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PART It TU CASS OF NO SINGULAR TRR08T

Aliezer Kreindler and Frank Neuman

I. Introduction

The literature on flightpath optimization is extensive. It can b

classified according to paths in the vertical plane, the horizontal

plane, and the three-dimensional space; it can be further classified

according to the type of aircraft and mission, and the performance index.

We consider minimum-fuel, constant-altitude flightpaths of a transport

airplane in the terminal area.

Most of the papers on flightpath optimisation in the to rizontal

plane consider minimum time.'
-?
 In Refs. 1-3, the velocity is constant;

in Refs. 4-7 the velocity is a state-variable as in our case but the

assumptions, constraints, and numerical results correspond to a supersonic

fighter aircraft. Thus, although there is contact with our results,

there is no overlap. References 8 and 9 consider minimum-fuel, horizontal

rocket turns, but since the mass is variable, the results are quite

different. An overview on flightpath optimization is given in Ref. 5.

Our objectives in investigating a minimum-fuel landing problem were

to gain insight into the characteristics of minimum-fuel flightpaths by

analysis and computation, and to use these results to improve the on-line,

fuel-efficient capture algorithm of Ref. 10. Details of the refined

algorithm (in the horizontal plane only) are reported in Ref. 11.

Following statements of the problem and of the necessary conditions

in Secs. II and III, respectively, the optimality of straight-line and

circular flightpath elements (which the algorithms of Refs. 10 and 11

use) is investigated in Sec. IV. It is shown that a straight-line

segment can occur only at the beginning of a minimum-fuel flightpath;
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this also revealed how such paths can be computed. Circa:lar paths are.

An gmerel, not fuel-eptlmeN.. COMPUMIOR of dative extra""

Is discussed in See. V. The resulting extramal flightpatbs can be

grouped in three categories: co"ttam !strands, decelerating with

zero thrust throughout; short-range turning extremale, where the initial

and final positions, but not the headings, are relatively near, say,

1-3 a. al.; and long-range extremala, characterized by a possible initial

turn, followed by a long (say, 5-15 n. mi.) almost straight arc and

ending with a possible final turn. Since the global optimality of some

of these extremals was suspect, they were checked against near-optimal

flightpaths produced by the algorithm of Ref. 11. This comparison,

discussed in Sec. VI, established the existence and approximate location

of Darboux points (beyond which the extremal ceases to be globally

optimal; see Ref. 12).

II. Problem Statement

The point-mass equations of motion in the horizontal plane are

x = v COs 0	 (1)

y=v sin 0	 (2)

_ -gu/v	 (3)

v	 (T - D)/m	 (4)

Here, x and y are the coordinates of the horizontal plane, * the head-

,.	 ing angle measured counterclockwise fr^m the x-axis, v the velocity,

g the gravitational constant, and m the mass; the control variables

R. - J are the thrust T and u, where u - tan 4 and m is the bank-angle,

"	 positive with right wing down. The drag D is given by
rr .^
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D - kiv2 + kt (1 + U')/v'	 (5)

where ki and kz are constants (i.e., they are assumed to be independent

of v for the low velocities a the terminal area). These equations

were used in Refs. 4-7 and are derived by assuming zero wind velocity,

constant mass, coordinated turns, and a small angle of attack which is

•	 automatically adjusted to maintain horizontal flight (see Appendix A).

Constraints and final states are

Iu (L)I ! Um
	 (6)

Tmin < T(t) < Tmax	 (7)

V (t) < max
	

(8)

X(t f) - Y(tf) - 0 .	 V► (^f) = k2n	 k - 0, 11,	 . , v(tf) - of

(9)

The cost integral to be minimized is the fuel consumption

J - 1 tf (co + c1T(t) + c2T2(t)Jdt , 	 ci - const > 0 ,	 1 - 0, 1, 2
0

(10)

where tf is free. The terms co and c 2T2 in t1w fuel-flow-rate are

often neglected in the literature. For the case considered here, co,

the fuel-flow-rate at zero thrust, is not negligible. The term c 2T2 is

small but significant: when c2 - 0, the optimal thrust is discontinuous

and its intermediate values are singular. By changing the units of the

ci , the cost integral J can be interpreted as a combination of the

cost of time and fuel (the operating cost). The time-optimal problem,

c0 - 1, c i - c2 - 0, has been treated in Refs. 1-7 and is not considered

here.
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In summary, the problem is to detendus the cancels u(t) and T(t)

and the corresponding state trajectory fcos an axUtsasy taitisl state

at the time t • 0 to the final state of Sq. (9) at a free tins t a tf,

subject to Bqs. (1)-(8). so as to Malaise the fuel consumption (1%. (10)).

For our general analysis, we make the following two assumptions,

which are easily satisfied for our (and indeed for most) nunrical

values.

Assumption 1. For the applicable range of velocities, the thrust

that equals drag is intermediate. This implies that the two velocities

for which T - D are outside the applicable range. It also implies

that Tmin is less than the minimal drag with respect to velocity.

i	 D.In. In the general case, Tmin can be negative. and we make

Assumption 2.

Assumption 2. Tmin is such that the fuel flow rate at T - Tmin

is positive and Tmin ' -c i /(2c 2 ). The first part eliminates considera-

tion of gliding flightpaths with shut-off engines; all such paths are

fuel-optimal and trivially satisfy the necessary conditions embodied in

the minimum principle. The significance of the second part is discussed

in the next section.

Numerical values used in this study correspond to a 150,000-1b jet

transport at sea level at velocities not below 150 knots.

max - 250 knots ,	 of - 180 knots

Tex • 30.000 lb	 Tin 0
r.

