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ABSTRACT

Personnel of the Lockheed Palo Alto Research Laboratory have performed
the Spacelab Data Analysis and Interactive Control Study under comtract to
the Spacelab Payload Integration and Rocket Experiment (SPIRE) Project of
NASA's Goddard Space Flight Center. The study consisted of two main tasks,
a series of interviews of Spacelab users and a survey of data processing and
display equipment. This final report preseants findings from the user inter-
views on questions of interactive control, downlink data formats, and Spacelau
computer software development. Equipment for quick-look processing and dis-
play of scientific data in the Spacelab Payload Operations Control Center
(POCC) was surveyed. Results of this survey effort are discussed in detail,
along with recommendations for NASA development of several specific display
systems which meet common requirements of many Spaceladb experiments.
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1.0 INTRODUCTION

In March, 1978, Lockheed Palo Alto Research Laboratory (LPARL) completed
‘.otudy on data analysis and display requirements for the mature Spacelad era.
More specifically, the issue was real-time and quick-look requirements for
scientific data in the Spacelab Payload Operations Control Center (POCC).

The technique used was an extensive series of interviews of scientific users
of Spacelab. The major result of this survey was that many experiments in
different disciplines of space science shared common requirements for data
display and processing in the POCC. A blend of ground support equipment
supplied by the experimenters (EGSE) and NASA-supplied standard services was
recommended. Specific common requirements and general software and hardware
approaches to meet them were listed.

Since that report was submitted, the standard services to be supplied by
the JSC POCC have become better known. Since they do not meet a large number
of the common requirements discovered previously, the need for more careful
study of the GSE option became apparent. The Spacelab Payload Integration and
Rocket Experiments (SPIRE) Project of Goddard Space Flight Center funded this
follow-up study to examine this option. 1In particular, the use of NASA-supplied
GSE (so-called shared or common GSE) to meet common requirements was a possi-
bility to consider.

The present study began in February, 1979, with a clearly defined set of
tasks and objectives. The prime task has been to evaluate data analysis and
display equipment of votential utility in the POCC. This evaluation has
covered: software and hardware; commercially available components and inte-
grated systems at scientific institutions around the country; existing equip-
ment and also technologies in development which will be available in the mature
Spacelab era. The study has been performed by Lockheed scientists familiar
with Spacelab, in consultation with the larger community of Spacelab users.

A key feature of this survey was the actual testing of existing systems using
scientific data similar to that which will be generated by Spacelab experiments.
As a result of this survey, five potential common systems have been designed
and costed at the block diagram level of sophistication; three of these are
recomunended for immediate development by NASA. In addition, a few areas where
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further development is needed to meet all of the common requirements have been
identified.

.. A secondary purpose of the study has been to establish the users' require-
ments for interactive commanding of Spacelab experiments by POCC personnel.

The two-way interaction between needs for real-time displays and ﬁesires for
interactive control capability surfaced in the previous study. Many scientists
assume they will have complete control of their instrument from the POCC,
whereas the NASA standard systems expect greater reliance on the payload crew,
Spacelab computer, and experiment microprocessors. A modest survey of Spacelab
users to elucidate this matter further is part of the present effort. An exten-
sion to the original contract added consideration of some related command and
data handling issues to the survey task. These matters are: the proposed
packet transmission format for the Spacelab High Rate Multiplexer (HRM) down-
link; the development of Experiment Computer Applications Software (ECAS);
miscellaneous matters regarding Spacelab 1 and 2 data flow and the SPIRE

Project information system. Findings from the scientific user interviews

are presented in this final report.

2
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2.0 SPACELAB SCIENTIFIC USER INTERVIEWS

2.1 Results of the Previous Study

‘. The Spaceladb era opens new vistas for scientific research and simultane-
ously presents challenges to the traditional means of performing space experi-
‘ments. Multi-center interaction will increase significantly and multiple
experiments from different disciplines will share a given flight. Experiment
control will be gplit between Payload Specialist Control, Payload Operation
Control Center (POCC) control, and autonomous control by dedicated processors
within the experiments.

The potential exists for the possibility of a POCC for one flight contain-
ing many experiments (10 to 20) of diverse nature followed in a few weeks or
months by the next flight consisting of entirely different experiments. The
support provided by NASA in the POCC und the means of providing this support
could vary over wide ranges. One means of attacking this problem consists of
identifying functions within the POCC which are limited enough in scope to be
tractable and pursuing those functions in a logical manner.

A get of functions, real~time scientific quick-look data analysis and
display, was so identified by the Spacelab Payload, Integration, and Rocket
Experiments (SPIRE) office. The approach chosen was first to establish require-
ments and ascertain the commonality of requirements with the possibility of
NASA-supplied common hardware/software systems being provided to satisfy
common requirements. Next, a trade and system study would be undertaken
to prove the technical feasibility and to define better the cost of some
Nasa-supplied common systems. Finally implementation of a common system would
occur.

The first study (referred to henceforth as the previous study) on require-
ments was completed in March 1978 and will be summarized in this section. The
second step regarding system feasibility and cost is the curreat study for
which this is the final report.

The previous study covered four disciplines for which GSFC had mission
wmanagement responsibility: Ultraviolet (UV)/Optical, Solar/Terrestrial,
Atzospheres, Magnetoepheres, and Plasmas in Space (AMPS), and High Energy
Astrophysics. An Applications study final report was also included. Experi-
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menter groups vere visited, the experiment discussed and the status of the
experiment at that time established. Spacelad 1 and 2 proposals, OFT
proposals, and the Instrument Control and Data Handling Working Group (ICDHWG)
vere used as sources of experimentets to include. A mature, all-up Spacelad
Dperatior was to be considered. Selection of experimenters was attempted to
lean toward experienced space experimenters. A total of 26 experiments were
included in the study.

The informaticn obtained from the experimenters defined the experiment
data rate, the display update rate desried, the display devices required, the
data processing required to drive the display, and the purpose or use of the
display. The results of this survey for each of the experiments in the four
disciplines is given by discipline in Appendix A. A summary of the require-
ments for each discipline was then prepared. From that a summary of require-
ments for all 26 experiments was prepared.

The results were that the data could be broken into four categories:
analog, serial digital, analog video, and digital image data. The vast
majority of the data consists of digital image data. Common processing require-
ments which were established for serial digital data included engineering con-
version, addition or subtraction of spectra, background subtraction, integration
of one channel with time, intensity versus time, curve fitting, peak and average
signal, calibration, and statistics to determine signal-to-noise values.

Common processing requirements which were established for digital image
data includes multi-image arithmetic, statistics (histograms, mean value,
standard deviation, power spectrum), background subtraction, gray level com-
pression, stretch, clip, geometric distortion removal, radiometric calibration,
and irage stor-ge. For analog video data, scan conversion is required for
non-standard TV.

Common equipment requirements include standard, color, and high-resolution
TV monitors; monochrome, color, and high-resolution CRT's; oscilloscopes; scan
converters; video tape recorders; storage scopes; and hard-copy units. These
pleces of equipment in several representative POCC configurations were presented.
Specific equipment identification and compatibility are performed in the present
study.
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Not all the potential common hardware and software was recommended for
NASA development as shared GSE. A distributed processing approach was recom-
andcd which can be gradually developed in modular form and inserted into the
POCC. 1In this way, one small system could be developed, vied und later
axpanded or upgraded when technologically superior equipment is produced.

These modular systems would be developed in close associstion with the experi-
menters and using equipment with which the experimenters are familiar.

Several special problems were uncovered in the previous study, some of
which are included in this present study. A video uplink capability was
requested. A full parallel control concept was endorsed by most experimenters.
Parallel control consists of having control capability over the experiment frcm
both the AFD and the POCC, in a parallel manner; a block diagram would show two
equal control modes. Full parallel control then is having equal control from
either position; one position (POCC or AFD) does not have a significantly
different control capability. Closely associated with this is the experi-
menter's desire for interactive pointing control from the POCC. Consideration
of interactive pointing control from the POCC is included in the present study.
Fast Fourier transform capability was regarded as a unique requirement for an
initial NASA standard system but is discussed in more detail in the present
study. High-speed multi-frame digital image memory is an area in which tech-
nological advancement is necessary; its current progress is discussed in this
present study.



2.2 Interview Approach
This study is & logical continuation of the previous one. One task is
a.nodest effort to continue the user interviews which formed the entire subd-
stance of the previous one. Experimenters from Spacelab 1 and 2 qxpcttncnta
&nd authore of proposals for future Spacelab flights were interviewed. Unfortu-
nately, the interview effort was largely completed when a new set of investi-
gators was announced in September, 1979, 1t was found that these new investi-
gators were not familiar enough with Spacelab systems to respond to some of
the more technical questions at issue. In addition, the Investigator's
Working Group meetings for Spacelab 2 were attended, and MSFC and JSC person-
nel working on command and data handling were contacted. LPARL personnel also
met with the Spacelad 2 payload crew. Appendix B lists the users interviewed.
The question list used in many of these interviews is given in Appendix C.
In actual practice, this list was used as a general basis for the discussion,
not as a rigid checklist. Some questions or whole categories were completely
irrelevant to some experiments. In general, the experimenters were cooperative
and freely volunteered suggestions for improvements to Spacelab.

LOCKHEED PALO ALTO RESEARCH LABORATORY
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2.3 TFindings on Interactive Control

Sources of control for Spacelab experiments include crew members on the
Aft Flight Deck (AFD), investigators in the POCC, stored time-based commands
in the Experiment Cozputer (EC), and software in a dedicated experiment pro-
cassor (DEP). 1ln this section, the issue is control by POCC persbnnel and,
more specifically, interactive control. This can be defined as control by
sending multiple commands which are selected on the basis of data received
from the experimont in real time. The link between interactive control and
the rest of this study is made clear by this definition: Interactive control
is impossidble without the proper real-time displays.

Before the interview findings are discussed, one fact should be made
very clear. Every experiment which was surveyed has an on-board DEP on some
sort, and every investigator nlans to have a minicomputer system in his EGSE
in the POCC. These minicomputers are usually of the same family as the DEP,
and they are a major factor in anv consideration of POCC operations. It is
only a slight exaggeration to say that experimenters would like to do all
data analysis, display and commanding using these familiar computers, in
whose software they have made a major investment.

In the interviews. a wide variety of interactive control requirements
have been stated. Some control functions can only be done by the crew (initial
deployment of the Instrument Pointing System--IPS--or of a sibsatellite, for
example). Others can only be done by the POCC personnel; typical reasons are
that the correct plan of action can only be determined by specially trained
observers or after extensive data processing which is not available onboard.
A common requirement is for parallel control: Crew control is preferred, but
when the crew is not available, POCC persornel can take over. Although the
operations may be limited somewhat with FOCC control, the alternative is lost
observing time. Another scenario for parallel control is to let the crew
initiate an experiment and then turn control over to the POCC for intermittent
maintenance or modification of the observing sequence.

In the previous study, the need for interactive pointing control was
voiced by many investigators in each of the four disciplines. It was one of
the stated purposes for most of the video displays requested, and TV cameras
dedicated solely to this function are included in many experiments. In the

7
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more recent interviews, interactive pointing control from the POCC is still
desired, even though investigators concede that it may not be possible with
the present uplink. Three reasons for POCC control (as opposed to exclusive
crew control) of pointing are: (1) to choose targets of interest at the
beginning of an observing sequence; (2) to change targets during'gn observa-
tion when data analysis reveals a particularly interesting feature for
additional study; (3) to monitor and correct pointing drift routinely when
the crew is busy with other duties. The first two reasons derive from the
special training of POCC personnel and the more informative displays available
to them. Reasons (2) and (3) indicate the desire to make most efficient use
of observing time even when the crew is not available.

The investigators' perception of the present command uplink is that it
can't support the requirements for interactive commanding. Specific complaints
about it include the following. The availability is not predictable because of
STS priority. When payload commanding is allowed, it is too slow because of
the manual authorization required before a terminal is enabled to send commands.
Commands are not queued or pipelined automatically, reducing throughput by a
large factor. If several experiments need the uplink at sunrise and/or sunset,
the low rate will waste potential observing time. Command loads can't be
built in an EGSE computer terminal; this makes DEP debugging very difficult
and DEP reloads effectively impossible. Whether or not all of these criticisms
are well deserved, they represent the experimenters' low opinion of the uplink
capability.

On Spacelab 1 and 2, experimenters are reducing their plans for full
parallel control because of their opinions of the uplink. One reaction is
to automate more control functions: This means more DEP memory and software.
The extent of automation is quite remarkable in some cases; the article by
Westerhout (1974) on "the ideal automated observatory" is valuable reading
on this matter for both scientists and engineers. Experimenters are also
planning more reliance on directing the crew using the voice link. Plans
for reaction to targets of opportunity are being shelved in some cases.

Naturally, suggestions for improving the uplink capability have been
made in the interviews. One is to use the voice link for sending data from
an EGSE minicomputer to a DEP by installing modems at both ends. Another is

LOCKHEED PALO ALTO RESEARCH LABORATORY
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to implement an automated command queue in the POCC computers, sc that a
string of commands can be entered into memory; then they can be sent by the
computer at the maximum possible rate, without delays caused by cumbersome
n;nual procedures. A serial data link between EGSE terminals and POCC com-
manding terminals is also a common request. -

The MSFC personnel working on POCC operations suggest some compromise
solutions to alleviate the uplink problems. The concept of building command
loads in an EGSE computer and transferring them to the POCC terminal on a
floppy disk has been accepted as a requirement. Software to solve the disk
format compatibility problems for the common types of EGSE minicomputer would
be a significant contribution. Clever command structures and proper design
of the commanding display pages, with emphasis on human engineering, are also
needed to make most efficient use of the capability available. Multiple
commands can be predefined and then sent with virtually no delays. Telemetry
data can be displayed on the commanding terminals, and some computational
capability is promised. Working with the payload crew, MSFC personnel have

previously done an outstanding job in streamlining AFD command procedures.

They may yet show that the uplink is more powerful and useful than the investi-

gators think.

LOCKHEED PALO ALTO RESEARCH LABORATORY
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2.4 Findings on HRM Packetization

The digital data link using the High Rate Multiplexer (HRM) is an essential
Spacelab resource for many experiments in the space sciences. It provides the
user an allegedly transparent channel for data transmission at rates up to 50
megabits per second. Most experiments use one of the 16 experimenf channels
which can support rates up to 16 megabits per second. Data sent over an experi-
ment channel is recorded in the POCC and the GSFC Spacelab Data Processing
Facility (SDPF), and it can also be furnishad to EGSE in a POCC user room in
real time. In addition, POCC decommutation equipment and computers can pick
out a limited number of parameters from the data stream, process them, and
display the results. The existence of this high-speed downmlink makes the opera-
tion of digital imagery and interferometry experiments conceivable. The real-
time channel to EGSE makes their operation reasonable, by enabling quick-look
processing and display of large volumes of data.

