1.1) 

3.8(1.0) 

0.0(0.0) 

6.0(1.6) 

5.5(1.5) 

6.0(1.6) 

Ground speed = 88.6 km/hr(55mph) 
\Jind speed = 15.3 km/hr(9.5mph) 

0.0 

61. 2 

56.0 

61.2 

BSFC = .2129 kg/kw-hr(.351 Ibs/hp-hr) for diesel fuel, 
see page 5 for gasoline BSFC 
Assumed fuel cost = $0.264/liter($1.00/gal) 

*Percent saving of aerodynamic portion of fuel budget, 
not percent of total fuel budget 
Volume of fuel consumed per hour and fuel savings per 
hour would be larger by a factor of about 1.7 for 
gasoline engine of comparable size 

0.00 

1.62 

1.50 

1.62 

Assumed densities; Diesel, 0.836 kg/liter(6.96 lbs/gal); 
gasoli~e, 0.708 kg/liter (5.9 lbs/gal) 

Fuel consumption and savings in table VI are for 
"full-scale" vehicle, see page iv. For a standard 
size motor-home the consumption and savings values 
would be from 30% to 35% greate~ 
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Table VII. Side force coefficients, RN = 8 x 105 

Configuration Yaw angles, 1)i 
Number 0 5 10 20 30 

1 o 000 0.412 0.735 1.540 2.397 

2 0.000 0.467 0.962 2.033 3.005 

3 0.000 0.489 0.998 2.034 2.837 

4 0.000 0.493 1.008 2.095 '3.120 

Table VIII. Lift coefficient, R = 8 N 
x 105 

Configuration Yaw angles, 1)i 
Number 0 5 10 20 30 

1 -0.000 -0.055 0.199 0.582 0.992 

2 -0.028 0.024 0.098 0.399 0.850 

3 -0.052 -0.012 0.101 0.561 1.111 

4 -0.056 -0.015 0.076 0.424 0.919 

Table IX. Pitching moment coefficients, RN = 8 x 105 

Configuration Yaw angles, 1)i 
Number 0 5 10 20 30 

1 0.097 0.144 0.173 0.226 0.283 

2 0.092 0.083 0.084 0.149 0.261 

3 0.083 0.087 0.114 0.228 0.318 

4 0.080 0.080 0.090 0.188 0.316 
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Table X. Rolling moment coefficients, RN = 8 x lOS 

Configuration YalN angles, Iji 
Number 0 5 10 20 30 

1 o 000 0.034 0.020 -0.005 -0.103 

2 0.000 0.042 0.092 0.21S 0.240 

3 0.000 0.048 0.100 0.144 0.019 

4 0.000 0.047 0.110 0.201 0.174 

Table XI. YalNing moment coefficients, R = 8 x 105 
N 

Configuration Yaw angles, Iji 
Number a 5 10 20 30 

1 a 000 -0.156 -0.1S6 0.116 0.112 

2 0.000 0.195 0.367 0.664 0.886 

3 0.000 0.23S 0.464 0.883 1.059 

4 0.000 0.260 0.503 0.915 1. 289 
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7. APPENDIX 

POWER REQUIRED 

The model data for Configuration 1 were applied to the full size prototype 

vehicle at road speed of 88.5 km/hr (55 mph). The wind component was rotated 

from 00 to 180 0 

(19.0 mph). 

Wind speeds used were 0, 15.3km/hr (9.5 mph), 30.6 km/hr 

V Relative wind speed 

VI Ground speed 

W Actual wind velocity 

V2 Side wind velocity component 

B Wind angle relative to the vehicle path 

~ Relative wind angle 
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7.1 Power to Overcome Aerodynamic Drag - Configuration 1 

The power required is: 

D VI 
P = 1000 kw (Multiply by 1.341 = hp) 

where 

D = 1/2 PV 2C
D

A 

A 3.96 m2 (42.8 ft 2) 

P = 1.226 kg/m3 (.002378 3 slugs/ft ) 

CD is taken from Figure 3.1.1 for Configuration 1 at approximate values 

of lJi. 

Example: 

VI = 88.5 km/hr or 24.58 m/sec (55 mph) 

W 15.3 km/hr or 4.25 m/sec (9.5 mph) 

8 15° 

From Figure 3.1.1: 

Then: 

CD = .985 
1 

D =1f2x 1.226 x (28.71)2 (.985) (3.96) 

D 1970.9 N 

p (1970.9) (24.58) 
1000 

48.4 kw (65.0 hp) 

7.2 Power Required for Other Configurations 

To find the power required for any other configuration: 

1. Determine relative wind speed V and relative wind angle ~. 

2. Go to Figure 3.1.2. 
has of CD • 

1 

Find the percentage of CD this configuration 
X 

3. Go to the power graph, Figure 3.1.5, and locate the power required 
for Configuration 1 at the wind angle 8. 

4. Multiply this value of power with CD /CD • 
X 1 
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Example: 

1. Configuration 2 

From 

From 

lVind Speed W = 15.3 km/hr (9.5 mph) 

IHnd angle S=15° 

Relative wind angle: 

-1 
IjJ = Tan W sinS 

V1 + W cosS 

15.3 km/hr sin 15° -1 
Tan 88.5 km/hr + 15.3 km/hr cos 15° 

IjJ = 2.19° 

Figure 3.1. 2: 

CD Pz 1 38.0% --= 
CD P1 

1 

Figure 3.1. 5 

P1 = 48.4 kw (65.0 hp) and P2 18.4 kw (24.7 hp) 
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