Y .	 #m - 30 0 . tan #m • um - 0.577
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ki - 0.08 lb/knot ? .	 k? - 2.127 x 106 lb knot$

cc - 0.808 lb sac-1 , ci - 1.507 x 10-4 sec-1 , ca - 5.4 x 10-10 lb-1 sec-'

To get an idea on the percentage contributions of the terns c o , ciT,

and c?Ts in Sq. (10) to the total fuel-flow-rate, assume a flight along

a straigI-t line at a constant velocity of 250 knots (at T - D - 8,403 lb).

The contributions are then 382 for co, 602 for c iT, and 2% for c2T$.

Assumption 1 is easily satisfied: we find that Twx - D occurs at

83 knots and 607 knots, and that DmLn is 8 ,250 lb at 227 knots.

Evidently, Assumption 2 is also satisfied.

III. The Necessary Conditions

We employ the minimum principle. The Hamiltonian is

H - A O (co + c iT + c 2T2 ) + Axv cos ^ + Ayv sin * - A*gu/v

+ Av (T - k iv 2 - k2 (1 + u2 )/v2 ] /m + n(v - v
Max

)	 (11)

where n > 0, n(v - vmax) - 0 (Ref. 13). The costate variables are given

by

Ao > 0 ,	 Ao - constant
	

(12)

ix - -Hx - 0 Ax - constant	 (13)

iy - -Hy - 0 + Ay - constant	 (14)

A* - -% - v(Ax sin yr - Ay cos fir)	 (15)

iv - -Hv - -Ax cos - Ay sin	 A*gu/v2

	

+ 2)Lv (kiv - kz (i + u2 ) /vl ]/u - n	 (16)
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where Rx - WDx. etc. Since tf is not peenribed and It a 09 we

F*

	
have the neoenary condition

8 $ 0 .	 all t e 109 tf)
	

(1Tj

If for some t

A* (t) - Av(t) - 0 - 11m - Ay 	(18)

then Bq. (17) and Assumption 2 require the vanishing of A.. Since having

all costates zero is not optimal. an extremel where 8q. (18) occurs is

not fuel optimal. Henceforth, we consider only extremals with Ao > 0.

•	 and we normalize the costates by setting Ao - 1.

Minimization of H with respect to T yields the extremal thrust.

Tmax if	 T > TMm

T*	 T	 if Tmin < T < Tmax	 (19)

Tmin	
if	 T <- Tmin

where

T - — (cl ♦ AV /Se)/(2c2)	 (20)

We note that by Assumption 2. Eqs. ( 19) and (20) show at once that

T* - min if A
V > 0	 (21)

Since the minimization of H yields T* uniquely. it can be shown

(see Ref. 13) that T* and AV are continuous at junction times between

the velocity-constrained and the unconstrained arcs. Thus, thrust is

seen to be a continuous function of AV and t. When c2 is small. the

range of Av for intermediate thrust is narrow; when c 2 - 0, the inter-

mediate thrust i. • singular. (In some cases, not considered in this paper.

OP

c2 is negative; then, intermediate thrust is not fuel -optimal.)

d
i^.

t.



L.

We observe that Bqs. (3) and (15) for # and A* , respectively, and

the fact that Ax and Ay are constant, imply

U a 0	 if AV a 0 on an interval	 (22)

This is true irrespective of the oininization of 8 with respect to u.

From the latter, we obtain, by using gu - 0 and -uu > 09

N	 if Ju l < um and Av < 0
u* .	 (23a)

umsgnu - %sgnA* 	if Jul >- % and Av < 0

where

P - -SUVA ,/(2k2 Av)	 (23b)

If AV > 0 and A* does not vanish on an i.^.cerval (denoted by A^ # 0),

the minimization of H gives at once

u* - -umsgnA0	if Av > 0 and A* # 0	 (230

We note that Iv cannot be positive while Aq# 
vanishes on an

interval because then minimization of H implies u* - ±um which is

incompatible with Eq. (22). However, if A* vanishes on an interval

and AV crosses zero from negative to positive values, say at t - t2,

then u switches from u (t) - 0, t < t2 to U(t i ) - tuy^; this is a

transition from a straight -line flightpath to a curved one.

We also note that the simultaneous vanishing on an interval of

A^ and AV	 is not fuel-optimal because it implies the vanishing of
F
a A^ and iv	 which in turn implies Ax - Ay - 0, that is, the nonoptimal

case of Sq. (18).

L In summary, we see that	 u, and hence the bank-angle, are continuous

in time when	 Av	 is negative; u is discontinuous when	 AV	 is positive,
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or, at the nonnt Iv @tosses sero to bump positive ai. d A# had been

zero on the previous interval. In vier of Sq. (21). the di^sooutImAq

of the bank-ale ocQure at mining thrust.

Lastly, we evaluate q . When v(t) $ vim, the thrust is inter-

mediate under Assumption 1. These by Eqs. (5) and (20), ? - D lives

-(cl + iv/m) /2cs ^ kivA + ke/veX + ku"/vssx

This equation gives an expression for X. end, upon differentiation,

for iv , which we substitute into Eq. (16) to obtain

n 0 -Ax cos ^► - ay sin ^+ - )*gu/vim + umc,kZua/vim

- 2(c 1 + 2c 2 [k1v2 + k2 (1 + ut)/va])[kiv^ - k4 (1 + uZ) h,3lmax

(24)

For a velocity-constrained are to be optimal. n(t) given by Rq. (24)

must be nonnegative.