The HRM downlink is designed to operate without placing constraints on
experiment data formats (MSFC-STD-630). However, if decommutation and display
by the POCC computers are desired, then a set of format constraints must be met,
dictated by the decommutation hardware and software. A similar (but somewhat
less restrictive) set of constraints is required on (at least) the first three
Spacelab missions for compatibility with Level IV Integration equipment and with
the SDPF at GSFC. Basically, these format requirements configure the downlink
as a conventional time-division-multiplexed (TDM) system. This means that the
data stream in one HRM experiment channel is organized into major and minor
frames synchronized to an external clock. The major frame consists of a fixed
number (between 4 and 256) of sequentially labelled minor frames, each of ident-
ical length (between 56 and 8192 bits). Some details of sync patterns, major
and minor frame labels, and time codes are also specified. If POCC processing
is desired, then the words to be processed must appear periodically in the data
stream; the frequency of occurence must be an integer multiple of the major
frame frequency. Thus, although each investigator has considerable freedom in
constructing his major and minor frame formats, the system is best suited for
instruments which generate data steadily at a predictable rate.

The packet telemetry approach has been developed by GSFC and JPL personnel
as an alternative to the TDM mode described above. It 1s intended to provide

10
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more flexibility and convenience to HRM users with minimal impact on POCC hard-
ware and software; its use is also expected to simplify the task of the SDPF.
In_the packet mode, the instrument creates variable-length source packets

instead of fixed-length, periodic major frames. The length and content of

each source packet can be defined in real time by the DEP; thus, tﬂe state of

the instrument determines the amount and nature of data telemetered at any time.
Header words in the source packet give its length and format label so that ground
processing equipment can handle it accordingly. For the purposes of transmission,
each source packet is incorporated into one or more fixed-length transport packets
(similar to the minor frames of the TD! mode), with proper header words for the
HRM downlink.

Beyond the variable length and format advantages, the packet approach is
intended to simplify post-flight processing and speed data distribution to the
user. These benefits can be realized if each source packet contains all scien-
tific, engineering, and ancillary data required for its analysis. The proposed
format includes a secondary header for ancillary data acquired on-board. Alter-
natively, utility packets of ancillary data could be inserted into the data
stream periodically by the experiment computer; these would be delivered to each
user along with his own source packets. Eventually, the scurce packet is seen
as a standard format for data transmission in all phases of mission activity
before, during and after the flight. An interesting discussion of packet com-
munications in a broader context is given by Kleinrock (1978).

The Spacelab users contacted for this study have discussed their use of
the presently available HRM formats and, in a general way, the effects which a
packet approach might have in the future. Spacelab 1 and 2 experiments have
tailored their data streams to fit major and minor frame requirements with
usually minor inconveniences. Generally, those experiments which generate
scientific data at a steady rate during operation are quite satisfied. At
least two experiments have invented their own packet mode: a single major
frame format may contain scientific data, engineering data, or DEP memory
dumps under DEP control. These users concede that a NASA-supported packet
mode would probably be more convenient, but they are rather apathetic about
the matter. For other experiments, the scientific, engineering, and ancillary

data are interleaved in a constant data stream format. Since every experiment
11
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has a DEP and most communicate with the experiment computer to get ancillary
data, this merging causes no significant problems.

.« Two experiments which produce data asychronously, in randomly occurring
bursts, have experienced slightly more serious problems with the TDM mode.
Both are forced to downlink large amounts of fill data when no scientific
data is ready for transmission. Ground processing and recording equipment
can recognize and ignore major frames labelled as fill, but engineering data
in these frames is lost. If the engineering data is desired, then an occasional
frame of fill must be labelled as real data so it can be recorded. This inef-
ficiency could be avoided with a packet format. Furthermore, when scientific
data becomes available on-board, it can't be transmitted until the next major frame
frame begins. This problem is solved at the expense of another full-frame
buffer (128 kilobytes) in the instrument.

None of the Spacelab experiments contacted has problems with the size
limitations on major and minor frames. However, when larger solid-state imaging
arrays become widespread, digital images containing more than 2 megabits will
be generated. In particular, there is no doubt that focal plane instruments
on the Solar Optical Telescope (SOT) will produce images larger than the upper
limit for major frames. The implications (if any) of this are not yet clear.

Finally, several users expressed very strong complaints about one feature
of the HRM downlink unrelated to data formats or packetization. This feature
is the restriction of the composite digital data rate to 2 megabits per second
when analog TV is also transmitted. The AMPS experiments on Spacelab 1 and
the solar experiments on Spacelab 2 would like to operate their TV cameras and
digital diode-array cameras simultaneously. The difficulty and data loss
involved in changing HRM formats precludes the possibility of rapid switching
between analog video and digital modes. An obvious sclution to this conflict,

a video digitizer, is discussed in Sections 3.4 and 3.6.3.

12
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2,5 Findings on ECAS Development

The Experiment Computer (EC) is a MITRA-125 general purpose computer on

Spacelab. It is the main link between crew and POCC personnel and experiment

| ;atdware. For many command, display and data management functions, the
.standard features of its operating system (ECOS) are sufficient. For more
specialized requirements of an individual experiment (or a small group),
modules of application software (ECAS) must be written and integrated into
the complete software load for the mission. It is reasonable to expect that
a library of ECAS module will evolve, that ECOS will absorb some of the more
popular ones, and that the dividing line between ECOS and ECAS will always be
shifting and somewhat uncertain.

The question under consideration here is whether the experimenter prefers
to develop his own ECAS or to specify it for development by the integrating
contractor. Conditions are: (a) that if he developed his own software it
would be in a high-order language (such as FORTRAN); (b) he would be supplied
a convenient and accessible means to debug his software (equivalent to a
telephone link to an EC or good simulator); (c) he would get extra funding
for the extra effort.

The general consensus among the experimenters is to make as little use
of ECAS as possible. For those cases where ECAS is unavoidable, the large
majority prefer that it be developed by the integrating contractor and not
by the experimenters. Following are typical objections to experimenter
development of ECAS:

o High-level language is not always suited to this task.

o The experimenter's software people are busy with the DEP. It would
be preferrable to use an ECAS expert who could devote full time to the
Experiment Computer to obtain the best code.

o The Experiment Computer is a Spacelab resource interacting with many
experimenters. Its programming should be done by the integrator.

o Even if the experiment had no DEP, experimenter would prefer to have
the coding done by a NASA/Integrator software specialist with close super-
vision by experimenter.

o Experimenter does not want to spend time learning the internal details
of the ECOS required to write working ECAS.

13
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o Even if access to a MITRA-125 or simulator were provided for purposes
of debugging, the real operating environment for ECAS would not be seen until
every experiment had its ECAS debugged and running. A central contractor can
anticipate this eavironment better than individual experimenters.

- o Multiple experiments on the same mission can share ECAS'deules for
common requirements if they are developed by a contractor. In other cases,
the purpose of the ECAS module is to analyze interactions among experiments
(collision avoidance, for example).

o A central contracter can more easily develop software to satisfy
mission requirements within the memory limitations of the MITRA-125. Experi-
menters would use too much memory for their individual desires.

o Finally, a noticeable paranoid reaction to this question by more than
one experimenter should be mentioned. They feel that mission management is
trying to unload a troublesome task onto them. Because of the difficulty in
estimating software costs for an unfamiliar computer system, they are not
convinced that sufficient funding will accompany the responsibility.

On the positive side, one experimenter would prefer to write an ECAS
module which performs complicated numerical processing of data. However, the
general conclusions from these findings are clear. Maximum use of ECOS and
DEP software to avoid ECAS can ease the tasks of specifying and writing ECAS
modules. When neither of these alternatives is viable, the experimenter
should provide detailed requirements for each ECAS module to the integrating
contractor. These requirements should include descriptions of the input data
needed, computational algorithms, and output results. The algorithms should
be described in a form equivalent to detailed flowcharts, so that they can
be faithfully coded by a contractor who is not an expert in the experiment's
internal details.

14
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3,0 DISPLAY EQUIPMENT SURVEY

3.1 Survey Approach .

- The previous study showed that a large body of display and pfocessing
requirements are shared by multiple experiments in the four disciplines
considered. It sketched in very general terms some of the software and
hardware components which can meet these common requirements. The main task
of the present study is a direct continuation of this initial attempt to
recommend equipment of broad utility in the POCC. Two significant objectives
are: (1) to provide critical descriptions of a variety of relevant display
and processing components; (2) to recommend a number of integrated systems
for development by NASA. To these ends, a survey of display equipment has
been performed.

The survey effort has been organized by addressing a set of benchmark
problems for each data type. The data types considered in the previous study
are analog, serial digital (non-image), analog video, and digital image.

For each of these, a set of benchmark display and/or processing problems is
presented, based on the user requirements of Appendix A. Since the require-
ments are often vague, flexible, and somewhat variable from one experiment

to another, these benchmarks are not as rigidly defined as the term implies
in the computer sciences. On the other hand, the problems are representative
and are not by any means least common denominators. In fact, several are
chosen to push the state-of-the-art.

For each benchmark problem, operational systems around the country which
meet some of the common requirements have been identified. The best way to
evaluate a system for scientific data processing is to use it with real data.
Therefore, a number of interesting and potentially useful systems have been
visited and exercised, using real data insofar as is possible, to see how
they perform on the benchmark problems. When this has not been possible,
estimates of system performance on the standard problems are derived from
discussions with scientific user and vendors, published system specifications,
and engineering judgement. In this way, relatively objective measures of the
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strengths and weaknesses of each system for POCC use are made. Individual
hardvare and software components of particular interest are also evaluated.
Since data processing hardware is improving so rapidly, some components which
are still under development are considered.

- Several assumptions and limitations of the survey effort also deserve
mention. The study 1s limited to real-time and quick-look processing, dis-
play, and commanding functions and only considers the four disciplines
studied previously. The approach is user-oriented, considering only scienti-
fic data. It is assumed that experimenters will have micro- or mini-computer
systems of their own choosing in the POCC; factors affecting these choices
will not be discussed here.

Detailed engineering designs and cost analyses of data processing systems
are not made. Rather, emphasis is on existing systems which could be imitated
in a straightforward manner and on individual components which could be
integrated into & system without great difficulty. The recommended systems
presented below are designed and costed at the block diagram level of sophis-
tication. They stand as a menu of options for future NASA development as
“commor. GSE." The alternative, of course, is to support each experimenter
who shares the common requirement in the development of his own EGSE to
perform the same tasks. The duplication of cost and effort implied in this
alternative will be clear.
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3.2 Analog Data

Analog data can be downlinked with a 4.5 MHz bandwidth. Onli.one experi-
ment in the previous study indicated use of this data mode, not counting the
requirements for analog video (i.e., live TV). Consequently this study does
not regard this as a common requirement, and no further consideration is

given to this data. It is presumed that it will be treated in Experimenter's

Ground Support Equipment (EGSE), because POCC Standard Services do not include
any recording or display capability.
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3.3 Serial Digital Data

- For the purposes of this section, serial digital data is limited to
nunerical scientific data, with the exclusion of digital images. Examples
are the output of a spectrometer, a one-dimensional record of intensity vs.
wavelength, or of a charged-particle detector, count rate as a function of
time. The output of a scanning photometer could be considered here, 1if it
were treated as a one-dimensional time series, or else it could be accumu-
lated in a two-dimensional buffer memory and then displayed as a digital
image. In general, the types of data for which this section is intended
require simpler displays, smaller computer memories and less processing
speed than digital imagery.

There are two important routes by which serial digital data reaches GSE
in the POCC. First, an experiment with a dedicated High Rate Multiplexer
(HRM) channel can receive this data stream directly from the High Rate
Demultiplexer (HRDM) at rates up to 16 megabits per second. This link is
supposed to be transparent to the user, so the data will appear in the format
created by the on-board experiment. The secord route is via the Experiment
Computer 1/0 channel (ECIO). ECIO data for at most four experiments can be
stripped out of the composite stream by the POCC computer. It is sent to
GSE in formatted blocks at a specified rate. Although a bewildering variety
of other channels are described in the POCC documentation, these two seem to
be the most promising for scientific data.

Two benchmark problems have been chosen: interactive plotting and fast
Fourier transforms. The former is an obvious choice because most experiments
require it in some form and because the display technology has made great
advances in recent years. Section 3.3.1 is a tutorial essay explaining the
different basic approaches and options found in the immense selection of
commercially available graphic display terminals. Fast Fourier transforms
were only required by three experiments contacted in the previous study.
Although this may not be a genuine common requirement, it has been selected
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for study as an example of intensive numerical computation necessary for
quick-look evaluation of scientific data. The speed requirements exceed the
ability of most general purpose computers, and so Section 3.3.2 focuses on
array processcrs as a low-cost source of extrsordinary computational power.

*

3.3.1 Interactive Plotting

- The benchmark problem to be solved for interactive plotting'involvco
plotting simple graphs of up to 10,000 data points in a response time of 10
seconds. Multiple graphs must be displayed simultaneously. Interactive
control is required over the plotting format, data selection, and graph
position on the display. There must be a user-assisted curve-fitting
capability available which uses a cursor, trackball, or similar input device
to select data or data segments to be curve-fit. Software or firmware must
be available to produce statistical analyses, such as on time-series data.
Similarly a data-set comparison capability must be provided as well as the
ability to recalibrate data thriugh a look-up table or polynomial conversion.
Data-set comparison refers to the ability to present simultaneousiy on the
same display two or more data-sets distinguished by separate curves, graphs
or by different symbols. Finally the capability to produce a hard-copy of
the display presentation is needed.

POCC Standard Services do not meet most of these requirements. Real-
time plots of a parameter vs. time or vs. another parameter are possible on
the POCC computer displays. These displays lack mnst of the interactive
features required and appear to be more useful for engineering rather than
scientific data. Near-real time graphics capability on POCC computer displays
is TBD. Only GSE will be considered below.

The bardware necessary to satisfy the benchmark problem consists of:
interface to the HRDM or to the POCC computer; microprocessor or minicomputer
system; keyboard; hard-copy unit; graphics display terminal.