IV. Optimality of Straight-Line and Circular Pata Elements

Since the suboptimal algorithms of Refs. 10 and 11 are based on

piecing together circular arcs and at most one straight-line segment,

we are intetested in the optimality of these path elements.

We first show that there caa . be at most . one straight-line . segment

in a fuel optimal path and, if it occurs, it must do so at the beginnin&

of the path. A subsequent curved path. if any, starts by a switch to

maximum bank anIle ^tl mm at (continuous) minimum thrust T - Tmin;

the bank angle's magnitude and the thrust remain at mm and Turin•

respectively, as long as Av remains positive.

r
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To prove this proposition, we note that flight alone a straight-line

segment on a subinterval (t i . ta( is Characterised by

0(t) - *s .	 u(t) - 0 - yo .	 Av(t) < 0 on (t i . t1l (25)

We observe that for a straight-line path. the point (# - cps . A0 - 0) is

an equilibrium point* for Bqs. (3) and (15) for ; and it s with "(t)

as a continuous parameter. Hence the straight-line segment can be

entered at tl and exited at t2 by an optimal control only if the

control is discontinuous at t i and t2 . Therefore, as noted in the dis-

cussion following Eq. (24 ) , it is necessary that Av(t) cross zero at

t i and t2 according to

Av (t i ) - 0	 ^V(tl) < 0	 (26)

and

AV(t2) - 0 .	 ;(t2) > 0	 (27)

(This causes u (t) to switch from u (tD - tum to u (t) - 0 on

(t it t 2 ) and back to u(t2) - sum.) Thus. AV (ti) - 0, 1 - 1, 2; by

Eq. (21) this implies T(t i) - Tmin . Since i * W is continuous. we

have i 0 (ti) - 0. using !^(t i) - 0 in Eq. (15), and A,,(t i) - Av (t i) - 0

and T(ti) - Tmin in Eq. (17), gives two equations in Ax and Ay which

yield

*An equilibrium point of differential equation x - f(x,t) is a

point xe(t) that satisfies 0 - f[x (t), t). if f(x,t) is continuous

in x and t, than a solution x(t) of the differential equation started

outside (at) the equilibrium point cannot reach it (depart from it) An

finite time (see, e.g., Ref. A).
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Md

Ax .• -(IW, cos f8) /v(ti) . i a 19 2 (M

A7
• -(IM. sin *s)/v(ti) . 1 • 1. 2 (28)

where fmn is the fuel flow rate at Tian

• CO + CiTMID + C=LC 	 (30)

Using Sqs. (28)-(30) in Sq. (16) gives

iv(ti) - Irma/v(ti) .	 i - 1. 2	 (31)

Since by Assumption 2 lain is positive, Sq. (31) shows that

;,(ti) > 0, 1 - 1, 2. This contradicts Sq. (26) but confirms Sq. (27).

Mane, a curved flightpath cannot precede. but can follow, a straight-

line segment. On the curved path. at least initially, A„(t) > 0, t > t2.

Hence. by Eq. (23c). Ju(t)l • um. and by Eq. (21). T - Tula. This com-

pletes the proof.

Next. we ask whether cruise at a constant velocity v(t) = v c < vMax

on a straight-line segment is fuel optimal. For the purpose of the

Inquiry, we temporarily lift the constraint v(t) < v Max. We find that

a flight at constant velocity on a straight-line segment of a flightpath

can be fuel optimal only if the entire flightpath is straight, flown at

a constant optimal cruise velocity vc* jives by the _solution of the

e cation

3c 2k, 2vc° + c lkivc6 - (c 0 + 2c 2k
1
k2 )vc" - 3c 3kYvc2 - 5C2k2 • 0 ;	 (32)

Sq. (32) has one and only one real and positive solution.

Proof. For flight on a straight path at a constant velocity v c , the

thrust is constant, T • Tc - D(vc). any , by Assumption 1, is intermediate;

lice. Av must be constant, Av - Av . according to 8q. (20). The pointC

10
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v(t') - [T - (dD /dv)v(t' ) I/m - f/m - -2c13^ (t
9
) /82 (37)

(y► - 4e, v - vc , l* - 0, AV - AV
c ) 

is an equilibrium point for the respec-

tive set of differential equations [Sqs. (3), (9) 9 (15), and (16)]. whence

follows the first part of the proposition. To derive Sq. (32), we

eliminate ax and Ay in Sq. (16) by using Sq. (17) 0 and we substitute

the value of av - 1v from Sq. (20). This yields
c

ivvc - (ce + cl(klvc2 + k2 /vc2 ) + c2 (k1VC2 + kz /Vc2)2

- 2[2c 2 (klvc 2 + k2/vc 2 ) + c l j (klvc z - k2 /vc'))	 (33)

Since A. is a constant, the right side of Sq. (33) vanishes, yielding

Eq. (32). Let the right side of Eq. (33) be denoted by f(v c). Then

df(vc)/dvc - -2(c lklvc + 3c 2k2 /vc ' + 6c 2k1 2vc 8 + 10c 2k2 2 /vc °)	 (34)

For sufficiently small vc , f(vc ) > 0, and from Eq. (34). df/dvc < 0

for all positive vc. Hence, f(vc) is monotonically decreasing and has

one and only one real and positive zero vc - vc*. This completes the

proof .