The interface to the HRDM or POCC computer will be custom designed and
produced. This hardware (with software drivers) will be dictated once the
GSE computer and graphics display terminal are chosen and either the HRDM or
POCC computer is selected as the data source. I1f the HRDM is used, this inter-
face will also be needed for integration and testing, since the HRM downlink
is a transparent communication channel. An interface with the POCC computer
will probably not be used elsewhere. 1f a significant number of experiments
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need them, duplication of effort may be avoided if the mission manager
develops these interfaces for the most popular varieties of GSE minicomputer.,
.« The keyboard is a standard item wvhich will be purchased with the graphics
display terminal. The hard-copy unit will transpose the display information
to & representation of the display on paper ¢r film for pcrmnncnt’rotcntion.

Graphics display devices provide the means to display data in a graphical
form and also to manipulate and modify the data presented. In a computerized
display the image on the display screen is formed in lines joining specified
points in a matrix. The matrix is held in the computer memory with position
coordinates corresponding to an overlay on the image display screen. Points
between which the lines are drawn are under software control. Additionally,
transformations, statistical treatments, conversions, and other processing
may dbe easily and quickly applied to the data generally through software but
in some cases through firmware. An excellent trade survey of graphics termi-
nals is given in Datapro (1979). Also, see Machover et al. (1977).

Two types of display technology are currently in use: refresh technology
or storage technology. Refresh technology produces a visible light display
with a short duration (less than one second) for each visible point produced.
Each point must be created (refreshed) many times per second to create a
continuous, non-flickering image. Two types of refresh technique are currently
in use: stroke writing and raster scanning. In stroke writing a line is drawn
on the display screen by positioning the electron beam to connect the two end
point coordinates of the line directly with th~ electron beam “on". 1In a
raster scan system, the beam is moved over the entire face of the display
(in a raster pattern) and turned "on" only when it crosses a point on the
line. The raster scan system requires more memory space than stroke writing
(a complete map of the display face in memory) but offers more versatility and
flexibility.

Two types of storage technology are currently in use: aetorage tubes and
plasma panels. A storage tube can store and display an image for several
minutes vithout refreshing. Two electron beams are used: one to write and
one to sustain the image. A plasms panel uses & matrix of electrodes within
the panel's glass plate to position each element. Storasge tube systems require
erasing the entire image and then writing a nevw one, while lines or sections
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of a display may be seslectively erased on a plasma panel.

The graphics display must be driven by a computer. In many cases the
cqgmputer is internal to the display housing itself and so the systen appears
couplete by itself except for data input capability (aside from keyboard
entered data). Some displays are driven by minicomputers while otﬁers are
Tun directly from a large, main-frame systen.

Displays may be either color or monochrome. The primary benefit of
color is contrast discrimination enhancement. This has two related advantages.
First, a quicker association of information or recognition of data is possible
with color. 1If all of one data type is r :, for instance, the data type, as
well as the data, will be immediately obvious upon glancing at the screen.
Second, the operator can distinguish details in the data more easily. This
reduces operator fatigue and increases operator accuracy (aﬁd reliabilicy).
This latter point is particularly important for control center applications as
wost control center and spacecraft control problems are due to human error.

A list of characteristics important to considering a graphics display
device for a particular application will dbe defined and discussed below.

Then tables showing several representative graphics display devices (including
sinimum, maximum, and intermediate capability devices) will be presented and
discussed in terms of the characteristics defined.

There are four classes of characteristics: Physical Configuration,
Display Characteristics, Software Support, and Cost.

Characteristics included under Physical Configuration include the host
computer, operator interaction, joystick, light pen, trackball, thumbwheels,
hard-copy unit, and plotter. These characteristics are given in Table 3.1.
The host computer refers to the principal spplication processing source.
Operator interaction lists the types of devices available by which the
operator may affect the display. These will include keyboards, function keys,
Joysticks, light pens, trackballs, and thumbwheels.

A joystick is a device similar in appearance to a large toggle switch
vhich can be moved left/right and up/down. This movement causes & cursor to
move in two dimensions on the screen. Thumbwheels can be used instead of a
Joystick but are less convenient. When a point is located on the screen,
depression of a key causes the ccordinates of that point to be transferred,

21

LOCRMHEED PALO ALTO RESEARCH LABORATORY
LOCENEND @Me3BILES 8 $PaCH cOmranTY, ing



820148 Ae(dsiq [vojydean jo suonjeandiyuo) [edisfyq | 'g o[qel

jouoyydo ouoydo
_ I9DsIIA 49y40|d : seyod
B Xgu Nowv “4iun - - “un ohou
juoyx3} Adod>_pioyH Acoo-pipy
sdof syshof
piooqiey v.w._ﬂa..: Nousdof s|aaymquiny| uoiyoung 12! sjesymquiny)
“co_.o::u co:o::w ..:on..._mm._ R.:ooaxuv. | o .:o...m“ﬂnw_ *paooqhay co...ﬁ-““..“
uadyysy) *pavoghey pJooqhey P2ushor | ‘piooghen | 00 koy ‘N2ushor
suoN) Asojeudosg Aingayadoay SuoN v08-Z Aiojandoyy QUON] ...””x._ m ..u2n cc_
6u dH ‘oAoN ‘D3Q 6u dH ‘oaoN ‘D3a
ozs/o9g wa | #0ozezosu | o, DTSy | evteied | szez-u | LSRRI T o feupiod | sevndue
: 4 €C-SY | PIA 3jowdy 40 DZ¢eC-SY 1504
DA djowdy | DIA Sjowd)y OtA Siowsy DA djowdy
OZE s21ydoui
0szz 01£9 >yydosbouiq SL0¥/v10V , -ousy oLL9 olo¥ uoy4unByyuo)
wil Aywoy 20| Xjuoayyd) ..o_mo.“m Aajwoy xquosa) oo 15hyg
D9
.s '
— N
=

DA bl e ks S b et

22



T TR T TRy e

indicating "do it here" to the system. A light pen performs the same function:
the operator merely points to the desired location on the screen with a pen-
1ike object. A trackball looks like a billiard ball in a bowl; when it is
soved with the palm of the hand, a cursor moves on the screen. Sometimes the
speed of the cursor is sensed in addition to its location, providihg another
dimension of control.

The hard-copy unit reproduces the image on the display screem on a
permanent storage medium, usually paper. These devices may be purchased with
the display device or bought separately and interfaced to the display device.
The most common hard-copy technology is electrostatic printing. Other tech-
nologies employed include thermal, ink-jet, electrophotographic, film, impact
printers, and pen plotters. A good summary of hard-copy technologies is
given in Dawes (1979).

Display Characteristics, given in Table 3.2, include the viewing area,
addressable and viewable matrices, window, maximum number of symbols display-
able, and color. The viewing area specifies the size of the display screen,
The addressable matrix specifies the number of points in the logical image
vwhereas the viewable matrix is the number of points which can actually be
displayed at one time on the visible screen. The logical image may be larger
than the viewable image in which case the viewable image is seen as through a
"window" to the logical image.

The performance capability of the display device i1s addressed in the
maximum number of symbols displayable, which is a combined measure of the

buffer space available and of the capability for a refresh-type tube to present

elements without flickering. The entire image must be rewritten every 1/30
to 1/40 second or the display phosphor will decay to the point that the new
image is noticeably brighter, resulting in a flicker.

Software Support, given in Table 3.3, identifies the existing software
available to interface and drive the display device from a host processor.
Residency specifies the location of the executing software. The source
language entry provides an indication of the ease of modification and of the
transportability of the software. At least three levels of software are
required for graphical display of scientific data. The lowest level, often
implemented in firmware, allows the host computer to write alphanumeric
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characters at arbitrary locations and to draw vectors (line segments). One
step higher in utility and sophistication is the set of system modules or
subroutines known as the plot package. Each of these performs a single basic
“function in graph preparation such as defining a coordinate system, drawing
pordora and axes, plotting an array of data points, or writing labels and
captions. These two levels of software are usually supplied by the vendor
of the display terminal. The third level, integrated programs to plot given
data records according to various options chosen interactively by the user,
is almost always written by the user when scientific data is concerned. The
detailed characteristics of the data, computer system, display terminal, and
the user's taste generally require a custom-tailored program.

A range in technology, capability, and cost is shown in Tables 3.1, 3.2,
and 3.3. The Tektronix 4010 is a storage-tube type display which is in wide
use and is relatively inexpensive. The Ramtek 6110 is comparable in price
but a more current refresh-type display having color display capability.

The Lear Siegler is the most recent and cheapest entry shown in these tables,
evidencing the decline in cost with time. It is actually a combination of

a Lear Siegler ADM-3A terminal with the Retro-Graphics modification made by
Digital Engineering, Inc. The latter provides plotting capability consistent
with the Tektronix 4010 software. The combination makes a low-cost, portable
graphics terminal nicely suited to testing and integration use in the field.

The Tektronix 4014/4015 and the Imlac Dynagraphic 3205 represent
intermediate-priced displays of considerable capability. They are larger
displays capable of high resolution. The Ramtek 6310 and IBM 2250 represent
the upper end of display devices. The next step upward would be image proces-
sing systems which incidentally are capable of graphics display; these are
discussed extensively in Section 3.5

It is clear that hardware and software exist to meet the requirements
for interactive plotting. Most experimenters have some knowledge of the
available technologies, and they can be expected to use them not only in
the POCC, but also during instrument development, testing, integratiom,
and post-flight data reduction. EGSE is the logical solution to these
requirements.
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3.3.2 Fast Fourier Transforms
Fast Fourier Transforms (FFT's) require a powerful number-crunching
capability to be performed in a timely manner for control center applicatioms.

Several experiments require FFT capability. In addition, several other i
requirements such as image rotation and distortion removal may also benefit

—5y use of the hardware designed especially for cost-efficient computational

_pover.

For modest amounts of data (up to, say, 30,000 data points), a mini-
computer can perform FFI's in a few minutes or less, if it 1s not busy with
other tasks. If off-line processing of large amounts of data is acceptable,

e

then the POCC 1BM computers can be used, with time delays of an hour or more.

Some interferometer experiments desire near real-time processing exceeding

the capability of a minicomputer. Among the computer peripherals available

today, array processors are the logical solution and are discussed in detail Ny
below. Other solutions of great promise (specialized single-chip FFT proces- H
sors, surface acoustic wave devices, and optical processors) are being devel- N
oped for military applications, and so considerable progress in the next

decade can be expected.

An array processor is a computer peripheral which is designed to perform
arithmetic operations at high speed on large arrays of numbers, such as vectors,
matrices, or images. This device is used with a minicomputer to produce a
system capable of large-scale scientific computation comparable to a large
main-frame computer but at a fraction of the cost. This performance improve-
ment is achieved through changes in the architecture of the array processor
as compared to a standard computer. The improvements realized amount to an
increase in processing speed of between 20 and 200 over the speed of the
minicomputer alone.

The fundamental concept employed to achieve this improvement is parallel
processing. In a standard computer, operations are performed sequentially
and communications between various systems elements occurs over a single data
bus. In the array processor, a multi-bus communication occurs and the systems
elements perform their specific functions simultaneously, or in parallel.

Further improvements are additionally realized by techniques which
become device specific (Hufnagel, 1979). Two array processors will be des-
cribed in some detail as typical of the various techniques used. The two
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array processors to be used as examples are the Floating Point Systems
AP-120B and the Computer Signal Processing, Inc. (CSP1) MAP-300.
A second form of parallel processing called pipelining is applied in

—the AP-120B. The basic arithmetic operations (addition, multiplication, etc.)
are divisible into suboperations. In a conventional computer, 1;1 the sub-
.6perntions to perform one operation must be completed before the next opera-
fion can be initiated. In the process called pipelining, the second operation
is8 initiated when the first suboperation of the first operation is completed.
The total time to add any two numbers is not decreased by pipelining, but

the total throughput time when adding many numbers is reduced by an amount
equal to the number of suboperations. A two-stage adder is used in the
AP-120B so one cycle time is saved by pipelining.

The technique employed in the MAP-300 is asynchronous processing. The
MAP-300 consists of two arithmetic processors, each controlled by its own
microprocessor. The two microprocessors are run asynchronously from one
another so that each arithmetic unit may be most efficiently applied to
the arithmetic processing required. The two microproceesors communicate
through a handshaking protocol and must be programmed independently and
simultaneously. This allows the user to build an optimally efficient pro-
cessing system but at the expense of considerably more complicated programming.
The AP-120B is run in a synchronous fashion such that all conditions are known
beforehand, such as the result of adding a number requires two cycle times
from entry to exit from the adder. This greatly simplifies the programmer's
use of the device but limics its ultimate efficiency.

Programming an array processor may be done in either assembly language
or in a higher order language, usually FORTRAN. Programming in FORTRAN may
be done in either of two ways. A FORTRAN compiler for the array processor
may be used to program in a conventional manner; the compiler converts
instructions into a parallel program in assembly language which can be
executed in the array processor. The other approach is to write a program
in the front-end computer in FORTRAN consisting of a serles of calls to
array processors math library. Large packages of FORTRAN-callable subroutines
are supplied by the vendors for this use. It is considerably more difficult
and costly to program the array processor in assembly language. The trade-
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off between the programing ease of FORTRAN and the running efficiency of
(. assembly language must be made for each user application,
f Interfaces to the common minicomputers and large-scale computers exist
; Tas wvell as direct interfaces between the array processor and a storage medium,
usually disk. ,

For a FFT the processing time varies as N 1032 N where N is the number of
data points to be transformed. The time required to perform a 1024-point
complex FFT is 4.8 milliseconds in the AP-120B and 4.5 milliseconds in the
MAP-300. The AP-120B uses a 38-bit floating point data word of which 28 bits
are the mantissa and 10 bits the exponment. The MAP-300 uses a 32-bit floating
point data word consisting of a 24-bit hexadecimal mantissa, a 7-bit hexa-
decimal exponent, and a sign bit.

The computational efficiency improvement of an array processor augmented
system is great, particularly when costs are considered. A minicomputer-
array processor system is reported to be 100 times faster than the minicomputer
alone (Robinson 1979). An array processor based computing system at UCLA was
found to be 200 times more cost effective than an IBM 360/91. Costs for array
processors typically range from $10 to 50 K, with a few more expensive (Caspe,
1978). Hundreds of array processors are being actively used today, with
heaviest application in the fields of geophysical research and signal proces-
sing.
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3.4 Analog Video Data
Three sources of analog video data in the POCC are potentially useful
for displaying scientific data. The POCC closed circuit television (CCTV)
_;etwork will broadcast any orbiter-compatible TV gignal which is downlinked
n the analog mode. This broadcast can be displayed on standatd overhead
monitors controlled from the POCC standard display terminal. As & second
alternative, analog video downlink can be furnished to EGSE either as a base-
band video signal or as a commercial RF (radio frequency) broadcast signal.