The significance of the velocity vc* is that when the entire

flight ath is straiLht, vc* is an upper bound on v(t), t c [0, tf)

In the sense

if v(0) < vc* and of < vc*	 then v(t) < vc*	 (35)

and a lower bound in the sense

If v(0) > vc* and of > vc* , then v(t) a vc*	 (36)

Proof. Consider Eq. tA). and suppose that the velocity rises to a

maximum v(t') > v *; there $(t') - 0, and 7(t') < 0 which we want

to contradict. At t - t' we have

n^
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Since v(t') = 0, Sq. (33) applies with v(t') replacing vc. For v(t') = vc*,
i

'	 the left side of Bq. (33) vanishes. Since by Bq. (34) the right side of

Bq. (33) is decreasing, then, if v(t') > vc*, we have 1(t') 10. it	 1

follows from Sq. (37) that v(t') > 0, which is a contradiction. This

proves Eq. (35); Eq. (36) is proved analogously. We note in passing

that by linearizing the equations for v and A. around the equilibrium

point (vc*, AV ), this point can be shown to be a saddle point, whichc

conforms with Eqs. (35) and (36).

The case of Eq. (36) is of little interest for landing because

usually of < vc*. If v(0) and of are on opposite sides of vc*, then

V(t) can cross vc*. Our numerical experience, described in the next

section, shows that vc* acts as an upper bound on v(t) also for

relatively long-range flightpaths which are not strictly straight. Con-

sidering now the constraint v(t) <- vmax for the case of Eq. (35), it

is clear that it will be inactive if vmax > vc* and is likely to be

active if vmax is much below vc*.

The optimal cruise velocity vc* given by Eq. (32) is the velocity

that provides minimum fuel consumption per unit distance along a straight

flightpath. One expects that vc* will be higher if c2 = 0 in the

fuel consumption model of Eq. (10), and it will be lower if c o = 0.

For our numerical values

349.5 knots if co # 0 1 c2 # 0

vc*	 359.0 knots if co # 0, c2 0

298.8 knots if c o = 0, c 2 = 0

For comparison, the minimum-drag velocity, which is the minimum fuel per

unit time velocity, is

VD	
= (k2/kl) 1/4 = 227 knots

min

12



Examination of the necessary conditions showe that a circular
I

flightpath can be fuel optimal only if both the baak-angXs and the	 j

velocity are at their respective constraint bounds. The proof is

straightforward and is omitted.

V. Computation of Extremals

The extremals are computed by numerical integration of the state

and costate equations [Eqs. (1)-(5) and (12)-(16)], with the controls

given by Eqs. (19) and (23), from a given state and with chosen initial

values of the costate variables as parameters. One can thus obtain

families of extremals but one cannot meet specified end-conditions.

In the computations, the state constraint v < vmax - 250 knots

was imposed only on some of the long-range flightpaths; however, no

extremal was extended beyond 350 knots. A state constraint v > vmin

was not explicitly incorporated in the necessary conditions; however,

extremals where v(t) dropped below 150 knots were rejected because the

drag model of Eq. (5) would not be valid below that velocity.

In the following figures, distances are in nautical miles, the

velocities v are in knots, the thrust T is in thousands of pounds,

the fuel consumption f to the final point is in pounds, and the time

in seconds is from the integration's starting time is = 0. The portions

of the flightpath with T > 0 are in bold curves. The maximal and

minimal values of thrust and velocity are among the T's and v's shown.

The arrows show the airplane's direction of flight. The starting values

of the costates at to a 0 are shown in the figures by

13
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4 - Ay/c 3. ,	 Ay - A#/c 3. ,	 A4 a IVAim

(in ow	 we divided the Hamiltonian by ci).

It is convenient to start integration bacimrards from the knaenand

fixed final state of Eq. (9). Computing A x from the condition e • 0

at the integration's starting time t o , the extremals are determined by

the parameters ay , A* (to), and Av(ts). Since the problem is time-

invariant, we set is - 0. The sign and relative magnitude of both

Ay and Xp(t f) determine the direction of turn; it can be shown that by

changing the sign of both, the flightpath is reflected about the x-axis

(true if integration is started at y - * - 0). Such backward Integra-

tion produced coasting and short-range turning extremals, as those shown

in Figs. 1 and 2.

Figure 1 shows coasting flightpaths, namely, deceaerating paths with

zero thrust throughout. For extremals 1 and 2 the bank angle switches

between its bounds of *-30° because a v(t) is positive throughout. This

is typical of most, but not all, coasting extremals: extremal 3 ends

with a smooth transition to a shallow bank angle, and extremal 4 starts

with a straight-line segment. Coasting extremals may be significant for

emergency landing.

Figure 2 shows (by solid curves) partly thrusting extremal paths

whose backward computation was arbitrarily terminated at 200 knots. These

paths represent short-range turning approaches starting at 200 knots, such

as after an aborted landing. Typically, for a turn through a large angle,

as in paths 1 and 2, the velocity first drops to achieve a tighter turn.

This was noted in Ref. 6 for mi-imum-time turns, but it is less intuitively

obvious in the minimum-fuel case because fuel is later expended to

14
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accelerate. The broken curves, here and in Fig. 4, will be commented on
b -

In the next section.

Backward integration from the final state did not produce long-

range flightpaths. Such paths require a sustained intermediate thrust

which is dictated by a narrow range of iv (from Sq. (20) it follows at

once that T >- Tmin - 0 if Xv/cim >— -1.0, and by computation, T S T^

if lv/c lm _< -1.2151, resulting in extreme sensitivity to the choice of

Xv(ts). Therefore, long-range extremals, and other types of extremals

with special conditions at intermediate points, were produced by forward

and backward integration from an appropriate intermediate state. For

convenience, integration was started at x(ts) - y(ts) - WS) - 0,

is - 0, with an appropriate v(ts). The resulting flightpath can then

be shifted and rotated to satisfy the final condition of Eq. (9).