The analog downlink has a severe problem: W¥hen it is used, the digital
HRM downlink is limited to a total data rate of approximately 2 megabits per
second. Thus it 1s not possible to use a video image for pointing information
in the POCC with a high-speed digital experiment (e.g., interferometer or
imager) running simultaneously. This conflicts with stated requirements of
several experiments contacted in the previous survey, and it has caused a
great deal of trouble for mission planning and operations on Spacelab 2. If
this conflict is not resolved, selection of future payloads in the four disci-
plines will be complicated greatly.

The third source of analog video presents the obvious solution. Digital
images can be received in GSE from digital HRM channels and converted to analog
TV in ‘ae POCC. Some experiments will use array-type digital cameras to obtain
images of high sensitivity and large dynamic range. For such imagery, the
digitization procedure, downlink format;, and digital-to-analog conversion
(scan conversion) will be fundamental features of the experiment design;
clearly, EGSE will do the job. Many other experiments, particularly solar
and atmospheric instruments, will use commercial analog TV cameras, when these
images are not the prime data of interest. Furthermore, the payload crew will
often use analog TV displays for experiment control, and these are usually
desired in the POCC also. In these cases, a video digitizer facility on-board
is the simplest and most efficient answer to an obvious example of common
requirements. Furthermore, such a digital link can easily be made to accom-
modate several channels to satisfy multiple simultaneous experiment operations.

Recording, display, and frame summation are discussed as benchmark problems
in this section. The first two are inevitsble, and the main issue to be resolved
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4s the proper blend of POCC Standard Services, NASA-supplied common GSE,
and EGSE to meet the common requirements. Frame summation is a more techni-
cal processing problez whose solutions provide s natural transition into the
“area of digital image data.
. The terminology of video display systems can be very confusing to the
user. Therefore, before the benchmark problems are discussed, this section
gives a glossary. More details can be found in the IEEE Standard Definitions
of Terms for Television (1979).
RF Video: radio frequency broadcast video, which must be demodulated

from its high frequency carrier before display on the screen.

Baseband Video: the pure video signal without a carrier wave.

CRT: cathode ray tube, usually referring to a display screen used only
for alphanumerics and graphics.

Receiver: a normal TV set, which accepts RF video.

Monitor: a TV display which accepts baseband video.

Composite Video: a signal which includes not only the picture intensity

levels but also the horizontal and vertical sync patterns. Non-composite

video is more convenient for analog signal processing, but an additional sync
signal is needed for display on a monitor.

EIA Standards: Electronic Industries Association Standards for voltage
levels and other details of the video signals. Standard R5-170 refers to
monochrome television studio facilities. RS-330 defines "American standard
video" for CCTV systems. It requires frames of 525 lines composed of 2 inter-
laced fields at rate of 60 fields (30 frames) per second. RS-343-A gives
standards for high resolution video of 675, 729, 875, 945, or 1023 lines per

frame.

Resolution: according to the standards, vertical resolution in pixels
is roughly 2/3 the number of lines, or 350 for 525 line video. Horizontal
resolution is proportional to the bandwidth divided by the number of lines.
It is also about 350 for the orbiter standard of 525 lines and 4.5 MHz band-
width.

Monochrome: black and white (BW).

RGB Color: three synchronized standard monochrome signals which control
the red, green and blue intensities in a color monitor.
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NISC Color: a single color video signal compatidle with monochrome or
MSC color monitors. This is less commonly used in display monitors than
RGB color. .

3.4.1 Recording

The basic requirement is the ability to record a standard video signal
of indefinite duration and to play it back under user control. This require-
ment refers both to video received directly from the downlink and to regen-
erated signals created in the POCC by scan conversion or other processing.
Some experiments can generate several channels to be recorded simultaneously.
Single frame recording at a rate of one frame every 10 seconds or more is
also desired. Lastly, playback should incorporate fast-forward and stop-
frame options.

POCC Standard Services satisfy some of these requirements with their
video tape recorder (ViR) facilities. All downlinked video is recorded and
can be replayed on the POCC CCTV network. This replay may lack the required
user control. Alternatively, the recorders can be set up in the user rooms;
slow motion and stop-action capability is promised. If these recorders can
accept video from both the CCTV network and from GSE scan converters, they
they can fulfill most of the requirements. Clarification of the nature cf
the CCTV network and of the status of GSE-generated video is needed. Compati-
bility between POCC-supplied VIR's and users’ equipment at their home labora-
tories is another possible problem; EGSE may be desired to guarantee playback
capability after the mission.

If GSE recorders are desired, then cassette recorders (Mennie, 1978)
represent a convenient, low-cost solution. The lowest priced cassette units
intended for home entertainment may lack the image quality desired for scientific
data. However, several vendors offer a complete line of industrial and pro-
fessional studio quality recorders which should be adequate. If rigorous
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fidelity is required, then digital recording is more desirable anyway. As

an example, the SONY SLO-320 Videocassette recorder costs $1500 and stores
one hour of standard color video with approximately 300 x 375 lines of
'd§ccolution (not 1ine pairs). lmage quality is noticeably better than that
of a normal Betamax. Cassettes can be replayed on any Betamax compatible
VIR. Although the two widespread cassette recording schemes are incompatible
(the other scheme is called VHS), cassettes are generally more portable than
reel-to-reel recordings.

Magnetic video disks are an alternative for low volume recording with
better linearity and signal-to-noise ratio. These are most familiar as the
slov motion replay units of commercial television. A typical unit holds
10 - 20 seconds of normal video or 300 - 600 frames. Reading and writing
is under micro-processor control, allowing single frame recording, randvm
access of stored frames, and external computer control, if desired. Unfortun-
ately, the disk drive and writing head assemblies are very delicate mechani-
cally, and their reputation for reliability is not good. Because of the
critical alignment tolerances, removable disk packs are not available; thus,
the capacity of one system is limited to that of its fixed platters. Prices
start at about $20,000 for a 300 frame unit.

Optical disk systems for the home entertainment market have generated a
great deal of publicity lately. Their advantage over VIR's is that disk copies
can be replicated from s master version quickly and cheaply. No plans to
market an inexpensive disk recorder are expected, and so they are not relevant
for the POCC application. Digital video disk recorders are an exciting pros-
pect discussed in Section 3.5.1.

3.4.2 Display

The basic problem is to display monochrome and color imagery on TV monitors.
Standard and high resolution moritors are required. As many as four channels
displayed simultaneously are required for a single experiment. On some missions,
different experiments need to display each others' video signals; considering
the shortage of floor space, cabling from one room to another may be required.
Although standard video signals are used, the displayed images rarely change
significantly more than once per second; for many experiments these update
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Tates are even slover. Therefore, image storage and video regeneration (scan
conversion) are needad. The only known requirement for full-speed (30 frame
_zor second) video is to watch crevw deployment of an experiment (a large tele-

scope or subsatellite, for example) in a crowded shuttle bday.

- To meet these requirements, a multi-channel downlink and a video distri-
bution network within the POCC are needed. Since the multi-channel downlink
must be digital, scan conversion is needed before video distribution. It
may be done using an analog storage tube or a digital image memory.

The PEP 500 Lithocon Solid State Image Memory ic an excellent, low-cost
analog scan converter. Ome to four images are written on the tube using
either digital image or analog video input at rates up to 1/30 sec per image.
They are stored indefinitely, and an output TV signal is generated with user
control of gray scale and zoom. The tube v.ill also connect directly to a
Tektronix 4010 or similar graphics terminal to permit annotation and overlays
on the video image. Costing approximately $5000, this scan converter is well
suited for GSE to support testing and integration as well as POCC operations.

Digital memories can also be packaged with sync generators and D/A
converters for scan conversion. Colorado Video, Inc., offers a line of
digital frame stores with various options. The model 270A Video Digitizer
is the cheapest, at $4000 plus computer (or HRM) interface. The image displays
discussed in Section 3.5 also perform this function.

After scan conversion, distribution of video to users throughout the POCC
is needed. It it not known if the POCC CCTV network will support inputs from
GSE. 1f go, it can help with room=-to-room distribution; however, discussion
with JSC personnel familiar with it do not inspire confidence. Thus, a GSE
distribution network is probably required. It can easily be configured for
each mission from a general supply of cables and video switches, both manual
and remote control.

Finally, monitors are required for the actual displays. Surely, each
imaging experiment will have one or more portable monitors in ics EGSE for
testing and integration. Monochrome monitors come in all sizes from 5" to
25" diagonal and all prices from & few hundred to & few thousand dollars.
High resolution monitors claiming 1024 x 1024 pixels are available for typi-
cally $3000. Color monitors accepting RGB or NISC standard (rarer) input
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range from $3000 to $7000 for standard resolution and as high as §$20,000 for
1024 x 1024 resolution. This expense for a high resolution RGB monitor is
not justifiable for image display: extreme care is required to avoid a weak
“11ok 1o the video systen (or the monitor itself) which degrades the ultimate
_resolution of the display. If very high resolution is desired, it is wiser
to use & high quality standard monitor and a scan converter with a zoom option
to magnify desired subregions of the image.

The use of more expensive color displavs can sometimes (not always) be
svoided similarly. One major advantage of a color image is the greater
dynamic range (more distinguishable intensity levels) which can be displayed
on a single frame by false-color coding. However, a monochrome scan converter
can store 8 large dynamic range of intensities. I1f the user has interactive
control of the gray scale transformation from stored intensity to screen bright-
ness, he can explore just as large a range as with color. The cost savings
and siaplicity of video equipment of this option are worth considering. Color
still has advantages for displaying different properties of an object in one
image (e.g., red = temperature and yellow = density) and for pudblic relations.

One type of color "monitor" deserves special mention, the Advent Model
1100 Video Bean Projector. This accepts any input (RF, RGB, NTSC color, BW;
options for digital graphics) and projects the image onto a large screen,

52" x 70". When properly installed, image quality is very good, and audiences
of several dozen people can be accommodated easily. These displays have been
used successfully in the International Ultraviolet Explorer (IUE) Operations
Control Center. The Model 1100 costs $7000, while the Model 1000 (no RGB or
digital input) costs $4500.

3.4.3 Frape Summation

Individual video frames have effective exposure times of 1/30 second, far
too short for photometric accuracy in many applications. Electronic noise and
interference may also corrupt the video signal. Frame summation is the ability
to add successive video frames to produce an integrated image of higher signcl-
to-noise ratio. A related requirement is to generate and display the differ-
ence of two integrated frames. This permits detection of small differences
between colors or polarizations and of motion or other temporal changes.
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Summation requires an accumulating memory for one image or more, which
may be stored in analog or digital form. The PEP Lithocon Scan Converter
described above is an appropriate analog memory. It can integrate either

Tstanderd analog video or slow scan inputs merely by overwriting on the

storage cube. If the difference of two images is desired but not the origin-
}ls. then one can be stored as a positive, the other overwritten as a negative
after electronic inversion. Thus the scan converter can also be used as an
analog subtracter. It can also invert the output (i.e., display the "photo-
graphic negative") of the stored image, so two tubes with an electronic mixer
can store two fr.urs and display either one or the differences.

Naturally, aii of -hese functions can also be done digitally. Digital
memories are more cxpensive but are dropping steadily in price. With or
without computer control, more flexible processing is possible. The Quantex
DS-20 Digital Image Memory/Processor is a good example of a stand-alone unit
vhich meets all of these requirements. It can accumulate input frame in a
512 x 512 memory with 6 - 10 bits per pixel. Various options for image
subtraction or more general gray scale transformation of the output are
selectable by front panel switches. This performs a limited subsei of the
functions of the digital displays discussed in Section 3.6; its advantage is
the avoidance of computer, interface and software costs. Typical price for
an 8-bit DS-20 is around $30,000; more modest versions start at $12,000 for
a 256 x 256 x 6 bit unit. Similar hardware components are also made by
Colorado Video, Inc.

Finally, the benchmark problem for frame summation can be solved by
most of the computer-controlled digital image displays, as long as they have
“frame-grabber" analog-digital converters. Their power for interactive
display generation and multi-image arithmetic so greatly exceeds these modest
requirements that they are described in detail in the next section.
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3.5 Digital Image Data

The growth of digital image processing technology is creating a revolu-

tion in the fields of astronomy and remote sensing of the earth's environment.
‘A-digital image is a two-dimensional matrix of numbers, each representing some
_physical attribute ("intensity") at that point in the image field of view.

One advantage over conventional image media is the accuracy of atéring intensi-

ties for each point ("pixel"). Another is the ease of computer processing for
diverse goals, ranging from simple calibration to flexible interactive display
or extensive numerical analysis for comparison of theory and observation. The

specialized image processing equipment which is commercially available today

is becoming an integral part of the measurement process in every active observa-
tory. The POCC will be no exceptioa.

The origins of the boom in digital image processing lie in several devel-
opments in electronics and computer science. Electronic sensors, both televi-
sion tubes and solid-state arrays, have undergone rapid development in the
past decade (see Ford, 1979). Micro- and minicomputers to control these
sensors and to record and process the data have become widespread. The specta-
cular results obtained by the Image Processing Laboratory at JPL on planetary
missions have publicized the power and flexibility of digital techniques and
have caught the attention of ground-based astronomers (Lorre and Lynn, 1978).
They have also demonstrated the feasibility of digital transmission of imagery
from spacecraft to control center. The HRM downlink on Spacelab is ideal for
this purpose.

Large-scale integrated circuit technology has created a new phase of
digital image processing in the last five years. Semiconductor memory is
cheap enough (and dropping in price steadily) that high-speed multi-image
memories are affordable. These memories are the basis of extremely powerful
image display terminals, which function as processors and scan converters
simultaneously: images are manipulated with cycle times of 1/30 second and
the results displayed continuously on a TV monitor. The internal processors
are now capable of precise numerical analysis of multi-band imagery, a devel-
opment stimulated largely by LANDSAT data. They make it possible to analyze
three-dimensional data, i.e., series of images referring t~ the same spatial
field as seen in different wavelength or energy bands.
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From multi~band data, new "generalized" images can be derived which show
interesting physical quantities such as temperature, density, or Doppler
_shift instead of observed intensity. In this way, an image processing system
Ean derive measurements of immediate scientific interest on a quick-look
<imescale. Such results enable the crew and POCC personmnel to oﬁerate experi-
ments most efficiently, maximizing the scientific return from limited observ-
ing time.
This section discusses four sets of benchmark problems: recording, hard
copying, interactive display, and numerical processing of digital images.
Two points which appear repeatedly in these sections deserve mention. First,
there are no accepted standards for digital imagery as there were for analog
video data. Images come in all sizes, from 16 x 16 pixels to 800 x 800 or
even 10 x 2048; furthermore, the number of bits of precision for each inten-
sity varies from 4 to 16. These diverse requirements make specification of
a standard system very difficult. Second, some of the components discussed
are still in development or are changing rapidly in capability. Both of
these points are symptoms of the adolescence c¢f image processing technology.
Excellent surveys of digital image processing can be found in the
special issue of Computer (August, 1977) and the books by Castleman (1979)
and Pratt (1978).

3.5.1 Recording

The volume of data in a digital image makes recording and storage a
special problem. For this discussion, the standard image will be defined
to have 512 x 512 pixels and 16 bits per pixel, a total of 4.2 megabits. The
precision of 16 bits is rarely needed but often used for software convenience:
if fewer than 8 bits are really needed, analog video recording is recommended.
For digital recording, the benchmark problem is to record images at variable,
bursty rates of up to two images per second (8.4 megabits/sec.). The capacity
to store several hundred images (a few billion bits) is required, along with
the ability to recall any one image in less than a minute and conmsecutive
images in a few seconds. The source of the data will be either an HRDM
Experiu..at Qutput Channel or a GSE digitizer with analog video iuput.
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POCC Standard Services include recording and delayed playback of the

composite HRM data stream. Thus, all the data is recorded and can be replayed
-for processing in GSE. This is valuable insurance but it does not meet the
benchmark requirements for retrieval. It is not a useful recording medium
for interactive display and processing. )

Table 3.4 summarizes the options considered for digital image recording.
It is assumed that a GSE minicomputer system is available for overall control
of the image processing activity. High density magnetic tape refers to
16-track, 6250 bit per inch computer tape. It is the most common medium for
archival storage today but is limited in utility for interactive display
because of the long retrieval times. The magnetic disk is an 80-megabyte
model which is a standard minicomputer peripheral. The Lockheed Spacelab 2
Experiment will use such a disk to record dig:..' images at a 1.36 megabit/sec.
rate. Large disk drives for IBM and CDC mainframe computers have about 8 times
the capacity of this unit. Optical disks for digital recording are not yet
commercially available but are in development by several companies; they are
discussed in more detail below. All of these recording devices will probably
require special HRDM interfaces with buffer memories.

The digital optical disk is a very exciting prospect for image recording.
According to Drexler (1979) and Rolph (1980), more than 20 companies have
experimented with optical disk recording, and at least five are considering
marketing them as computer peripherals: North American Philips, Thomson CSF,
RCA, Magnavox and Drexler Technology. Philips has working prototypes whose
properties have been published (Kenney et al., 1979); the rest of the section
will describe this DRAW (Direct Read After Write) information system.

The Philips disk is a tellurium-coated plastic disk which looks like a
translucent phonograph record. Data is recorded by modulating the intensity
of a laser which burns micron-sized pits in the tellurium film. Recording is
permanent, durable, and non-erasable; since 10,000 images can be stored on a
$10 disk, this is not a drawback. Reading is accomplished by laser scanning
and detection of a pit by absence of reflection from the disk. Error-correcting
coding provides a bit error rate of one in ten billion. Philips personnel say
that read-only units could also be marketed at greatly reduced cost. Should

both recorders and readers be marketed at affordable prices in the next few

39

LOCKMHEED PALO ALTO RESEARCH LABORATORY
LOCRHEED MITSILES & $PACE COMPANY, INC.



Surpaooay adew] reidiq 10j suonido ¥°¢ Sqel

(¢) () az,s.o
niNd
o oA oA 01-¢ A%_N , | o 000001 *5tq
ol 104161
jo2H4O
MON SOA (sz1) 1oPowW wm_uw
oA ol L ‘
019 009¢ | ooO’ctl $ 51
o auboyy
ado)
MON °N °N > oA_ommnv., oz $ 000°0Z $§ d1auboyy
6 A1suaQ-y6iH
$3D|AIRG
- - - Buypioday
2004
¢ Buipsod (o9s sad (sebouy ) 450D
Apngopony | 12898 | € Zaiog ™ | Aeoe) | | weaw | sopsocen | cronpe
. H E:
Aysang XD o o/ . m%h«m_ J9ps023 | dJ0MpIDH

40



CT TR T

years, they would be an excellent solution to this benchmark problem.

3.5.2 Hard Copying

- The benchmark problem here is to make faithful paper or film copies of
digital or video images quickly and conveniently. In particular, permanent
copies should be made in at most 30 seconds without disrupting nofmal POCC
operations (by darkening the room, for example). Minimum specifications are
256 x 256 pixels with at least 8 shades of gray perceptible in the copy.

Polaroid photography from the display screen is very successful for
copying oscilloscope traces or other CRT displays. It is considerably more
difficult to copy gray-scale video images without serious shading and distor-
tion problems (Frei, 1979). If crude snapshots are good enough, then direct
photography may still be unacceptable because of room lighting. These problems
are certainly solvable, but modular hard copy units are much quicker and more
convenient.

Several options for hard copying are listed in Table 3.5. The dot
matrix printer is already a standard peripheral in many computer systems.

With proper software, it can copy small digital images at low speeds; these
copies have been accepted for publication on occasion, but the quality leaves
something to be desired. The Muirhead Systems device seems to be designed for
weather facsimile reception, but it has been used at JPL for video copying
with reasonable success. The Tektronix Model 4634 produces very impressive
monochrome copies from standard video input. It is much better than the Model
4632 Video Hard Copy in image quality, and neither should be confused with

the graphics hard copy units, which have no gray shade capability.

Finally, the Dunn Instruments 631 Camera makes beautiful color prints
of RGB input on 8 x 10 Polaroid film ($6 each). It is a free-standing floor
unit with an internal color CRT and microprocessor controller. These allow
the three video signals for red, green and blue to be supplied sequentially
or simultaneously; thus, false color prints could be made from a monochrome
display. Options permit the use of 35 mm film and Polaroid S$X-70 film.

3.5.3 Interactive Display
The advantages of digital over analog imagery are not realized in a

control center unless the user is able to perform numerical processing and to
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see the results promptly. This fact motivates the benchmark problem for inter-
active display. First, high-speed memory to hold at least one 512 x 512 x 8
bit image is needed; memory for one 800 x 800 x 8 bit image and several 512 x
512 x 8 bit images 1s highly desirable. Continuous display on a BW or color
monitor is required. Transfer of a new image into memory should tike no more
than a few tens of seconds. User control of the display options in a high-
level command language is required. These options should include: interactive
control of the gray scale or false-color mappings with instand response; zoom
capability on any part of the image; ability to compute and display histograms
of the whole image or a chosen subregion; cursor capability for the user of
position and intensity for user-chosen points; and, the ability to blink two
images sequentially, if multiple image memories are available.

Before discussing the specialized digital image displays, it is worth
noting that a low-cost analog processor can meet several of the requirements.
This is true only if the images are intended for viewing by the user and not
for quantitative analysis. The PEP Lithocon scan converter discussed in
Section 3.4.2 gives user control of gray scale and zoom; it holds four video
frames, and an automatic switch could allow blinking. The VP-8 Image Analyzer
of Interpretation Systems Inc. (ISI) provides much more flexible gray scale
control. It can also give digital readout of a cursor-chosen point or of the
area of an image in a certain intensity band; thus, simple histograms can be
generated. If a CRT is also available, it can plot the intensity along a line
or a three-dimensional isometric projection of the intensity. Price is about
$9000.

For fully digital interactive display, the following hardware is needed:
source of the images, either a storage device, video digitizer, or HRDM inter-
face and buffer; an image display terminal, containing the memory, processing
logic, and scan converters; a micro- or mini-computer system to control the
display, with keyboard and CRT; a high-speed data link between storage, computer
and display; TV monitor and POCC distribution system interface. In this section,
only the image display terminal will be discussed in detail.

Digital image displays which are commercially available fall into three
rough categories. The first consists of rather simple video digitizer systems
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wvhich store and digplay one to three images and process them with an internal
microcomputer. These are often aimed at biomedical or materials science appli-

.cations. Vendors include Bausch and Lomb, Hamamatsu, Leitz, Joyce Loebl, and

Spatial Data Systems (SDS). The SDS Model 109-PT is a good example: it costs
$20,000 for a 640 x 480 x 8 bit monochrome display. Addition of an LSI-11
computer ($11,000) would make a complete digital image analysis system; two
more memories ($11,200) would add false-color capability. Table 3.6 compares
this with the other image displays.

The second group consists of sophisticated computer peripherals which
implement their display options with internal logic on receipt of commands
from the host computer. Although the distinction is not always clear, members
of the third group (discussed in Section 6.5.4) also contain arithmetic proces-
sors for ambitious number-crunching of the stored images. Examples of the
second category are Grinnel Systems' GMR-27, DeAnza Systems' ID Series, and
the COMTAL 8000-S; other vendors include Aydin, Genisco, Hazeltine, ISI,
Lexidata, and Ramtek.

The core of these displays is the refresh memory, high~speed semiconductor
memory in a user-defined configuration of multiple images and graphics overlays.
Figure 3.1 shows a block diagram for reference. Refresh memory is read out
(not erased) 30 times a second to generate the standard video signal for the
monitor. After readout but before analog conversion, the intensity data may
be transformed by look-up tables and addition or logical combination with the
other stored images. In this way, gray scales and false-color mappings can be
changed rapidly without rewriting the entire memory; also, images can be combined
segmented, and overlayed. Zoom is accomplished by reading out pixels repeatedly
in a subsection of the image. Most of the other options discussed in Section
3.3.1 on graphics displays are also available.

Image displays in the second and third groups can easily satisfy all
requirements of the benchmark problem with two possible exceptions: many of
them will not hold 800 x 800 images; and, histogram computation is exceedingly
slow in some cases when the host computer must read through the entire image.
Most of the second-level peripherals will require considerable software devel-
opment by the user, however. Since they are peripherals, the vendors do not
usually supply high-level software support beyond a demonstration program. At
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best, a set of FORTRAN-callable routines for the elementary operations (e.g.,
loading a lock-up table, reading the cursor coordinates) is availadble. The
systen programmer must then integrate these into & user-oriented control pro-
grim for the particular applications of interest. If a high-level command
language (usable by a person unfamiliar with the details of that dévicc and
minicomputer system) is desired, then a complete imsge procesving system must
be purchased at greater expense. Such systems are discussed next.

3.5.4 Arithmetic, Statistics, Geometric Correction

While the previous section was concerned mainly with image display,

the discussion here concentrates on numerical analysis of digital images.

The benchmark problem in statistics is aimed at deriving objective measures

of image quality, an essential function in the POCC to verify proper experi-
ment operation. Requirements are: to compute and display the histogram and
its moments and percentiles in a few seconds; to compute a Fourier power spec-
truz (one or two-dimensional) in a few minutes, at most; to display scatter-
plots and compute regressions with two input images. Multi-image arithmetic
includes calibration operations, derivation of "physical" images (e.g.,
temperatures, Doppler shifts) from raw data, and image enhancement functioms.
The requirements are: radiometric correction using stored or derived calibra-
tion frames; arithmetic operations on multiple 16-bit images with no loss of
precision and with interactive control, storage and display of the results;
enhancement by convolution, low and high-pass filtering, and background sub-
traction. Finally, geometric correction involves: 4image rotation; coalign-
ment by uniform shift; removal of known distortion; interactive removal of
image-specific distortion.

All of these requirements can be met by a simple minicomputer system
which includes disk storage for multiple images. Very powerful software pack-
ages exist for all. The only problem with this solution is its low speed.
Several images must be read from and written onto the disk a little bit at a
time, because the computer memory can't hold them. Therefore, & simple opera-
tion like adding two images and storing the result might take 30 seconds. For
this reason, special processors have been developsd wiich pertorm hundreds of
times faster than the general purpose computer. These include the array pro-
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cessors of Section 3.3.2 and the third level image processing displays men-
tioned above.

Before discussing the special processors, a few words about software are
in order. The VICAR image processing system of JPL is availabie in a PDP-1l
ainicomputer version, called mini-VICAR. It sells for $1500 (COSMIC, 1979)
and includes routines for all of the requirements listed atove. Furthermore,
it does not even assume the existence of an interactive display device. This
is 8 very attractive package which, if combined with a custom-tailored inter-
active display program, makes a cheap, powerful and somewhat portable image
processing system. Two similar packages sold commercially are the System 500
of Stanford Technology Corporation (STC) and the IDIMS software of ESL, Inc.
Both of these are more powerful, much more expensive ($12,500 for System 500),
and designed for specific interactive displays. Another interesting software
package is the Forth system used at Kitt Peak National Observatory (Wells,
1977).

Inage displays with high-speed arithmetic processors are made by COMIAL,
DeAnza Systems, Grinnel Systems, and STC. Extremely valuable descriptions of
these can be found in Adams and Wallis (1977), LaPado et al. (1978), and Hubble
and Reader (1979). 1In addition, the Lockheed Spacelad 2 lmage Processor has
arithmetic capability of interest.

The commercial image displays mentioned above perform arithmetic operations
in 1/30 second. Their refresh memories are read out at that rate into a series
of look-up tables and pipelined adders, as indicated in Figure 3.2. The output
of these adders can be put back into one of the memories via the feedback loop.
By loading different functions into the look-up tables, a large class of opera-
tions can be performed at these high speeds. The ability to shift images in
the x and y directions before adding them allows convolution and spatial filter-
ing to be done. Note that more complicated spatial transforms (such as FFI's,
image rotation, or geometric distortion removal) are not handled conveniently
and that the 8-bit depth of most refresh memories seriously limits the arith-
witic precision. It should be emphasized that all of these displays also
perform all of the interactive display functions of the previous section. The
cost of these systems is dominated by the price of memory: the STC Mclel 70
costs about $32,000 plus $10,000 for each refresh memory of 512 x 512 x 8 bits.
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The Lockheed Spacelab 2 image processor uses quite a different approach.
It has 6 image memories, only one of which generates the video displays. The

.others are used entirely for storing data, calibration, and arithmetically

derived images, which may have differer: depths from 8 to 16 bits per pixel.

-Arithmetic is done by a fast microprocessor with 32 bits of precision. The

result is slower but more accurate arithmetic, with savings of power and

memory cost as well. Multiplying two 256 x 256 x 16 bit images takes about

0.5 secs. Various properties of the image processors are compared in Table 3.7.
Cost comparisons are not made because they are too dependent on options chosen.