Integration of long-range extremals without the velocity constraint

(Eq. (8)] was started at a velocity below the optimal cruise velocity

vc* - 349.5, with Xv such that T - D. The parameters are then v(ts).

Ay and A* (ts), is - 0. The velocity profiles of such paths are shown in

Fig. 3. Since S(t s) - 0, v(ts) is the maximal velocity. Curves 1-3

correspond to straight-line flightpaths. Curves 4 and 5 correspond to

paths with initial and final turns as indicated. For t < 0, curves 3,

4, and 5 are indistinguishable. On curve 4, we note the dip in velocity

at the large final turn to v(t f) - 250 knots. On curve 5 the velocity

decreases faster than on curve 3 because of the added drag due to maximum

bank-angle.

Extremals with a velocity-constrained arc were computed by starting

on the arc at v(t s) - vaax - 250 knots. The costate av(ts) is

17
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determined by the requirement that thrust equal drag. The remaining

parameters are Ay. A# (ts), and two parameters to control the departures

from the velocity-constrained are according to preset times or according

I	 to the multiplier n(t) > 0 computed by Bq. (24). We considered

•	 extremals with only one constrained arc, of the long-range type.

Figure 4 shows long-range flightpaths, which typically consist of a

possible initial turn, a long, almost straight arc, and a possible final

turn. Path 1 is a velocity-constrained extremal, path 2 is unconstrained,

and both were computed from the point indicated by t - 0. For convenience

of presentation, neither path is particularly long. In both cases the

almost straight ;arc can be made as long as desired: in the constrained

case by selecting Ay and X 0 (0) sufficiently small, and in the uncon-

strained case by selecting, in addition, v(0) sufficiently close to the

optimal cruise velocity vc*.

Integration from an intermediate state, rather than frc-- sn end-

state, is mandatory also for the type of extremal discussed in Sec. IV:

a straight -line segment followed by a switch to a maximal bank-angle turn.

This extremal requires the satisfaction of Eq. (31) at the switch-time t2.

Since 0(t), u(t), a^(t), and Ay are zero on the straight-line segment,

the remaining parameters are v(ts) and Av(t s) < 0. For our numerical

values and range of velocity, these extremals (such as flightpath 4 in

Fig. 1 whose integration started at the point indicated by v - 300 knots)

are all coasting extremals with maximal bank-angle throughout the turn.

The accuracy of the computed extremals was checked by decreasing the

integration step and by observing the accuracy of the condition H - 0.
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VI. Optimal and bear-Optimal Solutions

We compare now the fuel consumption of flightpathe produced by

extremals with that of near-optimal paths. We thus test the quality of

the near-optimal paths as well as the global optimality of the extremals.

The near-optimal algorithm of Ref. 10 generates a flyable state-

trajectory between any two end states; it is sufficiently fast to be

operated on-board and in real time. The algorithm, based on the results

in Ref. 1, generates the shortest flyable path consisting of circular

paths joined by at most one straight-line segment. In Ref. 11, the algo-

rithm is further refined in the light of the results of this study; in

particular, the curved path is created by a succession of 30° circular

arcs of varying radii. In view of the results of Sec. III, it is clear

that such a synthesised flightpath cannot be fuel-optimal. However, it

is evident from Fig. 4 that such paths can closely approximate the

optimal ones for the most common and important type of path, the long-

range path. The details of the algorithm as well as numerous comparisons

are reported in Ref. 11. For example, for 28 long-range paths of about

20 miles, without a velocity constraint, the worst approximation was

2.95% off the minimum fuel consumption, the best 0.52, and the average

1.52% (Ref. 11).

The extremals exhibited in Sec. V satisfy only necessary conditions

for optimality. Are they optimal? We have no proof, but fuel-optimality

can be argued for at least the coasting extremals, which are also minimum-

time coasting extremals. Consider flightpaths 1 and 2 in Fig. 1. Along

these the magnitude of the bank-angle, and hence the drag, are at all
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time maximal. Thereforeq any other coasting fligbtpath with

x(tf) - y(tP - *(t f) - 0. tj < tf . mast have v(tj) V. of - 180 knots.

The fuel-optimality of paths 9 and 4 can be supported by similar, albeit

somewhat weaker arguments.

The situation is far less clear for the thrusting extremals. These,

as the integration continued, often started twisting and looping in a

spanner which appears increasingly nonoptimal, as shown by the broken 	 t

curves of Figs. 2 and 4. Such behavior of extrema-i is likely to have

been observed pr(viously; there is an allusion to lose of global opti-

mality in Ref. 7. in general, as an extremal is extended by integration

from some starting point. a time tD may be reached beyond which the

extrenal ceases to be globally optimal; tD is called a Darboux point

with respect to the starting point (Ref. 12).

The existence of Darboux points on the extremals of Figs. 2 and 4

is demonstrated in Fig. 5 by comparison of fuel consumption with near-

optimal paths. Figure 5a shows path 1 of Fig. 4 which, as the forward

integration is extended, has in the final turn three points with

v - 180 knots. The comparison confirms tue nonoptimality of end-points 2

and 3; the Darboux point appears to be about midway between points 1 and 2.

We note that also path 2 of Fig. 4 has two possible end-points with

v - 180 knots. in this case. however. the extremal path to the second

end-point is deemed to be optimal. Figure 5b shows the fuel consumption

to the final point x - y - 0 of a turning extremal path and of near-

optimal paths, for several points along the extremal; three such near-

optimal paths are shown. Evidently, for points beyond v - 320 knots or

so. the near-optimal paths use less fuel. Although we do not have the
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exact location of the Darbout point, we are confident that if the extremal

is terminated at, say, 250 knots, it !2 optimal.

Thus, although one cannot we the near-optimal paths to prove opti-

1 ,

	

	 mality, one can get a rough idea of the location of the Darbouc point,

particularly for the long-range paths, wbare the near-optimal approxime-

tion is very good. Of course, portions of nonoptimal extremals may be

optimal; for example, the coasting portions of the extremals in Fig. 2

are likely to be optimal.

Vii. Summary and Concluding Remarks

The characteristics of minimum fuel horizontal flightpaths in the

terminal area were investigated analytically and computationally. Analysis

of the necessary conditions showed the following.

1) Thrust is continuous, but the bank-angle may be switching for

certain values of the costates av and A * (see Eq. (23c)).

2) A straight-line segment may be fuel-optimal only if it is at the

beginning of the flightpath; a subsequent curved path, if any, must start

by a switch to maximum bank angle while the thrust is at minimum value.

3) The optimal cruise velocity, given by the solution of Eq. (32),

acts as an upper bound on the velocity for straight (or alaost straight)

r;	 minimum-fuel flightpaths.

4) A circular flightpath may be fuel optimal only if botb the bank

angle and the velocity are at their respective constraint bounds.

The computation of extremals produced many representative minimum-

fuel flightpaths that can be categorised as long-range paths, short-range

turning paths, and coasting (zero-thrust) paths. We found that:
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1) Extreme sensitivity to choice of Av for long-range paths could

j	 be overcome by starting integration at an appropriate intermediate state,

rather than an end-state.

2) Long-range paths with a large initial turn (over 100 0) start by

deceleration followed by an acceleration in the remainder of the turn.

3) Long-range paths with a final turn up to 140° end with zero
W ­__-1

thrust and turn with maximum bank-angle magnitude. However, if the final

turn is large, and in particular if in addition the final velocity v(tf)

is higher than 180 knots, the turn is executed by decelerating below

v(t f) and a final acceleration at maximum bank-angle magnitude. It is

shown in Ref. 11 how these findings made possible the refinement of an

existing on-line algorithm of Ref. 10 to the point where the fuel consump-

tion of long-range near-optimal paths is well within 1-32 of that of

optimal paths.

The near-optimal algorithm was very helpful also in alleviating the

problem of finding the Darboux points. We found that:

1) Turning extremals that require thrust toward the end of the path,

produced by backward integration from v(t f) - 180 knots, inevitably

became nonoptimal at some point beyond v - 250 knots.

2) Turning but coasting extremals, on the other hand, appear to be

optimal no matter how long they were extended (backwards from

v(t f) - 180 knots).

3) Optimality of long-range extremals may be lost if integration is

	

r	
extended so that the initial or final turns are much larger than 180°.

Evaluation of the optimality of extremals by a near-optimal algorithm

proved to be a practical solution to the Darboux point question for

flightpath problems. The general problem, however, is unresolved, for
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R there is no test for Darboux points. Could a test (e.g., Ref. 15) -for

conjugate points (beyond which an extremal ceases to be locally optimal)

be helpful? The answer appears to be negative; certainly so for a special

two-dimensional case of the present problem, in which x(t f) is free

and v(t) - constant, which we examined in detail in Ref. 16. The ques-
W__ .

tion of global optimality, highlighted here by computation of extremals,

is inherent (though perhaps less visible) in other optimization techniques.

The problem of Darboux points remains a challenge for future research.

The work reported here is of course but one element in the develop-

meat of a practical, fuel-efficient, and safe system for terminal opera-

tion. In particular, an extension to include the third dimension,

altitude, is to be studied.

Appendix A: Equations of Motion

The lateral, longitudinal, and vertical force equations are,

respectively,

mvi = -(L + T sin a)sin	 (Al)

mS - T cos a - D	 (A2)

mg - (L + T sin a)cos m	 (A3)

For small angle of attack a, Eqs. (3) and (4) result, where u = tan $.

Lift and drag are given by L - CLa
	 o
aqS, D - CD qS + eLa, where a is

the efficiency factor and q - (1/2)pv 2 is the dynamic pressure, S the

wing area, and the coefficients CL and CD are assumed to be independent
a	 o

of the velocity. Now,

eLa - eL2 /(C
La

 qS) - e[mg/cos 4 - T sin a]2 /(CL a qS)
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.

Neglecting T sin a. D is of the form of Sq. (5), with k l = (1/2)C
D0 

p8,

ko = 26m2g2 /(C
La 
pS). Using the values CD

o
 = 0.015, Ci,

a
 - 0.08/deg,	 i

e = 0.004/deg, (1/2)p = 295' 1 lb/ftz /knotl , S = 1560 ft'. mg = 150,000 lb,

gives the values of kl and k2 in Sec. 11.

r ./	 28



Acknawladgmeuts

I

The authors wish to thank Dr. Heinz Brzberger for fruitful discussions

and perceptive comments. This research was supported, for the first

author, by a National Research Council Associateship at Ames Research

Center, NASA.

References

lErzberger, H. and Lee, H. Q., 'Optimum Horizontal Guidance Techniques

for Aircraft," Journal of Aircraft, Vol. 8, No. 2, Feb. 1971, pp. 95-101.

2 Pecsvaradi, T., 'Optimal Horizontal Guidance for Aircraft on the

Terminal Area," IEEE Transactions on Automatic Control, Vol. AC-17,

No. 6, Dec. 1972, pp. 763-772.