It 1s obvious that a very powerful quick-look image processing system can
be built around any of these devices. However, no single one meets all of the
interactive display and numerical processing requirements. In particular,
improvement is required in the following areas.

0 Software control over image size and depth: the COMTAL syvstem allows
“virtual" images of any size to be defined and manipulated; adding the Lockheed
depth flexibility would be very useful.

0 Video-ratec arithmetic with no loss of precision: feedback and storage
of 16-bit results is needed.

0 Clever architectures to permit more complicated spatial processing:
perhaps only better software is needed for existing displays.

o Two-dimensional FFT's: this capability in the display, perhaps using
a dedicated memory and microprocessor, would eliminate the need for an array
processor in addition to the display.

o More bits per chip: to bring down the cost of the gigantic memories.

3l
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3.6 Potential Common Display and Processing Systems ,

The equipment survey which has been described at great length shows that
most of the common display and processing requirements can be met. Commer-
cially available components exist for most of the functions; many of them are
in routine operation at scientific and engineering laboratories around the
country. Thus, there is a substantial reservoir of experience which has been
and can continue to be exploited in designing POCC displays. Based on these
findings, a set of five candidates for common GSE display systems have been
developed. They are all intended to meet well-established common requirements
and to be modular and evolutionary in nature. Each system has growth potential
to accommodate future requirements which may appear and to be upward compatible
with improved components, avoiding premature obsolescence.

The first two systems provide displays to aid POCC personnel in inter-
active pointing. They should be considered primarily as support facilities
for the IPS (or other pointer) and not as direct replacements for EGSE,
although a modest savings in EGSE software does result. The other three
systems provide general purpose displays of increasing sophistication which
do reduce the need for EGSE by significant amounts. As long as the experi-
menters are aware of the power of the standard GSE displays and the ease of

using them, their EGSE costs can be reduced without loss of capability.

3.6.1 Graphics Display for Interactive Pointing Control

This common system is intended to assist POCC personnel in several phases
of pointing control. Although it is intended primarily to support IPS pointing,
there is no reason why graphic displays to aid pallet mounted experiments could
not be developed. With its own microcomputer, the system can be reprogrammed
at will by contractors or experimenters to support future requirements. Inci-
dentally, when the equipment is not in use to support pointing control, it can
be used for general color graphics display and may have applications in crew
training.
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The hardware produces a color graphics display with alphanumeric annota-
tion. It appears on a display terminal with keyboard and also generates an
RGB color video gignal which can be monitored anywhere on the POCC video distri-
Lution network. Each display shows: (1) an appropriate coordina;e grid (solar
ecliptic, declination and right ascension or terrestrial latitude and longi-
tude); (2) the present aimpoint of each pointed instrument; (3) the present
location of multiple user-selected targets. Different colors and symbols can
be used for different experiments. For the solar targets, the computer must
correct for solar rotation if requested by the user. Similar corrections may
be needed for some terrestrial targets.

One task of POCC personnel will be to supply the crew with coordinates
of desired targets for each revolution. A large-scale display mode (showing
the entire solar disk or a large part of the celestial sphere) should be
available for this function. Once targets are acquired (or nearly so), a
small-scale mode showing perhaps one arc minute is appropriate. This can
help POCC personnel detect slow drift and fine pointing errors. With a monitor
visible from a commanding terminal, slow interactive pointing may be possible.

The equipment required is listed below and is sketched in Figure 3.3.

The specific models chosen are plausible; equally good alternatives could be
found.

o Minicomputer: PDP 11/23 with 64K words of memory, dual floppy disks,
RT-11 software, FORTRAN, DECwriter low-speed printer; total cost approximately
$15,000.

o Color Graphics Terminal: Tektronix 4027, 96K bvtes color graphics
memory, video output (RGB), PLOT 10 software; total cost approximately $13,000.
Software is needed to accept the IPS pointing data from the ECIO HRM
channel; this will be supplied to GSE by the POCC computer roughly once per
second. The minicomputer must update the display at this rate. It must also
accept user commands from the terminal to enter or delete targets and to change
the display scale. The software cost is estimated at 3 months of labor by a
scilentific programmer.
3.6.2 Video Display for Interactive Pointing Control

This system is intended to be an upgrade of the previous one. Its

purpose is to allow the graphics display to be overlayed on the analog video
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signal of the experiment which is being pointed. In this way, targets can be
selected from the video image and their coordinates determined from the overlay.
A hairline cursor under user control allows direct reading of target coordinates
by the computer. Thus one unified display satisfies all pointing control re-
quirements. .

The cheapest way to do this is to use all the hardware of the previous
system. When the video overlay mode is desired, the experiment video signal
and one output of the color graphics are added in a two-channel mixer to get
the monochrome sum signal. The Tektronix 4027 terminal can generate one hair-
line cursor which appears on the video image; a user at that terminal can
select targets using the keyboard cursor control. To allow remote us<:rs to
mark targets, separate cursor generators at each commanding terminal would be
useful. The Colorado Video Model 622 X-Y Digitizer ($4500) adds a white dot
cursor to the image and provides digital outputs of its position which can be
bed back into the computer. Figure 3.4 shows the system block diagram.

Although the additional hardware requirement is modest, the sof tware
increases significantly in complexity. A different graphics mode is required
for each experiment video used, because of the differences in image scale,
field of view and orientation. Furthermore, each experiment may have different
overlays (spectrograph slit, photometer aperture, etc.) to draw on the image.

A potential problem here is that of time delays betweea receipt of the video
and of the pointing data from the ECIO stream: a small loss of synchroniza-
tion could make a8 disastrously confusing display, if the experiment is scanning

or moving for any reason. This software problem appears to be non-trivial.

3.6.3 Basic Video Display System

The shortcomings of the analog video downlink were described in Section
3.4. The need for a multi-channel video digitizer was also explained. This
custom-built unit is the first major feature of the basic video system. The
second feature is an instrument pool of monitors (monochrome and RGB), video
cassette recorders, hard copy units, and switching and cabling equipment.
For each mission, a POCC video distribution network can be assembled using
this store of equipment, based on experiment requirements for analog video

displays. In this way, the NASA supplied GSE serves each mission, and complete

55

LOCKHEED PALO ALTO RESEARCH LABORATORY
LOCENEED MisBILES & SPACE COMPANY, INC




O13IdIA
‘udX3

Gunutod 2AfoRINU] J0} Ae[dsid 03PIA bUE “3Ud

NYOMLIN IYNIWEIL
zo.Ss%ww“w oz_oz<§§ww
2204 — soLvHINSS - ¥OLINOW
AW
1INNVHI-C
431N 4d
AddON a33ds
MO
1O
19¥| o3a1A a ~ 7
| ¢ |
AVdSId
10 30100 o -
IVYNIWEIL SOIHI VIO ¥ILNdWOD M &Ommu...muO_W—m
$OIHAVIO SNW | A e 1 w1ndwod
— S viva 2204
SONYWWO ONILNIOd
Q¥VOIAIN ¥Isn

56



individual sets of EGSE are avoided; only the minimum ECSE to support testing
and integration need by purchased by each experiment., Figure 3.5 shows a
sanple configuration.

The video digitizer system requires some specialized hardware not commer-
¢lally available and s0 a cost estimate {8 not attempted. A general list of
the hardware components needed on the orbiter is as follows: interface to the
orbiter CCTV system to receive up to four video inputs; control logic based
on front panel switches or EC command; video multiplexer and digitizer;
buffer memory; HRM output interface. It {s fmportant to maintain a constant
HRM rate but allow flexible control of the number and frame rate of inputs,

In the POCC, the following components ave needed to regenervate the video
signals: HRDM interface and buffer; demultiplexer and switching logic, feed-
ing the data to four scan converters along with proper X-Y coordinates of each
point; analog scan converters, for inexpensive regeneration of video signals,
Equipment which is similar in principle to some of these components is made

by Colorado Video (the Model 280 Video Transceiver, tor exawple) and by Lelrov
Research Svstems (CAMAC Model 8258 High-Speed Video Digitizer).

The instrument pool from which to construct the video display svsten fon
each mission can be built up gradually, by purchasing components as the need
arises. The tollowing will be of general use:

o Monochrome monftors, from 5" to 17", costing from $300 to $1200;

0 RGB monitors, high quality, 19"; CONRAC Model 5411, $5000; also made
by Tektronix, SONY, Toshiba;

0 Video tape recorders, either supplied as a POCU Standard Service o
as standard GSE; if the latter, the SONY SLO-320 cassette recorder, $1500,
can be recommended;

0 Hard copy unit, Tektronix Model 4034 lmage Forming Module, $0000.

For display of scientific data, there are no hard requirements for a
video bean projector. However, on missions when several experiments sharve
use of the 1IPS, projection of the pointing display on a screen visible to all
will make cooperation easier. It also has obvious applications for publicity
and for displayving wmission events of general intervest to a large number of

PCC personnel (Deplovment of a SOT, for example). Therntfore, add to the list:

S?

LOCKHEED PALO ALTO RESEARCH LABORATORY

Lo aN e L IR BUR ) . LI B Lemran DL Y




wasks Aegdsig 0dpIA dised §'¢ “BId

UNN
AdOD
QIVH

SYOLINOW YOLINOW

0¥

WA

3O LI OUd
O3QlA
290

YOLINOW
3593

1t

WIEANOD
NVOS

3593

1N3AN3430 NOISSIW
:NYOMLIN NOILLN8IdLSIA
O30IA 2004

AV1dSia
ONILINIOJ
SOIHIV¥O

¥
S¥ILYIANOD
NVDS

Xnwia
41 WQuH

O3QlA

< v1191d

WQ¥H

58



0 Advent Video Beam Television, Model 1100, RGB projector with large
screen, $7000.

The growth potential of the basic video display system is obvious. The
éost interesting direction for growth is to incorporate more analog video pro-
cessing equipment: the ISI Model VP-8 Image Analyzer ($8,000) would be a
powerful addition for interactive display. A PEP Lithocon Scan Converter
(§5,000) with a custom timer switch would permit blink comparison of up to
four analog images. These possibilities lead into the next potentially common

system.

3.6.4 Hybrid Analog-Digital Image Display System

The purpose of this system is to provide a powerful interactive display
for digital imagery. At the same time, system cost and complexity is reduced
by avoiding the problem of interfacing to either the HRDM or a variety of
EGSE minicomputers. Also, different image sizes and formats of different
experiments do not affect the processing and display capability. The system
meets all of the requirements in the interactive display benchmark problem
and some of the statistics requirements as well. Growth potential is excel-
lent, with the option for future expansion into a complete image processing
system.

The technique which avoids all the interface problems is the use of
analog video as the input channel. Figure 3.6 shows the approach. EGSE
generates the video signal in a scan converter. The common system is built
around an image display with a video digitizer, which stores images in its
refresh memories. The user can include test patterns in his video signal to
allow faithful reproduction of his image to 8-bit accuracy. Once the frame
is captured in refresh memory, it can be manipulated using any of the options
discussed under interactive display. Up to three images can be stored, to
permit false-color displays or color coding of different variables. Image
data can be read back into the host minicomputer system for a limited statis-
tics and image arithmetic capability.

The hardware required for this system is as follows:

o Image display: Grinnel Systems GNa=-27, including 3 refresh memories
of 512 x 512 x 8 bits, image function memory card (look up tables and blink
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capability), image zoom and pan card, 8-bit video digitizer, and joystick
cursor control unit; total cost, $27,000;

o RGB monitor: 19" CONRAC 5411, $5600;

o Host minicomputer system: PDP 11/34 computer, with 128K bytes memory,
DMA interface, 5 Mbyte system disk pack, RSX-11M operating system, floating
point processor, F4P FORTRAN, DECwriter low-speed printer, alphanumeric CRT
terminal; total cost, $45,000.

The costs listed above include the computer operating system software and
the FORTRAN-callable control routines. Higher level control software is not
supplied with the GMR-27 display, which is chosen because of its superior
hardvare design among displays in this price range. Thus, an integrated
control program with a simple menu-oriented command structure is needed.

This will allow a user to operate the display without any detailed knowledge
of the software involved. New options can be added to this program gradually
as they are requested by users. Six months of effort by a scientific program-
mer could produce an excellent control program.

This system has the potential to grow into a complete digital image pro-
cessing system, if demand warrants it. A natural course would be to upgrade
the computer system with a large disk for image storage, a tape drive, and
more memory. Then the mini-VICAR software developed at JPL could be installed
to provide complete image arithmetic capability. The mini-VICAR image format
could become the POCC standard, so that users could send their data to this
facility with minimal interface problems. Such a grand design is certainly
nut required at this time, however.

3.6.5 Digital Image Processing and Display System

The design for this common system is presented merely as an example of
a nearly complete solution to the common requirements using today's technology.
It 1is not recommended for development in the POCC at this time (although this
is no reflection on the equipment involved). In conjunction with the basic
video display system, this system satisfies all of the benchmark problems for
digital imagery (Section 3.5) with two exceptions. First, the image display
does not hold images larger than 512 x 512 pixels; 16 bits of depth can be
accomgpodated vith some additional software. Second, high-speed image arith-
metic 1s of limited precision; low-speed arithmetic could be done in the
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computer with additional software.

Figure 3.7 shows the block diagram. The hardvare needed is the following.

o Image Processing Display: STC Model 70-E with 4 memories of 512 x 512
x 8 bits, graphics overlays, trackball, hardware histogram generator, feedback
srithmetic-logic unit, host computer interface, and rack; total cént. $75,500;

© RGB Monitor: 19" CONRAC 5411, $5600;

o Host minicomputer system: PDP 11/34 computer with 256K bytes memory,
DMA interface, 5 Mbyte system disk pack, RSX-11M operating system, floating
point processor, F4P FORTRAN, electrostatic printer-plotter, 9-track 800/1600
track tape drive, 80 Mbyte disk, CRT terminal for alphanumeric and graphics
displays; total cost, $90,000.

STC, the display vendor, sells a complete software package called System
511 for $12,500. This includes the FORTRAN-callable primitives, file manage-
ment, and a user interpretive language enabling unsophisticated users to
control the display completely. Even so, software support is needed to inter-
face this system with the various sources of digital images in the POCC. For
example, specialized routines may be needed to read a data tapc written by a
user's minicomputer, if it is not in the PDP 11 series. Six months effort
by a systems programmer is estimated for system integration and interface
support.