3 Kishi, F. H. and Pfeffer, I., "Approach Guidance to Circular Flight

Paths," Journal of Aircraft, Vol. 8, No. 2, Feb. 1971, pp. 89-95.

4 Hedrick, J. K. and Bryson, A. E., Jr., "Minimum Time Turns for a

Supersonic Airplane at Constant Altitude," Journal of Aircraft, Vol. 8,

No. 3, Mar. 1971, pp. 182-187.

SHoffman, W. C. and Bryson, A. E., Jr., "Minimum Time Turns to a

Specified Track," ASI-TR-71-4, Aerospace Systems, Inc., Sept. 1971.

Summarized in: Hoffman, W. C., Zvara, J., and Bryson, A. E., Jr.,

"Optimum Turns to a Specified Track for a Supersonic Aircraft," Preprints

.	 of Joint Automatic Control Conference, 1972, pp. 955-956.

6Bryson, A. E., Jr. and Parson, M. G., "Constant Altitude Minimum

Time Turns to a Line and to a Point for a Supersonic Aircraft with a
F

Constraint on Maximum Velocity," SUDAAR No. 437, Stanford University,

Stanford, Calif., Nov. 1971.

i,
29

,r
Mfr 1, W_x



?Hoffman, W. C. and Bryson, A. E., Jr., "Minimum Time Maneuvers to

Specified Terminal Conditions," ASI-TR-73-12, Aerospace Systems, Inc.,

Jan. 1973, Sect. 3.2.

BBryson, A. E., Jr. and Lele, M. M., "Minimum Fuel Lateral Turns at

Constant Altitude," ALAA Journal, Vol. 7, No. 3, Mar. 1969, pp. 559-560.

9Vinh, N. X., "Minimum Fuel Rocket Maneuvers in Horizontal Flight,"

AIAA Journal, Vol. 7, No. 2, Feb. 1973, pp. 165-169.

1OErzberger, H. and McLean, J. D., "Fuel Conservative Guidance System

for Powered Lift Aircraft," Journal of Guidance and Control, Vol. 4,

No. 3, May/June 1981, pp. 253-261.

11Neuman, F., "An Algorithm for On-line Construction of Fuel Conserva-

tive Capture Trajectories," in print.

12Mereau, P. M. and Powers, W. F., "The Darboux Point," Journal of

Optimization Theory and Applications, Vol. 17, Nos. 5/6, 1975, pp. 545-559.

"Jacobson, D. H., Lele, M. M., and Speyer, J. L., "New Necessary Con-

ditions of Optimality for Control Problems with State Variable Inequality

Constraints," Journal of Mathematical Analysis and Applications, Vol. 35,

1971, pp. 255-284.

"Stern, T. E., Theory of Non-Linear Networks and Systems. An

Introduction, Addison-Wesley Pub. Co., Inc., Reading, Mass., 1965.

1 Noyer, H. G., "Optimal Control Problems that Test for Envelope

ontacts," Journal of Optimization Theory and Applications, Vol. 6, No. 4,
W, >

1970, pp. 387-398.

16Kreindler, E. and Neuman, F., "Global Optimality of Extremals: An

Example," Journal of Optimization Theory and Applications, Vol. 37, No. 4,

j	 Aug. 1982 (to appear). Also NASA TM-81240, 1980.

30



PART 2t THB CA88 OF SINGULAR TMMT

Bliezer Kreindler

Introduction

In Ref. 1, the fuel flow rate model includes a small term quadratic

in thrust. When this term is neglected, as is usual, the intermediate

thrust is singular. In this note the singular thrust is derived, and

the Generalized Legendre -Clebsch condition is examined for various ranges

of bank-angle and velocity. The results are summarized in the last sec-

tion. The literature on flightpath optimization in the horizontal plane

is reviewed in Ref. 1.

Problem Formulation

The point-mass equations of nation in the horizontal plane are

x = v cos p	 (la)

y = v sin	 (lb)

1^r = -gu/v	 (lc)

V (T - D) /m	 (1d)

Here x and y are the coordinates of the horizontal plane, * the heading

angle measured counterclockwise from the x-axis, v the velocity, g

the gravitational constant, and m the mass. The control variables are

the thrust T and u, where u = tan 0 and 0 is the bank-angle, positive

with right wing down. The drag D is given by

F."
	 D = k1v2 + k20 + u2)/v2	 (2)
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where ki and k2 are constants. These equations are derived by assuming

zero wind velocity, constant mass, coordinated turns, and a small angle of

attack which is automatically adjusted to maintain horizontal flight (Ref. 1).

The controls are constrained by

(U(t) ^ <_ um	 (3)

Tmin I T (t) < Tmax	 (4)

and the fuel consumption to be minimized is given by

r ft'	 J =	 f [co + c iT(t)]dt	 (S)
0

where co and c l are constants and t f is free. In Ref. 1, the fuel

flow rate model includes a quadratic term c 2T2 (t) with a small c2.