Considering the expense of this system, the complicated interfaces with
various EGSE computer systems, and the number of potential users on future
Spacelab missions, development should not proceed without further study. In
particular, the impact of the Solar Optical Telescope (SOT) instruments and
of any other imaging facility class instruments upon the common requirements
must be considered in more detail. Furthermore, the state-of-the-art in
image processing displays is advancing rapidly, so it would be premature to
acquire such a system at this time.
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4.0 Cr~ LUSIONS AND RECOMMENDATIONS

4.1 Summary and Conclusions

: This study has been a logical continuation of the previous quick-look
data analysis study completed by LPARL in March, 1978, One of the tasks has
been a modest effort to continue the user interviews which were tﬁe core of
the previous study. Experimenters from various Spacelab 1 and 2 experiments
and authors of proposals for future Spacelab flights were interviewed. 1In
addition, the Investigators' Working Group meetings for Spacelab 2 were
attended, and MSFC and JSC personnel working on command and data handling
were contacted. The topics for these interviews were interactive control

of Spacelab experiments from the POCC, the command uplink system, the proposed
packet transmission format for the HRM downlink, the development of ECAS, and
experimenter plans for GSE and image processing in the POCC.

The findings and conclusions of these interviews can-be summarized in
the following points.

o Interactive Control: Spacelab experiments have a broad spectrum of
interactive control requirements, including some functions which can only be
done by the crew and others which require trained POCC personnel with real-
time data c¢isplays. Furihermore, some requirements are essential, without
which the experiment is impossible to perform; others are matters of efficiency
of operation or avoidance of idle time which could be used for observing.

o Interactive Pointing: Many experiments desire some sort of interactive
pointing control from the POCC. Reasons include target selection at the start
of an observing sequeace, correction of pointing drifts during an observation,
and reaction to transient events of interest. Investigators are not entirely
confident that crew members will be available to do all necessary pointing or
that they will be &ble to react properly to transient phenomena.

o Command Uplink: This is perceived as being too slow and unreliable
to meet requirements. As a result, more tasks are being off-loaded to dedicated
experiment processors (DEP's) and some ambitious observing plans are being down-
graded. Suggestions to NASA for improving the uplink include sending data over
the voice link using modems and providing an automatic queueing and enabling
capability in POCC computers.
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o EGSE minicomputers: Virtually all experimenters plan to have their
own minicomputers in the POCC. They want very much to be able to build and
send commands from their own terminals; DEP reloads are considered impossible
without this capability. A potential solution is to build command loads on
EGSE terminals and transfer them to POCC commanding terminals via floppy disks.
NASA could assist by developing standard software to create these floppies in
the proper formats. Such software could solve the interface problem between
the POCC terminals and the most common varieties of EGSE minicomputers.

o HRM Packetization: Investigators are generally apathetic towards this
issue, with the exception of a few experiments which are forced to transmit
large amounts of fill data to satisfy present HRM formats. The packet approach
may alleviate this problem. At least two experiments have developed their own
packet formats to send science data, housekeeping data or DEP memory dumps in
the same major-minor frame format.

0 ECAS Development: Nearly all experimenters agree that ECAS should be
developed by NASA or a contractor and not by themselves. ECOS and DEP software
should be used in place of ECAS whenever poussible. If ECAS is unavoidable for
some function, then the experimenter should specify his requirements in detailed
algorithmic form.

The major task of this study has been the equipment survey described in
Chapter 3. 1Its purpose has been to discover the hardware and software compo-
nents and systems relevant to the common requirements established previously.
Only real time and quick-look display and processing of scientific data were
considered. The framework for the survey was the set of benchmark problems
created for serial digital, analog video and digital image data. Selected
existing systems have been tested with real scientific data to ascertain their
urility in the POCC. Some components which are in development but not yet
available were also considered. The following conclusions have been drawn
from this survey effort.

0 Analog data: No common requirements exist.

o Serial digital data: The combination of minicomputer processing and
display on monochrome or color graphics terminals can easily meet all require-
ments, except for the quick-look computation of fast Fourier transforms on

large data records. Array processors are one possible solution to this excep-
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( tion, but other promising technologies are also under development.
0 Analog video data: Basic requirements can be met only if a digitized

video downlink and a reconfigurable POCC video distribution system are imple-
mented.

-~ o Digital image data: Existing hardware and software systéms can meet
most but not all of the requirements for POCC processing. Sophisticated high-
speed image displays controlled by dedicated minicomputer systems are needed.
Improved technology is needed for high-speed image recording, for display of
large format digital images, and for precise multi-image arithmetic. Future
developments to expect are optical disk digital recorders and more powerful

image displays using advanced semiconductor memories.
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4.2 Recommended Display and Processing Systems

Following the equipment survey, a set of five potential common display
and processing systems was designed. These are intended to be developed by
NASA as shared GSE systems, to be used in place of EGSE by any experiment
that needs them. They are designed specifically to common requitements for
scientific data and pointing information display. Therefore, they can be
shared among different experiments on a given mission and used repeatedly on
different missions. Furthermore, more powerful and flexible displays are
provided than will be necessary for testing and integrating. Therefore, the
common use of the shared gsystems will allow hardware and software savings on
EGSE.

Three of the potential common systems provide displays for scientific
data. Table 4.1 compares them with the POCC Standard Services in terms of
which requirements are met; technical definitions of these requirements can
be found in Sections 3.4 and 3.5. Table 4.2 summarizes more information
about all five systems. Costs are based on the specific configurations given
in Section 3.6. No cost estimate is attempted for the basic video display
system for two reasons: (1) a major part is a digitized video downlink
whose design is beyond the scope of this study; (2) the rest of the system
is an instrument pool whose size and contents will evolve as the requirements
of different missions are met. Modular growth potential refers to the ability
of each system to absorb new software and hardware components as user require-
ments evolve and as new technology becomes available.

Three systems are recommended for immediate development: the graphics
pointing display, the basic video display system, and the hybrid analog-digital
display system. These recommendations are based on the contents of Tables
4.1 and 4.2 and on one additional judgement: namely, the equipment needed for
these systems is available now and is not likely to change so dramatically in
8 few years as to justify postponement. The video pointing display is not
recommended until some experience with the HRM downlink, the IPS and the
graphics display system is obtained; the best way to upgrade the graphic system
(if necessary) will be evident then. Finally, development of the digital
image processing system should be postponed for two reasons: (1) the detailed
requirements of the SOT instruments and other imaging instruments in active
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development should be considered; (2) the state-of-the-art in image processing
will change sigunificantly in the next five years, yielding much greater capa-
bility at lower cost than is presently available.
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APPENDIX A

TABULAR RESULTS OF PREVIOUS STUDY
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SPACELAB QUICK-LOOK SCIENCE i

Discipline Group Experiment Data Rate D‘Sp'z,‘;‘m'
AMPS U. lowa Plasma Diagnostic Package 10 kHz analog, 10 seconds 1
16 kbps digitel
AMPS NASA/LaRC Light Detection-and Ranging (LIDAR) 32 to - ‘
: 320 kbps |
AMPS GSFC Cyrogenically Cooled Limb 0.5 Mbps, 15 seconds
Scanning Interferometer 200 b
Radicmeter (CLIR) |
AMPS LPARL Atmospheric Emissions 4,2 MHz video, 1 second
- Photometric Imager (LLLTV) 300 kbps digital
AMPS Southwest Research | Spoce Experiments with Particle 4.2 MHz vi.deo, Y second (vidas
: Center and Accelerators {SEPAC) 256 kbps digital few seconds
NASA/MSFC digitel
AMPS NASA/JPL Atmospheric Trace Molecules 16 Mbps 10 seconds
Observed by Spectroscopy (ATMOS)

T s e b s Rt S T AU 1 bt Bl . a1 xS i ¥ 2

‘Pw“"um'\

L i e iR AR




CIENCE DATA DISPLAY REQUIREMENTS SUMMARY.

iSplcz"l:pdm Processing Required . Display Device

seconds Analog: intensity versus time, frequency versus TV monitor (color) 1
time for 32 seconds for any of the 16 channels of CRT color 2
the sweep frequency receiver, curve fit this data.
Digital: engineering conversion, peak and average
signal. Images: geometrical distortion removal
and contrast enhoncements

- Engineering units conversion, calibrate, con= CRT monochrome showing concentration veru

centration (column density) from intensity altitude (1), '
versus altitude (from time delay).

seconds Interferometer: row data or FFT CRT monochrome high-resolution (2)

Oscilloscope

Radiometer (25 channels): engineering )
conversion, channe! comparison

second No processing of video, engineering conversion TV monitors (standard) (4 required)

second (video),
seconds

and display formatting of digital data. Addition of
video images and storage of selected video images.

No processing video signal; for digital data: engi-
necring coaversion, curve fit'ing, power versus
frequency, frequency versus time, calibration,

Fast Fourier transform, engineering conversion,
display up to 8 spectra displaced 2 inches each,
roll off as more spectra are displayed.

T'/ monitor (standord), CRT monochrome (68 req)
strip chart recorder, hard copy oulput.

CRT coler with overloys (Comtal)




SPACELAB QUICK-LOOK SCIENCE DATA

Data Rate

Display Update

Astronomy

Discipline Group Experiment Rote
High Energy | Mullard Space Focussing lron-Line Crystal 5 kbps
Astrophysics | Sciences Spectrometer (FICS) '
Laboratory .
High Energy | NASA/GSFC Gomma Ray Astronomy in the Medium | 10 kbps Ii
Astrophysics _Energy Range 7 to 100 MeV ‘
High Energy | LPARL Soft X-Ray Telescope (SXT) 25 kbps 30 seconds
Astrophysics
High Energy | JPL/Stanford High-Sensitivity X-Ray Spectrométer 10 kbps to . 1=10 minutes i
Astrophysics : ' ) : 16 kbps v
High Energy | NASA/GSFC Measurements of Energy Spectra of 10-100 kbps i
Astrophysics _ Cosmic Ray Nuclei: Protons to lron, ¢
i
High Energy | LPARL High-Sensitivity High-Resolution 64 kbps few seconds t
Astrophysics Measurements of Cosmic Gamma-Ray
Spectra :
High Energy NASA/ GSFC A Lorge Area High Resolution 50 kbps few seconds
Astrophysics Experiment for Gamma Ray Line
|
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CK-LOOK SCIENCE DATA DISPLAY REQUIREMENTS SUMMARY

D'SPIT{‘”":N"“ Processing Required Display Device
Engineering conversion, wavelength colibration, CRT monochrome, interactive capability
bin slippage, expand selected spectral region, ‘ :
compute statistics of spectra, interactive data
processing control,
Reconstruct particle track through grid of detectors, | Storoge scope (such as Tektronix 4001 or 4006),
produce total energy histogram, CRT monochrome, interactive olphanumeric
keyboard,

30 seconds Pass data through an image storage tube with video TV monitor (color)
readout to generate on image on a TV monitor, ‘
Generate images in 3 energy intervals, ratio or
difference images, display results, interactive
experiment pointing control, interactive data
processing control,

. 1=10 minutes Engineering conversion, accumulate spectra over TV monitor (standard), CRT monochrome, hard

variable time intervals, interactive to control copy capability, ‘computer print-out,
variable integration interval, background sub- :
traction, sort into speciial bins,
Track and pulse height information on an event by CRT monochrome (high resolution)
event basis,

few seconds Engineering conversion, dead time corrections, CRT monochrome, print-out
hold intensity versus time in buffer or core, ~
integrate on one energy channel as a function
of time, interactive to select processing mode.

few seconds Store 8192 channel spectrum over variagble time CRT monochrome (high resolution), interactive
intervals, normalize against time., Reformat data control, no color or gray scole requirement,
from binary to decimal but do no engineering hatd copy from electrostatic printer and line
conversion. Peck detection analysis, event printer,
detection statistical error analysis.
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SPACELAB QUICK-LOOK SCIENCE DATA

Discipline Group Experiment Data Rate Dusplc;yo 'l:poote
Solar LPARL Experimental Investigation of the Solar | 4.2 MHz video, 1 = 5 seconds (TV)
Corona and Transition Region (X-Ray/ | 30 kbps digital !
EUV Telescope) i
Solar UC San Diego and | Hard X-Ray Imaging Instrument (HX!1) 100 ~ 500 kbps 10 seconds
NASA/GSFC ' 2 kbps quick-look
Solar LPARL XUV Solar Monitor 500 kbps if digital 1 = 5seconds
standard TV if
video !
Solar Stanford A Soft X-Ray Telescope Spectrometer 1 Mbps 10 seconds :
University for Solar and Cosmic Observations i
Solar LPARL A Solar Magnetic and Vélocity Field 2 Mbps 30 seconds i
Measurement System '
Solar LPARL and Solar Optical Telescope (SOT) 10 — 50 Mbps Few seconds
NASA/GSFC _

»

FOLDOUT FRAMR



K SCiENCE DATA DISPLAY REQUIREMENTS SUMMARY

Display Update
Rate

Processing Required

Disploy Device

1 = 5 seconds (TV)

10 seconds

1 — 5 seconds

10 seconds

30 seconds

Few seconds

No processing of TV data. Digital data requires
engineering conversion, integrate spectral data,
interactive experiment pointing control . :

Engineering conversion, imoge construction by
iterative algorithm, interactive experiment control,

Conversion from digital to analog TV format if
sent digitally, interactive pointing capability
with cursor cross—hairs for experiment pointing,

Engineering conversion, subtract images, inter~
active data processing control, light pen or pixel
to obtain the intensity of thot pixel, display
grophically counts in one pixel versus time, sup=-
port software to predict solar feature locations
several- orbits later, compress data due to high
dynamic range, selectivity store images.

Addition and subtraction of images, storage of
selected digital images, simple image statistics
(histograms, mean value, standard deviation,
power spectrum),

No data processing, -only scan conversion, inter-
active experiment pointing control with adjustable
cross-hairs.

TV monitor (standard) 3
CRT monochrome 1

TV monitors (standard) 2 required.

v monitor.(stcndmd).

TV monitor (color) (3) - be able to access o pixel
by light pen, CRT monochrome. Color display
would better handle large dynamic range instead
ot data compression and gray shading.

TV monitor (stondard) 2 required, video tape
recorder, scan converter,

TV monitor (stondard) (5 or 6 required) TV monitor
(color), TV monitor (high resolution), scan con=
verters, alphanumeric keytoard,
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SPACELAB QUICK-LOOK SCIENCE DATA

Discipline Group Experiment Dato Rate Dist'R);:':Pd"e
UV/Optical | NASA/JSC STARLASB Planetary Camera 5 Mbps 10 seconds Engin
: tracti
stretch
UV/Optical | NASA/JSC STARLAB Echelle Spectrometer | 70 kbps 2 - 3 minutes | Engin
‘ o intensi
profile
format
. superi
UV/Optical | U, Wisconsin STARLAB Planetary Camera 1 Mbps 10 seconds Engin
UV/Optical | U. Wisconsin | STARLAB Spectrophotometer 1.7 kbps 1 second to Engin
- 1 frame/minute 1 minute of spec
(105 bits/frame) active
instrume
UV/Optical | U. Wisconsin | Ultraviolet Photomet ' Few 10's of kbps 1 second Engine
) Polarimetry Explorer?{)PPE) of 1003
_ o versus W
UV/Optical | UC Berkeley | Far Ultraviolet Space Telescope | No science data Engine
. (FAUST) ' down, Science e{
data on film |
cassette
UV/Optical | UC Berkeley | EUV Telescope/Spectrometer 32 kbps 0.1 second to | Serial d
(ECOM 721) 1 minute buffer w
version,
UV/Opticol NASA/ARC Spacelab Infrared Telescope 1 =4 Mbps Few seconds Parallel
Facility (SIRTF) |
‘ 1. Dis
2. Dis
vol
3. Gn
. fere
4., Gn
- cha
req
trof
5. . Int
mal
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OK SCIENCE DATA -D|SPLAY REQUIREMENTS SUMMARY

2 — 3 minutes

10 seconds

1 second to
1 minute

1 second

0.1 second to
1 minute

Few seconds

tractions, background subtraction, groy level
stretch, display only portion of image.

Engineering conversion, extract an order, rough
intensity calibration, correct for instrumental
profile, geometrical corrections, display Echelle
format, interactive data processing control,
superimpose preconceived ideas of spectrum,

Engineering conversion, radiometric calibration.

Engineering conversion, addition and subtraction
of spectra, fiat background subtraction, inter=-
active data processing control, interactive
instrument pointing control ,

Engineering conversion, linear Fourier transform

of 100 points, intensity versus time, intensity
versus wavelength,

Engineering conversion.

Serial digital data into shift register, to latch
buffer with time signal, digital to analog con=
version, amplifier, analog output.

Parallel data processing required to:
1. Display star tracker field.

2. Display raw (analog) interferogram data,
voltage versus time,

3. Graphical display of transformed inter-
. ferograms (maps, spectra).

4, Grophical display of 100 - 1000 grating
channels, intencity versus time; not
required simultaneously with Fourier
tronsform.

5. lInteractive graphics capability to
manipulate data '

‘P"g‘m l:pdote Processing Required Display Device
10 seconds Engineering conversion, image ratios, image sub- TV moniter (color), hard copy from electrostatic printer

and polaroid camera,
TV monitor (]nigh resolution) , CRT (monochrome), inter~

active coatrol over data processing and display.

TV monitor (high resolution), interactive pointing control,

TV monitor (high resolution), with graphics, .interactive
pointing control,

CRT (monochrome).

Storage oscilloscope (256 by 256) or buffer. Hard copy:
print out and Polaroid or similar image repreduction,
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APPENDIX B. LIST OF USERS CONTACTED

Name Institution Field/Spacelab Comnection
L. Acton LPARL Solar, EE, SL2 CO~1 & Crew
J.-D. Bartoe NRL Solar, SL2 Co-1 & Crew
J. Breckinridge JPL AMPS, SL1 Expt.
R. Catura LPARL HE, SLn PI
R. Drummond GSFC AMPS, CLIR Facility
M. Harrington MSFC SL2 Mission Ops.
K. Henize JSC UvVO, SL2 Crew
A. Jackson MSFC SL2 POCC Ops.
W. Kilpatrick MSFC SL2 C&DH
J. Ladner MSFC SL2 POCC Ops.
S. Mende LPARL AMPS, SL1 P1
P. Meyer U. Chicago HE, SL2 Pl
K. Norman MSSL Solar, UVO, SL2 Expt.
J. Parker JscC POCC Data Systems
D. Prinz NRL Solar, SL2 Co-1 & Crew
S. Shawhan U. Iowa AMPS, SL2 PI1
G. Simon AFGL Solar, SL2 Co-1 & Crew
R. Smithson LPARL Solar, SOT FDT
T. Stecher GSFC uvo, SLn P1
A. Title LPARL Solar, SL2 PI1
M. Torr U. Michigan AMPS, UVO, SL1 PIL
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APPENDIX C

QUESTION LIST FOR USER INTERVIEWS

SOME QUESTIONS ON INTERACTIVE CONTROL OF SPACELAE ENPTS. FROM THE FOCC

(89 TO WHAT EXTENT DOES YOUR EXPT. RCQUIRE HUMAN INTERACTIVE CONTROL
FOR FUNCTIONS SUCH AS FOCUSSIMG, FOINTIMG, SETTING OF ENFOSURE TIMES
OR AMPLIFIER GAINS, (R THE LIKE? CANH THESE BE CONTROLLED JUST A
WELL BY A MICRD- OR MINICOMPUTER? CAN THEY BS DOME EXCLUSIVILY BY THE
CREW. TARKING INTO ACCUUNT THE FACT THAT CREW MEMBIRS MRY NOT ALLAYS
BE AVAILABLE ON IEM2MD?

(2) CAN YQUR ENPERIMINT DO MURNINCFUL SCIENTISIC WORK WHEN THE CREW IS
NOT PRESENT AT HLL? WHAT IF THE CREW 1S PRESENT CHLY TO PERFORN IRITIAL
POTNTING AND STANTUS QOPERATIONS? IF YOUR EMPERIMENT CAN FUNCTION
UNDEZR EITHER UF TSLZE CIRCUMSTAMCES, WHAT SORT Or UPLINK OF DATH AND
COMMANDS IS NEEDED TO SUTPORT IT?

(3 DC YOU EXFECT TO ORSERVE TRANSIENT NATURAL PHEMOMINAR WHERE QUICK
REACTION 1S ESSENTIALT IMAT KIMD OF TIMZ DELAYS ARE TOLERASLE?
WHART SOIT 0OF CHAHGES IN THZ INSTRUMINMT®S OPERATING MODE ARE NEEPENT
CAli A CPelW MerMZsR RECOGHILE THE CHsE 0— SUCH § TRANSIENT AND TRAIE

FROFER ACTIONS CR IS A SPECTALIST IN C POCC ESSENTIAL?

(4 HIW DG YOU ENFECT TO SF”W COMMANDS AMDANR DATA FROM THE POLC TO
YOUR IMETRUMENT? 1S Q EE‘T7 I”“ corMatd TE?H!NWL. RS CPPOZED TN
YOuR IHDIVIDUAL DisFin 1-7“1 L. 8 SATISFACTINY ARRGNIEMINT? IS
1T POSSIBLE TO CF'QT- Q' EXHRUSTIVE COMMAMD LIST PRE-FLIGHT? DO
YOU NESD TO SCHD COMISMDS Ulr ROTHAM SERIAL NIGITAL WIRTS (E.G..

IMAGE Ok TEXT UPLINK, Hh- a6 !HPUEL F'gl A JD\\TIFK. OF WHARTEVEM ?

(5 DO YOU MFED TO COMMUMICATE WITH AN OM-BOACD MICRO- OR MINTSAMBUTER?
LMAT SORT OF UPLINK RECUIREMENTS DO WMl BGVE FOR MEMQTY RELGYNE O
INTERACTIVE COM MDIN. (DERUGGING, PERHAPSI?  ARE THEST PIOUIRCMINTS
PART OF NORMi_ OPERATIONS, IMSTRUMIMT SHACEDNI, (70 CONTINGEHCY
OFERATINNCY
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(a4

(1)

(2

(3)

SOME QUESTIONS ON HRM USAGE BY SFACELAS EXPERIMENTS

A "BURSTY* SOURCE OF DATA IS ONE WHICH PRODJCES DPTAR AT A HIGH RATE
FOR VAR!ABLE SHORT PERIODS OF TIM= WITH QUIET PERIODS IN BETUEEM.
THE DATA BURSTS ARE PSEUDO-RANDOM IN TIME AND THEREFCRE CANNOT BE SCHEDULED
DPCES YOUR EXPT. PRODUCE BURSTY DATA? ARE THERE DIFFERENT TYPES OF
BURSTS CORRESPOMDING TO DIFFEREMT TYPES OF DATA (SUCH AS HOUSEKEEPING,
ENGINEERING DIAGNOSTICS, MEMORY DUMPS, SCIENCE DATA FROM DIFFEFENT MODES)?

FSTFEAM" DATA IS THE OPPOSITE OF BURSTY DATA: 1T IS PRODUCED AT
P PREDICTAELE STEADY RATE FOR A KMOLMN DURATION. 1T MUST BE RECEIVED AT
THE SAME RATE WITHE NO DIFFEPENTIAL DELAYS OR RESHUFFLING. PHALOG VIDED
IMAGERY IS AN EXAMPLE.  HOW MUCH STREAM DATA WILL BE PRODUCED BY YOUR
EXPT.?

HOW IMPORTANT IS THE NZED TO CHOCSE OME’S QL™ RATES AND FORMSTS
FCR THZ NRM, RS OPPOSED TO CHOGSING OHE OF A VRRIETY OF STANDARDS,
WITH FILLING PHD BUFFERINGY

THE PRESENT HPM DOUWMLINK 1S A TIME-DIVISION MULTIPLEXED SYSTEM IN
WHICH DATR 1S TRAMSMITTED IN @ FIXED SEQUENCE OF MINOT FRAMZS WHICH
REPEAT IN CACH MAIOR FRAME. THE ALTERNATIVE "PACKET" APPROACH WIULD
ALLOW N PRBITRANY SECQUENCE OF MINOR FRAMES, WHOSE CONTENTS AMD SUBSEOUENMT
PROCESSIMG IN THE POCC COMPUTERS @RE IDENTIFIED BY & ONZ WORD LABZEL.
QRE THERE AiY ADVAHTAGES OF THE PACKET PPPRUACH FOR YOUR EXPT.?

MISCELLANEQUS QUESTIONS

WOULD YQU PREFER TD HAVE A NASA CONTRACTOR LURITE EXPERIMENT COMFUTER
AFPLICATICNS SOFTWARE (ECAS: TO YOUR SFPECIFICATIONS, OR LAULD NOU
PREFER TO WRITE IT YOURSELF IN A HICH-LEVEL LANCIAGE (GIVEN ERTRA
FUNDING RS KEEDED)T WHY? IF YOU PREZFER R NRSA CONTRACTOR. wlULD
YOUR ANSUER CHANGE IF YOU WERZ PROVIPED A COMVEMIEMT TELEFHOME
LIMC TO AN EC SIMULATOR, TO ALLOW ESSENTIALLY UNLIMITED TIMZ FOR
DEBUGGIM'G?

DO YOU PLAN TO USE YOUR OWN GROUND SUPFORT ECQUIPMENT (GSE) FOR
DARTA ANALYSIS AND DISPLAY IN THE POCC? IN LEVEL IV INTEGRATION? 1S IY
THE SAME HARDWARE OR DO YOU PLAN A MIRE SOPHISTICATED SYSTEM FOR THE
POCC?

DO YOU PLAN TQ UWSE THE POCC CLOSED-CIRCUIT TV SYSTEM? IF THE
STANDARD CCTV SYSTE!M INCLUDED IMAGE MANIPULATION AND ERHANCEMENT
FUNCTIONS FOR ANALOG VIDEQ IMHGES. WOULD YOU USE THEM? THE SAME,
FOR DIGITAL IMRGES? WOULD IT SIMPLIFY OR ELIMINATE ANY OF YOUR GSE
IF THESE FUNCTIONS WERE PART OF THE STRNDRRD SYSTEM?

“Tal A8 A IS
‘“{“ln\AL P(}(J!‘J
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APPENDIX D. SOURCES FOR DISPLAY EQUIPMENT SURVEY

Chromatics, Inc.

The Bendix Corporation

Megatek Corporation

Princeton Electronics Products
Information Displays, Inc.
Vector General

Lear Siegler, Inc. and Digital Engineering, Inc.
Tektronix, Inc.

Ramtek Corporation

Intelligent Systems Corporation
IBM Corporation

Imlac Corporation
Hewlett-Packard

DeAnza Systems, Inc.

Genisco Computers

Aydin Controls

Graphics Software:

SOL at University of Colorado and LPARL

Flight Test Data Processing System at LMSC

MIPS at MSFC

PLOT 10 Interactive Graphics Library by Tektronix
VERSAPLOT by Versatec

Array Processors:

Data General

CSPI

ESL, Inc.

Analogic Corporation

Floating Point Systems, Inc.
Goodyear Aerospace Corporation
Signal Processing Systems, Inc.

Analog Video Recording Equipment:

Interpretation Systems, Inc. (ISI)
Information Processing Systems (IPS)
Teknekron

Sony Corporation

Panasonic Company

RCA Corpcoration

Philips Laboratories
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Analog Video Display and Manipulation Equipment

-
.

Princeton Electronics Products (PEP)
Hughes Aircraft, Industrial Products Division
Colorado Video, Inc. (CVI)

Quantex Corporation

Sony

Conrac

Tektronix

Toshiba

181

Vidicom

Advent Corporation

LeCroy Research Systems of California
Panasonic

Hamamatsu Corporation

Digital Image Processing Systems

Recording:

IPS

1s1
Teknekron
Philips

Hard Copying:

Versatec

Trilog, Inc.

Polaroid Corporation
Muirhead Systems Ltd.
Tekrronix

Edo Western

Dunn Instruments

Institutional Systems:

IDIMS at ESL, Inc.

Image Proc. Lab. and VICAR at JPL

IUESIPS at GSFC

SIDS at Harvard Coliege Observatory

JPPS and FORTH at Kitt Peak National Observatory
IDAPS at MSFC
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First Level Image Displays: (see Section 3.5.3)
Bausch and Lomb

- Hamamatsu

- E. Leitz, Inc.
Joyce Loebl
Spatial Data Systems, Inc. (SDS)

Second Level Displays:

Grinnell Systems
DeAnza Systems

COMTAL Corporation
Aydin Controls
Genisco Computers
Hazeltine Corporation
I1SI

Lexidata Corporation
Raatek

Third Level Processing Displays:

COMTAL

DeAnza Systems

Grinnell Systems 9
Stanford Technology Corporation (STIC: also known as 1I°S)
Aydin Controls

Genisco Computers

Hazeltine

IsI

Lexidata

Ramtek

ESL
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