Application of the Minimum Principle

The Hamiltonian is given by

H = c a + c 1T + Axv cos 0 + Ayv sin (r - A*gu/v + AvIT - kiv2 - k2 (1 + u2) /v2] /m

.b)

The costate variables are given by

ix - -Hx = 0 - Ax = constant	 (7a)

iy = -Hy = 0 - Ay = constant	 (7b)

.
A0 = -HO - v(Ax sin 0 - A'y ci g ^)	 (70

iv = -Hv = -Ax cos - Ay sin	 A*gu/v

+ 2Av (kiv - k2 (1 + u2 ) /v9 ] /m	 (7d)
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i
c

where % = all/ft, etc. Since tg is not prescribed and Ht - 0, we

have the necessary condition

H - 0 ,	 all t s (0, tg)	 (8)

The Hamiltonian is linear in T, with the term multiplying T given

by

HT = c i + Xv/m 	(9)

Minimization of H with respect to T gives

T*

	

Tmax	
if HT < 0

	

Tmin	
if HT > 0

the thrust can be intermediate only in the singular case

HT - 0	 on a subinterval of (0, t f ]	 (10)

In this note, we are concerned only with the case ( 10); therefore,

AV = -elm

Since in this note AV is negative, minimization of H with

respect to u yields

	

gvA1,/(2c,k2 )	 if I gvx*/(2c ,k2 )1 < UM(lla)
u* _

umsgnA*	 if IgvA*/(2c,k2 )1 > um	(llb)

The singular case ( 10) implies the vanishing of all time derivatives of

HT. Let the first time derivative of HT in which T appears explicitly

be the 2gth (it is always even); q is the order of the singular arc.

The Generalized Legendre-Clebsch necessary condition requires (Ref. 2) that

(-1)q(HT(2q))T > 0	 (12)
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The Singular Thrust

Consider first the case Jul < um. Using Bqs. (lb) and (18a) in

HT - 0 - Av , we compute HT to be

HT - -8(Ax sin * - Ay cos *)u/mv - 2c 1 (klv4 + 3k2)(T - D) /m2v4

First, we note that

(HT)T - -2c1 (kiv4 + 3k2 )/m2v4 < 0

so that the Generalized Legendre-Clebsch necessary condition of Eq. (12) is

satisfied. Second, setting iT - 0 yields the intermediate, singular

thrust:

mgv(Ax sin * - Ay cos #)u
T=D-

	

	 (13)
2c 1 (kIv2 + 3k2/v2)

Adding the condition H - 0 to HT - HT - 0, we obtain

A* - *_2c 1 k2 (3k2 - klv4 + cov2/ci)/gv

and hence, using Eq. (lla),

	

u - *_ (3k2 - kiv4 + cov2 /c 1 ) /k2	 (14)

Using Eq. (14), we find that the velocities for which Jul < um are

outside the range [v l , v2 ], where vl and v2 are the real and positive

roots of

	

Fklv4 - cpv2 /c I + k2 (UM 2 - 3) - 0	 (15)

(Of course, real and positive v l or v21 or both vi and v 2 , may not exist;

;.	 in particular, if um2 > 3 and (c o /c l ) 2 < 4k,k2 (UM 2 - 3), then J u l < um

for all v.)

b

.,
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We observe that for a straight-line flight, setting u - 0 in

Eq. (13) gives T - D. which implies 'v(t) - vc - constant. Setting

u - 0 in Eq. (14), we obtain the optimal cruise velocity vc*

(vc*) 2 - co/(2kic1 ) + [ (co 11
/(2k1c1 ) 2 + 3ks/ki ] 1/2	(16)

We now consider the case Jul - u. which occurs when the velocity

enters the range [v l , v2 ]. Proceeding as in the previous case for

Jul < u., we obtain

(RT)T = -3(c 1D - co) /(M►) 2 •	 ( 17)

T D
2mgv(Ax sin 0 - Ay cos *)umsgnxo

-

	

	 (18)
3(c 1D - co)

and

jX*l - c l [3k2 (1 + um2 ) - k lv" + cov2 /cl1/(2gvum)

We observe from Eq. (17) that the Generalized Legendre-Clebsch

condition of Eq. (12) is satisfied as long as

D = k iv2 + k2 ( 1 + %2 ) /v2 > CO/C1

or

k I v 4 - c ov2 /c I + ki (1 + %2 ) > 0	 (19)

The left side of Eq. (19) has no real zeros, and hence Eq. (19) holds if

co t /(2c 1 ) 2 < klk2 (1 + LM2 )	 (20)

If Eq. (20) is violated (as when co is increased to create a combined

time and fuel cost functional), then there exists a range of velocities

[vi, v2], where vi and v2 are the real and positive zeros of the left

side of Eq. (19), for which the singular thrust of Eq. (18) is nonoptimal.
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We observe that [vi, vij C [v 1 , vt j, and therefore the Generalized

Legendre-Clebsch condition, is satisfied whenever v is such that

Jul < um•

We note that letting u - um, T in Sq. (13) is different from that

in Eq. (18) (the author is indebted to Dr. H. Erzberger for this observe-

tion). This shows that the intermediate thrust is discontinuous at a

HTtime t l , say, when the bank angle saturates. This is because

contains u which is discontinuous at t i and so must be T(t l ) in

order to satisfy HT = 0.

Summary of Results

For intermediate bank-angle, the intermediate singular thrust is

given by Eq. (13) and it satisfies the Generalized Legendre-Clebsch

condition. The bank-angle is given (except.for sign) by Eq. (14) and

the velocity is outside the range [v l , v z j, with v l and v 2 being

the real and positive roots of Eq. (15). On a straight-line flight,

the singular thrust is constant and the constant velocity is the optimal

cruise velocity vc* given by Eq. (16).

When the velocity enters the range [v 1 , v 2 1 the bank-angle

saturates, Jul - um. and the intermediate singular thrust, now given by

Eq. (18), undergoes a jump. The singular thrust satisfies the Generalized

Legendre-Clebsch condition if Eq. (20) holds; if Eq. (20) does not hold.

there exists a range of velocities [vi. v?j C [v l . v.). where vi and v2

are the zeros of the left side of Eq. (19). such that intermediate thrust

is nonoptimal.
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